
Document Level Hierarchical Transformer

Najam Zaidi
Monash University

syed.zaidi1@monash.edu

Gholamreza Haffari
Monash University

gholamreza.haffari@monash.edu

Trevor Cohn
University of Melbourne

trevor.cohn@unimelb.edu.au

Abstract

Generating long and coherent text is an impor-
tant and challenging task encompassing many
application areas such as summarization, doc-
ument level machine translation and story gen-
eration. Despite the success in modeling intra-
sentence coherence, existing long text gener-
ation models (e.g., BART and GPT-3) still
struggle to maintain a coherent event sequence
throughout the generated text. We conjecture
that this is because of the difficulty for the
model to revise, replace or revoke any part that
has been generated by the model.

In this chapter, we present a novel semi-
autoregressive document generation model ca-
pable of revising and editing the generated text.
Building on recent models by (Gu et al., 2019;
Xu and Carpuat, 2020), we propose document
generation as a hierarchical Markov decision
process with a two level hierarchy, where the
high and low level editing programs generate
and refine the document. We train our model
using imitation learning and introduce roll-in
policy such that each policy learns on the out-
put of applying the previous action. Experi-
ments applying the proposed approach convey
various insights on the problems of long text
generation using our model. We suggest var-
ious remedies such as using distilled dataset,
designing better attention mechanisms and us-
ing autoregressive models as a low level pro-
gram.

1 Introduction

Generating long and coherent text encompass vari-
ous tasks such as summarization, story generation,
document level machine translation and document
level post editing. Each task is characterised by
modelling long range dependencies to make the
document coherent as well as modelling a high
level plot to make the document thematically con-
sistent (Fan et al., 2018). This is challenging as the
models need to plan content, while producing local

words consistent with the global context in a timely
manner.

Recent work on autoregressive generation mod-
els, such as GPT-3 and BART (Lewis et al., 2019;
Brown et al., 2020), have shown impressive per-
formance in generating short fluent text with a
maximum length ranging from 150 to 350 tokens
(Bosselut et al., 2018; Shen et al., 2019; Zhao et al.,
2020b). But applying the same model to generate
longer passages of text (e.g., 1000 tokens) has re-
sulted in syntactic and semantic errors throughout
the document requiring extensive human curations
(Tan et al., 2020). These massive language mod-
els are usually pre-trained using large corpora of
generic text, and then fine-tuned with small domain-
specific data. Most of the time, the models are not
publicly available to adapt to arbitrary desired do-
mains.

On the other hand, recent non-autoregressive ap-
proaches allow generation to be done within a much
smaller number of decoding iterations (Gu et al.,
2017; Wang et al., 2019; Kasai et al., 2020). But
due to its problems with modelling dependencies
among the tokens, the approach still lags behind its
autoregressive counterparts and has not yet been ap-
plied to long text generation (Zhou et al., 2019; Gu
and Kong, 2020). In both of these model families,
the length of generated sequences is either fixed or
monotonically increased as the decoding proceeds.
This makes them incompatible with human-level
intelligence where humans can revise and edit any
part of their generated text.

In this paper, we present a novel semi-
autoregressive document generation model capa-
ble of revising and editing the generated text. We
build on recent models by (Gu et al., 2019; Xu
and Carpuat, 2020), who framed generation as a
Markov decision process (Garcia and Rachelson,
2013) and showed that iteratively refining output se-
quences via insertions and repositions yields a fast
and flexible generation process for machine trans-

lation and automatic post editing task. We extend
their model by proposing document generation as
a hierarchical Markov decision (Liu et al., 2018)
process with a two level hierarchy. The high level
program produce actions aH ∈ {reposition, insert,
update} which tries to capture global context and
plan content while the low level program produce
actions aL ∈ {reposition, insert} to generate local
words in a consistent and timely manner. Due to
unavailability of large-scale data to train our model,
we propose a noising process to simulate the error
patterns observed in document level tasks such as
redundancy of words, key information omission
and disordered sentences. The noising process can
be reversed by applying a set of high and low level
actions to get back the original document. This
serve as an efficient oracle to train our model using
imitation learning (Hussein et al., 2017). The roll-
in policy is defined such that each policy learns on
the output of applying the previous action.

