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Abstract

Despite the development of pre-trained lan-
guage models (PLMs) significantly raise the
performances of various Chinese natural lan-
guage processing (NLP) tasks, the vocabu-
lary (vocab) for these Chinese PLMs remain-
s to be the one provided by Google Chinese
BERT (Devlin et al., 2019), which is based
on Chinese characters (chars). Second, the
masked language model pre-training is based
on a single vocab, limiting its downstream task
performances. In this work, we first exper-
imentally demonstrate that building a vocab
via Chinese word segmentation (CWS) guid-
ed sub-word tokenization (SGT) can improve
the performances of Chinese PLMs. Then
we propose two versions of multi-vocab pre-
training (MVP), Hi-MVP and AL-MVP, to
improve the models’ expressiveness. Experi-
ments show that: (a) MVP training strategies
improve PLMs’ downstream performances, e-
specially it can improve the PLM’s perfor-
mances on span-level tasks; (b) our AL-MVP
outperforms the recent AMBERT (Zhang & Li,
2020) after large-scale pre-training, and it is
more robust against adversarial attacks.

1 Introduction

The pre-trained language models (PLMs), includ-
ing BERT (Devlin et al., 2019) and its variants
(Yang et al., 2019; Liu et al., 2019), have been
proven beneficial for many natural language pro-
cessing (NLP) tasks, such as text classification,
question answering (Rajpurkar et al., 2018), natu-
ral language inference (NLI) (Bowman et al., 2015)
and relation extraction (Zhu et al., 2020), on En-
glish, Chinese and many other languages. Al-
though they bring impressive improvements for
Chinese NLP tasks, most Chinese PLMs still use
the vocabulary (vocab) provided by Google Chi-
nese BERT (Devlin et al., 2019). Google Chinese
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BERT is a character (char) based model since it
splits the Chinese characters with blank spaces. In
the pre-BERT era, a part of the literature on Chi-
nese natural language processing (NLP) first do
Chinese word segmentation (CWS) to divide the
text inputs into sequences of words and use a word-
based vocab in NLP models (Xu et al., 2015; Zou
et al., 2013). There are many arguments on which
vocab a Chinese NLP model should adopt.

The advantages of char-based models are ap-
parent. First, char-based vocab is smaller, thus
reducing the model size. Second, it does not rely
on CWS, thus avoiding word segmentation error,
which can directly result in performance gain in
span-based tasks such as named entity recognition
(NER). Third, char-based models are less vulnera-
ble to data sparsity or the presence of out-of-vocab
(OOV) words and thus less prone to over-fitting (Li
et al., 2019). However, word-based model has its
advantages. First, it will result in shorter sequences
than char-based counterparties, thus are faster. Sec-
ond, words are less ambiguous, thus helping mod-
els learn the semantic meanings of words. Third,
with a word-based model, exposure biases may be
reduced in text generation tasks (Zhao et al., 2013).
Another branch of literature tries to balance the two
by combining word-based embedding with char-
based embedding (Yin et al., 2016; Dong et al.,
2016).

This article tries to strike a balance between the
char-based and word-based models and provides al-
ternative approaches for pre-training Chinese PLM-
s. We experiment on two approaches to build a
vocab for Chinese PLMs: (1) following Devlin
et al. (2019), separate the Chinese chars with white
spaces, and then learn a sub-word tokenizer (de-
note as CHAR); (2) first segment the sentences
with a CWS toolkit like jieba1, and then learn a

1https://github.com/fxsjy/jieba



261

sub-word tokenizer (denoted as SGT); (3) do CWS
and keep the high-frequency words as tokens and
low-frequency words will be tokenized by SGT
(denoted as SEG). See Figure 1 for their workflow
of processing an input sentence. The experiments
show that SGT is best suited for PLMs.

