
Proceedings of the Second Workshop on Domain Adaptation for NLP, pages 72–79
April 20, 2021. ©2021 Association for Computational Linguistics

72

Cross-Lingual Transfer with
MAML on Trees

Jezabel R. Garcia, Federica Freddi, Feng-Ting Liao, Jamie McGowan, Tim Nieradzik,
Da-shan Shiu, Ye Tian, Alberto Bernacchia*

*MediaTek Research, Cambourne Business Park, Cambridge CB23 6DW, United Kingdom

Abstract

In meta-learning, the knowledge learned from
previous tasks is transferred to new ones, but
this transfer only works if tasks are related.
Sharing information between unrelated tasks
might hurt performance, and it is unclear how
to transfer knowledge across tasks that have
a hierarchical structure. Our research extends
a meta-learning model, MAML, by exploiting
hierarchical task relationships. Our algorithm,
TreeMAML, adapts the model to each task
with a few gradient steps, but the adaptation
follows the hierarchical tree structure: in each
step, gradients are pooled across tasks clusters
and subsequent steps follow down the tree. We
also implement a clustering algorithm that gen-
erates the tasks tree without previous knowl-
edge of the task structure, allowing us to make
use of implicit relationships between the tasks.

We show that TreeMAML successfully trains
natural language processing models for cross-
lingual Natural Language Inference by taking
advantage of the language phylogenetic tree.

This result is useful, since most languages
in the world are under-resourced and the im-
provement on cross-lingual transfer allows the
internationalization of NLP models.

1 Introduction

Deep learning models require a large amount of
data in order to perform well when trained from
scratch. When data is scarce for a given task, we
can transfer the knowledge gained in a source task
to quickly learn a target task, if the two tasks are
related. Multi-task learning studies how to learn
multiple tasks simultaneously with a single model,
by taking advantage of task relationships (Ruder,
2017; Zhang and Yang, 2018). However, in Multi-
task learning models, a set of tasks is fixed in ad-
vance and they do not generalize to new tasks. In-
stead, Meta-learning is inspired by the human abil-

ity to learn how to quickly learn new tasks by using
the knowledge of previously learned ones.

Meta-learning has been widely used in multiple
domains, especially in recent years since the advent
of Deep Learning (Hospedales et al., 2020). A
successful model for meta-learning, MAML (Finn
et al., 2017), does not diversify task relationships
according to their similarity and it is unclear how
to modify it for that purpose. Furthermore, there
is still a lack of methods for sharing information
across tasks that have a hierarchical structure, and
the goal of our work is to fill this gap.

The use of MAML-like algorithms in NLP has
just recently been proved successful for Natural
Language Inference (NLI) and Question Answer-
ing (QA) (Nooralahzadeh et al., 2020). These re-
sults represent a practical meta-learning solution to
the fundamental problem of applying NLP models
to under-resourced languages where data annota-
tion is scarce. This work, combined with the fact
that languages can be organized hierarchically us-
ing their phylogenetic tree (Dunn et al., 2011), mo-
tivated us to develop a hierarchical meta-learning
algorithm, that we call TreeMAML.

In this work, we make the following contribu-
tions:

• We propose a novel modification of MAML
to account for a hierarchy of tasks. The al-
gorithm uses the tree structure of data during
adaptation, by pooling gradients across tasks
at each adaptation step and subsequent steps
follow down the tree (see Figure 1a).

• We modify the hierarchical clustering from
Menon et al. (2019) to allow asymmetric tree
structure. We apply this clustering algorithm
to learn dynamic trees that exploit the similar-
ity between tasks.

• We apply TreeMAML to few-shot NLI, using

73

the XNLI dataset (Conneau et al., 2018), ob-
taining accuracies higher than previous state-
of-the-art.

2 Related work

The problem of quantifying and exploiting task
relationships has a long history in Multi-task learn-
ing and is usually approached by parameter sharing,
see Ruder (2017); Zhang and Yang (2018) for re-
views. However, Multi-task Learning is fundamen-
tally different from Meta-learning as it does not
consider the problem of generalizing to new tasks
(Hospedales et al., 2020). Recent work includes
Zamir et al. (2018), who studies a large number of
computer vision tasks and quantifies the transfer
between all pairs of tasks. Achille et al. (2019)
proposes a novel measure of task representation
by assigning an importance score to each model
parameter in each task. The score is based on each
task’s loss function gradients with respect to each
model parameter. This work suggests that gradients
can be used as a measure of task similarity and we
use this insight in our proposed algorithm.

