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Message from the General Chair

I am delighted to welcome you to the Joint Conference of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(ACL-IJCNLP 2021)!

We are very grateful for many people. Fei Xia, Wenjie Li (Maggie) and Roberto Navigli, as the
Program Chairs, have admirably guided the work of main conference organization and management.
The calm and experienced Priscilla Rasmussen has done a lot of work for the signing of contracts
with virtual platform company, Underline.io, calculation of registration fees and managing the entire
registration process, and communication with sponsors and exhibitors. The amazing 68-person
organizing committee, who all contributed so much to make the conference successful: Local Chairs
(Priscilla Rasmussen, Thepchai Supnithi, Thanaruk Theeramunkong), Tutorial Chairs (David Chiang,
Min Zhang), Workshop Chairs (Kentaro Inui, Michael Strube), Student Research Workshop Chairs
(Jad Kabbara, Haitao Lin, Amandalynne Paullada, Jannis Vamvas), Faculty Advisors to the Student
Workshop (Jing Jiang, Rico Sennrich, Derek F. Wong, Nianwen Xue), Audio-Video Chairs (Suchathit
Boonnag, Rachasak Somyanonthanakul), Conference Handbook Chair (Krit Kosawat), Demonstration
Chairs (Heng Ji, Jong C. Park, Rui Xia), Diversity and Inclusion Committee Chairs (Academic Inclusion
Chairs: Avirup Sil, Kayathi Chandu, Lifu Huang, Sara Rosenthal; Accessibility Chairs: Minlie Huang,
Vivian Chen, Yang Feng; Financial Access Chairs: Martha Yifiru Tachbelie, Alexis Palmer, Ignatius
Eziani, Manuel Mager, Nafise Moosavi; Socio-cultural Inclusion Chairs: Alvin Grissom, Xanda
Schofield, Pedro Rodriguez), Local Sponsorship Chairs (Rachada Kongkrachantra, Jing Li, Kobkrit
Viriyayudhakorn, Zhongyu Wei), Publications Chairs (Yuki Arase, Jing-Shin Chang, Yvette Graham),
Publicity Chair (Kai-Fam Wong), Remote Presentation Chairs (Zhongjun He, Nattapol Kritsuthikul,
Yadollah Yaghoobzadeh), Sustainability Chairs (Angeliki Lazaridou, Qi Zhang), Reviewer Mentoring
Committe Chairs (Jing Huang, Antoine Bosselut, Christophe Gravier), Website and Conference App
Chairs (Chutima Beokhaimook, Witchaworn Mankhong), Student Volunteer Coordinator (Dongyan
Zhao), Ethic Advisory Committee Chairs (Malvina Nissim, Min-Yen Kan, Xanda Schofield), Social
Media Committee Chairs (Luciana Benotti, Lidong Bing, Zhumin Chen, Rachele Sprugnoli, Mark
Seligman), Virtual Infrastructure Committee Advisor (Hao Fang), Virtual Infrastructure Committee
Chairs (Wei Lu, Krich Nasingkun, Alessandro Raganato, Shaonan Wang, Liang-Chih Yu, Jianfei Yu).

The success of the conference is inseparable from the guidance and advice of ACL Officers. Special
thanks to Hinrich Schütze, Rada Mihalcea, David Yarowsky, Shiqi Zhao and Yusuke Miyao. The general
chair of NAACL’2021, Dr. Kristina Toutanova provided me much advice based on her experience with
NAACL’2021 organization. The friendly cooperation with NAACL’2021 and EACL’2021 workshop
chairs and tutorial chairs is very important and is of mutual benefit to each other.

Sponsors and exhibitors are always very important. We are extremely grateful to all sponsors for their
continuing support to help our conferences be very successful.

And finally, I would like to thank every one of you for making ACL-IJCNLP’2021 such a success by
submitting papers and demos, serving as area chairs and reviewers, session chairs, invited speakers and
volunteers, and by joining us in virtual environment.

Welcome and hope you all enjoy the conference!

Chengqing Zong

ACL-IJCNLP’2021 General Chair
June 28, 2021
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Message from the Program Chairs

Welcome to the Joint Conference of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP
2021)! ACL-IJCNLP 2021 has a special historical significance as this is a particularly exciting period:
our field has grown dramatically, NLP research is now ubiquitous in products, and the barrier to entry to
the field has lowered considerably. Like ACL 2020, ACL-IJCNLP 2021 is held as a virtual conference
again due to the worldwide COVID-19 pandemic which has lasted for more than one year. We are very
grateful for all of your support and contributions during this difficult time, which make this conference
special and memorable.

Abstract and Full-paper Submissions: To synchronize with NAACL 2021, our conference’s review
cycle was about three weeks shorter than that of ACL 2020. To make the short review cycle work, we
introduced an abstract submission step, which required authors to submit an abstract by Jan 25, 2021,
one week before the full-paper submission deadline on Feb 1, 2021. This extra step gave NAACL 2021
authors an opportunity to withdraw their papers from NAACL 2021 and submit them to ACL-IJCNLP
2021 based on feedback from NAACL 2021’s rebuttal period. In total, we received 4, 266 abstract
submissions and 3, 350 full paper submissions.

Tracks: The submissions were assigned to one of 24 topic tracks. The tracks were similar to those used
in previous conferences but with a few changes:

1. Based on the number of submissions in previous conferences, we followed NAACL 2021 and
combined two tracks (“Semantics: Sentence Level” and “Semantics: Textual Inference and Other
Areas of Semantics”) into a single track “Semantics: Sentence-level Semantics, Textual Inference
and Other areas”.

2. To accommodate a wider and more diverse area, we changed the name of the “Computational
Social Science and Social Media” track to “Computational Social Science and Cultural Analytics”.

3. Following NAACL 2021, we combined the “Theory and Formalism” with the “Cognitive
Modeling and Psycholinguistics” areas into “Linguistic theories, Cognitive Modeling and
Psycholinguistics”. This track is designed to encourage submissions targeted to theoretical
underpinning of NLP models which had little/small presence in the past ACL conferences.

4. We introduced a new theme: “NLP for Social Good (NLP4SG)”. The application of AI to provide
positive social impact has been an important topic in recent years. However, to date, this has not
been a topic highlighted at the ACL main conference. This track is designed to invite submissions
that can provide insights for the ACL-IJCNLP community on the topic of NLP for Social Good as
well as how NLP could potentially cause or be used for social harm.

Program Committee: To meet the reviewer demands of a growing conference without compromising
review quality, we started recruiting Senior Area Chairs (SACs) and Area Chairs in early fall 2020. Then
we initiated a large-scale reviewer recruiting effort in Nov 2020. We compiled a big list of reviewers from
previous conferences, and sent out invitations to more than 9, 000 candidates, asking the ones who were
willing to serve to fill out a Microsoft reviewer form. About 4, 400 of the invitees filled out the form. We
then worked with SACs and ACs in selecting reviewers and assigning them to appropriate tracks. The
whole process of forming the program committee was very complex and took several months to complete
and, at the end, we have the largest ever program committee in the history of ACL with 60 SACs, 323
ACs, and 3, 685 primary reviewers.
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Reviewer Mentoring Program: Review quality is crucial for the success of a large conference like
ACL. Thus, it is of central importance for our community to mentor and train new reviewers in order to
keep up with the community’s rapid growth, both in terms of submissions and in terms of new members
of the community. Therefore, this year we continued the reviewer mentoring program launched with
ACL 2020. Ultimately, the goal of this program is to provide long-needed mentoring to new reviewers.
We formed a reviewer mentoring committee. Collaborating with them and SACs, we paired Area Chairs
(mentors) with first-time ACL reviewers (mentees, often Ph.D. students or junior researchers) during
the paper assignment process. The mentees would submit reviews early for the mentors to provide
feedback, and the mentees would then revise their reviews based on the feedback. In addition, to help
all the reviewers, the reviewer mentoring committee created several videos including the presentation
of the mentoring program, a general reviewing tutorial, information about the review form used for this
conference, and guidelines on how to consider ethical issues reproducibility in submissions.

Ethical review: The ethical impact and potential applications of our research should be an important
consideration for research design, and as artificial intelligence is becoming more mainstream, these issues
are increasingly pertinent. To address the potential ethical concerns, we allowed authors to include
a broader impact statement or other discussion of ethics in the paper, which does not count towards
the page limit. We formed an Ethics Advisory Committee (EAC) with three co-chairs and 57 EAC
reviewers. During the review process, reviewers were asked to flag submissions with ethical concerns.
The EAC then reviewed all the flagged papers to determine whether the papers should be (a) accepted
as is, (b) conditional accepted (with specification of what must be addressed in the camera-ready version
in order for the condition to be removed), or (c) rejected on ethical grounds (with explanation of the
reject decision). Based on their decisions and the SAC recommendations, we made the accept/reject
decisions and sent out acceptance notifications on May 6, 2021. The whole process was explained in a
blog posted to the conference website on May 10, 2021. The camera-ready version of the conditionally
accepted papers were checked by the EAC again. The EAC informed us that all these papers had made
satisfactory revisions and thus we removed the condition on the papers. The whole process was very
complex, and we were grateful for the hard work of the EAC and the authors.

Acceptance to Main Conference: After the review process, out of the 3, 350 full submissions, 710
papers (139 short, 571 long) were accepted into the main conference. With an acceptance rate of 21.2%,
ACL-IJCNLP 2021 continues to be a highly competitive conference. Based on the nominations from
Senior Area Chairs, we selected 28 papers as candidates for the Best Paper awards. We formed a Best
Paper Award Committee, who went over all the candidates and selected one best paper, one best theme
paper and six outstanding papers.

Findings: To continue the success of Findings at EMNLP 2020, we decided to introduce Findings
papers, which are papers that are not accepted for publication in the main conference, but nonetheless
have been assessed by the Program Committee as solid work with sufficient substance, quality and
novelty. Out of the 3, 350 full submissions, 493 papers were invited to be included in the Findings.
Thirty-six papers declined the offer, leading to 457 papers (118 short and 339 long) to be published in the
Findings of ACL: ACL-IJCNLP 2021. To increase the visibility of the Finding papers, the authors of such
papers can choose to make a 3-minute video to be included in the virtual conference site. Our workshop
chairs also helped to pair Findings papers with ACL-IJCNLP 2021 workshops for the possibility of
Finding papers to be presented at those workshops.

TACL and CL papers: Continuing the tradition, ACL-IJCNLP 2021 will also feature 27 papers that
were published at Transactions of the Association for Computational Linguistics (TACL) and 5 papers
from the journal of Computational Linguistics (CL).

Keynote speakers: Another highlight of our program is three exciting keynote talks, given by Prof.
Christopher Potts (Stanford University), Prof. Helen Meng (Chinese University of Hong Kong), and Dr.
Alejandrina Cristia (École Normale Supérieure).
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ACL-IJCNLP 2021 would not be possible without the support from the community. There are many
people we would like to thank for their significant contributions! First, we would like to thank our
Program Committee, whose names are included in the Program Committee pages in the proceedings:

• Our awesome 60 Senior Area Chairs who were instrumental in every aspect of the review process
(e.g., AC/reviewer selection, paper assignment, recommendation for paper acceptance, nomination
of best papers and outstanding reviewers). For many of them, the scope of their responsibilities was
equivalent to chairing a small conference. The 323 Area Chairs who led paper review discussions,
wrote meta-reviews, and mentored junior reviewers. In addition, they have helped SACs with
reviewer selection, paper assignment, and many other tasks.

• Our 3, 685 primary reviewers and 262 secondary reviewers who provided valuable feedback
to the authors. Special thanks to those who stepped in at the last minute to serve as emergency
reviewers.

Second, we would like to thank many ACL-IJCNLP 2021 committees that we have worked with,
including:

• Our Best Paper Selection Committee, Bonnie Webber, Tim Baldwin and Ellen Riloff for selecting
best papers and outstanding papers under a very tight schedule.

• Our Ethics Advisory Committee, chaired by Min-Yen Kan, Malvina Nissim, and Xanda
Schofield, for their hard work to ensure that all the accepted papers have addressed the ethical
issues appropriately.

• Our Reviewer Mentoring Committee, Jing Huang, Antoine Bosselut and Christophe Gravier, for
preparing mentoring materials and providing review support to first-time reviewers.

• Our Publication Co-Chairs, Jing-Shin Chang, Yuki Arase, and Yvette Graham, for their
tremendous effort in making the proceedings.

• Our Social Media Committee, chaired by Luciana Benotti, Lidong Bing, Zhumin Chen, Mark
Seligman, and Rachele Sprugnoli, for effectively communicating conference updates and other
urgent information on social media platforms.

• The Workshop Chairs, Kentaro Inui and Michael Strube, for connecting Findings paper authors
with individual workshops for possible presentations.

• The Website & Conference App Chairs, Chutima Beokhaimook and Witchaworn Mankhong, for
making numerous updates to the conference website.

Third, we would like to thank many people who help us with various software used for the conference:

• Rich Gerber at SoftConf, who is always quick to respond to our emails and resolve difficulties we
encountered with the START system.

• C. M. Downey at the University of Washington, who helped us to extend and run the external paper
assignment system developed by Graham Neubig.

• Caterina Lacerra and Rocco Tripodi at the Sapienza University of Rome, who helped us in the
creation of internal spreadsheets and processing scripts.

• The whole Underline team (Sol Rosenberg, Fun Lee, Jordan Young, Daniel Luise) who created a
virtual site for the conference.
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As Program chairs, we were in charge of several dozen tasks and many of them were new to us. We
would not be able to complete the tasks without the advice from our colleagues, including:

• Our General Chair Chengqing Zong, who has been very supportive throughout the whole process,
giving us the flexibility to innovate while providing an invaluable sounding board.

• The Program Co-Chairs of ACL 2020, Joyce Chai, Natalie Schluter and Joel Tetreault; the
Program Co-Chairs of EMNLP 2020, Trevor Cohn, Yulan He and Yang Liu; the Program
Co-Chairs of NAACL 2021, Anna Rumshisky, Luke Zettlemoyer and Dilek Hakkani-Tur, for
generously sharing their experience, documentation, and advice in organizing ACL conferences
and for answering our questions, often on short notice.

• ACL Executive Committee, especially Rada Mihalcea (the ACL President) and Hinrich Schütze
(the ACL Past President), Shiqi Zhao (Secretary), Priscilla Rasmussen (Business Manager),
Nitin Madnani (Member-at-large), to help us sort through various issues.

• TACL Editors-in-Chief Ani Nenkova and Brian Roark, TACL Editorial Assistant Cindy
Robinson, and CL Editor-in-Chief Hwee Tou Ng for coordinating TACL and CL presentations at
the conference.

We would also like to thank all the authors (8, 757 in total) who submitted their work to the conference.
Although we were only able to accept a small percentage of the submissions, your hard work makes this
conference exciting and our community strong.

Last, but not least, we thank our students, interns, postdocs, colleagues, and families for being so
understanding and supportive when we were swamped by countless conference deadlines and meetings.

Our deepest gratitude is to all of you. We hope you will enjoy the conference.

Fei Xia, University of Washington
Wenjie Li, The Hong Kong Polytechnic University
Roberto Navigli, Sapienza University of Rome

ACL-IJCNLP 2021 Program Committee Co-Chairs
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Sweta Agrawal, Gustavo Aguilar, Roee Aharoni, Wasi Ahmad, Natalie Ahn, Lars Ahrenberg,
Aman Ahuja, Chaitanya Ahuja, Mohammad Ailannejadi, Akiko Aizawa, Reina Akama,
Mohammad Akbari, Alan Akbik, Ahmet Aker, Farhad Akhbardeh, Md. Shad Akhtar, Syed
Sarfaraz Akhtar, Adewale Akinfaderin, Nader Akoury, Arjun Akula, Hend Al-Khalifa, Rami
Al-Rfou, Nora Al-Twairesh, Fahad AlGhamdi, Firoj Alam, Mehwish Alam, Chris Alberti,
Laura Alonso Alemany, Nikolaos Aletras, Jan Alexandersson, Georgios Alexandridis, Mark
Alfano, Raquel G. Alhama, Tariq Alhindi, Hamed Alhoori, Malihe Alikhani, Ilseyar Al-
imova, Afra Alishahi, Tamer Alkhouli, Emily Allaway, Carl Allen, Khalid Alnajjar, Héctor
Martínez Alonso, Miguel A. Alonso, Emily Alsentzer, Milad Alshomary, Christoph Alt,
Malik Altakrori, Sophia Althammer, Tim Althoff, Tanel Alumäe, Sandra Aluísio, Fernando
Alva-Manchego, David Alvarez-Melis, Rami Aly, Marcelo Amancio, Bharat Ram Ambati,
Maxime Amblard, Enrique Amigo, Aida Amini, Massih R Amini, Prithviraj Ammanabrolu,
Waleed Ammar, Aixiu An, Bo An, Guozhen An, Jisun An, Ashish Anand, Sophia Ananiadou,
Raviteja Anantha, Antonios Anastasopoulos, Mark Anderson, Jacob Andreas, Nicholas
Andrews, Anietie Andy, Gabor Angeli, Stefanos Angelidis, Luis Espinosa Anke, Diego
Antognini, Jean-Yves Antoine, Kaveri Anuranjana, Xiang Ao, Marianna Apidianaki, Emilia
Apostolova, Jun Araki, Rahul Aralikatte, Eiji Aramaki, Yuki Arase, Mozhdeh Ariannezhad,
Naveen Arivazhagan, Jacob Arkin, Stéphane Aroca-Ouellette, Kushal Arora, Simran Arora,
Leila Arras, Ekaterina Artemova, Mikel Artetxe, Philip Arthur, Yoav Artzi, Kristjan Arumae,
Ehsaneddin Asgari, Nabiha Asghar, Elliott Ash, Arian Askari, Zhenisbek Assylbekov, Ramón
Fernandez Astudillo, Duygu Ataman, Pepa Atanasova, Awais Athar, Giuseppe Attardi, Is-
abelle Augenstein, Tal August, Eleftherios Avramidis, Ai Ti Aw, Parul Awasthy, Hosein
Azarbonyad, Erfan Sadeqi Azer, Wilker Aziz,

Nastaran Babanejad, Rohit Babbar, Bogdan Babych, Nguyen Bach, Ebrahim Bagheri, Parnia
Bahar, Ashutosh Baheti, Fan Bai, He Bai, Yu Bai, Yushi Bai, JinYeong Bak, Collin Baker,
Vidhisha Balachandran, Alexandra Balahur, Mithun Balakrishna, Anusha Balakrishnan, Oana
Balalau, Niranjan Balasubramanian, Ivana Balažević, Ioana Baldini, Timothy Baldwin, Ka-
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Vladislav Maraev, Ana Marasović, Piotr Mardziel, Katerina Margatina, Alda Mari, Benjamin
Marie, Alex Marin, Vukosi Marivate, David Martinez, Giovanni Da San Martino, Bruno
Martins, Pedro Henrique Martins, Eugenio Martínez-Cámara, Marco Maru, Sameen Maruf,
Fiammetta Marulli, Claudia Marzi, Aleksandre Maskharashvili, Maraim Masoud, Matthew
Matero, Lambert Mathias, Sandeep Mathias, Nitika Mathur, Prashant Mathur, David Martins
de Matos, Sérgio Matos, Yuji Matsumoto, Takuya Matsuzaki, Yevgen Matusevych, Evgeny
Matusov, Rowan Hall Maudslay, Mausam, Jonathan May, Stephen Mayhew, Joshua Maynez,
Karen Mazidi, Sahisnu Mazumder, Alessandro Mazzei, Diana McCarthy, David McClosky,
John P. McCrae, Kate McCurdy, Matthew McDermott, David McDonald, Clifton McFate,
Jered McInerney, Bridget McInnes, Kathleen McKeown, Michael McTear, Sara Meftah,
Yashar Mehdad, Alexander Mehler, Shikib Mehri, Nikhil Mehta, Sachin Mehta, Sneha Mehta,
Clara Meister, Dheeraj Mekala, Gerard de Melo, Julia Mendelsohn, Arul Menezes, Telmo
Menezes, Fandong Meng, Rui Meng, Tao Meng, Yu Meng, Zhao Meng, Xue Mengge,
Rakesh Radhakrishnan Menon, Amil Merchant, Danny Merkx, Paola Merlo, William Merrill,
Mohsen Mesgar, Angeliki Metallinou, Florian Metze, Donald Metzler, Marie-Jean Meurs,
Lars Meyer, Adam Meyers, Haitao Mi, Yishu Miao, Yisong Miao, Julian Michael, Lesly
Miculicich, Sabrina Mielke, Margot Mieskes, Rada Mihalcea, Todor Mihaylov, Tsvetomila
Mihaylova, Nandana Mihindukulasooriya, Claudiu Mihăilă, Martina Miliani, Evangelos
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Wei-Yun Ma, Adyasha Maharana, Alexander Mehler, Sabrina J. Mielke, Evangelios Milios,
Sewon Min, Jeff Mitchell,

Matan Orbach, Jessica Ouyang,

Aishwarya Padmakumar, Bhargavi Paranjape, Letitia Parcalabescu, Carla Parra Escartín,
Viviana Patti, Karl Pichotta, Tiago Pimentel, Lahari Poddar, Rajkumar Pujar,

Xiaojun Quan,

xxx



Shuhuai Ren, Philip Resnik, Gil Rocha,

Sylvie Saget, Victor Sanh, Timo Schick, Tyler Schnoebelen, Roy Schwartz, Abigail See, Rico
Sennrich, Peter Shaw, Qinlan Shen, Tianze Shi, Valentina Sintsova, Wei Song, Youngseo
Song, Andreas Spitz, Yoshihiko Suhara, Alane Suhr,

Ronen Tamari, Yuanhe Tian,

Rob van der Goot, Emiel van Miltenberg, Rik van Noord, Lucy Vanderwende, David Vilares,

Alex Wang, Zijian Wang, Zhen Wang, Alex Warstadt, Gail Weiss, Alina Wróblewska,
Jorn Wuebker,

Jiacheng Xu,

Michael Yoder, Naoki Yoshinaga, Steve Young, Dian Yu,

Wei Zhang, Zeyu Zhang, Dong Zhou, Ran Zmigrod, Markus Zopf.

Ethics Advisory Committee Reviewers:

Jade Abbott, Adewale Akinfaderin, Nora Al-Twairesh, Laura Alonso Alemany, David
Alvarez-Melis, Maxime Amblard, Jean-Yves Antoine,

Timothy Baldwin, Kathy Baxter, Steven Bedrick, Luciana Benotti, Steven Bird, Claudia Borg,
Jamie Brandon,

Kai-Wei Chang, Luis Chiruzzo, Marta R. Costa-jussà,

Guy Emerson,

Albert Gatt, Vasundhara Gautam, Dimitra Gkatzia, Sharon Goldwater, Alvin Grissom II,

Jack Hessel,

Shafiq Joty,

Anne Lauscher, Haley Lepp,

Nitin Madnani, Emiel van Miltenburg,

Aurélie Névéol, Nguyen Thi Minh Huyen,

José Ochoa-Luna,

Viviana Patti, Ted Pedersen,

Gabriela Ramírez-de-la-Rosa, Marta Recasens,

Tatjana Scheffler, Kathleen Siminyu,

xxxi



Samson Tan, Rachael Tatman, Esaú Villatoro Tello.

Aline Villavicencio,

Kellie Webster, Richard Wicentowski,

Jingbo Xia.

xxxii



Keynote Talk: Advancing Technological Equity in Speech and
Language Processing

Helen Meng
The Chinese University of Hong Kong (CUHK)

Abstract: Accelerating advances in AI and deep neural networks have powered the proliferation of
speech and language technologies in applications such as virtual assistants, smart speakers, reading
machines, etc. The technologies have performed impressively well, achieving human parity in speech
recognition accuracies and speech synthesis naturalness. As these technologies continue to permeate
our daily lives, they need to support diverse users and usage contexts with inputs that deviate from the
mainstream. Examples include non-native speakers, code-switching, speech carrying myriad emotions
and styles, and speakers with impairments and disorders. Under such contexts, existing technologies
often suffer performance degradations and fail to fulfill the needs of the users. The crux of the problem
lies in data scarcity and data sparsity, which are exacerbated by high data variability.

This talk presents an overview of some of the approaches we have used to address the challenges of data
shortage, positioned at various stages along the processing pipeline. They include: data augmentation
based on speech signal perturbations, use of pre-trained representations, learning speech representation
disentanglement, knowledge distillation architectures, meta-learned model re-initialization, as well as
adversarially trained models. The effectiveness of these approaches are demonstrated through a variety
of applications, including accented speech recognition, dysarthric speech recognition, code-switched
speech synthesis, disordered speech reconstruction, one-shot voice conversion and exemplar-based
emotive speech synthesis. These efforts strive to develop speech and language technologies that can
gracefully adapt and accommodate a diversity of user needs and usage contexts, in order to achieve
technological equity in our society.

Bio: Helen Meng is Patrick Huen Wing Ming Professor of Systems Engineering and Engineering
Management at The Chinese University of Hong Kong (CUHK). Her research interests include
speech and language technologies to support multilingual and multimodal human-computer interactions,
eLearning and assistive technologies, as well as big data decision analytics using AI. She leads the
interdisciplinary research team that received the first Theme-based Research Scheme Project in Artificial
Intelligence in 2019 from the Hong Kong SAR Government’s Research Grants Council. She is Chair of
the Curriculum Development in the CUHK-JC AI4Future Project, which has developed the courseware
for pre-tertiary AI education being taught in a growing number of participating secondary schools across
Hong Kong.

Helen received all her degrees from MIT. She is the Founding Director of the CUHK Ministry of
Education (MoE)-Microsoft Key Laboratory for Human-Centric Computing and Interface Technologies
(since 2005), Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems
(since 2006), and Stanley Ho Big Data Decision Analytics Research Center (since 2013). Previously, she
has served as CUHK Faculty of Engineering’s Associate Dean (Research), Chairman of the Department
of Systems Engineering and Engineering Management, Editor-in-Chief of the IEEE Transactions on
Audio, Speech and Language Processing, Member of the IEEE Signal Processing Society Board of
Governors, ISCA Board Member and presently member of the IEEE SPS Awards Board and ISCA
International Advisory Council. She was elected APSIPA’s inaugural Distinguished Lecturer 2012-
2013 and ISCA Distinguished Lecturer 2015-2016. Her awards include the Ministry of Education
Higher Education Outstanding Scientific Research Output Award 2009, Microsoft Research Outstanding
Collaborator Award 2016 (1 in 32 worldwide), IBM Faculty Award 2016, HKPWE Outstanding Women
Professionals and Entrepreneurs Award 2017 (1 in 20 since 1999), Hong Kong ICT Silver Award 2018
in Smart Inclusion, 2019 IEEE SPS Leo L. Beranek Meritorious Service Award and various best paper
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awards. Helen has served in a number of government appointments, which include memberships in the
Steering Committee of Hong Kong’s Electronic Health Record Sharing, Social Welfare Department’s
Joint Committee on Information Technology for the Social Welfare Sector and Advisory Committee on
financing social welfare services. She is also a member of the AI4SDGs AI for Children Working Group.
Helen is a Fellow of IEEE, ISCA, HKIE and HKCS.
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Keynote Talk: Learning and Processing Language from Wearables:
Opportunities and Challenges

Alejandrina Cristia
Laboratoire de Sciences Cognitives et de Psycholinguistique,

Département d’études cognitives, ENS, EHESS, CNRS, PSL University

Abstract: Recent years have seen tremendous improvement in the ease with which we can collect
naturalistic language samples via devices worn over long periods of time. These allow unprecedented
access to ego-centered experiences in language perceived and produced, including by young children.
For example, in a newly-formed consortium, we pulled together over 40k hours of audio, collected from
1, 001 children growing up in industrialized or hunter-horticulturalist populations, located in one of 12
countries. Such data are interesting for many purposes, including as 1. fodder for unsupervised language
learning models aimed at mimicking what the child does; 2. indices of early language development
that can be used to assess the impact of behavioral and pharmacological interventions; and 3. samples
of the natural use of language(s) in low-resource and multilingual settings. The technology allowing to
carve out interesting information from these large datasets, however, is lagging behind – but this may
not be such a bad thing after all, since the ethical, technical, and legal handling of such data also need
some work to increase the chances that the net impact of research based on this technique is positive.
In this talk, I draw from cutting-edge research building on long-form recordings from wearables and a
framework for doing the most good we can (effective altruism) to highlight surprising findings in early
language acquisition, and delineate key priorities for future work.

Bio: Alejandrina Cristia is a senior researcher at the Centre National de la Recherche Scientifique
(CNRS), leader of the Language Acquisition Across Cultures team, and director of the Laboratoire
de Sciences Cognitives et Psycholinguistique (LSCP) cohosted by the Ecole Normale Supérieure,
EHESS, and PSL. In 2021, she is an invited researcher in the Foundations of Learning Program
of the Abdul Latif Jameel Poverty Action Lab (J-PAL), and a guest researcher at the Max Planck
Institute for Evolutionary Anthropology. Her long-term aim is to answer the following questions:
What are the linguistic representations that infants and adults have? Why and how are they formed?
How may learnability biases shape the world’s languages? To answer these questions, she combines
multiple methodologies including spoken corpora analyses, behavioral studies, neuroimaging (NIRS),
and computational modeling. This interdisciplinary approach has resulted in over 100 publications in
pscyhology, linguistics, and development journals as well as IEEE and similar conferences. With an
interest in cumulative, collaborative, and transparent science, she contributed to the creation of the
first meta-meta-analysis platform (metalab.stanford.edu) and several international networks, including
saliently the LangVIEW consortium that is leading /L+/, the First truly global summer/winter school
on language acquisition.1 She received the 2017 John S. McDonnell Scholar Award in Understanding
Human Cognition, the 2020 Médaille de Bronze CNRS Section Linguistique, and an ERC Consolidator
Award (2021-2026) for the ExELang2 project.

1https://www.dpss.unipd.it/summer-school-2021/home
2exelang.fr
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Keynote Talk: Reliable Characterizations of NLP Systems
as a Social Responsibility

Christopher Potts
Stanford University

Abstract: This is an incredible moment for NLP. We all routinely work with models whose capabilities
would have seemed like science fiction just two decades ago, powerful organizations eagerly await our
latest results, and NLP technologies are playing an increasingly large role in shaping our society. As
a result, all of us in the NLP community are likely to participate in research that will contribute (to
varying degrees and perhaps only indirectly) to technologies that will impact many people’s lives, with
both positive and negative consequences – for example, technologies that broaden accessibility, enhance
creative self-expression, heighten surveillance, and create propaganda. What can we do to fulfill the
social responsibility that this brings? As a (very) partial answer to this question, I will review a number
of important recent developments, spanning many research groups, concerning dataset creation, model
introspection, and system assessment. Taken together, these ideas can help us more reliably characterize
how NLP systems will behave, and more reliably communicate this information to a wider range of
potential users. In this way, they can help us meet our obligations to the people whose lives are impacted
by the results of our research.

Bio: Christopher Potts is Professor and Chair of Linguistics and Professor (by courtesy) of Computer
Science at Stanford, and a faculty member in the Stanford NLP Group and the Stanford AI Lab. His
group uses computational methods to explore how emotion is expressed in language and how linguistic
production and interpretation are influenced by the context of utterance. This research combines methods
from linguistics, cognitive psychology, and computer science, in the service of both scientific discovery
and technology development. He was previously Chief Scientist at Roam Analytics, a start-up focused
on applying NLP in healthcare and the life sciences (now Parexel AI Labs). He is a long-time Action
Editor at TACL, a frequent Area Chair at ACL conferences, and currently an Ethics Committee co-chair
for EMNLP 2021.
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11:40–11:50 Improving the Faithfulness of Attention-based Explanations with Task-specific In-
formation for Text Classification
George Chrysostomou and Nikolaos Aletras

11:50–11:57 Attention Flows are Shapley Value Explanations
Kawin Ethayarajh and Dan Jurafsky

Session 2D: Language Grounding to Vision, Robotics and Beyond 1

11:00–11:10 Generating Landmark Navigation Instructions from Maps as a Graph-to-Text Prob-
lem
Raphael Schumann and Stefan Riezler

11:10–11:20 E2E-VLP: End-to-End Vision-Language Pre-training Enhanced by Visual Learning
Haiyang Xu, Ming Yan, Chenliang Li, Bin Bi, Songfang Huang, Wenming Xiao
and Fei Huang

11:20–11:30 Learning Relation Alignment for Calibrated Cross-modal Retrieval
Shuhuai Ren, Junyang Lin, Guangxiang Zhao, Rui Men, An Yang, Jingren Zhou,
Xu Sun and Hongxia Yang

11:30–11:40 KM-BART: Knowledge Enhanced Multimodal BART for Visual Commonsense Gen-
eration
Yiran Xing, Zai Shi, Zhao Meng, Gerhard Lakemeyer, Yunpu Ma and Roger Wat-
tenhofer

lii
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11:40–11:47 Video Paragraph Captioning as a Text Summarization Task
Hui Liu and Xiaojun Wan

11:47–11:54 Are VQA Systems RAD? Measuring Robustness to Augmented Data with Focused
Interventions
Daniel Rosenberg, Itai Gat, Amir Feder and Roi Reichart

Session 2E: Machine Learning for NLP 1

11:00–11:10 Cascaded Head-colliding Attention
Lin Zheng, Zhiyong Wu and Lingpeng Kong

11:10–11:20 Structural Knowledge Distillation: Tractably Distilling Information for Structured
Predictor
Xinyu Wang, Yong Jiang, Zhaohui Yan, Zixia Jia, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang and Kewei Tu

11:20–11:30 Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernet-
works
Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani and James Hender-
son

11:30–11:40 COSY: COunterfactual SYntax for Cross-Lingual Understanding
SICHENG YU, Hao Zhang, Yulei Niu, Qianru Sun and Jing Jiang

11:40–11:50 OoMMix: Out-of-manifold Regularization in Contextual Embedding Space for Text
Classification
Seonghyeon Lee, Dongha Lee and Hwanjo Yu

11:50–11:57 How Helpful is Inverse Reinforcement Learning for Table-to-Text Generation?
Sayan Ghosh, Zheng Qi, Snigdha Chaturvedi and Shashank Srivastava

liii
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Session 3A: Computational Social Science and Cultural Analytics 2

14:00–14:10 Understanding and Countering Stereotypes: A Computational Approach to the
Stereotype Content Model
Kathleen C. Fraser, Isar Nejadgholi and Svetlana Kiritchenko

14:10–14:20 Structurizing Misinformation Stories via Rationalizing Fact-Checks
Shan Jiang and Christo Wilson

14:20–14:30 Modeling Language Usage and Listener Engagement in Podcasts
Sravana Reddy, Mariya Lazarova, Yongze Yu and Rosie Jones

14:30–14:40 Breaking Down the Invisible Wall of Informal Fallacies in Online Discussions
Saumya Sahai, Oana Balalau and Roxana Horincar

14:40–14:50 SocAoG: Incremental Graph Parsing for Social Relation Inference in Dialogues
Liang Qiu, Yuan Liang, Yizhou Zhao, Pan Lu, Baolin Peng, Zhou Yu, Ying Nian
Wu and Song-Chun Zhu

14:50–14:57 Automatic Fake News Detection: Are Models Learning to Reason?
Casper Hansen, Christian Hansen and Lucas Chaves Lima

Session 3B: Dialog and Interactive Systems 2

14:00–14:10 TicketTalk: Toward human-level performance with end-to-end, transaction-based
dialog systems
Bill Byrne, Karthik Krishnamoorthi, Saravanan Ganesh and Mihir Kale

14:10–14:20 Improving Dialog Systems for Negotiation with Personality Modeling
Runzhe Yang, Jingxiao Chen and Karthik Narasimhan

14:20–14:30 Learning from Perturbations: Diverse and Informative Dialogue Generation with
Inverse Adversarial Training
Wangchunshu Zhou, Qifei LI and Chenle Li

14:30–14:40 Increasing Faithfulness in Knowledge-Grounded Dialogue with Controllable Fea-
tures
Hannah Rashkin, David Reitter, Gaurav Singh Tomar and Dipanjan Das

liv
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14:40–14:47 Saying No is An Art: Contextualized Fallback Responses for Unanswerable Dia-
logue Queries
Ashish Shrivastava, Kaustubh Dhole, Abhinav Bhatt and Sharvani Raghunath

14:47–14:54 N-Best ASR Transformer: Enhancing SLU Performance using Multiple ASR Hy-
potheses
Karthik Ganesan, Pakhi Bamdev, Jaivarsan B, Amresh Venugopal and Abhinav
Tushar

Session 3C: Information Extraction 2

14:00–14:10 CitationIE: Leveraging the Citation Graph for Scientific Information Extraction
Vijay Viswanathan, Graham Neubig and Pengfei Liu

14:10–14:20 From Discourse to Narrative: Knowledge Projection for Event Relation Extraction
Jialong Tang, Hongyu Lin, Meng Liao, Yaojie Lu, Xianpei Han, Le Sun, Weijian
Xie and Jin Xu

14:20–14:30 AdvPicker: Effectively Leveraging Unlabeled Data via Adversarial Discriminator
for Cross-Lingual NER
Weile Chen, Huiqiang Jiang, Qianhui Wu, Börje Karlsson and Yi Guan

14:30–14:40 Compare to The Knowledge: Graph Neural Fake News Detection with External
Knowledge
Linmei Hu, Tianchi Yang, Luhao Zhang, Wanjun Zhong, Duyu Tang, Chuan Shi,
Nan Duan and Ming Zhou

14:40–14:50 Discontinuous Named Entity Recognition as Maximal Clique Discovery
Yucheng Wang, Bowen Yu, Hongsong Zhu, Tingwen Liu, Nan Yu and Limin Sun

14:50–15:00 LNN-EL: A Neuro-Symbolic Approach to Short-text Entity Linking
Hang Jiang, Sairam Gurajada, Qiuhao Lu, Sumit Neelam, Lucian Popa, Prithviraj
Sen, Yunyao Li and Alexander Gray

lv



Monday, August 2, 2021 (all times UTC+0) (continued)

Session 3D: Machine Translation and Multilinguality 2

14:00–14:10 Do Context-Aware Translation Models Pay the Right Attention?
Kayo Yin, Patrick Fernandes, Danish Pruthi, Aditi Chaudhary, André F. T. Martins
and Graham Neubig

14:10–14:20 Adapting High-resource NMT Models to Translate Low-resource Related Lan-
guages without Parallel Data
Wei-Jen Ko, Ahmed El-Kishky, Adithya Renduchintala, Vishrav Chaudhary, Na-
man Goyal, Francisco Guzmán, Pascale Fung, Philipp Koehn and Mona Diab

14:20–14:30 Bilingual Lexicon Induction via Unsupervised Bitext Construction and Word Align-
ment
Haoyue Shi, Luke Zettlemoyer and Sida I. Wang

14:30–14:40 Multilingual Speech Translation from Efficient Finetuning of Pretrained Models
Xian Li, Changhan Wang, Yun Tang, Chau Tran, Yuqing Tang, Juan Pino, Alexei
Baevski, Alexis Conneau and Michael Auli

14:40–14:47 Gender bias amplification during Speed-Quality optimization in Neural Machine
Translation
Adithya Renduchintala, Denise Diaz, Kenneth Heafield, Xian Li and Mona Diab

14:47–14:54 Machine Translation into Low-resource Language Varieties
Sachin Kumar, Antonios Anastasopoulos, Shuly Wintner and Yulia Tsvetkov

Session 3E: Interpretability and Analysis of Models for NLP 2

14:00–14:10 Learning Faithful Representations of Causal Graphs
Ananth Balashankar and Lakshminarayanan Subramanian

14:10–14:20 What Context Features Can Transformer Language Models Use?
Joe O’Connor and Jacob Andreas

14:20–14:30 Integrated Directional Gradients: Feature Interaction Attribution for Neural NLP
Models
Sandipan Sikdar, Parantapa Bhattacharya and Kieran Heese

14:30–14:37 Is Sparse Attention more Interpretable?
Clara Meister, Stefan Lazov, Isabelle Augenstein and Ryan Cotterell

lvi
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14:37–14:44 The Case for Translation-Invariant Self-Attention in Transformer-Based Language
Models
Ulme Wennberg and Gustav Eje Henter

14:44–14:51 Relative Importance in Sentence Processing
Nora Hollenstein and Lisa Beinborn

Poster 1A: Semantics: Sentence-level Semantics, Textual Inference and Other
areas

15:00–17:00 DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations
John Giorgi, Osvald Nitski, Bo Wang and Gary Bader

15:00–17:00 Doing Good or Doing Right? Exploring the Weakness of Commonsense Causal
Reasoning Models
Mingyue Han and Yinglin Wang

15:00–17:00 XLPT-AMR: Cross-Lingual Pre-Training via Multi-Task Learning for Zero-Shot
AMR Parsing and Text Generation
Dongqin Xu, Junhui Li, Muhua Zhu, Min Zhang and Guodong Zhou

15:00–17:00 Span-based Semantic Parsing for Compositional Generalization
Jonathan Herzig and Jonathan Berant

15:00–17:00 AND does not mean OR: Using Formal Languages to Study Language Models’ Rep-
resentations
Aaron Traylor, Roman Feiman and Ellie Pavlick

15:00–17:00 Enforcing Consistency in Weakly Supervised Semantic Parsing
Nitish Gupta, Sameer Singh and Matt Gardner

15:00–17:00 Compositional Generalization and Natural Language Variation: Can a Semantic
Parsing Approach Handle Both?
Peter Shaw, Ming-Wei Chang, Panupong Pasupat and Kristina Toutanova

lvii
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Poster 1B: Linguistic Theories, Cognitive Modeling and Psycholinguistics

15:00–17:00 A Targeted Assessment of Incremental Processing in Neural Language Models and
Humans
Ethan Wilcox, Pranali Vani and Roger Levy

Poster 1C: Semantics: Lexical Semantics

15:00–17:00 The Possible, the Plausible, and the Desirable: Event-Based Modality Detection for
Language Processing
Valentina Pyatkin, Shoval Sadde, Aynat Rubinstein, Paul Portner and Reut Tsarfaty

Poster 1D: Phonology, Morphology and Word Segmentation

15:00–17:00 To POS Tag or Not to POS Tag: The Impact of POS Tags on Morphological Learn-
ing in Low-Resource Settings
Sarah Moeller, Ling Liu and Mans Hulden

Poster 1E: Speech and Multimodality

15:00–17:00 Prosodic segmentation for parsing spoken dialogue
Elizabeth Nielsen, Mark Steedman and Sharon Goldwater

15:00–17:00 VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learn-
ing, Semi-Supervised Learning and Interpretation
Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel
Haziza, Mary Williamson, Juan Pino and Emmanuel Dupoux

15:00–17:00 An Improved Model for Voicing Silent Speech
David Gaddy and Dan Klein

lviii
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Poster 1F: Ethics in NLP

15:00–17:00 What’s in the Box? An Analysis of Undesirable Content in the Common Crawl
Corpus
Alexandra Luccioni and Joseph Viviano

15:00–17:00 Stereotyping Norwegian Salmon: An Inventory of Pitfalls in Fairness Benchmark
Datasets
Su Lin Blodgett, Gilsinia Lopez, Alexandra Olteanu, Robert Sim and Hanna Wal-
lach

Poster 1G: Information Retrieval and Text Mining

15:00–17:00 Robust Knowledge Graph Completion with Stacked Convolutions and a Student Re-
Ranking Network
Justin Lovelace, Denis Newman-Griffis, Shikhar Vashishth, Jill Fain Lehman and
Carolyn Rosé

15:00–17:00 A DQN-based Approach to Finding Precise Evidences for Fact Verification
Hai Wan, Haicheng Chen, Jianfeng Du, Weilin Luo and Rongzhen Ye

Poster 1H: Machine Learning for NLP

15:00–17:00 The Art of Abstention: Selective Prediction and Error Regularization for Natural
Language Processing
Ji Xin, Raphael Tang, Yaoliang Yu and Jimmy Lin

15:00–17:00 Unsupervised Out-of-Domain Detection via Pre-trained Transformers
Keyang Xu, Tongzheng Ren, Shikun Zhang, Yihao Feng and Caiming Xiong

15:00–17:00 Continual Quality Estimation with Online Bayesian Meta-Learning
Abiola Obamuyide, Marina Fomicheva and Lucia Specia

15:00–17:00 MATE-KD: Masked Adversarial TExt, a Companion to Knowledge Distillation
Ahmad Rashid, Vasileios Lioutas and Mehdi Rezagholizadeh

15:00–17:00 Selecting Informative Contexts Improves Language Model Fine-tuning
Richard Antonello, Nicole Beckage, Javier Turek and Alexander Huth

lix
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15:00–17:00 Explainable Prediction of Text Complexity: The Missing Preliminaries for Text Sim-
plification
Cristina Garbacea, Mengtian Guo, Samuel Carton and Qiaozhu Mei

15:00–17:00 Multi-Task Retrieval for Knowledge-Intensive Tasks
Jean Maillard, Vladimir Karpukhin, Fabio Petroni, Wen-tau Yih, Barlas Oguz,
Veselin Stoyanov and Gargi Ghosh

Poster 1I: Interpretability and Analysis of Models for NLP

15:00–17:00 When Do You Need Billions of Words of Pretraining Data?
Yian Zhang, Alex Warstadt, Xiaocheng Li and Samuel R. Bowman

15:00–17:00 Analyzing the Source and Target Contributions to Predictions in Neural Machine
Translation
Elena Voita, Rico Sennrich and Ivan Titov

15:00–17:00 Comparing Test Sets with Item Response Theory
Clara Vania, Phu Mon Htut, William Huang, Dhara Mungra, Richard Yuanzhe Pang,
Jason Phang, Haokun Liu, Kyunghyun Cho and Samuel R. Bowman

15:00–17:00 Uncovering Constraint-Based Behavior in Neural Models via Targeted Fine-Tuning
Forrest Davis and Marten van Schijndel

15:00–17:00 More Identifiable yet Equally Performant Transformers for Text Classification
Rishabh Bhardwaj, Navonil Majumder, Soujanya Poria and Eduard Hovy

lx
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Poster 1J: Dialog and Interactive Systems

15:00–17:00 AugNLG: Few-shot Natural Language Generation using Self-trained Data Augmen-
tation
Xinnuo Xu, Guoyin Wang, Young-Bum Kim and Sungjin Lee

15:00–17:00 A Span-based Dynamic Local Attention Model for Sequential Sentence Classifica-
tion
Xichen Shang, Qianli Ma, Zhenxi Lin, Jiangyue Yan and Zipeng Chen

Poster 1K: Resources and Evaluation

15:00–17:00 How effective is BERT without word ordering? Implications for language under-
standing and data privacy
Jack Hessel and Alexandra Schofield

15:00–17:00 Can vectors read minds better than experts? Comparing data augmentation strate-
gies for the automated scoring of children’s mindreading ability
Venelin Kovatchev, Phillip Smith, Mark Lee and Rory Devine

15:00–17:00 A Dataset and Baselines for Multilingual Reply Suggestion
Mozhi Zhang, Wei Wang, Budhaditya Deb, Guoqing Zheng, Milad Shokouhi and
Ahmed Hassan Awadallah

15:00–17:00 WikiSum: Coherent Summarization Dataset for Efficient Human-Evaluation
Nachshon Cohen, Oren Kalinsky, Yftah Ziser and Alessandro Moschitti

15:00–17:00 What Ingredients Make for an Effective Crowdsourcing Protocol for Difficult NLU
Data Collection Tasks?
Nikita Nangia, Saku Sugawara, Harsh Trivedi, Alex Warstadt, Clara Vania and
Samuel R. Bowman

15:00–17:00 UMIC: An Unreferenced Metric for Image Captioning via Contrastive Learning
Hwanhee Lee, Seunghyun Yoon, Franck Dernoncourt, Trung Bui and Kyomin Jung

15:00–17:00 Neural OCR Post-Hoc Correction of Historical Corpora
Lijun Lyu, Maria Koutraki, Martin Krikl and Besnik Fetahu

lxi
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Poster 1L: Computational Social Science and Cultural Analytics

15:00–17:00 Align Voting Behavior with Public Statements for Legislator Representation Learn-
ing
Xinyi Mou, Zhongyu Wei, Lei Chen, Shangyi Ning, Yancheng He, Changjian Jiang
and Xuanjing Huang

15:00–17:00 Measure and Evaluation of Semantic Divergence across Two Languages
Syrielle Montariol and Alexandre Allauzen

Poster 1M: Machine Translation and Multilinguality

15:00–17:00 Improving Zero-Shot Translation by Disentangling Positional Information
Danni Liu, Jan Niehues, James Cross, Francisco Guzmán and Xian Li

15:00–17:00 Common Sense Beyond English: Evaluating and Improving Multilingual Language
Models for Commonsense Reasoning
Bill Yuchen Lin, Seyeon Lee, Xiaoyang Qiao and Xiang Ren

15:00–17:00 Attention Calibration for Transformer in Neural Machine Translation
Yu Lu, Jiali Zeng, Jiajun Zhang, Shuangzhi Wu and Mu Li

15:00–17:00 Anchor-based Bilingual Word Embeddings for Low-Resource Languages
Tobias Eder, Viktor Hangya and Alexander Fraser

15:00–17:00 Diverse Pretrained Context Encodings Improve Document Translation
Domenic Donato, Lei Yu and Chris Dyer

15:00–17:00 Multilingual Agreement for Multilingual Neural Machine Translation
Jian Yang, Yuwei Yin, Shuming Ma, Haoyang Huang, Dongdong Zhang, Zhoujun
Li and Furu Wei

15:00–17:00 Exploiting Language Relatedness for Low Web-Resource Language Model Adapta-
tion: An Indic Languages Study
Yash Khemchandani, Sarvesh Mehtani, Vaidehi Patil, Abhijeet Awasthi, Partha
Talukdar and Sunita Sarawagi

lxii
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Poster 1N: Syntax: Tagging, Chunking, and Parsing

15:00–17:00 On Finding the K-best Non-projective Dependency Trees
Ran Zmigrod, Tim Vieira and Ryan Cotterell

15:00–17:00 Higher-order Derivatives of Weighted Finite-state Machines
Ran Zmigrod, Tim Vieira and Ryan Cotterell

Poster 1O: Theme

15:00–17:00 Towards Argument Mining for Social Good: A Survey
Eva Maria Vecchi, Neele Falk, Iman Jundi and Gabriella Lapesa

15:00–17:00 Automated Generation of Storytelling Vocabulary from Photographs for use in AAC
Mauricio Fontana de Vargas and Karyn Moffatt

Poster 1P: NLP Applications

15:00–17:00 CLIP: A Dataset for Extracting Action Items for Physicians from Hospital Dis-
charge Notes
James Mullenbach, Yada Pruksachatkun, Sean Adler, Jennifer Seale, Jordan Swartz,
Greg McKelvey, Hui Dai, Yi Yang and David Sontag

15:00–17:00 Assessing Emoji Use in Modern Text Processing Tools
Abu Awal Md Shoeb and Gerard de Melo

15:00–17:00 Select, Extract and Generate: Neural Keyphrase Generation with Layer-wise Cov-
erage Attention
Wasi Ahmad, Xiao Bai, Soomin Lee and Kai-Wei Chang

lxiii
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Poster 1Q: Language Generation

15:00–17:00 Factorising Meaning and Form for Intent-Preserving Paraphrasing
Tom Hosking and Mirella Lapata

15:00–17:00 AggGen: Ordering and Aggregating while Generating
Xinnuo Xu, Ondřej Dušek, Verena Rieser and Ioannis Konstas

15:00–17:00 Reflective Decoding: Beyond Unidirectional Generation with Off-the-Shelf Lan-
guage Models
Peter West, Ximing Lu, Ari Holtzman, Chandra Bhagavatula, Jena D. Hwang and
Yejin Choi

15:00–17:00 Towards Table-to-Text Generation with Numerical Reasoning
Lya Hulliyyatus Suadaa, Hidetaka Kamigaito, Kotaro Funakoshi, Manabu Okumura
and Hiroya Takamura

15:00–17:00 Data-to-text Generation with Macro Planning
Ratish Puduppully and Mirella Lapata

Poster 1R: Summarization

15:00–17:00 BACO: A Background Knowledge- and Content-Based Framework for Citing Sen-
tence Generation
Yubin Ge, Ly Dinh, Xiaofeng Liu, Jinsong Su, Ziyao Lu, Ante Wang and Jana
Diesner

15:00–17:00 Language Model as an Annotator: Exploring DialoGPT for Dialogue Summariza-
tion
Xiachong Feng, Xiaocheng Feng, Libo Qin, Bing Qin and Ting Liu

15:00–17:00 Reinforcement Learning for Abstractive Question Summarization with Question-
aware Semantic Rewards
Shweta Yadav, Deepak Gupta, Asma Ben Abacha and Dina Demner-Fushman

lxiv
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Poster 1S: Question Answering

15:00–17:00 Challenges in Information-Seeking QA: Unanswerable Questions and Paragraph
Retrieval
Akari Asai and Eunsol Choi

15:00–17:00 A Semantics-aware Transformer Model of Relation Linking for Knowledge Base
Question Answering
Tahira Naseem, Srinivas Ravishankar, Nandana Mihindukulasooriya, Ibrahim Ab-
delaziz, Young-Suk Lee, Pavan Kapanipathi, Salim Roukos, Alfio Gliozzo and
Alexander Gray

15:00–17:00 A Gradually Soft Multi-Task and Data-Augmented Approach to Medical Question
Understanding
Khalil Mrini, Franck Dernoncourt, Seunghyun Yoon, Trung Bui, Walter Chang,
Emilia Farcas and Ndapa Nakashole

15:00–17:00 Neural Retrieval for Question Answering with Cross-Attention Supervised Data
Augmentation
Yinfei Yang, Ning Jin, Kuo Lin, Mandy Guo and Daniel Cer

Poster 1T: Language Grounding to Vision, Robotics and Beyond

15:00–17:00 Enhancing Descriptive Image Captioning with Natural Language Inference
Zhan Shi, Hui Liu and Xiaodan Zhu

Poster 1U: Information Extraction

15:00–17:00 Leveraging Type Descriptions for Zero-shot Named Entity Recognition and Classi-
fication
Rami Aly, Andreas Vlachos and Ryan McDonald

15:00–17:00 MECT: Multi-Metadata Embedding based Cross-Transformer for Chinese Named
Entity Recognition
Shuang Wu, Xiaoning Song and Zhenhua Feng

15:00–17:00 MOLEMAN: Mention-Only Linking of Entities with a Mention Annotation Network
Nicholas FitzGerald, Dan Bikel, Jan Botha, Daniel Gillick, Tom Kwiatkowski and
Andrew McCallum

15:00–17:00 Factuality Assessment as Modal Dependency Parsing
Jiarui Yao, Haoling Qiu, Jin Zhao, Bonan Min and Nianwen Xue

lxv
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Poster 1V: Sentiment Analysis, Stylistic Analysis, and Argument Mining

15:00–17:00 Directed Acyclic Graph Network for Conversational Emotion Recognition
Weizhou Shen, Siyue Wu, Yunyi Yang and Xiaojun Quan

15:00–17:00 Improving Formality Style Transfer with Context-Aware Rule Injection
Zonghai Yao and hong yu

15:00–17:00 Topic-Driven and Knowledge-Aware Transformer for Dialogue Emotion Detection
Lixing Zhu, Gabriele Pergola, Lin Gui, Deyu Zhou and Yulan He

15:00–17:00 Syntopical Graphs for Computational Argumentation Tasks
Joe Barrow, Rajiv Jain, Nedim Lipka, Franck Dernoncourt, Vlad Morariu, Varun
Manjunatha, Douglas Oard, Philip Resnik and Henning Wachsmuth

15:00–17:00 Stance Detection in COVID-19 Tweets
Kyle Glandt, Sarthak Khanal, Yingjie Li, Doina Caragea and Cornelia Caragea

15:00–17:00 eMLM: A New Pre-training Objective for Emotion Related Tasks
Tiberiu Sosea and Cornelia Caragea

15:00–17:00 Topic-Aware Evidence Reasoning and Stance-Aware Aggregation for Fact Verifica-
tion
Jiasheng Si, Deyu Zhou, Tongzhe Li, Xingyu Shi and Yulan He

17:00—18:00 Keynote 2. Alejandrina Cristia: Learning and Processing Language from Wear-
ables: Opportunities and Challenges

lxvi
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Session 4A: Computational Social Science and Cultural Analytics 3

23:00–23:10 Changes in European Solidarity Before and During COVID-19: Evidence from a
Large Crowd- and Expert-Annotated Twitter Dataset
Alexandra Ils, Dan Liu, Daniela Grunow and Steffen Eger

23:10–23:20 Measuring Conversational Uptake: A Case Study on Student-Teacher Interactions
Dorottya Demszky, Jing Liu, Zid Mancenido, Julie Cohen, Heather Hill, Dan Juraf-
sky and Tatsunori Hashimoto

23:20–23:30 A Survey of Code-switching: Linguistic and Social Perspectives for Language Tech-
nologies
A. Seza Doğruöz, Sunayana Sitaram, Barbara E. Bullock and Almedia Jacqueline
Toribio

23:30–23:40 Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate
Detection
Bertie Vidgen, Tristan Thrush, Zeerak Waseem and Douwe Kiela

23:40–23:50 InfoSurgeon: Cross-Media Fine-grained Information Consistency Checking for
Fake News Detection
Yi Fung, Christopher Thomas, Revanth Gangi Reddy, Sandeep Polisetty, Heng Ji,
Shih-Fu Chang, Kathleen McKeown, Mohit Bansal and Avi Sil

23:50–23:57 On Positivity Bias in Negative Reviews
Madhusudhan Aithal and Chenhao Tan

Session 4B: Dialog and Interactive Systems 3

23:00–23:10 I like fish, especially dolphins: Addressing Contradictions in Dialogue Modeling
Yixin Nie, Mary Williamson, Mohit Bansal, Douwe Kiela and Jason Weston

23:10–23:20 A Sequence-to-Sequence Approach to Dialogue State Tracking
Yue Feng, Yang Wang and Hang Li

23:20–23:30 Discovering Dialog Structure Graph for Coherent Dialog Generation
Jun Xu, Zeyang Lei, Haifeng Wang, Zheng-Yu Niu, Hua Wu and Wanxiang Che

23:30–23:40 Dialogue Response Selection with Hierarchical Curriculum Learning
Yixuan Su, Deng Cai, Qingyu Zhou, Zibo Lin, Simon Baker, Yunbo Cao, Shuming
Shi, Nigel Collier and Yan Wang

lxvii
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23:40–23:50 A Joint Model for Dropped Pronoun Recovery and Conversational Discourse Pars-
ing in Chinese Conversational Speech
Jingxuan Yang, Kerui Xu, Jun Xu, Si Li, Sheng Gao, Jun Guo, Nianwen Xue and
Ji-Rong Wen

23:50–23:57 PRAL: A Tailored Pre-Training Model for Task-Oriented Dialog Generation
Jing Gu, Qingyang Wu, Chongruo Wu, Weiyan Shi and Zhou Yu

Session 4C: Information Extraction 3

23:00–23:10 A Systematic Investigation of KB-Text Embedding Alignment at Scale
Vardaan Pahuja, Yu Gu, Wenhu Chen, Mehdi Bahrami, Lei Liu, Wei-Peng Chen
and Yu Su

23:10–23:20 Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled
Data
Haoming Jiang, Danqing Zhang, Tianyu Cao, Bing Yin and Tuo Zhao

23:20–23:30 Ultra-Fine Entity Typing with Weak Supervision from a Masked Language Model
Hongliang Dai, Yangqiu Song and Haixun Wang

23:30–23:40 Improving Named Entity Recognition by External Context Retrieving and Coopera-
tive Learning
Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang
and Kewei Tu

23:40–23:47 ROPE: Reading Order Equivariant Positional Encoding for Graph-based Docu-
ment Information Extraction
Chen-Yu Lee, Chun-Liang Li, Chu Wang, Renshen Wang, Yasuhisa Fujii, Siyang
Qin, Ashok Popat and Tomas Pfister

23:47–23:54 Zero-shot Event Extraction via Transfer Learning: Challenges and Insights
Qing Lyu, Hongming Zhang, Elior Sulem and Dan Roth

lxviii
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Session 4D: Interpretability and Analysis of Models for NLP 3

23:00–23:10 Implicit Representations of Meaning in Neural Language Models
Belinda Z. Li, Maxwell Nye and Jacob Andreas

23:10–23:20 Causal Analysis of Syntactic Agreement Mechanisms in Neural Language Models
Matthew Finlayson, Aaron Mueller, Sebastian Gehrmann, Stuart Shieber, Tal
Linzen and Yonatan Belinkov

23:20–23:30 Bird’s Eye: Probing for Linguistic Graph Structures with a Simple Information-
Theoretic Approach
Yifan Hou and Mrinmaya Sachan

23:30–23:40 Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge
Bases
Boxi Cao, Hongyu Lin, Xianpei Han, Le Sun, Lingyong Yan, Meng Liao, Tong Xue
and Jin Xu

23:40–23:50 Poisoning Knowledge Graph Embeddings via Relation Inference Patterns
Peru Bhardwaj, John Kelleher, Luca Costabello and Declan O’Sullivan

23:50–23:57 Using Adversarial Attacks to Reveal the Statistical Bias in Machine Reading Com-
prehension Models
Jieyu Lin, Jiajie Zou and Nai Ding

Session 4E: Ethics in NLP 1

23:00–23:10 Bad Seeds: Evaluating Lexical Methods for Bias Measurement
Maria Antoniak and David Mimno

23:10–23:20 A Survey of Race, Racism, and Anti-Racism in NLP
Anjalie Field, Su Lin Blodgett, Zeerak Waseem and Yulia Tsvetkov

23:20–23:30 Intrinsic Bias Metrics Do Not Correlate with Application Bias
Seraphina Goldfarb-Tarrant, Rebecca Marchant, Ricardo Muñoz Sánchez, Mugdha
Pandya and Adam Lopez

23:30–23:40 RedditBias: A Real-World Resource for Bias Evaluation and Debiasing of Conver-
sational Language Models
Soumya Barikeri, Anne Lauscher, Ivan Vulić and Goran Glavaš

lxix



Monday, August 2, 2021 (all times UTC+0) (continued)

23:40–23:47 Quantifying and Avoiding Unfair Qualification Labour in Crowdsourcing
Jonathan K. Kummerfeld

23:47–23:54 Men Are Elected, Women Are Married: Events Gender Bias on Wikipedia
Jiao Sun and Nanyun Peng

Tuesday, August 3, 2021 (all times UTC+0)

Session 5A: Machine Translation and Multilinguality 3

00:00–00:10 Contributions of Transformer Attention Heads in Multi- and Cross-lingual Tasks
Weicheng Ma, Kai Zhang, Renze Lou, Lili Wang and Soroush Vosoughi

00:10–00:20 Crafting Adversarial Examples for Neural Machine Translation
Xinze Zhang, Junzhe Zhang, Zhenhua Chen and Kun He

00:20–00:30 UXLA: A Robust Unsupervised Data Augmentation Framework for Zero-Resource
Cross-Lingual NLP
M Saiful Bari, Tasnim Mohiuddin and Shafiq Joty

00:30–00:40 Glancing Transformer for Non-Autoregressive Neural Machine Translation
Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin Qiu, Weinan Zhang, Yong
Yu and Lei Li

00:40–00:47 Modeling Task-Aware MIMO Cardinality for Efficient Multilingual Neural Machine
Translation
Hongfei Xu, Qiuhui Liu, Josef van Genabith and Deyi Xiong

00:47–00:54 Adaptive Nearest Neighbor Machine Translation
Xin Zheng, Zhirui Zhang, Junliang Guo, Shujian Huang, Boxing Chen, Weihua Luo
and Jiajun CHEN
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Session 5B: Language Grounding to Vision, Robotics and Beyond 2

00:00–00:10 Hierarchical Context-aware Network for Dense Video Event Captioning
Lei Ji, Xianglin Guo, Haoyang Huang and Xilin Chen

00:10–00:20 Control Image Captioning Spatially and Temporally
Kun Yan, Lei Ji, Huaishao Luo, Ming Zhou, Nan Duan and Shuai Ma

00:20–00:30 Edited Media Understanding Frames: Reasoning About the Intent and Implications
of Visual Misinformation
Jeff Da, Maxwell Forbes, Rowan Zellers, Anthony Zheng, Jena D. Hwang, Antoine
Bosselut and Yejin Choi

00:30–00:40 PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World
Rowan Zellers, Ari Holtzman, Matthew Peters, Roozbeh Mottaghi, Aniruddha
Kembhavi, Ali Farhadi and Yejin Choi

00:40–00:50 Neural Event Semantics for Grounded Language Understanding
Shyamal Buch, Li Fei-Fei and Noah Goodman

Session 5C: Machine Learning for NLP 2

00:00–00:10 Modeling Fine-Grained Entity Types with Box Embeddings
Yasumasa Onoe, Michael Boratko, Andrew McCallum and Greg Durrett

00:10–00:20 ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information
zijun sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and
Jiwei Li

00:20–00:30 Weight Distillation: Transferring the Knowledge in Neural Network Parameters
Ye Lin, Yanyang Li, Ziyang Wang, Bei Li, Quan Du, Tong Xiao and Jingbo Zhu

00:30–00:40 Optimizing Deeper Transformers on Small Datasets
Peng Xu, Dhruv Kumar, Wei Yang, Wenjie Zi, Keyi Tang, Chenyang Huang, Jackie
Chi Kit Cheung, Simon J.D. Prince and Yanshuai Cao

00:40–00:50 BERTAC: Enhancing Transformer-based Language Models with Adversarially Pre-
trained Convolutional Neural Networks
Jong-Hoon Oh, Ryu Iida, Julien Kloetzer and Kentaro Torisawa
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00:50–00:57 On Orthogonality Constraints for Transformers
Aston Zhang, Alvin Chan, Yi Tay, Jie Fu, Shuohang Wang, Shuai Zhang, Huajie
Shao, Shuochao Yao and Roy Ka-Wei Lee

Session 5D: NLP Applications 1 and Ethics

00:00–00:10 COVID-Fact: Fact Extraction and Verification of Real-World Claims on COVID-19
Pandemic
Arkadiy Saakyan, Tuhin Chakrabarty and Smaranda Muresan

00:10–00:20 Explaining Relationships Between Scientific Documents
Kelvin Luu, Xinyi Wu, Rik Koncel-Kedziorski, Kyle Lo, Isabel Cachola and Noah
A. Smith

00:20–00:30 IrEne: Interpretable Energy Prediction for Transformers
Qingqing Cao, Yash Kumar Lal, Harsh Trivedi, Aruna Balasubramanian and Niran-
jan Balasubramanian

00:30–00:40 Mitigating Bias in Session-based Cyberbullying Detection: A Non-Compromising
Approach
Lu Cheng, Ahmadreza Mosallanezhad, Yasin Silva, Deborah Hall and Huan Liu

00:40–00:50 PlotCoder: Hierarchical Decoding for Synthesizing Visualization Code in Program-
matic Context
Xinyun Chen, Linyuan Gong, Alvin Cheung and Dawn Song

00:50–01:00 Changing the World by Changing the Data
Anna Rogers
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Session 6A: Machine Learning for NLP 3

01:00–01:10 EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets
Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Zhangyang Wang and
Jingjing Liu

01:10–01:20 On the Effectiveness of Adapter-based Tuning for Pretrained Language Model
Adaptation
Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, BOSHENG DING, Liying Cheng,
Jiawei Low, Lidong Bing and Luo Si

01:20–01:30 Data Augmentation for Text Generation Without Any Augmented Data
Wei Bi, Huayang Li and Jiacheng Huang

01:30–01:40 KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language
Representation
Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu, Juanzi
Li and Jian Tang

01:40–01:50 Integrating Semantics and Neighborhood Information with Graph-Driven Genera-
tive Models for Document Retrieval
Zijing Ou, Qinliang Su, Jianxing Yu, Bang Liu, Jingwen Wang, Ruihui Zhao,
Changyou Chen and Yefeng Zheng

01:50–01:57 Measuring and Improving BERT’s Mathematical Abilities by Predicting the Order
of Reasoning.
Piotr Piękos, Mateusz Malinowski and Henryk Michalewski

Session 6B: Resources and Evaluation 1

01:00–01:10 SMURF: SeMantic and linguistic UndeRstanding Fusion for Caption Evaluation
via Typicality Analysis
Joshua Feinglass and Yezhou Yang

01:10–01:20 KaggleDBQA: Realistic Evaluation of Text-to-SQL Parsers
Chia-Hsuan Lee, Oleksandr Polozov and Matthew Richardson

01:20–01:30 QASR: QCRI Aljazeera Speech Resource A Large Scale Annotated Arabic Speech
Corpus
Hamdy Mubarak, Amir Hussein, Shammur Absar Chowdhury and Ahmed Ali

01:30–01:40 An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained
Language Models
Xueqing Liu and Chi Wang
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01:40–01:50 Better than Average: Paired Evaluation of NLP systems
Maxime Peyrard, Wei Zhao, Steffen Eger and Robert West

01:50–01:57 Happy Dance, Slow Clap: Using Reaction GIFs to Predict Induced Affect on Twitter
Boaz Shmueli, Soumya Ray and Lun-Wei Ku