2 Problem formulation

2.1 Hierarchical Markov decision process

We cast document generation and refinement as
a hierarchical Markov decision process (HMDP)
with a two level hierarchy. The high level program
is defined by the tuple (D,AH ,E ,R,d0) where
a state d ∈ D corresponds to a set of sequences
d = (s1,s2, ...,sL) up to length L, and d0 ∈ D is
the initial document. The low level program cor-
responds to the tuple (S ,AL ,E ,R,s0) where a
state s ∈ S corresponds to a sequence of tokens
s = (w1, w2, ..., wn) from the vocabulary V up to
length n, and s0 ∈S is the initial sequence.

At any time step t , the model takes as input dt−1,
the output from the previous iteration, chooses an
action aH ∈ AH to refine the sequence into dt =
E (dt−1, aH), and receives a reward rt =R(dt). The
policy πH maps the input sequence dt−1 to a proba-
bility distribution P (AH) over the action space AH .
A high level program may call a low level program
with the initial input s0. It is similar to high level
program with its set of actions aL ∈ AL , reward
function rt = R(st) and the policy πL . Instead of
sequences, the low level actions are applied to indi-
vidual tokens. This results in a trajectory σ :=
{d1, a1

H ,τ1,r1,d2,,dN, aN
H ,τN ,rN ,dN+1} which

is the concatenation of high-level trajectory τH :=
(d1, a1

H ,r1,d2, a2
H ,r2,,dH+1) and the low level

trajectory τL := (s1, a1
L ,s2, a2

L ,,sT+1). We define
a reward function R = di st (D,D∗) which measures

the distance between the generation and the ground-
truth sequence. We use Levenstein distance (?) as
our distance metric.

2.2 HMDP policies:

Following the formulation of HDMP, we define
a high level policy πH : d −→ AH , as well as the
low level policy πL : s −→ AL as a mapping from
state to actions. The high level actions consist of
aH ∈ {r eposi t i on, i nser t ,upd ate} and the low
level actions consist of aL ∈ {r eposi t i on, i nser t }.

INSERTH: The insertion policy reads the in-
put document d consisting of set of sequences
{s1,s2, ...si,si+1, ...sL}, and for every possible slot
i , i +1, the insertion policy πi ns

H (x|i ,d) makes a bi-
nary decision which is 1 (insert here) or 0 (do not
insert). For each insertion position, low level MDP
is called to generate the new sequence from scratch.
This allows the model to generate a sentence con-
ditioned on the surrounding context resulting in
outputs that are consistent with the theme and plot
of the document.

UPDATEH: The update policy reads the in-
put document d, consisting of set of sequences
{s1,s2, ...si,si+1, ...sL}, and for every sequence po-
sition i , the update policy π

upd
H (x|i ,d) makes a

binary decision which is 1 (update this sentence)
or 0 (do not update). In order to make the update,
the low level MDP is called to refine the given se-
quence. This allows the model to correct mistakes
and improve the sentences generated by the insert
policy.

REPOSITIONH: The reposition policy reads in
the document d consisting of set of sequences
{s1,s2, ...si,si+1, ...sL}. For every sentence position
i , the reposition policy π

r ep
H (x|i ,d) makes a cate-

gorical decision between 0 and L+1 where L is the
number of sequences in the document. The given
sequence is repositioned to the output value. If x
is 0 then the sequence is deleted. This policy al-
lows the model to observe the complete document
and make it more coherent by repositioning and
deleteing sentences.

INSERTL,REPOSITIONL: The Low level MDP
is made up of actions reposition and insert. They
work in a similar manner as defined in the paper
(Gu et al., 2019; Xu and Carpuat, 2020) with the
difference that the conditioning context contains
document d along with the sentence s. Therefore

the reposition policy at the word level is defined
by π

r ep
L (x|i ,y,d). The insertion policy is made

up of a placeholder and token prediction policy
as defined by π

pl h
L (x|i ,y,d) and πtok

L (x|i ,y,d) re-
spectively. The placeholder policy first determines
the number of words that need to be inserted at a
given position. Special <mask> tokens are then
inserted. These <mask> tokens are filled by the
token prediction policy.

