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Abstract
Contextual embedding models such as BERT
can be easily fine-tuned on labeled samples
to create a state-of-the-art model for many
downstream tasks. However, the fine-tuned
BERT model suffers considerably from unla-
beled data when applied to a different domain.
In unsupervised domain adaptation, we aim to
train a model that works well on a target do-
main when provided with labeled source sam-
ples and unlabeled target samples. In this pa-
per, we propose a pseudo-label guided method
for unsupervised domain adaptation. Two
models are fine-tuned on labeled source sam-
ples as pseudo labeling models. To learn rep-
resentations for the target domain, one of those
models is adapted by masked language model-
ing from the target domain. Then those models
are used to assign pseudo-labels to target sam-
ples. We train the final model with those sam-
ples. We evaluate our method on named en-
tity segmentation and sentiment analysis tasks.
These experiments show that our approach out-
performs baseline methods.

1 Introduction

Contextualized embeddings have become the foun-
dations of many state-of-the-art natural language
processing technologies (Devlin et al., 2018; Han
and Eisenstein, 2019; Straková et al., 2019). Pre-
trained contextualized embeddings can be used for
many downstream tasks and be incorporated into an
end-to-end system, allowing the embeddings to be
fine-tuned from task-specific labeled data (Akbik
et al., 2019a,b, 2018; Beltagy et al., 2019).

One of the problems with contextual embedding
models is that although fine-tuned models perform
well on the samples generated from the same distri-
bution as the training samples, they suffer consider-
ably from unlabeled data when applied to a differ-
ent domain (Saito et al., 2017; Rietzler et al., 2019;
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Figure 1: Overview of our training framework. We
jointly fine-tune general pre-trained model and target
domain pre-trained model with labeled source data.
Then we generate pseudo-labels on target samples. Fi-
nally, we train the final model with the pseudo-labeled
samples.

Ruder and Plank, 2018). For example, a named en-
tity segmentation model trained on a news dataset
fails to predict correctly on social media data such
as Twitter. Because collecting many labeled sam-
ples in various domains is expensive, it is important
to adapt contextual embedding model to different
domains in unsupervised setting.

Many domain adaptation methods of neural net-
works in NLP have been proposed in the past sev-
eral years (Li, 2012; Ziser and Reichart, 2019,
2018; Cui et al., 2018; Louizos et al., 2015; Ganin
et al., 2015; Mou et al., 2016). Our work focuses on
unsupervised domain adaptation of contextual em-
beddings. We aim to fine-tune a pre-trained model
that works well on a target domain when provided
with labeled source samples and unlabeled target
samples. With no access to the labels in target
domain data, it is very difficult to adapt when the
divergence of the label distribution between the
source domain and the target domain is huge.

Some of current methods propose a simple unsu-
pervised domain-adaptive method, using a masked
language modeling objective over unlabeled text in
the target domain (Rochette et al., 2019; Han and
Eisenstein, 2019; Gururangan et al., 2020). They
first learn discriminative representations for the tar-
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get domain and then fine-tune a domain-adapted
model with labeled source samples. Although self-
supervised fine-tuning in the target domain im-
proves the generalization of the pre-trained model
for the target domain, an adapted model cannot cap-
ture the task-specific pattern of the target domain
only using labeled source samples to fine-tune. We
expect the adapted model to not only acquire some
target-discriminative language representations but
also to obtain some task-specific features of target
domain.

In this paper, we propose a pseudo-label guided
method for unsupervised domain adaptation. As
shown in Figure 1, two models are jointly fine-
tuned on labeled source samples as pseudo labeling
models. We design a multiview constraint loss to
encourage those two model to make predictions
based on different view-point. To learn representa-
tions for the target domain, one of those models is
adapted by masked language modeling from the tar-
get domain. Then those models are used to assign
pseudo-labels to target samples. Pseudo-labeled
target samples will provide target discriminative
information to the model. We train the final model
with the pseudo-labeled samples.

We evaluate our method both on named en-
tity segmentation (NES) and sentiment analysis
(SA) tasks. We find that our pseudo-label guided
method outperforms baseline methods. Moreover,
we demonstrate the multiview constraint signifi-
cantly improves performance of our method.