Inspired by the previous work that incorporates
multiple vocabularies (vocabs) or naturally com-
bines multiple vocabs (Yin et al., 2016; Dong et al.,
2016; Zhang & Li, 2020), we also investigate a
series of strategies, which we will call Multi-Vocab
Pre-training (MVP) strategies. The first version of
MVP incorporates a hierarchical structure to com-
bine the char-based vocab and word-based vocab.
From the viewpoint of model forward pass, Chi-
nese characters’ embeddings are aggregated to for-
m the vector representations of multi-gram words
or tokens, which are fed into transformer encoders.
Then the word-based vocab will be used in masked
language model (MLM) training. The second ver-
sion of MVP (denoted as AL-MVP) is to employ
an additional vocab to form an auxiliary loss term
in MLM, enhancing the PLM’s ability to capture
the contextual information.

Extensive experiments and ablation studies are
conducted. We select BPE implemented by sen-
tencepiece2 as the sub-word tokenization model,
and Albert (Lan et al., 2019) (tiny and base mod-
el) as our PLMs. Pre-training is done on Chinese
Wikipedia corpus3 (C-1), and a larger corpus we
collect (C-2). The MVP strategies are compared
on a series of Chinese benchmark datasets, two
of which are sentence classification (CLS) tasks,
two are named entity recognition (NER) tasks, and
the remaining two are machine reading comprehen-
sion (MRC) tasks. The experimental results reveal
the following take-aways: 1) combining CWS and
sub-word tokenization yields the best vocab for
Chinese PLMs; 3) MVP strategies can improve a
single-vocab model on all three types of tasks.

We now summarize the following contributions
in this work.

• We validate that combining CWS and sub-
word tokenization is a better way for building
vocabs for Chinese PLMs.

• We propose the novel MVP pre-training strate-
gies for enhancing the Chinese PLMs, and
they are proven to be effective.

2https://github.com/google/sentencepiece
3https://dumps.wikimedia.org/zhwiki/latest/

2 RELATED WORK

Since Devlin et al. (2019), a large amount of liter-
ature on pre-trained language models appear and
push the NLP community forward with a speed
that has never been witnessed before. Peters et al.
(2018) is one of the earliest PLMs that learns con-
textualized representations of words. GPTs (Rad-
ford et al., 2018, 2019) and BERT (Devlin et al.,
2019) take advantage of Transformer (Vaswani
et al., 2017). GPTs are uni-directional and make
predictions on the input text in an auto-regressive
manner, and BERT is bi-directional and makes pre-
dictions on the whole or part of the input text. At
its core, what makes BERT so powerful are the
pre-training tasks, i.e., Mask language modeling
(MLM) and next sentence prediction (NSP), where
the former is more important than the latter. Since
BERT, a series of improvements have been pro-
posed. The first branch of literature improves the
model architecture of BERT. ALBERT (Lan et al.,
2019) makes BERT more light-weighted by em-
bedding factorization and progressive cross-layer
parameter sharing. Zaheer et al. (2020) improve
BERT’s performance on longer sequences by em-
ploying sparser attention.

The second branch of literature improves the
training of BERT. Liu et al. (2019) stabilize and
improve the training of BERT with a larger cor-
pus. More work has focused on new language
pre-training tasks. ALBERT (Lan et al., 2019) in-
troduce sentence order prediction (SOP). Struct-
BERT (Wang et al., 2019) designs two novel pre-
training tasks, word structural task and sentence
structural task, to learn better representations of
tokens and sentences. ERNIE 2.0 (Sun et al.,
2019) proposes a series of pre-training tasks and ap-
plies continual learning to incorporate these tasks.
ELECTRA (Clark et al., 2020) has a GAN-style
pre-training task for efficiently utilizing all tokens
in pre-training. Our work is closely related to this
literature branch by designing a series of novel pre-
training objectives by incorporating multiple vocab-
ularies. Our proposed method is off-the-shelf and
can be easily incorporated with other pre-training
tasks.