In Meta-learning, a few papers have been re-
cently published on learning and using task rela-
tionships. The work of Yao et al. (2019) applies hi-
erarchical clustering to task representations learned
by an autoencoder and uses those clusters to adapt
the parameters to each task. The model of Liu et al.
(2019) maps the classes of each task into the edges
of a graph, it meta-learns relationships between
classes and how to allocate new classes by using
a graph neural network with attention. However,
these algorithms are not model-agnostic; they have
a fixed backbone and loss function and are thus dif-
ficult to apply to new problems. Instead, we design
our algorithm as a straightforward generalization of
Model-agnostic meta-learning (MAML, Finn et al.
(2017)) and it can be applied to any loss function
and backbone.

A couple of studies looked into modifying
MAML to account for task similarities. The work
of Jerfel et al. (2019) finds a different initial con-
dition for each cluster of tasks and applies the al-
gorithm to the problem of continual learning. The
work of Katoch et al. (2020) defines parameter up-
dates for a task by aggregating gradients from other
tasks according to their similarity. However, in con-
trast with our algorithm, both of these models are
not hierarchical, tasks are clustered on one level
only and cannot be represented by a tree structure.

Recently, MAML has been applied to cross-
lingual meta-learning (Gu et al., 2018; Dou et al.,
2019). In particular, the implementation by
Nooralahzadeh et al. (2020), called XMAML, ob-
tained good results on NLI and QA tasks. As in
the previously mentioned computer vision studies,
some of these NLP algorithms looked into the re-
lationships among languages to select the support
languages used in their meta-learning algorithm,
but they do not use the hierarchical structure of the
languages.

3 The meta-learning problem

We follow the notation of Hospedales et al. (2020).
We assume the existence of a distribution over tasks
τ and, for each task, a distribution over data points
D and a loss function L. The loss function of
the meta-learning problem, Lmeta, is defined as an
average across both distributions of tasks and data
points:

Lmeta (ω) = E
τ

E
D|τ
Lτ (θτ (ω);D) (1)

The goal of meta-learning is to minimize the
loss function with respect to a vector of meta-
parameters ω. The vector of parameters θ is task-
specific and depends on the meta-parameters ω.
Different meta-learning algorithms correspond to
a different choice of θτ (ω). We describe below
the choice of MAML that will also be followed by
TreeMAML.

During meta-training, the loss is evaluated on a
sample of m tasks and nv validation data points for
each task.

Lmeta (ω) = 1

mnv

m∑
i=1

nv∑
j=1

Lτi (θτi(ω);Dij)

(2)
For each task i, the parameters θτi are learned by
a set of nt training data points, distinct from the
validation data. During meta-testing, a new (target)
task is given and the parameters θ are learned by a
set of nr target data points. In this work, we also
use a batch of training data points to adapt θ at
test time. No training data is used to compute the
model’s final performance, which is computed on
separate test data of the target task.

3.1 TreeMAML

MAML aims at finding the optimal initial condition
ω from which a suitable parameter set can be found,

74

separately for each task, after K gradient steps
(Finn et al., 2017). For task i, we define the single
gradient step with learning rate α as

Ui(ω) = ω −
α

nt

nt∑
j=1

∇L(ω;Dij) (3)

Then, MAML with K gradient steps corresponds
to K iterations of this step.

θτi(ω) = Ui(Ui(...Ui(ω))) (K times)
(4)

This update is usually referred to as inner loop
and is performed separately for each task, while
optimization of the loss 2 is referred to as outer
loop.

We propose to modify MAML in order to ac-
count for a hierarchical structure of tasks. The idea
is illustrated in Figure 1.

At each gradient step k, we assume that tasks
are aggregated into Ck clusters and the parameters
for each task are updated according to the average
gradient across tasks within the corresponding clus-
ter (in Fig.1b, we use K = 3 steps and C1 = 2,
C2 = 4, C3 = 8). We denote by Tc the set of
tasks in cluster c. Then, the gradient update for the
parameters of each task belonging to cluster c is
equal to

Uc(ω) = ω −
α

nt |Tc|
∑
i∈Tc

nt∑
j=1

∇L(ω;D(i)
j) (5)

Furthermore, we denote by cki the cluster to which
task i belongs at step k. Then, TreeMAML with k
gradient steps corresponds to K iterations of this
step.

