
Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing: Student Research Workshop, pages 221–228

August 5–6, 2021. ©2021 Association for Computational Linguistics

221

How Many Layers and Why? An Analysis of the Model Depth in
Transformers

Antoine Simoulin1,2 Benoı̂t Crabbé2
1Quantmetry 2University of Paris, LLF

asimoulin@quantmetry.com
bcrabbe@linguist.univ-paris-diderot.fr

Abstract

In this study, we investigate the role of the mul-
tiple layers in deep transformer models. We
design a variant of ALBERT that dynamically
adapts the number of layers for each token
of the input. The key specificity of ALBERT
is that weights are tied across layers. There-
fore, the stack of encoder layers iteratively re-
peats the application of the same transforma-
tion function on the input. We interpret the
repetition of this application as an iterative
process where the token contextualized repre-
sentations are progressively refined. We ana-
lyze this process at the token level during pre-
training, fine-tuning, and inference. We show
that tokens do not require the same amount of
iterations and that difficult or crucial tokens for
the task are subject to more iterations.

1 Introduction

Transformers are admittedly over-parametrized
(Chen et al., 2020; Hou et al., 2020; Voita et al.,
2019). Yet the role of this over-parametrization
is not well understood. In particular, transformers
consist of a fixed number of stacked layers, which
are suspected to be highly redundant (Liu et al.,
2020) and to cause over-fitting (Fan et al., 2020;
Zhou et al., 2020). In this paper we provide a study
on the role of the multiple layers traditionally used.

The mechanism of transformer layers is often
compared to intuitive NLP pipelines (Tenney et al.,
2019). Starting with the lower layers encoding
surface information, middle layers encoding syn-
tax and higher layers encoding semantics (Jawahar
et al., 2019; Peters et al., 2018). Transformers pro-
gressively refine the features, which become more
fine-grained at each iteration (Xin et al., 2020).
However, ALBERT (Lan et al., 2020) highlights
that it is possible to tie weights across layers and
repeat the application of the same function. Con-
sequently, we hypothesize that it is the number

of layer applications that gradually abstracts the
surface information into semantic knowledge.

To better study the transformation of token rep-
resentations across layers, we propose a variant of
ALBERT. Our model implements the key speci-
ficity of weights tying across layers but also dy-
namically adapts the number of layers applied to
each token. Since all layers share the same weight,
we refer to the application of the layer to the hidden
states as an iteration.

After reviewing the related work (Section 2), we
detail the model and the training methodology in
Section 3. In particular, we encourage our model
to be parsimonious and limit the total number of it-
erations performed on each token. In Section 4, we
analyze iterations of the model during pre-training,
fine-tuning and inference.

2 Related Work

Adapting the transformer depth is an active subject
of research. In particular, deep transformer mod-
els are suspected to struggle to adapt to different
levels of difficulty. While large models correctly
predict difficult examples, they over-calculate sim-
pler inputs (Liu et al., 2020). This issue can be ad-
dressed using early-stopping: some samples might
be sufficiently simple to classify using intermediate
features. Some models couple a classifier to each
layer (Zhou et al., 2020; Liu et al., 2020; Xin et al.,
2020). After each layer, given the classifier output,
the model either immediately returns the output or
passes the sample to the next layer. Exiting too late
may even have negative impacts due to the network
”over-thinking” the input (Kaya et al., 2019).

Ongoing research also refines the application of
layers at the token level. Wang and Kuo (2020)
build sentence embeddings by combining token
representations from distinct layers. Elbayad et al.
(2020) and Dehghani et al. (2019) successfully use



222

dynamic layers depth at the token level for full
transformers (encoder-decoder). However, to the
best of our knowledge, our attempt is the first to ap-
ply such mechanism to encoder only transformers
and to provide an analysis of the process.

3 Method

In this Section, we detail the model architecture,
illustrated in Figure 1, and pre-training procedure.

3.1 Model architecture

We use a multi-layer transformer encoder (Devlin
et al., 2019) which transforms a context vector of
tokens (u1 · · ·uT ) through a stack of L transformer
encoder layers (Eq. 1, 2). We use weight tying
across layers and apply the same transformation
function at each iteration (Lan et al., 2020).

h0t =Weut +Wp (1)

hnt = layer(hn−1
t ) ∀n ∈ [1, L] (2)

For the first layer, We is the token embedding
matrix, and Wp the position embedding matrix.