Another branch of literature looks into the role
of words in pre-training. Although not mentioned
in Devlin et al. (2019), the authors propose w-
hole word masking in their open-source repository,
which is effective for pre-training BERT. In Span-
BERT (Joshi et al., 2019), text spans are masked
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Figure 1: An illustration of how to process input sentence into tokens under different methods we define.

in pre-training, and the learned model can substan-
tially enhance the performances of span selection
tasks. It is indicated that word segmentation is vi-
tal for Chinese PLMs. Cui et al. (2019) and Sun
et al. (2019) both show that masking tokens in the
units of natural Chinese words instead of single
Chinese characters can significantly improve Chi-
nese PLMs. Liu et al. (2019) apply CWS to build
a vocab that can improve Chinese-English transla-
tion performance. AMBERT (Zhang & Li, 2020)
propose to leverage vocabs of different granularity
in encoding sentences and improve the pre-training.
In this work, compared to literature, our contri-
butions are: (a) we find that CWS and sub-word
tokenization can improve the pre-trained models’
performances on downstream tasks. (b) we pro-
pose MVP pre-training tasks, which are proven to
improve the expressiveness of pre-trained models
and downstream performances.

3 Our methods

This section presents our methods for rebuilding
the vocab for Chinese PLMs and introducing our
series of MVP strategies.

3.1 Building the vocabs
We investigate four workflows to process the text
inputs, each corresponding to a different vocab (or
a group of vocabs) (Figure 1). We first introduce
the single vocab models, CHAR, SEG and SGT.

For char-based vocab CHAR, Chinese characters
in the corpus are treated as words in English and
are separated with blank spaces, and a sub-word
tokenizer is learned.4 This method is essentially

4Here the sub-word tokenizer mainly learns how to deal
with non-Chinese tokens.

how BERT (Devlin et al., 2019) builds the Chinese
vocab.

SGT (short for segmentation guided
tokenization) requires the corpus sentences
to be segmented with a CWS tool, and a sub-word
tokenizer like BPE is learned on the segmented
sentences. Some natural Chinese words in SGT
will be split into pieces, but there are still many
tokens with multiple Chinese chars.

Finally, SEG (short for segmentation) with size
N is built with the following procedures: (a) do
CWS on the corpus; (b) for long-tail Chinese words
and non-Chinese tokens, tokenize them into tokens
that have high frequencies; (c) sort the vocab via
frequency, and if the most frequent N words or
tokens can cover R percent of the corpus5, then
take them as vocab; if not, then re-do (b).

Note that SEG is essentially how AMBERT
(Zhang & Li, 2020) builds the vocab for their Chi-
nese PLM. However, they do not learn a sub-word
tokenizer after CWS, thus making our SGT differ-
ent from theirs. We will use experiments to show
that our SGT yields comparably better PLMs.

3.2 Multi-vocab pre-training (MVP)

In this subsection, we will introduce MVP, a series
of natural extensions to the MLM task by Devlin
et al. (2019).

3.2.1 Hierarchical MVP
We first introduce hierarchical MVP (Hi-MVP).
Figure 2(a) depicts the architecture of Hi-MVP,
and Figure 1 depicts its procedure for processing

5This follows the implementation of BPE, which also asks
the tokenizer to cover most of the corpus. The ratio is usually
set as 99.99%.
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(a) Hi-MVP (b) AL-MVP

(c) AMBERT

Figure 2: The architectures for the two versions of MVP strategies. The first two are ours, and the third one is
AMBERT’s.

input sentences. Two vocab, a more fine-grained
vocab Vf , and a more coarse-grained vocab Vc,
are combined hierarchically. Sequences are first
tokenized via Vc, and then the Chinese tokens (if
containing multiple Chinese chars) are split into
single chars. Thus Vf consists of Chinese chars
and non-Chinese tokens from Vc. Then Chinese
chars and non-Chinese tokens are embedded into
vectors. The representations of chars inside a token
are aggregated into the representation of this token,
further fed into the transformer encoder. We ap-
ply a convolution network (with kernel size 3 and
#channels equally the embedding size) and max-
pooling to convert the char sequence into a fixed
token level representation in this work.