θτi(ω) = UcKi
(UcK−1

i
(...Uc1i

(ω))) (6)

The intuition is the following: if each task has
scarce data, gradient updates for single tasks are
noisy and adding up gradients across similar tasks
increases the signal. Note that we recover MAML
if Ck is equal to the total number of tasks m at all
steps. On the other hand, if Ck = 1, then the inner
loop would take a step with a gradient averaged
across all tasks.

Because at one specific step the weight updates
are equal for all tasks within a cluster, it is possible
to define the steps of the inner loop update per
cluster c instead of per task θτi . Given a cluster c

and its parent cluster pc in the tree, the update at
step k is given by

θc,k = θpc,k−1−
α

nt |Tc|
∑
i∈Tc

nt∑
j=1

∇L(θpc,k−1;Dij)

(7)
where θck is the parameter value for cluster c at step
k. In terms of the notation used in expression 6, we
have the equivalence θτi(ω) = θci,K , which de-
pends on the initial conditionω. The full procedure
is described in Algorithm 1

We consider two versions of the algorithm, de-
pending on how we obtain the tree structure similar
to Srivastava and Salakhutdinov (2013):

• Fixed TreeMAML. The tree is fixed by the
knowledge of the tree structure of tasks when
this structure is available. In that case, the
values of Ck are determined by such tree.

• Learned TreeMAML. The tree is unknown a
priori and is learned using a hierarchical clus-
tering algorithm. In that case, the values ofCk
are determined at each step by the clustering
algorithm.

In the latter case, we cluster tasks based on the
gradients of each task loss, consistent with recent
work Achille et al. (2019). After each step k at
cluster ci, the clustering algorithm takes as input
the gradient vectors of the children tasks i

gik =
1

nt

nt∑
j=1

∇L(θci,k;Dij) (8)

and these gradients are further allocated into clus-
ters according to their similarity. The clustering
algorithm is described in subsection 3.2.

Similar to MAML, adaptation to a new task is
performed by computing θ(i)(ω) on a batch of data
of the target task. In order to exploit task relation-
ships, we first reconstruct the tree structure by us-
ing a batch of training data and then we introduce
the new task.

3.2 Clustering Algorithm
We employ a hierarchical clustering algorithm to
cluster the gradients of our model parameters in the
learned TreeMAML case. We specifically opt for
an online clustering algorithm to maximise com-
putational efficiency at test time and scalability.
When a new task is evaluated, we reuse the tree
structure generated for a training batch and add the

75

Figure 1: Illustration of the MAML(a) and TreeMAML(b) algorithms. Both algorithms are designed to quickly
adapt to new tasks with a small number of training samples. MAML achieves this by introducing a gradient step
in the direction of the single task. TreeMAML follows a similar approach, but it exploits the relationship between
tasks by introducing the hierarchical aggregation of the gradients.

Algorithm 1 TreeMAML

Require: distribution over tasks p(τ); distribution over data for each task p(D|τ);
Require: number of inner steps K; number of training tasks m; learning rates α, β;
Require: number of clusters Ck for each step k; loss function Lτ (ω,D) for each task

randomly initialize ω
while not done do

sample batch of i = 1 : m tasks {τi} ∼ p(τ)
for all tasks i = 1 : m initialize a single cluster ci = 1
initialize θ1,0 = ω
for steps k = 1 : K do

for tasks i = 1 : m do
sample batch of j = 1 : nv data points {Dij} ∼ p(D|τi)
evaluate gradient gik = 1

nt

∑nt
j=1∇Lτi(θci,k−1;Dij)

end for
regroup tasks into Ck clusters Tc = {i : ci = c}
according to similarity of {gik} and parent clusters {pc}
update θc,k = θpc,k−1 − α

|Tc|
∑

i∈Tc gik for all clusters c = 1 : Ck
end for
update ω ← ω − β 1

mnv

∑m
i=1

∑nv
j=1∇ωLτi (θci,K(ω);Dij)

end while

new task. This process saves us from computing a
new task hierarchy from scratch for every new task.
Moreover, with offline hierarchical clustering, all
the data needs to be available to the clustering al-
gorithm simultaneously, which becomes a problem
when dealing with larger batch sizes. Therefore
online clustering favours scalability.