2 Methodology

2.1 Overview

In unsupervised domain adaptation, we aim to train
a model that works well on a target domain when
provided with labeled source samples and unla-
beled target samples.

As illustrated in Figure 1, Pseudo-label Guided
unsupervised Adaptation (PGA) consists of three
steps: jointly fine-tuning, pseudo label generation
and final adaptation. First, we initialize two pre-
trained models with the same architecture as the
general pre-trained model and the target domain
pre-trained model (TDPM) which leverages lan-
guage modeling objective on unlabeled data from
target domain. In the second step, we use those
two fine-tuned model to make predictions for un-
labeled target samples. If both models agree with
the prediction and two prediction scores exceed a
threshold, the prediction is regarded as a pseudo

label. Finally, all pseudo labels are collected to
fine-tune the target domain pre-trained model and
complete the adaptation.

2.2 Jointly Fine-tuning
In the first stage, we jointly fine-tune the general
pre-trained model and the target domain pre-trained
model on the source domain data to obtain two
classification models F1 and F2. Their predictions
are utilized to give pseudo-labels. We assume each
sample in the source domain can be denoted as
(Xi, Yi), where X is a text sequence and Y is a
label sequence for NES task or a label for SA task.

For named entity segmentation task, the token
representations are fed into an output layer at the
output. For sentiment analysis, the [CLS] repre-
sentation is fed into an output layer for classifica-
tion (Devlin et al., 2018).

Inspired by the asymmetric tri-training adapta-
tion method (Saito et al., 2017), we design a mul-
tiview constraint loss to encourage model F1 and
F2 to make predictions based on different view-
points. We add the term |W T

1 W2| to the cost func-
tion, where W1, W2 denote output layers weights
of model F1 and F2. With this constraint, each
model learns from different features. The objective
of learning F1, F2 is defined as:

E(θF1 , θF2) = CEloss(F1(xi), yi)+

CEloss(F2(xi), yi) + λ|W T
1 W2|

(1)

where CEloss denotes the standard cross entropy
loss and we decide the trade-off parameter λ based
on validation split. With the multiview learning ob-
jective, the pseudo labels can be more informative
and improve model accuracy.

2.3 Pseudo Label Generation
After jointly fine-tuning, classification model F1

and F2 are used to generate pseudo labels. Pseudo
labels will provide target-discriminative informa-
tion to the model. However, since they certainly
contain false labels, we have to pick up reliable
pseudo-labels.

For text sequence X in the unlabeled target do-
main data, we add pseudo annotations Y to the
sequence in the NES task and add single pseudo
label Y to the sequence in the SA task.

There are two requirements for pseudo label as-
signment. Take the NES task as an example. First,
for each token Xi in the text sequence, when C1

i

and C2
i denote the class which have the maximum
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predicted probability for Xi from model F1 and
model F2 respectively, we requireC1

i = C2
i , which

means the two models agree with the prediction.
The second requirement is that the probability of
C1
i or C2

i exceeds the threshold parameter, which
we set as 0.5 in the experiment. We suppose that un-
less two models are confident of their predictions,
the prediction is not reliable. If the two require-
ments are satisfied, the label is added to the pseudo
target samples.

Intuitively, if the two domains are closely related,
the pseudo labels are assigned to a large portion of
target samples while distant domains will reduce
the amount of agreement. We expect the threshold
of agreement to keep the pseudo labels reliable and
maintain a probable number of samples.

2.4 Final Adaptation

We use the pseudo-labeled target samples to con-
struct a training set of the target domain and further
fine-tune the target domain pre-trained model with
this training set. Since the accuracy of pseudo la-
bels can not be assured, we use a smaller learning
rate and fewer training steps to fine-tune F2 with
pseudo labels.

The whole training algorithm is depicted in Algo-
rithm 1, where we take labeled source samples and
unlabeled target samples and output the adapted
model.