During MLM task, whole word masking is ap-
plied. That is, we will mask 15% of the tokens in

the Vc. For example, in Figure 2(a), ” 喜欢” (like)
is masked, thus in the char sequence, two tokens
” 喜” and ”欢” are masked. A classifier is designat-
ed to predict the masked Vc token ” 喜欢”. Let x
and y denote the sequences of tokens with lengths
lx and ly, for the same sentence under Vc and Vf , in
which a part of tokens are masked. Denote xmask

as the masked tokens under Vc. The loss function
for MVPhier is

min
θ
− log Pθ(x

mask|x,y)

≈min
θ
−

lx∑
i=1

Ii log Pθ(x
mask
i |x,y), (1)

in which Ixi is a variable with binary values indicat-
ing whether the i-th token is masked in x.
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3.2.2 Auxiliary loss MVP
Figure 2(b) depicts another version of MVP. In this
method, a sentence is tokenized and embedded in a
fine-grained Vf (e.g., a char-based vocab), and an
MLM task on Vf is conducted. However, different
from the vanilla MLM, an auxiliary MLM loss
objective based on a more coarse-grained vocab Vc
is added. Thus, we call this method Auxiliary loss
MVP (AL-MVP).

For example, encoded representations of the
chars ” 喜” and ”欢” inside the word ” 喜欢” is
aggregated to the vector representation of the word,
and an auxiliary MLM layer is tasked to predict the
word-based on Vc. For the aggregator in the exam-
ple, we adopt the BERT-style pooler, which uses
the starting token’s representation to represent the
word’s representation.6 Denote xmask and ymask

as the masked tokens under Vf and Vc, respectively.
The loss function for MVPobj is as follows:

min
θ
− log Pθ(x

mask,ymask|x)

≈min
θ
−

lx∑
i=1

Ixi log Pθ(x
mask
i |x)

− λ ∗
ly∑
i=1

Iyi log Pθ(y
mask
i |x), (2)

in which Ixi and Iyi are variables with binary val-
ues indicating whether the i-th token is masked in
sequence x and y, respectively. Here λ is the coef-
ficient which measures the relative importance of
the auxiliary MLM task.

Note that AL-MVP is different from AMBERT’s
architecture (Figure 2(c)). In AMBERT, a sequence
has to be encoded twice with different vocabs.
Meanwhile, AL-MVP is a plug-in pre-training s-
trategy, and during inference, the PLM is the same
as the original PLM.

We will denote the model pre-trained with Hi-
MVP strategy and vocab V as Hi-MVP(V ) for no-
tational convenience. AL-MVP with a fine-grained
vocab Vf and a coarse-grained vocab Vc are denot-
ed as AL-MVP(Vf , Vc).

4 Experiments

4.1 Setup
Two corpora are used for pre-training. The first one
is Chinese Wikipedia (C-1). We conduct most of

6Due to limited resources available, we leave to future
work to investigate whether alternative aggregators can bring
improvements.

the experiments and ablation studies on this cor-
pus. Finally, we will use the other corpus (C-2) to
match the SOTA performances. C-2 has 25 million
documents, thus it has approximately the same size
as the Chinese corpus in AMBERT (Zhang & Li,
2020). 7

CHAR’s vocab size is set at 21128, which is
the same with Google Chinese BERT. We con-
sider three vocab sizes for SGT: {21,128, 31,692,
72,635}. We will show in experiments that SGT
works best with vocab size 31,692. Moreover, for
the experiments with AL-MVP, we will only con-
sider SGT with vocab size 31,692. We set the
vocab size of SEG to be 72,635, which is the same
as AMBERT. Table 1 reports the basic statistics
for the tokens in these vocabs. As the vocab size
goes up, As the vocab size goes up, the vocab will
include more and more phrase-level tokens (# Chi-
nese chars ≥ 2).

For Hi-MVP, we consider Hi-MVP(SGT) and
Hi-MVP(SEG). For AL-MVP, we consider AL-
MVP(CHAR, SGT), AL-MVP(CHAR, SEG), and
AL-MVP(SGT, SEG). The relative importance co-
efficient λ in Eq. 2 is tuned from the set {0.1, 0.5,
1.0, 2.0, 10.0} via training on a small corpus with
100k sentences and a small dev corpus with 5k sen-
tences. We finally select λ = 0.5 for all models.