2.3 Generative process:
The generative process is outlined in algorithm 1.
The combination of high and low level policies can
either generate a document from scratch or edit a
given initial document. The insertion and update
policy calls the low level program in Lines 6 and 11.
Line 2 in algorithm 2 builds the initial scaffolding
which is later used by the algorithm for its set of
actions. If the low level program is called by the
high level update action the initial scaffolding is
created by concatenating the sentences identified
by the high level update policy. Otherwise in case
of high level insert action, it is the concatenation of
empty sentences. Although one iteration is made
up of multiple stages, within each stage an action
is performed in parallel.

3 Hierarchical Transformer

3.1 Architectures
Our model is based on the Transformer encoder-
decoder architecture (Vaswani et al., 2017). We ex-
tract the hidden representations (h1, ...,hn) to make
the policy predictions. We extract sentence rep-
resentations by concatenating all sentences with a
special <sep> token. The hidden states correspond-
ing to these special tokens are then used as sentence
representation by the policies. Along with position
embeddings for individual tokens, we also intro-
duce segment embeddings for sentences, which
identify the position of a sentence in a document.
We show the illustration of the proposed model in
Figure 1.

3.2 Policy classifiers
We implement policies as classifiers whose predic-
tion depends upon the hidden state representations
generated by the transformer layers.

Reposition classifier: The reposition classifier
gives a categorical distribution over the index of
the input, where the input can be the representa-
tion of a sentence or a word. The input sequence

is then repositioned accordingly. Along with re-
ordering, this classifier can also perform deletion
by predicting special delete token. This classifier
is implemented as:

π
r ep
θ

(r |si ,d) = softmax(hi · [b,e1, ...,en])

for i ∈ {1..n} where e can be the embedding of
a sentence or token and b ∈ Rdmodel is a special
token to predict deletion. Note that in case of low
level program, we also condition on the complete
document. This is done by having cross-attention
on the hidden representation of the sentences.

Insertion classifier: The high level insert clas-
sifer scans over the consecutive sentences and make
a binary decision to insert or not.

πi ns
θ (p|si ,d) = softmax([hi ;hi+1] ·A)

for i ∈ {1..n} and A ∈R2×dmodel is a parameter to be
learned. The low level insert classifier is made up
of placeholder insertion followed by token inser-
tion. The placeholder classifier predicts the num-
ber of tokens to be inserted at every consecutive
position pairs, by casting the representation to a
categorical distribution

πi ns
θ (p|wi ,s,d) = softmax([hi ,hi+1] ·B)

for i ∈ {1..n} and B ∈R(kmax+1)×(2dmodel) is a parame-
ter to be learned. Following (Gu et al., 2019), kmax

is 255. Token classifier then fill the placeholders

πtok
θ (t |wi ,s,d) = softmax(hi ·C)

for i ∈ {1..n} where wi is a placeholder and C ∈
R|V |×dmodel is a parameter to be learned.

Update classifier: The update classifier is only
present in the high level program. It scans over the
sentences and make a binary decision to update a
given sentence

π
upd
θ

(u|si ,d) = softmax(hi ·D)

for i ∈ {1..n} and D ∈R2×dmodel is a parameter to be
learned.

(a) Transformer blocks extract the sen-
tence representations which are used
by high level policy classifiers. Sup-
pose that the update policy predicts to
refine sentence 1 and 3

(b) The input to the low level trans-
former is the concatenated sentences
identified by the high level update pol-
icy.

Figure 1: The illustration of the proposed model for the update iteration. The same architecture can be applied for
different tasks with specific classifiers. We have omitted attention from transformer blocks for simplicity. p stands
for position embedding wheras s is for segment embedding

3.3 Noise

There is no large-scale labeled training dataset for
document-level rewriting. Accordingly we train on
synthetic dataset. To generate artificial broken text,
we apply transformation techniques both at the sen-
tence and word level and then learn to reverse the
transformation to recover the original document.
The techniques we use at the sentence level in-
clude: i) sentences reordering where sentences are
randomly shuffled and/or deleted; ii) sentence inser-
tion that a totally independent sentence is inserted
into the source. iii) sentence update the sentence is
slightly modified. For the lower-level transforma-
tion, we apply: i) word insertion that we insert a
random word from another pre-defined vocabulary
into the source. ii) shuffle and delete that we shuf-
fle and delete some words. Each transformation is
applied with a uniform probability between 0 and
1 leads to different trajectories of noise.