3 Experiments

3.1 Datasets

Named Entity Segmentation (NES) The named
entity segmentation is a typical task of the sequence
labeling task. Different from named entity recogni-
tion, we only predict the ”BIO” format in a se-
quence, which divides the sequence into entity
chunks without deciding which class the entity
chunk belongs to. We choose the shared task of
the 2016 workshop on Noisy User Text (WNUT;
Strauss et al., 2016) as target domain and the canon-
ical CoNLL 2003 shared task (Tjong Kim Sang and
De Meulder, 2003) as the source domain. In the
WNUT task, the corpus was from Twitter, which is
an open-domain source and the data of the CoNLL
2003 task was annotated on a corpus of newstext.

Sentiment Analysis (SA) The sentiment analy-
sis is a sequence classification task. Since we need
to assign a sentiment class to each whole sentence,
the task is more relied on contextualized level infor-
mation. We choose 3 domains from open Amazon

Algorithm 1 We jointly fine-tune two models and
generate pseudo labels for final adaptation.

Input:
S = {(xi, ti)}mi=1, T = (xj)

n
j=1

Train TDPM on T with language modeling ob-
jective
Initialize F1 with original BERT
Initialize F2 with TDPM
Train F1, F2 with Equation 1
Initialize Tl = ∅
for xj in T do
y1j = F1(xj)

y2j = F2(xj)

C1
j = argmax(y1j )

C2
j = argmax(y2j )

if C1
j == C2

j and max(y1j , y
2
j ) > threshold

then
Add (xj , y

1
j ) to Tl

end if
end for
Train F2 on Tl with supervised learning
Output:F2

review data (He and McAuley, 2016) including
books, electronics and kitchens, following the set-
tings of Ruder and Plank’s domain adaptation sur-
vey (Ruder and Plank, 2018). The data statistics
and hyper-parameters see Appendix A and B. The
source code∗ and sentiment analysis data set will
be released at a future date.

3.2 Baselines

We evaluate the following systems:
Source only: This baseline directly fine-tunes

the pre-trained BERT on the source domain.
Frozen BERT: This baseline first learns from

unlabeled data from target domain by language
modeling. Then it freezes the BERT encoder and
only optimizes the classifier layer.

AdaptaBERT: This baseline first learns from
unlabeled data from target domain by language
modeling. Then it fine-tunes target domain pre-
trained model with labeled source samples†.(Han
and Eisenstein, 2019).

PGA: Our pseudo-label guided unsupervised
adaptation method in Section 2.

∗Implementation retrieved from https://github.
com/huggingface/transformers

†Use the released code to conduct our experiment
https://github.com/xhan77/AdaptaBERT

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/xhan77/AdaptaBERT
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Model WNUT (target) CoNLL (source)
Source only 56.52 97.69
AdaptaBERT 63.81 97.67
PGA w/o MC 64.12 96.89
PGA 64.32 96.82
Upper Bound 65.81 82.64

Table 1: Named entity segmentation performance on
the WNUT test set (target) and CoNLL test set A
(source). The F1 score of our method is very close to
the upper bound of the target domain.

Books Electronics Books Kitchens
Model ↓ ↓ ↓ ↓

Electronics Books Kitchens Books
Source only 45.68 47.84 45.28 49.56
Frozen BERT 30.52 31.76 30.16 31.44
AdaptaBERT 46.56 49.32 47.76 51.32
PGA w/o MC 45.33 50.61 48.60 53.18
PGA 50.81 50.62 49.28 53.74
Upper Bound 60.04 57.44 59.68 57.44

Table 2: Multi-domain sentiment analysis adaptation.
All results are evaluated with accuracy score.

PGA w/o MC: Our pseudo-label guided unsu-
pervised adaptation method. Notice that the multi-
view constraint (MC) is not used.

Upper Bound: In supervised learning, we fine-
tune the target domain pre-trained model directly
on target training set and evaluate.

3.3 Results

As indicated in Table 1, AdaptaBERT shows strong
performance of unsupervised adaptation, achiev-
ing a much better F1 score than zero-shot setting
in source only. Moreover, even without multi-
view constraint, our PGA method performs bet-
ter than AdaptaBERT. With multiview constraint,
our method learns a higher quality of pseudo la-
bels, which pushes the F1 score closer to the upper
bound.

We present the domain adaptation results of sen-
timent analysis at Table 2, without a multiview con-
straint, the quality of pseudo labels can not be as-
sured and sometimes leads to a drop in performance
for target domain. However, our PGA method
with multiview constraint can improve model ac-
curacy in most scenarios. We can observe that
supervised learning still greatly outperforms unsu-
pervised methods. There is more room to improve
for unsupervised domain adaptation in sentiment
analysis task.