Session 6C: Semantics: Sentence-level Semantics, Textual Inference and Other
areas 1

01:00–01:10 Chase: A Large-Scale and Pragmatic Chinese Dataset for Cross-Database Context-
Dependent Text-to-SQL
Jiaqi Guo, Ziliang Si, Yu Wang, Qian Liu, Ming Fan, Jian-Guang LOU, Zijiang
Yang and Ting Liu

01:10–01:20 CLINE: Contrastive Learning with Semantic Negative Examples for Natural Lan-
guage Understanding
Dong Wang, Ning Ding, Piji Li and Haitao Zheng

01:20–01:30 Tree-Structured Topic Modeling with Nonparametric Neural Variational Inference
Ziye Chen, Cheng Ding, Zusheng Zhang, Yanghui Rao and Haoran Xie

01:30–01:40 ExCAR: Event Graph Knowledge Enhanced Explainable Causal Reasoning
Li Du, Xiao Ding, Kai Xiong, Ting Liu and Bing Qin

01:40–01:50 Infusing Finetuning with Semantic Dependencies
Zhaofeng Wu, Hao Peng and Noah Smith

01:50–01:57 Exploring Listwise Evidence Reasoning with T5 for Fact Verification
Kelvin Jiang, Ronak Pradeep and Jimmy Lin

lxxiv
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Session 6D: Sentiment Analysis, Stylistic Analysis, and Argument Mining 2

01:00–01:10 Distributed Representations of Emotion Categories in Emotion Space
Xiangyu Wang and Chengqing Zong

01:10–01:20 Style is NOT a single variable: Case Studies for Cross-Stylistic Language Under-
standing
Dongyeop Kang and Eduard Hovy

01:20–01:30 DynaSent: A Dynamic Benchmark for Sentiment Analysis
Christopher Potts, Zhengxuan Wu, Atticus Geiger and Douwe Kiela

01:30–01:40 A Hierarchical VAE for Calibrating Attributes while Generating Text using Normal-
izing Flow
Bidisha Samanta, Mohit Agrawal and NIloy Ganguly

01:40–01:50 A Unified Generative Framework for Aspect-based Sentiment Analysis
Hang Yan, Junqi Dai, Tuo Ji, Xipeng Qiu and Zheng Zhang

01:50–02:00 Classifying Argumentative Relations Using Logical Mechanisms and Argumenta-
tion Schemes
Yohan Jo, Seojin Bang, Chris Reed and Eduard Hovy

Session 7A: Dialog and Interactive Systems 4

08:00–08:10 Discovering Dialogue Slots with Weak Supervision
Vojtěch Hudeček, Ondřej Dušek and Zhou Yu

08:10–08:20 Enhancing the generalization for Intent Classification and Out-of-Domain Detec-
tion in SLU
Yilin Shen, Yen-Chang Hsu, Avik Ray and Hongxia Jin

08:20–08:30 ProtAugment: Intent Detection Meta-Learning through Unsupervised Diverse Para-
phrasing
Thomas Dopierre, Christophe Gravier and Wilfried Logerais

08:30–08:40 Robustness Testing of Language Understanding in Task-Oriented Dialog
Jiexi Liu, Ryuichi Takanobu, Jiaxin Wen, Dazhen Wan, hongguang li, weiran nie,
Cheng LI, Wei Peng and Minlie Huang

lxxv



Tuesday, August 3, 2021 (all times UTC+0) (continued)

08:40–08:50 Comprehensive Study: How the Context Information of Different Granularity Af-
fects Dialogue State Tracking?
Puhai Yang, Heyan Huang and Xian-Ling Mao

08:50–09:00 OTTers: One-turn Topic Transitions for Open-Domain Dialogue
Karin Sevegnani, David M. Howcroft, Ioannis Konstas and Verena Rieser

Session 7B: Semantics: Sentence-level Semantics, Textual Inference and Other
areas 2

08:00–08:10 Towards Robustness of Text-to-SQL Models against Synonym Substitution
Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew Purver, John R. Woodward,
Jinxia Xie and Pengsheng Huang

08:10–08:20 KACE: Generating Knowledge Aware Contrastive Explanations for Natural Lan-
guage Inference
Qianglong Chen, Feng Ji, Xiangji Zeng, Feng-Lin Li, Ji Zhang, Haiqing Chen and
Yin Zhang

08:20–08:30 Self-Guided Contrastive Learning for BERT Sentence Representations
Taeuk Kim, Kang Min Yoo and Sang-goo Lee

08:30–08:40 LGESQL: Line Graph Enhanced Text-to-SQL Model with Mixed Local and Non-
Local Relations
Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao, Su Zhu and Kai Yu

08:40–08:47 DefSent: Sentence Embeddings using Definition Sentences
Hayato Tsukagoshi, Ryohei Sasano and Koichi Takeda

08:47–08:54 Discrete Cosine Transform as Universal Sentence Encoder
Nada Almarwani and Mona Diab

lxxvi
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Session 7C: Speech and Multimodality 1

08:00–08:10 Multi-stage Pre-training over Simplified Multimodal Pre-training Models
Tongtong Liu, Fangxiang Feng and Xiaojie WANG

08:10–08:20 Beyond Sentence-Level End-to-End Speech Translation: Context Helps
Biao Zhang, Ivan Titov, Barry Haddow and Rico Sennrich

08:20–08:30 LayoutLMv2: Multi-modal Pre-training for Visually-rich Document Understanding
Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu,
Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang and Lidong Zhou

08:30–08:40 UNIMO: Towards Unified-Modal Understanding and Generation via Cross-Modal
Contrastive Learning
Wei Li, Can Gao, Guocheng Niu, Xinyan Xiao, Hao Liu, Jiachen Liu, Hua Wu and
Haifeng Wang

08:40–08:50 Missing Modality Imagination Network for Emotion Recognition with Uncertain
Missing Modalities
Jinming Zhao, Ruichen Li and Qin Jin

08:50–09:00 Stacked Acoustic-and-Textual Encoding: Integrating the Pre-trained Models into
Speech Translation Encoders
Chen Xu, Bojie Hu, Yanyang Li, Yuhao Zhang, shen huang, Qi Ju, Tong Xiao and
Jingbo Zhu

Session 7D: Syntax: Tagging, Chunking, and Parsing 1

08:00–08:10 N-ary Constituent Tree Parsing with Recursive Semi-Markov Model
Xin Xin, Jinlong Li and Zeqi Tan

08:10–08:20 Automated Concatenation of Embeddings for Structured Prediction
Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang
and Kewei Tu

08:20–08:30 Multi-View Cross-Lingual Structured Prediction with Minimum Supervision
Zechuan Hu, Yong Jiang, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang
and Kewei Tu

08:30–08:40 The Limitations of Limited Context for Constituency Parsing
Yuchen Li and Andrej Risteski
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08:40–08:50 Neural Bi-Lexicalized PCFG Induction
Songlin Yang, Yanpeng Zhao and Kewei Tu

Session 7E: Resources and Evaluation 2

08:00–08:10 Ruddit: Norms of Offensiveness for English Reddit Comments
Rishav Hada, Sohi Sudhir, Pushkar Mishra, Helen Yannakoudakis, Saif M. Moham-
mad and Ekaterina Shutova

08:10–08:20 Towards Quantifiable Dialogue Coherence Evaluation
Zheng Ye, Liucun Lu, Lishan Huang, Liang Lin and Xiaodan Liang

08:20–08:30 Assessing the Representations of Idiomaticity in Vector Models with a Noun Com-
pound Dataset Labeled at Type and Token Levels
Marcos Garcia, Tiago Kramer Vieira, Carolina Scarton, Marco Idiart and Aline
Villavicencio

08:30–08:40 Factoring Statutory Reasoning as Language Understanding Challenges
Nils Holzenberger and Benjamin Van Durme

08:40–08:50 Evaluating Evaluation Measures for Ordinal Classification and Ordinal Quantifi-
cation
Tetsuya Sakai

08:50–08:57 AligNarr: Aligning Narratives on Movies
Paramita Mirza, Mostafa Abouhamra and Gerhard Weikum
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Session 8A: Information Extraction 4

09:00–09:10 Interpretable and Low-Resource Entity Matching via Decoupling Feature Learning
from Decision Making
Zijun Yao, Chengjiang Li, Tiansi Dong, Xin Lv, Jifan Yu, Lei Hou, Juanzi Li,
YICHI ZHANG and zelin Dai

09:10–09:20 Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition
Yongliang Shen, Xinyin Ma, Zeqi Tan, Shuai Zhang, Wen Wang and Weiming Lu

09:20–09:30 Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event
Extraction
Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong Tang, Annan Li, Le Sun,
Meng Liao and Shaoyi Chen

09:30–09:40 A Large-Scale Chinese Multimodal NER Dataset with Speech Clues
Dianbo Sui, Zhengkun Tian, Yubo Chen, Kang Liu and Jun Zhao

09:40–09:50 A Neural Transition-based Joint Model for Disease Named Entity Recognition and
Normalization
Zongcheng Ji, Tian Xia, Mei Han and Jing Xiao

09:50–10:00 OntoED: Low-resource Event Detection with Ontology Embedding
Shumin Deng, Ningyu Zhang, Luoqiu Li, Chen Hui, tou huaixiao, Mosha Chen, Fei
Huang and Huajun Chen

Session 8B: Machine Translation and Multilinguality 4

09:00–09:10 Self-Training Sampling with Monolingual Data Uncertainty for Neural Machine
Translation
Wenxiang Jiao, Xing Wang, Zhaopeng Tu, Shuming Shi, Michael Lyu and Irwin
King

09:10–09:20 Breaking the Corpus Bottleneck for Context-Aware Neural Machine Translation
with Cross-Task Pre-training
Linqing Chen, Junhui Li, Zhengxian Gong, Boxing Chen, Weihua Luo, Min Zhang
and Guodong Zhou

09:20–09:30 Guiding Teacher Forcing with Seer Forcing for Neural Machine Translation
Yang Feng, Shuhao Gu, Dengji Guo, Zhengxin Yang and Chenze Shao

09:30–09:40 Cascade versus Direct Speech Translation: Do the Differences Still Make a Differ-
ence?
Luisa Bentivogli, Mauro Cettolo, Marco Gaido, Alina Karakanta, Alberto Mar-
tinelli, Matteo Negri and Marco Turchi

lxxix
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09:40–09:50 Unsupervised Neural Machine Translation for Low-Resource Domains via Meta-
Learning
Cheonbok Park, Yunwon Tae, TaeHee Kim, Soyoung Yang, Mohammad Azam
Khan, Lucy Park and Jaegul Choo

09:50–09:57 An Exploratory Analysis of Multilingual Word-Level Quality Estimation with Cross-
Lingual Transformers
Tharindu Ranasinghe, Constantin Orasan and Ruslan Mitkov

Session 8C: Machine Learning for NLP 4

09:00–09:10 Lightweight Cross-Lingual Sentence Representation Learning
Zhuoyuan Mao, Prakhar Gupta, Chenhui Chu, Martin Jaggi and Sadao Kurohashi

09:10–09:20 ERNIE-Doc: A Retrospective Long-Document Modeling Transformer
SiYu Ding, Junyuan Shang, Shuohuan Wang, Yu Sun, Hao Tian, Hua Wu and
Haifeng Wang

09:20–09:30 Marginal Utility Diminishes: Exploring the Minimum Knowledge for BERT Knowl-
edge Distillation
Yuanxin LIU, Fandong Meng, Zheng Lin, Weiping Wang and Jie Zhou

09:30–09:40 Rational LAMOL: A Rationale-based Lifelong Learning Framework
Kasidis Kanwatchara, Thanapapas Horsuwan, Piyawat Lertvittayakumjorn, Boon-
serm Kijsirikul and Peerapon Vateekul

09:40–09:50 EnsLM: Ensemble Language Model for Data Diversity by Semantic Clustering
Zhibin Duan, Hao Zhang, Chaojie Wang, Zhengjue Wang, Bo Chen and Mingyuan
Zhou

09:50–10:00 LeeBERT: Learned Early Exit for BERT with cross-level optimization
Wei Zhu
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Session 8D: NLP Applications 2

09:00–09:10 Unsupervised Extractive Summarization-Based Representations for Accurate and
Explainable Collaborative Filtering
Reinald Adrian Pugoy and Hung-Yu Kao

09:10–09:20 PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction
Shulin Liu, Tao Yang, Tianchi Yue, Feng Zhang and Di Wang

09:20–09:30 Competence-based Multimodal Curriculum Learning for Medical Report Genera-
tion
Fenglin Liu, Shen Ge and Xian Wu

09:30–09:40 Learning Syntactic Dense Embedding with Correlation Graph for Automatic Read-
ability Assessment
Xinying Qiu, Yuan Chen, Hanwu Chen, Jian-Yun Nie, Yuming Shen and Dawei Lu

09:40–09:50 Meta-KD: A Meta Knowledge Distillation Framework for Language Model Com-
pression across Domains
Haojie Pan, Chengyu Wang, Minghui Qiu, Yichang Zhang, Yaliang Li and jun
huang

09:50–09:57 Exploration and Exploitation: Two Ways to Improve Chinese Spelling Correction
Models
Chong Li, Cenyuan Zhang, Xiaoqing Zheng and Xuanjing Huang

Session 8E: Question Answering 1

09:00–09:10 A Semantic-based Method for Unsupervised Commonsense Question Answering
Yilin Niu, Fei Huang, Jiaming Liang, Wenkai Chen, Xiaoyan Zhu and Minlie Huang

09:10–09:20 Explanations for CommonsenseQA: New Dataset and Models
Shourya Aggarwal, Divyanshu Mandowara, Vishwajeet Agrawal, Dinesh Khandel-
wal, Parag Singla and Dinesh Garg

09:20–09:30 Few-Shot Question Answering by Pretraining Span Selection
Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson and Omer Levy

09:30–09:40 UnitedQA: A Hybrid Approach for Open Domain Question Answering
Hao Cheng, Yelong Shen, Xiaodong Liu, Pengcheng He, Weizhu Chen and Jianfeng
Gao
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09:40–09:50 Database reasoning over text
James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio Silvestri, Sebastian Riedel
and Alon Halevy

09:50–09:57 Training Adaptive Computation for Open-Domain Question Answering with Com-
putational Constraints
Yuxiang Wu, Pasquale Minervini, Pontus Stenetorp and Sebastian Riedel

Session 9A: Machine Translation and Multilinguality 5

10:00–10:10 Online Learning Meets Machine Translation Evaluation: Finding the Best Systems
with the Least Human Effort
Vânia Mendonça, Ricardo Rei, Luisa Coheur, Alberto Sardinha and Ana Lúcia San-
tos

10:10–10:20 How Good is Your Tokenizer? On the Monolingual Performance of Multilingual
Language Models
Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder and Iryna Gurevych

10:20–10:30 Evaluating morphological typology in zero-shot cross-lingual transfer
Antonio Martínez-García, Toni Badia and Jeremy Barnes

10:30–10:40 From Machine Translation to Code-Switching: Generating High-Quality Code-
Switched Text
Ishan Tarunesh, Syamantak Kumar and Preethi Jyothi

10:40–10:50 Fast and Accurate Neural Machine Translation with Translation Memory
Qiuxiang He, Guoping Huang, Qu Cui, Li Li and Lemao Liu

10:50–10:57 An Empirical Study on Adversarial Attack on NMT: Languages and Positions Matter
Zhiyuan Zeng and Deyi Xiong

lxxxii
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Session 9B: Resources and Evaluation 3

10:00–10:10 Annotating Online Misogyny
Philine Zeinert, Nanna Inie and Leon Derczynski

10:10–10:20 Few-NERD: A Few-shot Named Entity Recognition Dataset
Ning Ding, Guangwei Xu, Yulin Chen, Xiaobin Wang, Xu Han, Pengjun Xie,
Haitao Zheng and Zhiyuan Liu

10:20–10:30 MultiMET: A Multimodal Dataset for Metaphor Understanding
Dongyu Zhang, Minghao Zhang, Heting Zhang, Liang Yang and Hongfei LIN

10:30–10:40 Human-in-the-Loop for Data Collection: a Multi-Target Counter Narrative Dataset
to Fight Online Hate Speech
Margherita Fanton, Helena Bonaldi, Serra Sinem Tekiroğlu and Marco Guerini

10:40–10:47 OntoGUM: Evaluating Contextualized SOTA Coreference Resolution on 12 More
Genres
Yilun Zhu, Sameer Pradhan and Amir Zeldes

Session 9C: Question Answering 2

10:00–10:10 Can Generative Pre-trained Language Models Serve As Knowledge Bases for
Closed-book QA?
Cunxiang Wang, Pai Liu and Yue Zhang

10:10–10:20 Joint Models for Answer Verification in Question Answering Systems
Zeyu Zhang, Thuy Vu and Alessandro Moschitti

10:20–10:30 Answering Ambiguous Questions through Generative Evidence Fusion and Round-
Trip Prediction
Yifan Gao, Henghui Zhu, Patrick Ng, Cicero Nogueira dos Santos, Zhiguo Wang,
Feng Nan, Dejiao Zhang, Ramesh Nallapati, Andrew O. Arnold and Bing Xiang

10:30–10:40 TAT-QA: A Question Answering Benchmark on a Hybrid of Tabular and Textual
Content in Finance
Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao Wang, Shuo Zhang, Jiancheng
Lv, Fuli Feng and Tat-Seng Chua

10:40–10:50 Modeling Transitions of Focal Entities for Conversational Knowledge Base Ques-
tion Answering
Yunshi Lan and Jing Jiang
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10:50–10:57 In Factuality: Efficient Integration of Relevant Facts for Visual Question Answering
Peter Vickers, Nikolaos Aletras, Emilio Monti and Loïc Barrault

Session 9D: Semantics: Sentence-level Semantics, Textual Inference and Other
areas 3

10:00–10:10 Evidence-based Factual Error Correction
James Thorne and Andreas Vlachos

10:10–10:20 Probabilistic, Structure-Aware Algorithms for Improved Variety, Accuracy, and
Coverage of AMR Alignments
Austin Blodgett and Nathan Schneider

10:20–10:30 Meta-Learning to Compositionally Generalize
Henry Conklin, Bailin Wang, Kenny Smith and Ivan Titov

10:30–10:40 Taming Pre-trained Language Models with N-gram Representations for Low-
Resource Domain Adaptation
Shizhe Diao, Ruijia Xu, Hongjin Su, Yilei Jiang, Yan Song and Tong Zhang

10:40–10:50 ERICA: Improving Entity and Relation Understanding for Pre-trained Language
Models via Contrastive Learning
Yujia Qin, Yankai Lin, Ryuichi Takanobu, Zhiyuan Liu, Peng Li, Heng Ji, Minlie
Huang, Maosong Sun and Jie Zhou

10:50–10:57 Zero-shot Fact Verification by Claim Generation
Liangming Pan, Wenhu Chen, Wenhan Xiong, Min-Yen Kan and William Yang
Wang
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Session 9E: Sentiment Analysis, Stylistic Analysis, and Argument Mining 3

10:00–10:10 Position Bias Mitigation: A Knowledge-Aware Graph Model for Emotion Cause
Extraction
Hanqi Yan, Lin Gui, Gabriele Pergola and Yulan He

10:10–10:20 Every Bite Is an Experience: Key Point Analysis of Business Reviews
Roy Bar-Haim, Lilach Eden, Yoav Kantor, Roni Friedman and Noam Slonim

10:20–10:30 Structured Sentiment Analysis as Dependency Graph Parsing
Jeremy Barnes, Robin Kurtz, Stephan Oepen, Lilja Øvrelid and Erik Velldal

10:30–10:37 Thank you BART! Rewarding Pre-Trained Models Improves Formality Style Trans-
fer
Huiyuan Lai, Antonio Toral and Malvina Nissim

10:37–10:44 Deep Context- and Relation-Aware Learning for Aspect-based Sentiment Analysis
Shinhyeok Oh, Dongyub Lee, Taesun Whang, IlNam Park, Seo Gaeun, EungGyun
Kim and Harksoo Kim

10:44–10:51 Towards Generative Aspect-Based Sentiment Analysis
Wenxuan Zhang, Xin Li, Yang Deng, Lidong Bing and Wai Lam

Session 10A: Machine Translation and Multilinguality 6

11:00–11:10 Consistency Regularization for Cross-Lingual Fine-Tuning
Bo Zheng, Li Dong, Shaohan Huang, Wenhui Wang, Zewen Chi, Saksham Singhal,
Wanxiang Che, Ting Liu, Xia Song and Furu Wei

11:10–11:20 Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word
Alignment
Zewen Chi, Li Dong, Bo Zheng, Shaohan Huang, Xian-Ling Mao, Heyan Huang
and Furu Wei

11:20–11:30 Rejuvenating Low-Frequency Words: Making the Most of Parallel Data in Non-
Autoregressive Translation
Liang Ding, Longyue Wang, Xuebo Liu, Derek F. Wong, Dacheng Tao and
Zhaopeng Tu

11:30–11:40 G-Transformer for Document-Level Machine Translation
Guangsheng Bao, Yue Zhang, Zhiyang Teng, Boxing Chen and Weihua Luo

lxxxv
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11:40–11:50 Prevent the Language Model from being Overconfident in Neural Machine Transla-
tion
Mengqi Miao, Fandong Meng, Yijin Liu, Xiao-Hua Zhou and Jie Zhou

11:50–11:57 Bilingual Mutual Information Based Adaptive Training for Neural Machine Trans-
lation
Yangyifan Xu, Yijin Liu, Fandong Meng, Jiajun Zhang, Jinan Xu and Jie Zhou

Session 10B: Dialog and Interactive Systems 5

11:00–11:10 Towards Emotional Support Dialog Systems
Siyang Liu, Chujie Zheng, Orianna Demasi, Sahand Sabour, Yu Li, Zhou Yu, Yong
Jiang and Minlie Huang

11:10–11:20 Novel Slot Detection: A Benchmark for Discovering Unknown Slot Types in the
Task-Oriented Dialogue System
Yanan Wu, Zhiyuan Zeng, Keqing He, Hong Xu, Yuanmeng Yan, Huixing Jiang
and Weiran Xu

11:20–11:30 GTM: A Generative Triple-wise Model for Conversational Question Generation
Lei Shen, Fandong Meng, Jinchao Zhang, Yang Feng and Jie Zhou

11:30–11:40 Diversifying Dialog Generation via Adaptive Label Smoothing
Yida Wang, Yinhe Zheng, Yong Jiang and Minlie Huang

11:40–11:50 Out-of-Scope Intent Detection with Self-Supervision and Discriminative Training
Li-Ming Zhan, Haowen Liang, Bo LIU, Lu Fan, Xiao-Ming Wu and Albert Y.S.
Lam

11:50–11:57 Continual Learning for Task-oriented Dialogue System with Iterative Network
Pruning, Expanding and Masking
Binzong Geng, Fajie Yuan, Qiancheng Xu, Ying Shen, Ruifeng Xu and Min Yang

lxxxvi
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Session 10C: Information Extraction 5

11:00–11:10 Document-level Event Extraction via Heterogeneous Graph-based Interaction
Model with a Tracker
Runxin Xu, Tianyu Liu, Lei Li and Baobao Chang

11:10–11:20 Nested Named Entity Recognition via Explicitly Excluding the Influence of the Best
Path
Yiran Wang, Hiroyuki Shindo, Yuji Matsumoto and Taro Watanabe

11:20–11:30 LearnDA: Learnable Knowledge-Guided Data Augmentation for Event Causality
Identification
Xinyu Zuo, Pengfei Cao, Yubo Chen, Kang Liu, Jun Zhao, Weihua Peng and
Yuguang Chen

11:30–11:40 Revisiting the Negative Data of Distantly Supervised Relation Extraction
Chenhao Xie, Jiaqing Liang, Jingping Liu, Chengsong Huang, Wenhao Huang and
Yanghua Xiao

11:40–11:50 Knowing the No-match: Entity Alignment with Dangling Cases
Zequn Sun, Muhao Chen and Wei Hu

11:50–11:57 TIMERS: Document-level Temporal Relation Extraction
Puneet Mathur, Rajiv Jain, Franck Dernoncourt, Vlad Morariu, Quan Hung Tran
and Dinesh Manocha

Session 10D: Phonology, Morphology and Word Segmentation 1

11:00–11:10 Superbizarre Is Not Superb: Derivational Morphology Improves BERT’s Interpre-
tation of Complex Words
Valentin Hofmann, Janet Pierrehumbert and Hinrich Schütze

11:10–11:20 Optimizing over Subsequences Generates Context-Sensitive Languages
Andrew Lamont

11:20–11:30 Morphology Matters: A Multilingual Language Modeling Analysis
Hyunji Hayley Park, Katherine J. Zhang, Coleman Haley, Kenneth Steimel, Han
Liu and Lane Schwartz

11:30–11:37 Improving Arabic Diacritization with Regularized Decoding and Adversarial Train-
ing
Han Qin, Guimin Chen, Yuanhe Tian and Yan Song

lxxxvii
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11:37–11:44 When is Char Better Than Subword: A Systematic Study of Segmentation Algo-
rithms for Neural Machine Translation
Jiahuan Li, Yutong Shen, Shujian Huang, Xinyu Dai and Jiajun CHEN

11:44–11:51 More than Text: Multi-modal Chinese Word Segmentation
Dong Zhang, Zheng Hu, Shoushan Li, Hanqian Wu, Qiaoming Zhu and Guodong
Zhou

Session 10E: Semantics: Lexical Semantics 1

11:00–11:10 BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify
Analogies?
Asahi Ushio, Luis Espinosa Anke, Steven Schockaert and Jose Camacho-Collados

11:10–11:20 Exploring the Representation of Word Meanings in Context: A Case Study on
Homonymy and Synonymy
Marcos Garcia

11:20–11:30 Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe
Approach
Jie Huang, Kevin Chang, JinJun Xiong and Wen-mei Hwu

11:30–11:37 A Mixture-of-Experts Model for Antonym-Synonym Discrimination
Zhipeng Xie and Nan Zeng

11:37–11:44 Learning Domain-Specialised Representations for Cross-Lingual Biomedical Entity
Linking
Fangyu Liu, Ivan Vulić, Anna Korhonen and Nigel Collier

11:44–11:51 A Cluster-based Approach for Improving Isotropy in Contextual Embedding Space
Sara Rajaee and Mohammad Taher Pilehvar

14:00–15:30 Business meeting and Green NLP panel

15:30–16:30 Keynote 3. Christopher Potts: Reliable Characterizations of NLP Systems as a
Social Responsibility

lxxxviii
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Session 11A: Dialog and Interactive Systems 6

16:30–16:40 HERALD: An Annotation Efficient Method to Detect User Disengagement in Social
Conversations
Weixin Liang, Kai-Hui Liang and Zhou Yu

16:40–16:50 Value-Agnostic Conversational Semantic Parsing
Emmanouil Antonios Platanios, Adam Pauls, Subhro Roy, Yuchen Zhang, Alexan-
der Kyte, Alan Guo, Sam Thomson, Jayant Krishnamurthy, Jason Wolfe, Jacob
Andreas and Dan Klein

16:50–17:00 MPC-BERT: A Pre-Trained Language Model for Multi-Party Conversation Under-
standing
Jia-Chen Gu, Chongyang Tao, Zhenhua Ling, Can Xu, Xiubo Geng and Daxin Jiang

17:00–17:10 Best of Both Worlds: Making High Accuracy Non-incremental Transformer-based
Disfluency Detection Incremental
Morteza Rohanian and Julian Hough

17:10–17:20 NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-Based Simu-
lation
Sungdong Kim, Minsuk Chang and Sang-Woo Lee

17:20–17:27 Unsupervised Enrichment of Persona-grounded Dialog with Background Stories
Bodhisattwa Prasad Majumder, Taylor Berg-Kirkpatrick, Julian McAuley and
Harsh Jhamtani

Session 11B: Linguistic Theories, Cognitive Modeling and Psycholinguistics 1

16:30–16:40 CDRNN: Discovering Complex Dynamics in Human Language Processing
Cory Shain

16:40–16:50 Structural Guidance for Transformer Language Models
Peng Qian, Tahira Naseem, Roger Levy and Ramón Fernandez Astudillo

16:50–17:00 Surprisal Estimators for Human Reading Times Need Character Models
Byung-Doh Oh, Christian Clark and William Schuler

17:00–17:10 CogAlign: Learning to Align Textual Neural Representations to Cognitive Lan-
guage Processing Signals
Yuqi Ren and Deyi Xiong

lxxxix
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17:10–17:20 Formal Basis of a Language Universal
Milos Stanojevic and Mark Steedman

17:20–17:27 Beyond Laurel/Yanny: An Autoencoder-Enabled Search for Polyperceivable Audio
Kartik Chandra, Chuma Kabaghe and Gregory Valiant

Session 11C: Machine Learning for NLP 5

16:30–16:40 Self-Attention Networks Can Process Bounded Hierarchical Languages
Shunyu Yao, Binghui Peng, Christos Papadimitriou and Karthik Narasimhan

16:40–16:50 TextSETTR: Few-Shot Text Style Extraction and Tunable Targeted Restyling
Parker Riley, Noah Constant, Mandy Guo, Girish Kumar, David Uthus and Zarana
Parekh

16:50–17:00 H-Transformer-1D: Fast One-Dimensional Hierarchical Attention for Sequences
Zhenhai Zhu and Radu Soricut

17:00–17:10 Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao, Adam Fisch and Danqi Chen

17:10–17:20 A Sweet Rabbit Hole by DARCY: Using Honeypots to Detect Universal Trigger’s
Adversarial Attacks
Thai Le, Noseong Park and Dongwon Lee

17:20–17:27 Don’t Let Discourse Confine Your Model: Sequence Perturbations for Improved
Event Language Models
Mahnaz Koupaee, Greg Durrett, Nathanael Chambers and Niranjan Balasubrama-
nian

xc
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Session 11D: Information Retrieval and Text Mining 1

16:30–16:40 Towards Propagation Uncertainty: Edge-enhanced Bayesian Graph Convolutional
Networks for Rumor Detection
Lingwei Wei, Dou Hu, Wei Zhou, Zhaojuan Yue and Songlin Hu

16:40–16:50 Label-Specific Dual Graph Neural Network for Multi-Label Text Classification
Qianwen Ma, Chunyuan Yuan, Wei Zhou and Songlin Hu

16:50–17:00 TAN-NTM: Topic Attention Networks for Neural Topic Modeling
Madhur Panwar, Shashank Shailabh, Milan Aggarwal and Balaji Krishnamurthy

17:00–17:10 Cross-language Sentence Selection via Data Augmentation and Rationale Training
Yanda Chen, Chris Kedzie, Suraj Nair, Petra Galuscakova, Rui Zhang, Douglas
Oard and Kathleen McKeown

17:10–17:20 A Neural Model for Joint Document and Snippet Ranking in Question Answering
for Large Document Collections
Dimitris Pappas and Ion Androutsopoulos

17:20–17:27 The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes
Nils Reimers and Iryna Gurevych

Session 11E: Discourse and Pragmatics 1

16:30–16:40 W-RST: Towards a Weighted RST-style Discourse Framework
Patrick Huber, Wen Xiao and Giuseppe Carenini

16:40–16:50 ABCD: A Graph Framework to Convert Complex Sentences to a Covering Set of
Simple Sentences
Yanjun Gao, Ting-Hao Huang and Rebecca J. Passonneau

16:50–17:00 Which Linguist Invented the Lightbulb? Presupposition Verification for Question-
Answering
Najoung Kim, Ellie Pavlick, Burcu Karagol Ayan and Deepak Ramachandran

17:00–17:10 Adversarial Learning for Discourse Rhetorical Structure Parsing
Longyin Zhang, Fang Kong and Guodong Zhou

xci
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17:10–17:20 Exploring Discourse Structures for Argument Impact Classification
Xin Liu, Jiefu Ou, Yangqiu Song and Xin Jiang

Session 12A: Machine Translation and Multilinguality 7

23:00–23:10 Point, Disambiguate and Copy: Incorporating Bilingual Dictionaries for Neural
Machine Translation
Tong Zhang, Long Zhang, Wei Ye, Bo Li, Jinan Sun, Xiaoyu Zhu, Wen Zhao and
Shikun Zhang

23:10–23:20 VECO: Variable and Flexible Cross-lingual Pre-training for Language Understand-
ing and Generation
Fuli Luo, Wei Wang, Jiahao Liu, Yijia Liu, Bin Bi, Songfang Huang, Fei Huang and
Luo Si

23:20–23:30 A unified approach to sentence segmentation of punctuated text in many languages
Rachel Wicks and Matt Post

23:30–23:40 Towards User-Driven Neural Machine Translation
Huan Lin, Liang Yao, Baosong Yang, Dayiheng Liu, Haibo Zhang, Weihua Luo,
Degen Huang and Jinsong Su

23:40–23:50 End-to-End Lexically Constrained Machine Translation for Morphologically Rich
Languages
Josef Jon, João Paulo Aires, Dusan Varis and Ondřej Bojar

23:50–23:57 Cross-lingual Text Classification with Heterogeneous Graph Neural Network
Ziyun Wang, Xuan Liu, Peiji Yang, Shixing Liu and zhisheng wang

xcii
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Session 12B: Resources and Evaluation 4

23:00–23:10 Handling Extreme Class Imbalance in Technical Logbook Datasets
Farhad Akhbardeh, Cecilia Ovesdotter Alm, Marcos Zampieri and Travis Desell

23:10–23:20 ILDC for CJPE: Indian Legal Documents Corpus for Court Judgment Prediction
and Explanation
Vijit Malik, Rishabh Sanjay, Shubham Kumar Nigam, Kripabandhu Ghosh, Shou-
vik Kumar Guha, Arnab Bhattacharya and Ashutosh Modi

23:20–23:30 Supporting Cognitive and Emotional Empathic Writing of Students
Thiemo Wambsganss, Christina Niklaus, Matthias Söllner, Siegfried Handschuh
and Jan Marco Leimeister

23:30–23:40 Context-aware Adversarial Training for Name Regularity Bias in Named Entity
Recognition
Abbas Ghaddar, Philippe Langlais, Ahmad Rashid and Mehdi Rezagholizadeh

23:40–23:50 SummEval: Re-evaluating Summarization Evaluation
Alex Fabbri, Wojciech Kryscinski, Bryan McCann, Caiming Xiong and Richard
Socher

23:50–24:00 Towards Question-Answering as an Automatic Metric for Evaluating the Content
Quality of a Summary
Daniel Deutsch, Tania Bedrax-Weiss and Dan Roth

Session 12C: Question Answering 3

23:00–23:10 Dual Reader-Parser on Hybrid Textual and Tabular Evidence for Open Domain
Question Answering
Alexander Hanbo Li, Patrick Ng, Peng Xu, Henghui Zhu, Zhiguo Wang and Bing
Xiang

23:10–23:20 Generation-Augmented Retrieval for Open-Domain Question Answering
Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong Shen, Jianfeng Gao, Jiawei Han
and Weizhu Chen

23:20–23:30 Check It Again:Progressive Visual Question Answering via Visual Entailment
Qingyi Si, Zheng Lin, Ming yu Zheng, Peng Fu and Weiping Wang

23:30–23:40 A Mutual Information Maximization Approach for the Spurious Solution Problem
in Weakly Supervised Question Answering
Zhihong Shao, Lifeng Shang, Qun Liu and Minlie Huang

xciii
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23:40–23:50 Relevance-guided Supervision for OpenQA with ColBERT
Omar Khattab, Christopher Potts and Matei Zaharia

23:50–23:57 Towards more equitable question answering systems: How much more data do you
need?
Arnab Debnath, Navid Rajabi, Fardina Fathmiul Alam and Antonios Anastasopou-
los

Session 12D: Theme 1

23:00–23:10 Breaking Down Walls of Text: How Can NLP Benefit Consumer Privacy?
Abhilasha Ravichander, Alan W Black, Thomas Norton, Shomir Wilson and Nor-
man Sadeh

23:10–23:20 Supporting Land Reuse of Former Open Pit Mining Sites using Text Classification
and Active Learning
Christopher Schröder, Kim Bürgl, Yves Annanias, Andreas Niekler, Lydia Müller,
Daniel Wiegreffe, Christian Bender, Christoph Mengs, Gerik Scheuermann and
Gerhard Heyer

23:20–23:30 Reliability Testing for Natural Language Processing Systems
Samson Tan, Shafiq Joty, Kathy Baxter, Araz Taeihagh, Gregory A. Bennett and
Min-Yen Kan

23:30–23:40 Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data
Paul Pu Liang, Terrance Liu, Anna Cai, Michal Muszynski, Ryo Ishii, Nick Allen,
Randy Auerbach, David Brent, Ruslan Salakhutdinov and Louis-Philippe Morency

23:40–23:50 Anonymisation Models for Text Data: State of the art, Challenges and Future Di-
rections
Pierre Lison, Ildikó Pilán, David Sanchez, Montserrat Batet and Lilja Øvrelid

xciv
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Poster 2A: Semantics: Sentence-level Semantics, Textual Inference and Other
areas

0:00–2:00 End-to-End AMR Corefencence Resolution
Qiankun Fu, Linfeng Song, Wenyu Du and Yue Zhang

Poster 2B: Linguistic Theories, Cognitive Modeling and Psycholinguistics

0:00–2:00 How is BERT surprised? Layerwise detection of linguistic anomalies
Bai Li, Zining Zhu, Guillaume Thomas, Yang Xu and Frank Rudzicz

0:00–2:00 Psycholinguistic Tripartite Graph Network for Personality Detection
Tao Yang, Feifan Yang, Haolan Ouyang and Xiaojun Quan

Poster 2C: Semantics: Lexical Semantics

0:00–2:00 Verb Metaphor Detection via Contextual Relation Learning
Wei Song, Shuhui Zhou, Ruiji Fu, Ting Liu and Lizhen Liu

Poster 2D: Speech and Multimodality

0:00–2:00 Improving Speech Translation by Understanding and Learning from the Auxiliary
Text Translation Task
Yun Tang, Juan Pino, Xian Li, Changhan Wang and Dmitriy Genzel

xcv
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Poster 2E: Ethics in NLP

0:00–2:00 Probing Toxic Content in Large Pre-Trained Language Models
Nedjma Ousidhoum, Xinran Zhao, Tianqing Fang, Yangqiu Song and Dit-Yan Ye-
ung

0:00–2:00 Societal Biases in Language Generation: Progress and Challenges
Emily Sheng, Kai-Wei Chang, Prem Natarajan and Nanyun Peng

Poster 2F: Interpretability and Analysis of Models for NLP

0:00–2:00 Reservoir Transformers
Sheng Shen, Alexei Baevski, Ari Morcos, Kurt Keutzer, Michael Auli and Douwe
Kiela

Poster 2G: Machine Learning for NLP

0:00–2:00 Subsequence Based Deep Active Learning for Named Entity Recognition
Puria Radmard, Yassir Fathullah and Aldo Lipani

0:00–2:00 Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained
Language Models
Tyler Chang, Yifan Xu, Weijian Xu and Zhuowen Tu

0:00–2:00 BinaryBERT: Pushing the Limit of BERT Quantization
Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin JIN, Xin Jiang, Qun Liu, Michael
Lyu and Irwin King

0:00–2:00 Embedding Time Differences in Context-sensitive Neural Networks for Learning
Time to Event
Nazanin Dehghani, Hassan Hajipoor and Hadi Amiri

0:00–2:00 Are Pretrained Convolutions Better than Pretrained Transformers?
Yi Tay, Mostafa Dehghani, Jai Prakash Gupta, Vamsi Aribandi, Dara Bahri, Zhen
Qin and Donald Metzler

0:00–2:00 PairRE: Knowledge Graph Embeddings via Paired Relation Vectors
Linlin Chao, Jianshan He, Taifeng Wang and Wei Chu

xcvi
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0:00–2:00 Improving Compositional Generalization in Classification Tasks via Structure An-
notations
Juyong Kim, Pradeep Ravikumar, Joshua Ainslie and Santiago Ontanon

0:00–2:00 Learning to Generate Task-Specific Adapters from Task Description
Qinyuan Ye and Xiang Ren

0:00–2:00 Hierarchy-aware Label Semantics Matching Network for Hierarchical Text Classi-
fication
Haibin Chen, Qianli Ma, Zhenxi Lin and Jiangyue Yan

0:00–2:00 HiddenCut: Simple Data Augmentation for Natural Language Understanding with
Better Generalizability
Jiaao Chen, Dinghan Shen, Weizhu Chen and Diyi Yang

0:00–2:00 Efficient Content-Based Sparse Attention with Routing Transformers
Aurko Roy, Mohammad Saffar, Ashish Vaswani and David Grangier

Poster 2H: Dialog and Interactive Systems

0:00–2:00 Neural Stylistic Response Generation with Disentangled Latent Variables
Qingfu Zhu, Wei-Nan Zhang, Ting Liu and William Yang Wang

0:00–2:00 Intent Classification and Slot Filling for Privacy Policies
Wasi Ahmad, Jianfeng Chi, Tu Le, Thomas Norton, Yuan Tian and Kai-Wei Chang

0:00–2:00 RADDLE: An Evaluation Benchmark and Analysis Platform for Robust Task-
oriented Dialog Systems
Baolin Peng, Chunyuan Li, Zhu Zhang, Chenguang Zhu, Jinchao Li and Jianfeng
Gao

0:00–2:00 QA-Driven Zero-shot Slot Filling with Weak Supervision Pretraining
Xinya Du, Luheng He, Qi Li, Dian Yu, Panupong Pasupat and Yuan Zhang

0:00–2:00 Domain-Adaptive Pretraining Methods for Dialogue Understanding
Han Wu, Kun Xu, Linfeng Song, Lifeng Jin, Haisong Zhang and Linqi Song

0:00–2:00 Semantic Representation for Dialogue Modeling
Xuefeng Bai, Yulong Chen, Linfeng Song and Yue Zhang

xcvii
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0:00–2:00 A Pre-training Strategy for Zero-Resource Response Selection in Knowledge-
Grounded Conversations
Chongyang Tao, Changyu Chen, Jiazhan Feng, Ji-Rong Wen and Rui Yan

0:00–2:00 SOLOIST: Building Task Bots at Scale with Transfer Learning and Machine Teach-
ing
Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayandeh, Lars Liden and Jianfeng
Gao

Poster 2I: Information Retrieval and Text Mining

0:00–2:00 Dependency-driven Relation Extraction with Attentive Graph Convolutional Net-
works
Yuanhe Tian, Guimin Chen, Yan Song and Xiang Wan

0:00–2:00 Evaluating Entity Disambiguation and the Role of Popularity in Retrieval-Based
NLP
Anthony Chen, Pallavi Gudipati, Shayne Longpre, Xiao Ling and Sameer Singh

Poster 2J: Resources and Evaluation

0:00–2:00 Targeting the Benchmark: On Methodology in Current Natural Language Process-
ing Research
David Schlangen

0:00–2:00 Evaluation Examples are not Equally Informative: How should that change NLP
Leaderboards?
Pedro Rodriguez, Joe Barrow, Alexander Miserlis Hoyle, John P. Lalor, Robin Jia
and Jordan Boyd-Graber

xcviii
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Poster 2K: Computational Social Science and Cultural Analytics

0:00–2:00 Claim Matching Beyond English to Scale Global Fact-Checking
Ashkan Kazemi, Kiran Garimella, Devin Gaffney and Scott Hale

0:00–2:00 X-Fact: A New Benchmark Dataset for Multilingual Fact Checking
Ashim Gupta and Vivek Srikumar

Poster 2L: Machine Translation and Multilinguality

0:00–2:00 SemFace: Pre-training Encoder and Decoder with a Semantic Interface for Neural
Machine Translation
Shuo Ren, Long Zhou, Shujie Liu, Furu Wei, Ming Zhou and Shuai Ma

0:00–2:00 Energy-Based Reranking: Improving Neural Machine Translation Using Energy-
Based Models
Sumanta Bhattacharyya, Amirmohammad Rooshenas, Subhajit Naskar, Simeng
Sun, Mohit Iyyer and Andrew McCallum

0:00–2:00 nmT5 - Is parallel data still relevant for pre-training massively multilingual lan-
guage models?
Mihir Kale, Aditya Siddhant, Rami Al-Rfou, Linting Xue, Noah Constant and
Melvin Johnson

0:00–2:00 Syntax-augmented Multilingual BERT for Cross-lingual Transfer
Wasi Ahmad, Haoran Li, Kai-Wei Chang and Yashar Mehdad

0:00–2:00 How to Adapt Your Pretrained Multilingual Model to 1600 Languages
Abteen Ebrahimi and Katharina Kann

0:00–2:00 Synthesizing Parallel Data of User-Generated Texts with Zero-Shot Neural Machine
Translation
Benjamin Marie and Atsushi Fujita

xcix
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Poster 2M: Syntax: Tagging, Chunking, and Parsing

0:00–2:00 Weakly Supervised Named Entity Tagging with Learnable Logical Rules
Jiacheng Li, Haibo Ding, Jingbo Shang, Julian McAuley and Zhe Feng

Poster 2N: NLP Applications

0:00–2:00 Question Generation for Adaptive Education
Megha Srivastava and Noah Goodman

Poster 2O: Language Generation

0:00–2:00 Prefix-Tuning: Optimizing Continuous Prompts for Generation
Xiang Lisa Li and Percy Liang

0:00–2:00 One2Set: Generating Diverse Keyphrases as a Set
Jiacheng Ye, Tao Gui, Yichao Luo, Yige Xu and Qi Zhang

0:00–2:00 A Simple Recipe for Multilingual Grammatical Error Correction
Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebastian Krause and Aliaksei Sev-
eryn

0:00–2:00 Continuous Language Generative Flow
Zineng Tang, Shiyue Zhang, Hyounghun Kim and Mohit Bansal

0:00–2:00 RYANSQL: Recursively Applying Sketch-based Slot Fillings for Complex Text-to-
SQL in Cross-Domain Databases
DongHyun Choi, Myeong Cheol Shin, EungGyun Kim and Dong Ryeol Shin
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Poster 2P: Summarization

0:00–2:00 TWAG: A Topic-Guided Wikipedia Abstract Generator
Fangwei Zhu, Shangqing Tu, Jiaxin Shi, Juanzi Li, Lei Hou and Tong Cui

Poster 2Q: Question Answering

0:00–2:00 Towards Visual Question Answering on Pathology Images
Xuehai He, Zhuo Cai, Wenlan Wei, Yichen Zhang, Luntian Mou, Eric Xing and
Pengtao Xie

0:00–2:00 ForecastQA: A Question Answering Challenge for Event Forecasting with Temporal
Text Data
Woojeong Jin, Rahul Khanna, Suji Kim, Dong-Ho Lee, Fred Morstatter, Aram Gal-
styan and Xiang Ren

0:00–2:00 Recursive Tree-Structured Self-Attention for Answer Sentence Selection
Khalil Mrini, Emilia Farcas and Ndapa Nakashole

Poster 2R: Language Grounding to Vision, Robotics and Beyond

0:00–2:00 Efficient Text-based Reinforcement Learning by Jointly Leveraging State and Com-
monsense Graph Representations
Keerthiram Murugesan, Mattia Atzeni, Pavan Kapanipathi, Kartik Talamadupula,
Mrinmaya Sachan and Murray Campbell

0:00–2:00 mTVR: Multilingual Moment Retrieval in Videos
Jie Lei, Tamara Berg and Mohit Bansal

ci
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Poster 2S: Information Extraction

0:00–2:00 How Knowledge Graph and Attention Help? A Qualitative Analysis into Bag-level
Relation Extraction
Zikun Hu, Yixin Cao, Lifu Huang and Tat-Seng Chua

0:00–2:00 Trigger is Not Sufficient: Exploiting Frame-aware Knowledge for Implicit Event
Argument Extraction
Kaiwen Wei, Xian Sun, Zequn Zhang, Jingyuan Zhang, Guo Zhi and li jin

0:00–2:00 Element Intervention for Open Relation Extraction
Fangchao Liu, Lingyong Yan, Hongyu Lin, Xianpei Han and Le Sun

0:00–2:00 Explicitly Capturing Relations between Entity Mentions via Graph Neural Networks
for Domain-specific Named Entity Recognition
Pei Chen, Haibo Ding, Jun Araki and Ruihong Huang

0:00–2:00 AdaTag: Multi-Attribute Value Extraction from Product Profiles with Adaptive De-
coding
Jun Yan, Nasser Zalmout, Yan Liang, Christan Grant, Xiang Ren and Xin Luna
Dong

0:00–2:00 CoRI: Collective Relation Integration with Data Augmentation for Open Informa-
tion Extraction
Zhengbao Jiang, Jialong Han, BUNYAMIN SISMAN and Xin Luna Dong

0:00–2:00 Benchmarking Scalable Methods for Streaming Cross Document Entity Coreference
Robert L Logan IV, Andrew McCallum, Sameer Singh and Dan Bikel

0:00–2:00 Search from History and Reason for Future: Two-stage Reasoning on Temporal
Knowledge Graphs
Zixuan Li, Xiaolong Jin, Saiping Guan, Wei Li, Jiafeng Guo, Yuanzhuo Wang and
Xueqi Cheng

cii



Wednesday, August 4, 2021 (all times UTC+0) (continued)

Poster 2T: Sentiment Analysis, Stylistic Analysis, and Argument Mining

0:00–2:00 Employing Argumentation Knowledge Graphs for Neural Argument Generation
Khalid Al Khatib, Lukas Trautner, Henning Wachsmuth, Yufang Hou and Benno
Stein

0:00–2:00 Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction
Lu Xu, Yew Ken Chia and Lidong Bing

Session 13A: Machine Translation and Multilinguality 8

08:00–08:10 On Compositional Generalization of Neural Machine Translation
Yafu Li, Yongjing Yin, Yulong Chen and Yue Zhang

08:10–08:20 Mask-Align: Self-Supervised Neural Word Alignment
Chi Chen, Maosong Sun and Yang Liu

08:20–08:30 GWLAN: General Word-Level AutocompletioN for Computer-Aided Translation
Huayang Li, Lemao Liu, Guoping Huang and Shuming Shi

08:30–08:37 Improving Lexically Constrained Neural Machine Translation with Source-
Conditioned Masked Span Prediction
Gyubok Lee, Seongjun Yang and Edward Choi

ciii
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Session 13B: Information Extraction 6

08:00–08:10 De-biasing Distantly Supervised Named Entity Recognition via Causal Intervention
Wenkai Zhang, Hongyu Lin, Xianpei Han and Le Sun

08:10–08:20 A Span-Based Model for Joint Overlapped and Discontinuous Named Entity Recog-
nition
Fei Li, ZhiChao Lin, Meishan Zhang and Donghong Ji

08:20–08:30 MLBiNet: A Cross-Sentence Collective Event Detection Network
Dongfang Lou, Zhilin Liao, Shumin Deng, Ningyu Zhang and Huajun Chen

08:30–08:40 Exploiting Document Structures and Cluster Consistencies for Event Coreference
Resolution
Hieu Minh Tran, Duy Phung and Thien Huu Nguyen

08:40–08:50 StereoRel: Relational Triple Extraction from a Stereoscopic Perspective
Xuetao Tian, Liping Jing, Lu He and Feng Liu

08:50–09:00 Knowledge-Enriched Event Causality Identification via Latent Structure Induction
Networks
Pengfei Cao, Xinyu Zuo, Yubo Chen, Kang Liu, Jun Zhao, Yuguang Chen and
Weihua Peng

Session 13C: Machine Learning for NLP 6

08:00–08:10 Turn the Combination Lock: Learnable Textual Backdoor Attacks via Word Substi-
tution
Fanchao Qi, Yuan Yao, Sophia Xu, Zhiyuan Liu and Maosong Sun

08:10–08:20 Parameter-Efficient Transfer Learning with Diff Pruning
Demi Guo, Alexander Rush and Yoon Kim

08:20–08:30 R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hier-
archical Language Modeling
Xiang Hu, Haitao Mi, Zujie Wen, Yafang Wang, Yi Su, Jing Zheng and Gerard de
Melo

08:30–08:40 Risk Minimization for Zero-shot Sequence Labeling
Zechuan Hu, Yong Jiang, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang
and Kewei Tu

civ
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08:40–08:50 WARP: Word-level Adversarial ReProgramming
Karen Hambardzumyan, Hrant Khachatrian and Jonathan May

08:50–09:00 Lexicon Learning for Few Shot Sequence Modeling
Ekin Akyurek and Jacob Andreas

Session 13D: NLP Applications 3

08:00–08:10 Personalized Transformer for Explainable Recommendation
Lei Li, Yongfeng Zhang and Li Chen

08:10–08:20 Generating SOAP Notes from Doctor-Patient Conversations Using Modular Sum-
marization Techniques
Kundan Krishna, Sopan Khosla, Jeffrey Bigham and Zachary C. Lipton

08:20–08:30 Tail-to-Tail Non-Autoregressive Sequence Prediction for Chinese Grammatical Er-
ror Correction
Piji Li and Shuming Shi

08:30–08:40 Early Detection of Sexual Predators in Chats
Matthias Vogt, Ulf Leser and Alan Akbik

08:40–08:50 Writing by Memorizing: Hierarchical Retrieval-based Medical Report Generation
Xingyi Yang, Muchao Ye, Quanzeng You and Fenglong Ma

08:50–08:57 Quotation Recommendation and Interpretation Based on Transformation from
Queries to Quotations
Lingzhi Wang, Xingshan Zeng and Kam-Fai Wong

cv
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Session 13E: Information Retrieval and Text Mining 2

08:00–08:10 Concept-Based Label Embedding via Dynamic Routing for Hierarchical Text Clas-
sification
Xuepeng Wang, Li Zhao, Bing Liu, Tao Chen, Feng Zhang and Di Wang

08:10–08:20 VisualSparta: An Embarrassingly Simple Approach to Large-scale Text-to-Image
Search with Weighted Bag-of-words
Xiaopeng Lu, Tiancheng Zhao and Kyusong Lee

08:20–08:30 Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision
Si Sun, Yingzhuo Qian, Zhenghao Liu, Chenyan Xiong, Kaitao Zhang, Jie Bao,
Zhiyuan Liu and Paul Bennett

08:30–08:40 Semi-Supervised Text Classification with Balanced Deep Representation Distribu-
tions
Changchun Li, Ximing Li and Jihong Ouyang

08:40–08:50 Improving Document Representations by Generating Pseudo Query Embeddings for
Dense Retrieval
Hongyin Tang, Xingwu Sun, Beihong Jin, Jingang Wang, Fuzheng Zhang and Wei
Wu

08:50–08:57 Pre-training is a Hot Topic: Contextualized Document Embeddings Improve Topic
Coherence
Federico Bianchi, Silvia Terragni and Dirk Hovy

Poster 3A: Semantics: Sentence-level Semantics, Textual Inference and Other
areas

9:00–11:00 ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation
Transfer
Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang, Wei Wu and Weiran Xu

9:00–11:00 Exploring Dynamic Selection of Branch Expansion Orders for Code Generation
Hui Jiang, Chulun Zhou, Fandong Meng, Biao Zhang, Jie Zhou, Degen Huang,
Qingqiang Wu and Jinsong Su

9:00–11:00 COINS: Dynamically Generating COntextualized Inference Rules for Narrative
Story Completion
Debjit Paul and Anette Frank

9:00–11:00 Reasoning over Entity-Action-Location Graph for Procedural Text Understanding
Hao Huang, Xiubo Geng, Jian Pei, Guodong Long and Daxin Jiang

cvi
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9:00–11:00 From Paraphrasing to Semantic Parsing: Unsupervised Semantic Parsing via Syn-
chronous Semantic Decoding
Shan Wu, Bo Chen, Chunlei Xin, Xianpei Han, Le Sun, Weipeng Zhang, Jiansong
Chen, Fan Yang and Xunliang Cai

9:00–11:00 Pre-training Universal Language Representation
Yian Li and Hai Zhao

9:00–11:00 Structural Pre-training for Dialogue Comprehension
Zhuosheng Zhang and Hai Zhao

9:00–11:00 AutoTinyBERT: Automatic Hyper-parameter Optimization for Efficient Pre-trained
Language Models
Yichun Yin, Cheng Chen, Lifeng Shang, Xin Jiang, Xiao Chen and Qun Liu

9:00–11:00 Data Augmentation with Adversarial Training for Cross-Lingual NLI
Xin Dong, Yaxin Zhu, Zuohui Fu, Dongkuan Xu and Gerard de Melo

9:00–11:00 Input Representations for Parsing Discourse Representation Structures: Comparing
English with Chinese
Chunliu Wang, Rik van Noord, Arianna Bisazza and Johan Bos

9:00–11:00 Code Generation from Natural Language with Less Prior Knowledge and More
Monolingual Data
Sajad Norouzi, Keyi Tang and Yanshuai Cao

9:00–11:00 Bootstrapped Unsupervised Sentence Representation Learning
Yan Zhang, Ruidan He, ZUOZHU LIU, Lidong Bing and Haizhou Li

9:00–11:00 Learning Event Graph Knowledge for Abductive Reasoning
Li Du, Xiao Ding, Ting Liu and Bing Qin

9:00–11:00 Issues with Entailment-based Zero-shot Text Classification
Tingting Ma, Jin-Ge Yao, Chin-Yew Lin and Tiejun Zhao

9:00–11:00 Neural-Symbolic Commonsense Reasoner with Relation Predictors
Farhad Moghimifar, Lizhen Qu, Terry Yue Zhuo, Gholamreza Haffari and Mahsa
Baktashmotlagh

cvii
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Poster 3B: Linguistic Theories, Cognitive Modeling and Psycholinguistics

9:00–11:00 A Cognitive Regularizer for Language Modeling
Jason Wei, Clara Meister and Ryan Cotterell

9:00–11:00 What Motivates You? Benchmarking Automatic Detection of Basic Needs from
Short Posts
Sanja Stajner, Seren Yenikent, Bilal Ghanem and Marc Franco-Salvador

9:00–11:00 Lower Perplexity is Not Always Human-Like
Tatsuki Kuribayashi, Yohei Oseki, Takumi Ito, Ryo Yoshida, Masayuki Asahara and
Kentaro Inui

Poster 3C: Semantics: Lexical Semantics

9:00–11:00 Word Sense Disambiguation: Towards Interactive Context Exploitation from Both
Word and Sense Perspectives
Ming Wang and Yinglin Wang

9:00–11:00 A Knowledge-Guided Framework for Frame Identification
Xuefeng Su, Ru Li, Xiaoli Li, Jeff Z. Pan, Hu Zhang, Qinghua Chai and Xiaoqi Han

9:00–11:00 Obtaining Better Static Word Embeddings Using Contextual Embedding Models
Prakhar Gupta and Martin Jaggi

9:00–11:00 Meta-Learning with Variational Semantic Memory for Word Sense Disambiguation
Yingjun Du, Nithin Holla, Xiantong Zhen, Cees Snoek and Ekaterina Shutova

9:00–11:00 LexFit: Lexical Fine-Tuning of Pretrained Language Models
Ivan Vulić, Edoardo Maria Ponti, Anna Korhonen and Goran Glavaš

9:00–11:00 Semantic Frame Induction using Masked Word Embeddings and Two-Step Cluster-
ing
Kosuke Yamada, Ryohei Sasano and Koichi Takeda

9:00–11:00 Multi-SimLex: A Large-Scale Evaluation of Multilingual and Cross-Lingual Lexical
Semantic Similarity
Ivan Vulic, Simon Baker, Edoardo Maria Ponti, Ulla Petti, Ira Leviant, Kelly Wing,
Olga Majewska, Eden Bar, Matt Malone, Thierry Poibeau, Roi Reichart and Anna
Korhonen

cviii
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Poster 3D: Speech and Multimodality

9:00–11:00 Text-Free Image-to-Speech Synthesis Using Learned Segmental Units
Wei-Ning Hsu, David Harwath, Tyler Miller, Christopher Song and James Glass

9:00–11:00 CTFN: Hierarchical Learning for Multimodal Sentiment Analysis Using Coupled-
Translation Fusion Network
Jiajia Tang, Kang Li, Xuanyu Jin, Andrzej Cichocki, Qibin Zhao and Wanzeng
Kong

9:00–11:00 Lightweight Adapter Tuning for Multilingual Speech Translation
Hang Le, Juan Pino, Changhan Wang, Jiatao Gu, Didier Schwab and Laurent Be-
sacier

Poster 3E: Interpretability and Analysis of Models for NLP

9:00–11:00 Parameter Selection: Why We Should Pay More Attention to It
Jie-Jyun Liu, Tsung-Han Yang, Si-An Chen and Chih-Jen Lin

9:00–11:00 Positional Artefacts Propagate Through Masked Language Model Embeddings
Ziyang Luo, Artur Kulmizev and Xiaoxi Mao

9:00–11:00 Language Model Evaluation Beyond Perplexity
Clara Meister and Ryan Cotterell

9:00–11:00 Learning to Explain: Generating Stable Explanations Fast
Xuelin Situ, Ingrid Zukerman, Cecile Paris, Sameen Maruf and Gholamreza Haffari

9:00–11:00 StereoSet: Measuring stereotypical bias in pretrained language models
Moin Nadeem, Anna Bethke and Siva Reddy

9:00–11:00 Alignment Rationale for Natural Language Inference
Zhongtao Jiang, Yuanzhe Zhang, Zhao Yang, Jun Zhao and Kang Liu

9:00–11:00 Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression
based on Matrix Product Operators
Peiyu Liu, Ze-Feng Gao, Wayne Xin Zhao, Zhi-Yuan Xie, Zhong-Yi Lu and Ji-Rong
Wen

cix
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9:00–11:00 On Sample Based Explanation Methods for NLP: Faithfulness, Efficiency and Se-
mantic Evaluation
Wei Zhang, Ziming Huang, Yada Zhu, Guangnan Ye, Xiaodong Cui and Fan Zhang

9:00–11:00 CausaLM: Causal Model Explanation Through Counterfactual Language Models
Amir Feder, Nadav Oved, Uri Shalit and Roi Reichart

9:00–11:00 Amnesic Probing: Behavioral Explanation With Amnesic Counterfactuals
Yanai Elazar, Shauli Ravfogel, Alon Jacovi and Yoav Goldberg

Poster 3F: Information Retrieval and Text Mining

9:00–11:00 Syntax-Enhanced Pre-trained Model
Zenan Xu, Daya Guo, Duyu Tang, Qinliang Su, Linjun Shou, Ming Gong, Wanjun
Zhong, Xiaojun Quan, Daxin Jiang and Nan Duan

9:00–11:00 Matching Distributions between Model and Data: Cross-domain Knowledge Distil-
lation for Unsupervised Domain Adaptation
Bo Zhang, Xiaoming Zhang, Yun Liu, Lei Cheng and Zhoujun Li

9:00–11:00 Counterfactual Inference for Text Classification Debiasing
Chen Qian, Fuli Feng, Lijie Wen, Chunping Ma and Pengjun Xie

9:00–11:00 HieRec: Hierarchical User Interest Modeling for Personalized News Recommenda-
tion
Tao Qi, Fangzhao Wu, Chuhan Wu, Peiru Yang, Yang Yu, Xing Xie and Yongfeng
Huang

9:00–11:00 Distinct Label Representations for Few-Shot Text Classification
Sora Ohashi, Junya Takayama, Tomoyuki Kajiwara and Yuki Arase

9:00–11:00 PP-Rec: News Recommendation with Personalized User Interest and Time-aware
News Popularity
Tao Qi, Fangzhao Wu, Chuhan Wu and Yongfeng Huang

9:00–11:00 Article Reranking by Memory-Enhanced Key Sentence Matching for Detecting Pre-
viously Fact-Checked Claims
Qiang Sheng, Juan Cao, Xueyao Zhang, Xirong Li and Lei Zhong

9:00–11:00 Learning to Solve NLP Tasks in an Incremental Number of Languages
Giuseppe Castellucci, Simone Filice, Danilo Croce and Roberto Basili

cx
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Poster 3G: Machine Learning for NLP

9:00–11:00 Defense against Synonym Substitution-based Adversarial Attacks via Dirichlet
Neighborhood Ensemble
Yi Zhou, Xiaoqing Zheng, Cho-Jui Hsieh, Kai-Wei Chang and Xuanjing Huang

9:00–11:00 Shortformer: Better Language Modeling using Shorter Inputs
Ofir Press, Noah A. Smith and Mike Lewis

9:00–11:00 BanditMTL: Bandit-based Multi-task Learning for Text Classification
Yuren Mao, Zekai Wang, Weiwei Liu, Xuemin Lin and Wenbin Hu

9:00–11:00 Unified Interpretation of Softmax Cross-Entropy and Negative Sampling: With Case
Study for Knowledge Graph Embedding
Hidetaka Kamigaito and Katsuhiko Hayashi

9:00–11:00 Hi-Transformer: Hierarchical Interactive Transformer for Efficient and Effective
Long Document Modeling
Chuhan Wu, Fangzhao Wu, Tao Qi and Yongfeng Huang

9:00–11:00 De-Confounded Variational Encoder-Decoder for Logical Table-to-Text Generation
Wenqing Chen, Jidong Tian, Yitian Li, Hao He and Yaohui Jin

9:00–11:00 Rethinking Stealthiness of Backdoor Attack against NLP Models
Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou and Xu Sun

9:00–11:00 Crowdsourcing Learning as Domain Adaptation: A Case Study on Named Entity
Recognition
Xin Zhang, Guangwei Xu, Yueheng Sun, Meishan Zhang and Pengjun Xie

9:00–11:00 Robust Transfer Learning with Pretrained Language Models through Adapters
Wenjuan Han, Bo Pang and Ying Nian Wu

9:00–11:00 Embracing Ambiguity: Shifting the Training Target of NLI Models
Johannes Mario Meissner, Napat Thumwanit, Saku Sugawara and Akiko Aizawa

9:00–11:00 Exploring Distantly-Labeled Rationales in Neural Network Models
Quzhe Huang, Shengqi Zhu, Yansong Feng and Dongyan Zhao

cxi
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9:00–11:00 Learning to Perturb Word Embeddings for Out-of-distribution QA
Seanie Lee, Minki Kang, Juho Lee and Sung Ju Hwang

Poster 3H: Dialog and Interactive Systems

9:00–11:00 Maria: A Visual Experience Powered Conversational Agent
Zujie Liang, Huang Hu, Can Xu, Chongyang Tao, Xiubo Geng, yining Chen, Fan
Liang and Daxin Jiang

9:00–11:00 A Human-machine Collaborative Framework for Evaluating Malevolence in Dia-
logues
Yangjun Zhang, Pengjie Ren and Maarten de Rijke

9:00–11:00 Generating Relevant and Coherent Dialogue Responses using Self-Separated Con-
ditional Variational AutoEncoders
Bin Sun, Shaoxiong Feng, Yiwei Li, Jiamou Liu and Kan Li

9:00–11:00 Modeling Discriminative Representations for Out-of-Domain Detection with Super-
vised Contrastive Learning
Zhiyuan Zeng, Keqing He, Yuanmeng Yan, Zijun Liu, Yanan Wu, Hong Xu, Huix-
ing Jiang and Weiran Xu

9:00–11:00 Learning to Ask Conversational Questions by Optimizing Levenshtein Distance
Zhongkun Liu, Pengjie Ren, Zhumin CHEN, Zhaochun Ren, Maarten de Rijke and
Ming Zhou

9:00–11:00 DVD: A Diagnostic Dataset for Multi-step Reasoning in Video Grounded Dialogue
Hung Le, Chinnadhurai Sankar, Seungwhan Moon, Ahmad Beirami, Alborz
Geramifard and Satwik Kottur

9:00–11:00 Preview, Attend and Review: Schema-Aware Curriculum Learning for Multi-
Domain Dialogue State Tracking
Yinpei Dai, Hangyu Li, Yongbin Li, Jian Sun, Fei Huang, Luo Si and Xiaodan Zhu

9:00–11:00 On the Generation of Medical Dialogs for COVID-19
Meng Zhou, Zechen Li, Bowen Tan, Guangtao Zeng, Wenmian Yang, Xuehai He,
Zeqian Ju, Subrato Chakravorty, Shu Chen, Xingyi Yang, Yichen Zhang, Qingyang
Wu, Zhou Yu, Kun Xu, Eric Xing and Pengtao Xie

9:00–11:00 Constructing Multi-Modal Dialogue Dataset by Replacing Text with Semantically
Relevant Images
Nyoungwoo Lee, Suwon Shin, Jaegul Choo, Ho-Jin Choi and Sung-Hyon Myaeng

9:00–11:00 MMGCN: Multimodal Fusion via Deep Graph Convolution Network for Emotion
Recognition in Conversation
Jingwen Hu, Yuchen Liu, Jinming Zhao and Qin Jin

cxii
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9:00–11:00 DynaEval: Unifying Turn and Dialogue Level Evaluation
Chen Zhang, Yiming Chen, Luis Fernando D’Haro, Yan Zhang, Thomas Friedrichs,
Grandee Lee and Haizhou Li

9:00–11:00 Unsupervised Learning of KB Queries in Task-Oriented Dialogs
Dinesh Raghu, Nikhil Gupta and Mausam

Poster 3I: Ethics in NLP

9:00–11:00 Exposing the limits of Zero-shot Cross-lingual Hate Speech Detection
Debora Nozza

Poster 3J: Resources and Evaluation

9:00–11:00 CoSQA: 20,000+ Web Queries for Code Search and Question Answering
Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong, Ke Xu, Daxin Jiang, Ming
Zhou and Nan Duan