3.4 Oracle

Expert policy actions a∗ are created by reversing
the noise in the data. This is done by keeping track
of the noise actions that have been used to create a
corrupted output. In order to get alignment among
sentences, we create a bipartite graph where the
nodes are the sentences and the edge weight is the
Levenstein distance between those sentences. We
use max-flow min-cut algorithm to get the align-

ment (Dantzig and Fulkerson, 2003).

3.5 Training
Training is done by imitating the expert policy. We
design roll-in policy such that each classifier is
trained on the output of the other classifier. This
reduces exposure bias as the model is trained on
conditions it will encounter at decoding. The al-
gorithm for training is shown in algorithm 3. The
objective function is the product of decisions made
during the generation process. It is the loses in-
curred by both the high level and low level program
and is shown on line 14.

4 Experiments and Analysis

4.1 Experimental Setup
Data sets. We conduct experiments on synthet-
ically generated dataset consisting of sorted and
unsorted sequence pairs. Each sequence contains
5 - 10 and each line has between 20 to 100 tokens.
The document is sorted in numerical order with
tens coming before hundreds. The numbers lie be-
tween 1 and 1000. We generated 300K such pairs
for training consisting of unsorted sequence as in-
put and sorted sequence as output.

We further use real world datasets including
ROC stories (Mostafazadeh et al., 2016), consist-
ing of multiple 5 lines stories to check the ca-
pabilities of our model. We also conducted ex-

periemnts on Multi-news and DUC-2004 for multi-
document summarization (MDS), which is a sub-
task of summarization tasks. Multi-news (Lebanoff
et al., 2018) is a large-scale dataset for MDS and
DUC-2004 (Over and Yen, 2004) is a benchmark
dataset in MDS and its source documents are trun-
cated to 1,500 tokens. To generate our input and
output pairs, we inserted noise in the output se-
quences as outlined in section 3.3.

Evaluation Metrics. Rouge (Hovy et al., 2006),
an automatic evaluation metric, is commonly used
in Summarization to evaluate the quality of sum-
maries. We use Rouge-l, Rouge-2 and Rouge-L
to measure unigram-overlap, bigram-overlap, and
the longtest common sequence between system and
actual summaries. Synthetic and ROC stories are
evaluated with BLEU score (Papineni et al., 2002).

Baselines. We compare three models: i) Copy:
the original text is copied without any change,
which establishes the lower bound for the task. ii)
Transformer: a vanilla Transformer (Vaswani et al.,
2017) is used to generate a sequence of text by
reconstructing the source text. Without explicit
editing guidance, we have little control over its
generation process. iii) Levenshtein Transformer
(LevT): LevT is a semi autoregressive model for par-
allel sentence-level sequence generation (Gu et al.,
2019). It refines a given sequence in an iterative
manner with three operations, including deletion,
placeholder prediction and token prediction. The
iteration terminates when a certain stopping crite-
rion is met. iv) Editor transformer: It is similar
to the LevT, with the exception that it introduce a
reposition operator instead of the deletion operator
(Xu and Carpuat, 2020).

Implementation Details. To train the our mod-
els, we follow most of the hyper-parameter settings
in (Gu et al., 2019). The only differences are that
we use 3 Nvidia V100 GPUs and adopt fastbpe (?).

4.2 Results

The main results for summarization are shown in
table 1. The best result is obtained by copy across
both dataset indicating that post editing of long
sequences may hurt its quality. Copy consist of
output from SummPip system (Zhao et al., 2020a).
SummPip uses graph clustering to find relevant sen-
tences which are then used to generate the summary.
Among other models, the Vanilla transformer per-
formed better showing a strong bias present in the

Multi-News DUC-2004
R-1 R-2 R-L R-1 R-2 R-L

Copy 42.32 13.28 37.86 36.30 8.47 32.52
Transformer 40.62 12.42 36.37 35.4 7.78 31.71
LevT 25.93 8.59 28.95 23.45 4.89 25.12
Editor 25.56 8.13 28.33 23.17 4.21 25.01
Ours 21.67 5.89 24.03 18.22 2.17 20.87

Table 1: Experiment Results on Multi-News and
DUC2004 dataset

Synthetic ROC-Stories

Copy 23.59 28.82
Transformer 30.17 35.72
LevT 22.42 25.29
Editor 22.78 25.89
Ours 20.63 23.10

Table 2: Experiment Results on Synthetic and ROC-
stories dataset. We report the BLEU score in the table.

languages for autoregressive monotone generation.
Levenshtein and the Editor transformer performed
comparably whereas as our model showed no im-
provement over the baselines. We see similar per-
formance in Synthetic and ROC-stories dataset in
table 2 with Vanilla transformer performing better
then the other models.