We augment the model with a halting mecha-
nism, which allows dynamically adjusting the num-
ber of layers for each token (Eq. 3 to 8). We di-
rectly adapted this mechanism from Graves (2016).
The main distinction with the original version is the
use of a transformer model instead of a recurrent
state transition model. The mechanism works as
follow: at each iteration n, we add the following
operations after Eq. 2. We assign a probability to
stop pnt for each token at index t (Eq. 3). Given
this probability, we compute an update weight λnt
(Eq. 4), which we use to compute the final state as
the linear convex combination between the previ-
ous and current hidden state (Eq. 5).

pnt = σ (Whh
n
t + bn) (3)

λnt = pnt if n < Nt, Rt elif n = Nt, else 0 (4)

hnt = λnt h
n
t + (1− λnt )hn−1

t (5)

With σ the sigmoid function. We define the
remainder Rt and the number of iterations for the
token at index t, Nt with:

Rt = 1−
Nt−1∑
l=1

plt. Nt = min
n′

n′∑
n=1

pnt ≥ 1−ε (6)

As soon as the sum of the probability becomes
greater than 1, the update weights λnt are set to 0
and the token is not updated anymore (Eq. 4). A
small ε factor ensures that the network can stop
after the first iteration (Eq. 6).

Figure 1: As in ALBERT model, tokens are transformed
through the iterative application of a transformer en-
coder layer. Our model key specificity is the applica-
tion of the halting mechanism, which dynamically ad-
justs the number of iterations for each token.

3.2 Pre-training objective
During the pre-training phase, we train the model
with the sentence order prediction (sop) — the
task introduced in Lan et al. (2020) that classi-
fies whether segments from the input sequence fol-
low the original order or were swapped — and the
masked language model task (mlm) (Devlin et al.,
2019). We also encourage the network to minimize
the number of iterations by directly adding the pon-
der cost into ALBERT pre-training objective. Given
a length T input sequence u, Graves (2016) defines
the ponder cost P(u) as:

P(u) =
T∑
t=1

Nt +Rt (7)

We define the final pre-training loss as the fol-
lowing sum:

L̂ = Lsop + Lmlm + τP (8)

where τ is a time penalty parameter that weights
the relative cost of computation versus error.

3.3 Datum and infrastructure
We follow the protocol from ALBERT and pre-train
the model with BOOKCORPUS (Zhu et al., 2015)



223

and English Wikipedia. We reduce the maximum
input length to 128 and the number of training steps
to 112,5001. We use a lowercase vocabulary of size
30,000 tokenized using SentencePiece. We train
all our models on a single TPU v2-8 from Google
Colab Pro2 and accumulate gradients to preserve a
4,096 batch size. We optimize the parameters using
LAMB with a learning rate at 1.76e-3.

4 Experiments

We now analyze our iterative model properties dur-
ing pre-training (Section 4.1) and fine-tuning (Sec-
tion 4.2). We start by describing the setup for each
of the subtasks.

mlm task We generate masked inputs follow-
ing ALBERT n-gram masking. We mask 20% of
all WordPiece tokens but do not always replace
masked words with the [MASK] token to avoid dis-
crepancy between pre-training and fine-tuning. We
effectively replace 80% of the masked position with
[MASK] ([MASK/MASK]), 10% with a random
token ([MASK/random]), and keep the original
token for the last 10% ([MASK/original]).

sop task We format our inputs as “[CLS] x1
[SEP] x2 [SEP]”. In 50% of the case the two
segments x1 and x2 are effectively consecutive
in the text. In the other 50%, the segments are
swapped.

Ponder cost We fix the time penalty factor τ em-
pirically such that the ponder penalty represents
around 10% of the total loss. To estimate the pon-
der cost, we discard the remainder, as R� N for
sufficient values ofN . Given Eq. 7, the ponder cost
then corresponds to the total number of iterations
in the sentence, which is given by l×T , with T the
number of tokens in the sequence and l the average
iterations per token. We observe that ALBERT base
loss converges to around 3.5. We calibrate τ such
that τP ≈ 0.35 ≈ τ × l × T . We train distinct
models, listed in Table 1, that we calibrate such
that their average number of iterations per token
l is respectively 3, 6, and 12. We refer to these
models as respectively tiny, small and base.

1As emphasized in https://github.com/
google-research/bert, longer sequences are compu-
tationally expensive. To lighten the pre-training process, they
advise using 128 sentence length and increase the length to
512 only for the last 10% of the training to train the positional
embeddings. In this work, we only perform the first 90%
steps as we are not looking for brute force performances.