9:00–11:00 QED: A Framework and Dataset for Explanations in Question Answering
Matthew Lamm, Jennimaria Palomaki, Chris Alberti, Daniel Andor, Eunsol Choi,
Livio Baldini Soares and Michael Collins

Poster 3K: Machine Translation and Multilinguality

9:00–11:00 Rewriter-Evaluator Architecture for Neural Machine Translation
Yangming Li and Kaisheng Yao

9:00–11:00 BERTTune: Fine-Tuning Neural Machine Translation with BERTScore
Inigo Jauregi Unanue, Jacob Parnell and Massimo Piccardi

9:00–11:00 Modeling Bilingual Conversational Characteristics for Neural Chat Translation
Yunlong Liang, Fandong Meng, Yufeng Chen, Jinan Xu and Jie Zhou

9:00–11:00 Importance-based Neuron Allocation for Multilingual Neural Machine Translation
Wanying Xie, Yang Feng, Shuhao Gu and Dong Yu

cxiii
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9:00–11:00 Transfer Learning for Sequence Generation: from Single-source to Multi-source
Xuancheng Huang, jingfang xu, Maosong Sun and Yang Liu

9:00–11:00 A Closer Look at Few-Shot Crosslingual Transfer: The Choice of Shots Matters
Mengjie Zhao, Yi Zhu, Ehsan Shareghi, Ivan Vulić, Roi Reichart, Anna Korhonen
and Hinrich Schütze

Poster 3L: Discourse and Pragmatics

9:00–11:00 Coreference Reasoning in Machine Reading Comprehension
Mingzhu Wu, Nafise Sadat Moosavi, Dan Roth and Iryna Gurevych

9:00–11:00 Entity Enhancement for Implicit Discourse Relation Classification in the Biomedi-
cal Domain
Wei Shi and Vera Demberg

9:00–11:00 Adapting Unsupervised Syntactic Parsing Methodology for Discourse Dependency
Parsing
Liwen Zhang, Ge Wang, Wenjuan Han and Kewei Tu

9:00–11:00 Unsupervised Pronoun Resolution via Masked Noun-Phrase Prediction
Ming Shen, Pratyay Banerjee and Chitta Baral

Poster 3M: Syntax: Tagging, Chunking, and Parsing

9:00–11:00 A Conditional Splitting Framework for Efficient Constituency Parsing
Thanh-Tung Nguyen, Xuan-Phi Nguyen, Shafiq Joty and Xiaoli Li

9:00–11:00 A Unified Generative Framework for Various NER Subtasks
Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng Zhang and Xipeng Qiu

9:00–11:00 An In-depth Study on Internal Structure of Chinese Words
Chen Gong, Saihao Huang, Houquan Zhou, Zhenghua Li, Min Zhang, Zhefeng
Wang, baoxing Huai and Nicholas Jing Yuan

9:00–11:00 MulDA: A Multilingual Data Augmentation Framework for Low-Resource Cross-
Lingual NER
Linlin Liu, BOSHENG DING, Lidong Bing, Shafiq Joty, Luo Si and Chunyan Miao

cxiv
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9:00–11:00 Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter
Wei Liu, Xiyan Fu, Yue Zhang and Wenming Xiao

Poster 3N: NLP Applications

9:00–11:00 Math Word Problem Solving with Explicit Numerical Values
Qinzhuo Wu, Qi Zhang, Zhongyu Wei and Xuanjing Huang

9:00–11:00 Neural-Symbolic Solver for Math Word Problems with Auxiliary Tasks
Jinghui Qin, Xiaodan Liang, Yining Hong, Jianheng Tang and Liang Lin

9:00–11:00 SMedBERT: A Knowledge-Enhanced Pre-trained Language Model with Structured
Semantics for Medical Text Mining
Taolin Zhang, Zerui Cai, Chengyu Wang, Minghui Qiu, Bite Yang and XIAOFENG
HE

9:00–11:00 What is Your Article Based On? Inferring Fine-grained Provenance
Yi Zhang, Zachary Ives and Dan Roth

9:00–11:00 Cross-modal Memory Networks for Radiology Report Generation
Zhihong Chen, Yaling Shen, Yan Song and Xiang Wan

9:00–11:00 Controversy and Conformity: from Generalized to Personalized Aggressiveness De-
tection
Kamil Kanclerz, Alicja Figas, Marcin Gruza, Tomasz Kajdanowicz, Jan Kocon,
Daria Puchalska and Przemyslaw Kazienko

9:00–11:00 Multi-perspective Coherent Reasoning for Helpfulness Prediction of Multimodal
Reviews
Junhao Liu, Zhen Hai, Min Yang and Lidong Bing

9:00–11:00 Instantaneous Grammatical Error Correction with Shallow Aggressive Decoding
Xin Sun, Tao Ge, Furu Wei and Houfeng Wang

9:00–11:00 Automatic ICD Coding via Interactive Shared Representation Networks with Self-
distillation Mechanism
Tong Zhou, Pengfei Cao, Yubo Chen, Kang Liu, Jun Zhao, Kun Niu, Weifeng
Chong and Shengping Liu

9:00–11:00 PHMOSpell: Phonological and Morphological Knowledge Guided Chinese
Spelling Check
Li Huang, Junjie Li, Weiwei Jiang, Zhiyu Zhang, Minchuan Chen, Shaojun Wang
and Jing Xiao

cxv
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Poster 3O: Language Generation

9:00–11:00 Guiding the Growth: Difficulty-Controllable Question Generation through Step-by-
Step Rewriting
Yi Cheng, Siyao Li, Bang Liu, Ruihui Zhao, Sujian Li, Chenghua Lin and Yefeng
Zheng

9:00–11:00 Improving Encoder by Auxiliary Supervision Tasks for Table-to-Text Generation
Liang Li, Can Ma, Yinliang Yue and Dayong Hu

9:00–11:00 POS-Constrained Parallel Decoding for Non-autoregressive Generation
Kexin Yang, Wenqiang Lei, Dayiheng Liu, Weizhen Qi and Jiancheng Lv

9:00–11:00 Bridging Subword Gaps in Pretrain-Finetune Paradigm for Natural Language Gen-
eration
Xin Liu, Baosong Yang, Dayiheng Liu, Haibo Zhang, Weihua Luo, Min Zhang,
Haiying Zhang and Jinsong Su

9:00–11:00 TGEA: An Error-Annotated Dataset and Benchmark Tasks for TextGeneration from
Pretrained Language Models
Jie He, Bo Peng, Yi Liao, Qun Liu and Deyi Xiong

9:00–11:00 Addressing Semantic Drift in Generative Question Answering with Auxiliary Ex-
traction
Chenliang Li, Bin Bi, Ming Yan, Wei Wang and Songfang Huang

Poster 3P: Summarization

9:00–11:00 Long-Span Summarization via Local Attention and Content Selection
Potsawee Manakul and Mark Gales

9:00–11:00 RepSum: Unsupervised Dialogue Summarization based on Replacement Strategy
Xiyan Fu, Yating Zhang, Tianyi Wang, Xiaozhong Liu, Changlong Sun and Zhenglu
Yang

9:00–11:00 BASS: Boosting Abstractive Summarization with Unified Semantic Graph
Wenhao Wu, Wei Li, Xinyan Xiao, Jiachen Liu, Ziqiang Cao, Sujian Li, Hua Wu
and Haifeng Wang

9:00–11:00 Capturing Relations between Scientific Papers: An Abstractive Model for Related
Work Section Generation
Xiuying Chen, Hind Alamro, Mingzhe Li, Shen Gao, Xiangliang Zhang, Dongyan
Zhao and Rui Yan

cxvi
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9:00–11:00 Focus Attention: Promoting Faithfulness and Diversity in Summarization
Rahul Aralikatte, Shashi Narayan, Joshua Maynez, Sascha Rothe and Ryan Mc-
Donald

9:00–11:00 Generating Query Focused Summaries from Query-Free Resources
Yumo Xu and Mirella Lapata

9:00–11:00 Demoting the Lead Bias in News Summarization via Alternating Adversarial Learn-
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9:00–11:00 xMoCo: Cross Momentum Contrastive Learning for Open-Domain Question An-
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Nan Yang, Furu Wei, Binxing Jiao, Daxing Jiang and Linjun Yang
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cxvii



Wednesday, August 4, 2021 (all times UTC+0) (continued)

Poster 3R: Language Grounding to Vision, Robotics and Beyond
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Zhiyong Wu, Lingpeng Kong, Wei Bi, Xiang Li and Ben Kao

9:00–11:00 Attend What You Need: Motion-Appearance Synergistic Networks for Video Ques-
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9:00–11:00 An End-to-End Progressive Multi-Task Learning Framework for Medical Named
Entity Recognition and Normalization
Baohang Zhou, Xiangrui Cai, Ying Zhang and Xiaojie Yuan

9:00–11:00 PRGC: Potential Relation and Global Correspondence Based Joint Relational
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Ningyu Zhang, Bin Qin, Xu Ming and Yefeng Zheng

9:00–11:00 Learning from Miscellaneous Other-Class Words for Few-shot Named Entity Recog-
nition
Meihan Tong, Shuai Wang, Bin Xu, Yixin Cao, Minghui Liu, Lei Hou and Juanzi
Li
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Si

cxix



Wednesday, August 4, 2021 (all times UTC+0) (continued)

Poster 3T: Sentiment Analysis, Stylistic Analysis, and Argument Mining

9:00–11:00 Dual Graph Convolutional Networks for Aspect-based Sentiment Analysis
Ruifan Li, Hao Chen, Fangxiang Feng, Zhanyu Ma, Xiaojie WANG and Eduard
Hovy
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Jian Guan, Zhexin Zhang, Zhuoer Feng, Zitao Liu, Wenbiao Ding, Xiaoxi Mao,
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14:30–14:40 DYPLOC: Dynamic Planning of Content Using Mixed Language Models for Text
Generation
Xinyu Hua, Ashwin Sreevatsa and Lu Wang

14:40–14:50 Controllable Open-ended Question Generation with A New Question Type Ontology
Shuyang Cao and Lu Wang
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14:40–14:50 EDITOR: an Edit-Based Transformer with Repositioning for Neural Machine
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Zhiqi Huang, Lu Hou, Lifeng Shang, Xin Jiang, Xiao Chen and Qun Liu
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proving Generalization
Chen Liang, Simiao Zuo, Minshuo Chen, Haoming Jiang, Xiaodong Liu,
Pengcheng He, Tuo Zhao and Weizhu Chen

14:30–14:40 A Novel Estimator of Mutual Information for Learning to Disentangle Textual Rep-
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Clara Meister, Martina Forster and Ryan Cotterell
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Dimitar Dimitrov, Bishr Bin Ali, Shaden Shaar, Firoj Alam, Fabrizio Silvestri,
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14:30–14:37 Unsupervised Cross-Domain Prerequisite Chain Learning using Variational Graph
Autoencoders
Irene Li, Vanessa Yan, Tianxiao Li, Rihao Qu and Dragomir Radev
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14:00–14:10 On the Efficacy of Adversarial Data Collection for Question Answering: Results
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14:20–14:30 End-to-End Training of Neural Retrievers for Open-Domain Question Answering
Devendra Sachan, Mostofa Patwary, Mohammad Shoeybi, Neel Kant, Wei Ping,
William L. Hamilton and Bryan Catanzaro

14:30–14:40 Question Answering Over Temporal Knowledge Graphs
Apoorv Saxena, Soumen Chakrabarti and Partha Talukdar
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15:00–15:10 Language Model Augmented Relevance Score
Ruibo Liu, Jason Wei and Soroush Vosoughi

15:10–15:20 DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-
Experts
Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula,
Noah A. Smith and Yejin Choi

15:20–15:30 Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving
Models
Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer and Daniel Weld

15:30–15:40 Metaphor Generation with Conceptual Mappings
Kevin Stowe, Tuhin Chakrabarty, Nanyun Peng, Smaranda Muresan and Iryna
Gurevych

15:40–15:50 Computational Framework for Slang Generation
Zhewei Sun, Richard Zemel and Yang Xu

15:50–15:57 Avoiding Overlap in Data Augmentation for AMR-to-Text Generation
Wenchao Du and Jeffrey Flanigan
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15:00–15:10 Learning Latent Structures for Cross Action Phrase Relations in Wet Lab Protocols
Chaitanya Kulkarni, Jany Chan, Eric Fosler-Lussier and Raghu Machiraju

15:10–15:20 Multimodal Multi-Speaker Merger & Acquisition Financial Modeling: A New Task,
Dataset, and Neural Baselines
Ramit Sawhney, Mihir Goyal, Prakhar Goel, Puneet Mathur and Rajiv Ratn Shah

15:20–15:30 Mid-Air Hand Gestures for Post-Editing of Machine Translation
Rashad Albo Jamara, Nico Herbig, Antonio Krüger and Josef van Genabith

15:30–15:40 Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and
Symbolic Reasoning
Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang, Xiaodan Liang and
Song-Chun Zhu
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15:40–15:50 Joint Verification and Reranking for Open Fact Checking Over Tables
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tau Yih and Sebastian Riedel

15:50–15:57 Weakly-Supervised Methods for Suicide Risk Assessment: Role of Related Domains
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15:00–15:10 Evaluation of Thematic Coherence in Microblogs
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Wuwei Lan, Chao Jiang and Wei Xu
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Mukund Srinath, Shomir Wilson and C Lee Giles

15:30–15:40 The statistical advantage of automatic NLG metrics at the system level
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15:40–15:50 Are Missing Links Predictable? An Inferential Benchmark for Knowledge Graph
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Yixin Cao, Xiang Ji, Xin Lv, Juanzi Li, Yonggang Wen and Hanwang Zhang

15:50–15:57 Can Transformer Models Measure Coherence In Text: Re-Thinking the Shuffle Test
Philippe Laban, Luke Dai, Lucas Bandarkar and Marti A. Hearst
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Alexander Fabbri, Faiaz Rahman, Imad Rizvi, Borui Wang, Haoran Li, Yashar
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15:10–15:20 Improving Factual Consistency of Abstractive Summarization via Question Answer-
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Feng Nan, Cicero Nogueira dos Santos, Henghui Zhu, Patrick Ng, Kathleen McKe-
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Xiang
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Yixin Liu and Pengfei Liu
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15:10–15:20 Verb Knowledge Injection for Multilingual Event Processing
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Fabian Galetzka, Jewgeni Rose, David Schlangen and Jens Lehmann
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Ka Wong, Praveen Paritosh and Lora Aroyo

16:10–16:20 TIMEDIAL: Temporal Commonsense Reasoning in Dialog
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16:47–16:54 Bringing Structure into Summaries: a Faceted Summarization Dataset for Long
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Rui Meng, khushboo Thaker, Lei Zhang, Yue Dong, Xingdi Yuan, Tong Wang and
Daqing He
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16:00–16:10 Improving Paraphrase Detection with the Adversarial Paraphrasing Task
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16:40–16:47 Replicating and Extending “Because Their Treebanks Leak”: Graph Isomorphism,
Covariants, and Parser Performance
Mark Anderson, Anders Søgaard and Carlos Gómez-Rodríguez
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Koustuv Sinha, Prasanna Parthasarathi, Joelle Pineau and Adina Williams
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Abstract
A snowclone is a customizable phrasal tem-
plate that can be realized in multiple, instantly
recognized variants. For example, “* is the
new *” (Orange is the new black, 40 is the new
30). Snowclones are extensively used in so-
cial media. In this paper, we study snowclones
originating from pop-culture quotes; our goal
is to automatically detect cultural references in
text. We introduce a new, publicly available
data set of pop-culture quotes and their corre-
sponding snowclone usages and train models
on them. We publish code for CATCHPHRASE,
an internet browser plugin to automatically de-
tect and mark references in real-time, and ex-
amine its performance via a user study. Aside
from assisting people to better comprehend
cultural references, we hope that detecting
snowclones can complement work on para-
phrasing and help to tackle long-standing ques-
tions in social science about the dynamics of
information propagation.

1 Introduction

First coined by Richard Dawkins (Dawkins, 1976),
a meme is a unit of cultural transmission: any idea
or behavior that can be transferred by imitation. In-
ternet memes have become an integral part of mod-
ern digital culture (Shifman, 2014). Pullum (Pul-
lum, 2004) coined the term snowclones to describe
a specific type of meme – phrasal templates that are
easily reusable in many different contexts. Pullum
described a snowclone as “a multi-use, customiz-
able, instantly recognizable, time-worn, quoted or
misquoted phrase or sentence that can be used in an
entirely open array of different jokey variants”. For
example, the quote “One does not simply walk into
Mordor” from the “Lord of the Rings” films be-
came a well-known pattern – “One does not simply
*” – used extensively online (see Figure 1).

In this paper, our goal is to develop algorithms
to detect snowclones in text. We envision an “En-

glishman in New York” – a foreigner, perhaps, or
someone who does not easily understand contem-
porary cultural references and could use the help
of an automated system to communicate better. In
particular, we focus on pop-culture references over
the internet.

From a linguistic point of view, snowclones com-
plement the paraphrasing task (Barzilay and McK-
eown, 2001; Fernando and Stevenson, 2008; Dolan
et al., 2004). Paraphrase detection identifies alter-
native ways to convey the same meaning, while
snowclones keep (some of) the original sentence
structure but completely change the meaning.

Detection and tracking of digital memes have
been the focus of multiple computational studies.
The closest to our work are MEMETRACKER
and NIFTY (Leskovec et al., 2009; Suen et al.,
2013), that tracked quotations attributed to indi-
viduals. These works focused on short, distinctive
phrases that travel relatively intact through on-line
text. Other related tasks are multi-word expres-
sion/idiom identification (Haagsma et al., 2020;
Zarrieß and Kuhn, 2009; Muzny and Zettlemoyer,
2013) and cliché detection (Cook and Hirst, 2013;
van Cranenburgh, 2018). Again, idioms and multi-
word expressions are chiefly fixed expressions (“cat
got your tongue?”, “jumped the shark”) that rarely
change their meaning across mutations. Therefore,

Figure 1: Snowclone example, based on “One does not
simply walk into Mordor” from “Lord of the Rings”.
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these settings are much more restrictive than ours.
Our contributions are the following: we propose

a novel task of snowclone detection, identifying cul-
tural references. We first formulate it as a tagging
task, treating snowclones as regular expressions;
we conduct a user study to show humans have an
intuitive notion of the “correct” pattern(s), and de-
velop a sequence-to-sequence tagger to reveal such
patterns. We then extend the formulation to softer
notions of similarity. We experiment with feature-
based and neural approaches, achieving high accu-
racies. To further show the utility of our methods,
we develop CATCHPHRASE, a browser extension to
detect pop-culture references, conduct a user study
and show it indeed helps users identify cultural ref-
erences. We publish data and code1. We believe
tracking snowclones will find interesting applica-
tions in social science, exploring the diffusion and
evolution of highly dynamic content online.

2 Snowclones as Regular Expressions

The common view of snowclones treats them as
regular expressions (The-Snowclones-Database,
2007). Thus, in this section, we formulate
the snowclone detection problem as a tagging
task. Intuitively, we want to predict for each
word in the original sentence whether it is
replaced by a wildcard. We use the resulting
pattern to match new sentences to the original
sentence. For example, given a sentence s =
〈One, does, not, simply, walk, into,Mordor〉
we would like to find a mapping:
T (s) = 〈One, does, not, simply, ∗, ∗, ∗〉.
(Adjacent wildcards can be merged)

2.1 Can People do This?

Before we set out to find an algorithm to uncover
the underlying snowclone form of an input sen-
tence, we try to evaluate the feasibility of this task.
It is not clear that such patterns exist, or are agreed
upon by human annotators. To that end, we con-
duct a user study to test if people have an intuitive
notion of snowclone patterns.

We recruited 22 volunteers through social media.
The participants were 80% males. 85% of them
were 25-35 years old, the rest being 40-55. All par-
ticipants were Israeli and identified as non-native
English speakers. Participants were given a short
explanation of snowclones and instructed to find

1https://github.com/sweedy12/
CATCHPHRASE

Figure 2: Histogram of the exact-match similarity mea-
sure (top) and relaxed-match measure (bottom), aver-
aged over all sentences, for all pairs of participants.

the snowclone form of a set of (the same) 20 sen-
tences, chosen from the memorable movie quote
database (Danescu-Niculescu-Mizil et al., 2012).
We chose sentences at random, filtering out quotes
that became known internet memes. Participants
marked words that should become wildcards, gen-
erating up to 3 patterns per sentence, as they saw
fit. We asked participants to report whether they
were familiar with any sentence, and discarded the
entire questionnaire of two who did.

Evaluation and Results. To compute similarity
between pairs of people, we propose two measures.
In exact-match, the score is the percentage of sen-
tences (out of 20) on which the two people had at
least one exact-match pattern. In relaxed-match,
we compute for each sentence the closest match
between the patterns of both people (in terms of
simple % agreement). The score is the percentage
of agreement over all 20 closest matches.

Figure 2 shows histograms over all pairs of par-
ticipants. For exact-match, most pairs of partici-
pants agree on roughly half the patterns. A careful
examination of the results indicates that partici-
pants are divided into those that prefer a single,
general pattern (annotating “The pavement was his
enemy” as “The * was his *”), and those preferring

2



Snowclone Form Tagging - Results
Model Accuracy Recall
Naive 0.74 0
Bi-LSTM-CRF 0.92 0.82
BERT 0.9 0.88

Table 1: Accuracy and recall for each of the proposed
models for the snowclone form tagging task.

several narrower patterns (marking both “The * was
his enemy” and “The pavement was his *”). An-
other contributing factor is that many mismatched
pairs of patterns differ only in stopwords. The
relaxed-match measure is less sensitive to this is-
sue and indeed demonstrates high agreement. We
hypothesize that this indicates the feasibility of
training machine learning models for this task.

3 Snowclone Pattern Tagger

We create and publish our own data set for this task,
and use it to train two different ML models for it.

Data. To train ML models to solve the task of
snowclone tagging, we needed examples for sen-
tences and their underlying snowclone form. To
this end, we use the snowclone patterns along with
the original quotes from The Snowclone Database
(The-Snowclones-Database, 2007). As this is not
enough data to train on, we use the patterns to
lookup more instances online, collecting 7700
〈snowclone pattern, instance〉 pairs. When split-
ting to train-dev-test sets (60%/20%/20%), we
make sure all variants of the same pattern are put
in the same set. We release our dataset1.

Bi-LSTM-CRF. We adapt the model of (Huang
et al., 2015), tested on part of speech tagging,
chunking and named entity recognition tasks. Its
CRF layer performs a structured prediction over
the sentence tags, using sentence-level informa-
tion rather than predicting a label for each word
separately, rendering it useful for our task. For
optimization, we use negative log-likelihood.

BERT S2S. We use BERT (Devlin et al., 2019),
as it has shown to produce good results when fine-
tuned to specific sequence-to-sequence tasks. We
fine-tune BERT for a token classification task us-
ing the snowclone form dataset. Since this model
outputs a probability measure for each token, we
use binary cross-entropy as the objective function.

See Appendix A for implementation details and
hyper-parameter tuning.

Evaluation and results. Since most words in an
input sentence are not replaceable, wildcards are
infrequent. Thus, we prioritize models with higher
recall than precision. Table 1 shows recall and ac-
curacy of the models. The naive majority baseline
(no words are wildcards) yields 74% accuracy (and,
naturally, 0% recall). The Bi-LSTM-CRF model
reaches an accuracy of 92%, and 82% recall. BERT
achieves an accuracy of 90%, and recall 88%.

4 Going Beyond Regular Expressions

When we tried to apply our models to find snow-
clones in online community text (looking for regex
matches), we realized that the regex formulation
might be too simplistic, as some cultural references
do not follow the snowclone pattern exactly, and
some sentences that do follow it are not really ref-
erences. Take Apocalypse Now’s famous “I love
the smell of napalm in the morning”. A natural cor-
responding pattern is “I love the smell of * in the
morning”, and indeed, “I love the smell of bureau-
cracy in the morning” is most likely a reference to
the movie. However, the case of “I love the smell
of pancakes in the morning” is a lot less clear. On
the other hand, “30 is the old 40” does not per-
fectly match the “* is the new *” pattern, but still
might be considered a reference. In this section
we reformulate the problem, using the output of
the sequence-to-sequence tagger as one input to a
machine learning model.

We reformulate the problem as a binary classi-
fication task over pairs of sentences. Given a seed
sentence s representing an original pop-culture
quote, and a candidate sentence c, decide whether c
is a reference to s. We note this is not an easy task,
as it is hard to put our finger on why “One does not
simply forget to social distance” is likely a refer-
ence to “One does not simply walk into Mordor”,
but “One cannot just walk right into jail” is not.

5 Snowclone Reference Detector

Data. We searched the web and found 20 famous
movie quotes that turned into snowclone internet
memes. We removed three quotes appearing in
the data of Section 3, not to contaminate our eval-
uation. Next, we defined overly general regular
expressions for each seed (attempting to catch both
snowclones and not) and crawled Reddit conversa-
tions to find matches. We choose Reddit due to its
popularity and comprehensive use of memes. We
collected 3850 pairs of seed and sentence and had
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Snowclone Detection - Results
Model Accuracy Precision Recall
Naive 0.64 1 0
SVM 0.85±0.08 0.84±0.13 0.78±0.12
RoBERTa 0.81±0.94 0.7± 0.15 0.74±0.18

Table 2: Snowclone detection task. We performed 20
splits for the SVM model and 5 for RoBERTa, and re-
port standard deviation.

an expert manually annotate them (after calibra-
tion). The dataset is imbalanced, with 64% of pairs
tagged as non-reference. When splitting to train-
dev-test (60%/20%/20%), we ensure all examples
from the same seed are put in the same set. We
take a supervised approach and train two models.

Feature-based SVM model. We calculate three
sets of features, focusing on sentence structure. (1)
Similarity between s and c: edit distance, longest
common sequence, and longest substring between
s, c. (2) We use the snowclone tagger of Section
3 to predict ŝ, the snowclone form of s and use
the same features of group (1) between ŝ, c. (3)
To characterize the shared and replaced words we
calculate the idf statistic for words shared between
s, c and words in s but not in c (idf over movie
quotes (Danescu-Niculescu-Mizil and Lee, 2011)).
We tried decision trees, random forests, and SVM,
and chose SVM due to its performance.

RoBERTa-based model. We chose RoBERTa as
our second model, as it showed impressive results
on a related 2-sentence classification task. We use
a model pre-trained on SNLI (Nie et al., 2020),
which achieved state-of-the-art result on a natural
language inference task. We replace its classifi-
cation head with a binary classification head, and
fine-tune the model on the dataset of Section 4.
Unlike SVM, we expect this model to capture se-
mantic similarity (e.g., between “old” and “new”).

See Appendix B for implementation details and
hyper-parameter tuning.

Evaluation and results. The accuracy, precision
and recall measures for all models are presented
in Table 2. The naive majority baseline achieves
64% accuracy on the full data set (as the data is
not balanced). For our feature-based SVM model,
we randomly select 20 different splits, reaching an
average of 85% accuracy, 84% precision and 78%
recall, with a corresponding std of 8.7%, 13.8% and
12%. The RoBERTa-based model achieved average
results of 81% accuracy, 70% precision and 74%

recall, with std 9.4%, 15.7% and 18.7%. Thus, we
chose the SVM model. This perhaps indicates the
importance of structure in the snowclone problem;
alternatively, perhaps the amount of data was not
sufficient to fine-tune RoBERTa.

Observations. As a (qualitative) reality check,
we choose 10 seeds unseen during training. We
crawl all Reddit posts from March 2016 (month
and year chosen at random). We choose Reddit as
a diverse and popular online community, where in-
ternet memes are used regularly. We use the SVM
model to collect new candidate references for the
seeds. We analyze the candidate references and ob-
serve that (not surprisingly) their quality is heavily
influenced by the snowclone tagger feature. When
the regex is too general (e.g., “I am your *” for
“I am your father”), the number of false positives
is high. Importantly, over all seeds our method
is capable of detecting true references that do not
exactly match the predicted snowclone-form.

6 Evaluation: Web Extension

Our main motivation in this study was to help the
proverbial “Englishman in New York” identify cul-
tural references. In this section, we ask whether our
algorithms can help users detect pop-culture ref-
erences online. We create CATCHPHRASE, a web
browser extension able to detect and mark pop-
culture references in web pages (see Figure 3). The
extension inspects the web page source and identi-
fies candidate sentences. We use locality-sensitive
hashing (Gionis et al., 1999) with similarity thresh-
old = 0.2 for filtering, allowing us to reduce com-
putation time and maintain a small number of false
negatives. Next, the extension runs the reference-
detector on each (seed, candidate sentence) pair
and highlights the predicted references.

Experimental design. We choose a set of 20 pop-
culture quotes (seeds) unseen by our reference-
detector during training time, and whose snow-
clone form is the basis to many variations. All
sentences chosen are ones that became popular in-
ternet memes. For each seed quote, we manually
crawled Reddit and found threads containing refer-
ences to it. After filtering out threads that were over
10 messages long, we were left with 106 threads.

We recruited 10 volunteers through social me-
dia, all Israeli, non-native English speakers, who
self-identified as having low familiarity with pop-
culture. 80% of the volunteers were 20-35 years
old, and the remaining 20% were 40-60 years old.
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Figure 3: Screenshot of our web extension, suggesting “Nobody puts TV in a corner” is a reference to Dirty
Dancing’s “Nobody puts baby in a corner”. The suggested reference is underlined in blue. Hovering over the
underlined sentence prompts a message containing original quote information.

70% of the participants were females. We ran-
domly selected 16 seeds for each participant and
randomly split them into two groups, one per condi-
tion (with and without our extension). The threads
were shown in random order. The participants were
asked to go over each thread and point out any
pop-culture references they detect, specifying their
origin if they knew it.
Evaluation and results. Under the no-extension
condition, participants correctly identified a pop-
culture reference 38.7% of the time. The reference
origin was correctly identified in 61.2% of these.
This is interesting, as it shows people can identify
that a sentence looks like a cultural reference, even
when they do not recognize the source.

When using the extension, participants correctly
identified a reference 68.7% of the times, recog-
nizing the origin in 98.1% of these. In 26.3% of
the threads, the algorithm did not recognize the
reference. 5% of the times, we believe the algo-
rithm was right but people thought it was not (e.g.,
“I solemnly swear I’m up for good tea” as a ref-
erence to “I solemnly swear I’m up to no good”).
The reason source recognition is not perfect is one
user finding a sentence the algorithm missed (but
not attributing it). To check our hypothesis that
web-extension users recognize more pop-culture
references, we run t-test with α = 0.95 and reject
the null hypothesis with pval = 0.00005.

7 Conclusions and Future Work

In this work we proposed the novel task of de-
tecting snowclones in text. Motivated by the high
agreement achieved by humans on a snowclone

annotation task, we first developed algorithms for
finding snowclones which are regular expressions,
then extended the formulation to a softer notion
of similarity. We introduce a new data set of pop-
culture quotes and their corresponding snowclone
variants and train models on them. We publish code
for CATCHPHRASE, an internet browser plugin to
automatically detect and mark references in real-
time. Our results demonstrate our algorithms can
indeed help users detect pop-culture references.

In the future, our work might be used in conver-
sational AI context, supporting agents’ ability to un-
derstand and even generate pop-culture references.
Another direction worth pursuing is applying our
methods to domains outside pop-culture (or at the
very least, to pop-culture of different cultures).

We believe snowclones, complementing the no-
tion of paraphrases, are worth exploring and can
give us new insights into how ideas spread and
evolve. Our approach opens an opportunity to bet-
ter answer long-standing questions in social science
about the dynamics of information.
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Below we provide implementation details for the
sake of reproducibility.

A Snowclone Pattern Tagger:
Hyper-parameter tuning

For the BI-LSTM-CRF model, we perform a
small grid search to determine the values for
the learning rate, weight decay, and the number
of layers and hidden dimension of the the BI-
LSTM. As the search space, we used learning −
rate ∈ {0.01, 0.001, 0.0001}, weight-decay ∈
{0, 0.01, 0.001}, num-layers ∈ {1, 2, 3} and
hidden-dim ∈ {32, 64, 128}. Finally, we
choose learning-rate = 0.01,weight-decay = 0,
num-layers = 2,hidden-dim = 32. For the BERT
model, we use a smaller grid search over the
learning rate (∈ {0.001, 0.0001}) and the weight
decay ({0, 0.01, 0.001}) hyper-parameters, and
train it for a single epoch using learning-rate =
0.0001,weight-decay = 0.01.

B Snowclone Reference Detector:
Hyper-parameter tuning

For the RoBERTa model, we perform the same
hyper-parameter search as described in Section A,
and use the same values. For the SVM model,
we search over kernels (RBF, linear and polyno-
mial), degree (when applicable, over [2, 3, 4]) and
C-values ({0.1 · i}10i=1). Our search dictates using
a polynomial kernel of degree 3, with C = 0.5.
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Abstract
Large-scale pretrained language models have
led to dramatic improvements in text genera-
tion. Impressive performance can be achieved
by finetuning only on a small number of in-
stances (few-shot setting). Nonetheless, al-
most all previous work simply applies random
sampling to select the few-shot training in-
stances. Little to no attention has been paid
to the selection strategies and how they would
affect model performance. In this work, we
present a study on training instance selection
in few-shot neural text generation. The selec-
tion decision is made based only on the un-
labeled data so as to identify the most worth-
while data points that should be annotated un-
der some budget of labeling cost. Based on the
intuition that the few-shot training instances
should be diverse and representative of the en-
tire data distribution, we propose a simple se-
lection strategy with K-means clustering. We
show that even with the naive clustering-based
approach, the generation models consistently
outperform random sampling on three text gen-
eration tasks: data-to-text generation, docu-
ment summarization and question generation.
The code and training data are made avail-
able at https://gitlab.com/erniecyc/

few-selector. We hope that this work will
call for more attention on this largely unex-
plored area.

1 Introduction

Few-shot text generation is an important research
topic since obtaining large-scale training data for
each individual downstream task is prohibitively
expensive. Recently, pretraining large neural net-
works with a language modeling objective has led
to significant improvement across different few-
shot text generation tasks (Radford et al., 2019;
Lewis et al., 2020) and many techniques are pro-
posed based on them (Chen et al., 2020; Schick and

∗Equal contribution. X.shen is now at Amazon Alexa AI.

The Blue Spice is a
restaurant that serves

English cuisine.

12

<Name> The Eagle

<eattype> restaurant

<food> Chinese

<Name> Blue Spice

<eattype> restaurant

<food> English

The Blue Spice is a
restaurant that
serves English

cuisine.

Table + Reference

Table only

U

L

F1
1. k selected

2. few-shot generation 
3. annotation budget

U

L

12

U

L

U LSelecting k Samples

Few-shot
learning

U Selecting k Samples

Few-shot
learning

Labeling
Capacity

:k

Labeling
Capacity :k

Lebeling

Figure 1: Training scenario: U represents unlabeled data
and L indicates labeled instances. The annotation budget only
allows selecting K data for annotating the reference text.

Schütze, 2020a; Zhang et al., 2020; Kale, 2020;
Chang et al., 2020, 2021b; Li and Liang, 2021;
Chang et al., 2021a). However, all the previous
works simulate the few-shot scenario by randomly
sampling a subset from the full training data. Lit-
tle to no attention has been paid to the selection
strategies.

In this work, we present a preliminary study at
searching for an optimal strategy to select the few-
shot training instances. Studying the selection strat-
egy is motivated by two rationales. First, random
sampling leads to a large variance of model per-
formance (Zhang et al., 2020; Schick and Schütze,
2020a,b). Yet current works sample their own train-
ing data which makes it difficult to compare across
different models. One can then not be sure whether
an improved performance can be really ascribed to
the model or the randomness of sampling. Using a
stable selection strategy to find the most informa-
tive few-shot instances can provide a fair platform
and better benchmark different few-shot generative
models. Second, in practical applications, e.g. doc-
ument summarization, the training data is usually
obtained by manually annotating the summaries
for some selected documents. In Figure 1, we illus-
trate the typical training scenario for text generation
where the annotation budget only allows annotat-
ing a limited amount of data. Studying the optimal
selection strategy can help make the most use of
our annotation budget. Specifically, we focus on
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the label-free setting where the selection can only
condition on the unannotated data. Although lever-
aging the reference text may benefit the selection
strategy, it conflicts with the realistic setting where
we need to first select the data then get its annotated
reference text.

The selection task resembles the theme of active
learning (Balcan et al., 2007), where the model
keeps identifying the most informative instances
to get labeled. Existing active learning approaches
can be roughly divided to uncertainty-based sam-
pling and representative sampling (Settles, 2009).
Uncertainty-based sampling select samples that
maximally reduce the uncertainty of the model (Tur
et al., 2005). This, however, requires a well-trained
model with decent confidence score estimations
in order to perform well. Therefore, in this paper,
we opt for the representative-sampling where the
selected training instances are expected to be dis-
similar to each other and representative enough to
cover all important patterns in the whole data distri-
bution (Agarwal et al., 2005; Wei et al., 2015). This
naturally matches the objectives of k-means cluster-
ing which minimizes the within-cluster variances
while maximizing the between-cluster variances to
encourage the diversity and representativeness of
each cluster (Krishna and Murty, 1999; Kanungo
et al., 2002). As has been shown in image clas-
sification tasks, data points closer to the cluster
centroids are usually most important, while other
faraway points can even be safely removed without
hurting model performance (Kaushal et al., 2018;
Birodkar et al., 2019). Inspired by this, we propose
a simple selection strategy which first clusters the
whole unlabeled dataset with the K-means algo-
rithm, and then from each cluster, selects the data
point that is closest to the cluster centroid.

We conduct experiments on three popular text
generation tasks: data-to-text, document summa-
rization and question generation. The proposed
selection strategy consistently outperforms random
sampling and exhibits much smaller variance.

Contribution. We present a preliminary study
on training instance selection for few-shot text gen-
eration and propose a selection strategy based on
K-means clustering. The proposed method shows
consistent superior performance over random sam-
pling, which can be used to make most use of the
annotation budget in practical applications. Mean-
while, the selected training instances can serve as
a better benchmark for few-shot text generation

since they are not biased towards specific gener-
ative methods and do not have the large variance
issue as found in random sampling. We further per-
form a set of ablation studies to analyze what con-
tributes to a good selection. Our findings can also
benefit research in active learning (Konyushkova
et al., 2017) since identifying the most informative
training instances is a critical step before collecting
more annotations through active learning.

2 Problem Formulation

Following the training scenario shown in Figure 1,
we denote the unlabeled data as U1, U2, . . . , Un

where n is the data size. Depending on the down-
stream task, “data” can mean unlabeled structured
data, documents and paragraphs respectively in
the context of data-to-text, document summariza-
tion and question generation. We will select K
instances from the whole unlabeled dataset, anno-
tate them with reference text, and then train a neural
generative model based on the annotated data. K
is defined based on the annotation budget. In this
work, since we focus on the few-shot scenario, K
is set to be small (≤ 100). The goal is to find the
most representative K instances that can lead to
the optimal performance when trained on them.

3 Selection by K-means Clustering

The general idea of our proposed method is to first
split the whole unlabeled data into K clusters, then
select one data point from each cluster. Specifically,
we first map each data point into a vector, then
cluster the vectors with the K-means algorithm.
The objective is sum of the squared errors (SSE),
which is also called cluster inertia:

SSE =
n∑

i=1

K∑

j=1

wi,j ||xi − µj ||22 (1)

where µj is the centroid of the jth cluster. xi is the
embedding vector of Ui. wi,j = 1 if xi belongs
to the cluster j and 0 otherwise. We optimize the
objective function with the EM algorithm (Demp-
ster et al., 1977) which iteratively assigns each data
point into its closest cluster centroid. The initial
centroid points are chosen based on the K-means++
algorithm (Arthur and Vassilvitskii, 2007). The
first cluster center is chosen uniformly at random
from the data points, after which each subsequent
cluster center is chosen from the remaining data
points with probability proportional to its squared
distance from the point’s closest existing cluster

9
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Figure 2: Ablation studies on the SQUAD corpus. Perfor-
mance in BLEU-4 with increasing K between different vari-
ants of K-means where selection is based on the closest point,
Random point, or Farthest point from the centroid.

center. By this means, we maximize the chance of
spreading out the K initial cluster centers. We use
10 random seeds for selecting initial centers and
the clustering with the minimum SSE is chosen.

After splitting them into K clusters, we pick
from each cluster the data point that is closest to
the center. We use the Euclidean distance to select,
the same as the metric used for K-means clustering.
The intuition is that the test performance usually
depends on the nearest neighbor in the training
set (Khandelwal et al., 2020; Rajani et al., 2020).
Ideally data points closest to the cluster centers are
most representative samples, selecting them will
maximize the chance that a similar sample will be
found in the training dataset.

4 Experiments

We perform our experiments on the following three
representative datasets which cover three different
text generation tasks:

1. Data-to-text: We use the dataset for the E2E
challenge (Novikova et al., 2017) which con-
tain 50,602 data-text pairs with 8 unique slots
in the restaurant domain.

2. Document Summarization: We use the
CNN/Dailymail dataset (non-anonymized ver-
sion) (Hermann et al., 2015) which contains
312,084 document-summary pairs.

3. Question generation: We use the SQuAD
dataset (Rajpurkar et al., 2016) with over 100k
questions. Following Du et al. (2017), we fo-
cus on the answer-independent scenario to
directly generate questions from passages.

For all experiments, we finetune the open-
sourced Bart model (Lewis et al., 2020) as our
generative model. Bart is pretrained with a denois-
ing autoencoder objective on large amount of text
data and has been the state-of-the-arts for many
text generation tasks. To extract vectors used for
clustering, we finetune the Bart model with its orig-
inal self-supervised objective on the unlabeled data,
then apply mean pooling over the last hidden states
of the encoder.

In the later sections, we will first compare the
model performance based on our proposed selec-
tion strategy and random sampling, then analyze
the variance of them. Finally, we perform an abla-
tion study to see the effects of in-cluster selection
and embedding choices.

Comparison of Selection Strategies. In Table 1,
we compare the model performance based on dif-
ferent selection strategies. Apart from random sam-
pling and our proposed method, we also compare
with a lower bound where all instances are ran-
domly sampled from one cluster (within-cluster
random). Adding this for comparison aims to illus-
trate that it is important to select diverse samples
across different clusters. The performance scores
are averaged over 10 different trials for each selec-
tion strategy. As can be seen, K-means based selec-
tions consistently outperforms the others. Within-
cluster random sampling performs the worst, prov-
ing the importance of having diverse samples in
the training instance. However, it is worth not-
ing that although random sampling underperforms
K-means selection on average, its upper bound is
much higher, suggesting the proposed K-means se-
lection is by no means optimal. There is still much
room for improvement.

Variance of Model Performance. Table 1 also
shows the variance of model performance with dif-
ferent selection strategies. The variance is com-
puted based on 10 different runs. For within-cluster
random sampling, the variance comes from both
the choice of the cluster and the in-cluster sam-
pling. For K-means selection, the variance comes
from the choice of initial center points. We can
see random sampling and within-cluster random
sampling have a very large variance of up to 7.12
for K = 100. This further suggests that comparing
few-shot models based on random sampling can
be be prone to variability and prevent drawing re-
liable conclusions. K-means-based selection, on
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E2E CNNDM SQUAD

10 50 100 10 50 100 10 50 100

Random 4.38±7.12 11.57±4.29 26.22±2.58 13.51±6.47 24.81±3.77 35.24±2.89 1.23±6.22 3.33±5.89 7.65±3.61
IC-Random 2.15±4.58 9.80±2.62 24.71±2.71 12.30±3.89 24.71±2.45 33.29±1.92 1.34±3.23 1.79±3.77 6.97±2.55
K-means 6.22±2.33 11.89±1.39 27.13±2.22 14.28±2.35 25.19±3.28 36.31±1.08 1.56±2.34 4.77±3.61 9.33±2.15

Table 1: Comparisons of random sampling, within-cluster random sampling (IC-Random) and K-means selection on the E2E,
CNNDM, and SQUAD corpus (BLEU-4 reported).

Embedding
E2E CNNDM SQUAD

Mean Sum Mean Sum Mean Sum
BART 26.28 25.59 34.30 34.46 8.89 8.56

BART-FT 26.46 26.32 36.31 34.18 9.55 8.12
GloVe 25.18 23.36 33.59 31.45 7.99 7.56

FastText 27.13 24.85 33.23 34.30 9.33 9.42

Table 2: Finetuned BART generation performance compari-
son on E2E, CNNDM, and SQUAD for various embedding
options for the k-means selection with k=100.

the contrary, is rather robust with random seeds.
Therefore, for future work on few-shot text genera-
tion, we suggest that models be tested on instances
selected from our proposed strategy for a fair com-
parison.

Effects of In-cluster Selection. In Figure 2, we
show the effects of the in-cluster selection method.
In our proposed method, within each cluster, we
select one data point that is closest to the cluster
center. To see whether it is important to select the
closest data point, we compare with two selection
variants that within each cluster, we select (1) one
data point randomly sampled from the cluster, and
(2) one data point that is farthest to the cluster cen-
ter. We can observe that the choice of selection
does have a big impact on the model performance.
Choosing data points farthest to the cluster centers
leads to the worst performance. This is consis-
tent with previous findings (Kaushal et al., 2018;
Birodkar et al., 2019) that data points farthest from
cluster centers are usually outliers and less repre-
sentative. Selecting them might mislead the model
to capture non-generic patterns and thereby gen-
eralize poorly. In contrast, choosing data points
closest to cluster centers performs slightly better
than random selection. However, random selection
has a much larger variance compared with clos-
est/farthest point selection (shown as shadow).

Effects of Embedding Methods. As the K-
means clustering is performed on top of the em-
bedding vectors of unlabeled data, the choice of
embedding methods could affect the performance
on selected points. In Table 2, we show the effects

of the different embedding methods. Apart from
the finetuned Bart, we compare with embeddings
extracted from (1) Bart without being finetuned
on the task-specific data, (2) Glove (Pennington
et al., 2014) and (3) FastText (Bojanowski et al.,
2017), both finetuned on the task-specific data. For
each embedding method, we compare using mean
pooling and sum pooling to extract the final vec-
tor representation. The results show that finetuned
Bart generally outperforms the other embedding
choices. We attribute this to the similarity in the
embedding space between selection with BART
embeddings and and the BART generation model.
Moreover, FastText offers a strong baseline as it
does relatively well on two scenarios in E2E and
SQUAD respectively. Further, we observe that
mean pooling is generally better than the sum of
word vectors, which is also observed in Chen et al.
(2018).

Human Evaluation. To obtain further insights
with respect to the generation outputs, five anno-
tators were instructed to evaluate 100 samples for
each of the three tasks to judge (1) whether the
text is fluent (score 0-5 with 5 being fully fluent),
and (2) whether it contains relevant information
about its input source (adequacy). These scores are
averaged and presented in Table 3. For Random
selection, we sampled 10 outputs from each of the
10 trials to make it 100 samples, and the same goes
for IC-random. We observe that the K-means al-
gorithm select better subsets of the training samples
that allow for better generalizability to unseen in-
put sources. In particular, the outputs are generally
more adequate. However, we see that the fluency
of outputs remain relatively similar.

5 Conclusion

In this work, we target at the unexplored problem
of training instance selection for few-shot text gen-
eration. We show that random sampling can lead
to large variance and suboptimal performance. To
address this problem, we propose a selection strat-
egy based on K-mean clustering and demonstrate
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E2E CNNDM SQUAD
Random 4.08/4.15 4.55/3.27 4.62/3.84

IC-Random 4.32/3.54 3.62/3.01 4.23/2.74
K-means 4.12/4.24 4.32/3.66 4.51/3.98

Table 3: Human evaluation on 100 samples of the finetuned
BART generation performance comparison on E2E, CNNDM,
and SQUAD. Scores are presented as (fluency / adequacy).

that it consistently outperforms random sampling,
and has much lower variance. We further perform
a set of ablation studies to analyze the effects of
data size, embedding and selection methods, show-
ing that this is still much room for improvement.
Future work can consider other clustering methods.
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Abstract

The introduction of pretrained language mod-
els has reduced many complex task-specific
NLP models to simple lightweight layers. An
exception to this trend is coreference resolu-
tion, where a sophisticated task-specific model
is appended to a pretrained transformer en-
coder. While highly effective, the model has
a very large memory footprint – primarily due
to dynamically-constructed span and span-pair
representations – which hinders the process-
ing of complete documents and the ability to
train on multiple instances in a single batch.
We introduce a lightweight end-to-end coref-
erence model that removes the dependency
on span representations, handcrafted features,
and heuristics. Our model performs competi-
tively with the current standard model, while
being simpler and more efficient.

1 Introduction

Until recently, the standard methodology in NLP
was to design task-specific models, such as BiDAF
for question answering (Seo et al., 2017) and ESIM
for natural language inference (Chen et al., 2017).
With the introduction of pretraining, many of these
models were replaced with simple output layers,
effectively fine-tuning the transformer layers below
to perform the traditional model’s function (Rad-
ford et al., 2018). A notable exception to this trend
is coreference resolution, where a multi-layer task-
specific model (Lee et al., 2017, 2018) is appended
to a pretrained model (Joshi et al., 2019, 2020).
This model uses intricate span and span-pair repre-
sentations, a representation refinement mechanism,
handcrafted features, pruning heuristics, and more.
While the model is highly effective, it comes at
a great cost in memory consumption, limiting the
amount of examples that can be loaded on a large
GPU to a single document, which often needs to

∗Equal contribution.

be truncated or processed in sliding windows. Can
this coreference model be simplified?

We present start-to-end (s2e) coreference reso-
lution: a simple coreference model that does not
construct span representations. Instead, our model
propagates information to the span boundaries (i.e.,
its start and end tokens) and computes mention and
antecedent scores through a series of bilinear func-
tions over their contextualized representations. Our
model has a significantly lighter memory footprint,
allowing us to process multiple documents in a sin-
gle batch, with no truncation or sliding windows.
We do not use any handcrafted features, priors, or
pruning heuristics.

Experiments show that our minimalist approach
performs on par with the standard model, despite
removing a significant amount of complexity, pa-
rameters, and heuristics. Without any hyperparam-
eter tuning, our model achieves 80.3 F1 on the
English OntoNotes dataset (Pradhan et al., 2012),
with the best comparable baseline reaching 80.2
F1 (Joshi et al., 2020), while consuming less than
a third of the memory. These results suggest that
transformers can learn even difficult structured pre-
diction tasks such as coreference resolution without
investing in complex task-specific architectures.1

2 Background: Coreference Resolution

Coreference resolution is the task of clustering mul-
tiple mentions of the same entity within a given
text. It is typically modeled by identifying entity
mentions (contiguous spans of text), and predicting
an antecedent mention a for each span q (query)
that refers to a previously-mentioned entity, or a
null-span ε otherwise.

Lee et al. (2017, 2018) introduce coarse-to-fine
(c2f), an end-to-end model for coreference resolu-

1Our code and model are publicly available: https://
github.com/yuvalkirstain/s2e-coref
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tion that predicts, for each span q, an antecedent
probability distribution over the candidate spans c:

P (a = c|q) = exp(f(c, q))∑
c′ exp(f(c

′, q))

Here, f(c, q) is a function that scores how likely c
is to be an antecedent of q. This function is com-
prised of mention scores fm(c), fm(q) (i.e. is the
given span a mention?) and a separate antecedent
score fa(c, q):

f(c, q) =

{
fm(c) + fm(q) + fa(c, q) c 6= ε

0 c = ε

Our model (Section 3) follows the scoring function
above, but differs in how the different elements
fm(·) and fa(·) are computed. We now describe
how fm and fa are implemented in the c2f model.

Scoring Mentions In the c2f model, the mention
score fm(q) is derived from a vector representation
vq of the span q (analogously, fm(c) is computed
from vc). Let xi be the contextualized representa-
tion of the i-th token produced by the underlying
encoder. Every span representation is a concate-
nation of four elements: the representations of the
span’s start and end tokens xqs ,xqe , a weighted
average of the span’s tokens x̂q computed via self-
attentive pooling, and a feature vector φ(q) that
represents the span’s length:

vq = [xqs ;xqe ; x̂q;φ(q)]

The mention score fm(q) is then computed from
the span representation vq:

fm(q) = vm · ReLU(Wmvq)

where Wm and vm are learned parameters. Then,
span representations are enhanced with more global
information through a refinement process that inter-
polates each span representation with a weighted
average of its candidate antecedents. More recently,
Xu and Choi (2020) demonstrated that this span
refinement technique, as well as other modifica-
tions to it (e.g. entity equalization (Kantor and
Globerson, 2019)) do not improve performance.

Scoring Antecedents The antecedent score
fa(c, q) is derived from a vector representation of
the span pair v(c,q). This, in turn, is a function
of the individual span representations vc and vq,
as well as a vector of handcrafted features φ(c, q)

such as the distance between the spans c and q,
the document’s genre, and whether c and q were
said/written by the same speaker:

v(c,q) = [vc;vq;vc ◦ vq;φ(c, q)]

The antecedent score fa(c, q) is parameterized with
Wa and va as follows:

fa(c, q) = va · ReLU(Wav(c,q))

Pruning Holding the vector representation of ev-
ery possible span in memory has a space complex-
ity of O(n2d) (where n is the number of input to-
kens, and d is the model’s hidden dimension). This
problem becomes even more acute when consider-
ing the space of span pairs (O(n4d)). Since this is
not feasible, candidate mentions and antecedents
are pruned through a variety of model-based and
heuristic methods.

Specifically, mention spans are limited to a cer-
tain maximum length `. The remaining mentions
are then ranked according to their scores fm(·),
and only the top λn are retained, while avoiding
overlapping spans. Antecedents (span pairs) are fur-
ther pruned using a lightweight antecedent scoring
function (which is added to the overall antecedent
score), retaining only a constant number of an-
tecedent candidates c for each target mention q.

Training For each remaining span q, the training
objective optimizes the marginal log-likelihood of
all of its unpruned gold antecedents c, as there may
be multiple mentions referring to the same entity:

log
∑

c

P (a = c|q)

Processing Long Documents Due to the c2f
model’s high memory consumption and the limited
sequence length of most pretrained transformers,
documents are often split into segments of a few
hundred tokens each (Joshi et al., 2019). Recent
work on efficient transformers (Beltagy et al., 2020)
has been able to shift towards processing complete
documents, albeit with a smaller model (base) and
only one training example per batch.

3 Model

We present start-to-end (s2e) coreference resolu-
tion, a simpler and more efficient model with re-
spect to c2f (Section 2). Our model utilizes the
endpoints of a span (rather than all span tokens) to
compute the mention and antecedent scores fm(·)
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Figure 1: The antecedent score fa(c, q) of a query mention q = (qs, qe) and a candidate antecedent c = (cs, ce)
is defined via bilinear functions over the representations of their endpoints cs, ce, qs, qe. Solid lines reflect factors
participating in positive examples (coreferring mentions), and dashed lines correspond to negative examples.

and fa(·, ·) without constructing span or span-pair
representations; instead, we rely on a combination
of lightweight bilinear functions between pairs of
endpoint token representations. Furthermore, our
model does not use any handcrafted features, does
not prune antecedents, and prunes mention candi-
dates solely based on their mention score fm(q).

Our computation begins by extracting a start and
end token representation from the contextualized
representation x of each token in the sequence:

ms = GeLU(Ws
mx) me = GeLU(We

mx)

We then compute each mention score as a biaffine
product over the start and end tokens’ representa-
tions, similar to Dozat and Manning (2017):

fm(q) = vs ·ms
qs + ve ·me

qe +ms
qs ·Bm ·me

qe

The first two factors measure how likely the span’s
start/end token qs/qe is a beginning/ending of an
entity mention. The third measures whether those
tokens are the boundary points of the same entity
mention. The vectors vs,ve and the matrix Bm

are the trainable parameters of our mention scor-
ing function fm. We efficiently compute mention
scores for all possible spans while masking spans
that exceed a certain length `.2 We then retain only
the top-scoring λn mention candidates to avoid
O(n4) complexity when computing antecedents.

Similarly, we extract start and end token repre-
sentations for the antecedent scoring function fa:

as = GeLU(Ws
ax) ae = GeLU(We

ax)

Then, we sum over four bilinear functions:

fa(c, q) = ascs ·Bss
a · asqs + ascs ·Bse

a · aeqe
+ aece ·Bes

a · asqs + aece ·Bee
a · aeqe

Each component measures the compatibility of the
spans c and q by an interaction between different

2While pruning by length is not necessary for efficiency,
we found it to be a good inductive bias.

boundary tokens of each span. The first compo-
nent compares the start representations of c and
q, while the fourth component compares the end
representations. The second and third facilitate a
cross-comparison of the start token of span c with
the end token of span q, and vice versa. Figure 1
(bottom) illustrates these interactions.

This calculation is equivalent to computing a
bilinear transformation between the concatenation
of each span’s boundary tokens’ representations:

fa(c, q) = [ascs ;a
e
ce ] ·Ba · [asqs ;aeqe ]

However, computing the factors directly bypasses
the need to create n2 explicit span representations.
Thus, we avoid a theoretical space complexity of
O(n2d), while keeping it equivalent to that of a
transformer layer, namely O(n2 + nd).

4 Experiments

Dataset We train and evaluate on two datasets:
the document-level English OntoNotes 5.0 dataset
(Pradhan et al., 2012), and the GAP coreference
dataset (Webster et al., 2018). The OntoNotes
dataset contains speaker metadata, which the base-
lines use through a hand-crafted feature that indi-
cates whether two spans were uttered by the same
speaker. Instead, we insert the speaker’s name to
the text every time the speaker changes, making
the metadata available to any model.

Pretrained Model We use Longformer-Large
(Beltagy et al., 2020) as our underlying pretrained
model, since it is able to process long documents
without resorting to sliding windows or truncation.

Baseline We consider Joshi et al.’s (2019) expan-
sion to the c2f model as our baseline. Specifically,
we use the implementation of Xu and Choi (2020)
with minor adaptations for supporting Longformer.
We do not use higher-order inference, as Xu and
Choi (2020) demonstrate that it does not result in
significant improvements. We train the baseline
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Model MUC B3 CEAFφ4

P R F1 P R F1 P R F1 Avg. F1

c2f + SpanBERT-Large 85.7 85.3 85.5 79.5 78.7 79.1 76.8 75.0 75.9 80.2
c2f + Longformer-Base 85.0 85.0 85.0 77.8 77.8 77.8 75.6 74.2 74.9 79.2
c2f + Longformer-Large 86.0 83.2 84.6 78.9 75.5 77.2 76.7 68.7 72.5 78.1

s2e + Longformer-Large 86.5 85.1 85.8 80.3 77.9 79.1 76.8 75.4 76.1 80.3

Table 1: Performance on the test set of the English OntoNotes 5.0 dataset. c2f refers to the course-to-fine approach
of Lee et al. (2017, 2018), as ported to pretrained transformers by Joshi et al. (2019).

Masc Fem Bias Overall

c2f + SpanBERT-Large 90.5 86.3 0.95 88.4
c2f + Longformer-Base 87.6 82.3 0.94 84.9
c2f + Longformer-Large 90.1 85.4 0.95 87.8

s2e + Longformer-Large 90.6 85.8 0.95 88.3

Table 2: Performance on the test set of the GAP coref-
erence dataset. The reported metrics are F1 scores.

model over three pretrained models: Longformer-
Base, Longformer-Large, and SpanBERT-Large
(Beltagy et al., 2020; Joshi et al., 2020).

Hyperparameters All models use the same hy-
perparameters as the baseline. The only hyperpa-
rameters we change are the maximum sequence
length and batch size, which we enlarge to fit as
many tokens as possible into a 32GB GPU.3 For
our model, we use dynamic batching with 5,000
max tokens, which allows us to fit an average of
5-6 documents in every training batch. The base-
line, however, has a much higher memory foot-
print, and is barely able to fit a single example
with Longformer-Base (max 4,096 tokens). When
combining the baseline with SpanBERT-Large or
Longformer-Large, the baseline must resort to slid-
ing windows to process the full document (512 and
2,048 tokens, respectively).

Performance Table 1 and Table 2 show that, de-
spite our model’s simplicity, it performs as well
as the best performing baseline. Our model with
Longformer-Large achieves 80.3 F1 on OntoNotes,
while the best performing baseline achieves 80.2
F1. When the baseline model is combined with
either version of Longformer, it is not able to reach
the same performance level as our model. We see
similar trends for GAP. Our findings indicate that
there is little to lose from simplifying the corefer-

3We made one exception, and tried to tune the Longformer-
Large baseline’s hyperparameters. Despite our efforts, it still
performs worse than Longformer-Base.

Model Memory (GB)

c2f + SpanBERT-Large 16.2
c2f + Longformer-Base 12.0
c2f + Longformer-Large 15.7

s2e + Longformer-Large 4.3

Table 3: Peak GPU memory usage during inference on
OntoNotes, when processing one document at a time.

ence resolution architecture, while there are poten-
tial gains to be had from optimizing with larger
batches.

Efficiency We also compare our model’s mem-
ory usage using the OntoNotes development set.
Table 3 shows that our implementation is at least
three times more memory efficient than the base-
line. This improvement results from a combination
of three factors: (1) the fact that our model is lighter
on memory and does not need to construct span or
span-pair representations, (2) our simplified frame-
work, which does not use sliding windows, and
(3) our implementation, which was written “from
scratch”, and might thus be more (or less) efficient
than the original.

5 Related Work

Recent work on memory-efficient coreference res-
olution sacrifices speed and parallelism for guar-
antees on memory consumption. Xia et al. (2020)
and Toshniwal et al. (2020) present variants of the
c2f model (Lee et al., 2017, 2018) that use an iter-
ative process to maintain a fixed number of span
representations at all times. Specifically, spans
are processed sequentially, either joining existing
clusters or forming new ones, and an eviction mech-
anism ensures the use of a constant number of clus-
ters. While these approach constrains the space
complexity, their sequential nature slows down the
computation, and slightly deteriorates the perfor-
mance. Our approach is able to alleviate the large
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memory footprint of c2f while maintaining fast
parallel processing and high performance.

CorefQA (Wu et al., 2020) propose an alterna-
tive solution by casting the task of coreference
resolution as one of extractive question answer-
ing. It first detects potential mentions, and then
creates dedicated queries for each one, creating a
pseudo-question-answering instance for each candi-
date mention. This method significantly improves
performance, but at the cost of processing hundreds
of individual context-question-answer instances for
a single document, substantially increasing execu-
tion time. Our work provides a simple alternative,
which can scale well in terms of both speed and
memory.

6 Conclusion

We introduce a new model for coreference reso-
lution, suggesting a lightweight alternative to the
sophisticated model that has dominated the task
over the past few years. Our model is competitive
with the baseline, while being simpler and more
efficient. This finding once again demonstrates the
spectacular ability of deep pretrained transformers
to model complex natural language phenomena.
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Abstract

In comparison with English, due to the lack
of explicit word boundary and tenses informa-
tion, Chinese Named Entity Recognition (NER)
is much more challenging. In this paper, we
propose a boundary enhanced approach for bet-
ter Chinese NER. In particular, our approach
enhances the boundary information from two
perspectives. On one hand, we enhance the
representation of the internal dependency of
phrases by an additional Graph Attention Net-
work(GAT) layer. On the other hand, taking the
entity head-tail prediction (i.e., boundaries) as
an auxiliary task, we propose an unified frame-
work to learn the boundary information and
recognize the NE jointly. Experiments on both
the OntoNotes and the Weibo corpora show the
effectiveness of our approach.

1 Introduction

Given a sentence, the NER task aims to identify the
noun phrases having special meanings that prede-
fined. Due to its importance on many downstream
tasks, such as relation extraction(Ji et al., 2017),
coreference resolution(Clark and Manning, 2016)
and knowledge graphs(Zhang et al., 2019), NER
has attracted much attention for long time.

In comparison with English, due to the lack of ex-
plicit word boundary and tenses information, Chi-
nese NER is much more challenging. In fact, the
performance of the current SOTAs in Chinese is far
inferior to that in English, the gap is about 10% in
F1-measure. In this paper, we propose a boundary
enhancing approach for better Chinese NER.

Firstly, using Star-Transformer(Guo et al., 2019),
we construct a lightweight baseline system. Bene-
fit from the unique star topological structure, Star-
Transformer is more dominant in representing long
distance sequence, and thus, our baseline achieves
comparable performance to the SOTAs. Consid-
ering the deficiency in the representation of local

∗Corresponding author.

sequence information, we then try to enhance the
local boundary information. In particular, our ap-
proach enhances the boundary information from
two perspectives. On one hand, we add an addi-
tional GAT(Veličković et al., 2017) layer to capture
the internal dependency of phrases. In this way,
boundaries can be distinguished implicitly, while
the semantic information within the phrase is en-
hanced. On the other hand, we add an auxiliary
task to predict the head and tail of entities. In this
way, using the framework of multi-tasking learning,
we can learn the boundary information explicitly
and help the NER task. Experiments show the ef-
fectiveness of our approach. It should be noted
that, our approach obtains the new state-of-the-art
results on both the OntoNotes and the Weibo cor-
pora. That means our approach can perform well
for both written and non-written texts.

2 Related Work

As is well known, most researches cast the NER
task as a traditional sequence labelling problem,
and many models extending the Bi-LSTM+CRF
architecture are proposed (Huang et al., 2015; Chiu
and Nichols, 2016; Dong et al., 2016; Lample
et al., 2016; Ma and Hovy, 2016). Although the
attention-based model, i.e., Transformer(Vaswani
et al., 2017), has gradually surpassed the traditional
RNN model(Zaremba et al., 2014) in various fields,
Yan et al. (2019) has verified that the fully con-
nected Transformer mechanism does not work well
on NER. Until recently, some researches show that
Star-Transformer can work well on NER owing
to its lightweight topological structure(Guo et al.,
2019; Chen et al., 2020). Moreover, lexical and
dependent information has been widely used in
this task (Zhang and Yang, 2018; Ma et al., 2020;
Li et al., 2020; Gui et al., 2019; Sui et al., 2019;
Tang et al., 2020) to better capture local semantic
information.

In this paper, using Star-transformer as our base-
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Figure 1: The general architecture for the boundary
enhanced model.

line, we mainly focus on enhancing the boundary
information to improve Chinese NER.

3 Model

We also treat NER as a sequence labeling task, de-
coding with a classical CRF(Lafferty et al., 2001).
Figure 1 shows the complete model. We can find
that the encoder of our model consists of three parts,
i.e., GRU-based head and tail representation layer,
Star-transformer based contextual embedding layer,
and GAT-based dependency embedding layer.

3.1 Token embedding layer

Considering the lack of explit word boundary, we
combine word-level represention with character,
avoiding the error propagation caused by word seg-
mentation.

For a given sentence, we represent each word
and character by looking up the pre-trained word
embeddings1(Li et al., 2018). The sequence of
character embeddings contained in a word will be
fed to a bi-direction GRU layer. The hidden state
of bi-direction GRU can be expressed as folowing:

−→
h ti =

−−−→
GRU(xti,

−→
h ti−1) (1)

←−
h ti =

←−−−
GRU(xti,

←−
h ti+1) (2)

hti = [
−→
h ti;
←−
h ti] (3)

where xti is the token representation,
−→
h ti and

←−
h ti

denote the t-th forward and backward hidden state
of GRU layer.

The final token representation is obtained as

1https://github.com/Embedding/Chinese-Word-Vectors

equation(4) ∼ (6):

xwi = e(wordi) (4)

xci = GRU(e(chari)) (5)

xi = [xwi ;xci ; posi] (6)

where [;] denotes concatenation, and posi is the
Part-of-Speech tagging of wordi.

3.2 Star-transformer based contextual
embedding layer

Star-Transformer abandons redundant connections
and has an approximate ability to model the long-
range dependencies. For NER task, entities are
sparse, so it is unnecessary to pay attention on all
nodes in the sentence all the time. We utilize this
structured model to encode the words in a sentence,
which shows comparable performance with the tra-
ditional RNN models, but with the capability of
capturing long-range dependencies.

3.2.1 Multi-Head Attention
Transformer employs h attention heads to imple-
ment self-attention on an input sequence separately.
The result of each attention head will be integrated
together, called Multi-Head Attention.

Given a sequence of vectors X , we use a query
vectorQ to soft select the relevant information with
attention:

Att(Q,K, V ) = softmax(
QKT

√
dk

) · V (7)

K = XWK , V = XW V (8)

where WK and W V are learnable parameters.
Then Multi-Head Attention can be defined as equa-
tion(9) ∼ (10):

MulAtt = (z1 ⊕ z2 ⊕ · · · ⊕ zh) ·W o (9)

zi = Att(QWQ
i ,KW

K
i , V W

V
i ) (10)

where ⊕ denotes concatenation, and
W o,WQ

i ,W
K
i ,W

V
i are learnable parameters.