We follow the online top-down (OTD) approach
set out by Menon et al. (2019) and adapt this to ap-
proximate non-binary tree structures. Our cluster-
ing algorithm is shown in Algorithm 2. Specifically,
we introduce two modifications to the original OTD
algorithm:

• Maximum Tree Depth Parameter D: This is

equivalent to the number of inner steps to take
in the TreeMAML since the tree is a represen-
tation of the inner loop where each layer in
the tree represents a single inner step.

• Non-binary Tree Approximation: We intro-
duce a hyperparameter ξ which represents
how far the similarity of a new task needs
to be to the average cluster similarity in order
to be considered a child of that same clus-
ter. This is not an absolute value of distance,
but it is a multiplicative factor of the standard
deviation of the intracluster similarities. Intro-
ducing this factor allows clusters at any level
to have more than two children.

76

Algorithm 2 Online top down (OTD) - Non-binary

Require: origin cluster node C with a given set of
children A = {x1, x2, ..xN}

Require: new task x; maximum depth allowed D;
similarity metric, ω()

Require: standard deviation multiplicative hyper-
parameter ξ;
if |A| = 0 then

new task becomes a new child A = {x}
else if |A| = 1 then

add new task to set of children A← A ∪ {x}
else if ω(A ∪ {x}) > ω(A) then

identify most similar child x∗ =
argminxi(ω({xi, x}))
if reached maximum depth Cdepth + 1 = D
then

add new task to set of children A ← A ∪
{x}

else
recursively perform OTD to create new
node C ′ = OTD(x∗, x)
add new node to set of children A← (A \
{x∗}) ∪ C ′

end if
else if ω(A ∪ {x}) < ω(A)− ξσT then

current node and new task become children to
new cluster A← {C, x}

else
add new task to set of children A← A ∪ {x}

end if

4 Cross-Lingual NLI

Languages can be embraced in a forest of phy-
logenetic trees (Dunn et al., 2011), for example,
the Indo-European and Asian trees (Figure 2).
TreeMAML exploits this hierarchical structure to
generalize the performance of models across lan-
guages, including under-resourced languages, use-
ing all the available languages in the tree.

We adapt a high-resource language model, Multi-
BERT (Devlin et al., 2018), to a NLI task. In par-
ticular, we consider the problem of Few-Shot NLI
using the XNLI data set (Conneau et al., 2018).

This dataset consists of a crowd-sourced col-
lection of 5,000 test and 2,500 dev sentence-label
pairs from the MultiNLI corpus. They are anno-
tated with textual entailment and translated into
15 languages: English (en), French (fr), Spanish
(es), German (de), Greek(el), Bulgarian (bg), Rus-
sian (ru), Turkish, Arabic, Vietnamese (vi), Thai

(th), Chinese (zh), Hindi (hi), Swahili and Urdu
(ur). Twelve of these languages are part of the
same phylogenetic tree, and we focus our study on
those languages (see Figure 2). We separately set
as target language each language of the tree and we
used the eleven remaining languages as auxiliary
languages for meta-training.

Each sentence has also an associated topic, or
genre, among a collection of 10 possible genres
(Face-To-Face, Telephone, Government, 9/11, Let-
ters, Oxford University Press (OUP), Slate, Ver-
batim, and Government, Fiction). We define each
combination of a language and a genre as a task,
and we consider the problem of few-shot meta-
learning using three shots for each task during meta-
training. We add the new target task to the original
distribution of tasks, we apply the TreeMAML al-
gorithm and evaluate the model on the target lan-
guage test set.

We use the TreeMAML algorithm to fine-tune
the top layer of Multi-BERT (layer 12), with
four inner steps. We compare our results with
MAML, using the same number of inner steps,
with the baseline Multi-BERT, and with XMAML
Nooralahzadeh et al. (2020). An important differ-
ence of our approach is that, while XMAML uses
only two auxiliary languages to fine tune Multi-
BERT to a target language, we use all other lan-
guages as auxiliary languages.