For pre-training, whole word masking is adopted,
and a total of 15% of the words (from CWS) in the
corpus are chosen. Furthermore, following BERT
(Devlin et al., 2019), 80% of the chosen words
are masked, a random word replaces 10%, and the
rest remain unchanged. For AL-MVP, 1/3 of the
time masked tokens from the fine-grained vocab
are predicted, and 1/3 of the time masked tokens
from the coarse-grained vocab are predicted, and
for the rest of the time, masked tokens from both
vocabs are predicted.

In this article, all models use the ALBERT as the
encoder. We use two different settings. The first is
for a smaller ALBERT model (ALBERT-tiny). The
number of layers is 3, the embedding size is 128,
and the hidden size is 256. We use this setting for
extensive comparisons and ablation studies. Then
we use the second model configuration, which is
the same as ALBERT base. We pre-trained the best
model from AL-MVP and show that our method
also works for large language models.

7Since AMBERT (Zhang & Li, 2020) does not open-
source their corpus, we collect the corpus ourselves. C-2
consists of Chinese Wikipedia and news articles we crawled
from the web.
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Vocab vocab size zh words zh words (len=1) zh words (len=2) zh words(len>=3) other
CHAR 21,128 48.59 48.59 0 0 51.39
SGT 21,128 89.02 38.61 44.06 6.32 10.98
SGT 31,692 88.49 27.56 51.36 9.57 11.49
SGT 72,635 85.72 17.43 36.72 31.58 14.27
SEG 72,635 89.53 16.86 38.93 33.74 10.47

Table 1: The compositions of different vocabs.

Other ALBERT configurations remain the same
with ALBERT (Lan et al., 2019). The pre-training
hyper-parameters are almost the same with AL-
BERT (Lan et al., 2019) and the maximum se-
quence length is 512. Here, the sequence length is
counted under the more fine-grained vocab for AL-
MVP. The batch size is 1024, and all the models
are trained for 12.5k steps. The pre-training opti-
mizer is LAMB, and the learning rate is 1e-4. For
finetuning, the sequence length is 256, the learning
rate is 2e-5, the optimizer is Adam (Kingma & Ba,
2015), and the batch size is set as the power of
2 so that each epoch contains less than 500 steps.
Each model is run on a given task 10 times, and
the average performance scores are reported for
reproducibility.

4.2 Baseline models
The first group of baselines is the original Google
Chinese BERT (Devlin et al., 2019), with different
vocabs. The second one is AMBERT (Zhang &
Li, 2020), a pre-trained model with two vocabs
of different granularity. For fair comparison, we
pre-train the baselines ourselves, with the same
corpus.

4.3 benchmark tasks
For downstream tasks, we select two sentence pair
classification (CLS) tasks: (1) XNLI from Conneau
et al. (2018) ; (2) LCQMC (Liu et al., 2018). We
also investigate two named entity recognition (N-
ER) tasks. MSRA NER (MSRA) (Levow, 2006)
is from open domain, and CCKS NER8 (CCKS)
is collected from medical records. For machine
reading comprehension (MRC) tasks, we consider
two benchmark datasets, CMRC2018 (Cui et al.,
2019) and ChID (Zheng et al., 2019).

4.4 Results for different vocabs
Table 3 report the results of pre-training ALBERT-
tiny with a series of different vocabs. We can see
that SGT obtains the best results on CLS, while

8https://biendata.com/competition/CCKS2017 2/

CHAR and SGT have comparable results for span-
level tasks NER and MRC. Even though the model
with SEG has more parameters than SGT, it con-
sistently under-performs SGT. The above results
indicate two conclusions. First, CWS alone can not
build a proper vocab for Chinese BERT. Second,
sub-word tokenizers learned on the segmented Chi-
nese corpus can decompose long-tail words into
tokens while keeping meaningful phrases as it is,
improving the downstream performances of AL-
BERT.