3.2.2 Star-Transformer Encoder
The topological structure of Star-Transformer is
made up of one relay node and n satellite nodes.
The state of i-th satellite node represents the feature
of the i-th token in a text sequence. The relay
node acts as a virtual hub to gather and scatter
information from and to all the satellite nodes(Guo
et al., 2019).
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Star-Transformer proposes a time-step cyclic up-
dating method, in which each satellite node is ini-
tialized by the input vector, and the relay node is
initialized as the average value of all tokens. The
status of each satellite node is updated according
to its adjacent nodes, including the previous node
in the previous round ht−1

i−1, the current node in the
previous round ht−1

i , the next node in the previous
round ht−1

i+1, the current node ei and the relay node
in the previous round st−1. The update process is
shown in the equation(11) ∼ (12):

Cti = [ht−1
i−1;ht−1

i ;ht−1
i+1; ei; st−1] (11)

hti = MulAtt(ht−1
i , Cti , C

t
i ) (12)

where Cti denotes contextual information of i-th.
The update of relay node is determined by the

information of all the satellite nodes and the status
of the previous round :

st = MulAtt(st−1, [st−1;Ht], [st−1;Ht]) (13)

3.2.3 Highway Networks
Highway Networks(Srivastava et al., 2015) can al-
leviate the blocked gradient backflow when the
network deepens. Such gating mechanisms can
be of vital significance to Transformer(Chai et al.,
2020). We use Highway Networks to mitigate the
depth and complexity of Star-Transformer.

After calculating the Multi-Head Attention, a
new branch dominated by Highway Networks joins
in, indicating the self-updating and dynamic adjust-
ment of satellite node.

g = σ(w1hi + b1) (14)

f(hi) = w2hi + b2 (15)

HW (hi) = (1− g) · hi + g · f(hi) (16)

where w1, w2, b1, b2 are learnable parameters, and
σ is the activation function.

Finally, the updated satellite node is denoted as:

hi = HW (hi) +MulAtt(hi, Ci, Ci) (17)

Highway Networks not only enhances the inher-
ent characteristics of the satellite nodes, but also
avoids gradient blocking.

3.3 GAT-based dependency embedding layer
In this work, we propose the use of dependencies
between words to construct graph neural networks.
The dependency is directional, and the current word

is only related to the word with shared edge. This
kind of directed linkage further obtains the internal
structural information of the entity, enriching the
sequential representation.

Graph Attention Networks(GAT)(Veličković
et al., 2017), leveraging masked self-attention lay-
ers to assign different importance to neighbouring
nodes, works well with our work.

The attention coefficient eij and αij represents
the importance of node j to node i:

eij = att(W
−→
h i,W

−→
h j) (18)

αij = softmaxj(eij) (19)

=
exp(eij)∑
kεNi

exp(eik)
(20)

=
exp(LeakyReLU(−→a T [Whi ⊕Whj ]))

ΣkεNi
exp(LeakyReLU(−→a T [Whi ⊕Whk]))

(21)

A GAT operation with K independent attention
heads can be expressed as:

−→
h
′
i = σ(

1

K

K∑

k=1

∑

jεNi

αkijW
k−→h j) (22)

where ⊕ denotes concatenation, W and −→a are
learnable parameters, Ni is the neighborhood of
node i, σ is the activation function.

In addition to the strong focus on the associated
nodes of GAT layer, it can well make up for the
deficiency of Star-Transformer in capturing the in-
ternal dependency of the phrases.

3.4 GRU-based head and tail representation
layer

While GAT is effective in capturing internal depen-
dency within an entity, the boundary of the entity
need to be strengthened. We then regard the entity
boundary detection as binary classification task,
which trains with NER at the same time, giving
NER clear entity boundary information.

During training phase, two separate GRU layers
are used to make head and tail prediction of the
entities, whose hidden features are added with the
output of GAT layer:

Hh = GRUhead(xi) (23)

Ht = GRUtail(xi) (24)

H = W1 ·Hh +W2 ·Ht +W3 ·HGAT (25)

W1,W2,W3 are learnable parameters, andH is the
final input for CRF.
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OntoNotes Weibo
OntoNotes V4.0 OntoNotes V5.0 Named Entity Nominal Mention Overall

Models P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) F1(%)
Zhang and Yang (2018) 76.35 71.56 73.88 - - - - - 53.04 - - 62.25 58.79
Ma et al. (2020) 77.31 73.85 75.54 - - - - - 56.99 - - 61.41 61.24
Li et al. (2020) - - 76.45 - - - - - - - - - 63.42
Jie and Lu (2019) - - - 77.40 77.41 77.40 - - - - - - -
Gui et al. (2019) 76.13 73.68 74.89 - - - - - 55.34 - - 64.98 60.21
Sui et al. (2019) 75.06 74.52 74.79 - - - 67.31 48.61 56.45 75.15 62.63 68.32 63.09
Tang et al. (2020) 76.59 75.17 75.87 - - - - - 59.08 - - 68.61 63.63
Star(baseline) 73.40 76.50 74.92 75.41 75.66 75.53 78.67 55.92 65.37 88.16 69.07 77.46 68.15
Star + GAT 77.33 76.03 76.67 77.03 79.90 78.44 77.30 59.72 67.38 90.85 66.49 76.79 68.34
Star + MultiTask 78.64 80.78 79.69 77.60 80.01 78.79 80.39 58.29 67.58 89.86 68.56 77.78 68.61
Star + GAT + MultiTask 79.25 80.66 79.95 78.22 80.88 79.53 78.92 62.09 69.50 88.67 68.56 77.33 70.14

Table 1: Performance on OntoNotes V4.0, OntoNotes V5.0 and Weibo. Named Entity is the same to the entity of
OntoNotes, while Nominal Mention is the reference words which have the property of nouns.

3.5 Model Learning
Entities boundaries are not only the task we deal
with, but the perfect natural assistance by NER,
which transform from outside to inside of the men-
tion and vice versa.

The multi-task loss function is composed of the
categorical cross-entroy loss for boundary detec-
tion and entity categorical label prediction:

Lmulti = Lhead + Ltail + Llabel (26)

4 Experiments

4.1 Datasets
The label in our work is marked by BIESO, and we
use Precision(P ), Recall(R) and F1 score(F1) as
evaluation metrics.

OntoNotes V4.02(Pradhan, 2011) is a Chinese
dataset and consists of texts from news domain. We
use the same split as Zhang and Yang (2018).

OntoNotes V5.03(Pradhan et al., 2013) is also a
Chinese dataset from news domain, but with larger
scale and more entity types. We use the same split
as Jie and Lu (2019).

Weibo NER4(Peng and Dredze, 2015) contains
annotated NER messages drawn from the social
meida Sina Weibo. We use the same split as Peng
and Dredze (2015).

Additionally, the tool used to parse syntactic
dependency in this paper is DDParser5.

4.2 Results and Analysis
We conduct experiments on the OntoNotes and
Weibo corpora and compare the results with the

2https://catalog.ldc.upenn.edu/LDC2011T13
3https://catalog.ldc.upenn.edu/LDC2013T19
4https://github.com/cchen-nlp/weiboNER
5https://github.com/baidu/DDParser

OntoNotes V4.0 OntoNotes V5.0
error types TE UE BE TE UE BE

Star 2236 1912 151 1921 1896 139
Star + GAT 1787 1916 140 1877 1596 169
Star + MultiTask 1772 1563 114 1814 1590 127
Star + GAT + MultiTask 1701 1564 108 1762 1505 121

Table 2: Entity recognition errors of our models, includ-
ing Type Error(TE), Unidentification Error(UE) and
Boundary Error(BE).

existing models, as shown in table 16.
We begin by establishing a Star-Transformer

baseline, which is more effective on the smaller
social media Weibo corpus than OntoNotes. Star-
Transformer could be superior to all existing mod-
els in Weibo, at least 6.29%(F1) and 8.85%(F1) for
Named Entity(NE) and Nominal Entity(NM).

Considering the structural peculiarity of
OntoNotes, where entities have similar composi-
tion, we utilize GAT to simulate the feature inside
the entity. The precision on the OntoNotes are
both improved by 3.93% and 1.62%. Futhermore,
boundary prediction used as multi-task has been
trained with label classification, supplying local
sequence information for NER. Tabel 2 shows the
number of different entity recognition errors of
our models, including Type Error(TE), Unidenti-
fication Error(UE) and Boundary Error(BE).The
addition of entity head-tail prediction reduces the
number of boundary errors on OntoNotes V4.0 by
37. There is no doubt that the boundary enhanced
model are quite profitable to the recognition of
both entity boundary and entity type.

For Weibo, NE and NM illustrate different per-
formance. The more standard NE has a similar
performance to OntoNotes, while NM shows less

6Our code is available at: https://github.com/cchen-
reese/Boundary-Enhanced-NER.
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impact from GAT, due to its short length and non-
structue.

Combining the respective advantages of the three
layers above, an unified and lightweight model can
be applied to Chinese NER, getting the new state-
of-the-art results on both the OntoNotes and Weibo
corpora.

5 Conclusion

In this paper, we mainly focus on the impact of
boundary information on Chinese NER. We firstly
propose a Star-transformer based NER system.
Then both explicit head and tail boundary informa-
tion and Dependency GAT-based implicit bound-
ary information are combined to improve Chinese
NER. Experiments on both the OntoNotes and the
Weibo corpora show the effectiveness of our ap-
proach.
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Abstract

The high-quality translation results produced
by machine translation (MT) systems still
pose a huge challenge for automatic evalua-
tion. Current MT evaluation pays the same
attention to each sentence component, while
the questions of real-world examinations
(e.g., university examinations) have different
difficulties and weightings. In this paper,
we propose a novel difficulty-aware MT
evaluation metric, expanding the evaluation
dimension by taking translation difficulty
into consideration. A translation that fails
to be predicted by most MT systems will
be treated as a difficult one and assigned
a large weight in the final score function,
and conversely. Experimental results on the
WMT19 English↔German Metrics shared
tasks show that our proposed method outper-
forms commonly-used MT metrics in terms of
human correlation. In particular, our proposed
method performs well even when all the
MT systems are very competitive, which is
when most existing metrics fail to distinguish
between them. The source code is freely availa-
ble at https://github.com/NLP2CT
/Difficulty-Aware-MT-Evaluation.

1 Introduction

The human labor needed to evaluate machine trans-
lation (MT) evaluation is expensive. To alleviate
this, various automatic evaluation metrics are conti-
nuously being introduced to correlate with human
judgements. Unfortunately, cutting-edge MT sy-
stems are too close in performance and generation
style for such metrics to rank systems. Even for a
metric whose correlation is reliable in most cases,
empirical research has shown that it poorly correla-
tes with human ratings when evaluating competiti-
ve systems (Ma et al., 2019; Mathur et al., 2020),

∗Equal contribution
†Corresponding author

limiting the development of MT systems.
Current MT evaluation still faces the challen-

ge of how to better evaluate the overlap between
the reference and the model hypothesis taking into
consideration adequacy and fluency, where all the
evaluation units are treated the same, i.e., all the
matching scores have an equal weighting. However,
in real-world examinations, the questions vary in
their difficulty. Those questions which are easily
answered by most subjects tend to have low weigh-
tings, while those which are hard to answer have
high weightings. A subject who is able to solve
the more difficult questions can receive a high final
score and gain a better ranking. MT evaluation is
also a kind of examination. For bridging the gap
between human examination and MT evaluation, it
is advisable to incorporate a difficulty dimension
into the MT evaluation metric.

In this paper, we take translation difficulty in-
to account in MT evaluation and test the effec-
tiveness on a representative MT metric BERTS-
core (Zhang et al., 2020) to verify the feasibility.
More specifically, the difficulty is first determined
across the systems with the help of pairwise simi-
larity, and then exploited as the weight in the final
score function for distinguishing the contribution
of different sub-units. Experimental results on the
WMT19 English↔German evaluation task show
that difficulty-aware BERTScore has a better cor-
relation than do the existing metrics. Moreover, it
agrees very well with the human rankings when
evaluating competitive systems.

2 Related Work

The existing MT evaluation metrics can be ca-
tegorized into the following types according to
their underlying matching sub-units: n-gram ba-
sed (Papineni et al., 2002; Doddington, 2002; Lin
and Och, 2004; Han et al., 2012; Popović, 2015),
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Figure 1: Illustration of combining difficulty weight with BERTScore. RBERT denotes the vanilla recall-based
BERTScore while DA-RBERT denotes the score augmented with translation difficulty.

edit-distance based (Snover et al., 2006; Leusch
et al., 2006), alignment-based (Banerjee and La-
vie, 2005), embedding-based (Zhang et al., 2020;
Chow et al., 2019; Lo, 2019) and end-to-end based
(Sellam et al., 2020). BLEU (Papineni et al., 2002)
is widely used as a vital criterion in the compari-
son of MT system performance but its reliability
has been doubted on entering neural machine trans-
lation age (Shterionov et al., 2018; Mathur et al.,
2020). Due to the fact that BLEU and its variants
only assess surface linguistic features, some me-
trics leveraging contextual embedding and end-to-
end training bring semantic information into the
evaluation, which further improves the correlation
with human judgement. Among them, BERTSco-
re (Zhang et al., 2020) has achieved a remarkable
performance across MT evaluation benchmarks ba-
lancing speed and correlation. In this paper, we
choose BERTScore as our testbed.

3 Our Proposed Method

3.1 Motivation
In real-world examinations, the questions are em-
pirically divided into various levels of difficulty.
Since the difficulty varies from question to que-
stion, the corresponding role a question plays in
the evaluation does also. Simple question, which
can be answered by most of the subjects, usually
receive of a low weighting. But a difficult question,
which has more discriminative power, can only be
answered by a small number of good subjects, and
thus receives a higher weighting.

Motivated by this evaluation mechanism, we
measure difficulty of a translation by viewing the

MT systems and sub-units of the sentence as the
subjects and questions, respectively. From this per-
spective, the impact of the sentence-level sub-units
on the evaluation results supported a differentiation.
Those sub-units that may be incorrectly translated
by most systems (e.g., polysemy) should have a
higher weight in the assessment, while easier-to-
translate sub-units (e.g., the definite article) should
receive less weight.

3.2 Difficulty-Aware BERTScore

In this part, we aim to answer two questions: 1)
how to automatically collect the translation diffi-
culty from BERTScore; and 2) how to integrate the
difficulty into the score function. Figure 1 presents
an overall illustration.

Pairwise Similarity Traditional n-gram overlap
cannot extract semantic similarity, word embed-
ding provides a means of quantifying the degree
of overlap, which allows obtaining more accura-
te difficulty information. Since BERT is a strong
language model, it can be utilized as a contextual
embedding OBERT (i.e., the output of BERT) for
obtaining the representations of the reference t and
the hypothesis h. Given a specific hypothesis to-
ken h and reference token t, the similarity score
sim(t, h) is computed as follows:

sim(t, h) =
OBERT(t)

TOBERT(h)

‖OBERT(t)‖ · ‖OBERT(h)‖
(1)

Subsequently, a similarity matrix is constructed by
pairwise calculating the token similarity. Then the
token-level matching score is obtained by greedily
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Metric En→De (All) En→De (Top 30%) De→En (All) De→En (Top 30%)

|r| |τ | |ρ| |r| |τ | |ρ| |r| |τ | |ρ| |r| |τ | |ρ|
BLEU 0.952 0.703 0.873 0.460 0.200 0.143 0.888 0.622 0.781 0.808 0.548 0.632
TER 0.982 0.711 0.873 0.598 0.333 0.486 0.797 0.504 0.675 0.883 0.548 0.632
METEOR 0.985 0.746 0.904 0.065 0.067 0.143 0.886 0.605 0.792 0.632 0.548 0.632
BERTScore 0.990 0.772 0.920 0.204 0.067 0.143 0.949 0.756 0.890 0.271 0.183 0.316
DA-BERTScore 0.991 0.798 0.930 0.974 0.733 0.886 0.951 0.807 0.932 0.693 0.548 0.632

Table 1: Absolute correlations with system-level human judgments on WMT19 metrics shared task. For each
metric, higher values are better. Difficulty-aware BERTScore consistently outperforms vanilla BERTScore across
different evaluation metrics and translation directions, especially when the evaluated systems are very competitive
(i.e., evaluating on the top 30% systems).

searching for the maximal similarity in the matrix,
which will be further taken into account in sentence-
level score aggregation.

Difficulty Calculation The calculation of diffi-
culty can be tailored for different metrics based on
the overlap matching score. In this case, BERTS-
core evaluates the token-level overlap status by the
pairwise semantic similarity, thus the token-level si-
milarity is viewed as the bedrock of difficulty calcu-
lation. For instance, if one token (like “cat”) in the
reference may only find identical or synonymous
substitutions in a few MT system outputs, then the
corresponding translation difficulty weight ought
to be larger than for other reference tokens, which
further indicates that it is more valuable for eva-
luating the translation capability. Combined with
BERTScore mechanism, it is implemented by ave-
raging the token similarities across systems. Given
K systems and their corresponding generated hy-
potheses h1,h2, ...,hK , the difficulty of a specific
token t in the reference t is formulated as

d(t) = 1−
∑K

k=1maxh∈hk
sim(t, h)

K
(2)

An example is shown in Figure 1: the entity “cat”
is improperly translated to “monkey” and “puppy”,
resulting in a lower pairwise similarity of the token
“cat”, which indicates higher translation difficulty.
Therefore, by incorporating the translation difficul-
ty into the evaluation process, the token “cat” is
more contributive while the other words like “cute”
are less important in the overall score.

Score Function Due to the fact that the transla-
tion generated by a current NMT model is fluent
enough but not adequate yet, F -score which takes
into account the Precision and Recall, is more ap-
propriate to aggregate the matching scores, instead

of only considering precision. We thus follow va-
nilla BERTScore in using F-score as the final score.
The proposed method directly assigns difficulty
weights to the counterpart of the similarity score
without any hyperparameter:

DA-RBERT =
1

|t|
∑

t∈t
d(t)max

h∈h
sim(t, h) (3)

DA-PBERT =
1

|h|
∑

h∈h
d(h)max

t∈t
sim(t, h) (4)

DA-FBERT = 2 · DA-RBERT ·DA-PBERT

DA-RBERT +DA-PBERT
(5)

For any h /∈ t, we simply let d(h) = 1, i.e., re-
taining the original calculation. The motivation is
that the human assessor keeps their initial matching
judgement if the test taker produces a unique but re-
asonable alternative answer. We regard DA-FBERT

as the DA-BERTScore in the following part.
There are many variants of our proposed method:

1) designing more elaborate difficulty function (Liu
et al., 2020; Zhan et al., 2021); 2) applying a smoo-
thing function to the difficulty distribution; and 3)
using other kinds of F -score, e.g., F0.5-score. The
aim of this paper is not to explore this whole space
but simply to show that a straightforward imple-
mentation works well for MT evaluation.

4 Experiments

Data The WMT19 English↔German (En↔De)
evaluation tasks are challenging due to the lar-
ge discrepancy between human and automated as-
sessments in terms of reporting the best system (Bo-
jar et al., 2018; Barrault et al., 2019; Freitag et al.,
2020). To sufficiently validate the effectiveness of
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SYSTEM BLEU ↑ TER ↓ METEOR ↑ BERTScore ↑ DA-BERTScore ↑ HUMAN ↑
Facebook.6862 0.4364 (⇓5) 0.4692 (⇓5) 0.6077 (⇓3) 0.7219 (⇓4) 0.1555 (X0) 0.347

Microsoft.sd.6974 0.4477 (⇓1) 0.4583 (⇓1) 0.6056 (⇓3) 0.7263 (X0) 0.1539 (⇓1) 0.311
Microsoft.dl.6808 0.4483 (⇑1) 0.4591 (⇓1) 0.6132 (⇑1) 0.7260 (X0) 0.1544 (⇑1) 0.296

MSRA.6926 0.4603 (⇑3) 0.4504 (⇑3) 0.6187 (⇑3) 0.7267 (⇑3) 0.1525 (X0) 0.214
UCAM.6731 0.4413 (X0) 0.4636 (X0) 0.6047 (⇓1) 0.7190 (⇓1) 0.1519 (⇓1) 0.213

NEU.6763 0.4460 (⇑2) 0.4563 (⇑4) 0.6083 (⇑3) 0.7229 (⇑2) 0.1521 (⇑1) 0.208

sum(|4Rank|) 12 14 14 10 4 0

Table 2: Agreement of system ranking with human judgement on the top 30% systems (k=6) of WMT19 En→De
Metrics task. ⇑/⇓ denotes that the rank given by the evaluation metric is higher/lower than human judgement, and
X denotes that the given rank is equal to human ranking. DA-BERTScore successfully ranks the best system that
the other metrics failed. Besides, it also shows the lowest rank difference.
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Figure 2: Effect of top-K systems in the En→De eva-
luation. DA-BERTScore is highly correlated with hu-
man judgment for different values of K, especially
when all the systems are competitive (i.e., K ≤10).

our approach, we choose these tasks as our eva-
luation subjects. There are 22 systems for En→De
and 16 for De→En. Each system has its correspon-
ding human assessment results. The experiments
were centered on the correlation with system-level
human ratings.

Comparing Metrics In order to compare with
the metrics that have different underlying evaluati-
on mechanism, four representative metrics: BLEU
(Papineni et al., 2002), TER (Snover et al., 2006),
METEOR (Banerjee and Lavie, 2005; Denkowski
and Lavie, 2014), BERTScore (Zhang et al., 2020),
which are correspondingly driven by n-gram, edit
distance, word alignment and embedding similarity,
are involved in the comparison experiments without
losing popularity. For ensuring reproducibility, the
original12 and widely used implementation3 was
used in the experiments.

Main Results Following the correlation criterion
adopted by the WMT official organization, Pear-
son’s correlation r is used for validating the system-

1https://www.cs.cmu.edu/ alavie/METEOR/index.html
2https://github.com/Tiiiger/bert score
3https://github.com/mjpost/sacrebleu

level correlation with human ratings. In addition,
two rank-correlations Spearman’s ρ and original
Kendall’s τ are also used to examine the agree-
ment with human ranking, as has been done in
recent research (Freitag et al., 2020). Table 1 lists
the results. DA-BERTScore achieves competitive
correlation results and further improves the cor-
relation of BERTScore. In addition to the results
on all systems, we also present the results on the
top 30% systems where the calculated difficulty
is more reliable and our approach should be more
effective. The result confirms our intuition that DA-
BERTScore can significantly improve the correlati-
ons under the competitive scenario, e.g., improving
the |r| score from 0.204 to 0.974 on En→De and
0.271 to 0.693 on De→En.

Effect of Top-K Systems Figure 2 compares the
Kendall’s correlation variation of the top-K sy-
stems. Echoing previous research, the vast majority
of metrics fail to correlate with human ranking and
even perform negative correlation when K is lower
than 6, meaning that the current metrics are inef-
fective when facing competitive systems. With the
help of difficulty weights, the degradation in the
correlation is alleviated, e.g., improving τ score
from 0.07 to 0.73 for BERTScore (K = 6). These
results indicate the effectiveness of our approach,
establishing the necessity for adding difficulty.

Case Study of Ranking Table 2 presents a case
study on the En→De task. Existing metrics consi-
stently select MSRA’s system as the best system,
which shows a large divergence from human judge-
ment. DA-BERTScore ranks it the same as human
(4th) because most of its translations have low dif-
ficulty, thus lower weights are applied in the scores.
Encouragingly, DA-BERTScore ranks Facebook’s
system as the best one, which implies that it overco-
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BERTS. +DA Sentence

Src - - “I’m standing right here in front of you,” one woman said.
Ref - - ”Ich stehe genau hier vor Ihnen “, sagte eine Frau.
MSRA 0.9656 0.0924 ”Ich stehe hier vor Ihnen “, sagte eine Frau.
Facebook 0.9591 0.1092 ”Ich stehe hier direkt vor Ihnen “, sagte eine Frau.
Src - - France has more than 1,000 troops on the ground in the war-wracked country.
Ref - - Frankreich hat über 1.000 Bodensoldaten in dem kriegszerstörten Land im Einsatz.
MSRA 0.6885 0.2123 Frankreich hat mehr als 1.000 Soldaten vor Ort in dem kriegsgeplagten Land.
Facebook 0.6772 0.2414 Frankreich hat mehr als 1000 Soldaten am Boden in dem kriegsgeplagten Land stationiert.

Table 3: Examples from the En→De evaluation. BERTS. denotes BERTScore. Words indicate the difficult trans-
lations given by our approach on the top 30% systems. DA-BERTScores are more in line with human judgements.
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Figure 3: Distribution of token-level difficulty weights
extracted from the En→De evaluation.

mes more challenging translation difficulties. This
testifies to the importance and effectiveness of con-
sidering translation difficulty in MT evaluation.

Case Study of Token-Level Difficulty Table 3
presents two cases, illustrating that our proposed
difficulty-aware method successfully identifies the
omission errors ignored by BERTScore. In the first
case, the Facebook’s system correctly translates
the token “right”, and in the second case, uses the
substitute “Soldaten am Boden” which is lexical-
ly similar to the ground-truth token “Bodensolda-
ten”. Although the MSRA’s system suffers word
omissions in the two cases, its hypotheses receive
the higher ranking given by BERTScore, which
is inconsistent with human judgements. The rea-
son might be that the semantic of the hypothesis is
highly close to the reference, thus the slight lexical
difference is hard to be found when calculating the
similarity score. By distinguishing the difficulty of
the reference tokens, DA-BERTScore successfully
makes the evaluation focus on the difficult parts,
and eventually correct the score of the Facebook’s
system, thus giving the right rankings.

Distribution of Difficulty Weights The difficul-
ty weights can reflect the translation ability of a
group of MT systems. If the systems in a group
are of higher translation ability, the calculated dif-

ficulty weights will be smaller. Starting from this
intuition, we visualize the distribution of difficulty
weights as shown in Figure 3. Clearly, we can see
that the difficulty weights are centrally distributed
at lower values, indicating that most of the tokens
can be correctly translated by all the MT systems.
For the difficulty weights calculated on the top 30%
systems, the whole distribution skews to zero since
these competitive systems have better translation
ability and thus most of the translations are easy
for them. This confirms that the difficulty weight
produced by our approach is reasonable.

5 Conclusion and Future Work

This paper introduces the conception of difficul-
ty into machine translation evaluation, and veri-
fies our assumption with a representative metric
BERTScore. Experimental results on the WMT19
English↔German metric tasks show that our ap-
proach achieves a remarkable correlation with hu-
man assessment, especially for evaluating competi-
tive systems, revealing the importance of incorpora-
ting difficulty into machine translation evaluation.
Further analyses show that our proposed difficulty-
aware BERTScore can strengthen the evaluation of
word omission problems and generate reasonable
distributions of difficulty weights.

Future works include: 1) optimizing the difficul-
ty calculation; 2) applying to other MT metrics; and
3) testing on other generation tasks, e.g., speech
recognition and text summarization.
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Loı̈c Barrault, Ondřej Bojar, Marta R. Costa-Jussà,
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Ondřej Bojar, Christian Federmann, Mark Fishel, Yvet-
te Graham, Barry Haddow, Philipp Koehn, and Chri-
stof Monz. 2018. Findings of the 2018 conference
on machine translation (WMT18). In Proceedings
of the Third Conference on Machine Translation:
Shared Task Papers, pages 272–303, Belgium, Brus-
sels. Association for Computational Linguistics.

Julian Chow, Lucia Specia, and Pranava Madhyastha.
2019. WMDO: Fluency-based word mover’s distan-
ce for machine translation evaluation. In Procee-
dings of the Fourth Conference on Machine Transla-
tion (Volume 2: Shared Task Papers, Day 1), pages
494–500, Florence, Italy. Association for Computa-
tional Linguistics.

Michael Denkowski and Alon Lavie. 2014. Meteor uni-
versal: Language specific translation evaluation for
any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376–380, Baltimore, Maryland, USA. Association
for Computational Linguistics.

George Doddington. 2002. Automatic evaluation
of machine translation quality using n-gram co-
occurrence statistics. In Proceedings of the Second
International Conference on Human Language Tech-
nology Research, HLT ’02, page 138–145, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers.

Markus Freitag, David Grangier, and Isaac Caswell.
2020. BLEU might be guilty but references are not
innocent. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Proces-
sing (EMNLP), pages 61–71, Online. Association
for Computational Linguistics.

Aaron L. F. Han, Derek F. Wong, and Lidia S. Chao.
2012. LEPOR: A robust evaluation metric for ma-
chine translation with augmented factors. In Pro-
ceedings of COLING 2012: Posters, pages 441–
450, Mumbai, India. The COLING 2012 Organizing
Committee.

Gregor Leusch, Nicola Ueffing, and Hermann Ney.
2006. CDER: Efficient MT evaluation using block
movements. In 11th Conference of the European
Chapter of the Association for Computational Lin-
guistics, Trento, Italy. Association for Computatio-
nal Linguistics.

Chin-Yew Lin and Franz Josef Och. 2004. Automa-
tic evaluation of machine translation quality using
longest common subsequence and skip-bigram stati-
stics. In Proceedings of the 42nd Annual Meeting of
the Association for Computational Linguistics (ACL-
04), pages 605–612, Barcelona, Spain.

Xuebo Liu, Houtim Lai, Derek F. Wong, and Lidia S.
Chao. 2020. Norm-based curriculum learning for
neural machine translation. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 427–436, Online. Asso-
ciation for Computational Linguistics.

Chi-kiu Lo. 2019. YiSi - A unified semantic MT
quality evaluation and estimation metric for langua-
ges with different levels of available resources. In
Proceedings of the Fourth Conference on Machine
Translation (Volume 2: Shared Task Papers, Day
1), pages 507–513, Florence, Italy. Association for
Computational Linguistics.

Qingsong Ma, Johnny Wei, Ondřej Bojar, and Yvette
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Abstract

Humor recognition has been widely studied as
a text classification problem using data-driven
approaches. However, most existing work
does not examine the actual joke mechanism
to understand humor. We break down any joke
into two distinct components: the set-up and
the punchline, and further explore the special
relationship between them. Inspired by the in-
congruity theory of humor, we model the set-
up as the part developing semantic uncertainty,
and the punchline disrupting audience expec-
tations. With increasingly powerful language
models, we were able to feed the set-up along
with the punchline into the GPT-2 language
model, and calculate the uncertainty and sur-
prisal values of the jokes. By conducting ex-
periments on the SemEval 2021 Task 7 dataset,
we found that these two features have better ca-
pabilities of telling jokes from non-jokes, com-
pared with existing baselines.

1 Introduction

One of the important aspects of computational hu-
mor is to develop computer programs capable of
recognizing humor in text. Early work on hu-
mor recognition (Mihalcea and Strapparava, 2005)
proposed heuristic-based humor-specific stylistic
features, for example alliteration, antonymy, and
adult slang. More recent work (Yang et al., 2015;
Chen and Soo, 2018; Weller and Seppi, 2019) re-
garded the problem as a text classification task, and
adopted statistical machine learning methods and
neural networks to train models on humor datasets.
However, only few of the deep learning methods
have tried to establish a connection between humor
recognition and humor theories. Thus, one research
direction in humor recognition is to bridge the dis-
ciplines of linguistics and artificial intelligence.

In this paper, we restrict the subject of investiga-
tion to jokes, one of the most common humor types

Set-up: Today my neighbor knocked at my
door at 3am. Can you believe that?

I was so pissed off.

Punchline: Lucky for him that I was awake
playing the drums!

Expected follow-up

Expectation violated

Figure 1: A joke example consisting of a set-up and
a punchline. A violation can be observed between the
punchline and the expectation.

in text form. As shown in Figure 1, these jokes
usually consist of a set-up and a punchline. The
set-up creates a situation that introduces the hearer
into the story framework, and the punchline con-
cludes the joke in a succinct way, intended to make
the hearer laugh. Perhaps the most suitable humor
theory for explaining such humor phenomenon is
the incongruity theory, which states that the cause
of laughter is the perception of something incon-
gruous (the punchline) that violates the hearer’s
expectation (the set-up).

Based on the incongruity theory, we propose two
features for humor recognition, by calculating the
degree of incongruity between the set-up and the
punchline. Recently popular pre-trained language
models enable us to study such relationship based
on large-scale corpora. Specifically, we fed the
set-up along with the punchline into the GPT-2 lan-
guage model (Radford et al., 2019), and obtained
the surprisal and uncertainty values of the joke, in-
dicating how surprising it is for the model to gener-
ate the punchline, and the uncertainty while gener-
ating it. We conducted experiments on a manually
labeled humor dataset, and the results showed that
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these two features could better distinguish jokes
from non-jokes, compared with existing baselines.
Our work made an attempt to bridge humor theo-
ries and humor recognition by applying large-scale
pre-trained language models, and we hope it could
inspire future research in computational humor.

2 Related Work

Humor Data Mihalcea and Strapparava (2005)
created a one-liner dataset with humorous exam-
ples extracted from webpages with humor theme
and non-humorous examples from Reuters titles,
British National Corpus (BNC) sentences, and En-
glish Proverbs. Yang et al. (2015) scraped puns
from the Pun of the Day website1 and negative
examples from various news websites. There is
also work on the curation of non-English humor
datasets (Zhang et al., 2019; Blinov et al., 2019).
Hasan et al. (2019) developed UR-FUNNY, a mul-
timodal humor dataset that involves text, audio and
video information extracted from TED talks.

Humor Recognition Most of the existing work
on humor recognition in text focuses on one-liners,
one type of jokes that delivers the laughter in a sin-
gle line. The methodologies typically fall into two
categories: feature engineering and deep learning.
Mihalcea and Strapparava (2005) designed three
human-centric features (alliteration, antonymy and
synonym) for recognizing humor in the curated one-
liner dataset. Mihalcea et al. (2010) approached the
problem by calculating the semantic relatedness be-
tween the set-up and the punchline (they evaluated
150 one-liners by manually splitting them into “set-
up” and “punchline”). Shahaf et al. (2015) inves-
tigated funny captions for cartoons and proposed
several features including perplexity to distinguish
between funny and less funny captions. Morales
and Zhai (2017) proposed a probabilistic model
and leveraged background text sources (such as
Wikipedia) to identify humorous Yelp reviews. Liu
et al. (2018) proposed to model sentiment associ-
ation between elementary discourse units and de-
signed features based on discourse relations. Cattle
and Ma (2018) explored the usage of word associa-
tions as a semantic relatedness feature in a binary
humor classification task. With neural networks
being popular in recent years, some deep learn-
ing structures have been developed for the recog-
nition of humor in text. Chen and Lee (2017) and

1http://www.punoftheday.com/

Chen and Soo (2018) adopted convolutional neural
networks, while Weller and Seppi (2019) used a
Transformer architecture to do the classification
task. Fan et al. (2020) incorporated extra phonetic
and semantic (ambiguity) information into the deep
learning framework. In addition to these method-
ological papers, there are also some tasks dedicated
to computational humor in recent years. SemEval
2020 Task 7 (Hossain et al., 2020) aims at assess-
ing humor in edited news headlines. SemEval 2021
Task 7 (Meaney et al., 2021) involves predicting
the humor rating of the given text, and if the rating
is controversial or not. In this task, Xie et al. (2021)
adopted the DeBERTa architecture (He et al., 2020)
with disentangled attention mechanism to predict
the humor labels.

Although the work of Mihalcea et al. (2010) is
the closest to ours, we are the first to bridge the
incongruity theory of humor and large-scale pre-
trained language models. Other work (Bertero and
Fung, 2016) has attempted to predict punchlines in
conversations extracted from TV series, but their
subject of investigation should be inherently differ-
ent from ours—punchlines in conversations largely
depend on the preceding utterances, while jokes
are much more succinct and self-contained.

3 Humor Theories

The attempts to explain humor date back to the age
of ancient Greece, where philosophers like Plato
and Aristotle regarded the enjoyment of comedy
as a form of scorn, and held critical opinions to-
wards laughter. These philosophical comments on
humor were summarized as the superiority the-
ory, which states that laughter expresses a feeling
of superiority over other people’s misfortunes or
shortcomings. Starting from the 18th century, two
other humor theories began to challenge the dom-
inance of the superiority theory: the relief theory
and the incongruity theory. The relief theory ar-
gues that laughter serves to facilitate the relief of
pressure for the nervous system (Morreall, 2020).
This explains why laughter is caused when people
recognize taboo subjects—one typical example is
the wide usage of sexual terms in jokes. The incon-
gruity theory, supported by Kant (1790), Schopen-
hauer (1883), and many later philosophers and psy-
chologists, states that laughter comes from the per-
ception of something incongruous that violates the
expectations. This view of humor fits well the types
of jokes commonly found in stand-up comedies,
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where the set-up establishes an expectation, and
then the punchline violates it. As an expansion of
the incongruity theory, Raskin (1979) proposed the
Semantic Script-based Theory of Humor (SSTH)
by applying the semantic script theory. It posits
that, in order to produce verbal humor, two require-
ments should be fulfilled: (1) The text is compatible
with two different scripts; (2) The two scripts with
which the text is compatible are opposite.

4 Methodology

The incongruity theory attributes humor to the vi-
olation of expectation. This means the punchline
delivers the incongruity that turns over the expecta-
tion established by the set-up, making it possible to
interpret the set-up in a completely different way.
With neural networks blooming in recent years, pre-
trained language models make it possible to study
such relationship between the set-up and the punch-
line based on large-scale corpora. Given the set-up,
language models are capable of writing expected
continuations, enabling us to measure the degree
of incongruity, by comparing the actual punchline
with what the language model is likely to generate.

In this paper, we leverage the GPT-2 language
model (Radford et al., 2019), a Transformer-based
architecture trained on the WebText dataset. We
chose GPT-2 because: (1) GPT-2 is already pre-
trained on massive data and publicly available on-
line, which spares us the training process; (2) it
is domain independent, thus suitable for modeling
various styles of English text. Our goal is to model
the set-up and the punchline as a whole piece of
text using GPT-2, and analyze the probability of
generating the punchline given the set-up. In the
following text, we denote the set-up as x, and the
punchline as y. Basically, we are interested in
two quantities regarding the probability distribu-
tion p(y|x): uncertainty and surprisal, which are
elaborated in the next two sections.

4.1 Uncertainty

The first question we are interested in is: given the
set-up, how uncertain it is for the language model to
continue? This question is related to SSTH, which
states that, for a piece of text to be humorous, it
should be compatible with two different scripts. To
put it under the framework of set-up and punchline,
this means the set-up could have multiple ways of
interpretation, according to the following punch-
line. Thus, one would expect a higher uncertainty

GPT-2

xm· · ·x2x1 y1 y2 · · · yn−1

v1 v2 v3 · · · vn

y1 y2 y3 yn

Figure 2: The set-up x and the punchline y are concate-
nated and fed into GPT-2 for predicting the next token.
vi’s are probability distributions on the vocabulary.

value when the language model tries to continue
the set-up and generate the punchline.

We propose to calculate the averaged entropy
of the probability distributions at all token posi-
tions of the punchline, to represent the degree of
uncertainty. As shown in Figure 2, the set-up x
and the punchline y are concatenated and then fed
into GPT-2 to predict the next token. While predict-
ing the tokens of y, GPT-2 produces a probability
distribution vi over the vocabulary. The averaged
entropy is then defined as

U(x, y) = − 1

|y|
n∑

i=1

∑

w∈V
vwi log vwi , (1)

where V is the vocabulary.

4.2 Surprisal
The second question we would like to address is:
how surprising it is when the language model ac-
tually generates the punchline? As the incongruity
theory states, laughter is caused when something in-
congruous is observed and it violates the previously
established expectation. Therefore, we expect the
probability of the language model generating the
actual punchline to be relatively low, which indi-
cates the surprisal value should be high. Formally,
the surprisal is defined as

S(x, y) = − 1

|y| log p(y|x)

= − 1

|y|
n∑

i=1

log vyii .
(2)

5 Experiments

We evaluated and compared the proposed features
with several baselines by conducting experiments
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in two settings: predicting using individual features,
and combining the features with a content-based
text classifier.

5.1 Baselines

Similar to our approach of analyzing the relation-
ship between the set-up and the punchline, Mihal-
cea et al. (2010) proposed to calculate the semantic
relatedness between the set-up and the punchline.
The intuition is that the punchline (which deliv-
ers the surprise) will have a minimum relatedness
to the set-up. For our experiments, we chose two
relatedness metrics that perform the best in their pa-
per as our baselines, plus another similarity metric
based on shortest paths in WordNet (Miller, 1995):

• Leacock & Chodorow similarity (Leacock
and Chodorow, 1998), defined as

Simlch = − log
length
2 ∗D , (3)

where length is the length of the shortest path
between two concepts using node-counting,
and D is the maximum depth of WordNet.

• Wu & Palmer similarity (Wu and Palmer,
1994) calculates similarity by considering the
depths of the two synsets in WordNet, along
with the depth of their LCS (Least Common
Subsumer), which is defined as

Simwup =
2 ∗ depth(LCS)

depth(C1) + depth(C2)
, (4)

where C1 and C2 denote synset 1 and synset
2 respectively.

• Path similarity (Rada et al., 1989) is also
based on the length of the shortest path be-
tween two concepts in WordNet, which is de-
fined as

Simpath =
1

1 + length
. (5)

In addition to the metrics mentioned above, we also
consider the following two baselines related to the
phonetic and semantic styles of the input text:

• Alliteration. The alliteration value is com-
puted as the total number of alliteration chains
and rhyme chains found in the input text (Mi-
halcea and Strapparava, 2005).

• Ambiguity. Semantic ambiguity is found
to be a crucial part of humor (Miller and
Gurevych, 2015). We follow the work of Liu
et al. (2018) to compute the ambiguity value:

log
∏

w∈s
num of senses(w), (6)

where w is a word in the input text s.

5.2 Dataset
We took the dataset from SemEval 2021 Task 7.2

The released training set contains 8,000 manually
labeled examples in total, with 4,932 being posi-
tive, and 3,068 negative. To adapt the dataset for
our purpose, we only considered positive examples
with exactly two sentences, and negative examples
with at least two sentences. For positive exam-
ples (jokes), the first sentence was treated as the
set-up and the second the punchline. For negative
examples (non-jokes), consecutive two sentences
were treated as the set-up and the punchline, respec-
tively.3 After splitting, we cleaned the data with
the following rules: (1) We restricted the length of
set-ups and punchlines to be under 20 (by counting
the number of tokens); (2) We only kept punchlines
whose percentage of alphabetical letters is greater
than or equal to 75%; (3) We discarded punchlines
that do not begin with an alphabetical letter. As a
result, we obtained 3,341 examples in total, consist-
ing of 1,815 jokes and 1,526 non-jokes. To further
balance the data, we randomly selected 1,526 jokes,
and thus the final dataset contains 3,052 labeled ex-
amples in total. For the following experiments,
we used 10-fold cross validation, and the averaged
scores are reported.

5.3 Predicting Using Individual Features
To test the effectiveness of our features in distin-
guishing jokes from non-jokes, we built an SVM
classifier (parameters can be found in Appendix A)
for each individual feature (uncertainty and sur-
prisal, plus the baselines). The resulted scores
are reported in Table 1. Compared with the base-
lines, both of our features (uncertainty and sur-
prisal) achieved higher scores for all the four met-
rics. In addition, we also tested the performance
of uncertainty combined with surprisal (last row

2https://semeval.github.io/
SemEval2021/

3We refer to them as set-up and punchline for the sake of
convenience, but since they are not jokes, the two sentences
are not real set-up and punchline.
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P R F1 Acc

Random 0.4973 0.4973 0.4958 0.4959

Simlch 0.5291 0.5179 0.4680 0.5177
Simwup 0.5289 0.5217 0.4919 0.5190
Simpath 0.5435 0.5298 0.4903 0.5291
Alliteration 0.5353 0.5349 0.5343 0.5354
Ambiguity 0.5461 0.5365 0.5127 0.5337

Uncertainty 0.5840 0.5738 0.5593 0.5741
Surprisal 0.5617 0.5565 0.5455 0.5570

U+S 0.5953 0.5834 0.5695 0.5832

Table 1: Performance of individual features. Last row
(U+S) is the combination of uncertainty and surprisal.
P: Precision, R: Recall, F1: F1-score, Acc: Accuracy.
P, R, and F1 are macro-averaged, and the scores are
reported on 10-fold cross validation.

P R F1 Acc

GloVe 0.8233 0.8232 0.8229 0.8234

GloVe+Simlch 0.8255 0.8251 0.8247 0.8250
GloVe+Simwup 0.8264 0.8260 0.8254 0.8257
GloVe+Simpath 0.8252 0.8244 0.8239 0.8244
GloVe+Alliter. 0.8299 0.8292 0.8291 0.8297
GloVe+Amb. 0.8211 0.8203 0.8198 0.8201

GloVe+U 0.8355 0.8359 0.8353 0.8359
GloVe+S 0.8331 0.8326 0.8321 0.8326

GloVe+U+S 0.8368 0.8368 0.8363 0.8365

Table 2: Performance of the features when combined
with a content-based classifier. U denotes uncertainty
and S denotes surprisal. P: Precision, R: Recall, F1: F1-
score, Acc: Accuracy. P, R, and F1 are macro-averaged,
and the scores are reported on 10-fold cross validation.

of the table), and the resulting classifier shows a
further increase in the performance. This suggests
that, by jointly considering uncertainty and sur-
prisal of the set-up and the punchline, we are better
at recognizing jokes.

5.4 Boosting a Content-Based Classifier

Now that we have shown the advantage of our
features when used individually in prediction, we
would like to validate their effectiveness when com-
bined with the commonly used word embeddings.
Thus, we evaluated our features as well as the base-
lines under the framework of a content-based clas-
sifier. The idea is to see if the features could further
boost the performance of existing text classifiers.
To create a starting point, we encoded each set-up
and punchline into vector representations by aggre-
gating the GloVe (Pennington et al., 2014) embed-
dings of the tokens (sum up and then normalize
by the length). We used the GloVe embeddings
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Figure 3: Histograms of uncertainty (left) and surprisal
(right), plotted separately for jokes and non-jokes. Mdn
stands for Median.

with dimension 50, and then concatenated the set-
up vector and the punchline vector, to represent
the whole piece of text as a vector of dimension
100. For each of the features (uncertainty and sur-
prisal, plus the baselines), we appended it to the
GloVe vector, and built an SVM classifier to do
the prediction. Scores are reported in Table 2. As
we can see, compared with the baselines, our fea-
tures produce larger increases in the performance
of the content-based classifier, and similar to what
we have observed in Table 1, jointly considering
uncertainty and surprisal gives further increase in
the performance.

6 Visualizing Uncertainty and Surprisal

To get a straightforward vision of the uncertainty
and surprisal values for jokes versus non-jokes,
we plot their histograms in Figure 3 (for all 3,052
labeled examples). It can be observed that, for both
uncertainty and surprisal, jokes tend to have higher
values than non-jokes, which is consistent with our
expectations in Section 4.

7 Conclusion

This paper makes an attempt in establishing a con-
nection between the humor theories and the nowa-
days popular pre-trained language models. We
proposed two features according to the incongruity
theory of humor: uncertainty and surprisal. We
conducted experiments on a humor dataset, and
the results suggest that our approach has an advan-
tage in humor recognition over the baselines. The
proposed features can also provide insight for the
task of two-line joke generation—when designing
the text generation algorithm, one could exert ex-
tra constraints so that the set-up is chosen to be
compatible with multiple possible interpretations,
and the punchline should be surprising in a way
that violates the most obvious interpretation. We
hope our work could inspire future research in the
community of computational humor.
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Simpath 1.71 sec
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Uncertainty 2.12 sec
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Uncertainty + Surprisal 2.26 sec

Table 3: Running time of the SVM classifiers trained
on individual features.
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GloVe + Alliteration 15.41 sec
GloVe + Ambiguity 14.28 sec

GloVe + Uncertainty 14.70 sec
GloVe + Surprisal 13.84 sec

GloVe + U + S 19.27 sec

Table 4: Running time of the content-based SVM clas-
sifiers combined with individual features. U denotes
uncertainty and S denotes surprisal.
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A Model Parameters

For the SVM classifier, we set the regularization
parameter C = 1.0, and used the RBF kernel with
the kernel coefficient γ = 1/nfeatures. All models
were trained and evaluated on a machine with Intel
Core i7-6700K CPU, Nvidia GeForce GTX 1080
GPU, and 16GB RAM. The running time of each
method is listed in Table 3 and Table 4.
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Abstract
Disentanglement of latent representations into
content and style spaces has been a commonly
employed method for unsupervised text style
transfer. These techniques aim to learn the dis-
entangled representations and tweak them to
modify the style of a sentence. In this paper,
we propose a counterfactual-based method to
modify the latent representation, by posing
a ‘what-if’ scenario. This simple and disci-
plined approach also enables a fine-grained
control on the transfer strength. We conduct
experiments with the proposed methodology
on multiple attribute transfer tasks like Senti-
ment, Formality and Excitement to support our
hypothesis.

1 Introduction

Counterfactual Reasoning (Bottou et al., 2013) is
leveraged in structured data analysis and econo-
metrics towards generation of alternatives and es-
timation of alternate scenarios. Counterfactuals
describe a causal situation of the form ‘If X would
have (not) occurred, Y would have (not) occurred’
(Molnar, 2019). In interpretable machine learning,
counterfactuals have been used to explain predic-
tions of individual instances across various types
of datasets and tasks (Neal et al., 2018; Martens
and Provost, 2014; Wachter et al., 2017). Laugel
et al.(2018) and Neal et al.(2018) use counterfac-
tuals towards generating training data. Counter-
factual reasoning also provides us with a unique
ability to generate explanations and make causal
analysis on the latent space. However, this tech-
nique has never been explored in natural language
generation tasks. Here, we plug-in the concept of
counterfactuals to the text-style transfer task, to
enable the manipulation of latent spaces towards
controlled transfer of style.

∗Work done while authors were at Adobe Research.

Existing works in text style transfer focus on
transferring a specific target attribute. Unsuper-
vised methods based on adversarial attacks (Fu
et al., 2018; she), back translation (Prabhumoye
et al., 2018), learning disentangled representa-
tions(John et al., 2019) have been popular in this
domain. Other techniques include deletion of style-
specific words and conditionally generate sentences
in the target style (Li et al., 2018; Sudhakar et al.,
2019). However, all of them fail to provide a con-
trol over the target style strength i.e. a clever ma-
nipulation of the latent space is non-trivial.

Recent works on controlled text generation in-
clude (Wang et al., 2019), which brings in a
transformer-based model that modifies the gradient
functions leading to controlled generation in the
output space. Jin et al.(2019) is an unsupervised ap-
proach integrated during end-to-end model training.
The drawback in all these efforts is the lack of a
prefixed logic towards controlling the latent space.
Our proposed method of counterfactuals fills in this
gap and provides a logical method to control the
latent spaces for enabling a smooth style transfer.

Our approach is based on the premise of disen-
tangled representation spaces inspired from John
et al.(2019). Separating out the style and content
representations introduce an opportunity to fine-
tune, resulting in the ability to control the output
sentences specific to style. We introduce a coun-
terfactual reasoning module for controlling la-
tent disentangled spaces for style transfer. Fig-
ure 1 shows an illustrative example for the variants
generated through our approach. To the best of
our knowledge, this is the first work leveraging
such a concept towards controlled text generation.
Through extensive quantitative and qualitative ex-
periments, across attributes and datasets, we con-
clude that the proposed approach is effective in
providing control over the style strength and also
shows that the best transfer performance is on par

40



Figure 1: Example Counterfactuals showing the grad-
ual ‘control’ introduced in the text style transfer.

with the existing baseline style-transfer techniques.

2 Approach

Figure 2 illustrates our proposed approach, that
incorporates counterfactual reasoning to latent dis-
entangled representations for manipulating style
in text. It consists of (1) A Variational Autoen-
coder (VAE) model to learn the disentangled style
and content representations for different stylistic
attributes, (2) A Counterfactual Reasoning Module
to control the latent representations for generating
style variants.

Figure 2: Proposed approach with Counterfactual Rea-
soning Module for Style Transfer

2.1 Learning Disentangled Representations
We adopt the model described in (John et al., 2019)
for learning the disentangled content and style rep-
resentations. Here, a VAE with an encoder-decoder
is used to encode a sentence x into a latent distri-
bution H = qE(h|x), guided by the loss function:

JV AE(θE , θD) = JREC + λklKL[qE(h|x) ‖ p(h)]

where, θE and θD are the encoder and decoder pa-
rameters respectively. The first term encourages re-
construction, while the second term regularizes the
latent space to a prior distribution p(h) (N (0, 1)).
We experiment with some variations of this archi-
tecture, which are detailed in section 3.

Additionally, Multi-Task (Jmul(s), Jmul(c)) and
Adversarial losses (Jadv(s), Jadv(c)) are imposed on
the latent space h to disentangle the embeddings
into representing content c and style s, i.e., h =
[s; c], where [; ] denotes concatenation. These four
losses ensure that the style and content information
are present in, and only in their respective style(s)
and content(c) embeddings.

Once we have the disentangled representations,
our basic idea is to feed the generative model with
the same content and a different style embedding
to produce sentences of altering style. In (John
et al., 2019), the average style embeddings of the
target style is fed to the decoder. Intuitively, chang-
ing these style embeddings will produce different
variants of target style sentences, but a disciplined
approach to generate smooth style variants of the
sentence is missing. We propose the counterfactual
reasoning for this purpose.

2.2 Counterfactual Reasoning Module
Counterfactuals (CF) are used for gradually chang-
ing the style representation along the target-style
axis. A counterfactual explanation of an outcome
Y takes the form ‘if X had not occurred, Y would
not have occurred’. We leverage this notion here. A
Multi-layer Perceptron (MLP) classifier is trained
on the disentangled style latent representations
learnt by the VAE, such that every instance of style
embedding s, predicts a target style (T ) of a sen-
tence. Now, the aim is to find s′ such that it is close
to s in the latent space but leads to a different pre-
diction T ′, i.e. the target class. The CF generation
loss is given by,

Jcfactual=L(s′|s)=λ(ft(s
′)−pt)2+L1(s

′,s),

where t is the desired target style class for s′, pt is
the probability with which we want to predict this
target class (perfect transfer would mean pt = 1),
ft is the model prediction on class t and L1 is the
distance between s′ and s. The first term in the loss
guides towards finding an s′ that changes the model
prediction to the target class and use of the L1 dis-
tance ensures that minimum number of features are
changed in order to change the prediction. λ is the
weighting term. The resulting set of CFs are ob-
tained by optimizing (Wachter et al., 2017) the fol-
lowing equation:argmins′ maxλ L(s′|s), subject
to |ft(s′ − pt)| ≤ ε (tolerance parameter).

The CF generator is generalizable across differ-
ent stylistic attributes. To generate multiple vari-
ants for a target style, CFs are generated varying
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(a) Accuracy (b) Bleu-S (c) Cosine Similarity (CP)

Figure 3: Performance of the counterfactual model on multiple datasets. Style transfer accuracy (ACC) increases
and the content preservation (BLEU-S, CP) decreases with increasing transfer strength.

the probability of target specific generation (or con-
fidence), pt. This results in different sentence vari-
ants with a similar target style but varied degrees
for transfer strength. Finally, the disentangled rep-
resentations enable finer control over the style di-
mensions with no risk of content loss during the
counterfactual reasoning stage (as the content rep-
resentations are retained).

3 Experiments

3.1 Proposed models

The VAE model adapted from (John et al., 2019),
with RNN encoder-decoder blocks is R-VAE. We
experiment with a variation by replacing RNNs
with the transformer blocks (T-VAE). T-VAE-
CF uses counterfactuals for generating variants,
while models with -AVG use average style embed-
ding of the target style to enable transfer. For T-
VAE, we experimented with different loss combina-
tions.-1,-2,-3,-4 refers to the inclusion of Jmul(s),
Jmul(s) + Jadv(s), Jmul(s) + Jadv(s) + Jmul(c,
Jmul(s) + Jadv(s) + Jmul(c) + Jadv(c), respectively
along with JV AE in the overall loss function.

3.2 Baselines

We compare our best transfer models (with pt ≈ 1)
against standard unsupervised style-transfer ap-
proaches. CrossAligned (CA)(Fu et al., 2018)
aligns the hidden representations of original and
style transferred sentences. T-D and T-DRG (Sud-
hakar et al., 2019) models delete attribute related
words and conditionally generate words with the
target style through transformer architecture.

3.3 Implementation

The counterfactual module has a linear classifier
with a sigmoid activation, taking input dim. of

16 (s) and a output dim. 2 (style label). It is
trained with Adam optimizer and 0.001 learning
rate is used to minimize CCE loss. The trans-
fer strength in CF-module, pt, is varied from
0 to 1. Experiments with the following values
(0.2, 0.3, 0.5, 0.5, 0.8, 0.9, 0.95, 1.0) are reported.*

3.4 Datasets
We experiment with varied style attributes using 5
datasets. YELP is used for sentiment. Human gold
standard references of these datasets from (Sud-
hakar et al., 2019) are used for evaluation. GYAFC
dataset (Rao and Tetreault, 2018) is used for For-
mality and a new dataset GYAFC-excite with cus-
tom annotations for excitement is created†. POLIT-
ICAL (Voigt et al., 2018) and GENDER (Reddy and
Knight, 2016)(similar to (Prabhumoye et al., 2018))
are used for the respective styles. The train-dev-test
split as defined by original authors are used for all
experiments.

3.5 Evaluation criteria
Style transfer accuracy (ACC) is measured by
a dataset-specific Fasttext style classifier (Joulin
et al., 2017). The classifiers report a % accu-
racy of 93.6, 87.6, 82.5, 78.3, 93.5 on the Yelp,
GYAFC, GYAFC-Excite, Gender and Political
datasets. Content preservation is measured through
BLEU(Papineni et al., 2002) scores calculated
against the source sentences(BLEU-S) and human
references (BLEU-H), if available. We compute the
cosine similarity (CP) to measure the vector-space
similarity‡. Language fluency (PPL) is reported by

*Other implementation details, hyper-parameters, com-
pute setup, and training times are provided in the appendix

†We cannot share the GYAFC-excitement dataset due to
its license

‡Sentence embeddings for CP are calculated by concate-
nating the min, max, and mean of its word embeddings, ex-
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Attribute−→ Formality Sentiment Excitement
Direction−→ Formal−→ Informal Informal−→ Formal Positive−→ Negative Negative−→ Positive Less−→More More−→ Less

Source it is another way to
say that they don’t
like you

hell yeah for the first
answer that girl an-
swered for me

i always have a great
dish here to eat

the wine was very average
and the food was even less

it is a small enjoy-
able club

wonderful venue
for tiff

O
ur

A
pp

ro
ac

h
(C

F
St

re
ng

th
)

0.3 it is way to say it yeah girl answer that
question

i always have a great
dish here to eat

the wine was very average
and the food was even good

it ’s a good club wonderful venue

0.5 you don’t like it but it
is way

yeah you should answer
your question

i always have a bad dish
here to eat .

the wine was very average
and the food was even better

it ’s a great club great venue for
tiff

0.8 you can say it to you oh girl answer that ques-
tion

i always have n’t been a
though to go to order

the wine had very unique and
the food was excellent too

it ’s a great club good venue for
tiff

0.9 you don’t like it but it
is way

oh my answer is yes i always do n’t have
a reviews here to eat
something .

the wine was very reasonable
and the food was even perfect

it’s a great club in
vegas

nice venue

0.95 u can say it to u oh my answer is to an-
swer that question

i always have a bad dish
to eat here .

the wine had very authentic
and the food was also good

it’s a great club in
vegas

good venue

1.0 u can say u r a way oh my answer is to an-
swer that question

i do n’t always be hav-
ing a review to go here

the wine had very unique and
the food was excellent

absolutely loved
this club

good venue

Base Avg just say that way you
don’t know

answer the book for
him , because i love that
is what

i always do n’t get
home from a reviewer
here

the wine was top notch and
the food was even more

it is a small club
and a fantastic
museum

venue for wonder-
ful for the after
ballet

Table 1: Examples for Formality, Sentiment and Excitement with varying CF Strength using our framework.

MODEL SENTIMENT(YELP) FORMALITY EXCITEMENT

Acc↑ Bleu-S↑ Bleu-H↑ CP↑ PPL↑ Acc↑ Bleu-S↑ CP↑ PPL↑ Acc↑ Bleu-S↑ CP↑ PPL↑
CA 76.6 47.95 37.15 0.92 -19.97 55.27 24.83 0.90 -19.08 78.25 33.43 0.87 -10.68
T-D 85.7 71.03 54.08 0.96 -20.12 46.55 70.96 0.95 -24.95 83.85 69.04 0.94 -13.52
T-DRG 77.4 70.60 54.00 0.96 -21.08 41.23 68.12 0.95 -26.91 74.15 63.65 0.94 -15.68
R-VAE-AVG 88.4 34.00 31.10 0.91 -15.08 69.02 32.78 0.90 -15.18 71.3 41.22 0.90 -9.63
R-VAE-CF 77.5 34.74 31.35 0.91 -15.04 62.17 32.47 0.91 -16.98 53.75 42.27 0.90 -9.83
T-VAE-AVG 76.9 34.39 29.19 0.88 -21.25 61.79 35.41 0.88 -23.05 52.55 42.36 0.89 -15.33
T-VAE-CF 89.8 34.61 29.49 0.88 -22.58 74.64 21.72 0.85 -23.74 68.6 17.57 0.83 -14.60

Table 2: Style Transfer Accuracy. Values for best performing models are reported in -CF variants.[For YELP pt =:
(T-VAE-4-CF,0.9); For FORMALITY(T-VAE-1-CF,1.0); For EXCITEMENT(T-VAE-1-CF,1.0)]‡‡

MODEL GENDER POLITICAL

Acc Bleu-S CP PPL Acc Bleu-S CP PPL
T-D 50.6 82.50 0.97 -39.05 74.0 79.40 0.94 -46.74
R-VAE-AVG 52.65 50.42 0.92 -12.57 100.0 10.56 0.86 -26.65
T-VAE-AVG 58.75 37.48 0.87 -18.22 92.4 33.25 0.88 -30.91
T-VAE-CF 62.55 39.99 0.88 -18.53 73.20 43.90 0.90 -30.17

Table 3: Gender & Political [For GENDER, pt: (T-VAE-
2-CF,0.9) .For POLITICAL:(T-VAE-2-CF,1.0)]

the perplexity of trigram KL-smoothed language
model(Kneser and Ney, 1995), trained on the same
corpus.

4 Results and Analysis

Transfer Control. Figure 3 shows the perfor-
mance of CF variants across metrics for different
styles. The CF generated variants from T-VAE-CF
(solid lines) are compared against the reference val-
ues which take avg. embeddings (T-VAE-AVG) for
target style (dotted lines). To recollect, the higher
the CF transfer confidence (strength), the closer is
the generated variant to the target attribute. Thus,
the ideal performance is to have the highest accu-
racies for the highest CF confidence values (see
figure 3(a)). Note that CF strength = 1 alludes to
perfect transfer. This is difficult to achieve as CF
in the representation space may not be generated

cluding stopwords(Fu et al., 2018)

for such a strict target. Hence, the variants gener-
ated with near perfect transfer target (CF strength
= 0.8,0.9,0.95) show the best performance across
metrics. The low transfer accuracies for models
with low CF confidence establishes the ability of
the model to stay near the source when the tar-
get strength is low. All models implemented with
transfer control report improved performance w.r.t
BLEU scores establishing the utility of the alterna-
tives generator.

Table 2, 3 compares baselines with the proposed
models. Note that the evaluation metrics for text
style-transfer cannot be compared in isolation.
There is always a trade-off between content
preservation and transfer accuracy. Amongst
the baselines, we observe that T-D and T-DRG
report high content preservation with some loss in
accuracy, but these models only cater to generating
a single output sentence and there is no provision
to generate the variants. Note that in most style
dimensions, T-VAE based models show highest
performance in transfer accuracy with good
content preservation (CP), but, lower BLEU-S
score. The lower BLEU-S scores indicates the
ability of our model to generate variants that are
not mere repetition of the input samples. R-VAE

models show impressive perplexity values. For the
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political dataset, R-VAE baseline shows very high
transfer accuracy but takes a tremendous hit in
content preservation (BLEU), which is improved
with the use of counterfactuals. Examples in Table
1 illustrate the gradual changes introduced by
T-VAE-CF across different styles.

Human Evaluation: We conducted a crowd-
sourcing based experiment (through Amazon Me-
chanical Turk) to understand both - (A) How base-
lines compare to the generated text and (B) The
interpretation of control as seen by human annota-
tors. For the first experiment, the annotators were
presented with sentences generated by our model,
baselines and ground truth to evaluate and rank.
Specifically, they were asked to score each of the
output sentences on a Likert scale of range 1-5
across three aspects - transfer strength, content
preservation and fluency. The key takeaways high-
light that the sentences generated by our model are
at par in terms of grammar and fluency and are
better in terms of transfer control. As against text
generated by baselines, the text generated by our
proposed models is preferred by humans 70% of
times (inter-annotator agreement 0.42).

For the second experiment to evaluate the con-
trol, we presented the sentence variants generated
through different CFs (by varying pt) and asked the
annotators to rank them from best to worst based
on their transfer strength. On an average, 60% indi-
viduals could grade the gradual control as intended
by the model. If we bucket the sentences into low
(with pt < 0.4) and high groups (with pt > 0.7),
the annotators’ preference for bucketing the out-
put into the right confidence goes up to 73% on
average (68% for low, and 81% for high), hence,
confirming our hypothesis towards using CF for
controlled generation.

5 Conclusion

We introduce the use of counterfactual reasoning
towards controlling the latent disentangled repre-
sentations for text style transfer. Experiments not
only establish the superiority of the proposed mod-
els across standard metrics for a multitude of styles
but also illustrate the utility of the gradual con-
trol variable in this model. We further validate
the use for CF via a human evaluation establishing
improved text attribute transfer.

References

Jennifer L Aaker. 1997. Dimensions of brand personal-
ity. Journal of marketing research, pages 347–356.
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A VAE Models - Further Details

RNN-based (R-VAE). We adopt the model de-
scribed in John et al.(2019) to disentangle the con-
tent and style representations with a recurrent neu-
ral network (RNN)-based VAE. The RNN encoder
with Bi-GRUs (Cho et al., 2014) learns the hid-
den representation qE(h|x) by reading the input
x = (x1, x2, ..., xn) sequentially. The RNN de-
coder, then decodes sequentially over time, pre-
dicting the probabilities of each token conditioned
on the previous tokens and the latent representa-
tion. The reconstruction loss, which is the key loss
for the generation objective, is the negative-log-
likelihood loss as follows:

JREC = Eh∼qE(h|x)[−
n∑

t=1

logP ],

where P = p(xt|h, x1, ..., xt−1)

The hidden space, h, is separated into 2 spaces
while disentangling the style (s) and content (c)
representations. Disentanglement is achieved using
well-defined auxilliary losses.
Transformer-based (T-VAE). Transformers
(Vaswani et al., 2017) have gained popularity for
text generation due to their robust architectures.
We introduce a transformer-based VAE inspired
from Wang et al.(2019). The transformer en-
coder has a multi-headed self-attention block fol-
lowed by a feed forward network (FFN). The de-
coder is similar to the encoder with an additional
encoder-decoder attention block. Given an input
sentence x = (x1, x2, ..., xn), the transformer en-
coder, Etrans learns a hidden word representation
(z1, z2, ..., zn). They are pooled to get a sentence
representation z, which is further encoded into a
probabilistic latent space qE(h|x). A sample from
this latent representation is given as an input to
the encoder-decoder attention block in the decoder.
The decoder reconstructs the input sentence x with
condition on h. We adopt the label smoothing reg-
ularization (Li et al., 2020) while training, for per-
formance improvement. The reconstruction loss

(JREC) is :

Eh∼qE(h|x)[−
|x|∑

((1−ε)
v∑

i=1

p̄ilog(pi)+

ε

v

v∑

i=1

log(pi))]

where, v is the vocabulary size, ε is the label
smoothing parameter, pi and p̄i are the predicted
and the ground truth probabilities over the vocabu-
lary at every time step for word-wise decoding.

Figure 4: Transformer-based: T-VAE

KL Annealing. We also use an Adam optimiser
and KL cost annealing technique (Bowman et al.,
2016) to train our model. KL cost annealing refers
to slow increase in the weight of the KL term (λkl)
in the loss function from 0 to 1. This aids the
training process as the model is warm-started to
minimize the reconstruction loss in the initial itera-
tions, followed by a gradual inclusion of KL loss
term in the subsequent iterations.

A.1 Loss Functions

Auxiliary loss functions are used to achieve the text
rewriting objectives. Note that the reconstruction
loss is the primary loss generation but this does not
take into consideration the style or the controlled
generation.

We use Multi-task and Adversarial losses on the
latent space h to disentangle the embeddings into
representing content c and style s (i.e., h = [s; c],
where [; ] denotes concatenation) separately.
Style-oriented losses. Multitask Loss ensures that
the style space s is discriminative for the style. We
train a style classifier on s jointly with the autoen-
coder loss.

Jmul(s)(θE ; θmul(s)) = −
∑

l∈labels
ts(l) log(ys(l))
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Dataset Style #train #dev #test Source

Yelp
Positive 270K 2000 500

https://github.com/lijuncen/Sentiment-and-Style-Transfer/tree/master/data/yelp
Negative 180K 2000 500

GYAFC
Formal 48K 2000 950

https://github.com/raosudha89/GYAFC-corpus
Informal 48K 2000 1250

GYAFC-excitement
Exciting 36K 1990 1000

NA
Non-Exciting 36K 1990 1000

Political
Democrat 270K 2000 28K

http://tts.speech.cs.cmu.edu/style models/political data/
Republican 270K 2000 28K

Gender
Male 1.34M 2250 267K http://tts.speech.cs.cmu.edu/style models/gender data/

Female 1.34M 2250 267K

Table 4: Datasets

where θmul(s) are the parameters for style multitask
classifier, ys is the style probability distribution
predicted by the classifier and ts is the ground truth
style distribution.
Adversarial loss for style is introduced to ensure
that the content space c is not-discriminative of
the style. An adversarial classifier is trained, that
deliberately discriminates the true style label using
the content vector c, with the following loss.

