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Abstract
Advances in transfer learning and domain
adaptation have raised hopes that once-
challenging NLP tasks are ready to be put
to use for sophisticated information extraction
needs. In this work, we describe an effort to
do just that – combining state-of-the-art neu-
ral methods for negation detection, document
time relation extraction, and aspectual link pre-
diction, with the eventual goal of extracting
drug timelines from electronic health record
text. We train on the THYME colon cancer
corpus and test on both the THYME brain can-
cer corpus and an internal corpus, and show
that performance of the combined systems is
unacceptable despite good performance of in-
dividual systems. Although domain adaptation
shows improvements on each individual sys-
tem, the model selection problem is a barrier
to improving overall pipeline performance.

1 Introduction

Advances in machine learning methods and the re-
lease of annotated datasets of clinical texts (Uzuner
et al., 2011; Styler IV et al., 2014) in the past
decade has led to an increase of available clinical
NLP systems for interesting tasks. Recent advances
in pre-trained models (Devlin et al., 2019; Liu et al.,
2019) have made ever more accurate clinical NLP
systems possible. Unsupervised domain adaptation
algorithms (e.g., Ziser and Reichart (2019)) have
made it possible to reduce performance degrada-
tion when applying trained models to new domains.
The great promise of these developments is that
these methods can be combined into pipelines that
allow for sophisticated information extraction capa-
bilities for downstream clinical use cases. Rather
than building one-off datasets for each complex
downstream task that arises, standard NLP com-
ponents could potentially be used as “Lego”-style
building blocks that allow for flexibly approaching
new tasks as they arise.

However, the existence of the building blocks
alone does not solve this problem. Combining indi-
vidual components into NLP pipelines can lead to
cascading errors (Finkel et al., 2006). The true er-
ror rate for structured extraction tasks is potentially
as high as the sum of the component tasks’ errors.
For example, if the goal is to extract normalized
concepts with assertion status, the concept error
can come from normalization error, negation detec-
tion error, uncertainty detection error, etc, and the
errors may not be correlated. These problems are
exacerbated in the common case where individual
components are trained on data from different do-
mains, and tested on data from yet another domain.

In this work, we quantitatively examine the is-
sues described above in the context of extracting
drug temporality signatures, with the goal of under-
standing drug start and stop events. We approach
this task with the combination of three sub-tasks:
1) the temporal relation of these mentions to the
document creation time (DocTimeRel), 2) negation
status of the mention, and 3) aspectual link rela-
tions of the mention (e.g., is it being described as
starting or stopping). Figure 1 shows an example
sentence with a drug mention, that demonstrates
how the three tasks work together to establish the
status of that drug in that patient. Successfully solv-
ing this task is beneficial for understanding patient
treatment course, and enabling more causal under-
standing in important tasks such as adverse drug
event detection or relating medication courses to
outcomes.

We first set state-of-the-art benchmarks for three
tasks on the THYME corpus by fine-tuning large
pre-trained transformer models (Devlin et al., 2019;
Liu et al., 2019). We then examine how the perfor-
mance of individual systems degrades when mov-
ing from the training data to our target data (a pedi-
atric cardiology cohort), and how the overall sys-
tem performs when combining multiple systems
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Additionally , as the patient has preserved ejection fraction , no prior history of embolic phenomena ,
and no significant valvular disease , it would be acceptable for him to remain off 〈e〉 Coumadin 〈/e〉
for the interim .

Figure 1: An example sentence with highlighted drug name Coumadin to be classified for all three tasks. The gold
standard has this drug mention classified as negated, with DocTimeRel=OVERLAP, and ALINK=CONTINUES.
These three facts can be used to understand that the patient is not on the drug now or going forward, and was likely
not on the drug prior to the note as well.

with imperfect performance. Despite strong indi-
vidual results, we find that performance suffers
immensely due to both out-of-domain performance
losses and the basic combinatorial math of integrat-
ing outputs from multiple systems. This is the case
even though we use a metric, accuracy, that is for-
giving to the worst-performing individual model.