Also, Table 3 reports SGT’s performances using
different vocab sizes. The results show that vocab
size 31,692 is best suited for Chinese PLMs. When
the SGT’s vocab size goes up, the less frequent
tokens will not receive enough training, thus af-
fecting the downstream performances. When the
SGT’s vocab size goes down, it is essentially sim-
ilar to CHAR. Thus it can not leverage phrasal in-
formation of the Chinese language. Thus, for the
experiments in the rest of the paper, we only use
SGT with vocab size 31,692.

SGT has the efficiency advantage over CHAR.
We now make inference on the LCQMC test set
using batch size 19, and the sequence length is
kept as it is. We can observe that SGT has a 1.25x
inference speed up than CHAR.

4.5 Results for MVP
In this subsection, we analyze results for our MVP
strategies. We can see from Table 2 that when
trained using the same corpus, our Hi-MVP’s per-
formance can match the AMBERT’s performances.
Note that AMBERT has twice the computational
complexity of our Hi-MVP. Our Hi-MVP encoders
the sentence from char level to phrase level, thus
understanding the components of the sentence.

Note that Hi-MVP’s pre-training works on the
phrase level; thus, it does not perform well on the
span level tasks. Table 3 shows that the AL-MVP
strategy can generally improve all tasks’ results, es-

9This is consistent with the online scenarios of the industry
since user queries usually come one by one.
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task CLS NER MRC
task name LCQMC XNLI MSRA CCKS CMRC2018 ChID

metric Acc. macro F1 exact F1 exact F1 EM Acc.
SGT (31,692) 79.79 60.19 81.07 85.74 61.64 70.97

AMBERT 80.64 60.89 81.57 86.34 62.86 72.45
Hi-MVP(SGT) 80.56 60.98 81.35 86.82 62.65 72.43
Hi-MVP(SEG) 80.35 60.57 81.48 86.56 62.48 72.31

AL-MVP(CHAR, SGT) 80.93 61.43 81.47 86.97 62.93 72.65
AL-MVP(CHAR, SEG) 81.05 61.14 81.83 86.49 63.32 72.87
AL-MVP(SGT, SEG) 81.56 61.77 82.21 87.24 63.29 73.05

Table 2: The main experimental results for our MVP strategies. Our methods outperform AMBERT, even though
they require less computational resources for pre-training.

task CLS NER MRC
task name LCQMC XNLI MSRA CCKS CMRC2018 ChID

metric Acc. macro F1 exact F1 exact F1 EM Acc.
CHAR (21,128) 77.85 59.22 81.14 85.63 61.23 71.05
SGT (31,692) 79.79 60.19 81.07 85.74 61.64 70.97
SGT (21,128) 79.27 59.71 79.07 83.96 61.37 70.76
SGT (72,635) 79.04 59.45 78.79 83.41 60.89 70.51
SEG (72,635) 79.16 59.32 78.63 83.32 60.72 70.28

Table 3: Results for different vocabs, when used for ALBERT-tiny pre-training.

task name LCQMC XNLI MSRA CCKS CMRC2018 ChID
AL-MVP(SGT, SEG) 81.56 61.77 82.21 87.24 63.29 73.05

AL-MVP(SGT, SEG)-1 79.79 60.19 81.07 85.74 61.64 70.97
AL-MVP(SGT, SEG)-2 80.78 60.86 81.49 86.23 62.08 71.63

Table 4: Ablation studies on the AL-MVP’s pre-training strategies.

task name LCQMC XNLI MSRA CCKS CMRC2018 ChID
Google BERT 86.72 77.64 93.61 90.25 70.08 82.04

RoBERT-wwm-ext 86.23 78.57 94.82 91.56 72.63 83.62
AMBERT (Zhang & Li, 2020) - - - - 73.25 86.62

AMBERT (ours) 86.95 78.93 95.39 91.74 73.08 85.31
AL-MVP(SGT, SEG) 87.68 79.75 95.94 92.53 73.82 86.76

Table 5: The performances of models with large scale pre-training.