Jdis(s)(θdis(s)) = −
∑

l∈labels
ts(l)log(y

′
s(l))

where θdis(s) are the parameters for style adversary,
y
′
s is the style probability distribution predicted by

the classifier on the content space.The encoder is
then trained to learn a content vector space c, from
which its adversary cannot predict style informa-
tion. The objective is to maximize the cross entropy
H(p) = −∑i∈labels pilog(pi) with:

Jadv(s)(θE) = H(y
′
s|c; θdis(s))

Content-oriented losses. Multi-task loss aims to
ensure that all content information is in the con-
tent space c. We define the content information
using a bag-of-words (BoW) concept. Here, part-
of-speech tags , i.e. nouns are used. (Liu et al.,
2020; DBL) argue nouns in the text are considered
as attribute-independent content. This definition
allows a generic content loss for all style dimen-
sions as against the previous work where content
is defined as bag-of-words in a sentence, exclud-
ing stopwords and specific style (sentiment) related
lexicon. The content multitask loss is analogical to
style multitask loss as follows:

Jmul(c)(θE ; θmul(c)) = −
∑

w∈content
tc(w) log(yc(w))

Adversarial loss for content ensures that the style
space does not contain content information. A clas-
sifier (content adversary), is trained on the style

space to predict the content (BoW) features. Then
similar to style, encoder is trained to learn s, from
which this adversary cannot predict content infor-
mation.

Jdis(c)(θdis(c))=−
∑

w∈content
tc(w)log(yc

′(w))

Jadv(c)(θE)=H(yc
′|s;θdis(c)),

Training with these losses along with reconstruc-
tion loss ensures that the latent space is disentan-
gled, resulting in the final loss given by,

Jtotal = JV AE + λmul(s)Jmul(s) − λadv(s)
Jadv(s) + λmul(c)Jmul(c) − λadv(c)Jadv(c)

B Dataset details

The brief descriptions for datsets are as follows:
YELP: Reviews from Yelp. Each review is labeled
with a sentiment class - positive or negative. The
task is to change the label while rewriting.
GYAFC: Corpus created from a subset of Yahoo
Answers. Each sample is tagged either formal or
informal. The task is to switch the label.
GYAFC-Excitment: The task here is to convert
the sentences from ‘exciting’ to ‘non-exciting’. We
create a subset of the GYAFC data where annota-
tors (using Amazon Mechanical Turk), were asked
to tag the sentence to be either showing excitement
or not. Excitement follows the definition as given
by (Aaker, 1997). We follow annotation scheme
provided by Rao(2017).
POLITICAL: Comments from Facebook posts
from United States Senate and House members.
Each comment is labelled is with either Republican
or Democrat tag. Task is to interchange between
the two.
GENDER: Reviews from Yelp for food businesses.
Each review is labeled with either male or female
based on the author of the review. Task is to switch
between the two.

Table 4 refers to the number of sentences in train-
dev-test split available for each dataset. The URL
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link to the data files are also provided for each of
them.

C Implementation details

The dimensions of c and s are set to 128 and 16
respectively. The posterior probability distributions
(µ, σ) learnt for the respective content and style
also have the same dimensions. The learnt hidden
state representation is converted to 128 (c) and 16
(s) with a linear layer.

For R-VAE, hidden state dimension is set to 256.
For the T-VAE, the embedding size, latent layer
and the self-attention layers all are set to 256. The
inner dimension of FFN in the transformer is set to
1024. Each of the encoder and decoder is stacked
with two layers of transformer blocks. We used
the Adam optimizer for the VAE and the RMSProp
optimizer for the discriminators, following stability
tricks in adversarial training (Arjovsky and Bottou,
2017). Each optimizer has an initial learning rate
of 10−3. Models are trained for 50 epochs. Figure
4 illustrates the architecture of T-VAE.

Word embeddings initiated with word2vec
(Mikolov et al., 2013) are trained on respective
training sets. Both, the autoencoder and the dis-
criminators are trained once per mini batch with
λmul(s), λmul(c), λadv(s), and λadv(c) = 1. The la-
bel smoothing parameter in the transformer loss ε is
set to 0.1. The KL-Divergence penalty is weighted
by λkl(s) and λkl(c) on style and content, respec-
tively. During training, we also used the sigmoid
KL annealing schedule

The hyper-parameter weights in the loss function
λmul(s), λmul(c), λadv(s), and λadv(c) are chosen to
be 1, as the values were Observed to be converging
over iterations.

We implement our model based on Pytorch
0.4. We trained our models on a machine with
4 NVIDIA Tesla V100-SXM2-16GB GPUs. On
a single GPU, our transformer model with all the
losses (T-VAE-4) took approximately 0.4 s to train
for one step with a batch of size 128. It takes
around 10 hours to train our model on 1 GPU. Ta-
ble 5 depicts the runtime details for all the model
variations.

For our counterfactual generator model, we use
the counterfactual model from Alibi library in
Python§. On an average it takes 3 seconds to gener-
ate a counterfactual for a given input representation
and transfer strength (pt).

§Alibi Counterfactual Module

Dataset Model Batch Size #batches in 1 epoch Runtime for 1 epoch

Yelp
T-VAE-1 128 2375 247.32s
T-VAE-2 128 2375 373.75s
T-VAE-4 128 2375 1108.34s

Formality
T-VAE-1 32 3157 667.85s
T-VAE-2 32 3157 944.97s

Excitement
T-VAE-1 64 1200 580.61s
T-VAE-2 64 1200 602.99s

Gender
T-VAE-1 32 3156 333.58s
T-VAE-2 32 3156 492.12s

Political
T-VAE-1 128 4233 751.92s
T-VAE-2 128 4233 1050.30s

Table 5: Runtime details of model variations across dif-
ferent datasets

Dataset Model
Counterfactual Module

MLP Classifier
CCE Loss

(Validation)
Accuracy

(Validation)

Yelp
T-VAE-1 0.05 99.25
T-VAE-2 0.04 99.31
T-VAE-4 0.04 99.37

Formality
T-VAE-1 0.36 94.09
T-VAE-2 0.33 97.43

Excitement
T-VAE-1 0.34 96.73
T-VAE-2 0.22 96.87

Gender
T-VAE-1 0.11 96.17
T-VAE-2 0.12 96.56

Political
T-VAE-1 0.005 99.992
T-VAE-2 0.003 99.998

Table 6: Validation loss and accuracy for MLP classi-
fier in counterfactual

Further details of our model summary
and generated sentences are present here :
https://bit.ly/34DYHP5
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Abstract

Shapley Values, a solution to the credit as-
signment problem in cooperative game the-
ory, are a popular type of explanation in ma-
chine learning, having been used to explain
the importance of features, embeddings, and
even neurons. In NLP, however, leave-one-
out and attention-based explanations still pre-
dominate. Can we draw a connection between
these different methods? We formally prove
that — save for the degenerate case — at-
tention weights and leave-one-out values can-
not be Shapley Values. Attention flow is a
post-processed variant of attention weights ob-
tained by running the max-flow algorithm on
the attention graph. Perhaps surprisingly, we
prove that attention flows are indeed Shap-
ley Values, at least at the layerwise level.
Given the many desirable theoretical qualities
of Shapley Values — which has driven their
adoption among the ML community — we ar-
gue that NLP practitioners should, when pos-
sible, adopt attention flow explanations along-
side more traditional ones.

1 Introduction

The approaches to model interpretability taken by
the ML and NLP communities overlap in some ar-
eas and diverge in others. Notably, in machine
learning, model prediction has sometimes been
framed as a cooperative effort between the poten-
tial subjects of an explanation (e.g., input tokens)
(Lundberg and Lee, 2017). But how should we
allocate the credit for a prediction, given that some
subjects contribute more than others (e.g., the sen-
timent words in sentiment classification)? The
Shapley Value is a solution to this problem that
uniquely satisfies several criteria for equitable al-
location (Shapley, 1953). However, while Shapley
Value explanations have been widely adopted by
the ML community — to analyze the importance of
features, neurons, and even training data (Ghorbani

and Zou, 2019, 2020) — they have had far less
traction in NLP, where leave-one-out and attention-
based explanations still predominate.

What is the connection between these different
paradigms? When, if ever, are attention weights
and leave-one-out values effectively Shapley Val-
ues? The adoption of Shapley Values — which
have their origins in game theory (Shapley, 1953)
— by the ML community can be ascribed to their
many desirable theoretical qualities. For example,
consider a token whose masking out does not im-
pact the model prediction in any way, regardless
of how many other tokens in the sentence are also
masked out. In game theory, such a token would be
called a null player, whose Shapley Value is guar-
anteed to be zero (Myerson, 1977; Young, 1985).
If we could provably identify the conditions under
which attention weights and leave-one-out values
are Shapley Values, we could extend such theoreti-
cal guarantees to them as well.

In this work, we first prove that — save for the
degenerate case — attention weights and leave-
one-out values cannot be Shapley Values. More
formally, there is no set of players (i.e., possible
subjects of an explanation, such as tokens) and pay-
off (i.e., function defining prediction quality) such
that the values induced by attention or leave-one-
out also satisfy the definition of a Shapley Value.
We then turn to attention flow, a post-processed
variant of attention weights obtained by running
the max-flow algorithm on the attention graph (Ab-
nar and Zuidema, 2020). We prove that when the
players all come from the same layer (e.g., tokens
in the input layer), there exists a payoff function
such that attention flows are Shapley Values.

This means that under certain conditions, we
can extend the theoretical guarantees associated
with the Shapley Value to attention flow as well.
As we show, these guarantees are axioms of faith-
ful interpretation, and having them can increase
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confidence in interpretations of black-box NLP
models. For this reason, we argue that whenever
possible, NLP practitioners should use attention
flow-based explanations alongside more traditional
ones, such as gradients (Feng et al., 2018; Smilkov
et al., 2017). We conclude by discussing some
of the limitations in calculating Shapley Values for
any arbitrary player set and payoff function in NLP.

2 Model Interpretation as a Game

The Shapley Value (Shapley, 1953) was proposed
as a solution to a classic problem in game theory:
When a group of players work together to achieve
a payoff, how can we fairly allocate the payoff
to each player, given that some contribute more
than others? The players here are the potential
subjects of the explanation (e.g., input tokens); the
payoff is some quality of the model prediction (e.g.,
correctness). We contextualize the game theoretic
terms with respect to model interpretability below.

Definition 2.1. A player is a possible subject of
the explanation (e.g., character, token, embedding,
neuron). N = {1, ..., n} is the set of all players.

Definition 2.2. A coalition is a subset of players
S ⊆ N that work together. There are 2n possible
coalitions. The other players N \ S are left out
by being replaced with a non-subject that cannot
affect the outcome (e.g., a zeroed-out embedding
or a dropped-out neuron).

Definition 2.3. The payoff reflects some quality
of the model prediction — e.g., correctness, confi-
dence, entropy — made using a given coalition. It
is defined by a payoff function v : 2N → R, where
v(∅) = 0. The value φi(v) of a player i is the share
of the payoff allocated to it. In other words, it is the
importance accorded to subject i of an explanation.

Definition 2.4. A game is defined by (N, v), a
player set N and payoff function v. It is a trans-
ferable utility game (TU-game), where the payoff
can be distributed among the players as desired.
In the game of model interpretation, the subjects
of the explanation are framed as players working
cooperatively to make the best possible prediction.

2.1 Equitable Allocation

How can we allocate the payoff equitably, in a way
that reflects the actual contribution made by each
player? In other words, how can we faithfully in-
terpret a prediction? The game theory literature
proposes that any equitable payoff allocation satis-

fies these three conditions (Myerson, 1977; Young,
1985; Ghorbani and Zou, 2019):

Condition 1. (Null Player): A player that induces
no change in the payoff from joining any coalition
has zero value. Formally, ∀ S ⊆ N \ {i}, v(S ∪
{i}) = v(S) =⇒ φi = 0.

Condition 2. (Symmetry): Two players who in-
duce the same change in payoff upon joining ev-
ery coalition (that excludes them) have the same
value. Formally, ∀ S ⊆ N \ {i, j}, v(S ∪ {i}) =
v(S ∪ {j}) =⇒ φi = φj .

Condition 3. (Additivity): The value of a player
across two different games with payoff v, w should
be the sum of its value in each game. Formally,
∀ i ∈ N,φi(v + w) = φi(v) + φi(w).

2.2 The Shapley Value
The Shapley Value is a well-known solution to the
problem of payoff allocation in a cooperative set-
ting, as it uniquely satisfies the three criteria for
equitable allocation in 2.1 (Shapley, 1953; Myer-
son, 1977; Young, 1985). It sets the value of a
player to be its expected incremental contribution
to a coalition, over all possible coalitions.

Definition 2.5. Where R is one of n! possible per-
mutations of the player set N , let PR[:i] be the
subset of players that precede player i in the per-
mutation. Then, for a given payoff function v, the
Shapley Value of player i is

φi(v) =
1

n!

∑

R

[v(PR[:i] ∪ {i})− v(PR[:i])] (1)

There are other equivalent ways of expressing the
Shapley Value, including as a sum over the 2n pos-
sible coalitions.

In addition to satisfying our three criteria of equi-
table allocation (2.1), a Shapley Value distribution
always exists and is unique for a TU-game (N, v).
Unlike with attention weights, which have been
criticized for allowing counterfactual explanations
(Jain and Wallace, 2019; Serrano and Smith, 2019),
there can thus be no counterfactual Shapley Value
distribution for a given input and payoff function
v. The distribution is also said to be efficient, since
it allocates all of the payoff: v(N) =

∑
i∈N φi(v)

(Myerson, 1977; Young, 1985). The Shapley Value
can, in theory, be computed for any player set and
payoff function. However, in practice, there are
typically too many players to calculate this com-
binatorial expression exactly. Generally, estimates
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are taken by uniformly sampling m random permu-
tationsR (Ghorbani and Zou, 2019):

φ̂i(v) =
1

m

∑

R∈R
[v(PR[:i] ∪ {i})− v(PR[:i])] (2)

In the rest of this paper, we ask: Is there some TU-
game (N, v) for which attention weights / attention
flows / leave-one-out values are Shapley Values? If
so, for which games?

3 Attention Weights

Many have argued that attention weights are not
a faithful explanation, on the basis of consistency
(i.e., poor correlation with other importance mea-
sures) and non-exclusivity (i.e., multiple explana-
tions leading to the same outcome) (Jain and Wal-
lace, 2019). Others have countered that they have
some utility (Wiegreffe and Pinter, 2019). Without
making assumptions about their inherent utility, we
prove in this section that they cannot be Shapley
Value explanations, outside of the degenerate case.

Proposition 1. If some player is attended to more
than another, there is no TU-game (N, v) for which
attention weights are Shapley Values.

Proof. Assume that attention weights are Shapley
Values for some TU-game. Shapley Values are
necessarily efficient (i.e., v(N) =

∑
i φi(v)) (My-

erson, 1977; Young, 1985), so for attention weights
to be efficient, the only applicable payoff function
would be the sum of attention weights. Since each
player only has one Shapley Value for a given v,
if it is attended to multiple times, its value must
be the total attention paid to it: where aj,i denotes
the attention j pays to i, φi(v) =

∑
j∈N aj,i. Note

that the payoff for a coalition S is within some
constant of its cardinality, since for a player j, the
weights aj,· of the players that it attends to sum to
1 (Bahdanau et al., 2015). We consider two cases.

Case 1 For a player j that attends to some other
player, its contribution to the payoff of every S ∈
N \ {j} is

∑
aj,· = 1, implying φj(v) = 1 by

the Shapley Value definition (1). If some player
(that pays attention) is more or less attended to than
another — which is the point of using attention —
this results in a contradiction. Thus φj cannot be
the total attention paid to j.

Case 2 For a player i that doesn’t attend to any
other player, its contribution to the payoff of every
S ∈ N \ {i} is 0, since the attention paid to i is

redistributed among other players when it is absent.
This implies φi(v) = 0 by (1). However, all input
embeddings fall under this case, and we know at
least one will be attended to; its attention weights
will be non-zero, making this a contradiction. Thus
φi cannot be the total attention paid to i.

4 Attention Flows

What if we restricted the players to those from the
same layer of a model? The remaining players still
affect the prediction but can’t have any of the pay-
off allocated to them. In this case, attention weights
still cannot be Shapley Values. However, attention
weights can be post-processed. Abnar and Zuidema
(2020) proposed treating the self-attention graph as
a flow network — where the attention weights are
capacities — and then applying a max-flow algo-
rithm (Ford and Fulkerson, 1956) to this network
to calculate the maximum flow on each edge. We
prove (by construction) that these attention flows
are Shapley Values when the players are restricted
to those from the same layer and the payoff is the
total flow, as visualized in Figure 1.

Proposition 2. Consider a TU-game (N, v), where
N = {1, ..., n} players are all from the same layer.
Let f denote the flow obtained by running a max-
flow algorithm on the graph defined by the self-
attention matrix, where the capacities are the atten-
tion weights. Let v(S) = |f(S)|, the value of the
flow when only permitting flow through players in
the coalition S ⊆ N . Then for each player i, its
total outflow |fo(i)| is its Shapley Value.

Proof. Blocking the flow through a player i ∈ S
decreases v(S) by that player’s outflow |fo(i)|,
since the attention flow is only calculated once
— with the entire graph — and not for each possi-
ble subgraph. Since the players are all disjoint and
have no connections, blocking the flow through one
player does not affect the outflow of any of the other
players. This would not be the case, for example, if
the players were in different layers, in which case
changes in flow upstream would cause changes in
flow downstream. Then for any coalition S ⊆ N
and player i 6∈ S, v(S∪{i}) = v(S)+ |fo(i)|. We
can rewrite the total outflow for player i as

|fo(i)| = v(S ∪ {i})− v(S), ∀ S ⊆ N

=
n!

n!
v(S ∪ {i})− v(S), ∀ S ⊆ N

=
1

n!

∑

R

[
v(PR[:i] ∪ {i})− v(PR[:i])

]
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Figure 1: The attention flow network for three tokens across three layers, with player nodes (red) and non-player
nodes (blue). The payoff v(N) is the total flow through the network. φi(v) is the total outgoing flow of player i.
Note that if we remove player i, then the total flow will decrease by φi(v), but the outgoing flow of the other two
players (red) will stay the same. In other words, the contribution of player i to the total flow v(N) is always φi(v);
therefore, φi(v) is its Shapley Value. This construction is possible because the players are all in the same layer and
therefore parallel; if one depended on another, then its outgoing flow could not be its Shapley Value.

which is just the Shapley Value definition (1). Note
that the players cannot be from different layers
— at least for the definition of v as the total flow
value — because the Shapley Value distribution
would not be efficient (i.e., v(N) 6=∑i∈N φi(v))
and efficiency necessarily holds for Shapley Values.
This in turn implies that the theoretical properties
that hold for Shapley Values extend to attention
flows under these conditions.

Attention Rollout Abnar and Zuidema (2020)
also proposed another post-processed variant of at-
tention called attention rollout, in which the atten-
tion weight matrices from each layer are multiplied
with those before it to get aggregated attention val-
ues. Attention roll-out values cannot be Shapley
Values, however; this can be shown with a trivial
extension of the proof to Proposition 1.

5 Leave-One-Out

Erasure describes a class of interpretability meth-
ods that aim to understand the importance of a
representation, token, or neuron by erasing it and
recording the resulting effect on model prediction
(Li et al., 2016; Arras et al., 2017; Feng et al., 2018;
Serrano and Smith, 2019). Although the Shap-
ley Value technically falls under this class, most
erasure-based methods only remove one entity —
the one whose importance they want to estimate —

and this only takes two forward passes, compared
to O(2n) passes for the Shapley Value. Since only
one entity is erased, this simpler group of erasure-
based methods is called leave-one-out (Jain and
Wallace, 2019; Abnar and Zuidema, 2020). We
show in this section that leave-one-out values are
not Shapley Values, except in the degenerate case.

Proposition 3. If ∃ i ∈ N such that player i is
not a null player even when excluding the coalition
N \{i}, then there is no TU-game (N, v) for which
leave-one-out values are Shapley Values.

Proof. Let the leave-one-out value of player i be
denoted by LOOi(v). Let R′ denote any permuta-
tion of N where PR′[:i] 6= N \ {i}. By definition,

φi(v) =
1

n!

∑

R

[
v(PR[:i] ∪ {i})− v(PR[:i])

]

=
1

n!

∑

R′

[
v(PR′[:i] ∪ {i})− v(PR′[:i])

]

+
1

n
(v(N)− v(N \ {i}))︸ ︷︷ ︸

LOOi(v)

By our assumption, the first term is non-zero, so
there is no equivalence with LOOi(v). In practice,
this assumption is almost always satisfied.

Note that leave-one-out tells us very little about
player importance for discrete payoff functions.
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For example, if the payoff were the correctness
(i.e., 1 if correct and 0 otherwise), then the impor-
tance of a player would be binary: it would either
be critically important to prediction or totally irrele-
vant. This provides an incomplete picture — while
there is enough redundancy in BERT-based mod-
els to tolerate some missing embeddings, this does
not mean those embeddings are of no importance
(Kovaleva et al., 2019; Ethayarajh, 2019; Michel
et al., 2019). For example, if two representations
played a critical and identical role in a prediction —
but only one was necessary — then leave-one-out
would assign each a value of zero, despite both
being important. In contrast, the Shapley Value of
both players would be non-zero and identical.

6 Applications

Because Shapley Values have many useful applica-
tions, attentions flows — and any other score that
meets the criteria for a Shapley Value — have many
useful applications as well:

• For one, using the various properties of the
Shapley Value, we can provide more specific
interpretations of model behavior than is cur-
rently the case, backed by theoretical guaran-
tees. For example, if a token has zero attention
flow in layer k but non-zero flow in layer k−1,
then we can conclude that all the information
it contains about the label (e.g., sentiment)
was extracted by the model prior to the kth
layer; this derives from the “null player” prop-
erty of the Shapley Value. The same could not
be said if the token only had a leave-one-out
value of zero, since leave-one-out values are
not Shapley Values.

• Interpretability in NLP often takes a single
token or embedding to be the unit of analy-
sis (i.e., a “player” in game theoretic terms).
However, what if we wanted to understand the
role of entire groups of tokens rather than in-
dividual ones? For most interpretability meth-
ods, there is no canonical way to aggregate
scores across multiple units — we cannot nec-
essarily add the raw attention scores of two
tokens, since the usefulness of one may de-
pend on the other. If we used a method that
provided Shapley Values, we could easily re-
define a “player” to be a group of tokens, such
that all tokens in the same player group would

simultaneously be included or excluded from
a coalition.

• Recent work has used the Data Shapley —
an extension of the Shapley Value — to es-
timate the contribution of each example in
the training data to a model’s decision bound-
ary (Ghorbani and Zou, 2019). If we’re fine-
tuning BERT for sentiment classification, for
example, we might want to know which sen-
tence is more helpful: “This movie was great!”
or “This was better than I expected.” We can
answer such questions by using the Data Shap-
ley. To our knowledge, this has been done in
computer vision but not in NLP.

7 Limitations and Future Work

Because Shapley Values — and by extension, atten-
tion flows — have many theoretical guarantees that
are axioms of faithful interpretation, we encourage
NLP practitioners to provide attention flow-based
explanations alongside more traditional ones. This
is not without limitations, however. As proven in
Proposition 2, this equivalence only holds for a
specific payoff function — the total flow through
a layer — which is reflective of model confidence
but not of the prediction correctness.

But why do we need attention flows at all if, in
theory, Shapley Values can be calculated for any ar-
bitrary player set and payoff function? While this is
true in theory, because of the combinatorial calcu-
lation (1), it is computationally intractable in most
cases. While it is possible to take a Monte Carlo
estimate (2), in practice the bounds can be quite
loose (Maleki et al., 2013). Finding TU-games for
which the Shapley Value can be calculated exactly
in polynomial time — as with attention flow -– is an
important line of future work. These explanations
may come with trade-offs: for example, SHAP is a
kind of Shapley Value that assumes contributions
are linear (i.e., a coalition can’t be greater than
the sum of its parts), which makes it much faster
to calculate but restricts the set of possible payoff
functions (Lundberg and Lee, 2017). Still, such
methods will be critical to providing explanations
that are both fast and faithful.
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Abstract

Video paragraph captioning aims to generate a
set of coherent sentences to describe a video
that contains several events. Most previous
methods simplify this task by using ground-
truth event segments. In this work, we pro-
pose a novel framework by taking this task as
a text summarization task. We first generate
lots of sentence-level captions focusing on dif-
ferent video clips and then summarize these
captions to obtain the final paragraph caption.
Our method does not depend on ground-truth
event segments. Experiments on two popular
datasets ActivityNet Captions and YouCookII
demonstrate the advantages of our new frame-
work. On the ActivityNet dataset, our method
even outperforms some previous methods us-
ing ground-truth event segment labels.

1 Introduction

Video captioning, the task of describing the con-
tent of a video in natural language, is a popular
task both in computer vision and natural language
processing. In the beginning, researchers try to gen-
erate sentence-level captions for short video clips
(Venugopalan et al., 2015). Krishna et al. (2017)
propose the task of dense video captioning. The
system needs to detect event segments first and
then generate captions. Park et al. (2019) propose
the task of video paragraph captioning: they use
ground-truth event segments and focus on gener-
ating coherent paragraphs. Lei et al. (2020) fol-
low the task setting and propose a recurrent trans-
former model that can generate more coherent and
less repetitive paragraphs. Considering the ground-
truth event segments are often unavailable in prac-
tice, our goal is to generate paragraph captions
without ground-truth segments.

The conventional framework of video paragraph
captioning is shown in Figure 1a. Given an
untrimmed video, an Event Detection module out-

(a) Conventional Framework (b) Our Framework

Figure 1: Comparison between conventional frame-
work and ours.

puts a set of non-redundant event segments. The
Event Captioning module generates captions for
these segments. The works of (Park et al., 2019;
Zhou et al., 2019; Lei et al., 2020) use ground-truth
event segments and focus on the Event Caption-
ing module. Zhou et al. (2019) use extra human-
annotated bounding boxes as supervision. (Sah
et al., 2017; Zhou et al., 2018; Mun et al., 2019)
use predicted event segments and generate captions
based on them. Sah et al. (2017) also summarizes
these captions to generate a paragraph. The above
methods heavily depend on accurate event seg-
ments. According to previous works (Zhou et al.,
2018; Mun et al., 2019), the performance of the
Event Detection module is not so good, making it
a performance bottleneck. To tackle this problem,
we propose a novel framework VPCSum as shown
in Figure 1b. For a given video, we first extract
dense event segment candidates (we call propos-
als), and a Proposal Captioning module is used to
generate proposal captions. Then we treat video
paragraph captioning as a text summarization task
to obtain the final summary (paragraph caption).

In this work, we only consider extractive summa-
rization, where the paragraph caption is composed
by selecting from proposal captions. We conduct
experiments on two popular datasets ActivityNet
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Captions and YouCookII. The results demonstrate
the advantages of our framework. On the Activ-
ityNet Captions dataset, our method even outper-
forms some previous methods using ground-truth
event segment labels.

2 Our VPCSum Method

As illustrated in Figure 1b, our framework has three
modules. Proposal Extraction: it extracts dense
proposals for a video; Proposal Captioning: it
generates captions for extracted proposals; Cap-
tion Summarization: it summarizes the generated
proposal captions to obtain the video paragraph
caption. We will introduce each module next.

2.1 Proposal Extraction

For proposal extraction, we use the BMN model
(Lin et al., 2019), a popular model for temporal
action proposal generation. It can extract complete
and accurate proposals. We extract the top 100
proposals for each video.

2.2 Proposal Captioning

For proposal captioning, we choose the TSRM-
RNN model (Wang et al., 2020) for ActivityNet
Captions and VTransformer model (Lei et al.,
2020) for YouCookII according to proposal cap-
tioning performance. We believe that if we choose
a better sentence-level captioning model, the per-
formance can be further improved.

2.3 Caption Summarization

Figure 2: Architecture of the caption summarization
model.

The caption summarization module summarizes
proposal captions to generate the final video para-
graph caption. In this work, we focus on extractive

summarization. The architecture of our summa-
rization model is illustrated in Figure 2. We first
sort the proposal captions according to the proposal
start time and add special [CLS] and [SEP] tokens
to the beginning and end of each caption. We use
the summation of token embeddings, segment em-
beddings, and position embeddings to represent
each word. The input representations are fed into a
pre-trained BERT model (Devlin et al., 2018), after
which we obtain the contextual token representa-
tions. We use the contextual vectors of [CLS]s to
represent each caption and feed them into stacked
transformer layers (Vaswani et al., 2017). We use a
sigmoid layer to compute the score of each caption:

xi = σ(WhLi + b) (1)

where W and b are trainable parameters, hLi is the
vector for caption i from the top transformer layer.

For extractive summarization, we need to an-
notate each sentence according to the gold sum-
mary as our training target. Many researchers use
a greedy algorithm (Nallapati et al., 2016), sen-
tences are selected one by one to maximize the
ROUGE score against the gold summary. The se-
lected sentences are labeled 1 while others are la-
beled 0 (hard-label). In our task, we find a more
effective soft-label annotation method. We label
caption ci with the max ROUGE score against gold
captions and use binary cross-entropy as our loss
function:

yi = max
gj∈gold

ROUGE(ci, gj) (2)

L = −
∑

i

(yi log xi + (1− yi) log(1− xi)) (3)

where gj is the j-th gold caption.

2.4 Leverage Visual Information
The above caption summarization module assigns
each proposal caption a predicted score, indicating
how likely it appears in the final paragraph caption.
The predicted score only depends on text informa-
tion. To leverage visual information, we need a
“visual summarization” module, which gives a visu-
ally weighting score to each proposal. The ESGN
model (Mun et al., 2019) seems a good choice for
us. It uses a pointer network to select events from
proposals and assigns a visually weighting score
for each proposal. We use this model to compute
the visually weighting score.

Now we can extract the final paragraph cap-
tion. The final score of each proposal caption is a
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weighted sum of the textually weighting score stxt
and the visually weighting score svis:

score(i) = stxt,i + λsvis,i (4)

where λ is a hyper-parameter tuned on validation
set. We select captions according to score(i) and
use Trigram Blocking to reduce redundancy, as in
Liu and Lapata (2019).

3 Experiments

3.1 Datasets
We conduct experiments on ActivityNet Captions
(Krishna et al., 2017) and YouCookII (Zhou et al.,
2017). ActivityNet Captions contains 10,009
videos in train set, 4,917 videos in val set. Each
video has 3.65 event segments on average. Follow-
ing (Lei et al., 2020), the original val set is split
into ae-val with 2,460 videos for validation and
ae-test with 2,457 videos for test. YouCookII con-
tains 1,333 videos in train set, 457 videos in val set.
Each video has 7.70 event segments on average.

3.2 Evaluation Metrics
Following (Lei et al., 2020; Park et al., 2019), we
evaluate the captioning performance at paragraph
level. We report standard caption metrics, includ-
ing BLEU@4 (Papineni et al., 2002), METEOR
(Denkowski and Lavie, 2014), CIDEr (Vedantam
et al., 2015). We also evaluate repetition using
R@4 (Xiong et al., 2018). We use the scripts pro-
vided by (Lei et al., 2020) for evaluation1.

3.3 Implementation Details
For video preprocessing, we use appearance and
optical flow features provided by Zhou et al. (2018).
For BMN model and captioning models, we use
the same hyperparameters suggested by the authors.
For ESGN model, we use a transformer encoder
instead of an RNN encoder, with hidden size set
to 512, number of heads set to 8, number of layers
set to 3. For our caption summarization model, we
use the base BERT model, 2 stacked transformer
layers with hidden size set to 768, number of heads
set to 8. We set max input length to 1,700, batch
size to 10, λ to 1 for ActivityNet Captions and max
input length to 1,000, batch size to 1, λ to 1 for
YouCookII. Warmup steps are set to step num of
1 epoch. We use Adam optimizer with an initial
learning rate of 6e− 4.

1https://github.com/jayleicn/
recurrent-transformer

3.4 Baselines and Results

We compare our VPCSum model with the follow-
ing baselines. Soft-NMS: it uses Soft-NMS (Bodla
et al., 2017) to select event segments from BMN
proposals, and uses the proposal captioning model
to generate captions; ESGN: similar to Soft-NMS,
but it uses ESGN model (Mun et al., 2019) to select
event segments from BMN proposals; V-Trans: a
Vanilla Transformer model, proposed by (Zhou
et al., 2018); Trans-XL: a Transformer-XL model,
proposed by (Lei et al., 2020); MART: a recur-
rent transformer model (Lei et al., 2020); COOT:
it uses pretrained features to train MART model
(Ging et al., 2020). Originally, the last four models
deal with ground-truth event segments. For fair
comparison, we also test them with predicted event
segments generated by ESGN model 2.

Models B@4 M C R@4↓
Soft-NMS 10.33 14.93 22.58 10.17

ESGN 10.38 15.74 21.85 6.51
V-Trans 9.89 15.11 20.95 7.04

Trans-XL 10.36 14.89 20.73 7.45
MART 10.13 14.94 20.16 6.09
COOT 9.85 14.67 21.83 7.15

VPCSum 10.89 15.84 24.33 1.54
V-trans* 9.31 15.54 21.33 7.45

Trans-XL* 10.25 14.91 21.71 8.79
MART* 9.78 15.57 22.16 5.44
COOT* 10.85 15.99 28.19 6.64

Table 1: Comparison with baselines on ActivityNet
Captions ae-test split. * means the model uses ground-
truth event segments. We report BLEU@4 (B@4), ME-
TEOR (M), CIDEr (C), Repetition (R@4).

Tables 1 and 2 show the results on ActivityNet
Captions and YouCookII. We can observe that on
the ActivityNet Captions, our model VPCSum
within the new framework can generate better para-
graph captions with higher Bleu@4, METEOR,
and CIDEr and lower repetition score R@4, even
outperforming V-trans*, Trans-XL*, MART* mod-
els using ground-truth event segments on every met-
ric. On the YouCookII dataset, our model outper-
forms the models in the same setting but is inferior
to the models using ground-truth segments. This
may be because YouCookII has more segments

2We use the codes and pretrained models provided by the
authors and only replace ground-truth event segments with
ESGN predicted event segments.

57



Models B@4 M C R@4↓
Soft-NMS 5.58 13.67 18.18 4.94

ESGN 5.36 13.37 17.01 2.82
V-Trans 5.35 13.37 16.88 2.85

Trans-XL 4.78 12.67 14.24 3.20
MART 5.61 13.44 16.56 4.63
COOT 5.96 14.21 19.67 5.99

VPCSum 6.14 15.11 23.92 0.65
V-trans* 7.62 15.65 32.26 7.83

Trans-XL* 6.56 14.76 26.35 6.30
MART* 8.00 15.90 35.74 4.39
COOT* 9.44 18.17 46.06 6.30

Table 2: Comparison with baselines on YouCookII val
split.

(7.70 vs 3.65) than ActivityNet Captions.

3.5 Ablation Study

Table 3 shows the ablation study on ActivityNet
Captions. Compared to our full model (Full),
the traditional extractive summarization annotation
method (Hard-label) is not suitable for our task. If
we set λ in Eq.(4) to 0 (w/o vis), the model loses
useful visual information and performs not well. If
we remove Trigram Blocking (w/o tri-blk), the per-
formance also degrades and repetition becomes a
problem (R@4 increases to 7.91). To verify the
role of pretrained BERT model, we retrain our
VPCSum without BERT pretrained weights (w/o
pretrain). We can see that BERT pretrained weights
are not the major factor to the final performance.
We also replace our summarization model with un-
supervised methods LexRank (Erkan and Radev,
2004) and LSA(Steinberger and Jezek, 2004). The
results show that simple unsupervised summariza-
tion methods cannot handle our data well and su-
pervised training is necessary.

Models B@4 M C R@4↓
Full 10.89 15.84 24.33 1.54

Hard-label 10.29 14.99 21.71 1.19
w/o vis 10.68 15.78 23.34 1.36

w/o tri-blk 10.46 15.61 21.40 7.91
w/o pretrain 10.84 15.81 24.00 1.55

LexRank 7.78 13.65 14.19 26.51
LSA 7.24 14.48 12.43 28.14

Table 3: Model ablation study on ActivityNet Captions
ae-test split.

3.6 Qualitative Results

Ground Truth: A girl jumps onto a balance beam. She does
a gymnastics routine on the balance beam. She does a flip off
the balance beam and lands on a mat.
MART: A gymnast is seen standing ready with her arms up
and leads into her performing a gymnastics routine. She con-
tinues performing several flips and tricks and tricks and ends
with her jumping down and walking away. She continues her
routine and ends with her jumping down and jumping down
and walking away.
MART*: A gymnast is seen standing before a beam and be-
gins performing a gymnastics routine. The girl then performs
a routine on the beam and ends with her jumping down and
jumping down and jumping. The girl jumps off the beam and
lands on the mat and jumps off the beam.
VPCSum: A gymnast is seen standing ready with her arms
up and begins to do a routine. She does a gymnastics routine
on the beam. She dismounts and lands on the mat.

Figure 3: An example from ActivityNet Captions.

We show an example in Figure 3 with paragraph
captions generated by MART, MART* and our
VPCSum model. Compared to other models, our
model can generate more clear and correct sen-
tences with less redundancy. The generated para-
graph of our model can better describe the process
of the whole event.

3.7 Human Evaluation

Ours MART Ours MART*

rel. 56.0%† 44.0%† 52.7% 47.3%
div. 56.7%† 43.3%† 56.7%† 43.3%†

Table 4: Human evaluation results. Statistically signifi-
cant differences (p < 0.05) are marked with †.

We also conduct a human evaluation on ran-
domly sampled 50 videos from the ActivityNet
Captions val set. The annotators are asked to
choose the better caption from two models in two
aspects: relevance (how related is the caption to
the video content) and diversity (how diverse is the
generated text). We compare our VPCSum model
with MART and MART* respectively. We have
17 college students as our annotators. Each video
is judged by 3 annotators. We show the results of
the pairwise experiments in Table 4. Our VPCSum
model performs better in relevance and diversity,
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and more people choose the caption of our model
as the better one.

4 Conclusion

In this work, we view the task of video paragraph
captioning as a text summarization task and pro-
pose a novel framework VPCSum. It allows us to
use text summarization techniques to handle this
challenging task. Experimental results on two pop-
ular datasets show the advantages of our model.
In the future, we will explore using abstractive
summarization methods to generate better video
paragraph captions.
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Abstract

Deep learning algorithms have shown promis-
ing results in visual question answering (VQA)
tasks, but a more careful look reveals that
they often do not understand the rich signal
they are being fed with. To understand and
better measure the generalization capabilities
of VQA systems, we look at their robustness
to counterfactually augmented data. Our pro-
posed augmentations are designed to make a
focused intervention on a specific property of
the question such that the answer changes. Us-
ing these augmentations, we propose a new ro-
bustness measure, Robustness to Augmented
Data (RAD), which measures the consistency
of model predictions between original and aug-
mented examples. Through extensive experi-
mentation, we show that RAD, unlike classical
accuracy measures, can quantify when state-
of-the-art systems are not robust to counterfac-
tuals. We find substantial failure cases which
reveal that current VQA systems are still brit-
tle. Finally, we connect between robustness
and generalization, demonstrating the predic-
tive power of RAD for performance on unseen
augmentations.1

1 Introduction

In the task of Visual Question Answering (VQA),
given an image and a natural language question
about the image, a system is required to answer the
question accurately (Antol et al., 2015). While the
accuracy of these systems appears to be constantly
improving (Fukui et al., 2016; Yang et al., 2016;
Lu et al., 2016), they are sensitive to small pertur-
bations in their input and seem overfitted to their
training data (Kafle et al., 2019).

To address the problem of overfitting, the VQA-
CP dataset was proposed (Agrawal et al., 2018). It
is a reshuffling of the original VQA dataset, such

1Our code and data are available at: https://danros
enberg.github.io/rad-measure/

Figure 1: Predictions and attention maps of a state-of-
the-art VQA-CP model over a VQA example (left) and
its augmentation (right). A robust model should use the
information it utilizes in the original example to cor-
rectly answer the augmented one.

that the distribution of answers per question type
(e.g., “what color”, “how many”) differs between
the train and test sets. Using VQA-CP, Kafle et al.
(2019) demonstrated the poor out-of-distribution
generalization of many VQA systems. While many
models were subsequently designed to deal with
the VQA-CP dataset (Cadene et al., 2019; Clark
et al., 2019; Chen et al., 2020; Gat et al., 2020), aim-
ing to solve the out-of-distribution generalization
problem in VQA, they were later demonstrated to
overfit the unique properties of this dataset (Teney
et al., 2020). Moreover, no measures for robustness
to distribution shifts have been proposed.

In this work we propose a consistency-based
measure that can indicate on the robustness of VQA
models to distribution shifts. Our robustness mea-
sure is based on counterfactual data augmentations
(CADs), which were shown useful for both training
(Kaushik et al., 2019) and evaluation (Garg et al.,
2019; Agarwal et al., 2020). CADs are aimed at
manipulating a specific property while preserving
all other information, allowing us to evaluate the
robustness of the model to changes to this property.

For example, consider transforming a “what
color” question to a “yes/no” question, as depicted
in Figure 1. The counterfactual reasoning for such
a transformation is: “what would be the question
if it had a yes/no answer?”. While VQA models
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have seen many of both question types, their com-
bination (yes/no questions about color) has been
scarcely seen. If a model errs on such a combi-
nation, this suggests that to answer the original
question correctly, the model uses a spurious signal
such as the correlation between the appearance of
the word “color” in the question and a particular
color in the answer (e.g. here, color⇒ white). Fur-
ther, this example shows that some models cannot
even identify that they are being asked a “yes/no”
question, distracted by the word “color” in the aug-
mented question and answering “green”.

Our robustness measure is named RAD: Robust-
ness to (counterfactually) Augmented Data (Sec-
tion 2.1). RAD receives (image, question, answer)
triplets, each augmented with a triplet where the
question and answer were manipulated. It mea-
sures the consistency of model predictions when
changing a triplet to its augmentation, i.e., the ro-
bustness of the model to (counterfactual) augmen-
tations. We show that using RAD with focused in-
terventions may uncover substantial weaknesses to
specific phenomenon (Section 3.2), namely, users
are encouraged to precisely define their interven-
tions such that they create counterfactual augmen-
tations. As a result, pairing RAD values with accu-
racy gives a better description of model behavior.

In general, to effectively choose a model in com-
plex tasks, complementary measures are required
(D’Amour et al., 2020). Thus, it is important to
have interpretable measures that are widely appli-
cable. Note that in this work we manipulate only
textual inputs - questions and answers, but RAD
can be applied to any dataset for which augmenta-
tions are available. In particular, exploring visual
augmentations would be beneficial for the analy-
sis of VQA systems. Further, representation-level
counterfactual augmentations are also valid, which
is useful when generating meaningful counterfac-
tual text is difficult (Feder et al., 2020).

Our augmentations (CADs) are generated semi-
automatically (Section 2.2), allowing us to directly
intervene on a property of choice through sim-
ple templates. As in the above example, our aug-
mentations are based on compositions of two fre-
quent properties in the data (e.g., “what color”
and “yes/no” questions), while their combination
is scarce. Intuitively, we would expect a model
with good generalization capacities to properly han-
dle such augmentations. While this approach can
promise coverage of only a subset of the examples

in the VQA and VQA-CP datasets, it allows us to
control the sources of the model’s prediction errors.

We conduct extensive experiments and report
three key findings. First, for three datasets, VQA,
VQA-CP, and VisDial (Das et al., 2017), models
with seemingly similar accuracy are very different
in terms of robustness, when considering RAD with
our CADs (Section 3). Second, we show that RAD
with alternative augmentation methods, which pri-
oritize coverage over focused intervention, cannot
reveal the robustness differences. Finally, we show
that measuring robustness using RAD with our
CADs predicts the accuracy of VQA models on
unseen augmentations, establishing the connection
between robustness to our controlled augmenta-
tions and generalization (Section 4).

2 Robustness to Counterfactuals

In this section, we first present RAD (Section 2.1),
which measures model consistency on question-
answer pairs and their augmented modifications.
Then, we describe our template-based CAD gener-
ation approach (Section 2.2), designed to provide
control over the augmentation process.

2.1 Model Robustness
We denote a VQA dataset with U =
{(xv, xq, y) ∈ V ×Q× Y}, where xv is an
image, xq is a question and y is an answer.
We consider a subset D ⊆ U for which we
can generate augmentations. For an example
(xv, xq, y) ∈ D, we denote an augmented example
as (xv, x

′
q, y

′) ∈ D′. In this paper we generate
a single augmentation for each example in D,
resulting in a one-to-one correspondence between
D and the dataset of modified examples D′. We
further define J(D; f) as the set of example
indices for which a model f correctly predicts y
given xv and xq.

RAD assesses the proportion of correctly an-
swered modified questions, among correctly an-
swered original questions, and is defined as,

RAD(D,D′; f) =
|J(D; f) ∩ J(D′; f)|

|J(D; f)| . (1)

Note that RAD is in [0, 1] and the higher the RAD
of f is, the more robust f is.

As original examples and their augmentations
may differ in terms of their difficulty to the model,
it is important to maintain symmetry between D
and D′. We hence also consider the backward view
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of RAD, defined as RAD(D′,D; f). For exam-
ple, “yes/no” VQA questions are easier to answer
compared to “what color” questions, as the former
have two possible answers while the latter have as
many as eight. Indeed, state-of-the-art VQA mod-
els are much more accurate on yes/no questions
compared to other question types (Yu et al., 2019).
Hence, if “what color” questions are augmented
with “yes/no” counterfactuals, we would not expect
RAD(D′,D; f) = 1 as generalizing from “yes/no”
questions (D′) to “what color” questions (D) re-
quires additional reasoning capabilities.

RAD is not dependant on the accuracy of the
model on the test set. A model may perform poorly
overall but be very consistent on questions that it
has answered correctly. Conversely, a model that
demonstrates seemingly high performance may be
achieving this by exploiting many dataset biases
and be very inconsistent on similar questions.

2.2 Counterfactual Augmentations

In the VQA dataset there are three answer types:
“yes/no”, “number” (e.g., ‘2’, ‘0’) and “other” (e.g.,
‘red‘, ‘tennis’), and 65 question types (e.g., “what
color”, “how many”, “what sport”). In our aug-
mentations, we generate “yes/no” questions from
“number” and “other” questions.

For example, consider the question-answer pair
“What color is the vehicle? Red”, this question-
answer pair can be easily transformed into “Is the
color of the vehicle red? Yes”. In general, “what
color” questions can be represented by the tem-
plate: “What color is the <Subj>? <Color>”. To
generate a new question, we first identify the sub-
ject (<Subj>) for every “what color” question, and
then integrate it into the template “Is the color of
the <Subj> <Color>? Yes”. As the model was ex-
posed to both “what color” and “yes/no“ questions,
we expect it to correctly answer the augmented
question given that it correctly answers the original.
Yet, this augmentation requires some generaliza-
tion capacity because the VQA dataset contains
very few yes/no questions about color.

Our templates are presented in Table 1 (see Ta-
ble 6 in the appendix for some realizations). The
augmentations are counterfactual since we inter-
vene on the question type, a prior that many VQA
systems exploit (Goyal et al., 2017), keeping every-
thing else equal. The generation process is semi-
automatic, as we had to first manually specify tem-
plates that would yield augmented questions that
we can expect the model to answer correctly given

Original Augmented

Y/N C What color is the
<S>? <C1>

Is the color of the <S>
<C2>? Yes/No

Y/N HM How many <S>?
<N1>

Are there <N2> <S>?
Yes/No

Y/N WK What kind of <S>
is this? <O1>

Is this <S> <O2>?
Yes/No

Table 1: Our proposed template-based augmentations.

that it succeeds on the original question.
To achieve this goal, we apply two criteria: (a)

The template should generate a grammatical En-
glish question; and (b) The generated question type
should be included in the dataset, but not in ques-
tions that address the same semantic property as the
original question. Indeed, yes/no questions are fre-
quent in the VQA datasets, but few of them address
color (first template), number of objects (second
template), and object types (third template). When
both criteria are fulfilled, it is reasonable to expect
the model to generalize from its training set to the
new question type.

Criterion (a) led us to focus on yes/no questions
since other transformations required manual verifi-
cation for output grammaticality. While we could
have employed augmentation templates from addi-
tional question types into yes/no questions, we be-
lieve that our three templates are sufficient for eval-
uating model robustness. Overall, our templates
cover 11% of the VQA examples (Section 3.1).

3 Robustness with RAD and CADs

In the following, we perform experiments to test
the robustness of VQA models to augmentations.
We describe the experimental setup, and evaluate
VQAv2, VQA-CPv2, VisDial models, each on our
augmentations and on other alternatives.2

3.1 Experimental Setup
Baseline Augmentations We compare our aug-
mentations to three alternatives: VQA-Rephrasings
(Reph, Shah et al., 2019), ConVQA (Ray et al.,
2019), and back-translation (BT, Sennrich et al.,
2016). VQA-Rephrasings is a manual generation
method, where annotators augment each valida-
tion question with three re-phrasings. ConVQA
is divided into the L-ConVQA and CS-ConVQA
subsets. In both subsets, original validation exam-
ples are augmented to create new question-answer
pairs. L-ConVQA is automatically generated based

2The URLs of the software and datasets, and the imple-
mentation details are all provided in Appendices C and D.
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Dataset Model\D′ RAD(D,D′) (%) Acc.
Y/N C Y/N HM Y/N WK BT Reph L-ConVQA CS-ConVQA

VQA-CP
RUBi 64.92 57.15 62.59 85.57 77.73 78.02 65.93 46.66
LMH 1.01 22.82 50.10 83.68 75.04 64.54 50.65 53.72
CSS 0.94 11.73 39.95 77.54 68.89 10.67 38.64 58.47

VQA

BUTD 67.15 58.68 78.59 87.43 79.28 75.78 70.19 63.09
BAN 74.40 62.45 82.51 88.17 81.14 79.37 70.18 65.92
Pythia 65.00 60.61 81.60 88.42 82.86 77.02 69.45 64.56
VisualBERT 79.99 68.29 85.98 88.52 84.09 82.09 71.75 65.62

VisDial FGA 31.36 57.69 - 91.42 - - - 53.07
VisDialBERT 62.08 56.06 - 94.04 - - - 55.78

Table 2: RAD over our proposed augmentations (Y/N C, Y/N HM, Y/N WK) and alternatives (BT, Reph,
ConVQA). The rows correspond to state-of-the-art models on VQA-CP (top), VQA (middle) and Visual Dialog
(bottom). Reph and ConVQA were not created for VisDial, and it does not have “what kind” questions. The last
column corresponds to validation accuracy.

Dataset Model\D′ Accuracy(D) (%)

Y/N C Y/N HM Y/N WK BT Reph L-ConVQA CS-ConVQA

VQA-CP
RUBi 65.85 17.35 44.14 45.80 46.51 72.14 66.67
LMH 68.87 44.24 50.58 52.35 53.78 65.07 61.76
CSS 72.87 63.16 51.83 56.37 58.81 49.84 56.12

VQA

BUTD 79.44 54.43 63.49 60.37 62.23 75.05 62.42
BAN 80.72 62.37 66.48 63.02 64.81 74.94 65.01
Pythia 81.62 57.49 64.42 61.69 63.88 74.55 63.79
VisualBERT 80.85 58.89 64.46 62.71 64.96 76.50 66.01

VisDial FGA 55.62 40.00 - 61.53 - - -
VisDialBERT 68.99 50.77 - 63.47 - - -

Table 3: Original accuracy over our proposed augmentations (Y/N C, Y/N HM, Y/N WK) and alternatives
(BT, Reph, ConVQA). The rows correspond to state-of-the-art models on VQA-CP (top), VQA (middle) and Visual
Dialog (bottom). Reph and ConVQA were not created for VisDial, and it does not have “what kind” questions.

on scene graphs attached to each image, and CS-
ConVQA is manually generated by annotators. Fi-
nally, back-translation, translating to another lan-
guage and back, is a high-coverage although low-
quality approach to text augmentation. It was used
during training and shown to improve NLP models
(Sennrich et al., 2016), but was not considered in
VQA. We use English-German translations.

Models The VQA-CP models we consider are
RUBi (Cadene et al., 2019), LMH (Clark et al.,
2019) and CSS (Chen et al., 2020). The VQA mod-
els we consider are BUTD (Anderson et al., 2018),
BAN (Kim et al., 2018), Pythia (Jiang et al., 2018)
and VisualBERT (Li et al., 2019). For VisDial
we use FGA (Schwartz et al., 2019) and VisDial-
BERT (Murahari et al., 2020). We trained all the
models using their official implementations.

3.2 Results

Table 2 presents our main results. RAD values for
all of our augmentations are substantially lower
than those of the alternatives, supporting the value

of our focused intervention approach for measur-
ing robustness. The high RAD values for BT and
Reph might indicate that VQA models are indeed
robust to linguistic variation, as long as the answer
does not change. Interestingly, our augmentations
also reveal that VQA-CP models are less robust
than VQA models. This suggests that despite the
attempt to design more robust models, VQA-CP
models still overfit their training data.

In VQA-CP, RUBi has the lowest accuracy per-
formance in terms of its validation accuracy, even
though it is more robust to augmentations com-
pared with LMH and CSS. For VQA models, in
contrast, BUTD has the lowest RAD scores on our
augmentations and the lowest accuracy. Visual-
BERT, the only model that utilizes contextual word
embeddings, demonstrates the highest robustness
among the VQA models.

Finally, while both VisDial models have simi-
lar accuracy, they have significantly different RAD
scores on our augmentations. Specifically, VisDi-
alBERT performs better than FGA on Y/N C
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augmentations. This is another indication of the
value of our approach as it can help distinguish
between two seemingly very similar models.

Complementary to the RAD values in Table 2
we also provide accuracies on original questions in
Table 3. Note that across all the original questions,
except ConVQA questions, RUBi has the lowest
accuracy while CSS has the highest accuracy. This
trend is reversed when looking at RAD scores -
CSS has the lowest score while RUBi has the high-
est score. This emphasizes the importance of RAD
as a complementary metric, since considering only
accuracy in this case would be misleading. Namely,
RAD provides additional critical information for
model selection.

4 Measuring Generalization with RAD

To establish the connection between RAD and gen-
eralization, we design experiments to demonstrate
RAD’s added value in predicting model accuracy
on unseen modified examples. Concretely, we gen-
erate 45 BUTD (VQA) and LMH (VQA-CP) in-
stances, differing by the distribution of question
types observed during training (for each model in-
stance we drop between 10% and 99% of each of
the question types “what color”, “how many” and
“what kind” from its training data; see Appendix E
for exact implementation details). For each of the
above models we calculate RAD values and accu-
racies in the following manner.

We split the validation set into two parts: D
(features) and T (target). Consider a pool of four
original question sets that are taken from their cor-
responding modifications: Y/N C, Y/N HM,
Y/N WK, Reph. Then we have four possible
configurations in which D is three sets from the
pool and T is the remaining set. For each model
and for each configuration, we compute model ac-
curacy on D (Accuracy(D)) and on the modifi-
cations of questions in T (the predicted variable
y(T ) = Accuracy(T ′)) which are modified with
the target augmentation of the experiment. We
also compute the RAD values of the model on the
modified questions in D which are generated us-
ing the other three augmentations (RAD(D,D′),
and RAD(D′,D)). Then, we train a linear regres-
sion model using Accuracy(D), RAD(D,D′),
and RAD(D′,D), trying to predict y(T ). We per-
form this experiment four times, each using a differ-
ent configuration (different augmentation type as
our target), and average across the configurations.

Features\Model R2

LMH

Accuracy(D),
0.917± 0.117RAD(D,D′),

RAD(D′,D)
Accuracy(D) 0.829± 0.237

RAD(D,D′) 0.899± 0.133

RAD(D′,D) 0.849± 0.213

Table 4: Linear regression experiments, predicting ac-
curacy performance on unseen augmentation types.

Results Table 4 presents the average R2 values
and standard deviations over the four experiments.
RAD improves the R2 when used alongside the
validation accuracy. Interestingly, a model’s accu-
racy on one set of augmentations does not always
generalize to other, unseen augmentations. Only
when adding RAD to the regression model are we
able to identify a robust model. Notably, for LMH
the usefulness of RAD is significant, as it improves
the R2 by 11%. It also predicts performance bet-
ter than validation accuracy when used without it
in the regression. The standard deviations further
confirm that the above claims hold over all configu-
rations. These observations hold when running the
same experiment with respect to the BUTD model,
however, the improvements are smaller since the
regression task is much easier with respect to this
model (R2 of 0.995 with all features).

5 Conclusion

We proposed RAD, a new measure that penalizes
models for inconsistent predictions over data aug-
mentations. We used it to show that state-of-the-
art VQA models fail on CADs that we would ex-
pect them to properly address. Moreover, we have
demonstrated the value of our CADs by showing
that alternative augmentation methods cannot iden-
tify robustness differences as effectively. Finally,
we have shown that RAD is predictive of general-
ization to unseen augmentation types.

We believe that the RAD measure brings substan-
tial value to model evaluation and consequently to
model selection. It encourages the good practice
of testing on augmented data, which was shown to
uncover considerable model weaknesses in NLP
(Ribeiro et al., 2020). Further, given visual augmen-
tations, which we plan to explore in future work,
or linguistic augmentations, RAD is applicable to
any classification task, providing researchers with
meaningful indications of robustness.
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A Dataset Statistics

Please see Table 5 for the number of examples
in each dataset that we use (VQA, VQA-CP and
VisDial). We also report the number of augmenta-
tions we produce for each of our three augmenta-
tion types (Y/N C, Y/N HM and Y/N WK),
alongside previous augmentation approaches used
in our experiments (BT, Reph, L-ConVQA and
CS-ConVQA).

B Our Augmentations

We describe the manual steps required to meet the
desired standard for each augmentation type. For
Y/N C, we filter out questions that start with
“What color is the”. For Y/N HM, we use ques-
tions that starts with “How many”. For Y/N WK,
we consider questions that match the pattern “What
kind of <S> is this? <O1>”. Table 6 presents sev-
eral realizations of the templates we define (see
Section 2.2 for a discussion of these templates).

In Y/N HM, we ensure that when the answer
is ‘1’, we use “Is there ...” instead of “Are there ...”.
We also ensure that the subsequent word to “How
many” is a noun. We verify it is a noun using the
part-of-speech tagger available through the spaCy
library (Honnibal et al., 2020).

We allow the generation of both ‘yes’ and ‘no’
answers. Creating a modified question that is an-
swered with a ‘yes’ requires a simple permutation
of words in the original question-answer pair, e.g.,
for Y/N C, take “<C1>” = “<C2>” (see Table 1).
Similarly, to generate a question that should be an-
swered with a ‘no’, we repeat the above process and
change “<C2>”. In this case, we randomly pick an
answer and replace it with the original answer with
probability weighted with respect to the frequency
in the data, among the pool of possible answers for
the given augmentation type. When generating a
new question, we first randomly decide whether to
generate a ‘yes’ or ‘no’ question (with a probability
of 0.5 for each). Then, for example, if we choose
to generate a ‘no’, and “<C1>” = “red”, we have a
63% chance of having “<C2>” = “blue”.

C URLs of Data and Code

Data We consider three VQA datasets:

• The VQAv2 dataset (Goyal et al., 2017): ht
tps://visualqa.org/.

• The VQA-CPv2 dataset (Agrawal et al.,
2018): https://www.cc.gatech.edu/gr

ads/a/aagrawal307/vqa-cp/.

• The VisDial dataset (Das et al., 2017): https:
//visualdialog.org/

We also consider three previous augmentation
methods:

• VQA-Rephrasings (Shah et al., 2019): https:
//facebookresearch.github.io/VQA-Rep

hrasings/.

• ConVQA (Ray et al., 2019): https://arij
itray1993.github.io/ConVQA/.

• Back-translations (Sennrich et al., 2016). We
have generated these utilizing the transformers
library (Wolf et al., 2020), https://github
.com/huggingface/transformers. Specifi-
cally, we used two pre-trained translation mod-
els, English to German, and German to En-
glish: https://huggingface.co/Helsink

i-NLP/opus-mt-en-de, https://huggingf
ace.co/Helsinki-NLP/opus-mt-de-en.

Models We consider nine models, where each
model’s code was taken from the official imple-
mentation. All implementations are via PyTorch
(Paszke et al., 2019).

The three VQA-CPv2 models:

• RUBi (Cadene et al., 2019): https://gith
ub.com/cdancette/rubi.bootstrap.pyto

rch.

• LMH (Clark et al., 2019): https://github
.com/chrisc36/bottom-up-attention-vq

a.

• CSS (Chen et al., 2020): https://github.c
om/yanxinzju/CSS-VQA.

The four VQAv2 models:

• BUTD (Anderson et al., 2018): https://gi
thub.com/hengyuan-hu/bottom-up-atten

tion-vqa.

• BAN (Kim et al., 2018): https://github.c
om/jnhwkim/ban-vqa.

• Pythia (Jiang et al., 2018): Using the imple-
mentation in the MMF library (Singh et al.,
2020), https://github.com/facebookres
earch/mmf.

• VisualBERT (Li et al., 2019): Using the im-
plementation in the MMF library.

And the two VisDial models:
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Dataset Augmentation Count Validation
CountY/N C Y/N HM Y/N WK BT Reph L-ConVQA CS-ConVQA

VQA-CP 12,910 13,437 1,346 149,329 39,936 127,924 423 219,928
VQA 12,835 10,233 1,654 138,043 121,512 127,924 1,365 214,354
VisDial 516 130 - 1,136 - - - 20,640

Table 5: Number of examples in each of the datasets we use.

Yes/No← Colors Yes/No← How Many Yes/No←What Kind

What color is the cat? White How many athletes are on the field? 5 What kind of food is this? Breakfast
Is the color of the cat white? Yes Are there five athletes on the field? Yes Is this food breakfast? Yes

What color is the court? Green How many dogs are in the picture? 3 What kind of event is this? Skiing
Is the color of the court green? Yes Are there two dogs in the picture? No Is this a skiing event? Yes

What color is the vase? Blue How many giraffes are walking around? 2 What kind of animal is this? Cow
Is the color of the vase red? No Are there four giraffes walking around? No Is this animal an elephant? No

What color is the man’s hat? Red How many cakes are on the table? 0 What kind of building is this? Church
Is the color of the man’s hat red? Yes Is there one cake on the table? No Is this building a church? Yes

What color is the sky? Blue How many dogs? 1 What kind of floor is this? Wood
Is the color of the sky blue? Yes Are there zero dogs? No Is this a wood floor? Yes

Table 6: Some realizations of our templates (defined in Table 1). The black text (top) is the original question-answer
pair and the blue text (bottom) is the corresponding augmented question-answer pair.

• FGA (Schwartz et al., 2019): https://gith
ub.com/idansc/fga.

• VisDialBERT (Murahari et al., 2020): https:
//github.com/vmurahari3/visdial-bert.

D Model Settings

We have trained the VQAv2 and the VQA-CPv2
models that we use, as pre-trained weights were
not available for our requirements. For our eval-
uations, we require a model that is trained solely
on the VQAv2 train set, such that we match the
VQA-CPv2 settings, where there are only two sets,
train and validation. In contrast, pre-trained models
that are built for VQAv2 are trained on the VQAv2
training set and on the VQAv2 validation set to-
gether, as the dataset contains a third development
set that is commonly used for validation.

We have trained six VQA models using the de-
fault hyper-parameters from their official imple-
mentations (URLs in Appendix C): RUBi, LMH,
CSS, BUTD, BAN and Pythia. We trained the
above models on a single Nvidia GeForce RTX
2080 Ti GPU, when the training time for each of
the models was less than 12 hours. In addition,
inference in this setting took less than an hour for
all models.

The VisualBERT model is more computationally
intensive, and we had to reduce the default batch
size from 480 to 54 to fit it on our resources. Us-
ing three Nvidia GeForce RTX 2080 Ti GPUs for

VisualBERT, training took 36 hours and inference
took 4 hours.

For the VisDial models, FGA, and VisDialBERT,
we have downloaded the pre-trained weights and
used them solely for inference. On a single Nvidia
GeForce RTX 2080 Ti GPU, inference took 15
minutes for FGA, and 8 hours for VisDialBERT.

All the models we consider have less than 200M
parameters.

When accuracies are reported on VQAv2 and
on VQA-CP (Tables 2 and 3) we use the VQA-
accuracy metric (Antol et al., 2015). For VisDial
we use the standard accuracy metric (denoted orig-
inally as R@1).

E Regression Experiments

We generate 45 BUTD (VQA) instances and 45
LMH (VQA-CP) instances. To generate different
model instances, we create 45 new training sets
by removing examples from the original train set.
For each of the three question types, “what color”,
“how many” and “what kind”, we remove the fol-
lowing 15 percentage values of examples from the
original train set: [10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, 90%, 92%, 95%, 96%, 97%, 98%,
99%], resulting in 45 new training sets. Then, each
model instance is created by training on one of the
45 training sets.

We split the validation set into two parts: D and
T . D is used to calculate the features in our linear
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regression model. We denote with D′
1 the ques-

tions in D that can be modified using the Y/N C
augmentation, after these questions were modified.
Similarly, we define D′

2, D′
3, and D′

4 for Y/N
HM, Y/N WK, and Reph, respectively.

We average the R2 of four linear regression
experiments, when in each experiment we set a
different i (i ∈ {1, 2, 3, 4}) for which T = D′

i

and use the remaining three templates to calculate
our features. We denote the regression features
with x1 = Accuracy(D), x2 = RAD(D,D′),
and x3 = RAD(D′,D), where RAD(D,D′) and
RAD(D′,D) are computed with respect to the
three other templates (j ∈ {1, 2, 3, 4}, j 6= i). The
predicted label is y(T ) = Accuracy(T ).

Thus the equation for our regression is:

y(T ) = b1x1 + b2x2 + b3x3 + ε .

We also perform three regression experiment for
each feature alone:

y(T ) = bxk + ε, k = 1, 2, 3 ,

and compare the results of these experiments in
Table 4.

70



Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Short Papers), pages 71–79

August 1–6, 2021. ©2021 Association for Computational Linguistics

How Helpful is Inverse Reinforcement Learning for Table-to-Text
Generation?

Sayan Ghosh†∗ Zheng Qi‡∗ Snigdha Chaturvedi† Shashank Srivastava†
† UNC Chapel Hill

‡ University of Pennsylvania
{sayghosh, snigdha, ssrivastava}@cs.unc.edu

issacqzh@seas.upenn.edu

Abstract

Existing approaches for the Table-to-Text task
suffer from issues such as missing information,
hallucination and repetition. Many approaches
to this problem use Reinforcement Learning
(RL), which maximizes a single manually de-
fined reward, such as BLEU. In this work, we
instead pose the Table-to-Text task as Inverse
Reinforcement Learning (IRL) problem. We
explore using multiple interpretable unsuper-
vised reward components that are combined
linearly to form a composite reward function.
The composite reward function and the de-
scription generator are learned jointly. We
find that IRL outperforms strong RL baselines
marginally. We further study the generaliza-
tion of learned IRL rewards in scenarios in-
volving domain adaptation. Our experiments
reveal significant challenges in using IRL for
this task.

1 Introduction

Table-to-Text generation focuses on explaining tab-
ular data in natural language. This is increasingly
relevant due to the vast amounts of tabular data cre-
ated in domains including e-commerce, healthcare
and industry (for example, infoboxes in Wikipedia,
tabular product descriptions in online shopping
sites, etc.). Table-to-Text can make data easily
accessible to non-experts and can automate certain
pipelines like auto-generation of product descrip-
tions. Traditional methods approached the general
problem of converting structured data to text using
slot-filling techniques (Kukich, 1983; Reiter and
Dale, 2000; McKeown, 1992; Cawsey et al., 1997;
Konstas and Lapata, 2013; Flanigan et al., 2016).
While recent advances in data-to-text generation
using neural networks (Sutskever et al., 2011; Mei
et al., 2015; Gardent et al., 2017; Wiseman et al.,
2017; Song et al., 2018; Zhao et al., 2020) have

∗Authors contributed equally.

led to improved fluency, current systems still suf-
fer from issues such as lack of coverage (where
the generated text misses information present in
the source), repetition (where the generated text
repeats information) and hallucination (where the
generated text asserts information not present in
the source)(Lee et al., 2019). A significant reason
for these issues is that models often lack explicit
inductive biases to avoid these problems. Most
extant approaches utilize Reinforcement Learning-
based (RL) training, using a single reward (such
as BLEU or task-specific rewards) that optimizes
for a specific aspect. For example, Liu et al. (2019)
and Nishino et al. (2020) use domain-specific re-
wards to improve the accuracy of medical report
generation.