4.3 Analysis

We outlines various ways to improve the results of
our model:

Evaluation metrics sensitivity towards docu-
ment level ordering: We measure the sensitivity
of our evaluation metrics towards capturing sen-
tence reordering. We permuted sentences in a doc-
ument and measure the metric's mean and standard
deviation. The results in table 2 shows the inad-
equacy of using these metrics(BLEU, ROGUE)
towards document level phenomenons. This sug-
gest a training approach where a low level program
is initially trained separately and then kept frozen
while the high level program is trained.

Mean Standard Deviation

Synthetic 97.84 ±0.05
ROC stories 98.94 ±0.03
Multi-News 97.95 ±0.05
DUC-2004 97.73 ±0.05

Table 3: Sensitivity of metrics towards capturing sen-
tence reordering. We synthetic and ROC stories we re-
port the BLEU score. For Multi-news and DOC-2004
we report the R1 score. Mean and standard deviation is
measured over 10 runs.

Distilled Dataset: Semi/non-autoregressive
models struggle to achieve quality similar to
autoregressive models. As the dependencies
are broken, it become difficult for the model to
generalise across multimodal dataset. The situation
is further aggravated when the sequences are long.
Distilled dataset has been found useful in dealing
with multomodality problem in non-autoregressive
modals (Zhou et al., 2019). Instead of using
the actual output, the outputs generated from
an autoregressive teacher modal are used with
the input sequence. It is not directly clear as
to how we can use distilled data in our model.
One way is to insert the noise in distilled dataset
to get input sequences. Another way is to use
curriculum learning (Bengio et al., 2009), starting
with distilled dataset and then moving to harder
actual examples.

Better Training: Pre-training and fine-tuning ap-
proach has been found useful in various tasks. Our
model consist of various components including
classifiers at two levels. These classifiers can be in-
dividually pre-trained. Once the pre-training step is
done, the whole model can be fine tuned for better
model generalisation.

Use of Autoregressive model: The low level
program is responsible for word generation. Due
to the inherent left to right generation bias, autore-
gressive models have shown better results in our
experiments. We can take advantage of this bias by
using autoregressive model as a low level program
but this can lead to longer decoding times.

Attention Mechanism: Wider context have
been shown to improve results for various docu-
ment level task (Kim et al., 2019). Designing an
attention mechanism such that more attention is
given to the sentences around the given sentence
than those far away in the document can improve
results. This can be done by having more atten-
tion heads for the near context then the far away
context.

5 Related Work

Previous work on long text generation has mostly
focused on generating tokens up to three hundred
words. These method usually employ the idea of
planning a document before generating it (Shen
et al., 2019; Zhao et al., 2020b; Rashkin et al.,
2020). Another line of work, focus on extending
transformer architecture to model long sequences

(Wang et al., 2020; Choromanski et al., 2020). Re-
cent work by (Tan et al., 2020) used pre-train lan-
guage models to progressively generate longer text
greater than 300 tokens. Our work differs from
previous approaches as it allows editing the gener-
ated text while it is being written. Previous work on
non-monotonic generation and refinement (Welleck
et al., 2019; Stern et al., 2019; Lee et al., 2018) has
mostly focused on generating shorter text. Our
proposed approach, differs from prior works by ex-
tending non-monotonic generation towards longer
texts.

6 Conclusion

We present a hierarchical document generation
model, that is capable of revising and editing its
generated text thus bringing it closer to human-
level intelligence. Although results showed that
our approach lags behind the baselines, it did
shed light into various problems present in semi-
autoregressive models and long document genera-
tion. In the future, we will be incorporating these
insights into our model to make it more robust.

Acknowledgments

References
Yoshua Bengio, Jérôme Louradour, Ronan Collobert,

and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41–48.

Antoine Bosselut, Asli Celikyilmaz, Xiaodong He,
Jianfeng Gao, Po-Sen Huang, and Yejin Choi. 2018.
Discourse-aware neural rewards for coherent text
generation. arXiv preprint arXiv:1805.03766.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, et al. 2020. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794.