2https://colab.research.google.com/

4.1 Analysis of the pre-training

Analysis of the iterations We pre-train models
with various configurations and observe the model
mechanisms during the pre-training in Table 1.

Models tiny small base

τ 1e-3 5e-4 2.5e-4
Max iterations 6 12 24
mlm (Acc.) 55.4 57.1 57.4
sop (Acc.) 80.9 83.9 84.3

All tokens 3.8 7.1 10.0
All unmasked tokens 3.5 6.5 9.2
[MASK/MASK] 5.8 10.9 16.0
[MASK/random] 5.8 10.9 16.0
[MASK/original] 4.0 7.4 10.5
[CLS] 6.0 12.0 22.5
[SEP] 2.5 7.6 8.4

Table 1: Average number of iterations given token
types during the pre-training. For each model, we re-
port a mean number of iterations on our development
set, at the end of the pre-training.

We observe that the [CLS] token receives far
more iterations than other tokens. This observa-
tion is in line with Clark et al. (2019) who analyze
BERT attention and report systematic and broad
attention to special tokens. We interpret that the
[CLS] token is used as input for the sop task and
aggregates a representation for the entire input. On
the contrary, [SEP] token benefits from usually
few iterations. Again, this backs the observation
emerging from the analysis of attention that inter-
prets [SEP] as a no-op operation for attention
heads (Clark et al., 2019).

We also observe an interesting behavior from
the [MASK] which also benefits from more
iterations than average tokens. As for the
[CLS] token, we interpret that these tokens
are crucial for the mlm task. Looking fur-
ther, we observe that [MASK/random] and
[MASK/MASK] number of iterations is greater
than [MASK/original]. In this case, al-
though all tokens are targeted in the mlm task,
[MASK/random] and [MASK/MASK] are obvi-
ously more difficult to identify3.

The model seems to have an intuitive mechanism
3During inference, the model cannot make the distinction

between [MASK/original] and unmasked tokens. How-
ever, we observe in Table 1 that the two token types have a
distinct mean number of iterations. We believe this is due to
the distribution of the [MASK] tokens. Indeed, we follow the
procedure from ALBERT and use n-gram masking. Therefore,
[MASK/original] tokens tend to appear in the context
of [MASK] tokens. This specific context increases the mean
number of iterations.

https://github.com/google-research/bert
https://github.com/google-research/bert
https://colab.research.google.com/


224

and distributes iterations for tokens that are either
crucial for the pre-training task or present a certain
level of difficulty. This also appears in line with
early-exit mechanisms cited in Section 2, that adapt
the number of layers, for the whole example, to
better scale to each sample level of difficulty.

Natural Fixed point We now analyze how the
token’s hidden states evolve during our model it-
erative transformations. At each iteration n, the
self-attentive mechanism (Vaswani et al., 2017)
computes the updated state n + 1 as a weighted
sum of the current states. This introduces a cyclic
dependency as every token depends on each other
during the iterative process. As convergence within
a loopy structure is not guaranteed, we encourage
the model to converge towards a fixed point (Bai
et al., 2019).

Figure 2: Evolution of the cosine similarity between
hidden states hnt and hn+1

t from two consecutive iter-
ations. We use our base model and measure iterations
on our development set, at the end of the pre-training.

We obtain this property ”for free” thanks to our
architecture specificity. Indeed at each iteration, the
hidden state is computed as a convex combination
of the previous n and current n + 1 hidden state.
The combination is controlled by λnt (Eq. 5). If λnt
is closed to 0, then hnt ≈ hn+1

t and by definition
(Eq. 4, 6) λnt will eventually be set to 0 at a certain
iteration.

Figure 2 represents the evolution of the mean co-
sine similarity between two hidden states from two
consecutive iterations hnt and hn+1

t . The network
indeed reaches a fixed point for every token. The
[SEP] and tokens that are not masked converge
quicker than [MASK] tokens. Finally, the [CLS]
token oscillates during intermediate layers before

reaching an equilibrium4.

4.2 Application to downstream tasks

During the pre-training phase, the model focuses
on tokens either crucial for the pre-training task
or presents a certain level of difficulty. Now we
study our model behavior during the fine-tuning on
downstream syntactic or semantic tasks.