However, defining a single reward that addresses
all of the above-described issues is difficult. To
use multiple reward components with RL, one
has to manually find an optimal set of weights of
each component either through a trial-and-error
approach or expensive grid search which gets infea-
sible as the number of such reward components in-
creases. Inverse Reinforcement Learning (Abbeel
and Ng, 2004; Ratliff et al., 2006; Ziebart et al.,
2008) can be a natural approach for this task since
it can learn an underlying composite reward func-
tion from labeled examples incorporating multiple
rewards. Motivated by existing applications of IRL
in other domains and tasks (Finn et al., 2016; Fu
et al., 2017; Shi et al., 2018), we explore its utility
for Table-to-Text generation. We diverge from pre-
vious work on IRL in designing a set of intuitive
and interpretable reward components that are lin-
early combined to get the reward function. Figure
1 illustrates the overall idea of this work. We learn
a “Description Generator” (also referred as policy
later) to generate descriptions given a table. The
IRL framework includes “Reward Approximator”
that leverages the “expert” or the ground-truth de-
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Slot Type Row Slot Value

Name 1 Asgar
DOB 2 27 March 1960

... ... ...
Occ. 5 Footballer
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Figure 1: We frame the Table-to-Text task under In-
verse Reinforcement Learning framework using multi-
ple reward components

scriptions corresponding to tables to jointly learn
the underlying composite reward function combin-
ing multiple reward components such as “Recall”,
“Fluency”, etc. This composite reward function
quantifies the quality of the generated descriptions.
We see IRL performs at par with RL baselines. For
investigating when IRL helps and when it does
not, we conduct experiments to evaluate general-
ization capabilities of IRL in limited data setting
and identify challenges involved in IRL training.
Our contributions are:
• We formulate a set of interpretable reward com-

ponents and learn the composite linear reward
function in a data-driven manner for Table-to-
Text generation1.

• We study the utility of IRL for Table-to-Text
generation.

2 Method

The training data for this task consists of pairs of
tables and corresponding natural language descrip-
tions, as shown in Figure 1. A table T is a sequence
of tuples of slot types (e.g. “Name”) and slot val-
ues (e.g. “Asgar”) and let D denote the expert
description. We formulate the “Table-to-Text” task
as generating D from source table T . In the rest
of this section, we first explain how to formulate
Table-to-Text under the IRL framework, followed
by the formulation of the reward components and
a brief description of the text generation network

1Code and dataset splits for the paper are pro-
vided in https://github.com/issacqzh/IRL_
Table2Text

that is at the core of our method.

2.1 Table-to-Text as IRL

We pose Table-to-Text under the IRL framework
where we aim to jointly learn a policy for generat-
ing description from the table and the underlying
composite reward function. At the core of our ap-
proach, we have a neural description generator that
we adapt from Wang et al. (2018). The description
generator is first trained using maximum likelihood
estimation (MLE) followed by fine-tuning it using
Maximum Entropy Inverse Reinforcement Learn-
ing (MaxEnt IRL) (Ziebart et al., 2008). Under
the MaxEnt IRL framework, we iteratively perform
two steps: (1) approximate the underlying com-
posite reward function by leveraging the expert
descriptions and the current policy for description
generation; (2) Using the updated reward function,
we update the current policy for description gener-
ation using RL. In this work, we model the com-
posite reward Rφ(D) as a linear combination of
multiple reward components.

Rφ(D) =

τ∑

t=1

φᵀCt (1)

where φ is a weight vector, Ct is the vector of
reward component values at step t in a generated
description and τ denotes total steps.

Following the MaxEnt IRL paradigm, we as-
sume the expert descriptions come from a log-
linear distribution (pφ(D)) on reward values. The
objective of the reward approximator (Jr(φ)) is
to maximize the likelihood of the expert descrip-
tions. The partition function for this distribution
(pφ(D)) is approximated by using importance sam-
pling from the learned description generation pol-
icy. For sake of brevity, we skip the mathematical
derivation here. Please refer to Appendix A.1 for
detailed derivation. We draw N expert descriptions
and M descriptions from the learned policy. The
gradient of the objective (Jr(φ)) w.r.t. reward func-
tion parameters φ is then the difference between
the expected expert reward and expected reward
obtained by the policy (Ziebart et al., 2008):

∇φJr(φ) = 1

N

N∑

i=1

∇φRφ(Di)− 1∑
j βj

M∑

j=1

βj∇φRφ(D′j)

(2)

where Di and D′j are drawn from the training data
and the learned policy respectively and β’s are im-
portance sampling weights.
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The linear functional form of the reward simpli-
fies individual weight updates as a simple differ-
ence of the expected expert and the expected roll
out reward component from policy. Weight update
for component c is:

∇φJr(φ)c = 1

N

N∑

i=1

ci − 1∑
j βj

M∑

j=1

βjc
′
j (3)

where ci is total value of reward component over
all steps for ith expert description and c′j is total
value of reward component over all steps for jth

generated description. To stabilize training when
learning the policy for description generation we
mix in weighted MLE loss with the policy gradi-
ent loss before backpropagation. Please refer to
supplementary material (Appendix A.5) for model
training details.

2.2 Reward Components

We aim to find a reward function that can combine
multiple characteristics present in a good descrip-
tion such as faithfulness to the table and fluency.
To encourage faithfulness, we use recall and recon-
struction as reward components, while to charac-
terize grammatical correctness and fluency we use
repetition and perplexity. We also consider BLEU
score as a reward component. BLEU is a super-
vised reward component as it requires ground-truth
descriptions for its computation. However, all other
reward components are unsupervised.
• Recall: Fraction of slot values in the table men-

tioned in the description.
• Reconstruction: We use QA models to extract

answers from the description against a few “ex-
tractor” slot types (for example, “What is the
name of the person in the description?” is used
as a question for the slot type “Name ID”). De-
tails about other extractor slot types are provided
in Appendix A.3. Reconstruction score is the
average of lexical overlap scores between pre-
dicted and true slot values, corresponding to the
extractor slot types present in the table.

• Repetition: Fraction of unique trigrams in the
description.

• Perplexity: This is the normalized perplexity of
the description calculated using GPT-2 model
(Radford et al., 2019).

• BLEU: This is the BLEU score (Papineni et al.,
2002) of the description.

Additional details on implementation of reward
components are in Appendix A.3.

3 Experiments and Results

In this section we describe our experiments and
their results in detail.

3.1 Data and Metrics
Wang et al. (2018) proposed a dataset of tables and
their corresponding descriptions related to people
and animals from Wikipedia. However, the original
released dataset is noisy (many descriptions have
low precision/recall, most examples have very few
distinct slot types, etc.). For our experiments, we
filtered this dataset to get a smaller high-quality
dataset of 4623 examples using the following cri-
teria : (1) Recall (defined in §2.2) of 1.0 (2) High
precision (fraction of entities in the description
mentioned in the table) greater than 0.7 (3) number
of distinct slot types greater than 6. We split the
entire dataset as 80%, 10% and 10% for training,
validation and testing respectively. Details of the
dataset are provided in Appendix A.2. To aid re-
producibility we make the data splits used by us
publicly available2.

For evaluation, we report BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004) along with their
harmonic mean (called F1 hereon). Additionally,
we report the mean reward value for Recall and
Perplexity as proxies for faithfulness and fluency
of generated descriptions respectively.

MODEL B R F1 REC. PPL

MLE 23.78 42.11 30.40 0.82 -73.38

RL with
B 28.03 43.75 34.17 0.87 -42.17
Rec., B 28.02 43.77 34.16 0.88 -39.43
Rec., B, PPL 28.22 43.12 34.11 0.89 -43.91
All 28.21 43.23 34.14 0.89 -40.77

IRL with
Rec., B 27.96 43.52 34.04 0.88 -40.27
Rec., B, PPL 28.25 43.81 34.35 0.89 -40.19
All 28.42 43.19 34.28 0.89 -40.11

IRL (using multipliers) with
Rec., B 28.41 43.53 34.38 0.89 -38.53
Rec., B, PPL 28.16 43.35 34.14 0.90 -40.86

Table 1: Test set performance for various models mea-
sured using BLEU (B), ROUGE(R), F1, Recall(Rec.)
and Perplexity (PPL). Using IRL instead of RL gives
marginal improvement in performance

3.2 Automatic Evaluation
Table 1 shows the performance of models trained
using maximum likelihood estimation (MLE), RL

2Data splits are provided in https://github.com/
issacqzh/IRL_Table2Text
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and IRL. For RL and IRL we report results with
various sets of reward components. When using
multiple reward components with RL we consider
the total reward as the uniformly weighted sum of
each component. We note that while IRL variants
achieve higher performance than RL methods for
all metrics, the gain in performance is marginal.

In Table 1 we choose the best model for each
setting based on the performance on the validation
split. For the best IRL (All) model, we find the
learned weights for repetition, recall, BLEU, re-
construction and perplexity are 0.02, 0.12, 0.65,
0.05 and 0.15 respectively. However, we noticed
that the weights of the IRL reward components
failed to converge in our training runs. This is a
consequence of the fact that reward components
such as BLEU achieve their maximum value for
the ground-truth description, and the value quickly
drops as descriptions diverge from the ground truth
description. Thus the gap between the expert value
and the value achieved by the model for BLEU is
always large, hindering the convergence of weights
in IRL (Eqn 3). This results in a peaked distribu-
tion of weights where the model tends to favor the
BLEU reward component excessively. We attempt
scaling down the expert BLEU reward values by
using multiplier. We dynamically update the multi-
plier using an adaptive binary search method (refer
to Appendix A.4 for details) to induce convergence
in weights. We observe that the multiplier acts as a
“regularizer” in learning a more balanced weight for
the reward components considered. For example,
when we train IRL with BLEU, recall and perplex-
ity without using multiplier, the learned weights
of the components are 0.72, 0.15 and 0.13 respec-
tively. On using multipliers for IRL training, the
learned weights for BLEU, recall and perplexity
are 0.45, 0.31 and 0.24 respectively. The model
variants using multipliers get the best F1 score as
seen in the second last row of Table 1.

We also find that having more reward compo-
nents does not help IRL improve significantly. We
note that IRL using all reward components gets the
best BLEU but suffers a marginal drop in ROUGE.

3.3 Domain adaptation

To evaluate if rewards learned using IRL generalize
better to unseen data distributions, we evaluate it
for scenarios involving domain adaptation. For this,
we divide the dataset into disjoint subsets of cate-
gories involving people in sports, academia, art, etc.

(category details in Appendix A.2). Each category
has different table schemas. We train RL and IRL
models on one category and test them on a different
category. Since training on a single category limits
the amount of labelled data, we consider training
with unsupervised rewards that do not rely on the
ground truth. Table 2 shows the F1 results when
using IRL and RL with recall, perplexity and re-
construction. For each training category, we show
results of the test category with the highest absolute
value of relative change in F1. We notice mixed
results. For instance, when training on the “Sports”
domain, IRL’s performance is much worse than RL.
This may be because slot types with high frequency
in the “Sports” category are significantly different
from all other categories. Thus, IRL may be sus-
ceptible to learning a reward function that overfits
the domain and actually generalizes worse than a
fixed reward function. However, in several cases
IRL leads to big improvements in performance (e.g.
when training on Politics, Law, and Military) indi-
cating the promise of this method in limited data
settings.

TRAIN CAT. TEST CAT. RL IRL

Politics Sports 18.59 21.04
Law Academia 28.54 31.17

Military Politics 30.07 32.01
Art Academia 32.78 31.37

Academia Sports 21.25 20.67
Sports Academia 24.43 22.25

Table 2: F1 scores on using IRL and RL for domain
adaptation. IRL leads to higher F1 scores in a few set-
tings indicating its usefulness for domain adaptation.
However, IRL performs worse than RL when trained on
domains which have significantly different slot types
with high frequency (e.g. “Sports”).

4 Discussion

We highlight some challenges with IRL training
that potentially hinder IRL to get significantly bet-
ter than RL baselines. Further, we discuss qualita-
tive differences between RL and IRL models.

4.1 Challenges in IRL training

Importance of reward components: During
training, for most reward components, their val-
ues for expert and generated descriptions are close.
However, the values of BLEU for generated de-
scriptions are quite smaller than the BLEU value
for expert descriptions. This shadows the contri-
bution of other reward components irrespective of
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the weights assigned to them. Since BLEU opti-
mizes for n-gram overlap with the expert text, it is
undesirable to drop this component as it leads to
text degeneration. As described in Section 3.2, we
use adaptive multipliers to alleviate its dominance.
However, its effect is limited and the method does
not correspond to optimizing a fixed objective.
Unstable training: To stabilize training, we mix
the weighted MLE loss (cross-entropy loss) and the
policy gradient objective. However, these losses
can differ largely in scale. Having a larger weight
to MLE loss diminishes the contribution of reward
components, while larger weight to policy gradient
leads to degeneration.

These observations indicate the need for future
research on training paradigms and better-designed
reward components to address these challenges.

4.2 Qualitative analysis
Using only BLEU as a reward leads to gener-
ated descriptions that fit a general template resem-
bling descriptions from the most common cate-
gory (“Sports”). Including other reward compo-
nents helps the model avoid this behavior. We
still observe hallucination from both IRL and RL
fine-tuned models. However, hallucinated informa-
tion generated from IRL fine-tuned models often
matches the overall theme (for example, it gener-
ates incorrect football league names but gets the
name of the club mentioned in the table correct).
Appendix A.7 shows an example of description
generated by IRL (All) model.

5 Conclusion

We present an approach using IRL for Table-to-
Text generation using a set of interpretable reward
components. While the approach outperforms RL,
improvements are marginal, and we identify sev-
eral challenges. In particular, using metrics like
BLEU as reward components is problematic, since
they affect weight convergence for IRL. Based on
our study, the application of IRL for Table-to-Text
generation would broadly benefit from designing
better-calibrated reward components and improve-
ments in training paradigms. We hope our explo-
ration encourages the community to engage in in-
teresting directions of future work.
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A Appendices

A.1 Derivation of gradient for MaxEnt IRL
We show the detailed mathematical steps to approx-
imate the gradient calculation under the MaxEnt
IRL framework for Table-to-Text generation.

We assume that expert descriptions are drawn
from a distribution pφ(D).

pφ(D) =
1

Z
exp(Rφ(D)) and Z =

∫

D

exp(Rφ(D)) (4)

where the reward function, Rφ(D) has parameters
φ, and Z is the partition function. The total reward
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of a description is sum of rewards at each step. Let
qθ(D) be the policy for description generation. We
maximise the log-likelihood of the samples in the
training set (Equation 5).

Jr(φ) =
1

N

N∑

n=1

log(pφ(Dn)) =
1

N

N∑

n=1

Rφ(Dn)− logZ

(5)

The gradient w.r.t. reward parameters is given by

∇φJr(φ) =
1

N

∑

n

∇φRφ(Dn)

− 1

Z

∫

D
exp(Rφ(D))∇φRφ(D)dD

= ED∼pdata∇φRφ(D)− ED∼pφ(D)
∇φRφ(D)

(6)

The partition function requires enumerating all
possible descriptions which makes this intractable.
This is tackled by approximating the partition func-
tion by sampling descriptions from the policy using
importance sampling. The importance weight βi
for a generated description Di is given by

βi ∝
exp(Rφ(Di))

qθ(Di)
(7)

The gradient is now approximated as:

∇φJr(φ) = 1

N

N∑

i=1

∇φRφ(Di)− 1∑
j βj

M∑

j=1

βj∇φRφ(D′j)

(8)

where Di and D′j are drawn from training data and
qθ(D) respectively.

A.2 Dataset statistics
We split the entire dataset as 80%, 10% and 10% for
training, validation and testing respectively. Table
3 shows the statistics for our dataset.

Table 4 shows the various disjoint category splits
of our data.

A.3 Detailed description of some reward
components

• Reconstruction: We use Question Answer-
ing models to extract answers from the de-
scription corresponding to few slot types. For
example, to extract the name from the descrip-
tion we ask a question “What is the name of
the person?”. The questions corresponding to
each slot type is pre-determined. We extract
values for four most common slot types occur-
ring in the dataset – “name”, “place of birth”,

“place of death” and “country”. We will re-
fer to these slots as “extraction slot types”.
The questions for these extractor slot types
are “What is the name of the person in the
description?”, “What is the place of birth of
the person in the description?”, “What is the
place of death of the person in the descrip-
tion?” and “Which country does the person in
the description belong to?” respectively. All
extraction slot types are not present in every
table of the dataset (example, “place of death”
is not present for a living sportsperson). Fol-
lowing SQUAD-like (Rajpurkar et al., 2018)
formalisation, for each slot-type we train a
BERT-based (Devlin et al., 2019) model to
get the answer from the description given the
question. We calculate overlap score of pre-
dicted answer with the correct answer (slot
value from table). The final reconstruction
score is the arithmetic mean of answer over-
lap scores corresponding to the extractor slot
types present in the table.

• Perplexity: This is the negative perplexity of
the description. We further normalize it by
using

Perplexity− Perplexitylow
Perplexityhigh − Perplexitylow

(9)

where Perplexityhigh and Perplexitylow are
the maximum and minimum perplexity of ex-
pert texts and texts generated by pretrained
MLE model respectively.

A.4 Learning Multiplier for BLEU
Let us assume that after the ith iteration of IRL,
we have the multiplier value as mi. Let b be the
average BLEU score obtained by the model. For
(i + 1)th iteration we update the multiplier value
as

mi+1 =
mi + b

2
(10)

In case the change in weight is less than 0.00001,
we instead increase multiplier value by 0.1. The
maximum of multiplier value is 1. We start with
initial multiplier value (m0) as 1.

A.5 Training details
Model parameters We follow the same training
scheme and model parameters from Wang et al.
(2018). Our model roughly has around 7.8M pa-
rameters. We perform MLE for 20 epochs. For
RL finetuning we perform 100 epochs. For the IRL
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TYPE SIZE REC. PREC. # SENT./TAB. # SLOTS/SENT. # SLOTS/TAB. # W/SENT. # W/TAB.
Train 3700 1.0 0.82 4.61 1.86 8.58 14.85 68.52
Val 461 1.0 0.82 4.67 1.86 8.70 15.10 70.54
Test 462 1.0 0.82 4.60 1.86 8.57 14.54 66.87
Total 4623 1.0 0.82 4.62 1.86 8.59 14.85 68.56

Table 3: Dataset statistics

Slot Type Row Slot Value

Name ID 1 William Duval 
(ice hockey)

Country of 
citizenship

2 Canada

Date of birth 3 August 3, 1877

Date of death 4 June 7, 1905

Sport 5 Ice hockey

Position played on 
team / Specialty

6 Defenceman

Place of birth 7 Ottawa

Reference:
William Duval (ice hockey) ( August 3 1877 – June 7 1905 ) was a
Canadian professional Ice hockey Defenceman who played for the
Ottawa Hockey Club and the Pittsburgh Victorias in the late 1890s
and early 1900s . born in Ottawa Canada Duval played
intermediate hockey for the Ottawa Aberdeens and Ottawa
Atlantic Railway teams before joining the Ottawa Hockey Club in
the 1899 – 1900 season . he played two further seasons for
Ottawa and was named captain prior to the 1902 season . duval
died due to alcoholism on June 7 1905 . duval had previously
worked for the Canada Atlantic Railway in Ottawa .

IRL All:
William Duval (ice hockey) ( August 3 1877 - June 7 1905 ) was a 
Canada professional Ice hockey Defenceman who played eleven 
seasons in the National Hockey League of six . he was born in 
Ottawa Ontario Canada .

Figure 2: Example of generated description using IRL (All) model

CATEGORY # SAMPLES

Academia 2152
Art 4736
Politics 2974
Sports 17434
Law 586
Military 4170
Unknown 14096

All 46148

Table 4: Data statistics for categories

model, we perform two weight updates followed by
five RL epochs and this is repeated 20 times. For
training we use Adam optimizer (Kingma and Ba,
2014). We choose the hyperparameters and best
epoch for each model by obtaining results on the
validation set using beam search with beam size of
3.

Hyper-parameter tuning We adapt the model
and optimizer hyper-parameters from Wang et al.
(2018). For choosing the weights for cross-entropy
loss and policy gradient loss we tried combinations
in the set 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
keeping sum of weights as 1. For IRL reward com-
ponent weight updates we sample 500 descriptions
from ground-truth and from the descriptions gen-
erated from the policy. We chose the size as 500
based on validation set performance. Based on the

performance on the validation set we chose 0.9
as policy gradient loss weight and 0.1 for cross-
entropy loss. This also helps to bring both the loss
terms in same scale.

Software and hardware specifications All the
models are coded using Pytorch 1.4.03 (Paszke
et al., 2019) and related libraries like numpy
(Oliphant, 2006), scipy (Virtanen et al., 2020) etc.
We run all experiments on GeForce RTX 2080 GPU
of size 12 GB. The system has 256 GB RAM and
40 CPU cores.

Time for training and inference It takes around
16 seconds for one epoch of MLE training while it
takes close to 150 seconds for an epoch when using
RL fine-tuning with all the reward components.
The reward component weight approximation stage
of IRL is very fast and takes less than a second
generally.

A.6 Validation set results

Table 5 shows the results on validation set for the
models in Table 1 of main paper.

A.7 Qualitative example

Table 2 shows an example of the output generated
by the IRL (All) model along with the reference

3https://pytorch.org/
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MODEL B R F1 REC. PPL

MLE 23.64 41.17 30.03 0.83 -74.75

RL with
B 26.61 42.12 32.61 0.86 -39.89
Rec., B 26.88 42.05 32.79 0.87 -34.06
Rec., B, PPL 27.10 41.72 32.86 0.88 -43.47
All 26.87 41.87 32.73 0.88 -39.14

IRL with
Rec., B 26.85 41.79 32.69 0.87 -37.40
Rec., B, PPL 27.09 42.10 32.97 0.88 -40.13
All 27.23 41.70 32.94 0.88 -39.87

IRL (using multipliers) with
Rec., B 27.02 42.00 32.88 0.86 -34.83
Rec., B, PPL 27.02 41.67 32.78 0.89 -40.87

Table 5: Performance on the validation set for various
models measured using BLEU (B), ROUGE(R), F1,
Recall(Rec.) and Perplexity(PPL)

description.
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Abstract

Most fact checking models for automatic fake
news detection are based on reasoning: given
a claim with associated evidence, the models
aim to estimate the claim veracity based on the
supporting or refuting content within the evi-
dence. When these models perform well, it is
generally assumed to be due to the models hav-
ing learned to reason over the evidence with re-
gards to the claim. In this paper, we investigate
this assumption of reasoning, by exploring the
relationship and importance of both claim and
evidence. Surprisingly, we find on political
fact checking datasets that most often the high-
est effectiveness is obtained by utilizing only
the evidence, as the impact of including the
claim is either negligible or harmful to the ef-
fectiveness. This highlights an important prob-
lem in what constitutes evidence in existing ap-
proaches for automatic fake news detection.

1 Introduction

Misinformation is spreading at increasing rates
(Vosoughi et al., 2018), particularly online, and
is considered a highly pressing issue by the World
Economic Forum (Howell et al, 2013). To com-
bat this problem, automatic fact checking, espe-
cially for estimating the veracity of potential fake
news, have been extensively researched (Hassan
et al., 2017; Hansen et al., 2019; Thorne and Vla-
chos, 2018; Elsayed et al., 2019; Allein et al., 2020;
Popat et al., 2018; Augenstein et al., 2019). Given
a claim, most fact checking systems are evidence-
based, meaning they utilize external knowledge to
determine the claim veracity. Such external knowl-
edge may consist of previously fact checked claims
(Shaar et al., 2020), but it typically consists of us-
ing the claim to query the web through a search
API to retrieve relevant hits. While including the
evidence in the model increases the effectiveness

∗Equal contribution.

over using only the claim, existing work has not fo-
cused on the predictive power of isolated evidence,
and hence whether it assists the model in enabling
better reasoning.

In this work we investigate if fact checking mod-
els learn reasoning, i.e., provided a claim and asso-
ciated evidence, whether the model determines the
claim veracity by reasoning over the evidence. If
the model learns reasoning, we would expect the
following proposition to hold: A model using both
the claim and evidence should perform better on
the task of fact checking compared to a model using
only the claim or evidence. If a model is only given
the claim as input, it does not necessarily have
the information needed to determine the veracity.
Similarly, if the model is only given the evidence,
the predictive signal must come from dataset bias
or the differences in the evidence obtained from
claims with varying veracity, as it otherwise cor-
responds to being able to provide an answer to an
unknown question. In our experimental evaluation
on two political fact checking datasets, across mul-
tiple types of claim and evidence representations,
we find the evidence provides a very strong pre-
dictive signal independent of the claim, and that
the best performance is most often obtained while
entirely ignoring the claim. This highlights that
fact checking models may not be learning to rea-
son, but instead exploit an inherent signal in the
evidence itself, which can be used to determine
factuality independent of using the claim as part
of the model input. This highlights an important
problem in what constitutes evidence in existing
approaches for automatic fake news detection. We
make our code publicly available1.

1https://github.com/casperhansen/
fake-news-reasoning
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2 Related Work

Automatic fact checking models include deep learn-
ing approaches, based on contextual and non-
contextual embeddings, which encode the claim
and evidence using RNNs or Transformers (Shaar
et al., 2020; Elsayed et al., 2019; Allein et al., 2020;
Popat et al., 2018; Augenstein et al., 2019; Hassan
et al., 2017), and non-deep learning approaches
(Wang, 2017; Pérez-Rosas et al., 2018), which uses
hand-crafted features or bag-of-word representa-
tions as input to traditional machine learning classi-
fiers such as random forests, SVM, and MLP (Mi-
halcea and Strapparava, 2009; Pérez-Rosas et al.,
2018; Baly et al., 2018; Reddy et al., 2018).

Generally, models may learn to memorize arti-
fact and biases rather than truly learning (Guru-
rangan et al., 2018; Moosavi and Strube, 2017;
Agrawal et al., 2016), e.g., from political individ-
uals often leaning towards one side of the truth
spectrum. Additionally, language models have
been shown to implicitly store world knowledge
(Roberts et al., 2020), which in principle could en-
hance the aforementioned biases. To this end, we
design our experimental setup to include represen-
tative fact checking models of varying complex-
ity (from simple term-frequency based represen-
tations to contextual embeddings), while always
evaluating each trained model on multiple different
datasets to determine generalizability.

3 Methods

Problem definition. In automatic fact checking
of fake news we are provided with a dataset of
D = {(c1, e1, y1), ..., (cn, en, yn)}, where ci cor-
responds to a textual claim, ei is evidence used to
support or refute the claim, and yi is the associated
truth label to be predicted based on the claim and
evidence. Following current work on fact checking
of fake news (Hassan et al., 2017; Thorne and Vla-
chos, 2018; Elsayed et al., 2019; Allein et al., 2020;
Popat et al., 2018; Augenstein et al., 2019), we
consider the evidence to be a list of top-10 search
snippets as returned by Google search API when
using the claim as the query. Note that while addi-
tional metadata may be available–such as speaker,
checker, and tags–this work focuses specifically
on whether models learn to reason based on the
combination of claim and evidence, hence we keep
the input representation to consist only of the latter.

Overview. In the following we describe the dif-
ferent models used for the experimental compari-

son (Section 4), which consists of models based on
term frequency (term-frequency weighted bag-of-
words (Salton and Buckley, 1988)), word embed-
dings (GloVe word embeddings (Pennington et al.,
2014)), and contextual word embeddings (BERT
(Devlin et al., 2019)). These representations are
chosen as to include the typical representations
most broadly used among past and current NLP
models.

Term-frequency based Random Forest. We
construct a term-frequency weighted bag-of-words
representation per sample based on concatenat-
ing the text content of the claim and associ-
ated evidence snippets. We train a Random For-
est (Breiman, 2001) as the classifier using the Gini
impurity measure. In the setting of only using ei-
ther the claim or evidence snippets as the input,
only the relevant part is used for constructing the
bag-of-words representation.

GloVe-based LSTM model. We adapt the
model by Augenstein et al. (2019), which originally
was proposed for multi-domain veracity prediction.
Using a pretrained GloVe embedding (Pennington
et al., 2014)2, claim and snippet tokens are embed-
ded into a joint space. We encode the claim and
snippets using an attention-weighted bidirectional
LSTM (Hochreiter and Schmidhuber, 1997):

hci = attn (BiLSTM(ci)) (1)

hei,j = attn (BiLSTM(ei,j)) (2)

where attn(·) is a function that learns an attention
score per element, which is normalized using a
softmax, and returns a weighted sum. We combine
the claim and snippet encodings using using the
matching model by Mou et al. (2016) as:

si,j =
[
hci ; hei,j ; hci − hei,j ; hci · hei,j

]
(3)

where ”;” denotes concatenation. The joint claim-
evidence encodings are attention weighted and
summed, projected through a fully connected layer
into RL, where L is the number of possible labels:

oi = attn([si,1 ; ... ; si,10]) (4)

pi = softmax (FC(oi)) (5)

Lastly, the model is trained using cross entropy
as the loss function. In the setting of using only
the claim as the input (i.e., without the evidence),
then hci is used in Eq. 5 instead of oi. If only the

2http://nlp.stanford.edu/data/glove.
840B.300d.zip
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Train: Snopes Train: PolitiFact
Within dataset Out-of dataset Within dataset Out-of dataset
Eval: Snopes Eval: PolitiFact Eval: PolitiFact Eval: Snopes

RF (∼13 seconds) F1micro F1macro F1micro F1macro F1micro F1macro F1micro F1macro

Claim 0.473 0.231 0.273 0.223 0.254 0.255 0.546 0.243
Evidence 0.504 0.280 0.244 0.195 0.301 0.299 0.597 0.232
Claim+Evidence 0.550 0.271 0.245 0.190 0.310 0.304 0.579 0.207

LSTM (∼12 minutes, 888K parameters)

Claim 0.408 0.243 0.260 0.228 0.237 0.237 0.565 0.221
Evidence 0.495 0.253 0.262 0.208 0.290 0.295 0.550 0.273
Claim+Evidence 0.529 0.253 0.258 0.189 0.288 0.294 0.509 0.256

BERT (∼264 minutes, 109M parameters)

Claim 0.533 0.312 0.249 0.209 0.275 0.282 0.550 0.273
Evidence 0.531 0.321 0.249 0.224 0.351 0.359 0.577 0.286
Claim+Evidence 0.556 0.313 0.231 0.191 0.285 0.292 0.564 0.259

Table 1: Evaluation using micro and macro F1. Per column, the best score per method is underlined and the best
score across all methods is highlighted in bold. We report the training time and number of model parameters, for
Claim+Evidence on PolitiFact, in the parentheses. RF is trained on 5 cores and neural models on a Titan RTX.

evidence is used, then an attention weighted sum
of the evidence snippet encodings is used in Eq. 5
instead of oi.

BERT-based model. In a similar fashion to
the LSTM model, we construct a model based on
BERT (Devlin et al., 2019)3, where the [CLS]
token encoding is used for claim and evidence rep-
resentations. Specifically, the claim and evidence
snippets are encoded as:

hci = BERT(ci), hei,j = BERT(ci, ei,j) (6)

hei = attn([hei,1 ; ... ; hei,10 ]) (7)

where the claim acts as the question when encod-
ing the evidence snippets. Similarly to Eq. 5, the
prediction is obtained by concatenating the claim
and evidence representations and project it through
a fully connected layer into RL:

pi = softmax(FC([hci ; hei ])) (8)

where cross entropy is used as the loss function
for training the model. In the setting that only the
claim is used as input, then only hci is used in Eq. 8.
If only the evidence is used, then hei,j is computed
without including ci, and only hei is used in Eq. 8.

3We use bert-base-uncased from https://
huggingface.co/bert-base-uncased.

#Claims Labels

PolitiFact 13,581 pants on fire! (10.6%), false (19.2%), mostly false
(17.0%), half-true (19.8%), mostly true (18.8%),
true (14.8%)

Snopes 5,069 false (64.3%), mostly false (7.5%), mixture
(12.3%), mostly true (2.8%), true (13.0%)

Table 2: Dataset statistics.

4 Experimental Evaluation

4.1 Datasets

We focus on the domain of political fact checking,
where we use claims and associated evidence from
PolitiFact and Snopes, which we extract from the
MultiFC dataset (Augenstein et al., 2019). Using
the claim as a query, the evidence is crawled from
Google search API as the search snippets of the
top-10 results, and is filtered such that the web-
site origin of a given claim does not appear as evi-
dence. To facilitate better comparison between the
datasets, we filter claims with non-veracity related
labels4. The dataset statistics are shown in Table 2.

4.2 Experimental setup

Both datasets are split into train/val/test sets using
label-stratified sampling (70/10/20% splits). We
tune all models on the validation split, and use
early stopping with a patience of 10 for neural

4For PolitiFact we exclude [full flop, half flip, no flip]
and for Snopes we exclude [unproven, miscaptioned, legend,
outdated, misattributed, scam, correct attribution].
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Figure 1: Macro F1 scores when removing evidence from either the top or bottom of the evidence snippet ranking.

models. Following Augenstein et al. (2019), we use
micro and macro F1 for evaluation. The models are
evaluated on both the within dataset test sets, but
also out-of dataset test sets (e.g., a model trained on
Snopes is evaluated on both Snopes and PolitiFact).
In the out-of dataset evaluation we need the labels
to be comparable, hence in that setting we merge
”pants on fire!” and ”false” for PolitiFact.

5 Tuning details

In the following, the best overall parameter con-
figurations are underlined. The best configuration
is chosen based on the average of the micro and
macro F15. For RF, we tune the number of trees
from [100,500,1000], the minimum number of sam-
ples in a leaf from [1,3,5,10], and the minimum
number of samples per split from [2,5,10]. For the
LSTM model, we tune the learning rate from [1e-
4,5e-4,1e-5], batch size [16,32], number of LSTM
layers from [1,2], dropout from [0, 0.1], and fix
the number of hidden dimensions to 128. For the
BERT model, we tune the learning rate from [3e-5,
3e-6, 3e-7] and fix the batch size to 8.

5.1 Results

The results can be seen in Table 1. Overall, we
see that the BERT model trained only on Evidence
obtains the best results in 4/8 columns, and, no-
tably, in 3/4 cases the BERT model with Evidence
obtains the best macro F1 score on within and out-

5https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.f1_
score.html

of dataset prediction. Random forest using term-
frequency as input obtains the best out-of dataset
micro F1 for both datasets (using either only Claim
or only Evidence). Across all methods, the combi-
nation of Claim+Evidence only marginally obtains
the best results a single time (for Snopes micro
F1). For further details, in Table 3 we compute the
accuracy scores for all the false labels, mixture or
half-true label, and true labels.

Surprisingly, a BERT model using only the Ev-
idence is capable of predicting the veracity of the
claim used for obtaining the evidence. This shows
that a strong signal must exist in the evidence it-
self, and the evidence found by the search engine
appears to be implicitly affected by the veracity of
the claim used as the query in some way6. The im-
provements reported in the literature by combining
claim and evidence, are therefore not evident of the
model learning to reason over the evidence with
regards to the claim, but instead exploiting a sig-
nal inherent in the evidence itself. This highlights
that the current approach for evidence gathering
is problematic, as the strong signal makes it pos-
sible (and most often beneficial) for the model to
entirely ignore the claim. This makes the model
entirely reliant on the process behind how the evi-
dence is generated, which is outside the scope of
the model, and thereby undesirable, as any change
in the search system may change the model per-
formance significantly. It may also be problematic
on a more fundamental level, e.g., to predict the

6Note that the claim origin website is always removed
from the evidence.
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Train: Snopes Train: PolitiFact
Within dataset Out-of dataset Within dataset Out-of dataset
Eval: Snopes Eval: PolitiFact Eval: PolitiFact Eval: Snopes

RF accfalse accmix acctrue accfalse accmix acctrue accfalse accmix acctrue accfalse accmix acctrue

Claim 0.710 0.144 0.255 0.853 0.016 0.209 0.623 0.216 0.513 0.790 0.092 0.255
Evidence 0.705 0.152 0.441 0.829 0.006 0.117 0.654 0.248 0.510 0.891 0.039 0.192
Claim+Evidence 0.760 0.136 0.453 0.829 0.000 0.117 0.634 0.292 0.512 0.871 0.039 0.199

LSTM

Claim 0.674 0.232 0.280 0.875 0.047 0.137 0.566 0.212 0.504 0.833 0.026 0.234
Evidence 0.721 0.272 0.267 0.890 0.020 0.115 0.643 0.253 0.485 0.768 0.184 0.322
Claim+Evidence 0.757 0.248 0.168 0.879 0.008 0.107 0.671 0.210 0.460 0.704 0.171 0.378

BERT

Claim 0.746 0.256 0.379 0.854 0.094 0.045 0.604 0.292 0.475 0.765 0.171 0.287
Evidence 0.648 0.376 0.559 0.702 0.049 0.337 0.649 0.326 0.496 0.804 0.197 0.339
Claim+Evidence 0.747 0.264 0.379 0.882 0.067 0.042 0.667 0.175 0.558 0.790 0.092 0.367

Table 3: Accuracy scores computed on the false labels, mixture or half-true label, and true labels. All labels within
a group (e.g., any false label such as false or mostly false) are considered to be the same and as such this reduces
the problem to a three class classification problem.

veracity of the following two claims: ”the earth is
round” and ”the earth is flat”, the evidence could
be the same, but a model entirely dependent on the
evidence, and not the claim, would be incapable of
predicting both claims correctly.

5.2 Removal of evidence

We observed a strong predictive signal in the ev-
idence alone and now consider the performance
impact when gradually removing evidence snip-
pets. The evidence is removed consecutively either
from the top down or bottom up (i.e., removing the
most relevant snippets first and vice versa), until
no evidence is used. Figure 1 shows the macro F1
as a function of removed evidence when using the
Evidence or Claim+Evidence models. We observe
a distinct difference between the random forest
and LSTM model compared to BERT: for random
forest and LSTM, the Claim+Evidence models on
both datasets drop rapidly in performance when
the evidence is removed, while the BERT model
only experiences a very small drop. This shows
that when the Claim+Evidence is used in the BERT
model, the influence of the evidence is minimal,
while the evidence is vital for the Claim+Evidence
RF and LSTM models. For all models, we observe
that when evidence is removed from the top down,
the performance drop is larger than when evidence
is removed from the bottom up. Thus, the ranking
of the evidence as provided by the search engine is
related to its usefulness as evidence for fact check-
ing.

6 Conclusion

We investigate if fact checking models for fake
news detection are learning to process claim and
evidence jointly in a way resembling reasoning.
Across models of varying complexity and evalu-
ated on multiple datasets, we find that the best
performance can most often be obtained using only
the evidence. This highlights that models using
both claim and evidence are inherently not learn-
ing to reason, and points to a potential problem
in how evidence is currently obtained in existing
approaches for automatic fake news detection.
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Abstract

Despite end-to-end neural systems making sig-
nificant progress in the last decade for task-
oriented as well as chit-chat based dialogue
systems, most dialogue systems rely on hybrid
approaches which use a combination of rule-
based, retrieval and generative approaches for
generating a set of ranked responses. Such dia-
logue systems need to rely on a fallback mech-
anism to respond to out-of-domain or novel
user queries which are not answerable within
the scope of the dialogue system. While, dia-
logue systems today rely on static and unnat-
ural responses like “I don’t know the answer
to that question” or “I’m not sure about that",
we design a neural approach which generates
responses which are contextually aware with
the user query as well as say no to the user.
Such customized responses provide paraphras-
ing ability and contextualization as well as im-
prove the interaction with the user and reduce
dialogue monotonicity. Our simple approach
makes use of rules over dependency parses and
a text-to-text transformer fine-tuned on syn-
thetic data of question-response pairs gener-
ating highly relevant, grammatical as well as
diverse questions. We perform automatic and
manual evaluations to demonstrate the efficacy
of the system.

1 Introduction

In order to cater to the diversity of questions span-
ning across various domains, dialogue systems gen-
erally follow a hybrid architecture wherein an en-
semble of individual response subsystems (Kuratov
et al.; Harrison et al., 2020) are employed from
which an appropriate response is presented to the
user (Serban et al., 2017; Finch et al., 2020; Paran-
jape et al., 2020). However, it is common for dia-
logue systems to encounter queries which are not
within their scope of knowledge. While increasing
the number of such subsystems would be a good
strategy to increase coverage, it can be a never end-
ing process and a default fallback strategy would al-

Figure 1: Comparison of responses of three flight book-
ing dialogue systems: The first one does not handle
unknown responses. The second one has a default fall-
back response. The third one has a fall-back response
which is contextualized with the user query.

ways be needed. Besides, domain specific dialogue
systems, especially those deployed in professional
settings generally prefer restricting themselves to
a fixed set of domains, and purposely refrain from
responding to out-of-domain and random or toxic
user queries.

One approach to acknowledge such queries is to
have a fallback mechanism with responses like “I
don’t know the answer to this question" or “I’m not
sure how to answer that." However, such responses
are static and unengaging and give an impression
that the user’s query has gone unacknowledged
or is not understood by the system as shown in
Figure 1 above.

Yu et al. (2016) have shown that static and pre-
defined responses lead to lower levels of user en-
gagement and decrease users’ interest in interacting
with the system. Yu et al. (2016) shows that a sys-
tem which reacts to system breakdowns and to low
user engagement leads to a better user engagement.

Our fallback approach attempts to address these
limitations by generating “don’t-know” responses
which are engaging and contextually closer with
the user query. 1) Since there are no publicly avail-
able datasets to generate such contextualised re-
sponses, we synthetically generate (query, fallback
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response) pairs using a set of highly accurate hand-
crafted dependency patterns. 2) We then train a
sequence-to-sequence model over synthetic and
natural paraphrases of these queries. 3) Finally,
we measure the grammaticality and relevance of
our models using a crowd-sourced setting to assess
the generation capability. We have released the
code and training dataset used in our experiments
publicly. 1

2 Related Work

Improving the coverage to address out-of-domain
queries is not a new problem in designing dialogue
systems. The most popular approach has been
via presenting the user with chit-chat responses.
Other systems such as Blender (Roller et al., 2020)
and Meena (Adiwardana et al., 2020) promise
to be successful for open-domain settings. Paran-
jape et al. (2020) finetune a GPT-2 model (Rad-
ford et al., 2019) on the EmpatheticDialogues
dataset (Rashkin et al., 2019) to generate social
talk responses. While this might seem fitting for
chit-chat and social talk dialogue systems, domain-
specific scenarios often dealing with professional
settings would refrain from performing friendly
or social talk especially avoiding the possibility
of the randomness of generative models. Also,
multiple subsystem architectures always have the
possibility of cascading errors and profane or toxic
queries. Hence systems should always have a fool-
proof mechanism in the form of static templates to
reply from. Liang et al. (2020) uses an interesting
approach for error handling by mapping dialogue
acts and intents to templates. Besides, like Finch
et al. (2020) it is always safer to generate fallback
responses on encountering queries which might be
toxic, biased or profane. 2

Another line of work attempts to handle user
queries which are ambiguous by asking back clarifi-
cation questions (Dhole, 2020; Zamani et al., 2020;
Yu et al., 2020). While this increases user interac-
tion and coverage to an appreciable extent, it does
not eliminate the requirement of a failsafe fallback
responder. This paper’s contribution is to address
this requirement with an enhanced version of a
fallback response generator.

1github.com/kaustubhdhole/natural-dont-know
2Handling programming exceptions and code failures also

necessitates a simple fallback approach.

3 Methods

We describe two approaches to generate such con-
textual don’t-know responses.

3.1 The Dependency Based Approach (DBA)
Inspired by previous approaches which use parse
structures to generate questions (Heilman and
Smith, 2009; Mazidi and Tarau, 2016; Dhole and
Manning, 2020), we create a rule-based generator
by handcrafting dependency templates to cater to
a wide variety of question patterns as shown in
Table 1. We perform extensive manual testing to
improve the generations from these rules and in-
crease overall coverage. The purpose of these rules
is two-fold: i) To create a high-precision fall-back
response generator as a baseline and ii) to help cre-
ate (query, don’t-know-response) pairs which could
be paired with natural paraphrases to serve as seed
training data for other deep learning architectures.

To build this baseline generator, we uti-
lize few dependency templates in the style of
SynQG (Dhole and Manning, 2020). We utilize
the dependency parser from Andor et al. (2016) to
get the Universal Dependencies (Nivre et al., 2016,
2017, 2020) of the user query. We then convert it to
a don’t-know-response by re-arranging nodes to a
matched template. We further change pronouns, in-
corporate named entity information, and add rules
to handle modals and auxiliaries. Finally, we also
add rules for flipping pronouns to convert an agent
targeted question to a user targeted response by
interchanging pronouns and their supporting verbs.
E.g. You to I and vice-versa.

We incorporate a bit of paraphrasing by random-
izing various prefixes like “I’m not sure whether”,
“I don’t know if”, etc. and randomly using named
entities. We describe the high-level algorithm be-
low and in Algorithm 1.

prefix = pickRandom(prefixPool)

response = DBR(Question)

suffix = pickRandom(suffixPool)

fallbackResponse = Concat(prefix,

response, suffix)

3.2 Sequence-to-Sequence Approach
Owing to the expected low coverage and scalability
of the rule-based approach, we resort to take advan-
tage of pre-trained neural architectures to attempt
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Dependency Rules Sample Question Natural Don’t Know Response
WhatBeRule() What is the Pandora box ? I am not really sure what the Pandora box is.
DidVerbRule() Did Daniel cook today’s meal ? I don’t know if Daniel cooked today’s meal.

QuestionCanIRule() Could you tell me the location of the tower ? hmm..I don’t know if I could tell you...
BeRule() Are you predictive about conversation ? I’m not sure if I am predictive about...

WhoBeRule() Who is the Duke of Scotland ? I can’t be sure who the Duke of Scotland is.
WhoBeVerbRule() Who is playing baseball and cricket both ? I am not actually sure who is playing...

WhereBeRule() Where did Bates translate this document ? I don’t know where Bates did translate...
HowBeRule() How are the people of the Italy ? I’m not sure how the people of that place are.
WhenBeRule() When is the deadline of ACL ? I can’t be sure when the deadline of ACL is.

WhereBeVerbRule() Where is Mr. Potter going ? I’m not sure where Mr. Potter is going.
WhenBeVerbRule() When will you submit your thesis ? I’m not really sure when I will submit my thesis.

Table 1: Few Dependency Rules with the class of questions they cater too and their corresponding responses. In
the 8th sentence, the named entity "Italy" is randomly replaced by "that place".

Algorithm 1 Dependency Based Response (DBR)

nodes← dependencyParse(Question)
for each template in templatePool do

if (template condition matched) then
Populate template using nodes
Handle modals & auxilliaries
Flip pronoun
Randomly substitute Named Entity

if no template condition matched then
return pickRandom(defaultResponse pool)

return filled template response

to create a sequence-to-sequence fallback respon-
der. To incorporate noise and avoid the model to
over-fit on the handcrafted transformations, we do
not train the model directly on (query, don’t-know-
response) pairs generated from the previous section.
From all possible questions of the Quora Ques-
tions Pairs dataset (QQP) 3, we first filter all the
questions which generate a reply from the depen-
dency based rules. Then we pair these dont-know-
responses with the paraphrases of the input ques-
tions rather than the input questions themselves. 4

Primarily attempting to avoid over-fitting on the
dependency patterns, this also helps generate dont-
know-responses which are paraphrastic in nature.

After incorporating paraphrases from QQP, we
are able to build a dataset of 100k pairs, which
we call the "I Dont Know Dataset" (IDKD). After
witnessing the success of text-to-text transformers,
we use the pre-trained T5 transformer (Raffel et al.,
2020a,b) as our sequence-to-sequence model. We

3Quora Question Pairs Dataset
4Those question pairs which have the label "1" or are

similar are used as paraphrases.

Metrics DBA Seq-To-Seq
%GC 81.6 87.2
ARS 3.97 3.66

Table 2: Human evaluation between the two ap-
proaches. %GC= % of Grammatically correct re-
sponses, ARS=Average Relevance Score.

divide IDKD into a train and validation split of
80:20. We use the Transformers code from Hug-
gingFace (Wolf et al., 2020) to fine-tune a T5-base
model over IDKD for 2 epochs. 5

4 Results

Most prior generated systems are evaluated on
a range of automatic metrics like BLEU and
ROGUE (Papineni et al., 2002) used in the ma-
chine translation literature. However, owing to the
drawbacks of these metrics, we perform human
evaluation of the generated responses using two
metrics - namely "relevance" and "grammatical-
ity" as defined in Dhole and Manning (2020). We
evaluate the performance of both the approaches
in a crowd-sourced setting by requesting English-
schooled individuals to rate. 6 Raters were asked to
evaluate grammaticality in a binary setting (gram-
matical/ungrammatical) and relevance on a Likert
scale (1 to 5).

Our human evaluations are shown in Table-2. T5
responses tend to be more grammatical than their
dependency counterparts by a large margin of 6%.
Relevance scores drop slightly from 3.97 to 3.66.

5Increasing the epochs to 3 and 4 tended to overfit and not
generate paraphrases.

6Our pool of English-schooled raters consisted of engi-
neering graduates having attained high school and engineering
education with English as a medium of instruction.
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Metrics Question Dependency Based
Approach Seq2Seq Approach

Coverage – 54.56% 100%
Average Sentence Length 9.41 11.83 11.78
Sentence Length Variance 11.74 11.60 10.66

Average #Novel Words – 0.91 2.57

Table 3: System evaluation between Dependency Based Approach and Sequence to Sequence Approach.

Question: Are you excited about natural language processing research ?
DBA: I’m not sure if I am excited about natural language processing research.
Seq2Seq: I’m not actually sure what the benefits of natural language processing are.

Question: What is the quickest way to increase Instagram followers?
DBA: I am not sure what the quickest way to increase Instagram followers is.
Seq2Seq: I cannot be sure how a user can increase Instagram followers.

Question: How can I join MIT?
DBA: I am not sure how you can join MIT.
Seq2Seq: I am not sure what the eligibility criteria for MIT are.

Question: How can I drive more traffic to my website?
DBA: I’m not really sure how you can drive more traffic.
Seq2Seq: I am not sure what the best way to get free traffic to your website is.

Question: Where can I find a collection of poetry by William Shakespeare?
DBA: I’m not really sure where you can find a collection of poetry by William Shakespeare.
Seq2Seq: I’m not actually sure where you can get a collection of his poems.

Question: What is the effect of demonetization of 500 and 1000 rupees notes?
DBA: I cannot be sure what the effect of demonetization of 500 and 1000 rupees notes is.
Seq2Seq: I’m not really sure what my views on PM Modi’s decision on discontinuing 500 & 1000 rs notes are.

Table 4: Natural don’t know responses generated by both the approaches. Highlights in blue depict words, phrases
or events not mentioned by the user.

This can be largely attributed to the model’s para-
phrastic ability of describing words and connected
events outside the knowledge of the user’s query.
Eg. in the second query in Table 4, if the string
"MIT" were something other than an institution,
the dependency based approach would seem safer
than the seq2seq approach.

In addition, T5 responses on an average generate
at least double the number of novel words than their
dependency counterparts as shown in Table 3. Sen-
tence length mostly remains unaffected across the
two models. Undoubtedly, the rule-based model
despite being highly relevant is only able to reply
to 54.5% of random QQP queries.

The T5 model helped to not only add paraphras-
tic variations but also scale to user queries outside
of the scope of the dependency templates. More
importantly, without losing the original ability of
saying no, the model was able to generate more

natural sounding dont-know-reponses by utilizing
it’s inherent world-knowledge acquired during pre-
training. Table 4 shows some interesting examples.
The highlighted phrases in blue show the benefits
of the model’s pre-training ability.

5 Conclusion and Future work

We describe two simple approaches which enhance
user interaction to cater to the necessities of real-
life dialogue systems which are generally a tapestry
of multiple solitary subsystems. In order to avoid
cascading errors from such systems, as well as
refrain from answering out-of-domain and toxic
queries it is but natural to have a fallback approach
to say no. We argue that such a fallback approach
could be contextualised to generate engaging re-
sponses by having multiple ways of saying no
rather than a one common string for all approach.
The appeal of our approach is the ease with which
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it can rightly fit within any larger dialogue design
framework.

Of course, this is not to deny that as we give
more paraphrasing power to the fallback system, it
would tend to retract from succinctly replying with
a no - as is evident from the drop in the relevance
scores. Nevertheless, we still believe that both our
fallback approaches could serve as effective base-
lines for future work.
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Abstract

Spoken Language Understanding (SLU) sys-
tems parse speech into semantic structures like
dialog acts and slots. This involves the use
of an Automatic Speech Recognizer (ASR)
to transcribe speech into multiple text alterna-
tives (hypotheses). Transcription errors, com-
mon in ASRs, impact downstream SLU per-
formance negatively. Approaches to mitigate
such errors involve using richer information
from the ASR, either in form of N-best hy-
potheses or word-lattices. We hypothesize that
transformer models learn better with a sim-
pler utterance representation using the concate-
nation of the N-best ASR alternatives, where
each alternative is separated by a special delim-
iter [SEP]. In our work, we test our hypothe-
sis by using concatenated N-best ASR alterna-
tives as the input to transformer encoder mod-
els, namely BERT and XLM-RoBERTa, and
achieve performance equivalent to the prior
state-of-the-art model on DSTC2 dataset. We
also show that our approach significantly out-
performs the prior state-of-the-art when sub-
jected to the low data regime. Additionally,
this methodology is accessible to users of
third-party ASR APIs which do not provide
word-lattice information.

1 Introduction

Spoken Language Understanding (SLU) systems
are an integral part of Spoken Dialog Systems.
They parse spoken utterances into corresponding
semantic structures e.g. dialog acts. For this, a
spoken utterance is usually first transcribed into
text via an Automated Speech Recognition (ASR)
module. Often these ASR transcriptions are noisy
and erroneous. This can heavily impact the perfor-
mance of downstream tasks performed by the SLU
systems.

∗ The first three authors have equal contribution.

To counter the effects of ASR errors, SLU sys-
tems can utilise additional feature inputs from ASR.
A common approach is to use N-best hypotheses
where multiple ranked ASR hypotheses are used,
instead of only 1 ASR hypothesis. A few ASR sys-
tems also provide additional information like word-
lattices and word confusion networks. Word-lattice
information represents alternative word-sequences
that are likely for a particular utterance, while word
confusion networks are an alternative topology for
representing a lattice where the lattice has been
transformed into a linear graph. Additionally, di-
alog context can help in resolving ambiguities in
parses and reducing impact of ASR noise.

N-best hypotheses: Li et al. (2019) work with
1-best ASR hypothesis and exploits unsupervised
ASR error adaption method to map ASR hypothe-
ses and transcripts to a similar feature space. On the
other hand, Khan et al. (2015) uses multiple ASR
hypotheses to predict multiple semantic frames per
ASR choice and determine the true spoken dialog
system’s output using additional context. Word-
lattices: Ladhak et al. (2016) propose using recur-
rent neural networks (RNNs) to process weighted
lattices as input to SLU. Švec et al. (2015) presents
a method for converting word-based ASR lattices
into word-semantic (W-SE) which reduces the spar-
sity of the training data. Huang and Chen (2019)
provides an approach for adapting lattices with pre-
trained transformers. Word confusion networks
(WCN): Jagfeld and Vu (2017) proposes a tech-
nique to exploit word confusion networks (WCNs)
as training or testing units for slot filling. Ma-
sumura et al. (2018) models WCN as sequence
of bag-of-weighted-arcs and introduce a mecha-
nism that converts the bag-of-weighted-arcs into
a continuous representation to build a neural net-
work based spoken utterance classification. Liu
et al. (2020) proposes a BERT based SLU model
to encode WCNs and the dialog context jointly to
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reduce ambiguity from ASR errors and improve
SLU performance with pre-trained models.

The motivation of this paper is to improve per-
formance on downstream SLU tasks by exploit-
ing transfer learning capabilities of the pre-trained
transformer models. Richer information repre-
sentations like word-lattices (Huang and Chen
(2019)) and word confusion networks (Liu et al.
(2020)) have been used with GPT and BERT re-
spectively. These representations are non-native to
Transformer models, that are pre-trained on plain
text sequences. We hypothesize that transformer
models will learn better with a simpler utterance
representation using concatenation of the N-best
ASR hypotheses, where each hypothesis is sepa-
rated by a special delimiter [SEP]. We test the effec-
tiveness of our approach on a dialog state tracking
dataset - DSTC2 (Henderson et al., 2014), which
is a standard benchmark for SLU.

Contributions: (i) Our proposed approach,
trained with a simple input representation, exceeds
the competitive baselines in terms of accuracy and
shows equivalent performance on the F1-score to
the prior state-of-the-art model. (ii) We signifi-
cantly outperform the prior state-of-the-art model
in the low data regime. We attribute this to the ef-
fective transfer learning from the pre-trained Trans-
former model. (iii) This approach is accessible to
users of third party ASR APIs unlike the methods
that use word-lattices and word confusion networks
which need deeper access to the ASR system.

2 N-Best ASR Transformer

N-Best ASR Transformer1 works with a simple in-
put representation achieved by concatenating the
N-Best ASR hypotheses together with the dialog
context (system utterance). Pre-trained transformer
models, specifically BERT and XLMRoBERTa, are
used to encode the input representation. For out-
put layer, we use a semantic tuple classifier (STC)
to predict act-slot-value triplets. The following
sub-sections describe our approach in detail.

2.1 Input Representation
For representing the input we concatenate the last
system utterance S (dialog context), and the user
utterance U . U is represented as concatenation of
the N-best2 ASR hypotheses, separated by a special

1The code is available at https://github.com/Vernacular-
ai/N-Best-ASR-Transformer

2We use ASR transcriptions (N≤ 10) provided by DSTC2
dataset to perform our experiments. Our input structure can

delimiter, [SEP]. The final representation is shown
in equation 1 below:

xi = [CLS]⊕TOK(Si)⊕
N⊕

j=1

(TOK(U j
i )⊕ [SEP])

(1)
Here, U j

i refers to the jth ASR hypothesis for the
ith sample, ⊕ denotes the concatenation operator,
TOK(.) is the tokenizer, [CLS] and [SEP] are the
special tokens.

I know no[SEP] [SEP] no [SEP][CLS] Do you know your booking ID ? [SEP] now [SEP]

Figure 1: Input representation: The green boxes repre-
sents the last system utterances followed by ASR hy-
potheses of user utterances concatenated together with
a [SEP] token.

As represented in figure 2, we also pass segment
IDs along with the input to differentiate between
segment a (last system utterance) and segment b
(user utterance).

2.2 Transformer Encoder

The above mentioned input representation can be
easily used with any pre-trained transformer model.
For our experiments, we select BERT (Devlin et al.,
2019) and XLM-RoBERTa3 (Conneau et al., 2020)
for their recent popularity in NLP research commu-
nity.

2.3 Output Representation

The final hidden state of the transformer encoder
corresponding to the special classification token
[CLS] is used as an aggregated input representa-
tion for the downstream classification task by a
semantic tuple classifier (STC) (Mairesse et al.,
2009). STC uses two classifiers to predict the act-
slot-value for a user utterance. A binary classi-
fier is used to predict the presence of each act-slot
pair, and a multi-class classifier is used to predict
the value corresponding to the predicted act-slot
pairs. We omit the latter classifier for the act-slot
pairs with no value (like goodbye, thankyou, re-
quest food etc.).

support variable N during training and inference.
3The model name XLM-RoBERTa and XLM-R will be

used interchangeably throughout the paper.

94



Transformer Encoder
(Multi-Seq ASR BERT/ Multi-Seq ASR XLM-R )

CLS Vector inform-food thai

act-slot classifier value classifier

STC

[CLS]

0

0

Could

0

1

you

0

2

please

0

3

repeat

0

4

that?

0

5

[SEP]
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[SEP]
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[SEP]
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Figure 2: N-Best ASR Transformer: The input representation is encoded by a transformer model which forms an
input for a Semantic Tuple Classifier (STC). STC uses binary classifiers to predict the presence of act-slot pairs,
followed by a multi-class classifier that predicts the value for each act-slot pair.

3 Experimental Setup

3.1 Dataset
We perform our experiments on data released by the
Dialog State Tracking Challenge (DSTC2) (Hen-
derson et al., 2014). It includes pairs of utterances
and the corresponding set of act-slot-value triplets
for training (11,677 samples), development (3,934
samples), and testing (9,890 samples). The task in
the dataset is to parse the user utterances like “I
want a moderately priced restaurant.” into a cor-
responding semantic representation in the form of
“inform(pricerange=moderate)” triplet. For each
utterance, both the manual transcription and a max-
imum of 10-best ASR hypotheses are provided.
The utterances are annotated with multiple act-
slot-value triplets. For transcribing the utterances
DSTC2 uses two ASRs - one with an artificially
degraded statistical acoustic model, and one which
is fully optimized for the domain. Training and
development sets include transcriptions from both
the ASRs. To utilise this dataset we first transform
it into the input format as discussed in section 2.1.

3.2 Baselines
We compare our approach with the following base-
lines:

• SLU2 (Williams, 2014): Two binary classi-
fiers (decision trees) are used with word n-
grams from the ASR N-best list and the word
confusion network. One predicts the presence
of that slot-value pair in the utterance and the
other estimate for each user dialog act.

• CNN+LSTMw4 (Rojas-Barahona et al.,
2016): A convolution neural network (CNN)
is trained with the N-best ASR hypotheses to
output the utterance representation. A long-
short term memory network (LSTM) with a
context window size of 4 outputs a context
representation. The models are jointly trained
to predict for the act-slot pair. Another model
with the same architecture is trained to predict
for the value corresponding to the predicted
act-slot pair.

• CNN (Zhao and Feng, 2018): Proposes CNN
based models for dialog act and slot-type pre-
diction using 1-best ASR hypothesis.

• Hierarchical Decoding (Zhao et al., 2019):
A neural-network based binary classifier is
used to predict the act and slot type. A hy-
brid of sequence-to-sequence model with at-
tention and pointer network is used to predict
the value corresponding to the detected act-
slot pair.1-Best ASR hypothesis was used for
both training and evaluation tasks.

• WCN-BERT + STC (Liu et al., 2020): Input
utterance is encoded using the Word Confu-
sion Network (WCN) using BERT by having
the same position ids for all words in the bin
of a lattice and modifying self-attention to
work with word probabilities. A semantic tu-
ple classifier uses a binary classifier to predict
the act-slot value, followed by a multi-class
classifier that predicts the value corresponding
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to the act-slot tuple.

3.3 Experimental Settings
We perform hyper-parameter tuning on the vali-
dation set to get optimal values for dropout rate
δ, learning rate lr, and the batch size b. Based
on the best F1-score, the final selected parame-
ters were δ = 0.3, lr = 3e-5 and b = 16. We set
the warm-up rate wr = 0.1, and L2 weight decay
L2 = 0.01. We make use of Huggingface’s Trans-
formers library (Wolf et al., 2020) to fine-tune the
bert-base-uncased and xlm-roberta-base, which is
optimized over Huggingface’s BertAdam optimizer.
We trained the model on Nvidia T4 single GPU on
AWS EC2 g4dn.2xlarge instance for 50 epochs. We
apply early stopping and save the best-performing
model based on its performance on the validation
set.

4 Results

In this section, we compare the performance of our
approach with the baselines on the DSTC2 dataset.
To compare the transfer learning effectiveness of
pre-trained transformers with N-Best ASR BERT
(our approach) and the previous state-of-the-art
model WCN-BERT STC, we perform comparative
analysis in the low data regime. Additionally, we
perform an ablation study on N-Best ASR BERT
to see the impact of modeling dialog context (last
system utterance) with the user utterances.

4.1 Performance Evaluation

Model F1-score Accuracy
SLU2 82.1 -
CNN+LSTM w4 83.6 -
CNN 85.3 -
Hierarchical Decoding 86.9 -
WCN-BERT + STC 87.9 81.1
N-Best ASR XLM-R (Ours) 87.4 81.9
N-Best ASR BERT (Ours) 87.8 81.8

Table 1: F1-scores (%) and utterance-level accuracy
(%) of baseline models and our proposed model on the
test set.

Since the task is a multi-label classification of act-
slot-value triplets, we report utterance level accu-
racy and F1-score. A prediction is correct if the set
of labels predicted for a sample exactly matches the
corresponding set of labels in the ground truth. As
shown in Table 1, we compare our models, N-Best
ASR BERT and N-Best ASR XLM-R, with base-
lines mentioned in section . Both of our proposed

models, trained with concatenated N-Best ASR
hypotheses, outperform the competitive baselines
in terms of accuracy and show comparable perfor-
mance on F1-score with WCN-BERT STC.

4.2 Performance in Low Data Regime

Train Data (%age) WCN-BERT STC N-Best ASR BERT
5 78.5 83.9
10 80.3 85.5
20 84.4 86.7
50 85.9 87.7

Table 2: F1-scores (%) for our proposed model N-Best
ASR BERT (ours) and WCN-BERT STC (previous state-
of-the-art.

To study the performance of model in the low data
regime, we randomly select p percentage of sam-
ples from the training set in a stratified fashion,
where p ∈ {5, 10, 20, 50}. We pick our model
N-Best ASR BERT and WCN-BERT STC for this
study because both use BERT as the encoder model.
For both models, we perform experiments using
the same training, development, and testing splits.
From Table 2, we find that N-Best ASR BERT out-
performs WCN-BERT STC model significantly for
low data regime, especially when trained on 5%
and 10% of the training data. It shows that our ap-
proach effectively transfer learns from pre-trained
transformer’s knowledge. We believe this is due
to the structural similarity between our input rep-
resentation and the input BERT was pre-trained
on.

4.3 Significance of Dialog Context

Model Variation F1-score Accuracy

N-Best ASR BERT
without system utterance 86.5 80.2
with system utterance 87.8 81.8

Table 3: F1-scores (%) and utterance-level accuracy
(%) of our model N-Best ASR BERT on the test set
when trained with and without system utterances.

Through this ablation study, we try to understand
the impact of dialog context on model’s perfor-
mance. For this, we train N-Best ASR BERT in the
following two settings:

• When input representation consists of only the
user utterance.

• When input representation consists of both the
last system utterance (dialog context) and the
user utterance as shown in figure 3.
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As presented in Table 3, we observe that mod-
eling the last system utterance helps in achieving
better F1 and utterance-level accuracy by the dif-
ference of 1.3% and 1.6% respectively.

Input Sequence Prediction

Hello no[SEP] [SEP] Hello Hello[SEP] [SEP][CLS] Hello welcome to ACL conference [SEP] hello

Hello no[SEP] [SEP] Hello [SEP][CLS] Are you interested in confirming the booking ? [SEP] negate

Figure 3: Significance of Dialog Context: The green
box depicts the dialog context that helps disambiguate
the very similar ASR hypotheses shown in purple
boxes.

It proves that dialog context helps in improving
the performance of downstream SLU tasks. Fig-
ure 3 represents one such example where having
dialog context in form of the last system utterance
helps disambiguate between the two similar user
utterances.

5 Conclusion

In this work, building on a simple input repre-
sentation, we propose N-Best ASR Transformer,
which outperforms all the competitive baselines
on utterance-level accuracy for the DSTC2 dataset.
However, the highlight of our work is in achieving
significantly higher performance in an extremely
low data regime. This approach is accessible to
users of third-party ASR APIs, unlike the methods
that use word-lattices and word confusion networks.
As future extensions to this work, we plan to :

• Enable our proposed model to generalize to
out-of-vocabulary (OOV) slot values.

• Evaluate our approach in a multi-lingual set-
ting.

• Evaluate on different values N in N-best ASR.

• Compare the performance of our approach
on ASRs with different Word Error Rates
(WERs).
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Abstract

Is bias amplified when neural machine trans-
lation (NMT) models are optimized for speed
and evaluated on generic test sets using
BLEU? We investigate architectures and tech-
niques commonly used to speed up decoding
in Transformer-based models, such as greedy
search, quantization, average attention net-
works (AANs) and shallow decoder models
and show their effect on gendered noun trans-
lation. We construct a new gender bias test set,
SimpleGEN, based on gendered noun phrases
in which there is a single, unambiguous, cor-
rect answer. While we find minimal over-
all BLEU degradation as we apply speed op-
timizations, we observe that gendered noun
translation performance degrades at a much
faster rate.

1 Introduction
Optimizing machine translation models for pro-

duction, where it has the most impact on society
at large, will invariably include speed-accuracy
trade-offs, where accuracy is typically approxi-
mated by BLEU scores (Papineni et al., 2002) on
generic test sets. However, BLEU is notably not
sensitive to specific biases such as gender. Even
when speed optimizations are evaluated in shared
tasks, they typically use BLEU (Papineni et al.,
2002; Heafield et al., 2020) to approximate quality,
thereby missing gender bias. Furthermore, these
biases probably evade detection in shared tasks that
focus on quality without a speed incentive (Guillou
et al., 2016) because participants would not typi-
cally optimize their systems for speed. Hence, it
is not clear if Neural Machine Translation (NMT)
speed-accuracy optimizations amplify biases. This
work attempts to shed light on the algorithmic
choices made during speed-accuracy optimizations

∗This work conducted while author was working at Face-
book AI.

source That physician is a funny lady!
reference ¡Esa médica/doctora es una mujer graciosa!

system A ¡Ese
:::::
médico es una dama graciosa!

system B ¡Ese
:::::
médico es una dama divertida!

system C ¡Ese
:::::
médico es una mujer divertida!

system D ¡Ese
:::::
médico es una dama divertida!