2 Background

It is both formally and empirically understood that
classifiers can suffer performance loss when the
test data is drawn from a different distribution than
the training data (sometimes called domain shift).
This presents a difficult challenge in clinical NLP
because data-sharing limitations make it difficult
to create large and diverse training corpora. As
a result, domain adaptation approaches have been
applied to multiple tasks in clinical NLP (Miller
et al., 2017; Liu et al., 2018; Hur et al., 2020).

Recent work in the general domain has made
use of transfer learning, which can attack the prob-
lem of domain shift, but by a different mechanism
than domain adaptation; by training on massive
corpora, large pre-trained models both learn gen-
eral features, and are able to learn from smaller
new datasets without overfitting. The most promi-
nent of these models are based on the transformer
architecture (Vaswani et al., 2017).

BERT (Devlin et al., 2019) uses a transformer
encoder, and has shown that pre-training with mas-
sive amounts of text on a language modeling task,
then fine-tuning on a supervised task of interest,
achieves large performance gains in multiple NLP
tasks.1 During fine-tuning for sentence classifi-
cation tasks, a classification head with randomly
initialized weights is attached to a special sentence-
initial token. Fine-tuning then proceeds in a stan-
dard supervised learning paradigm, with the goal of
learning the weights of the classification head, but

1The RoBERTa system that followed (Liu et al., 2019)
found further gains by pre-training on even larger datasets and
for more iterations.

where the weights of all of the transformer encoder
layers can also be updated. We use RoBERTa-
base, a 12-layer transformer encoder that provides
excellent performance but manageable memory uti-
lization for our hardware (Liu et al., 2019).

The bigger vision of our current work is extract-
ing temporally-aware medication mentions from
electronic health records data. This would en-
able important downstream tasks including auto-
matically extracting drug timelines to correlate
with treatments, or extracting better causal infor-
mation about drugs and potential adverse events.
Some other recent work has also examined this
topic (Ramirez et al., 2019), but focused on a single
drug class (proton pump inhibitors), was limited to
the problem list section, and made the assumption
that missing drug implied drug stoppage.

3 Methods

We began this work by developing several NLP
components necessary to extract drug temporality
signatures, including negation detection, relation
to document creation time (DocTimeRel), and as-
pectual link extraction (ALINK), all detailed below.
Detecting negation helps us avoid false positives
from mentions corresponding to, for example, de-
cisions to not use a drug. DocTimeRel helps us
distinguish mentions of drugs that are current from
those that predate the current time period, or are
being speculated about for future use. ALINK can
model drug start, stop, and continuation events,
which can help to distinguish whether a missing
mention in the middle of a record corresponds to
a stop and restart, or an incidentally omitted men-
tion. Figure 1 shows an example instance of a drug
mention to be classified for all three tasks.

The THYME dataset (Styler IV et al., 2014), re-
leased as part of Clinical TempEval (Bethard et al.,
2017), contains all three of these annotation types,
on 1200 notes of patients with colon and brain can-
cer. We train all models on the colon cancer section
(details on data are in Section 4). While our bigger
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project is specific to drug mentions, the problem
is not limited to drug mentions, so we train and
evaluate on all annotated events in the THYME
corpus. We also assume that events are given, to
allow a straightforward metric of how many events
we “get right” when combining all property pre-
dictions. In the real world, events will have to be
automatically detected, so our metric will be an
upper bound on how often the combined models
get everything correct.

Negation detection
This is the task of finding whether a given event
is being negated (e.g., statins is negated in not
currently on statins). We model this as a span-
in-context classification – given a sentence in a
document with a marked event span, classify that
span as being negated or not negated. We experi-
ment with two different machine learning models.
The first is a classical feature-based support vec-
tor machine that is the default model of Apache
cTAKES (Savova et al., 2010). Features include
bag of words and part of speech tags in and around
the event, negation cue words from lists and their
relation to the event, and dependency parse features
that relate negation cue words to events. Details
of this system were presented by Wu et al. (2014).
For comparison we train a RoBERTa-based sys-
tem, where the input representation is the sentence
with special tokens indicating the event to be clas-
sified. We put a binary sigmoid layer as the output,
with the “[CLS]” token representation from the fi-
nal layer as the classifier input, and fine-tune the
entire model. Hyperparameters such as learning
rate and number of training epochs are optimized
on the THYME colon development set. Our im-
plementation uses the Huggingface Transformers
library (Wolf et al., 2019).