Figure 2: The threshold influences the amount of
pseudo labels. We evaluate on books to electronics do-
main adaptation of sentiment analysis.

Domain Adaptation PGA PGA w/o MC
Books → Electronics 52.97 51.25
Books → Kitchens 51.94 51.03
Electronics → Books 56.72 55.34
Kitchens → Books 59.26 58.32

Table 3: The accuracy of pseudo labels.

3.4 Pseudo Labels Quality
We scientifically evaluate the quality of pseudo
labels generated by our method. First, we find
the amount of pseudo labels is closely related to
the value of our threshold in Figure 2. When the
threshold is set above 0.5, the number of pseudo
labels drops quickly while the accuracy of pseudo
labels increases a lot. With multiview constraint,
our PGA method tend to generate fewer labels with
higher accuracy. It is observed that higher threshold
may not benefit the final model accuracy, partly
due to the significant drop of the number of pseudo
labels.

We also evaluate the accuracy of pseudo labels
in the SA task. The results are illustrated in Table 3.
We find in different domain adaptation settings, the
multiview constraint can improve the quality of
pseudo labels.

4 Conclusion

We propose a new unsupervised domain adapta-
tion method guided by pseudo labels. Generated
by general pre-trained model and target domain
pre-trained model with multiview constraint, the
pseudo labels of unlabeled target data are more
reliable and benefit model performance on the tar-
get domain. Experiments show that our approach
achieves very promising results on different NLP
downstream tasks.
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A Hyperparameters

We use a bert-base-cased model from huggingface ‡

as initial parameter checkpoint. In supervised learn-
ing stage, we fine-tune the model for 3 to 5 epochs
with batch size between [16, 32] and learning rate
between [2e-5, 5e-5]. The weight decay of model
parameters has been set as 0.1. Adam optimizer
has been adopted with a warm up ratio of 0.1. In
the unsupervised language modeling stage, the rate
of masking tokens has been set as 0.15.We train
the model for 3 epochs and adopt the same opti-
mizer settings in supervised learning. We set the
threshold parameter as 0.5 for the best performance
model in both NES and SA task.

B Data Statistics

In this section, we will introduce the data statis-
tics of our named entity segmentation and sen-
timent analysis . In Table 4, the data are from
origin AdaptaBERT (Han and Eisenstein, 2019),
of which Twitter dataset has more unlabeled dev
data than labeled train data. In Table 5, the data
is collected from open Amazon review (He and
McAuley, 2016; McAuley et al., 2015). We pro-
cess the data into 3 domains of balanced datasets.
In the pre-processing stage, we exclude the text
whose length is too short (shorter than 1 valid to-
ken) or too long (more than 256 valid tokens). The
sentiment analysis data has been shared via google
drive §.

Dataset Train Dev
CoNLL 14986 10,000
Twitter 2394 3852

Table 4: Data statistics of named entity segmentation.

Dataset Train Dev
Books 100,000 10,000
Electronics 100,000 10,000
Kitchens 100,000 10,000

Table 5: Data statistics of sentiment analysis. The train
data and dev data of each domain is balanced, which
means the number of samples of each class is the same.

‡https://github.com/huggingface/
transformers

§https://drive.google.com/
drive/folders/1fdmD08pZUzN3WbgxEu_
Hv9lq4ZKmq7J3?usp=sharing

C Experiment details

We use a single Tesla P40 card to conduct all our ex-
periments. The average runtime of each approach
is 3 minutes for named entity segmentation and
30 minutes for sentiment analysis. The number of
parameters in our model is about 110M , same as
the bert-base model.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://drive.google.com/drive/folders/1fdmD08pZUzN3WbgxEu_Hv9lq4ZKmq7J3?usp=sharing
https://drive.google.com/drive/folders/1fdmD08pZUzN3WbgxEu_Hv9lq4ZKmq7J3?usp=sharing
https://drive.google.com/drive/folders/1fdmD08pZUzN3WbgxEu_Hv9lq4ZKmq7J3?usp=sharing