Metric AMBERT AL-MVP(SGT, SEG)
(↑ better) LCQMC XNLI LCQMC XNLI

original score 86.95 78.93 87.68 79.75
after-attack score 15.43 16.39 17.34 18.82

#queries 66 73 74 82

Table 6: Results on the adversarial robustness. “Query Number”denotes the number of queries the attack system
made to the target model and a higher number indicates greater difficulty.
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pecially on span-level tasks. Also, our two versions
of AL-MVP models can outperform AMBERT on
most of the tasks. AL-MVP asks the model to learn
a more general representation that can work with
different vocabs, making the model better under-
stand a token’s relation with its contexts.

Among the two AL-MVP models, AL-
MVP(SGT, SEG) performs best on five of the six
tasks. On CMRC2018, the performance of AL-
MVP(SGT, SEG) is very close to AL-MVP(CHAR,
SEG). AL-MVP(SGT, SEG) maintains the SGT’s
advantage on CLS tasks while improving NER and
MRC via AL-MVP pre-training.

4.6 Ablation on the pre-training strategies of
AL-MVP

For AL-MVP, we emphasize that cross-vocab
MLMs is essential for the pre-training. Thus, we
compare AL-MVP(SGT, SEG) with two other ver-
sions. First, AL-MVP(SGT, SEG)-1 keeps the main
MLM layer in Figure 2(b), that is, to only make
MLM predictions on the more fine-grained vo-
cab;10 Second, AL-MVP(SGT, SEG)-2 only keep
the auxiliary MLM layer in Figure 2(b), that is, to
only make MLM predictions on the more coarse-
grained vocab. Table 4 reports that AL-MVP(SGT,
SEG) achieves the best results on all 6 tasks. The
results show that MLM pre-training that combines
both vocabs can effectively improve the PLM’s
language understanding abilities and downstream
performances.

4.7 Large scale pre-training
In section, we report the pre-training results on
C-2, a large-scale corpus matching the size of AM-
BERT’s corpus. Table 5 reports the performances
of ALBERT-base. We first directly report the re-
sults of AMBERT from Zhang & Li (2020) on the
CMRC2018 and ChID tasks. Besides, to eliminate
the factor of different training corpus, we also train
AMBERT on the C-2 corpus. The results show
that our AL-MVP(SGT, SEG) model outperforms
both AMBERT models. Note that we only require
half the GPU time for AMBERT training, and the
inference speed of AL-MVP(SGT, SEG) is 2.15x
of AMBERT.

4.8 Robustness over adversarial attacks
We claim that our AL-MVP training strategy can
ask the ALBERT encoder to efficiently draw infor-

10This model is essentially the vanilla ALBERT-tiny with
vocab SGT.

mation from contexts into token representations,
thus improving the expressiveness. Thus it is a
fair reasonable that AL-MVP pre-trained models
should be more robust to adversarial attacks. This
subsection leverages the TextFooler framework (Jin
et al., 2020) to conduct black-box attacks on the
LCQMC and XNLI datasets. As shown in Table
6, we report the original performance, after-attack
performance, and the number of queries needed
by TextFooler to attack each model. We can see
that AL-MVP(SGT, SEG) increases the number of
queries needed to attack by a clear margin. Com-
pared with AMBERT, our AL-MVP(SGT, SEG)
demonstrates robustness improvements.

5 Conclusions

In this work, we propose a series of novel pre-
training methods called MVPs, which leverage
multiple vocabularies in the language model pre-
training. To select the vocabs for MVP pre-training,
we first conduct experiments to validate SGT,
which combines Chinese word segmentation and
sub-word tokenization, works best for the Chinese
language model pre-training. We then use experi-
ments to show that our proposed MVP methods can
achieve better performances than AMBERT with
less computational resources. Also, we show our
MVP method can improve the pre-trained model’s
robustness against adversarial attacks.
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