4.1 Fixed TreeMAML

In the case of fixed TreeMAML, we use the phy-
logenetic tree in Figure 2. Fine-tuning of Multi-
BERT for the target language benefits not only from
proximal (auxiliary) languages, but also from all
other languages in the tree that share roots with the
target language. For example, if the target language
is German, the fine-tuning in fixed TreeMAML
would use for the first step of the gradient update
all the remaining languages. In the second step,
the auxiliary languages would be all the training
languages of the Indo-European branch. The third
and last steps uses only English.

The accuracy of TreeMAML is consistently
higher than the one of the Baseline or MAML and
an average of ∼ 3% better than the one achieved
by XMAML, see Table 1.

Note that we used a relatively simple version
of the phylogenetic tree. A more detailed ver-
sion could be used for testing under-resourced lan-
guages, or to emphasize the dependencies inside

77

Figure 2: Simplified version of the phylogenetic language tree. The tree include 12 of the 15 languages of XNLI
data set and have depth three (Three levels of hierarchy)

the tree. For example, a Bavarian testing data
set would fall inside the German branch, or we
could add depth to the tree by adding Germanic
sub-branches, such as high-german, anglo-frisian
and low-franconian.

4.2 Learned TreeMAML

While fixed TreeMAML uses previous knowledge
to construct the tree, learned TreeMAML allows
learning the relation between languages and gen-
res, potentially reflecting a priory unknown rela-
tionships in the XNLI corpus, but also potentially
fitting some noise. Note that learned TreeMAML
has one additional parameter, the maximum tree
depth, as explained in 3.2.

The relationships between languages and genres
is learned at each step of gradient descent, for each
batch of data. Therefore, the tree for one batch
can be different from the tree for the next batch.
This difference is due to the fact that the cluster-
ing algorithm only cares about the similarity of the
gradients, and this similarity does not need to be
always the same between two languages. It may de-
pend on the particular words used in the sentences,
or in the tasks genres. For example, for a partic-
ular batch, some sentences from the same genre
in English and French could have closer gradients
than other sentences in Germanic languages with a
different genre.

The clustering process happens at both train-
ing and testing time, which means that learned
TreeMAML may improve the accuracy by improv-

ing the training, but also by producing the best
hierarchy for the target task at testing time. This
may be particularly useful for under-resourced lan-
guages where non-obvious dependencies between
the task in the target languages and the tasks in
other languages can be exploited to improve the
test accuracy.

As shown in Table 1, fixed/learned TreeMAML
outperforms other methods in almost all languages.
These results show that using the languages hierar-
chical structure helps achieving better cross-lingual
transfer and higher accuracy in the XNLI task.

In the case of Greek (el), TreeMAML outper-
forms XMAML, but the baseline Multi-BERT ob-
tains a slightly higher accuracy. This result could
be due to the simplified structure of the tree that
we use, which does not adequately reflect the ac-
tual distance in between languages from the Indo-
European family. Besides Greek, Thai (th) is the
only language for which TreeMAML does not get
higher accuracy. This is mainly due to oversimpli-
fied tree used. We used a generic ”Asian” language
tree, but Chinese, Vietnamese and Thai belong to
three separate language families.

Learned TreeMAML performs very similar to
fixed TreeMAML in most experiments, achieving
higher values for some of the languages. We be-
lieve that the difference depends on how well our
clustering algorithm performs in each case. For
some languages, learned TreeMAML is just learn-
ing the same tree structure that we use in fixed
TreeMAML, and both algorithms produce almost

78

en fr es de el bg ru vi th zh hi ur avg
two languages (Nooralahzadeh et al., 2020)

Multi-BERT (Baseline) 81.94 75.39 75.79 73.25 69.54 71.60 70.84 73.23 61.18 73.93 64.37 63.71 71.23
XMAML 82.71 75.97 76.51 74.07 70.66 72.77 72.12 73.87 62.5 74.85 65.75 64.59 72.20

all languages (ours)
Multi-BERT (Baseline) 83.56 76.22 76.89 73.11 72.89 72.89 71.33 74.67 57.56 74.89 63.11 63.33 71.70

MAML 83.11 78.22 77.11 73.56 69.33 71.78 71.33 74.22 57.33 75.11 63.33 63.78 71.52
Fixed TreeMAML 84.67 79.78 78.22 76.89 72.00 74.22 73.33 74.44 59.56 79.11 66.00 66.89 73.76