G Dantzig and Delbert Ray Fulkerson. 2003. On the
max flow min cut theorem of networks. Linear in-
equalities and related systems, 38:225–231.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. arXiv preprint
arXiv:1805.04833.

Frédérick Garcia and Emmanuel Rachelson. 2013.
Markov decision processes. Markov Decision Pro-
cesses in Artificial Intelligence, pages 1–38.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor OK Li, and Richard Socher. 2017. Non-
autoregressive neural machine translation. arXiv
preprint arXiv:1711.02281.

Jiatao Gu and Xiang Kong. 2020. Fully non-
autoregressive neural machine translation: Tricks of
the trade. arXiv preprint arXiv:2012.15833.

Jiatao Gu, Changhan Wang, and Jake Zhao.
2019. Levenshtein transformer. arXiv preprint
arXiv:1905.11006.

Eduard H Hovy, Chin-Yew Lin, Liang Zhou, and Ju-
nichi Fukumoto. 2006. Automated summarization
evaluation with basic elements. In LREC, volume 6,
pages 604–611. Citeseer.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan,
and Chrisina Jayne. 2017. Imitation learning: A sur-
vey of learning methods. ACM Computing Surveys
(CSUR), 50(2):1–35.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and
Jiatao Gu. 2020. Non-autoregressive machine trans-
lation with disentangled context transformer. In In-
ternational Conference on Machine Learning, pages
5144–5155. PMLR.

Yunsu Kim, Duc Thanh Tran, and Hermann Ney. 2019.
When and why is document-level context useful
in neural machine translation? arXiv preprint
arXiv:1910.00294.

Logan Lebanoff, Kaiqiang Song, and Fei Liu. 2018.
Adapting the neural encoder-decoder framework
from single to multi-document summarization.
arXiv preprint arXiv:1808.06218.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. arXiv
preprint arXiv:1802.06901.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Ming Liu, Wray Buntine, and Gholamreza Haffari.
2018. Learning to actively learn neural machine
translation. In Proceedings of the 22nd Confer-
ence on Computational Natural Language Learning,
pages 334–344.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A cor-
pus and evaluation framework for deeper under-
standing of commonsense stories. arXiv preprint
arXiv:1604.01696.

Paul Over and James Yen. 2004. An introduction to
duc-2004. National Institute of Standards and Tech-
nology.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Hannah Rashkin, Asli Celikyilmaz, Yejin Choi, and
Jianfeng Gao. 2020. Plotmachines: Outline-
conditioned generation with dynamic plot state
tracking. arXiv preprint arXiv:2004.14967.

Dinghan Shen, Asli Celikyilmaz, Yizhe Zhang, Liqun
Chen, Xin Wang, Jianfeng Gao, and Lawrence
Carin. 2019. Towards generating long and coherent
text with multi-level latent variable models. arXiv
preprint arXiv:1902.00154.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. In In-
ternational Conference on Machine Learning, pages
5976–5985. PMLR.

Bowen Tan, Zichao Yang, Maruan AI-Shedivat, Eric P
Xing, and Zhiting Hu. 2020. Progressive generation
of long text with pretrained language models. arXiv
preprint arXiv:2006.15720.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han
Fang, and Hao Ma. 2020. Linformer: Self-
attention with linear complexity. arXiv preprint
arXiv:2006.04768.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang
Zhai, and Tie-Yan Liu. 2019. Non-autoregressive
machine translation with auxiliary regularization. In
Proceedings of the AAAI Conference on Artificial In-
telligence, pages 5377–5384.

Sean Welleck, Kianté Brantley, Hal Daumé III, and
Kyunghyun Cho. 2019. Non-monotonic sequential
text generation. arXiv preprint arXiv:1902.02192.

Weijia Xu and Marine Carpuat. 2020. Editor: an edit-
based transformer with repositioning for neural ma-
chine translation with soft lexical constraints. arXiv
preprint arXiv:2011.06868.

Jinming Zhao, Ming Liu, Longxiang Gao, Yuan Jin,
Lan Du, He Zhao, He Zhang, and Gholamreza
Haffari. 2020a. Summpip: Unsupervised multi-
document summarization with sentence graph com-
pression. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 1949–1952.