DocTimeRel
DocTimeRel classification is the task of relating
an event to the document creation time. The cate-
gories are BEFORE, OVERLAP, AFTER, and BE-
FORE/OVERLAP. As above, we model this as a
span-in-context classification, and we again com-
pare a feature-based approach with a RoBERTa-
based approach.

The feature-based approach again uses the de-
fault cTAKES SVM-based implementation (Lin
et al., 2016), with features based on bags of words
in and around the event, and verb tense informa-
tion for verbs on either side of the event. We train

a separate RoBERTa-based model with the same
architecture as the negation model, with the only
difference being that the output layer is a softmax
over the four categories rather than a sigmoid.

Aspectual Link Extraction
Aspectual link extraction (ALINK) is the task of
classifying whether an event mention is related to
an aspectual temporal modifier, for example, dis-
continued. This is annotated as a relation between
an event and a modifier, but we model it as an
event property classification task since each event
can only participate in one type of relation. The
set of possible labels is INITIATES, CONTINUES,
TERMINATES, and REINITIATES.

We are not aware of any existing open-source
models for this task, so for our feature-based base-
line we train a model with the same SVM classifi-
cation approach and feature set as the DocTimeRel
model in cTAKES. We did not perform extensive
feature engineering for this task, so further gains
in the SVM system are probably possible. For the
RoBERTa-based model, we used the same archi-
tecture as both systems above, with a softmax over
the 5 categories – the 4 ALINK categories above
as well as NONE, indicating a drug mention does
not participate in any ALINK relation. NONE is by
far the most common category.

3.1 Domain Adaptation Methods

The tasks described above are trained on a sin-
gle source dataset, and must be combined into a
pipeline that will run on data from a different target
distribution. To adapt to the target domain, we use
unsupervised domain adaptation methods, where
we have access to only unlabeled target examples.

Since large pre-trained transformer models have
arrived, they have been shown to be quite robust
to out-of-distribution examples (Hendrycks et al.,
2020), including on clinical tasks (Lin et al., 2020),
where it was shown that adding domain adaptation
layers on top of BERT was no better than BERT
itself for negation detection. One of the few effec-
tive methods for improving the out-of-distribution
performance of pre-trained transformer models has
been to continue to pre-train the language model-
ing objective on the target domain data, before any
fine-tuning is done on the source data (Han and
Eisenstein, 2019; Gururangan et al., 2020). In this
work, we focus on that method, since this is cur-
rently the most promising direction for adapting
large pre-trained transformers. Specifically, to use
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this method, we run additional masked language
model training steps on the target training data from
the RoBERTa-base checkpoint, before fine-tuning
on the labeled colon cancer data, and then testing
on target test data. We tune the learning rate for the
language model pre-training on target development
set data, optimizing for perplexity.

4 Evaluation

For the three tasks of interest, we evaluate in-
domain (THYME colon cancer corpus), as well as
one closely related out-of-domain corpus (THYME
brain cancer corpus). We also use a second out-of-
domain corpus, an internal data set we annotated
for all three tasks (pulmonary hypertension [PH]
notes). This annotation was performed by an ex-
perienced annotator who has worked on clinical
annotation projects in the past.

We measure performance on negation with F1-
score, on DocTimeRel with accuracy (because the
classes are relatively balanced), and on ALINK ex-
traction with the average F1 score of all categories,
macro-F1 (because the high frequency NONE la-
bel makes accuracy uninformative). In addition to
system-level performance, we report an evaluation
of mention-level accuracy: an event is counted as
correct if all three systems made the correct predic-
tion, and we report the percentage of events that
were correct. This setting estimates how usable the
entire pipeline is, given different system settings.