Control test To verify that our setup has reason-
able performance, we evaluate it on the GLUE
benchmark (Wang et al., 2019). Results from Ta-
ble 2 are scored by the evaluation server5. As in De-
vlin et al. (2019), we discard results for the WNLI
task6. For each task, we fine-tune the model on the
train set and select the hyperparameters on the dev
set using a grid search. We tune the learning rate
between 5e-5, 3e-5, and 2e-5; batch size between
16 and 32 and epochs between 2, 3, or 4. To better
compare our setup, we pre-train BERT and ALBERT

model using our configuration, infrastructure and
datum.

Avg. Glue score

BERT-base 76.9
ALBERT-base 75.6

ALBERT-base + Adapt. Depth 75.2
ALBERT-small + Adapt. Depth 74.2
ALBERT-tiny + Adapt. Depth 72.6

Table 2: GLUE Test results, scored by the evaluation
server but without the WNLI task. To facilitate the
comparison, we reproduce BERT and ALBERT, with
our pre-training dataset, infrastructure and configura-
tion detailed in Section 3.2.

We present results on the test set in Table 2. As
expected, the average score decreases with the num-
ber of iterations. Indeed, we limit the number of
computation operations performed by our model.
Moreover, we build our model on top of ALBERT,
which share parameters across layers, thus reduc-
ing the number of parameters compared with the
original BERT architecture. However, despite these
additional constraints, results stay in a reasonable
range. In particular, ALBERT-base with adaptative
depth is very close to the version with a fixed depth.

4We present the Figures for other model configurations in
Appendix A

5https://gluebenchmark.com/
leaderboard

6See (12) from https://gluebenchmark.com/
faq.

https://gluebenchmark.com/leaderboard
https://gluebenchmark.com/leaderboard
https://gluebenchmark.com/faq
https://gluebenchmark.com/faq


225

Probing tasks Conneau and Kiela (2018) intro-
duce probing tasks, which assess whether a model
encodes elementary linguistic properties. We con-
sider semantic and syntactic tasks that do not in-
troduce random replacements. In particular, a task
that predicts the sequence of top constituents im-
mediately below the sentence node (TopConst), a
task that predicts the tense of the main-clause verb
(Tense), and two tasks that predict the subject (resp.
direct object) number in the main clause (SubjNum,
resp. ObjNum).

Tense Subj
Num

Obj
Num

Top
Const

punct (121k) 5.0 4.8 5.2 6.7
prep (101k) 4.6 4.6 5.4 6.2
pobj (98k) 4.5 4.6 5.4 5.8
det (86k) 4.5 4.6 5.1 6.1
nn (81k) 5.1 5.4 5.8 6.7
nsubj (80k) 5.3 6.1 5.9 7.5
amod (66k) 4.6 4.9 5.5 6.1
dobj (49k) 4.8 5.0 5.9 6.1
root (44k) 5.9 6.1 6.2 7.9
advmod (37k) 4.8 4.8 5.3 6.8

avg. 5.4 5.4 5.8 7.2
test Acc. 87.5 93.9 96.1 91.2
baseline Acc. 87.3 94.0 96.0 91.9

Table 3: Distribution of the iterations across token de-
pendency types. We fine-tune our base model on each
probing task. We then perform inference on the Penn
Tree Bank dataset and report the number of iterations
given token dependency types. The number in paren-
theses denotes the number of dependency tags. We only
display the top 10 most frequent tags. We indicate in
bold tags for which the number of iterations is above
avg + std. We include a baseline accuracy which we
obtain with the ALBERT-base version without an adap-
tative depth mechanism and therefore 12 iterations per-
formed for each token.

In our setup, we fine-tune the model on the task
train set and select the hyperparameters on the dev
set using a grid search. We use a 5e-5 learning rate
and fine tune the epochs between 1 to 5; we use a
32 batch size. Finally, we compare in Table 3 the
number of iterations performed for each token on
the Penn Tree Bank (Marcus et al., 1993) converted
to Stanford dependencies7,8.

We provide an accuracy baseline, obtained with
the same setup but using ALBERT without the dy-
namic halting mechanism. As in the previous exper-
iment, we observe that for these tasks, out model

7Since we use sentence piece vocabulary, we assign to
each piece the dependency tag from the whole token.

8We present the Tables for other model configurations in
Appendix B

achieve competitive performances despite using
less computational operations.

Although all tasks achieve significant and com-
parable accuracies, they all require a distinct global
mean of iterations. The Tense task, which can be
solved from the verb only, is completed in only 5.4
iterations, while the TopConst task, which requires
to infer some sentence structure, is performed in
7.2 iterations. This suggests the model can adapt
itself to the complexity of the task and globally
spare unnecessary iterations.