Liang Zhao, Jingjing Xu, Junyang Lin, Yichang Zhang,
Hongxia Yang, and Xu Sun. 2020b. Graph-based
multi-hop reasoning for long text generation. arXiv
preprint arXiv:2009.13282.

Chunting Zhou, Graham Neubig, and Jiatao Gu.
2019. Understanding knowledge distillation in non-
autoregressive machine translation. arXiv preprint
arXiv:1911.02727.

A Appendices

A.1 Generation Algorithm

Algorithm 1 Generation in HMDP
Require: Initial document d0, policy: πθH

1: d ← d0

2: while Termination condition is not met do
3: rep_index ← argmaxr

∑
si∈d logπr ep

θH
(ri |si ,d) . Do reposition

4: d ← E (d,rep_index)
5: ins_index ← argmaxp

∑
si ,si+1∈d logπi ns

θH
(pi |si ,si+1,d) . Do insertion

6: d ← E (d, ins_index) . Call to Low level MDP
7: upd_index ← argmaxu

∑
si∈d logπupd

θH
(ui |si ,d) . Do update

8: d ← E (d,upd_index) . Call to Low level MDP
9: end while

Algorithm 2 Low Level MDP
Require: Document d, policy: πθL , Hi Level MDP action: H

1: while Termination condition is not met do
2: s0 ← buildFrame(d,H)
3: if s0 is empty then
4: s ← s0 . Skip reposition
5: else
6: rep_index ← argmaxr

∑
wi∈s logπr ep

θL
(ri |wi ,s,d) . Do reposition

7: d ← E (s,rep_index)
8: end if
9: plh_index ← argmaxp

∑
wi ,wi+1∈s logπi ns

θL
(pi |wi , wi+1,s,d) . Insert placeholders

10: s ← E (s,plh_index)
11: tok_index ← argmaxt

∑
wi∈s,wi==<mask> logπtok

θL
(ti |wi ,s,d) . Fill placeholders

12: s ← E (s,tok_index)
13: end while
14: d ← documentUpdate(d,s)

A.2 Training Algorithm

Algorithm 3 Training for Hierarchical Levenshtein Transformer

Require: Training data T , Model policy: πθ, Expert policy: π∗
1: while Maximum training steps reached do
2: (d,d∗) ∼T . Sample a training pair

3: repH∗, insH∗,updH∗ ←πH∗ (d,d∗) . Get oracle actions
4: repL1∗, insL1∗,tokL1∗,repL2∗, insL2∗,tokL2∗ ←πL∗(d,d∗)

5: L
r ep
θH

←−∑
si∈d logπr ep

θH
(r epH∗

i |si ,d)
6: d ← applyAction(d,repH∗)

7: L i ns
θH

←−∑
si ,si+1∈d logπi ns

θH
(i nsH∗

i |si ,si+1,d)
8: s ← buildFrame(insH∗,d)

9: L
r ep1
θL

←−∑
wi∈s logπr ep

θL
(r epL1∗

i |wi ,s,d) . Low Level
10: s ← applyAction(s,repL1∗)
11: L i ns1

θL
←−∑

wi ,wi+1∈s logπi ns
θL

(i nsL1∗
i |wi , wi+1,s,d)

12: s ← applyAction(s, insL1∗)
13: L tok1

θL
←−∑

wi∈s,wi=<mask> logπtok
θL

(tokL1∗
i |wi ,s,d)

14: d ← applyAction(d, insH∗)

15: L
upd
θH

←−∑
si∈d logπupd

θH
(upd H∗

i |si ,d)
16: s ← buildFrame(updH∗,d)

17: L
r ep2
θL

←−∑
wi∈s logπr ep

θL
(r epL2∗

i |wi ,s,d) . Low Level
18: s ← applyAction(s,repL2∗)
19: L i ns2

θL
←−∑

wi ,wi+1∈s logπi ns
θL

(i nsL2∗
i |wi , wi+1,s,d)

20: s ← applyAction(s, insL2∗)
21: L tok2

θL
←−∑

wi∈s,wi=<mask> logπtok
θL

(tokL2∗
i |wi ,s,d)

22: θ← θ−λ∇[L r ep
θH

+L i ns
θH

+L
upd
θH

+L
r ep1
θL

+L i ns1
θL

+L tok1
θL

+L
r ep2
θL

+L i ns2
θL

+L tok2
θL

]
23: end while