Table 1: Translation of a simple source sentence by 4
different commercial English to Spanish MT systems.
All of these systems fail to consider the token “lady”
when translating the occupation-noun, rendering it in
with the masculine gender “doctor/médico”.

and their impact on gender biases in an NMT sys-
tem, complementing existing work on data bias.

We explore optimizations choices such as
(i) search (changing the beam size in beam search);
(ii) architecture configurations (changing the num-
ber of encoder and decoder layers); (iii) model
based speedups (using Averaged attention net-
works (Zhang et al., 2018)); and (iv) 8-bit quanti-
zation of a trained model..

Prominent prior work on gender bias evaluation
forces the system to “guess” the gender (Stanovsky
et al., 2019a) of certain occupation nouns in the
source sentence. Consider, the English source sen-
tence “That physician is funny.”, containing no in-
formation regarding the physician’s gender. When
translating this sentence into Spanish (where the oc-
cupation nouns are explicitly specified for gender),
an NMT model is forced to guess the gender of the
physician and choose between masculine forms,
doctor/médico or feminine forms doctora/médica.
While investigating bias in these settings is valu-
able, in this paper, we hope to highlight that the
problem is much worse — despite an explicit gen-
der reference in the sentence, NMT systems still
generate the wrong gender in translation (see Ta-
ble 1), resulting in egregious errors where not only
is the gender specification incorrect but the gener-
ated sentence also fails in morphological gender
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Templates That f/m-occ-sg is a funny f/m-n-sg!
My f/m-rel is a f/m-occ-sg.

Keywords

f-occ-sg = {nurse, nanny...}
m-occ-sg = {physician, mechanic...}
f-rel = {sister, mother..}
m-rel = {brother, father...}
f-n-sg = {woman, gal, lady...}
m-n-sg = {man, guy...}

pro. MoMc That engineer is a funny guy!
My father is a mechanic.

Generated FoFc That nanny is a funny lady!
My mother is a nurse.

anti. MoFc That mechanic is my funny woman!
My sister is a physician.

FoMc That nurse is funny man!
My brother is a nanny.

Table 2: Example Templates, Keywords and a sample
of the resulting generated source sentences.

agreement. To focus on these egregious errors, we
construct a new data set, SimpleGEN. In Simple-
GEN, all source sentences include an occupation
noun (such as “mechanic”, “nurse” etc.) and an
unambiguous “signal” specifying the gender of the
person being referred to by the occupation noun.
For example, we modify the previous example to
“That physician is a funny lady”. We call our dataset
“Simple” because it contains all the information
needed by a model to produce correctly gendered
occupation nouns. Furthermore, our sentences are
short (up to 12 tokens) and do not contain com-
plicated syntactic structures. Ideally, SimpleGEN
should obviate the need for an NMT model to in-
correctly guess the gender of occupation nouns, but
using this dataset we show that gender translation
accuracy, particularly in female context sentences
(see Section 2), is negatively impacted by various
speed optimizations at a greater rate than a drop in
BLEU scores. A small drop in BLEU can hide a
large increase in biased behavior in an NMT sys-
tem. Further illustrating how insensitive BLEU is
as a metric to such biases.

2 SimpleGEN: A gender bias test set

Similar to Stanovsky et al. (2019b), our goal is
to provide English input to an NMT model and
evaluate if it correctly genders occupation-nouns.
We focus on English to Spanish (En-Es) and En-
glish to German (En-De) translation directions as
occupation-nouns are explicitly specified for gen-
der in these target languages while English is un-
derspecified for such a morphological phenomenon
which forces the model to attend to contextual clues.
Furthermore, these language directions are consid-
ered “high-resource” and often cited as exemplars
for advancement in NMT.

A key differentiating characterization of our test
set is that there is no ambiguity about the gender
of the occupation-noun. We achieve this by us-
ing carefully constructed templates such that there
is enough contextual evidence to unambiguously
specify the gender of the occupation-noun. Our
templates specify a “scaffolding” for sentences
with keywords acting as placeholders for values
(see Table 2). For the occupation keywords such
as f-occ-sg and m-occ-sg, we select the oc-
cupations for our test set using the U.S Department
of Labor statistics of high-demand occupations.1 A
full list of templates, keywords and values is in ta-
ble A6. Using our templates, we generate English
source sentences which fall into two categories:
(i) pro-stereotypical (pro) sentences contain either
stereotypical male occupations situated in male
contexts (MOMC) or female occupations in female
contexts (FOFC), and (ii) anti-stereotypical (anti)
sentences in which the context gender and occupa-
tion gender are mismatched, i.e. male occupations
in female context (MOFC) and female occupations
in male contexts (FOMC). Note that we use the
terms “male context” or “female context” to cate-
gorize sentences in which there is an unambiguous
signal that the occupation noun refers to a male or
female person, respectively. We generated 1332
pro-stereotypical and anti-stereotypical sentences,
814 in the MOMC and MOFC subgroups and 518
in the FOMC and FOFC subgroups (we collect
more male stereotypical occupations compared to
female, which causes this disparity).

To evaluate the translations of NMT models on
SimpleGEN, we also create an occupation-noun
bilingual dictionary, that considers the number and
gender as well as synonyms for the occupations.
For example for the En-Es direction, the English
occupation term ‘physician”, has corresponding
entries for its feminine forms in Spanish as “doc-
tora” and “médica” and for its masculine forms
“doctor” and “médico” (See table A8 for our full
dictionary). By design, non-occupation keywords
such as f-rel and f-n-sg specify the expected
gender of the occupation-noun on the target side,
enabling dictionary based correctness verification.

3 Speeding up NMT
There are several “knobs” that can be tweaked

to speed up inference for NMT models. Setting the
beam-size (bs) to 1 during beam search is likely the

1https://www.dol.gov/agencies/wb/data/high-demand-
occupations
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Source That physician is a funny lady! Label

Translations

¡Esa doctora es una mujer graciosa!
¡Esa médica es una mujer feliz!
¡Ese médico es una mujer graciosa!
¡Ese medicación es una mujer graciosa!

Correct
Correct
Incorrect
NA

Table 3: Our evaluation protocol with an example
source sentence and four example translations.

simplest approach to obtain quick speedups. Low-
bit quantization (INT8) is another recent approach
which improves decoding speed and reduces the
memory footprint of models (Zafrir et al., 2019;
Quinn and Ballesteros, 2018).

For model and architecture based speedups, we
focus our attention on Transformer based NMT
models which are now the work-horses in NLP
and MT (Vaswani et al., 2017). While transform-
ers are faster to train compared to their predeces-
sors, Recurrent Neural Network (RNN) encoder-
decoders (Bahdanau et al., 2014; Luong et al.,
2015), transformers suffer from slower decoding
speed. Subsequently, there has been interest in
improving the decoding speed of transformers.

Shallow Decoders (SD): Shallow decoder mod-
els simply reduce the decoder depth and increase
the encoder depth in response to the observation
that decoding latency is proportional to the number
of decoder layers (Kim et al., 2019; Miceli Barone
et al., 2017; Wang et al., 2019; Kasai et al., 2020).
Alternatively, one can employ SD models without
increasing the encoder layers resulting in smaller
(and faster) models.

Average Attention Networks (AAN): Average
Attention Networks reduce the quadratic complex-
ity of the decoder attention mechanism to linear
time by replacing the decoder-side self-attention
with an average-attention operation using a fixed
weight for all time-steps (Zhang et al., 2018). This
results in a ≈ 3-4x decoding speedup over the stan-
dard transformer.

4 Experimental Setup
Our objective is not to compare the various op-

timization methods against each other, but rather
surface the impact of these algorithmic choices
on gender biases. We treat all the optimization
choices described in section 3 as data points avail-
able to conduct our analysis. To this end, we train
models with all combinations of optimizations de-
scribed in section 3 using the Fairseq toolkit (Ott
et al., 2019). Our baseline is a standard large
transformer with a (6, 6) encoder-decoder layer

configuration. For our SD models we use the
following encoder-decoder layer configurations
{(8, 4), (10, 2), (11, 1)}. We also train smaller
shallow decoder (SSD) models without increas-
ing the encoder depth {(6, 4), (6, 2), (6, 1)}. For
each of these 7 configurations, we train AAN ver-
sions. Next, we save quantized and non-quantized
versions for the 14 models, and decode with beam
sizes of 1 and 5. We repeat our analysis for English
to Spanish and English to German directions, us-
ing WMT13 En-Es and WMT14 En-De data sets,
respectively. For the En-Es we limited the train-
ing data to 4M sentence pairs (picked at random
without replacement) to ensure that the training for
the two language directions have comparable data
sizes. We apply Byte-Pair Encoding (BPE) with
32k merge operations to the data (Sennrich et al.,
2016).

We measure decoding times and BLEU scores
for the model’s translations using the WMT test
sets. Next, we evaluate each model’s performance
on SimpleGEN, specifically calculating the per-
cent of correctly gendered nouns, incorrectly gen-
dered nouns as well as inconclusive results. Ta-
ble 3 shows an example of our evaluation protocol
for an example source sentences and four possible
translations. We deem the first two as correct even
though the second translation incorrectly translates
“funny” as “feliz” since we focus on the translation
of “physician” only. The third translation is deemed
incorrect because the masculine form “médico” is
used and the last translation is deemed inconclu-
sive since it is in the plural form. We average these
metrics over 3 trials, each initialized with different
random seeds. We obtained 56 data points for each
language direction.

5 Analysis
Table 4a shows the performance of 6 selected

models including a baseline transformer model
with 6 encoder and decoder layers. The first two
columns (time and BLEU) were computed using
the WMT test sets. The remaining columns re-
port metrics using SimpleGEN. The algorithmic
choices resulting in the highest speed-up, result in
a 1.5% and 4% relative drop in BLEU for En-Es
and En-De, respectively (compared to the baseline
model). The pro-stereotypical (pro) column shows
the percentage correct gendered translation for sen-
tences where the occupation gender matches the
context gender. As expected the accuracies are rel-
atively high (80.9 to 77.7) for all the models. The
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direction model time(s) BLEU pro anti ∆ FOFC MOFC ∆FC MOMC FOMC ∆MC

baseline (bl) 3,662.8 33.2 80.9 44.2 36.7 69.4 41.7 27.7 88.2 48.1 40.0
bl w/ bs=1 2,653.1 32.7 79.5 44.9 34.6 68.4 42.8 25.6 86.6 48.2 38.4
bl w/ AAN 3,009.4 32.9 78.6 37.8 40.8 67.4 33.6 33.8 85.6 44.3 41.3

En-Es bl w/ SD(10, 2) 2,241.7 32.9 77.9 38.1 39.8 67.3 35.9 31.4 84.6 41.7 42.9
bl w/ SSD(6, 2) 1,993.5 32.7 77.7 38.7 39.0 66.0 33.8 32.2 85.1 46.3 38.8
bl w/ quantization 2,116.1 32.7 79.8 41.4 38.4 67.0 37.2 29.8 88.0 48.1 39.8

max rel. % drop 45.6 1.5 3.9 15.1 4.9 21.4 4.0 13.5

baseline (bl) 3,653.0 27.2 67.7 39.7 28.0 57.5 31.6 25.9 74.2 52.3 21.8
bl w/ bs=1 2,504.5 26.7 65.0 39.2 25.8 51.5 29.7 21.8 73.5 54.0 19.5
bl w/ AAN 2,600.0 27.1 68.5 33.0 35.5 58.0 23.9 34.1 75.3 47.4 27.8

En-De bl w/ SD(10, 2) 1,960.8 27.1 67.5 32.6 35.0 57.7 26.5 31.2 73.8 46.7 27.1
bl w/ SSD(6, 2) 2,091.0 27.0 66.9 35.9 31.0 56.6 30.3 26.2 73.5 44.6 28.9
bl w/ quantization 2,205.1 26.1 63.2 33.2 30.0 50.5 24.6 25.9 71.3 46.8 24.6

max rel. % drop 46.3 4.0 6.5 17.9 13.0 22.1 5.3 9.5

(a) Each speed-up optimization individually.

direction model time(s) BLEU pro anti ∆ FOFC MOFC ∆FC MOMC FOMC ∆MC

baseline 3,662.8 33.2 80.9 44.2 36.7 69.4 41.7 27.7 88.2 48.1 40.0
+bs=1 2,653.1 32.7 79.5 44.9 34.6 68.4 42.8 25.6 86.6 48.2 38.4
+AAN 1,971.8 32.5 77.4 38.5 38.9 67.4 34.9 32.5 83.7 44.0 39.7

En-Es +SD(10, 2) 1,164.2 32.1 75.3 36.2 39.1 57.1 31.7 25.3 86.8 43.2 43.6
+SSD(6, 2) 1,165.7 31.9 78.6 40.4 38.2 66.9 36.3 30.5 86.0 46.8 39.2
+quantization 679.6 31.1 73.1 34.9 38.2 58.7 29.5 29.2 82.3 43.4 38.8

max rel. % drop 81.4 6.3 9.6 22.3 17.7 31.0 6.7 10.4

baseline 3,653.0 27.2 67.7 39.7 28.0 57.5 31.6 25.9 74.2 52.3 21.8
+bs=1 2,504.5 26.7 65.0 39.2 25.8 51.5 29.7 21.8 73.5 54.0 19.5
+AAN 2,176.6 26.3 66.7 32.2 34.5 54.6 22.1 32.5 74.4 48.1 26.3

En-De +SD(10, 2) 1,332.3 25.8 64.2 29.1 35.1 50.3 22.2 28.1 73.0 44.7 28.3
+SSD(6, 2) 1,153.2 25.7 64.7 28.9 35.9 53.9 19.9 34.1 71.6 43.0 28.6
+quantization 732.6 24.7 61.0 23.3 37.6 46.3 14.8 31.5 70.3 36.7 33.6

max rel. % drop 79.9 9.2 9.9 41.3 19.5 53.2 5.5 29.8

(b) “Stacked” speed-up optimizations.

Table 4: Results showing the effect of speed-up optimizations applied individually (in Table 4a) and stacked in
Table 4b). We selected 6 models in both sections to highlight their effect on decoding time, BLEU and the %
correctness on gender-bias metrics. The last row for each section (and each direction), shows the relative % drops
in all the metrics between the fastest optimization method and the baseline. For example, for En-Es the relative %
drop of decoding time for Table 4a is calculated as 100 ∗ (3662.8− 1993.5)/3662.8.

last row in each section shows the maximum rela-
tive drop in each metric. We find that for the pro-
stereotypical column the maximum relative drop is
1.5 and 6.5 for Spanish and German, respectively,
which is similar to the relative change in BLEU
scores. However, we find that the models are able
to perform better on MOMC compared to FOFC
suggesting biases even within the pro-stereotypical
setting. In the anti-stereotypical (anti) column, we
observe below-chance accuracies of only 44.2%
and 39.7% for the two language directions, even
from our best model. Columns FOFC and MOFC,
show the difference in performance for sentences
in the female context (FC) category in the pres-
ence of a stereotypical female occupation versus
a stereotypical male occupation. We see a large
imbalance in performance in these two columns
summarized in ∆FC. Similarly, ∆MC summarizes
the drop in performance when the model is con-
fronted with stereotypical female occupations in
a male context when compared to a male occu-
pation in a male context. This suggests that the
transformer’s handling of grammatical agreement

especially in cases where an occupation and con-
textual gender mismatch could be improved. The
speedups disproportionately affect female context
(FC) sentences across all categories.

In terms of model choices, we find that AANs
deliver moderate speed-ups and minimal BLEU re-
duction compared to the baseline. However, AANs
suffer the most degradation in terms of gender-bias.
∆, ∆FC and ∆MC are the highest for the ANN
model in both language directions. On the other
hand, greedy decoding with the baseline model has
the smallest degradation in terms of gender-bias.

While Table 4a reveals the effect of select indi-
vidual model choices, NMT practitioners, typically
“stack” the optimization techniques together for
large-scale deployment of NMT systems. Table 4b
shows that stacking can provide ≈ 80− 81% rela-
tive drop in decoding time. However, we again see
a disturbing trend where large speedups and small
BLEU drops are accompanied with large drops in
gender test performance. Again, FC sentences dis-
proportionately suffer large drops in accuracy, par-
ticularly in MOFC in the En-De direction, where
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Figure 1: Plots showing relative percentage drop of BLEU and gender-test metrics on the y-axis and relative
percentage drop in decoding time in the x-axis FOr the two language directions analyzed. A breakdown of pro and
anti into their constituent groups MOMC, FOFC, MOFc and FOMC is shown in Appendix A.3.

we see a 53.2% relative drop between the baseline
and the fastest optimization stack.

While tables 4a and 4b show select models, we
illustrate and further confirm our findings using all
the data points (56 models trained) using scatter
plots shown in fig. 1. We see that relative % drop
in BLEU aligns closely with the relative % drop
in gendered translation in the pro-stereotypical set-
ting. In the case of German, the two trendlines
are virtually overlapping. However, we see a steep
drop for the anti-stereotypical settings, suggesting
that BLEU scores computed using a typical test
set only captures the stereotypical cases and even
small reduction in BLEU could result in more in-
stances of biased translations, especially in female
context sentences.

6 Related Work

Previous research investigating gender bias in
NMT has focused on data bias, ranging from as-
sessment to mitigation. For example, Stanovsky
et al. (2019b) adapted an evaluation data set for
co-reference resolution to measure gender biases in
machine translation. The sentences in this test set
were created with ambiguous syntax, thus forcing
the NMT model to “guess” the gender of the occu-
pations. In contrast, there is always an unambigu-
ous signal specifying the occupation-noun’s gender
in SimpleGEN. Similar work in speech-translation
also studies contextual hints, but their work uses
real-world sentences with complicated syntactic
structures and sometimes the contextual hints are
across sentence boundaries resulting in gender-
ambiguous sentences (Bentivogli et al., 2020).

Zmigrod et al. (2019) create a counterfactual
data-augmentation scheme by converting between
masculine and feminine inflected sentences. Thus,

with the additional modified sentences, the aug-
mented data set equally represents both genders.
Vanmassenhove et al. (2018), Stafanovičs et al.
(2020) and Saunders et al. (2020) propose a data-
annotation scheme in which the NMT model
is trained to obey gender-specific tags provided
with the source sentence. While Escudé Font
and Costa-jussà (2019) employ pre-trained word-
embeddings which have undergone a “debiasing”
process (Bolukbasi et al., 2016; Zhao et al., 2018).
Saunders and Byrne (2020) and Costa-jussà and
de Jorge (2020) propose domain-adaptation on
a carefully curated data set that “corrects” the
model’s misgendering problems. Costa-jussà et al.
(2020) consider variations involving the amount
of parameter-sharing between different language
directions in multilingual NMT models.

7 Conclusion

With the current mainstreaming of machine
translation, and its impact on people’s everyday
lives, bias mitigation in NMT should extend be-
yond data modifications and counter bias ampli-
fication due to algorithmic choices as well. We
focus on algorithmic choices typically considered
in speed-accuracy trade offs during productioniza-
tion of NMT models. Our work illustrates that such
trade offs, given current algorithmic choice prac-
tices, result in significant impact on gender trans-
lation, namely amplifying biases. In the process
of this investigation, we construct a new gender
translation evaluation set, SimpleGEN, and use it
to show that modern NMT architectures struggle
to overcome gender biases even when translating
source sentences that are syntactically unambigu-
ous and clearly marked for gender.
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A Appendices
A.1 Impact Statement
This work identifies a weakness of NMT models
where they appear to ignore contextual evidence
regarding the gender of an occupation noun and
apply an incorrect gender marker. It is difficult to
measure the adverse effects of biases in NMT, but
errors like the ones we highlight reduce trust in the
NMT system.

Intended use: We hope that this type of error
is further studied by NMT researchers leading to
a solution. Furthermore, we expect the speed-
optimization aspect of our work provides NMT en-
gineers with an extra point of consideration, as we
show gender-bias (errors in our dataset) increases
rapidly compared to metrics like BLEU on stan-
dard datasets. In this work, we limit ourselves to
viewing gender in the linguistic sense. SimpleGEN
is not meant to be a replacement for traditional MT
evaluation.

Risks: We recognize that socially, gendered lan-
guage evolves (e.g. in English, “actress” is rarely
used anymore). To the best of our knowledge, we
selected occupations that are typically gendered (in
Spanish and German) at present. Furthermore, we
only regard the gender binary as a linguistic con-
struct. It would be incorrect to use this work in the
context of gender identity or gender expression etc.

Dataset: The dataset is “synthetic” in that it has
been constructed using templates. We did not use
crowd-sourcing or private data.

A.2 Full Template and Terms

Keywords Values

f-n female, women
m-n male, men
f-n-pl women, ladies, females, gals
m-n-pl men, guys, males, fellows
f-n-sg gal, woman, lady
m-n-sg man, guy, fellow
f-obj-prn her
m-obj-prn him
f-pos-prn her
m-pos-prn his
f-obj-pos-prn her
m-obj-pos-prn his
f-sbj-prn she
m-sbj-prn he
f-rel wife, mother, sister, girlfriend
m-rel husband, father, brother, boyfriend

Table A5: Keywords and the values they can take.

Occupation Keywords Values

f-occ-sg clerk, designer, hairdresser, house-
keeper, nanny, nurse, secretary

m-occ-sg director, engineer, truck driver, farmer,
laborer, mechanic, physician, president,
plumber, carpenter, groundskeeper

f-occ-pl clerks, designers, hairdressers, house-
keepers, nannies, nurses, secretaries

m-occ-pl directors, engineers, truck drivers,
farmers, laborers, mechanics, physi-
cians, presidents, plumbers, carpenters,
groundskeepers

f-occ-sg-C clerk, designer, hairdresser, house-
keeper, nanny, nurse, secretary

m-occ-sg-C director, truck driver, farmer, la-
borer, mechanic, physician, president,
plumber, carpenter, groundskeeper

f-occ-pl-C clerks, designers, hairdressers, house-
keepers, nannies, nurses, secretaries

m-occ-pl-C directors, truck drivers, farmers, labor-
ers, mechanics, physicians, presidents,
plumbers, carpenters, groundskeepers

f-occ-sg-V
m-occ-sg-V engineer,
f-occ-pl-V
m-occ-pl-V engineers,

Table A6: Occupation keywords and the values they
can take. The prefix “m-” and “f-” indicate that ac-
cording to the U.S Department of Labor these occu-
pations have a higher percentage of male and female
works, respectively.

Table A7 shows the template we use to generate
our source sentences in SimpleGEN. We can gen-
erate sentences in one of the four sub-categories
(MOMC, MOFC, FOFC, FOMC) by setting occu-
pation keywords with the prefix m- or f- from our
terminology set Table A6). For example, to gener-
ate MOFC sentences, we set occupation-keywords
with prefix m- and non-occupation keywords with
prefix f-.

A.3 Breakdown of scatter plots
Figures A2a and A2b further divides pro-
stereotypical into male-occupations in male con-
texts (MoMc) and female-occupations in female
context (FoFc), and anti-stereotypical into male-
occupations in female contexts (MoFc) and female-
occupations in male contexts (FoMc).

A.4 Evaluation Dictionary
Table A8 shows the dictionary we use for evalua-
tion.
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My {f/m}-rel is a {f/m}-occ-sg-C .
My {f/m}-rel is an {f/m}-occ-sg-V .
His {f/m}-rel is a {f/m}-occ-sg-C .
His {f/m}-rel is an {f/m}-occ-sg-V .
Alex’s {f/m}-rel became a {f/m}-occ-sg-C .
Alex’s {f/m}-rel became an {f/m}-occ-sg-V .
My {f/m}-rel enjoys {f/m}-pos-prn work a {f/m}-occ-sg-C .
My {f/m}-rel enjoys {f/m}-pos-prn work an {f/m}-occ-sg-V .
Those {f/m}-n-pl are {f/m}-occ-pl .
These {f/m}-n-pl work hard {f/m}-occ-pl .
I talked to {f/m}-obj-prn , {f/m}-sbj-prn is a {f/m}-occ-sg-C .
I talked to {f/m}-obj-prn , {f/m}-sbj-prn is an {f/m}-occ-sg-V .
{f/m}-sbj-prn works a {f/m}-occ-sg-C .
{f/m}-sbj-prn works an {f/m}-occ-sg-V .
I worked with {f/m}-obj-prn , {f/m}-sbj-prn is a very qualified {f/m}-occ-sg .
{f/m}-n {f/m}-occ-pl are rare .
{f/m}-n {f/m}-occ-pl are not predisposed for self-promotion .
{f/m}-n {f/m}-occ-pl performed well .
{f/m}-n {f/m}-occ-pl earn less than their counterparts .
{f/m}-sbj-prn enjoys {f/m}-pos-prn work a {f/m}-occ-sg-C .
{f/m}-sbj-prn enjoys {f/m}-pos-prn work an {f/m}-occ-sg-V .
Though {f/m}-sbj-prn argued with {f/m}-pos-prn colleagues, the {f/m}-occ-sg was always respectful .
People laughed at the {f/m}-occ-sg behind {f/m}-obj-pos-prn back .
The {f/m}-occ-sg screamed when {f/m}-sbj-prn saw the mouse .
That {f/m}-occ-sg chooses {f/m}-obj-prn words very carefully .
That {f/m}-occ-sg is a funny {f/m}-n-sg !
Those {f/m}-occ-pl are talented {f/m}-n-pl !
Their {f/m}-occ-sg is a smart {f/m}-n-sg !
The {f/m}-occ-sg is a very dynamic {f/m}-n-sg !
The {f/m}-occ-sg is a {f/m}-n-sg with a lot of experience.
This {f/m}-occ-sg happens to be my {f/m}-rel .
The {f/m}-occ-sg works hard and {f/m}-sbj-prn excels !
The {f/m}-occ-sg drove fast and {f/m}-sbj-prn was on time .
As a {f/m}-occ-sg-C , {f/m}-sbj-prn is very competent .
As an {f/m}-occ-sg-V , {f/m}-sbj-prn is very competent .
When the {f/m}-occ-sg arrived, everyone applauded {f/m}-obj-prn .
The {f/m}-occ-pl with the highest success rate per the polls, were {f/m}-n .
That {f/m}-occ-sg is also my {f/m}-rel .
The {f/m}-occ-sg moved here from Ethiopia where {f/m}-sbj-prn is from .
The {f/m}-occ-sg arrives early for {f/m}-pos-prn shift .
That {f/m}-occ-sg is hella strict, watch out for {f/m}-obj-prn .
That {f/m}-occ-sg retired early, good for {f/m}-obj-prn .

Table A7: Our template set used to generate English source sentences.
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English Spanish-Masc Spanish-Fem German-Masc German-Fem

clerk funcionario|empleado administrativo funcionaria|empleada administrativa Mitarbeiter Mitarbeiterin
designer diseñador diseñadora Designer Designerin
hairdresser peluquero peluquera Friseur Friseurin
housekeeper amo de llaves|amo de casa ama de llaves|ama de casa Haushälter Haushälterin
nanny niñero niñera Kinderbetreuer Kindermädchen
nurse enfermero enfermera Krankenpfleger Krankenschwester
secretary secretario secretaria Sekretär Sekretärin
director director directora Direktor Direktorin
engineer ingeniero ingeniera Ingenieur Ingenieurin
truck driver camionero camionera Lastwagenfahrer Lastwagenfahrerin
farmer granjero|campesino granjera|campesina Bauer Bäuerin
laborer obrero|trabajador obrera|trabajadora Arbeiter Arbeiterin
mechanic mecánico mecánica Mechaniker Mechanikerin
physician médico médica Arzt Ärztin
president presidente presidenta Präsident Präsidentin
plumber plomero|fontanero plomera|fontanera Klempner Klempnerin
carpenter carpintero carpintera Tischler|Zimmermann Tischlerin
groundskeeper jardinero|guardián jardinera|guardiana Gärtner Gärtnerin
clerks funcionarios funcionarias MItarbeiter Mitarbeiterinnen
designers diseñadores diseñadoras Designer Designerinnen
hairdressers peluqueros peluqueras Friseure Friseurinnen
housekeepers amos de llaves|amos de casa amas de llaves|amas de casa Haushälter Haushälterinnen
nannies niñeros niñeras Kinderbetreuer Kindermädchen
nurses enfermeros enfermeras Krankenpfleger Krankenschwestern
secretaries secretarios secretarias Sekretäre Sekretärinnen
directors directores directoras Direktoren Direktorinnen
engineers ingenieros ingenieras Ingenieuren Ingenieurinnin
truck drivers camioneros camioneras Lastwagenfahrerin Lastwagenfahrerinnen
farmers granjeros granjeras Bauern Bäuerinnen
laborers obreros obreras Arbeiter Arbeiterinnen
mechanics mecánicas mecánicos Mechaniker Mechanikerinnen
physicians médico médicas Ärzte Ärztinnen
presidents presidentes presidentas Präsidenten Präsidentinnen
plumbers plomeros plomeras Klempner Klempnerinnen
carpenters carpinteros carpinteras Tischler Tischlerinnen
groundskeepers jardineros|guardianes jardineras|guardianas Gärtner Gärtnerinnen

Table A8: Our dictionary of occupations. Entries with the “|” symbol indicate that we accept either of the references
as correct.
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Figure A2: Plots showing relative percentage drop of
BLEU and gender-test metrics on the y-axis and rela-
tive percentage drop in decoding time in the x-axis.
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Abstract

State-of-the-art machine translation (MT) sys-
tems are typically trained to generate “stan-
dard” target language; however, many lan-
guages have multiple varieties (regional va-
rieties, dialects, sociolects, non-native vari-
eties) that are different from the standard lan-
guage. Such varieties are often low-resource,
and hence do not benefit from contemporary
NLP solutions, MT included. We propose
a general framework to rapidly adapt MT
systems to generate language varieties that
are close to, but different from, the standard
target language, using no parallel (source–
variety) data. This also includes adaptation
of MT systems to low-resource typologically-
related target languages.1 We experiment
with adapting an English–Russian MT sys-
tem to generate Ukrainian and Belarusian, an
English–Norwegian Bokmål system to gener-
ate Nynorsk, and an English–Arabic system to
generate four Arabic dialects, obtaining signifi-
cant improvements over competitive baselines.

1 Introduction

Despite tremendous progress in machine transla-
tion (Bahdanau et al., 2015; Vaswani et al., 2017)
and language generation in general, current state-
of-the-art systems often work under the assumption
that a language is homogeneously spoken and un-
derstood by its speakers: they generate a “standard”
form of the target language, typically based on
the availability of parallel data. But language use
varies with regions, socio-economic backgrounds,
ethnicity, and fluency, and many widely spoken
languages consist of dozens of varieties or dialects,
with differing lexical, morphological, and syntactic
patterns for which no translation data are typically
available. As a result, models trained to translate

1Code, data and trained models are available here: https:
//github.com/Sachin19/seq2seq-con

from a source language (SRC) to a standard lan-
guage variety (STD) lead to a sub-par experience
for speakers of other varieties.

Motivated by these issues, we focus on the task
of adapting a trained SRC→STD translation model
to generate text in a different target variety (TGT),
having access only to limited monolingual cor-
pora in TGT and no SRC–TGT parallel data. TGT

may be a dialect of, a language variety of, or a
typologically-related language to STD.

We present an effective transfer-learning frame-
work for translation into low resource language
varieties. Our method reuses SRC→STD MT mod-
els and finetunes them on synthesized (pseudo-
parallel) SRC–TGT texts. This allows for rapid
adaptation of MT models to new varieties with-
out having to train everything from scratch. Using
word-embedding adaptation techniques, we show
that MT models which predict continuous word
vectors (Kumar and Tsvetkov, 2019) rather than
softmax probabilities lead to superior performance
since they allow additional knowledge to be in-
jected into the models through transfer between
word embeddings of high-resource (STD) and low-
resource (TGT) monolingual corpora.

We evaluate our framework on three trans-
lation tasks: English to Ukrainian and Belaru-
sian, assuming parallel data are only available
for English→Russian; English to Nynorsk, with
only English to Norwegian Bokmål parallel data;
and English to four Arabic dialects, with only
English→Modern Standard Arabic (MSA) paral-
lel data. Our approach outperforms competitive
baselines based on unsupervised MT, and methods
based on finetuning softmax-based models.

2 A Transfer-learning Architecture

We first formalize the task setup. We are given
a parallel SRC→STD corpus, which allows us to
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Figure 1: An overview of our approach. (a) Using the available STD monolingual corpora, we first train word vectors
using fasttext; (b) we then train a SRC→STD translation model using the parallel corpora to predict the pretrained word
vectors; (c) next, we train STD→SRC model and use it to translate TGT monolingual corpora to SRC; (d) now, we finetune STD
subword embeddings to learn TGT word embeddings; and finally (e) we finetune a SRC→STD model to generate TGT pretrained
embeddings using the back-translated SRC→TGT data.

train a translation model f(·; θ) that takes an input
sentence x in SRC and generates its translation in
the standard veriety STD, ŷSTD = f(x; θ). Here,
θ are the learnable parameters of the model. We
are also given monolingual corpora in both the
standard STD and target variety TGT. Our goal now
is to modify f to generate translations ŷTGT in the
target variety TGT. At training time, we assume no
SRC–TGT or STD–TGT parallel data are available.

Our solution (Figure 1) is based on a transformer-
based encoder-decoder architecture (Vaswani et al.,
2017) which we modify to predict word vectors.
Following Kumar and Tsvetkov (2019), instead
of treating each token in the vocabulary as a dis-
crete unit, we represent it using a unit-normalized
d-dimensional pre-trained vector. These vectors
are learned from a STD monolingual corpus using
fasttext (Bojanowski et al., 2017). A word’s
representation is computed as the average of the
vectors of its character n-grams, allowing surface-
level linguistic information to be shared among
words. At each step in the decoder, we feed this
pretrained vector at the input and instead of predict-
ing a probability distribution over the vocabulary
using a softmax layer, we predict a d-dimensional
continuous-valued vector. We train this model by
minimizing the von Mises-Fisher (vMF) loss—a
probabilistic variant of cosine distance—between
the predicted vector and the pre-trained vector. The
pre-trained vectors (at both input and output of the
decoder) are not trained with the model. To decode
from this model, at each step, the output word is
generated by finding the closest neighbor (in terms

of cosine similarity) of the predicted output vector
in the pre-trained embedding table.

We train f in this fashion using SRC–STD paral-
lel data. As shown below, training a softmax-based
SRC→STD model to later finetune with TGT suffers
from vocabulary mismatch between STD and TGT

and thus is detrimental to downstream performance.
By replacing the decoder input and output with pre-
trained vectors, we separate the vocabulary from
the MT model, making adaptation easier.

Now, to finetune this model to generate TGT,
we need TGT embeddings. Since the TGT mono-
lingual corpus is small, training fasttext vec-
tors on this corpus from scratch will lead (as we
show) to low-quality embeddings. Leveraging the
relatedness of STD and TGT and their vocabulary
overlap, we use STD embeddings to transfer knowl-
edge to TGT embeddings: for each character n-
gram in the TGT corpus, we initialize its embed-
ding with the corresponding STD embedding, if
available. We then continue training fasttext
on the TGT monolingual corpus (Chaudhary et al.,
2018). Last, we use a supervised embedding align-
ment method (Lample et al., 2018a) to project the
learned TGT embeddings in the same space as STD.
STD and TGT are expected to have a large lexical
overlap, so we use identical tokens in both varieties
as supervision for this alignment. The obtained em-
beddings, due to transfer learning from STD, inject
additional knowledge in the model.

Finally, to obtain a SRC→TGT model, we fine-
tune f on psuedo-parallel SRC–TGT data. Using
a STD→SRC MT model (a back-translation model
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trained using large STD–SRC parallel data with stan-
dard settings) we (back)-translate TGT data to SRC.
Naturally, these synthetic parallel data will be noisy
despite the similarity between STD and TGT, but
we show that they improve the overall performance.
We discuss the implications of this noise in §4.

3 Experimental Setup

Datasets We experiment with two setups. In the
first (synthetic) setup, we use English (EN) as SRC,
Russian (RU) as STD, and Ukrainian (UK) and Be-
larusian (BE) as TGTs. We sample 10M EN-RU

sentences from the WMT’19 shared task (Ma et al.,
2019), and 80M RU sentences from the CoNLL’17
shared task to train embeddings. To simulate low-
resource scenarios, we sample 10K, 100K and
1M UK sentences from the CoNLL’17 shared task
and BE sentences from the OSCAR corpus (Or-
tiz Suárez et al., 2020). We use TED dev/test sets
for both languages pairs (Cettolo et al., 2012).

The second (real world) setup has two language
sets: the first one defines English as SRC, with
Modern Standard Arabic (MSA) as STD and four
Arabic varieties spoken in Doha, Beirut, Rabat and
Tunis as TGTs. We sample 10M EN-MSA sentences
from the UNPC corpus (Ziemski et al., 2016), and
80M MSA sentences from the CoNLL’17 shared
task. For Arabic varieties, we use the MADAR cor-
pus (Bouamor et al., 2018) which consists of 12K 6-
way parallel sentences between English, MSA and
the 4 considered varieties. We ignore the English
sentences, sample dev/test sets of 1K sentences
each, and consider 10K monolingual sentences for
each TGT variety. The second set also has English
as SRC with Norwegian Bokmål (NO) as STD and its
written variety Nynorsk (NN) as TGT. We use 630K
EN-NO sentences from WikiMatrix (Schwenk et al.,
2021), and 26M NO sentences from ParaCrawl (Es-
plà et al., 2019) combined with the WikiMatrix NO

sentences to train embeddings. We use 310K NN

sentences from WikiMatrix, and TED dev/test sets
for both varieties (Reimers and Gurevych, 2020).

Preprocessing We preprocess raw text using
Byte Pair Encoding (BPE, Sennrich et al., 2016)
with 24K merge operations on each SRC–STD cor-
pus trained separately on SRC and STD. We use the
same BPE model to tokenize the monolingual STD

data and learn fasttext embeddings (we con-
sider character n-grams of length 3 to 6).2 Splitting

2We slightly modify fasttext to not consider BPE to-
ken markers “@@” in the character n-grams.

the TGT words with the same STD BPE model will
result in heavy segmentation, especially when TGT

contains characters not present in STD.3 To counter
this, we train a joint BPE model with 24K opera-
tions on the concatenation of STD and TGT corpora
to tokenize TGT corpus following Chronopoulou
et al. (2020). This technique increases the num-
ber of shared tokens between STD and TGT, thus
enabling better cross-variety transfer while learn-
ing embeddings and while finetuning. We fol-
low Chaudhary et al. (2018) to train embeddings on
the generated TGT vocabulary where we initialize
the character n-gram representations for TGT words
with STD’s fasttext model wherever available
and finetune them on the TGT corpus.

Implementation and Evaluation We modify
the standard OpenNMT-py seq2seq models of Py-
Torch (Klein et al., 2017) to train our model with
vMF loss (Kumar and Tsvetkov, 2019). Additional
hyperparameter details are outlined in Appendix B.
We evaluate our methods using BLEU score (Pap-
ineni et al., 2002) based on the SacreBLEU imple-
mentation (Post, 2018).4 For the Arabic varieties,
we also report a macro-average. In addition, to
measure the expected impact on actual systems’
users, we follow Faisal et al. (2021) in comput-
ing a population-weighted macro-average (avgpop)
based on language community populations pro-
vided by Ethnologue (Eberhard et al., 2019).

3.1 Experiments

Our proposed framework, LANGVARMT, con-
sists of three main components: (1) A supervised
SRC→STD model is trained to predict continuous
STD word embeddings rather than discrete soft-
max probabilities. (2) Output STD embeddings are
replaced with TGT embeddings. The TGT embed-
dings are trained by finetuning STD embeddings on
monolingual TGT data and aligning the two embed-
ding spaces. (3) The resulting model is finetuned
with pseudo-parallel SRC→TGT data.

We compare LANGVARMT with the following
competitive baselines. SUP(SRC→STD): train a
standard (softmax-based) supervised SRC→STD

model, and consider the output of this model as

3For example, both RU and UK alphabets consist of 33
letters; RU has the letters Ёё, ъ, ы and Ээ, which are not
used in UK. Instead, UK has Ґґ, Єє, Ii and Її.

4While we recognize the limitations of BLEU (Mathur
et al., 2020), more sophisticated embedding-based metrics for
MT evaluation (Zhang et al., 2020; Sellam et al., 2020) are un-
fortunately not available for low-resource language varieties.
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UK BE NN Arabic Varieties (10K)
Size of TGT corpus 10K 100K 1M 10K 100K 1M 300K Doha Beirut Rabat Tunis

SUP(SRC→STD) 1.7 1.7 1.7 1.5 1.5 1.5 11.3 3.7 1.8 2.0 1.3
UNSUP(SRC→TGT) 0.3 0.6 0.9 0.4 0.6 1.4 2.7 0.2 0.1 0.1 0.1
PIVOT 1.5 8.6 14.9 1.15 3.9 8.0 11.9 1.8 2.1 1.7 1.1
SOFTMAX 1.9 12.7 15.4 1.5 4.5 7.9 14.4 14.5 7.4 4.9 3.9
LANGVARMT 6.1 13.5 15.3 2.3 8.8 9.8 16.6 20.1 8.1 7.4 4.6

Table 1: BLEU scores on translation from English to Ukrainian, Belarusian, Nynorsk, and Arabic dialects with varying amounts
of monolingual target data (TGT sentences) available for finetuning. Our approach (LANGVARMT) outperforms all baselines.

TGT under the assumption that STD and TGT may
be very similar. UNSUP(SRC→TGT): train an
unsupervised MT model (Lample et al., 2018a)
in which the encoder and decoder are initialized
with cross-lingual masked language models (MLM,
Conneau and Lample, 2019). These MLMs are
pre-trained on SRC monolingual data, and then
finetuned on TGT monolingual data with an ex-
panded vocabulary as described above. This base-
line is taken from Chronopoulou et al. (2020),
where it showed state-of-the-art performance for
low-monolingual-resource scenarios. Pivot: train
a UNSUP(STD→TGT) model as described above
using STD and TGT monolingual corpora. Dur-
ing inference, translate the SRC sentence to STD

with the SUP(SRC→STD) model and then to TGT

with the UNSUP(STD→TGT) model. We also per-
form several ablation experiments, showing that
every component of LANGVARMT is necessary
for good downstream performance. Specifically,
we report results with LANGVARMT but using a
standard softmax layer (SOFTMAX) to predict to-
kens instead of continuous vectors.5

4 Results and Analysis

Table 1 compares the performance of LANG-
VARMT with the baselines for Ukrainian, Be-
larusian, Nynorsk, and the four Arabic varieties.
For reference, note that the EN→RU, EN→MSA,
and EN→NO models are relatively strong, yielding
BLEU scores of 24.3, 21.2, and 24.9, respectively.

Synthetic Setup Considering STD and TGT as
the same language is sub-optimal, as is evident
from the poor performance of the non-adapted
SUP(SRC→STD) model. Clearly, special attention
ought to be paid to language varieties. Direct un-
supervised translation from SRC to TGT performs
poorly as well, confirming previously reported re-
sults of the ineffectiveness of such methods on
unrelated languages (Guzmán et al., 2019).

5Additional ablation results are listed in Appendix C.

Translating SRC to TGT by pivoting through STD

achieves much better performance owing to strong
UNSUP(STD→TGT) models that leverage the sim-
ilarities between STD and TGT. However, when
resources are scarse (e.g., with 10K monolingual
sentences as opposed to 1M), this performance
gain considerably diminishes. We attribute this
drop to overfitting during the pre-training phase on
the small TGT monolingual data. Ablation results
(Appendix C) also show that in such low-resource
settings the learned embeddings are of low quality.

Finally, LANGVARMT consistently outperforms
all baselines. Using 1M UK sentences, it achieves
similar performance (for EN→UK) to the softmax
ablation of our method, SOFTMAX, and small gains
over unsupervised methods. However, in lower
resource settings our approach is clearly better than
the strongest baselines by over 4 BLEU points for
UK (10K) and 3.9 points for BE (100K).

To identify potential sources of error in our pro-
posed method, we lemmatize the generated trans-
lations and test sets and evaluate BLEU (Qi et al.,
2020). Across all data sizes, both UK and BE

achieve a substantial increase in BLEU (up to +6
BLEU; see Appendix D for details) compared to
that obtained on raw text, indicating morphological
errors in the translations. In future work, we will
investigate whether we can alleviate this issue by
considering TGT embeddings based on morpholog-
ical features of tokens (Chaudhary et al., 2018).

Real-world Setup The effectiveness of LANG-
VARMT is pronounced in this setup with a dramatic
improvement of more than 18 BLEU points over
unsupervised baselines when translating into Doha
Arabic. We hypothesize that during the pretrain-
ing phase of unsupervised methods, the extreme
difference between the size of the MSA monolin-
gual corpus (10M) and the varieties’ corpora (10K)
leads to overfitting. Additionally, compared to the
synthetic setup, the Arabic varieties we consider
are quite close to MSA, allowing for easy and ef-
fective adaptation of both word embeddings and
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EN→MSA models. LANGVARMT also improves in
all other Arabic varieties, although naturally some
varieties remain challenging. For example, the Ra-
bat and particularly the Tunis varieties are more
likely to include French loanwords (Bouamor et al.,
2018) which are not adequately handled as they are
not part of our vocabulary. In future work, we will
investigate whether we can alleviate this issue by
potentially including French corpora (transliterated
into Arabic) to our TGT language corpora. On av-
erage, our approach improves by 2.3 BLEU points
over the softmax-based baseline (cf. 7.7 and 10.0 in
Table 2 under avgL) across the four Arabic dialects.
For a population-weighted average (avgpop), we
associate the Doha variety with Gulf Arabic (ISO
code: afb), the Beirut one with North Levantine
Arabic (apc), Rabat with Moroccan (ary), and
the Tunis variety with Tunisian Arabic (aeb). As
before, LANGVARMT outperforms the baselines.
The absolute BLEU scores in this highly challeng-
ing setup are admittedly low, but as we discuss in
Appendix D, the translations generated by LANG-
VARMT are often fluent and input preserving, es-
pecially compared to the baselines.

Finally, due to high similarity between NO and
NN, the SUP(EN→NO) model also performs well
on NN with 11.3 BLEU, but our method yields
further gains of over 4 points over the baselines.

5 Discussion

Fairness The goal of this work is to develop more
equitable technologies, usable by speakers of di-
verse language varieties. Here, we evaluate the
systems along the principles of fairness. We evalu-
ate the fairness of our Arabic multi-dialect system’s
utility proportionally to the populations speaking
those dialects. In particular, we seek to measure
how much average benefit will the people of dif-
ferent dialects receive if their respective translation
performance is improved. A simple proxy for fair-
ness is the standard deviation (or, even simpler,
a max−min performance) of the BLEU scores
across dialects (A higher value implies more un-
fairness across the dialects) Beyond that, we mea-
sure a system’s unfairness with respect to the dif-
ferent dialect subgroups, using the adaptation of
generalized entropy index (Speicher et al., 2018),
which considers equities within and between sub-
groups in evaluating the overall unfairness of an
algorithm on a population Faisal et al. (2021) (See
Appendix F for details and additional discussion).

Table 2 shows that our proposed method is fairer
across all dialects, compared to baselines where
only MSA translation produces comprehensible out-
puts.

Model avgL↑ avgpop↑ max−min↓ unfair↓

SUP(SRC→STD) 2.2 1.8 19.9 0.037
UNSUP(SRC→TGT) 0.1 0.1 21.1 0.046
PIVOT 1.7 1.8 20.1 0.037
SOFTMAX 7.7 5.7 17.3 0.020
LANGVARMT 10.0 7.3 16.6 0.016

Table 2: Average performance and fairness metrics across
the four Arabic varieties. This evaluation includes MSA (with
a BLEU score of 21.2 on the SUP(EN→MSA) model).

Negative Results Our proposed method relies on
two components: (1) quality of TGT word embed-
dings which is dependent on STD and TGT shared
(subword) vocabulary, and (2) the psuedo-parallel
SRC–TGT obtained by back-translating TGT data
through a STD→SRC model. If STD and TGT are
not sufficiently closely related, the quality of both
of these components can degrade, leading to a drop
in the performance of our proposed method. We
present results of two additional experiments to
elucidate this phenomenon in Appendix E.
Related Work We provide an extensive discussion
of related work in Appendix A.

6 Conclusion

We presented a transfer-learning framework for
rapid and effective adaptation of MT models to
different varieties of the target language without
access to any source-to-variety parallel data. We
demonstrated significant gains in BLEU scores
across several language pairs, especially in highly
resource-scarce scenarios. The improvements are
mainly due to the benefits of continuous-output
models over softmax-based generation. Our anal-
ysis highlights the importance of addressing mor-
phological differences between language varieties,
which will be in the focus of our future work.
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A Related Work

Early work addressing translation involving lan-
guage varieties includes rule-based transforma-
tions (Altintas and Cicekli, 2002; Marujo et al.,
2011; Tan et al., 2012) which rely on language spe-
cific information and expert knowledge which can
be expensive and difficult to scale. Recent work
to address this issue only focuses on cases where
parallel data do exist. They include a combina-
tion of word-level and character-level MT (Vilar
et al., 2007; Tiedemann, 2009; Nakov and Tiede-
mann, 2012) between related languages or training
multilingual models to translate to/from English to
different varieties of a language (e.g., Lakew et al.
(2018) work on Brazilian–European Portuguese
and European–Canadian French). Such parallel
data, however, are typically unavailable for most
language varieties.

Unsupervised translation models, which require
only monolingual data, can address this limita-
tion (Artetxe et al., 2018; Lample et al., 2018a;
Garcia et al., 2020, 2021). However, when even
monolingual corpora are limited, unsupervised
models are challenging to train and are quite in-
effective for translating between unrelated lan-
guages (Marchisio et al., 2020). Considering vari-
eties of a language as writing styles, unsupervised
style transfer (Yang et al., 2018; He et al., 2020) or
deciphering methods (Pourdamghani and Knight,
2017) to translate between different varieties have
also been been explored but have not been shown to
perform well, often only reporting BLEU-1 scores
since they obtain BLEU-4 scores which are closer
to 0. Additionally, all of these approaches require
simultaneous access to data in all varieties during
training and must be trained from scratch when a
new variety is added. In contrast, our presented
method allows for easy adaptation of SRC→STD

models to any new variety as it arrives.
Considering a new target variety as a new do-

main of STD, unsupervised domain adaptation
methods can be employed, such as finetuning
SRC→STD models using pseudo-parallel corpora
generated from monolingual corpora in target vari-
eties (Hu et al., 2019; Currey et al., 2017). Our pro-
posed method is most related to this approach; but
while these methods have the potential to adapt the
decoder language model, for effective transfer, STD

and TGT must have a shared vocabulary which is
not true for most language varieties due to lexical,
morphological, and at times orthographic differ-

ences. In contrast, our proposed method makes use
of cross-variety word embeddings. While our ex-
amples only involve same-script varieties, augment-
ing our approach to work across scripts through a
transliteration component is straightforward.

B Implementation Details

We modify the standard OpenNMT-py seq2seq
models of PyTorch (Klein et al., 2017) to train our
model with vMF loss (Kumar and Tsvetkov, 2019).
We use the transformer-BASE model (Vaswani et al.,
2017), with 6 layers in both encoder and decoder
and with 8 attention heads, as our underlying archi-
tecture. We modify this model to predict pretrained
fasttext vectors. We also initialize the decoder
input embedding table with the pretrained vectors
and do not update them during model training. All
models are optimized using Rectified Adam (Liu
et al., 2020) with a batch size of 4K tokens and
dropout of 0.1. We train SRC→STD models for
350K steps with an initial learning rate of 0.0007
with linear decay. For finetuning, we reduce the
learning rate to 0.0001 and train for up to 100K
steps. We use early stopping in all models based
on validation loss computed every 2K steps. We
decode all the softmax-based models with a beam
size of 5 and all the vMF-based models greedily.

We evaluate our methods using BLEU score (Pa-
pineni et al., 2002) based on the SacreBLEU im-
plementation (Post, 2018). While we recognize the
limitations of BLEU (Mathur et al., 2020), more so-
phisticated embedding-based metrics for MT eval-
uation (Zhang et al., 2020; Sellam et al., 2020) are
simply not available for language varieties.

C Additional English-Ukrainian
Experiments

On our resource-richest setup of EN→UK transla-
tion using 1M UK sentences and RU as STD, we
compare our method with the following additional
baselines. Table 3 presents these results.

LAMPLE-UNSUP(SRC→TGT): This is another
unsupervised model, based on Lample et al.
(2018a) which initializes the input and output em-
bedding tables of both encoder and decoder using
cross-lingual word embeddings trained on SRC and
TGT monolingual corpora. The model is trained
in a similar manner to Chronopoulou et al. (2020)
(UNSUP(SRC→TGT)) with iterative backtransla-
tion and autoencoding.

PIVOT:LAMPLE(STD→TGT): This baseline is
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Method BLEU (uk)

SUP(SRC-STD) 1.7
UNSUP(SRC→TGT) 0.9
PIVOT: 14.9

LAMPLE-UNSUP(SRC→TGT) 0.4
PIVOT:LAMPLE-UNSUP(STD→TGT) 9.0
PIVOT:DICTREPLACE(STD→TGT) 2.9

LANGVARMT 15.3
LANGVARMT w/ poor embeddings 4.6
LANGVARMT-RANDOM 13.1
SOFTMAX 15.4
LANGVARMT-RANDOM-SOFTMAX 14.1

Table 3: BLEU scores on EN-UK test corpus with
1M UK monolingual corpus.

similar to the PIVOT baseline, where we replace
the unsupervised model with that of Lample et al.
(2018a).

PIVOT:DICTREPLACE(STD→TGT): Here we
first translate SRC to STD using SUP(SRC→STD),
and then modify the STD output to get a TGT sen-
tence as follows: We create a STD–TGT dictionary
using the embedding map suggested by Lample
et al. (2018b). This dictionary is created on words
tokenized with Moses tokenizer (Hoang and Koehn,
2008) rather than BPE tokens. We replace each to-
ken in the generated STD sentence which is not in
the TGT vocabulary using the dictionary (if avail-
able). We consider this baseline to measure lexical
vs. syntactic/phrase level differences between Rus-
sian and Ukrainian.

In addition to baseline comparison, we report
the following ablation experiments.

(1) To measure transfer from STD to TGT em-
beddings, we finetune the SUP(SRC→STD) model
using TGT embeddings trained from scratch (as
opposed to initialized with STD embeddings).

(2) To measure the impact of initialization during
model finetuning, we compare with a randomly
initialized model trained in a supervised fashion on
the psuedo-parallel SRC–TGT data.

Baselines On the unsupervised models based on
Lample et al. (2018a), we observe a similar trend
as that of Chronopoulou et al. (2020), where the
LAMPLE-UNSUP(SRC→TGT) model performing
poorly (0.4) with substantial gains when pivoting
through Russian (9.0 BLEU).

PIVOT:DICTREPLACE(STD→TGT) gains some
improvement over considering the output of
SUP(SRC→STD) as TGT, probably due to syntac-
tic similarities between Russian and Ukrainian.

This result can potentially be further improved
with a human-curated RU–UK dictionary, but such
resources are typically not available for the low-
resource settings we consider in this paper.

Ablations As shown in Table 3, training the
SRC→TGT model on a randomly initialized
model (LANGVAR-RANDOM) results in a per-
formance drop, confirming that transfer learning
from a SRC→STD model is beneficial. Simi-
larly, using TGT embeddings trained from scratch
(LANGVARMT w/ poor embeddings) results in a
drastic performance drop, providing evidence for
essential transfer from STD embeddings.

D Analysis

To better understand the performance of our mod-
els, we perform additional analyses.

Lemmatized BLEU For UK and BE, we lemma-
tize each word in the test sets and the translations
and evaluate BLEU scores. The results, depicted
in Table 4, very likely indicate that our framework
often generates correct lemmas, but may fail on
the correct inflectional form of the target words.
This highlights the importance of considering mor-
phological differences between language varieties.
The high BLEU scores also demonstrate that the re-
sulting translations are quite likely understandable,
albeit not always grammatical.

EN→UK EN→BE
10K 100K 1M 10K 100K 1M

raw 6.1 13.5 15.3 2.3 8.8 9.8
lemma 12.8 19.5 21.3 3.5 13.7 15.8

Table 4: BLEU scores on raw vs lemmatized text with
LANGVARMT.

Translation of Rare Words On the outputs of
the EN→UK model, trained with 100K UK sen-
tences, we compute the translation accuracy of
words based on their frequency in the TGT mono-
lingual corpus for LANGVARMT, our best base-
line SUP(SRC→STD)+UNSUP(SRC→TGT) and the
best performing ablation SOFTMAX. These results,
shown in Table 5, reveal that LANGVARMT is
more accurate at translating rare words (with fre-
quency less than 10) compared to the baselines.

Examples We provide some examples of EN-UK

and EN-Beirut Arabic translations generated by the
three models in Tables 6 and 7. As evaluated by
native speakers of the Beirut Arabic, we find that
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frequency PIVOT SOFTMAX LANGVARMT

1 0.0429 0.1516 0.1812
2 0.0448 0.2292 0.2556
3 0.0597 0.2246 0.2076
4 0.0692 0.2601 0.2962

[5,10) 0.0582 0.2457 0.2722
[10,100) 0.1194 0.2881 0.2827

[100,1000) 0.2712 0.4537 0.4449

Table 5: Translation accuracies of words based on their
frequencies on EN→UK with 100K UK sentences.

despite a BLEU score of only 8, in a majority of
cases our baseline model is able to generate fluent
translations of the input, preserving most of the
content, whereas the baseline model ignores many
of the content words. We also observe that in some
cases, despite predicting in the right semantic space
of the pretrained embeddings, it fails to predict
the right token, resulting in surface form errors
(e.g., predicting adjectival forms of verbs). This
phenomenon is known and studied in more detail
in Kumar and Tsvetkov (2019).

E Negative Results

We present results for the following experiments:
(a) adapting an English to Thai (EN→TH) model
to Lao (LO). We use a parallel corpus of around
10M sentences for training the supervised EN→TH

model from the CCAligned corpus (El-Kishky
et al., 2020), around 140K LO monolingual sen-
tences from the OSCAR corpus (Ortiz Suárez et al.,
2020) and TED2020 dev/tests for both TH and
LO6 (Reimers and Gurevych, 2020). (b) adapt-
ing an English to Amharic Model (EN→AM) to
Tigrinya (TI). We use training, development and
test sets from the JW300 corpus (Agić and Vulić,
2019) containing 500K EN–AM parallel corpus and
100K Tigrinya monolingual sentences.

As summarized in Table 8, our method fails to
perform well on these sets of languages. Although
Thai and Lao are very closely related languages, we
attribute this result to little subword overlap in their
respective vocabularies which degrade the quality
of the embeddings. This is because Lao’s writ-
ing system is developed phonetically whereas Thai
writing contains many silent characters. Consider-
ing shared phonetic information while learning the
embeddings can alleviate this issue and is an av-

6Although Thai and Lao scripts look very similar, they use
different Unicode symbols which are one-to-one mappable
to each other: https://en.wikipedia.org/wiki/
Lao_(Unicode_block)

Source And we never think about the hidden
connection

Reference Та ми нiколи не думаємо про
прихованi зв’язки

PIVOT I ми нiколи не дуємо про
приховану зв’язку.
(And we never think about a hidden
connection.)

SOFTMAX Я нiколи не думав про
прихований зв’язок.
(I never thought of a hidden connection.)

LANGVARMT I ми нiколи не думаємо про
прихований зв’язок.
(And we never think about a hidden
connection.)

Source And yet, looking at them, you would see
a machine and a molecule.

Reference Дивлячись на них, ви побачите
машину i молекулу.

PIVOT I бачити, дивлячись на них, ви
бачите машину i молекулу
молекули.
(And to see, looking at them, you see
a machine and a molecule of a
molecule.)

SOFTMAX I так, дивлячись на них, ви
бачите машину i молекулу.

(And so, looking at them, you see a
machine and a molecule.)

LANGVARMT I дивляючись на них, ви побачите
машину i молекулу.
(And looking at them, you will see a
machine and a molecule)

Source They have exactly the same amount of
carbon.

Reference Вони мають однакову
кiлькiсть вуглецю.

PIVOT Таким чином, їх частка вуглецю.
(Thus, their share of carbon.)

SOFTMAX Вони мають однакову кiлькiсть
вуглецю.

(They have the same amount of carbon.)
LANGVARMT Вони мають точно таку ж

кiлькiсть вуглецю.
(they have exactly the same amount of
carbon)

Table 6: Examples of EN-UK translations generated by
LANGVARMT and the best performing baselines.

enue for future work. On the other hand, Amharic
and Tigrinya, while sharing a decent amount of
vocabulary, use different constructs and function
words (Kidane et al., 2021) leading to a very noisy
psuedo-parallel corpus.

F Measuring Unfairness

When evaluating multilingual and multi-dialect sys-
tems, it is crucial that the evaluation takes into
account principles of fairness, as outlined in eco-
nomics and social choice theory (Choudhury and
Deshpande, 2021). We follow the least difference
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Source I’ve never heard of this address near here.
Reference �A �X Fm` �hA�`nw�  �¨ ¡A

�mnWqT �� �b�.
PIVOT C� §slm�.

(He will hand over.)
SOFTMAX ¤¯ �r Fm` �� ¡A�`nw�  ¡n¨.

(Not once did I hear this title here)
�A Fm` ��d¾A �� ¡`nw�  �r§	 �� ¡w .

(I’ve never heard from this address near
here.)

Source What’s the exchange rate today?
Reference Jnw ��s`r ��yw�?

PIVOT F`r ��yw�?
(What’s the rate?)

SOFTMAX Jnw F`r ��Or� ��yw�?
(What’s the exchange rate today?)
Jw F`r ��Or� ��yw�?

(What’s the exchange rate today?)

Source How do I get to that place?
Reference �y� �w}� �hA�mWr�?

PIVOT �y� �tnO�?
(How do you recommend?)

SOFTMAX �y� �y¨ �¤}� �A�m��?
(How can I get to the shop?)
�y� �y¨ ¤}�?

(How can I get there?)

Source Tell me when we get to the museum.
Reference �l¨ �H �w}� �A�mt�� .

PIVOT C� �r¤� �A�tA�¨
(we will go to the other.)

SOFTMAX ��k¨ �§mtY �w}� �A�mt��.
(Talk when we get to the museum)
�l¨ �§mtY ¤}lnA �lmt��.

(Tell me when we got to the museum)

Source Please take me to the morning market.
Reference �mw� �`r¤� �d�¨ �lY Fw� ��Ob�.

PIVOT C� �Wr�¨.
(We’ll wait)

SOFTMAX �ntA�d�¨ �A�sw� ��Ob�.
(You take us to the market this morning.)
�nfS� �A�d�¨ �A�sw� ��Ob�.

(We prefer you take us to the market at the
morning.)

Table 7: Examples of English to Beirut Arabic translations
generated by LANGVARMT and the best performing base-
lines.

EN→LO EN→TI

SRC→STD 0.7 1.8
SOFTMAX 1.4 2.9
LANGVARMT 4.5 3.8

Table 8: BLEU scores for English to Lao and English to
Tigrinya translation

principle proposed by Rawls (1999), whose egal-
itarian approach proposes to narrow the gap be-
tween unequal accuracies.

A simple proxy for unfairness is the standard
deviation (or, even simpler, a max−min perfor-

mance) of the scores across languages. Beyond
that, we measure a system’s unfairness with respect
to the different subgroups using the adaptation of
generalized entropy index described by Speicher
et al. (2018), which considers equities within and
between subgroups in evaluating the overall unfair-
ness of an algorithm on a population. The general-
ized entropy index for a population of n individuals
receiving benefits b1, b2, . . . , bn with mean benefit
µ is

Eα(b1, . . . , bn) =
1

nα(α− 1)

n∑

i=1

[(
bi
µ

)α
− 1

]
.

Using α = 2 following Speicher et al. (2018), the
generalized entropy index corresponds to half the
squared coefficient of variation.7

If the underlying population can be split into |G|
disjoint subgroups across some attribute (e.g. gen-
der, age, or language variety) we can decompose
the total unfairness into individual and group-level
unfairness. Each subgroup g ∈ G will correspond
to ng individuals with corresponding benefit vector
bg = (bg1, b

g
2, . . . , b

g
ng) and mean benefit µg. Then,

total generalized entropy can be re-written as:

Eα(b1, . . . , bn) =
|G|∑

g=1

ng
n

(
µg
µ

)α
Eα(bg)

+

|G|∑

g=1

ng
nα(α− 1)

[(
µg
µ

)α
− 1

]

=Eα(b) + Eαβ (b).

The first term Eα(b) corresponds to the weighted
unfairness score that is observed within each sub-
group, while the second term Eαβ (b) corresponds
to the unfairness score across different subgroups.

In this measure of unfairness, we define the ben-
efit as being directly proportional to the system’s
accuracy. For a Machine Translation system, each
user receives an average benefit equal to the BLEU
score the MT system achieves on the user’s di-
alect. Conceptually, if the system produces a per-
fect translation (BLEU=1) then the user will re-
ceive the highest benefit of 1. If the system fails
to produce a meaningful translation (BLEU→ 0)
then the user receives no benefit (b = 0) from the
interaction with the system.

7The coefficient of variation is simply the ratio of the
standard deviation σ to the mean µ of a distribution.
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Abstract

Sparse attention has been claimed to increase
model interpretability under the assumption
that it highlights influential inputs. Yet
the attention distribution is typically over
representations internal to the model rather
than the inputs themselves, suggesting this
assumption may not have merit. We build on
the recent work exploring the interpretability
of attention; we design a set of experiments
to help us understand how sparsity affects our
ability to use attention as an explainability tool.
On three text classification tasks, we verify
that only a weak relationship between inputs
and co-indexed intermediate representations
exists—under sparse attention and other-
wise. Further, we do not find any plausible
mappings from sparse attention distributions
to a sparse set of influential inputs through
other avenues. Rather, we observe in this
setting that inducing sparsity may make it less
plausible that attention can be used as a tool
for understanding model behavior.

1 Introduction

Interpretability research in natural language pro-
cessing (NLP) is becoming increasingly important
as complex models are applied to more and more
downstream decision making tasks. In light of
this, many researchers have turned to the attention
mechanism, which has not only led to impressive
performance improvements in neural models, but
has also been claimed to offer insights into how
models make decisions. Specifically, a number of
works imply or directly state that one may inspect
the attention distribution to determine the amount
of influence each input token has in a model’s
decision-making process (Xie et al., 2017; Mullen-
bach et al., 2018; Niculae et al., 2018, inter alia).

Many lines of work have gone on to exploit this
assumption when building their own “interpretable”
models or analysis tools (Yang et al., 2016; Tu et al.,

2016; De-Arteaga et al., 2019); one subset has even
tried to make models with attention more inter-
pretable by inducing sparsity—a common attribute
of interpretable models (Lipton, 2018; Rudin,
2019)—in attention weights, with the motivation
that this allows model decisions to be mapped to
a limited number of items (Martins and Astudillo,
2016; Malaviya et al., 2018; Zhang et al., 2019).
Yet, there lacks concrete reasoning or evidence that
sparse attention weights leads to more interpretable
models: customarily, attention is not directly over
the model’s inputs, but rather over some represen-
tation internal to the model, e.g. the hidden states
of a recurrent network or contextual embeddings
of a Transformer (see Fig. 1). Importantly, these
internal representations do not solely encode infor-
mation from the input token they are co-indexed
with (Salehinejad et al., 2017; Brunner et al., 2020),
but rather from a range of inputs. This presents
the question: if internal representations themselves
may not be interpretable, can we actually deduce
anything from “interpretable” attention weights?

We build on the recent line of work challenging
the validity of attention-as-explanation methods
(Jain and Wallace, 2019; Serrano and Smith, 2019;
Grimsley et al., 2020, inter alia) and specifically
examine how sparsity affects their observations. To
this end, we introduce a novel entropy-based metric
to measure the dispersion of inputs’ influence,
rather than just their magnitudes. Through exper-
iments on three text classification tasks, utilizing
both LSTM and Transformer-based models, we
observe how sparse attention affects the results of
Jain and Wallace (2019) and Wiegreffe and Pinter
(2019), additionally exploring whether it allows
us to identify a core set of inputs that are important
to models’ decisions. We find we are unable to
identify such a set when using sparse attention;
rather, it appears that encouraging sparsity may
simultaneously encourage a higher degree of
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contextualization in intermediate representations.
We further observe a decrease in the correlation
between the attention distribution and input feature
importance measures, which exacerbates issues
found by prior works. The primary conclusion of
our work is that we should not believe sparse atten-
tion enhances model interpretability until we have
concrete reasons to believe so; in this preliminary
analysis, we do not find any such evidence.

2 Attention-based Neural Networks

We consider inputs x = x1 · · · xn 2 Vn of length
n where the tokens from taken from an alpha-
bet V . We denote the embedding of x, e.g., its
one hot encoding or (more commonly) a linear
transformation of its one-hot encoding with an em-
bedding matrix E 2 Rd⇥|V|, as X(e) 2 Rd⇥n.
Our embedded input X(e) is then fed to an en-
coder, which produces n intermediate representa-
tions I = [h1; . . . ;hn] 2 Rm⇥n, where hi 2 Rm

and m is a hyperparameter of the encoder. This
transformation is quite architecture dependent.