Learned TreeMAML 84.22 77.33 79.78 78.00 71.56 73.78 74.00 74.89 59.78 76.44 65.11 65.56 73.37

Table 1: The top part of the table shows the results of training with two auxiliary languages (Nooralahzadeh et al.,
2020). The lower part of the table shows the performance when using all languages (except the target) as auxiliary
languages. The difference in the amount of data used for training may account for a part of the difference in
performance between XMAML and TreeMAML, and may also explain why our Baseline outperforms XMAML
for some languages. The results are reported for each of our experiment by averaging the performance over three
different runs. The standard deviation is for all our experiments below 1%.

the same results. In other cases, the clustering
algorithm assigns tasks to the wrong branch, mak-
ing learned TreeMAML perform worse. For some
other languages, learned TreeMAML performs bet-
ter, possibly because it finds other useful relation-
ships, for example tasks belonging to the same
genre in different languages.

5 Discussion and Conclusion

This paper presents a method to exploit the
data hierarchy in the meta-learning framework,
TreeMAML. This algorithm can use a priory knowl-
edge of the data set (fixed TreeMAML), or learn the
hierarchical structure using our modification of the
OTD clustering algorithm (learned TreeMAML).

Since languages follow a hierarchical phylo-
genetic tree, we hypothesized that we could use
TreeMAML to meta-train models for cross-lingual
understanding. We applied TreeMAML to the
cross-lingual XNLI problem and show an improve-
ment in accuracy ∼ 3% with respect to the state
of the art obtained by XMAML (Nooralahzadeh
et al., 2020) (Table 1). The improvement with re-
spect to XMAML suggests that using all available
languages results in increased performance. Fur-
thermore, the improvement with respect to MAML
suggests that using the tree structure of those lan-
guages also improves performance.

How much each auxiliary language contributes
to the target language’s performance may depend
on its relative position in the language tree. These
results are especially encouraging for meta-training
of cross-lingual understanding tasks for under-
resourced languages. Future work may include
an improved algorithm that takes into account not
only the position of a language in the tree, but also
the distances between languages in a branch by,

for example, introducing weighted averaging of the
gradients.

In our NLI experiments, learned TreeMAML is
in most cases as good or even better than fixed
TreeMAML. One possible explanation is that clus-
tering learns the tree for each batch of data at
each gradient step, which allows it to pick up NLI-
relevant similarities that are not described by a
phylogenetic tree, as the genre of the task in the
XNLI data set, structural similarities and lexical
similarity, which can be the result of language con-
tact, as for example lexical borrowings. This may
help with cross-lingual understanding tasks for un-
common languages for which the exact position in
the tree may be unclear or not enough data may be
available.

As discussed in section 4.2, the lack of improve-
ment in accuracy in the Greek language and the
low performance in Thai can be rooted in the exper-
imental design’s naive assumptions about: which
languages to include in the experiment, and the
correctness of the language tree. The results in
which TreeMAMl performs worse than the other
algorithms speak in favour of the robustness of this
algorithm to properly learn cross-lingual relation-
ships and exploit them to perform natural language
understanding tasks. Therefore, the use of learned
TreeMAML could help with the internationaliza-
tion of the NLP models.

79

References
Alessandro Achille, Michael Lam, Rahul Tewari,

Avinash Ravichandran, Subhransu Maji, Charless
Fowlkes, Stefano Soatto, and Pietro Perona. 2019.
Task2Vec: Task Embedding for Meta-Learning.
arXiv:1902.03545. ArXiv: 1902.03545.

Alexis Conneau, Guillaume Lample, Ruty Rinott,
Adina Williams, Samuel R. Bowman, Holger
Schwenk, and Veselin Stoyanov. 2018. XNLI:
Evaluating Cross-lingual Sentence Representations.
arXiv:1809.05053.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. arXiv:1810.04805.

Zi-Yi Dou, Keyi Yu, and Antonios Anastasopoulos.
2019. Investigating Meta-Learning Algorithms
for Low-Resource Natural Language Understanding
Tasks. arXiv:1908.10423.

Michael Dunn, Simon J. Greenhill, Stephen C. Levin-
son, and Russell D. Gray. 2011. Evolved structure
of language shows lineage-specific trends in word-
order universals. Nature, 473(7345):79–82.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-Agnostic Meta-Learning for Fast Adaptation
of Deep Networks. arXiv:1703.03400. ArXiv:
1703.03400.