The “Colon” columns of Table 1 show results
on the THYME colon cancer data (in-domain).
RoBERTa performance is stronger than the SVM
on all three tasks. Negation performance is par-
ticularly strong, though we are not aware of any
reported results on this dataset to compare against.
DocTimeRel performance is 3 points better than
the best result of Clinical TempEval 2016 (Bethard
et al., 2017). ALINK scores are lower than the
other tasks, though again there are no published
comparisons. It is likely this is a more difficult
task, in particular because the RE-INITIATES cat-
egory has relatively few examples and whose low
performance skews the averaging of the macro-F1.

The “Brain” and “PH” columns of Table 1
show out-of-domain performance of the same sys-
tems on the THYME brain cancer and our in-
ternal pulmonary hypertension data, respectively.
On THYME brain cancer data, RoBERTa again
out-performs SVM substantially on all sub-tasks,
but surprisingly the SVM performs better on PH

data for negation and DocTimeRel. Adapting the
RoBERTa model (RoBERTa+LM) by performing
additional language modeling in the target domain
before fine-tuning on colon cancer data leads to
gains only on DocTimeRel for the PH data and on
ALINK for both corpora. However, the improve-
ment to DocTimeRel from adapting RoBERTa still
leaves it worse off than the SVM.

Mention level accuracy (“All” column) is good
for the in-domain data (THYME colon cancer), but
drops off substantially even for the THYME brain
cancer corpus from the same institution, created
with the same guidelines and using the same anno-
tators. The mention level accuracy for our internal
PH data is unusable at an accuracy of 0.506 with
RoBERTa+LM. This accuracy means that roughly
one of every two drug mentions will have at least
one of its attributes classified incorrectly.

5 Discussion and Conclusion

The results also show that combining NLP systems
for new, complex, information needs is likely to run
into issues even when individual systems perform
well. In particular, our experiments raise ques-
tions about real-world use of domain adaptation.
If we treated THYME colon and brain sets as rep-
resentative in-domain and out-of-domain datasets
we would select RoBERTa or RoBERTa+LM for
everything. But an oracle optimizing PH perfor-
mance would tell us to use the SVM for negation
and DocTimeRel and RoBERTa+LM for ALINK.
One of the difficulties in even studying domain
adaptation is model selection – if labeled target
data is not available, standard practices like tuning
on held out data are impossible. But the reality
our results suggest is that different algorithms work
well on different tasks and datasets, and selecting
the best model for each task is an unsolved and
under-studied problem.

One direction of research that may address these
concerns is on better modeling of domains them-
selves. The problem has been exacerbated with the
move from feature-based classifiers to pre-trained
black box models, as it is now even more difficult
to understand the cause of errors in new domains
without interpretable features. Domain adaptation
should leverage “BERTology” and interpretability
research to help understand how different aspects
of domains contribute to performance differences.
For example, in clinical notes, variation in insti-
tutions, specialties, note types, authors, etc., all
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System Negation (F1) DocTimeRel (Acc) ALINK (MacroF) All (Acc)
Colon Brain PH Colon Brain PH Colon Brain PH Colon Brain PH

SVM 0.924 0.705 0.625 0.842 0.703 0.694 0.502 0.338 0.345 – – –
RoBERTa 0.950 0.833 0.583 0.874 0.757 0.542 0.684 0.633 0.674 0.860 0.732 0.454
RoBERTa+LM – 0.831 0.582 – 0.758 0.615 – 0.660 0.694 – 0.736 0.506

Table 1: Performance on both the individual sub-tasks (Negation, DocTimeRel, and ALINK) and the complete
task (All) for systems trained on the THYME colon cancer training set and tested on the in-domain THYME colon
test set, the out-of-domain THYME brain test set, and the out-of-domain pulmonary hypertension (PH) test set.

probably contribute differently to domain shift, and
these sources of variation should be empirically
explored. Future work will explore this direction to
develop unsupervised model selection algorithms
that better predict target domain performance.
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