Looking at the token level, as during the pre-
training (Section 4.1), the iterations are unevenly
distributed across tokens. The model seems to iter-
ate more on tokens that are crucial for the task. For
SubjNum, the subj tokens achieve the maximum
number of iterations, while for the ObjNum task,
the obj and root token iterates more. Similarly, all
tasks present a high number of iteration on the main
verb (root) that is crucial for each prediction.

5 Conclusion

We investigated the role of the layers in deep trans-
formers. We designed an original model that pro-
gressively transforms each token through a dy-
namic number of iterations. We analyzed the dis-
tribution of these iterations during pre-training and
confirmed the results obtained by analyzing the
distribution of attention across BERT layers, par-
ticularly the specific behavior played by special
tokens. Moreover, we observed that key tokens
for the prediction task benefit from more iterations.
We confirmed this observation during fine-tuning,
where the tokens with a large number of iterations
are also suspected to be key for achieving the task.

Our experiments provide a new interpretation
path for the role of layers in deep transformer mod-
els. Rather than extracting some specific features
at each stage, layers could be interpreted as the
iteration from an iterative and convergence process.
We hope that this can help to better understand the
convergence mechanisms for transformers models,
reduce the computational footprint or provide new
regularization methods.



226

References
Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. 2019.

Deep equilibrium models. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pages 688–699.

Daoyuan Chen, Yaliang Li, Minghui Qiu, Zhen Wang,
Bofang Li, Bolin Ding, Hongbo Deng, Jun Huang,
Wei Lin, and Jingren Zhou. 2020. Adabert: Task-
adaptive BERT compression with differentiable neu-
ral architecture search. In Proceedings of the
Twenty-Ninth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2020, pages 2463–2469.
ijcai.org.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of bert’s attention. CoRR,
abs/1906.04341.

Alexis Conneau and Douwe Kiela. 2018. Senteval: An
evaluation toolkit for universal sentence representa-
tions. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation,
LREC 2018, Miyazaki, Japan, May 7-12, 2018.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Univer-
sal transformers. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael
Auli. 2020. Depth-adaptive transformer. In 8th
International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Alex Graves. 2016. Adaptive computation time for re-
current neural networks. CoRR, abs/1603.08983.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic
BERT with adaptive width and depth. In Advances
in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers, pages 3651–3657.

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras.
2019. Shallow-deep networks: Understanding and
mitigating network overthinking. In Proceedings
of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Ma-
chine Learning Research, pages 3301–3310. PMLR.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020. Fastbert: a self-
distilling BERT with adaptive inference time. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 6035–6044. Associa-
tion for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional Linguistics, 19(2):313–330.

Matthew E. Peters, Mark Neumann, Luke Zettlemoyer,
and Wen-tau Yih. 2018. Dissecting contextual word
embeddings: Architecture and representation. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018, pages
1499–1509. Association for Computational Linguis-
tics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Conference of the Asso-
ciation for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume
1: Long Papers, pages 4593–4601. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 5998–6008.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the

http://papers.nips.cc/paper/8358-deep-equilibrium-models
https://doi.org/10.24963/ijcai.2020/341
https://doi.org/10.24963/ijcai.2020/341
https://doi.org/10.24963/ijcai.2020/341
http://arxiv.org/abs/1906.04341
http://arxiv.org/abs/1906.04341
http://www.lrec-conf.org/proceedings/lrec2018/summaries/757.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/757.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/757.html
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=SJg7KhVKPH
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
http://arxiv.org/abs/1603.08983
http://arxiv.org/abs/1603.08983
https://proceedings.neurips.cc/paper/2020/hash/6f5216f8d89b086c18298e043bfe48ed-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6f5216f8d89b086c18298e043bfe48ed-Abstract.html
https://doi.org/10.18653/v1/p19-1356
https://doi.org/10.18653/v1/p19-1356
http://proceedings.mlr.press/v97/kaya19a.html
http://proceedings.mlr.press/v97/kaya19a.html
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
https://www.aclweb.org/anthology/J93-2004.pdf
https://www.aclweb.org/anthology/J93-2004.pdf
https://doi.org/10.18653/v1/d18-1179
https://doi.org/10.18653/v1/d18-1179
https://doi.org/10.18653/v1/p19-1452
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/p19-1580
https://doi.org/10.18653/v1/p19-1580
https://doi.org/10.18653/v1/p19-1580


227

57th Conference of the Association for Computa-
tional Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
5797–5808. Association for Computational Linguis-
tics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019.