Jiatao Gu, Yong Wang, Yun Chen, Kyunghyun Cho,
and Victor O. K. Li. 2018. Meta-Learning
for Low-Resource Neural Machine Translation.
arXiv:1808.08437.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli,
and Amos Storkey. 2020. Meta-Learning in Neural
Networks: A Survey. arXiv:2004.05439. ArXiv:
2004.05439.

Ghassen Jerfel, Thomas L Griffiths, Erin Grant, and
Katherine Heller. 2019. Reconciling meta-learning
and continual learning with online mixtures of tasks.
NIPS, page 12.

Sameeksha Katoch, Kowshik Thopalli, Jayaraman J.
Thiagarajan, Pavan Turaga, and Andreas Spanias.
2020. Invenio: Discovering Hidden Relationships
Between Tasks/Domains Using Structured Meta
Learning. arXiv:1911.10600. ArXiv: 1911.10600.

Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim,
Eunho Yang, Sung Ju Hwang, and Yi Yang.
2019. Learning to Propagate Labels: Transduc-
tive Propagation Network for Few-shot Learning.
arXiv:1805.10002. ArXiv: 1805.10002.

Aditya Krishna Menon, Anand Rajagopalan, Baris
Sumengen, Gui Citovsky, Qin Cao, and Sanjiv Ku-
mar. 2019. Online Hierarchical Clustering Approxi-
mations. arXiv:1909.09667. ArXiv: 1909.09667.

Farhad Nooralahzadeh, Giannis Bekoulis, Johannes
Bjerva, and Isabelle Augenstein. 2020. Zero-
Shot Cross-Lingual Transfer with Meta Learning.
arXiv:2003.02739. ArXiv: 2003.02739.

Sebastian Ruder. 2017. An Overview of Multi-
Task Learning in Deep Neural Networks.
arXiv:1706.05098. ArXiv: 1706.05098.

Nitish Srivastava and Russ R Salakhutdinov. 2013. Dis-
criminative Transfer Learning with Tree-based Pri-
ors. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 2094–2102. Curran Associates, Inc.

Huaxiu Yao, Ying Wei, Junzhou Huang, and Zhenhui
Li. 2019. Hierarchically Structured Meta-learning.
arXiv:1905.05301. ArXiv: 1905.05301.

Amir Zamir, Alexander Sax, William Shen, Leonidas
Guibas, Jitendra Malik, and Silvio Savarese. 2018.
Taskonomy: Disentangling Task Transfer Learning.
arXiv:1804.08328. ArXiv: 1804.08328.

Yu Zhang and Qiang Yang. 2018. A Survey on
Multi-Task Learning. arXiv:1707.08114. ArXiv:
1707.08114.

http://arxiv.org/abs/1902.03545
http://arxiv.org/abs/1809.05053
http://arxiv.org/abs/1809.05053
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1908.10423
http://arxiv.org/abs/1908.10423
http://arxiv.org/abs/1908.10423
https://doi.org/10.1038/nature09923
https://doi.org/10.1038/nature09923
https://doi.org/10.1038/nature09923
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1808.08437
http://arxiv.org/abs/1808.08437
http://arxiv.org/abs/2004.05439
http://arxiv.org/abs/2004.05439
http://arxiv.org/abs/1911.10600
http://arxiv.org/abs/1911.10600
http://arxiv.org/abs/1911.10600
http://arxiv.org/abs/1805.10002
http://arxiv.org/abs/1805.10002
http://arxiv.org/abs/1909.09667
http://arxiv.org/abs/1909.09667
http://arxiv.org/abs/2003.02739
http://arxiv.org/abs/2003.02739
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
http://papers.nips.cc/paper/5029-discriminative-transfer-learning-with-tree-based-priors.pdf
http://papers.nips.cc/paper/5029-discriminative-transfer-learning-with-tree-based-priors.pdf
http://papers.nips.cc/paper/5029-discriminative-transfer-learning-with-tree-based-priors.pdf
http://arxiv.org/abs/1905.05301
http://arxiv.org/abs/1804.08328
http://arxiv.org/abs/1707.08114
http://arxiv.org/abs/1707.08114