Bin Wang and C.-C. Jay Kuo. 2020. SBERT-WK:
A sentence embedding method by dissecting bert-
based word models. IEEE ACM Trans. Audio
Speech Lang. Process., 28:2146–2157.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. Deebert: Dynamic early exiting
for accelerating BERT inference. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 2246–2251. Association for Computa-
tional Linguistics.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian J.
McAuley, Ke Xu, and Furu Wei. 2020. BERT loses
patience: Fast and robust inference with early exit.
In Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. In 2015 IEEE Interna-
tional Conference on Computer Vision, ICCV 2015,
Santiago, Chile, December 7-13, 2015, pages 19–
27.

https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.1109/TASLP.2020.3008390
https://doi.org/10.1109/TASLP.2020.3008390
https://doi.org/10.1109/TASLP.2020.3008390
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://proceedings.neurips.cc/paper/2020/hash/d4dd111a4fd973394238aca5c05bebe3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d4dd111a4fd973394238aca5c05bebe3-Abstract.html
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11


228

A Natural fixed point

We present here the evolution of the mean cosine
similarity between two hidden states from two con-
secutive iterations for our small (Figure 3) and tiny
(Figure 4) models. As presented in Section 3.2, we
fix the maximum number of iterations at respec-
tively 6 and 12 for the tiny and small models.

Figure 3: Evolution of the cosine similarity between
hidden states hnt and hn+1

t from two consecutive itera-
tions. We use our small model and measure iterations
on our development set, at the end of the pre-training.

Figure 4: Evolution of the cosine similarity between
hidden states hnt and hn+1

t from two consecutive itera-
tions. We use our tiny model and measure iterations on
our development set, at the end of the pre-training.

B Probing tasks

We give here the probing tasks results from Sec-
tion 4.2 with our small (Table 4) and tiny (Table 5)
models.

Tense Subj
Num

Obj
Num

Top
Const

punct (121k) 3.1 3.1 3.1 3.9
prep (101k) 2.9 2.9 3.0 3.6
pobj (98k) 2.9 3.0 3.1 3.5
det (86k) 2.7 2.8 2.7 3.6
nn (81k) 3.2 3.5 3.2 3.9
nsubj (80k) 3.3 3.7 3.3 4.4
amod (66k) 2.9 3.0 3.0 3.6
dobj (49k) 3.0 3.2 3.4 3.5
root (44k) 3.6 3.6 3.5 4.6
advmod (37k) 2.9 3.0 3.0 4.0

avg. 3.2 3.3 3.3 3.9
test Acc. 86.4 93.2 95.5 91.1
baseline Acc. 87.3 94.0 96.0 91.9

Table 4: Distribution of the iterations across token de-
pendency types. We fine-tune our small model on each
probing task. We then perform inference on the Penn
Tree Bank dataset and report the number of iterations
given token dependency types. The number in paren-
theses denotes the number of dependency tags. We only
display the top 10 most frequent tags. We indicate in
bold tags for which the number of iterations is above
avg + std. We include a baseline accuracy which we
obtain with the ALBERT-base version without an adap-
tative depth mechanism and therefore 12 iterations per-
formed for each token.

Tense Subj
Num

Obj
Num

Top
Const

punct (121k) 2.1 1.9 2.0 2.5
prep (101k) 2.0 1.7 2.0 2.3
pobj (98k) 2.0 1.8 2.0 2.2
det (86k) 1.9 1.7 1.8 2.3
nn (81k) 2.2 2.0 2.0 2.5
nsubj (80k) 2.3 2.2 2.1 2.8
amod (66k) 2.1 1.8 2.0 2.3
dobj (49k) 2.1 1.9 2.1 2.3
root (44k) 2.4 2.1 2.3 2.9
advmod (37k) 2.1 1.8 2.0 2.6

avg. 2.2 2.0 2.1 2.5
test Acc. 88.6 91.1 93.8 91.1
baseline Acc. 87.3 94.0 96.0 91.9

Table 5: Distribution of the iterations across token de-
pendency types. We fine-tune our tiny model on each
probing task. We then perform inference on the Penn
Tree Bank dataset and report the number of iterations
given token dependency types. The number in paren-
theses denotes the number of dependency tags. We only
display the top 10 most frequent tags. We indicate in
bold tags for which the number of iterations is above
avg + std. We include a baseline accuracy which we
obtain with the ALBERT-base version without an adap-
tative depth mechanism and therefore 12 iterations per-
formed for each token.