An alignment function A(·, ·) maps a query q
and a key K to weights a(t) for a decoding time
step t; we subsequently drop t for simplicity. In col-
loquial terms, A chooses which values of K should
receive the most attention based on q, which is then
represented in the vector a(t) 2 Rn. For the NLP
tasks we consider, we have K = I = [h1; . . . ;hn],
the encoder outputs. A query q may be, e.g., a rep-
resentation of the question in question answering.

The weights a are projected to sum to 1, which
results in the attention distribution ↵. Mathe-
matically, this is done via a projection onto the
probability simplex using a projection function �,
e.g., softmax or sparsemax. We then compute the
context vector as c =

Pn
i=1 ↵i hi. This context

vector is fed to a decoder, whose structure is again
architecture dependent, which generates a (possi-
bly unnormalized) probability distribution over the
set of labels Y , where Y is defined by the task.

Attention. We experiment with two methods of
constructing an attention distribution: (1) addi-
tive attention, proposed by Bahdanau et al. (2015):
A(K,q)i = v> tanh(W1Ki + W2q) and (2) the
scaled dot product alignment function, as in the
Transformer network: A(K,q) = K>qp

m
where

v 2 Rl and W1, W2 2 Rl⇥m are weight matrices.
Note that the original (without attention) neural
encoder–decoder architecture, as in Sutskever et al.

(2014), can be recovered with alignment function
A(·, ·) = [0, . . . , 0, 1], i.e., only the last of the n in-
termediate representations is given to the decoder.

Projection Functions. A projection function �
takes the output of the alignment function and maps
it to a valid probability distribution: � : Rn !
�n�1. The standard projection function is softmax:

�soft(z) =
exp(z)P

i2[n] exp(zi)
(1)

= argmin
p2�n�1

0
@X

i2[n]

pi log pi � p>z

1
A

However, softmax leads to non-sparse solutions as
an entry �soft(z)i can only be 0 if xi =�1. Al-
ternatively, Martins and Astudillo (2016) introduce
sparsemax, which can output sparse distributions:

�sparse(z) = argmin
p2�n�1

kp� zk22 (2)

In words, sparsemax directly maps z onto the
probability simplex, which often leads to solutions
on the boundary, i.e. where at least one entry of
p is 0. One shortcoming of sparsemax is the lack
of control over the degree of sparsity. Sparsegen
(Laha et al., 2018) fills this gap:

�sparseg(z) = argmin
p2�n�1

kp� g(z)k22�� kpk22 (3)

where the degree of sparsity can be tuned via the hy-
perparameter � 2 (�1, 1); a larger � encourages
more sparsity in the minimizing solution.

3 Model Interpretability

Model interpretability and explainability have been
framed in different ways (Gehrmann et al., 2019)—
as model understanding tasks, where (spurious)
features learned by a model are identified, or as
decision understanding tasks, where explanations
for particular instances are produced. We consider
the latter in this paper. Such tasks can be framed as
generative, where models generate free text expla-
nations (Camburu et al., 2018; Kotonya and Toni,
2020; Atanasova et al., 2020b), or as post-hoc in-
terpretability methods, where salient portions of
the input are highlighted (Lipton, 2018; DeYoung
et al., 2020; Atanasova et al., 2020a).

As there does not exist a clearly superior choice
for framing decision understanding for NLP tasks
(Miller, 2019; Carton et al., 2020; Jacovi and
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Goldberg, 2021), we follow a substantial body of
prior work in considering the post-hoc definition of
interpretability based on local methods proposed
by Lipton (2018). This definition is naturally oper-
ationalized through feature importance metrics and
meta models (Jacovi and Goldberg, 2020). Further,
we acknowledge the specific requirement that an
interpretable model obeys some set of structural
constraints of the domain in which it is used, such
as monotonicity or physical constraints (Rudin,
2019). For NLP tasks such as sentiment analysis or
topic classification, such constraints may logically
include the utilization of only a few key words
in the input when making a decision, in which
case, knowing the magnitude of the influence each
input token has on a model’s prediction through,
e.g., feature importance metrics, may suffice to
verify the model obeys such constraints. While
this collective definition is limited (Doshi-Velez
and Kim, 2017; Guidotti et al., 2018; Rudin, 2019),
we posit that if attention cannot provide model
interpretability at this level, then it would likewise
not be able to under more rigorous constraints.

3.1 Measures of Feature Importance
Gradient-Based Methods. Gradient-based mea-
sures of feature importance (F1; Baehrens et al.,
2010; Simonyan et al., 2014; Poerner et al., 2018)
use the gradient of a function’s output w.r.t. a fea-
ture to measure the importance of that feature. In
the case of an attentional neural network for binary
classification f(·), we can take the gradient of f
w.r.t. the variable x and evaluate at a point x = x0

to gain a sense of how much influence each x0
i had

on the outcome ŷ = f(x0). These measures are not
restricted to the relationship between inputs xi and
the outcome f(x); they can also be adapted to mea-
sure for effects from and to intermediate represen-
tations hp. Formally, our measures are as follows:

gŷ(xi) =

����
@f

@X
(e)
i

����
2

Pn
k=1

����
@f

@X
(e)
k

����
2

(4)

ghp(xi) =

����
@||hp||2
@X

(e)
i

����
2

Pn
k=1

����
@||hp||2
@X

(e)
k

����
2

(5)

where gŷ(xi) 2 [0, 1] and gxi(hp) 2 [0, 1] rep-
resents the gradient-based FI of token xi on ŷ
and intermediate representation hp, respectively.

Gradient-based methods are often used in explain-
ability techniques, as they have exhibited higher
correlation with human judgement than others
(Atanasova et al., 2020a). Note that we take gradi-
ents w.r.t. the embedding of token xi and that in the
latter metric, we measure the influence of xi on the
magnitude of hp—a decision we discuss in App. A.

Leave-One-Out (LOO)-based Methods. As a
secondary FI metric, we observe how model pre-
dictions change when a specific input token is re-
moved. For token xi, this can be calculated as:

Dŷ(xi) =
|ŷ � ŷ�i|Pn

k=1|ŷ � ŷ�k|
(6)

where ŷ�i is the prediction of a model with input
xi removed. The formula can also be used for inter-
mediate representations; we denote this as Dŷ(hi).

4 Experiments

Setup. We run experiments across several model
architectures, attention mechanisms, and datasets
in order to understand the effects of induced
attentional sparsity on model interpretability. We
use three binary classification datasets: ImDB and
SST (sentiment analysis) and 20News (topic clas-
sification). We use the dataset versions provided
by Jain and Wallace (2019), exactly following
their pre-processing steps. We show a subset
of representative results here, with additional
results in App. C. Further details, including model
architecture descriptions, dataset statistics and
baselines accuracies may be found in App. B.

Inputs and Intermediate Representations are
not Interchangeable. We first explore how
strongly-related inputs are to their co-indexed inter-
mediate representations. A strong relationship on
its own may validate the use of sparse attention, as
the ability to identify a subset of influential interme-
diate representations would then directly translate
to a set of influential inputs. Previous works show
that the “contribution” of a token xi to its intermedi-
ate representation hi is often quite low for various
model architectures (Salehinejad et al., 2017; Ming
et al., 2017; Brunner et al., 2020; Tutek and Snajder,
2020). In the context of attention, we find this prop-
erty to be evinced by the adversarial experiments
of Wiegreffe and Pinter (2019) (§4) and Jain and
Wallace (2019) (§4), which we verify in App. C.
They construct adversarial attention distributions
by optimizing for divergence from a baseline
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Figure 1: Correlation between the attention distribu-
tion and gradient-based FI measures. We see a notably
stronger correlation between attention and FI of inter-
mediate representation than of inputs across all models.

IMDb 20-News SST
H̃(ghi(x)) H̃(ghi(x)) H̃(ghi(x))

BiLSTM (Softmax) 0.71 ± 0.09 0.75 ± 0.12 0.93 ± 0.05
BiLSTM (Sparsemax) 0.72 ± 0.10 0.68 ± 0.12 0.91 ± 0.07
Transformer (Softmax) 0.76 ± 0.08 0.48 ± 0.06 0.73 ± 0.09
Transformer (Sparsemax) 0.72 ± 0.09 0.46 ± 0.06 0.63 ± 0.08

Table 1: Mean entropy of gradient-based FI of input to
intermediate representations. Green numbers are std.
deviations. Projection functions are parenthesized.

model’s attention distribution by: (1) adopting all
of the baseline model’s parameters and directly op-
timizing for divergence and (2) training an entirely
new model and optimizing for divergence as part of
the training process. The former method leads to a
large drop in performance (accuracy) while the lat-
ter does not. If we believe the model must encode
the same information to achieve similar accuracy,
this discrepancy implies that in the latter method,
the model likely “redistributes” information across
encoder outputs (i.e., intermediate representations
hp), which would suggest token-level information
is not tied to a particular hp.

As further verification of high degrees of
contextualization in attentional models, we report a
novel quantification, offering insights into whether
individual intermediate representations can be
linked primarily to any single input—i.e., perhaps
not the co-indexed input; we measure the normal-
ized entropy1 of the gradient-based FI of inputs to
intermediate representations H̃(ghp(x)) 2 [0, 1] to
gain a sense of how dispersed influence for inter-
mediate representation is across inputs. A value of
1 would indicate all inputs are equally influential;
a value of 0 would indicate solely a single input

1We use Shannon entropy H̃(p) := �Px p(x) log p(x)
albeit normalized (i.e. divided) by maximum possible entropy
of the distribution to control for dimension.

Figure 2: Entropy of gradient-based gŷ(x) and LOO
Dŷ(x) FI distributions. Results are from models with
full spectrum of projection functions.

IMDb 20-News SST
BiLSTM (tanh) -0.935 -0.675 -0.866
Transformer (dot) -0.830 -0.409 -0.810

Table 2: Correlation between sparsegen parameter2 �
and entropy of gradient-based input FI H̃(gŷ(x)).

has influence on an intermediate representation.
Results in Table 1 show consistently high entropy
in the distribution of the influence of inputs xi

on an intermediate representation hp across all
datasets, model architectures, and projection
functions, which suggests the relationship between
intermediate representations and inputs is far from
one-to-one in these tasks.

Sparse Attention 6= Sparse Input Feature
Importance. Our prior results demonstrated
that—even when using sparse attention—we can-
not identify a subset of influential inputs directly
through intermediate representations; we explore
whether a subset can still be identified through
FI metrics. In the case where the normalized FI
distribution highlights only a few key items, the
distribution will, by definition, have low entropy.
Thus, we explore whether sparse attention leads to
lower entropy input FI distributions in comparison
to standard attention. We find no such trend;
Fig. 2 shows that across all models and settings,
the entropy of the FI distribution is quite high.
Further, we see a consistent negative correlation
between this entropy and the sparsity parameter
of the sparsegen projection (Table 2), implying
that entropy of feature importance increases as we
raise the degree of sparsity in ↵.

Correlation between Attention and Feature Im-
portance. Finally, we follow the experimental
setup of Jain and Wallace (2019), who postulate
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Figure 3: Correlation between the attention distribu-
tion and input FI measures as a function of the spar-
sity penalty � used in the projection function �sparseg.
x-axis is log-scaled for � < 0 since � 2 (�1, 1). Re-
sults are from the IMDb dataset.

that if the attention distribution indicates which
inputs influence model behavior, then one may
reasonably expect attention to correlate2 with FI
measures of the input. While they find only a weak
correlation, we explore how inducing sparsity
in the attention distribution affects this result.
Surprisingly, Fig. 3 shows a downward trend in
this correlation as the sparsity parameter � of the
sparsegen projection function is increased. As
argued by Wiegreffe and Pinter (2019), a lack of
this correlation does not indicate attention cannot
be used as explanation; FI measures are not ground-
truth indicators of critical inputs. However, the
inverse relationship between input FI and attention
is rather surprising. If anything, we may surmise
sparsity in ↵ leads to less faithful explanations
from ↵. From these results, we posit that promot-
ing sparsity in attention distribution may simply
lead to the dispersion of information to different
intermediate representations, a behavior similar
to that seen when constraining attention for diver-
gence from another distribution, i.e., in the adver-
sarial experiments of Wiegreffe and Pinter (2019)
compared to those of Jain and Wallace (2019).

5 Related Work

The use of attention as an indication of inputs’ influ-
ence on model decisions may at first seem natural;
yet a large body of work has recently challenged
this practice. Perhaps the first to do so was Jain
and Wallace (2019), which revealed both a lack of
correlation between the attention distribution and
well established feature importance metrics and of

2We use Kendall’s ⌧ -b correlation (Knight, 1966).

unique optimal attention weights.3 Subsequently,
other studies arrived at similar results: Grimsley
et al. (2020) found evidence that causal explana-
tions are not attainable from attention layers over
text data; Jacovi and Goldberg (2020) explored
the faithfulness of attention heatmaps; Pruthi et al.
(2020) showed that attention masks can be trained
to give deceptive explanations. We view this work
as another such study, exploring attention’s innate
interpretability on a different axis.

Further, this work fits into the context of a larger
body of interpretability research in NLP, which
has challenged the informal use of terms such as
faithfulness, plausibility, and explainability (Lip-
ton, 2018; Arrieta et al., 2020; Jacovi and Gold-
berg, 2021, inter alia) and tried to quantify the
reliability of current definitions (Atanasova et al.,
2020a). While we consider their findings in our
experimental design—e.g., in our choice of feature
importance metrics—we recognize that further ex-
periments would be needed to address all of their
concerns; for example, this work could be extended
by using the benchmark created by DeYoung et al.
(2020) as an additional metric of interpretability.

6 Conclusion

Prior work has cited interpretability as a driving
factor for promoting sparsity in attention distribu-
tions. We explore how induced sparsity affects
the ability to use attention as a tool for explaining
model decisions. In our experiments on text clas-
sification tasks, we see that while sparse attention
distributions may allow us to pinpoint influential
intermediate representations, we are unable to find
any plausible mapping from sparse attention to a
small, critical set of influential inputs. Rather, we
find evidence that inducing sparsity may make it
even less plausible to use the attention distribution
to interpret model behavior. We conclude that we
need further reason to believe sparse attention in-
creases model interpretability as our results do not
support such claims.
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Ethical Considerations

Machine learning models are being deployed in an
increasing number of sensitive situations. In these
settings, it is critical that models are interpretable,
so that we can avoid e.g., inadvertent racial or gen-
der bias. Giving a false sense of interpretability can
allow models with undesirable (i.e., unethical or un-
stable) behavior to fly under the radar. We view this
work as another critique of interpretability claims
and hope our results will encourage the more care-
ful consideration of interpretability assumptions
when using machine learning models in practice.
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Abstract

Mechanisms for encoding positional informa-
tion are central for transformer-based language
models. In this paper, we analyze the po-
sition embeddings of existing language mod-
els, finding strong evidence of translation in-
variance, both for the embeddings themselves
and for their effect on self-attention. The de-
gree of translation invariance increases dur-
ing training and correlates positively with
model performance. Our findings lead us
to propose translation-invariant self-attention
(TISA), which accounts for the relative posi-
tion between tokens in an interpretable fashion
without needing conventional position embed-
dings. Our proposal has several theoretical ad-
vantages over existing position-representation
approaches. Experiments show that it im-
proves on regular ALBERT on GLUE tasks,
while only adding orders of magnitude less po-
sitional parameters.

1 Introduction

The recent introduction of transformer-based lan-
guage models by Vaswani et al. (2017) has set
new benchmarks in language processing tasks such
as machine translation (Lample et al., 2018; Gu
et al., 2018; Edunov et al., 2018), question answer-
ing (Yamada et al., 2020), and information extrac-
tion (Wadden et al., 2019; Lin et al., 2020). How-
ever, because of the non-sequential and position-
independent nature of the internal components of
transformers, additional mechanisms are needed to
enable models to take word order into account.

Liu et al. (2020) identified three important crite-
ria for ideal position encoding: Approaches should
be inductive, meaning that they can handle se-
quences and linguistic dependencies of arbitrary
length, data-driven, meaning that positional depen-
dencies are learned from data, and efficient in terms
of the number of trainable parameters. Separately,

Shaw et al. (2018) argued for translation-invariant
positional dependencies that depend on the relative
distances between words rather than their absolute
positions in the current text fragment. It is also im-
portant that approaches be parallelizable, and ide-
ally also interpretable. Unfortunately, none of the
existing approaches for modeling positional depen-
dencies satisfy all these criteria, as shown in Table
1 and in Sec. 2. This is true even for recent years’
state-of-the-art models such as BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), ALBERT (Lan
et al., 2020), and ELECTRA (Clark et al., 2020),
which require many positional parameters but still
cannot handle arbitrary-length sequences.

This paper makes two main contributions: First,
in Sec. 3, we analyze the learned position embed-
dings in major transformer-based language models.
Second, in Sec. 4, we leverage our findings to pro-
pose a new positional-dependence mechanism that
satisfies all desiderata enumerated above. Experi-
ments verify that this mechanism can be used along-
side conventional position embeddings to improve
downstream performance. Our code is available.

2 Background

Transformer-based language models (Vaswani
et al., 2017) have significantly improved model-
ing accuracy over previous state-of-the-art models
like ELMo (Peters et al., 2018). However, the non-
sequential nature of transformers created a need for
other mechanisms to inject positional information
into the architecture. This is now an area of active
research, which the rest of this section will review.

The original paper by Vaswani et al. (2017) pro-
posed summing each token embedding with a posi-
tion embedding, and then used the resulting embed-
ding as the input into the first layer of the model.
BERT (Devlin et al., 2019) reached improved per-
formance training data-driven d-dimensional em-
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Induct- Data- Parameter Translation Parallel Interpret-
Method ive? driven? efficient? invariant? -izable? able?

Sinusoidal position embedding (Vaswani et al., 2017) 3 7 3 7 3 7
Absolute position embedding (Devlin et al., 2019) 7 3 7 7 3 7
Relative position embedding (Shaw et al., 2018) 7 3 3 3 7 7
T5 (Raffel et al., 2020) 7 3 3 3 3 3
Flow-based (Liu et al., 2020) 3 3 3 7 7 7
Synthesizer (Tay et al., 2020) 7 3 3 7 3 7
Untied positional scoring (Ke et al., 2021) 7 3 7 7 3 7
Rotary position embedding (Su et al., 2021) 3 7 3 3 3 7

Translation-invariant self-attention (proposed) 3 3 3 3 3 3

Table 1: Characteristics of position-representation approaches for different language-modeling architectures.

beddings for each position in text snippets of at
most n tokens. A family of models have tweaked
the BERT recipe to improve performance, includ-
ing RoBERTa (Liu et al., 2019) and ALBERT (Lan
et al., 2020), where the latter has layers share the
same parameters to achieve a more compact model.

All these recent data-driven approaches are re-
stricted to fixed max sequence lengths of n tokens
or less (typically n = 512). Longformer (Beltagy
et al., 2020) showed modeling improvements by
increasing n to 4096, suggesting that the cap on
sequence length limits performance. However, the
Longformer approach also increased the number
of positional parameters 8-fold, as the number of
parameters scales linearly with n; cf. Table 2.

Clark et al. (2019) and Htut et al. (2019) ana-
lyzed BERT attention, finding some attention heads
to be strongly biased to local context, such as the
previous or the next token. Wang and Chen (2020)
found that even simple concepts such as word-order
and relative distance can be hard to extract from
absolute position embeddings. Shaw et al. (2018)
independently proposed using relative position em-
beddings that depend on the signed distance be-
tween words instead of their absolute position, mak-
ing local attention easier to learn. They reached
improved BLEU scores in machine translation, but
their approach (and refinements by Huang et al.
(2019)) are hard to parallelize, which is unattrac-
tive in a world driven by parallel computing. Zeng
et al. (2020) used relative attention in speech syn-
thesis, letting each query interact with separate
matrix transformations for each key vector, depend-
ing on their relative-distance offset. Raffel et al.
(2020) directly model position-to-position interac-
tions, by splitting relative-distance offsets into q
bins. These relative-attention approaches all facili-
tate processing sequences of arbitrary length, but
can only resolve linguistic dependencies up to a
fixed predefined maximum distance.

Tay et al. (2020) directly predicted both word
and position contributions to the attention matrix
without depending on token-to-token interactions.
However, the approach is not inductive, as the size
of the attention matrix is a fixed hyperparameter.

Liu et al. (2020) used sinusoidal functions with
learnable parameters as position embeddings. They
obtain compact yet flexible models, but use a neural
ODE, which is computationally unappealing.

Ke et al. (2021) showed that self-attention works
better if word and position embeddings are untied
to reside in separate vector spaces, but their pro-
posal is neither inductive nor parameter-efficient.

Su et al. (2021) propose rotating each embed-
ding in the self-attention mechanism based on its
absolute position, thereby inducing translational
invariance, as the inner product of two vectors is
conserved under rotations of the coordinate system.
These rotations are, however, not learned.

The different position-representation approaches
are summarized in Table 1. None of them satisfy
all design criteria. In this article, we analyze the po-
sition embeddings in transformer models, leading
us to propose a new positional-scoring mechanism
that combines all desirable properties (final row).

3 Analysis of Existing Language Models

In this section, we introspect selected high-profile
language models to gain insight into how they have
learned to account for the effect of position.

3.1 Analysis of Learned Position Embeddings
First, we stack the position embeddings in the ma-
trix EP ∈ Rn×d, and inspect the symmetric matrix
P = EPE

T
P ∈ Rn×n, where Pi,j represents the

inner product between the ith and jth embedding
vectors. If inner products are translation invariant,
Pi,j will only depend on the difference between the
indices, j − i, giving a Toeplitz matrix, a matrix
where each diagonal is constant.
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Figure 1: Heatmaps visualizing the matrix P = EPE
T
P of position-embedding inner products for different models.

The greater the inner product between the embeddings, the brighter the color. See appendix Figs. 4, 5 for more.

Fig. 1 visualizes the P -matrices for the position
embeddings in a number of prominent transformer
models, listed from oldest to newest, which also
is in order of increasing performance. We note
that a clear Toeplitz structure emerges from left
to right. Translation invariance is also seen when
plotting position-embedding cosine similarities, as
done by Wang and Chen (2020) for transformer-
based language models and by Dosovitskiy et al.
(2020) for 2D transformers modeling image data.

In Fig. 2 we further study how the degree of
Toeplitzness (quantified by R2, the amount of the
variance among matrix elements Pi,j explained by
the best-fitting Toeplitz matrix) changes for differ-
ent ALBERT models. With longer training time
(i.e., going from ALBERT v1 to v2), Toeplitzness
increases, as the arrows show. This is associated
with improved mean dev-set score. Such evolution
is also observed in Wang and Chen (2020, Fig. 8).

3.2 Translation Invariance in Self-Attention
Next, we analyze how this translation invariance is
reflected in self-attention. Recall that Vaswani et al.
(2017) self-attention can be written as

att(Q,K, V ) = softmax
(
QKT
√
dk

)
V , (1)

and define position embeddings EP , word em-
beddings EW , and query and key transformation
weight matrices WQ and WK . By taking

QKT = (EW + EP )WQW
T
K(EW + EP )T (2)

and replacing each row of EW by the average word
embedding across the entire vocabulary, we obtain
a matrix we call F̂P that quantifies the average ef-
fect ofEP on the softmax in Eq. (1). Plots of the re-
sulting F̂P for all 12 ALBERT-base attention heads
in the first layer are in appendix Fig. 8. Importantly,
these matrices also exhibit Toeplitz structure. Fig.
3 graphs sections through the main diagonal for

selected heads, showing peaks at short relative dis-
tances, echoing Clark et al. (2019) and Htut et al.
(2019). In summary, we conclude that position en-
codings, and their effect on softmax attention, have
an approximately translation-invariant structure in
successful transformer-based language models.

4 Proposed Self-Attention Mechanism

We now introduce our proposal for parameterizing
the positional contribution to self-attention in an ef-
ficient and translation-invariant manner, optionally
removing the position embeddings entirely.

4.1 Leveraging Translation Invariance for
Improved Inductive Bias

Our starting point is the derivation of Ke et al.
(2021). They expand QKT while ignoring cross
terms, yielding

QKT ≈ EWWQW
T
KE

T
W + EPWQW

T
KE

T
P , (3)

an approximation they support by theory and em-
pirical evidence. They then “untie” the effects of
words and positions by using different W -matrices
for the two terms in Eq. (3). We agree with sepa-
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Figure 2: Scatterplot of the degree of Toeplitzness of
P for different ALBERT models (v1→v2) against av-
erage performance numbers (from Lan et al.’s GitHub)
over SST-2, MNLI, RACE, and SQuAD 1.1 and 2.0.
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Figure 3: Positional responses of select attention heads.
Left: Sections (F̂P )i,j through F̂P of ALBERT base
v2, varying j for 5 different i, keeping j = i centered.
The sections are similar regardless of i since F̂P is
close to Toeplitz. Colors distinguish different heads.
Right: TISA scoring functions, attending to similar po-
sitions as heads on the left. Larger plots in Figs. 6, 7.

rating these effects, but also see a chance to reduce
the number of parameters.

Concretely, we propose to add a second term
FP ∈ Rn×n, a Toeplitz matrix, inside the parenthe-
ses of Eq. (1). FP can either a) supplement or b)
replace the effect of position embeddings on atten-
tion in our proposed model. For case a), we simply
add FP to the existing expression inside the soft-
max, while for case b) a term

√
dkFP is inserted in

place of the term EPWQW
T
KE

T
P in Eq. (3). This

produces two new self-attention equations:

att=





softmax
(
QKT
√
dk

+FP

)
V a)

softmax
(
QWKT

W√
dk

+FP

)
VW b)

(4)

where the inputs QW , KW , and VW (defined by
QW = EWWQ, and similarly forKW and VW ) do
not depend on the position embeddings EP . Case
a) is not as interpretable as TISA alone (case b),
since the resulting models have two terms, EP and
FP , that share the task of modeling positional infor-
mation. Our two proposals apply to any sequence
model with a self-attention that follows Eq. (1),
where the criteria in Table 1 are desirable.

4.2 Positional Scoring Function

Next, we propose to parameterize the Toeplitz ma-
trix FP using a positional scoring function fθ(·)
on the integers Z, such that (FP )i,j =fθ(j − i). fθ
defines FP -matrices of any size n. The value of
fθ(j−i) directly models the positional contribution
for how the token at position i attends to position
j. We call this translation-invariant self-attention,
or TISA. TISA is inductive and can be simplified
down to arbitrarily few trainable parameters.

Let k = j − i. Based on our findings for F̂P
in Sec. 3, we seek a parametric family {fθ} that
allows both localized and global attention, without
diverging as |k| → ∞. We here study one family

Standard Ke et al. (2021) TISA

General formula nd nd + 2d2 3SHL

Longformer 3,145,728 4,325,376 2,160
BERT/RoBERTa 393,216 1,572,864 2,160
ALBERT 65,536 98,304 2,160

Table 2: Number of positional parameters for base mod-
els of different language-model architectures and dif-
ferent positional information processing methods, with
max sequence length n ∈ (512, 4096), position em-
beddings of dimension d ∈ (128, 768), S = 5 kernels,
H=12 attention heads, and L=12 layers with distinct
TISA positional scoring functions. Parameter sharing
gives ALBERT lower numbers. TISA can be used
alone or added to the counts in other columns.

that satisfies the criteria: the radial-basis functions

fθ (k) =
∑S

s=1
as exp

(
− |bs| (k − cs)2

)
. (5)

Their trainable parameters are θ = {as, bs, cs}Ss=1,
i.e., 3 trainable parameters per kernel s. Since these
kernels are continuous functions (in contrast to the
discrete bins of Raffel et al. (2020)), predictions
change smoothly with distance, which seems intu-
itively meaningful for good generalization.

Lin et al. (2019) found that word-order informa-
tion in BERTs position embeddings gets increas-
ingly washed out from layer 4 onward. As sug-
gested by Dehghani et al. (2019) and Lan et al.
(2020), we inject positional information into each
of the H heads at all L layers, resulting in one
learned function fθ(h,l) for each head and layer.
The total number of positional parameters of TISA
is then 3SHL. As seen in Table 2, this is several
orders of magnitude less than the embeddings in
prominent language models.

The inductivity and localized nature of TISA
suggests the possibility to rapidly pre-train models
on shorter text excerpts (small n), scaling up to
longer n later in training and/or at application time,
similar to the two-stage training scheme used by
Devlin et al. (2019), but without risking the under-
training artifacts visible for BERT at n > 128 in
Figs. 1 and 4. However, we have not conducted any
experiments on the performance of this option.

5 Experiments

The main goal of our experiments is to illustrate
that TISA can be added to models to improve their
performance (Table 3a), while adding a minuscule
amount of extra parameters. We also investigate
the performance of models without position em-
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Task Baseline S=1 3 5 ∆ ∆%

SST-2 92.9 93.3 93.1 93.1 0.4 6.5%
MNLI 83.8 84.1 84.4 84.8 1.0 5.9%
QQP 88.2 88.0 88.3 88.3 0.1 1.2%
STS-B 90.3 90.4 90.0 90.4 0.1 1.5%
CoLA 57.2 57.0 56.5 58.5 1.3 2.9%
MRPC 89.6 90.1 89.0 90.1 0.5 5.3%
QNLI 91.6 91.7 91.4 91.6 0.1 0.4%
RTE 72.9 71.1 73.6 73.6 0.7 2.7%

(a) ALBERT base v2 models with position embeddings

Task Baseline S=1 3 5 ∆ ∆%

SST-2 85.1 85.9 85.8 86.0 0.9 6.2%
MNLI 78.8 80.9 81.4 81.6 2.8 13.4%
QQP 86.3 86.2 86.5 86.8 0.5 3.4%
STS-B 89.0 89.0 89.1 89.1 0.1 0.3%
MRPC 82.8 83.1 83.3 83.1 0.5 3.3%
QNLI 86.6 87.2 87.4 87.7 1.1 7.8%
RTE 62.1 61.7 62.5 62.8 0.7 1.9%

(b) ALBERT base v2 models without position embeddings

Table 3: GLUE task dev-set performance (median over
5 runs) with TISA (S kernels) and without (baseline).
∆ is the maximum performance increase in a row and
∆% is the corresponding relative error reduction rate.

beddings (Table 3b), comparing TISA to a bag-
of-words baseline (S = 0). All experiments use
pretrained ALBERT base v2 implemented in Hug-
gingface (Wolf et al., 2020). Kernel parameters
θ(h) for the functions in Eq. (5) were initialized
by regression to the F̂P profiles of the pretrained
model, (see Appendix C for details); example plots
of resulting scoring functions are provided in Fig.
3. We then benchmark each configuration with and
without TISA for 5 runs on GLUE tasks (Wang
et al., 2018), using jiant (Phang et al., 2020) and
standard dataset splits to evaluate performance.

Our results in Table 3a show relative error reduc-
tions between 0.4 and 6.5% when combining TISA
and conventional position embeddings. These
gains are relatively stable regardless of S. We also
note that Lan et al. (2020) report 92.9 on SST-2 and
84.6 on MNLI, meaning that our contribution leads
to between 1.3 and 2.8% relative error reductions
over their scores. The best performing architecture
(S=5), gives improvements over the baseline on 7
of the 8 tasks considered and on average increases
the median F1 score by 0.4 points. All these gains
have been realized using a very small number of
added parameters, and without pre-training on any
data after adding TISA to the architecture. The
only joint training happens on the training data of
each particular GLUE task.

Results for TISA alone, in Table 3b, are not as

strong. This could be because these models are
derived from an ALBERT model pretrained using
conventional position embeddings, since we did
not have the computational resources to tune from-
scratch pretraining of TISA-only language models.

Figs. 3 and 6 plot scoring functions of different
attention heads from the initialization described
in Appendix C. Similar patterns arose consistently
and rapidly in preliminary experiments on pretrain-
ing TISA-only models from scratch. The plots
show heads specializing in different linguistic as-
pects, such as the previous or next token, or multi-
ple tokens to either side, with other heads showing
little or no positional dependence. This mirrors the
visualizations of ALBERT base attention heads in
Figs. 3, 6, 7, 8 and the findings of Htut et al. (2019)
and Clark et al. (2019) on BERT, but TISA makes
this directly visible in an interpretable model, with-
out having to probe correlations in a black box.

Interestingly, the ALBERT baseline on STS-B
in Table 3a is only 1.3 points ahead of the bag-
of-words baseline in Table 3b. This agrees with
experiments shuffling the order of words (Pham
et al., 2020; Sinha et al., 2021) finding that modern
language models tend to focus mainly on higher-
order word co-occurrences, rather than word order,
and suggests that word-order information is under-
utilized in state-of-the-art language models.

6 Conclusion

We have analyzed state-of-the-art transformer-
based language models, finding that translation-
invariant behavior emerges during training. Based
on this we proposed TISA, the first positional infor-
mation processing method to simultaneously sat-
isfy the six key design criteria in Table 1. Exper-
iments demonstrate competitive downstream per-
formance. The method is applicable also to trans-
former models outside language modeling, such as
modeling time series in speech or motion synthe-
sis, or to describe dependencies between pixels in
computer vision.
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A Visualizing EPE
T
P for Additional

Language Models

Fig. 1 shows the inner product between different
position embeddings for the models BERT base
uncased, RoBERTa base, ALBERT base v1 as well
as ALBERT xxlarge v2. Leveraging our analysis
findings of translation invariance in the matrix of
EPE

T
P in these pretrained networks, we investigate

the generality of this phenomenon by visualizing
the same matrix for additional existing large lan-
guage models. We find that similar Toeplitz pat-
terns emerge for all investigated networks.

B Coefficient of Determination R2

The coefficient of determination, R2, is a widely
used concept in statistics that measures what frac-
tion of the variance in a dependent variable that can
be explained by an independent variable. Denoting
the Residual Sum of Squares, RSS, and Total Sum
of Squares, TSS, we have that

R2 = 1− RSS
TSS , (6)

where R2 = 0 means that the dependent variable
is not at all explained, and R2 = 1 means that
the variance is fully explained by the independent
variable.

Applied to a matrix, A ∈ Rn×n, to determine its
degree of Toeplitzness, we get RSS by finding the
Toeplitz matrix, AT ∈ Rn×n, that minimizes the
following expression:

RSS = minAT

n∑

i=1

n∑

j=1

(A−AT )2i,j (7)

Furthermore, we can compute TSS as:

TSS =
n∑

i=1

n∑

j=1


Ai,j −


 1

n2

n∑

i=1

n∑

j=1

Ai,j






2

(8)

C Extracting ALBERT positional scores

In order to extract out the positional contributions
to the attention scores from ALBERT, we disentan-
gle the positional and word-content contributions
from equation (3), and remove any dependencies
on the text sequence through EW . We exchange
EW ≈ EW , with the average word embedding

over the entire vocabulary, which we call EW .

FP ≈
1√
dk

(EWWQW
T
KE

T
P+ (9)

+ EPWQW
T
KE

T
W + EPWQW

T
KE

T
P ) (10)

≈ 1√
dk

(EWWQW
T
KE

T
P+ (11)

+ EPWQW
T
KE

T
W

+ EPWQW
T
KE

T
P ) (12)

This way, we can disentangle and extract the posi-
tional contributions from the ALBERT model.

Initialization of Position-Aware Self-Attention
Using this trick, we initialize FP with formula (12).
Since FP is only generating the positional scores,
which are independent of context, it allows for train-
ing a separate positional scorer neural network to
predict the positional contributions in the ALBERT
model. Updating only 2,160 parameters (see Ta-
ble 2) significantly reduces the computational load.
This pretraining initialization scheme converges in
less than 20 seconds on a CPU.

Removing Position Embeddings When remov-
ing the effect of position embeddings, we calculate
the average position embedding and exchange all
position embeddings for it. This reduces the varia-
tion between position embeddings, while conserv-
ing the average value of the original input vectors
EW +EP .

Extracted Attention Score Contributions
Leveraging our analysis findings of translation
invariance in large language models, we visualize
the scoring functions as a function of relative
distance offset between tokens. Fig. 3 shows the
implied scoring functions for 4 attention heads for
5 different absolute positions. Figs. 6, 7 show all
12 attention heads of ALBERT base v2 with TISA.

D Number of Positional Parameters of
Language Models

In the paper, define positional parameters as those
modeling only positional dependencies. In most
BERT-like models, these are the position embed-
dings only (typically n×d parameters). Ke et al.
(2021) propose to separate position and content
embeddings, yielding more expressive models with
separate parts of the network for processing sepa-
rate information sources. In doing so, they intro-
duce two weight matrices specific to positional in-
formation processing, UQ∈Rd×d and UK ∈Rd×d,
totaling nd+2d2 positional parameters.
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Figure 4: Visualizations of the inner-product matrix P = EPE
T
P ∈ Rn×n for different BERT, ELECTRA, and

RoBERTa models. We see that ELECTRA and RoBERTa models show much stronger signs of translational invari-
ance than their BERT counterparts. Most BERT models follow the pattern noted by Wang and Chen (2020), where
the Toeplitz structure is much more pronounced for the first 128 × 128 submatrix, reflecting how these models
mostly were trained on 128-token sequences, and only scaled up to n = 512 for the last 10% of training (Devlin
et al., 2019). Position embeddings 385 through 512 of the BERT cased models show a uniform color, suggesting
that these embeddings are almost completely untrained.

0 100 200 300 400 500

0

100

200

300

400

500

(a) ALBERT base v1
0 100 200 300 400 500

0

100

200

300

400

500

(b) ALBERT large v1
0 100 200 300 400 500

0

100

200

300

400

500

(c) ALBERT xlarge v1
0 100 200 300 400 500

0

100

200

300

400

500

(d) ALBERT xxlarge v1

0 100 200 300 400 500

0

100

200

300

400

500

(e) ALBERT base v2
0 100 200 300 400 500

0

100

200

300

400

500

(f) ALBERT large v2
0 100 200 300 400 500

0

100

200

300

400

500

(g) ALBERT xlarge v2
0 100 200 300 400 500

0

100

200

300

400

500

(h) ALBERT xxlarge v2

Figure 5: Visualizations of the inner-product matrix P = EPE
T
P ∈ Rn×n for different ALBERT models (Lan

et al., 2020). We plot both v1 and v2 to show the progression towards increased Toeplitzness during training.

Hyperparameter Selection We performed a
manual hyperparameter search starting from the
hyperparameters that the Lan et al. (2020) re-

port in https://github.com/google-research/
albert/blob/master/run_glue.sh. Our hyper-
parameter config files can be found with our code.
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Figure 6: Positional responses of all attention heads. Sections through F̂P of ALBERT base v2, aligned to the
main diagonal, (left) show similar profiles as the corresponding TISA scoring functions (right). Vertical axes differ
due to 1) the scaling factor

√
dk and 2) softmax being invariant to vertical offset.
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Figure 7: Rows from the positional attention matrices F̂P for all ALBERT base v2 attention heads, centered on
the main diagonal. Note that the vertical scale generally differs between plots. The plots are essentially aligned
sections through the matrices in Fig. 8, but zoomed in to show details over short relative distances since this is
where the main peak(s) are located, and the highest values are by far the most influential on softmax attention.

E Reproducibility

Experiments were run on a GeForce RTX
2080 machine with 8 GPU-cores. Each down-
stream experiment took about 2 hours to run.

Datasets and code can be downloaded from
https://github.com/nyu-mll/jiant/blob/

master/guides/tasks/supported_tasks.md

and https://github.com/ulmewennberg/tisa.
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Figure 8: Values extracted from the positional attention matrices for all ALBERT base v2 first-layer attention heads.
Some heads are seen to be sensitive to position, while others are not. Note that these visualizations deliberately use
a different color scheme from other (red) matrices, to emphasize the fact that the matrices visualized here represent
a different phenomenon and are not inner products.
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Abstract

Determining the relative importance of the el-
ements in a sentence is a key factor for effort-
less natural language understanding. For hu-
man language processing, we can approximate
patterns of relative importance by measuring
reading fixations using eye-tracking technol-
ogy. In neural language models, gradient-
based saliency methods indicate the relative
importance of a token for the target objective.
In this work, we compare patterns of relative
importance in English language processing by
humans and models and analyze the underly-
ing linguistic patterns. We find that human pro-
cessing patterns in English correlate strongly
with saliency-based importance in language
models and not with attention-based impor-
tance. Our results indicate that saliency could
be a cognitively more plausible metric for in-
terpreting neural language models. The code is
available on github: https://github.com/
beinborn/relative_importance.

1 Introduction

When children learn to read, they first focus on each
word individually and gradually learn to anticipate
frequent patterns (Blythe and Joseph, 2011). More
experienced readers are able to completely skip
words that are predictable from the context and to
focus on the more relevant words of a sentence
(Schroeder et al., 2015). Psycholinguistic studies
aim at unraveling the characteristics that determine
the relevance of a word and find that lexical factors
such as word class, word frequency, and word com-
plexity play an important role, but that the effects
vary depending on the sentential context (Rayner
and Duffy, 1986).

In natural language processing, the relative im-
portance of words is usually interpreted with re-
spect to a specific task. Emotional adjectives are
most relevant in sentiment detection (Socher et al.,

2013), relative frequency of a term is an indicator
for information extraction (Wu et al., 2008), the
relative position of a token can be used to approx-
imate novelty for summarisation (Chopra et al.,
2016), and function words play an important role
in stylistic analyses such as plagiarism detection
(Stamatatos, 2011). Neural language models are
trained to be a good basis for any of these tasks
and are thus expected to represent a more general
notion of relative importance (Devlin et al., 2019).

Relative importance of the input in neural net-
works can be modulated by the so-called “attention”
mechanism (Bahdanau et al., 2014). Analyses of
image processing models indicate that attention
weights reflect cognitively plausible patterns of vi-
sual saliency (Xu et al., 2015; Coco and Keller,
2012). Recent research in language processing
finds that attention weights are not a good proxy
for relative importance because different attention
distributions can lead to the same predictions (Jain
and Wallace, 2019). Gradient-based methods such
as saliency scores seem to better approximate the
relative importance of input words for neural pro-
cessing models (Bastings and Filippova, 2020).

In this work, we compare patterns of relative im-
portance in human and computational English lan-
guage processing. We approximate relative impor-
tance for humans as the relative fixation duration in
eye-tracking data collected in naturalistic language
understanding scenarios. In related work, Sood
et al. (2020a) measure the correlation between at-
tention in neural networks trained for a document-
level question-answering task and find that the at-
tention in a transformer language model deviates
strongly from human fixation patterns. In this work,
we instead approximate relative importance in com-
putational models using gradient-based saliency
and find that it correlates much better with human
patterns.
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Figure 1: Example fixations for two subjects in the
ZuCo dataset for the sentence “The soundtrack alone
is worth the price of admission”. The numbers indicate
the fixation duration and the circles represent the ap-
proximate horizontal position of the fixation (positions
are simplified for better visualization). The plot at the
bottom indicates the relative importance of each token
averaged over all subjects.

2 Determining Relative Importance

The concept of relative importance of a token for
sentence processing encompasses several related
psycholinguistic phenomena such as relevance for
understanding the sentence, difficulty and novelty
of a token within the context, semantic and syntac-
tic surprisal, or domain-specificity of a token. We
take a data-driven perspective and approximate the
relative importance of a token by the processing
effort that can be attributed to it compared to the
other tokens in the sentence.

2.1 In Human Language Processing
The sentence processing effort can be approxi-
mated indirectly using a range of metrics such as
response times in reading comprehension experi-
ments (Su and Davison, 2019), processing duration
in self-paced reading (Linzen and Jaeger, 2016),
and voltage changes in electroencephalography
recordings (Frank et al., 2015). In this work, we ap-
proximate relative importance using eye movement
recordings during reading because they provide on-
line measurements in a comfortable experimental
setup which is more similar to a normal, uncon-
trolled reading experience. Eye-tracking technol-
ogy can measure with high accuracy how long a
reader fixates each word. The fixation duration and
the relative importance of a token for the reader are
strongly correlated with reading comprehension
(Rayner, 1977; Malmaud et al., 2020).

Language models that look ahead and take both
the left and right context into account are often
considered cognitively less plausible because hu-
mans process language incrementally from left to

right (Merkx and Frank, 2020). However, in human
reading, we frequently find regressions: humans
fixate relevant parts of the left context again while
already knowing what comes next (Rayner, 1998).
In Figure 1, subject 1 first reads the entire sentences
and then jumps back to the token “alone”. Subject
2 performs several regressions to better understand
the second half of the sentence. The fixation dura-
tion is a cumulative measure that sums over these
repeated fixations. Absolute fixation duration can
vary strongly between subjects due to differences
in reading speed but the relative fixation duration
provides a good approximation for the relative im-
portance of a token as it abstracts from individual
differences. We average the relative fixation dura-
tion over all subjects to obtain a more robust signal
(visualized in the plot at the bottom of Figure 1).

2.2 In Computational Language Processing

In computational language models, the interpreta-
tion of a token depends on the tokens in its context
but not all tokens are equally important. To account
for varying importance, so-called attention weights
regulate the information flow in neural networks
(Bahdanau et al., 2014). These weights are opti-
mized with respect to a target objective and higher
attention for an input token has been interpreted
as higher importance with respect to the output
(Vig, 2019). Recent research indicates that com-
plementary attention distributions can lead to the
same model prediction (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019) and that the removal
of input tokens with large attention weights often
does not lead to a change in the model’s prediction
(Serrano and Smith, 2019). In transformer models,
the attention weights often approximate an almost
uniform distribution in higher model layers (Abnar
and Zuidema, 2020). Bastings and Filippova (2020)
argue that saliency methods are more suitable for
assigning importance weights to input tokens.

Saliency methods calculate the gradient of the
output corresponding to the correct prediction with
respect to an input element to identify those parts
of the input that have the biggest influence on the
prediction (Lipton, 2018). Saliency maps were first
developed for image processing models to high-
light the areas of the image that are discriminative
with respect to the tested output class (Simonyan
et al., 2014). Li et al. (2016) adapt this method to
calculate the relative change of the output proba-
bilities with respect to individual input tokens in
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text classification tasks and Ding et al. (2019) cal-
culate saliency maps for interpreting the alignment
process in machine translation models.

In general-purpose language models such as
BERT (Devlin et al., 2019), the objective func-
tion tries to predict a token based on its context. A
saliency vector for a masked token thus indicates
the importance of each of the tokens in the context
of correctly predicting the masked token (Madsen,
2019).

We iterate over each token vector xi in our input
sequence x1, x2, ... xn. Let Xi be the input matrix
with xi being masked. The saliency sij for input
token xj for the prediction of the correct token
ti is then calculated as the Euclidean norm of the
gradient of the logit for xi.

sij = ‖∇xjfti(Xi)‖2 (1)

The saliency vector si indicates the relevance of
each token for the correct prediction of the masked
token ti.1 The saliency scores are normalized by
dividing by the maximum. We determine the rel-
ative importance of a token by summing over the
saliency scores for each token. For comparison,
we also approximate importance using attention
values from the last layer of each model as Sood
et al. (2020a).

2.3 Patterns of Relative Importance
Relative importance in human processing and in
computational models is sensitive to linguistic prop-
erties. Rayner (1998) provides a detailed overview
of token-level features that have been found to
correlate with fixation duration such as length,
frequency, and word class. On the contextual
level, lexical and syntactic disambiguation pro-
cesses cause regressions and thus lead to longer fix-
ation duration (Just and Carpenter, 1980; Lowder
et al., 2018). Computational models are also highly
susceptible to frequency effects and surprisal met-
rics calculated using language models can predict
the human processing effort (Frank et al., 2013).

The inductive bias of language processing mod-
els can be improved using the eye-tracking signal
(Barrett et al., 2018; Klerke and Plank, 2019) and
the modification leads to more “human-like” out-
put in generative tasks (Takmaz et al., 2020; Sood
et al., 2020b). This indicates that patterns of rela-
tive importance in computational representations

1Our implementation adapts code from https://
pypi.org/project/textualheatmap/. An alterna-
tive would be to multiply saliency and input (Alammar, 2020).

Dataset BERT Distil ALBERT Rand

Saliency GECO .54 .51 .48 .00
ZuCo .68 .64 .62 .00

Attention GECO .18 .06 .26 .00
ZuCo .11 .03 .37 .00

Table 1: Spearman correlation between relative fixation
duration by humans and attention and saliency in the
language models. Correlation values are averaged over
all sentences. Rand is a permutation baseline.

differ from human processing patterns. Previous
work focused on identifying links between the eye-
tracking signal and attention (Sood et al., 2020a).
To our knowledge, this is the first attempt to corre-
late fixation duration with saliency metrics.

The eye-tracking signal represents human read-
ing processes aimed at language understanding. In
previous work, we have shown that contextualized
language models can predict eye patterns associ-
ated with human reading (Hollenstein et al., 2021),
which indicates that computational models and hu-
mans encode similar linguistic patterns. It remains
an open debate to which extent language models
are able to approximate language understanding
(Bender and Koller, 2020). We are convinced that
language needs to be cooperatively grounded in
the real world (Beinborn et al., 2018). Purely text-
based language models clearly miss important as-
pects of language understanding but they can ap-
proximate human performance in an impressive
range of processing tasks. We aim to gain a deeper
understanding of the similarities and differences be-
tween human and computational language process-
ing to better evaluate the capabilities of language
models.

3 Methodology

We extract relative importance values for tokens
from eye-tracking corpora and language models as
described in section 2 and calculate the Spearman
correlation for each sentence.2 We first average the
correlation over all sentences to analyze whether
the importance patterns of humans and models are
comparable and then conduct token-level analyses.

3.1 Eye-tracking Corpora

We extract the relative fixation duration from two
eye-tracking corpora and average it over all read-
ers for each sentence. Both corpora record natural
reading and the text passages were followed by

2Kendall’s τ and KL divergence yield similar results.
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multiple-choice questions to test the readers’ com-
prehension.

GECO contains eye-tracking data from 14 na-
tive English speakers reading the entire novel The
Mysterious Affair at Styles by Agatha Christie (Cop
et al., 2017). The text was presented on the screen
in paragraphs.

ZuCo contains eye-tracking data of 30 native En-
glish speakers reading full sentences from movie
reviews and Wikipedia articles (Hollenstein et al.,
2018, 2020).3

3.2 Language Models

We compare three state-of-the-art language mod-
els trained for English: BERT, ALBERT, and Dis-
tilBERT.4 BERT was the first widely successful
transformer-based language model and remains
highly influential (Devlin et al., 2019). ALBERT
and DistilBERT are variants of BERT that require
less training time due to a considerable reduction
of the training parameters while maintaining simi-
lar performance on benchmark datasets (Lan et al.,
2019; Sanh et al., 2019).5 We analyze if the lighter
architectures have an influence on the patterns of
relative importance that the models learn.

4 Results

The results in Table 1 show that relative fixation
duration by humans strongly correlates with the
saliency values of the models. In contrast, attention-
based importance does not seem to be able to cap-
ture the human importance pattern. A random per-
mutation baseline that shuffles the importance as-
signed by the language model yields no correlation
(0.0) in all conditions.6 As the standard deviations
of the correlation across sentences are quite high
(ZuCo: ∼0.22, GECO: ∼0.39), the small differ-
ences between models can be neglected (although
they are consistent across corpora). For the subse-
quent analyses, we focus only on the BERT model

3We combine ZuCo 1.0 (T1, T2) and ZuCo 2.0. (T1).
4We use the Huggingface transformers imple-

mentation (Wolf et al., 2020) and the models
bert-based-uncased, albert-base-v2, and
distilbert-base-uncased.

5Reduction is achieved by parameter sharing across layers
(ALBERT) and by distillation which approximates the out-
put distribution of the original BERT model using a smaller
network (DistilBERT). See model references for details.

6We repeat the permutation 100 times and average the
correlation over all iterations.

Length Frequency
Sent Tok Sent Tok

GECO Human .69 .31 -.36 -.25
BERT .65 .27 -.48 -.28

ZuCO Human .75 .47 -.52 -.36
BERT .72 .36 -.65 -.40

Table 2: Spearman correlation between relative impor-
tance and word length and frequency. For the Sent con-
dition, correlation is calculated per sentence and aver-
aged. For Tok, importance is normalized by sentence
length and correlation is calculated over all tokens.

which yields the best results. The differences be-
tween the corpora might be related to the number of
sentences and the differences in average sentence
length (ZuCo: 924, 19.5, GECO: 4,926, 12.7).

Length and Frequency In eye-tracking data,
word length correlates with fixation duration be-
cause it takes longer to read all characters. The
correlation for frequency is inverse because high-
frequency words (e.g. “the”, “has”) are often
skipped in processing as they carry (almost) no
meaning (Rayner, 1998). For English, word fre-
quency and word length are both closely related to
word complexity (Beinborn et al., 2014). Language
models do not directly encode word length but they
are sensitive to word frequency.

Our results in Table 2 show that both token
length and frequency are strongly correlated with
relative importance on the sentence level. Inter-
estingly, the correlation decreases when it is cal-
culated directly over all tokens indicating that the
token-level relation between length and importance
is more complex than the correlation might suggest.

Word Class Figure 2 shows the average relative
importance of all tokens belonging to the same
word class (normalized by sentence length). We see
that both humans and BERT clearly assign higher
importance to content words (left) than to function
words (right). Interjections such as “Oh” in figure 3
receive the highest relevance which is understand-
able because they interrupt the reading flow. When
we look at individual sentences, we note that the
differences in importance are more pronounced in
the model saliency while human fixation duration
yields a smoother distribution over the tokens.

Novelty We extract the language model represen-
tations for each sentence separately whereas the
readers processed the sentences consecutively. If
tokens are mentioned repeatedly such as “Sherlock
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(a) Human Fixation (b) Model saliency
Figure 2: Relative importance of tokens with respect to word class. Relative importance is measured as relative
fixation duration for humans in GECO (left) and as relative gradient-based saliency in the BERT model (right).

Figure 3: Relative importance values for an example
sentence from the GECO corpus for the BERT model
and the human values.

Holmes” which also occurred in the sentence pre-
ceding the example in Figure 3), processing ease
increases for the reader, and not for the model.
Some language models are able to process multiple
sentences, but establishing semantic links across
sentences remains a challenge.

5 Conclusion

We find that human sentence processing patterns in
English correlate strongly with saliency-based im-
portance in language models and not with attention-
based importance. Our results indicate that saliency
could be a cognitively more plausible metric for in-
terpreting neural language models. In future work,
it would be interesting to test the robustness of
the approach with different variants for calculat-
ing saliency (Bastings and Filippova, 2020; Ding
and Koehn, 2021). As we conducted our analyses
only for English data, it is not yet clear whether
our results generalize across languages. We will
address this in future work using eye-tracking data
from non-English readers (Makowski et al., 2018;
Laurinavichyute et al., 2019) and comparing mono-
and multilingual models (Beinborn and Choenni,
2020). We want to extend the token-level analyses
to syntactic phenomena and cross-sentence effects.
For example, it would be interesting to see how
a language model encodes relative importance for
sentences that are syntactically correct but not se-

mantically meaningful (Gulordava et al., 2018).
Previous work has shown that the inductive bias

of recurrent neural networks can be modified to
obtain cognitively more plausible model decisions
(Bhatt et al., 2020; Shen et al., 2019). In principle,
our approach can also be applied to left-to-right
models such as GPT-2 (Radford et al., 2019). In
this case, the tokens at the beginning of the sen-
tence would be assigned disproportionately high
importance as the following tokens cannot con-
tribute to the prediction of preceding tokens in in-
cremental processing. It might thus be more useful
to only use the first fixation duration of the gaze sig-
nal for analyzing importance in left-to-right models.
However, we think that the regressions by the read-
ers provide valuable information about sentence
processing.

6 Ethical Considerations

Data from human participants were leveraged from
freely available datasets (Hollenstein et al., 2018,
2020; Cop et al., 2017). The datasets provide
anonymized records in compliance with ethical
board approvals and do not contain any information
that can be linked to the participants.
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A Additional Results

(a) Human Fixation (b) Model saliency
Figure 4: Relative importance of tokens with respect to word class in the GECO dataset. Relative importance is
measured as relative fixation duration for humans (top) and as relative gradient-based saliency in the BERT model
(bottom). This is the same figure as Figure 2 in the paper but it includes the number of instances per word class on
top of the respective bar.

Figure 5: Relative importance values with respect to word length from human readers and from the BERT model
for the GECO corpus.
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Figure 6: Relative importance values with respect to word frequency from human readers and from the BERT
model for the GECO corpus.

150



Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Short Papers), pages 151–157

August 1–6, 2021. ©2021 Association for Computational Linguistics

Abstract 

Pretrained language models (PLM) achieve 

surprising performance on the Choice of 

Plausible Alternatives (COPA) task. 

However, whether PLMs have truly 

acquired the ability of causal reasoning 

remains a question. In this paper, we 

investigate the problem of semantic 

similarity bias and reveal the vulnerability 

of current COPA models by certain attacks. 

Previous solutions that tackle the 

superficial cues of unbalanced token 

distribution still encounter the same 

problem of semantic bias, even more 

seriously due to the utilization of more 

training data. We mitigate this problem by 

simply adding a regularization loss and 

experimental results show that this solution 

not only improves the model’s 

generalization ability, but also assists the 

models to perform more robustly on a 

challenging dataset, BCOPA-CE, which 

has unbiased token distribution and is more 

difficult for models to distinguish cause and 

effect. 

1 Introduction 

Supervised learning algorithms recklessly 

absorbing all the correlations found in training 

data is statistically correct but might have missed 

the point (Ahuja et al., 2020). Hence, recent work 

has focused more on spurious correlations in 

datasets in computer vision and NLP (Jia and 

Liang, 2017; McCoy et al., 2019). In inference 

tasks over natural language, spurious correlation 

has been identified a lot, such as lexical and 

                                                           
*Corresponding Author 

grammatical constructs, word overlap, sentence 

length (Gururangan et al., 2018), and unbalanced 

token distribution (Poliak et al., 2018; Kavumba et 

al., 2019). COPA (Roemmele et al., 2011) is a 

natural language understanding task, which 

requires a system to choose either a cause or effect 

of a given story event. It is one of the natural 

language understanding tasks in SuperGlue 

benchmark (Wang et al., 2019). Pretrained 

language models gain a great improvement on 

COPA, such as BERT (Devlin et al., 2019), 

RoBERTa (Liu et al., 2019), and ALBERT (Lan et 

al., 2020). The recent state-of-the-art model on 

COPA, DeBERTa (He et al., 2020), reached a 

surprising accuracy of 98.4%. However, the 

complexity of causal reasoning and the 

requirements of world knowledge imply that the 

ability of causal reasoning in PLMs might be 

overestimated. It is worth exploring whether the 

models have acquired the ability of causal 

reasoning. 

We observe that 66.8% accuracy can be reached 

by a text semantic similarity model (Mulyar, 2020) 

based on BERT which is close to the performance 

(69.5%) of fine-tuning BERT on COPA training 

set. It indicates BERT is over-dependent on 

semantic similarity. Since the cause and effect of 
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A Sample from development dataset 

Premise: The woman banished the children from her 

property. 

ask-for: “cause” 

Alt1: The children hit a ball into her yard. × (effect) 

Alt2: The children trampled through her garden. √ (cause) 

Table 1: A challenging case where BERT predicts 

wrongly 
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the same event often share the similar context, can 

PLMs really discriminate what we are asking for? 

A special case where BERT made mistakes on 

COPA development set in Table 1 seems to confirm 

our conjecture. BERT is more likely to fail in these 

challenging samples where the wrong alternative is 

the answer of its reverse question type. These 

investigations imply the models with satisfactory 

performance might have focused excessively on 

the topic semantic similarity instead of 

understanding cause and effect more finely. For 

this purpose, we design several probing 

experiments (Section 2) to verify our conjecture: (1) 

perturbation with distractors, (2) masking question 

type. 

The main work on exploring bias in COPA is 

from Kavumba et al. (2019). They investigate 

unbalanced token distributions in correct answers 

in COPA training set and show that the good 

performance brought by BERT can be explained by 

its ability to exploit token distribution in 

alternatives. They augment the training set with a 

mirrored-COPA set to prevent the models from 

predicting with token distribution imprudently. 

However, we observed this improved model relies 

on semantic bias more seriously than the original 

PLMs. We further test the models on a new dataset, 

BCOPA-CE, which evaluates the ability of a 

system to distinguish the cause and effect and to 

reason without the clues of token distribution. For 

alleviating the semantic bias problem, we propose 

to add a regularization loss to the original objective 

(Section 3). Experimental results show that this 

solution is not only effective in our challenging test 

set, but improves the generalization ability of the 

model on the original test set. It also performs more 

robustly than the original PLMs in COPA-test hard 

set proposed by Kavumba et al. (2019). 

In sum, our contributions are as follows:  

(1) We explore the vulnerability of different 

COPA models by perturbing them with distractive 

alternatives. (2) We mitigate the weakness of 

COPA models by adding a regularization loss 

while maintaining their generalization ability. Our 

improved models also perform more robustly on 

the COPA-test hard set. (3) We introduce the 

BCOPA-CE dataset, which can evaluate the ability 

of a system to distinguish the cause and effect and 

to choose cause or effect under unbiased token 

distribution. 

2 Probing Experiments 

Unlike bias about token distribution or sentence 

length, indirect semantic cues cannot be analyzed 

statistically. We explore whether PLMs rely 

excessively on semantic similarity with special 

probing experiments. Firstly, we observe whether 

the model has dropped to a great extent if they see 

a distractive alternative, like a premise. This 

distractor cannot be the correct answer, but it has a 

higher similarity score than the correct alternative. 

Moreover, inspired by Table 1, we investigate 

whether the model is aware of the question type 

during prediction. This is achieved by evaluating 

the model’s performance while removing/masking 

the question type. We observe whether they still 

keep good performance without seeing the 

question type. We describe the model 

implementation details in Appendix A. 

2.1 Exp1：Perturbation with Distractors 

Model architecture: General PLMs assume that 

the first sentence and the second sentence describe 

a cause and an effect, respectively. For example, 

BERT take as input {cause, [SEP], effect}, which 

entails the question type in its formation. The 

general architecture in our experiment is shown in 

Figure 1. The shared parameters 𝜃,𝜔, 𝑏 are learned 

to classify each choice independently with the 

premise, where (𝑐𝑖, 𝑒𝑖) is the 𝑖-th cause-effect pair, 

taking the first hidden vector in the final PLM layer: 

 ℎ𝑖
0 =  𝜃(𝑐𝑖 , 𝑒𝑖) (1) 

yielding the logits for each cause-effect pair: 

 𝑧𝑖 = 𝜔
𝑇ℎ𝑖
0 + 𝑏 (2) 

For training, we pass the logits [𝑧0; 𝑧1] through a 

softmax function to determine a probability 

 

Figure 1: The general architecture of the PLMs on 

COPA task. 
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distribution and minimize the cross-entropy loss 

with the labels. For prediction, we choose the 

answer with the highest score by 𝑖∗ =
 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈{0,1}𝑧𝑖 . If we evaluate the trained 

models on ternary-choice test set, the prediction is 

then 𝑖∗  =  𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈{0,1,2}𝑧𝑖. 

Perturbation: We perturb models by adding a 

third choice, which does not affect human 

judgment. The “premise” is a good candidate since 

it is highly semantically related to itself while it 

cannot be the cause or effect of itself due to the 

non-reflexive trait of causality. We anticipate that 

the model will change its prediction when it meets 

the added choice. Meanwhile, we need to make 

sure that the performance drop is not from the 

increased difficulty of the problem since it 

becomes a ternary choice from a binary choice, 

hence we compare the results with a control 

experiment, where we add a choice randomly 

sampled from the COPA-test set. 

 COPA-random: We control the difficulty of 

perturbation test by taking a wrong choice 

randomly sampled from the COPA-test set as 

the third alternative for each sample. We refer 

to COPA-random as “Rand” in Table 2. 

 COPA-premise: we take the premise as the 

third alternative. We refer to COPA-premise 

as “Prem” in Table 2. 

2.2 Exp2: Masking Question Type 

As mentioned above, models are likely to ignore 

the question information (cause or effect, often 

share the same context) if they rely excessively on 

the semantic similarity. We mask the “ask-for” for 

each sample in COPA-test set by inputting the 

models with an arbitrary question type. The order 

of the alternative and the premise is determined by 

the question type. In masking setting, we randomly 

input [alternative; premise] or [premise; alternative] 

for each instance in spite of the question. In this 

way, half of the samples will keep the original 

question type, and the other samples get the wrong 

question type, which do not have the real correct 

answer. We observe whether these models still 

keep good performance without seeing the 

question type. If they do, the question type is 

ignored for the prediction of the models. We refer 

to this experimental setting as “Mask” in Table 2. 

                                                           
1 The PLMs could be found at 

https://github.com/huggingface/transformers 

The lower accuracy on “Mask” setting, the more 

robust the models are. 

2.3 Baseline models  

We conduct the aforementioned experiments with 

both traditional and SOTA COPA models. 

 CS: Sasaki et al. (2017) handled the COPA 

task by statistically estimating causality 

scores using causal knowledge extracted from 

a corpus with causal templates. 

 PLMs: We take BERT-large, RoBERTa-large, 

ALBERT-xxlarge-v1, and DeBERTa-large as 

baseline models (referred to as b-l, rb-l, alb, 

and db-l, respectively), and fine-tune them on 

the COPA-dev set, using the implementation 

from hugging face1.  

 PLMs-aug (b-l-aug, rb-l-aug, alb-aug and db-

l-aug): PLMs are fine-tuned on BCOPA, a 

dataset with unbiased token distribution 

between the correct alternatives and the 

wrong alternatives proposed by Kavumba et 

al. (2019). The BCOPA dataset was 

constructed by mirroring the original training 

set with a modified premise. 

2.4 Results and analysis 

As is shown in Table 2, The CS method based on 

causal knowledge is the most robust system, barely 

affected by the added alternative. PLMs show 

different degrees of weakness when they are 

disturbed by the added alternative. The defensive 

Model 

Exp1:  

Perturbation 

Exp2: 

Masking 

Rand 

 

Prem 

 

 

 

Test 

 

Mask 

 

CS 70.1 70.5 -0.4 70.8 61.1 

b-l 59.3 11.6 47.6 69.5 69.0 

b-l-aug 63.3 13.0 50.3 70.0 69.6 

rb-l 83.3 66.7 16.6 86.3 82.8 

rb-l-aug 85.6 65.7 19.9 87.3 83.5 

alb 86.7 71.9 14.7 88.0 80.2 

alb-aug 86.4 61.2 25.2 87.9 84.1 

db-l 90.8 77.9 12.9 91.6 87.8 

db-l-aug 91.1 78.9 12.2 91.8 88.8 

Table 2. The accuracy of models in probing 

experiments. “” denotes a negative indicator (the 

lower, the better) and “” denotes a positive indicator 

(the higher, the better). 
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ability of BERT is the weakest, which is almost 

completely fooled by distractor and remains the 

original accuracy without seeing the questions. 

RoBERTa, ALBERT, and DeBERTa also drop 

16.6%, 14.7%, 12.9% respectively compared with 

the performance of “Rand” setting. The fact that 

the systems perform worse on “Prem” (premise as 

a distractor) supports our hypothesis that PLMs 

have semantic similarity bias. This is because the 

premise is 100% similar to itself, being much more 

similar than a random distractor. For masking 

experiments, the theoretical accuracy of a perfectly 

robust model should be half of the chance-level 

(i.e., 50%) plus half of the original accuracy. The 

CS method achieves an accuracy of 61.1% and 

pays attention to the question type. On the contrary, 

PLMSs seem not to be aware of the question type 

and perform similarly without this information as 

original model setting. However, PLMs do not 

completely ignore the question type since they do 

not keep the same performance as the original test 

set. 

We also investigate the robustness of the 

debiased methods of augmenting training data 

which focus on the unbalanced token distributions 

proposed by Kavumba et al. (2019). They suffer 

from the same issue even more seriously than the 

original PLMs except DeBERTa. This might be 

due to the fact that the models are more likely to 

capture the semantic similarity since each 

alternative pair in BCOPA appears twice. 

3 Model-improving Method 

3.1 BCOPA-CE Test 

As is shown in Table 3, we introduce a balanced 

COPA test set, BCOPA-CE, by taking cause event 

and effect event as two alternatives for each 

premise. Specifically, for each premise of the 500 

samples in COPA-test set, we generate one event 

manually which is a plausible answer to the 

opposite question type of the original sample, In 

the sample in Table 3, for the premise: “The 

accident was my fault.”, we generate the cause of 

it: “I was absent-minded.”, since the original 

question is asking for “effect”. After this process, 

we obtain 500 triplets of <premise, cause, effect>. 

Then, we construct 1000 samples by giving two 

different questions (cause or effect) to each triplet. 

This guarantees the balanced token distribution 

between the correct and the wrong alternatives. 

The dataset generation details are described in 

Appendix B. Human evaluation has been 

conducted to ensure the quality of the new dataset 

in Appendix C. 

3.2 Regularization Loss 

We expect the model to make good choices while 

paying attention to the question type. For a sample 

in the COPA training set, the proposed loss 

includes two parts: The CrossEntropy loss and a 

regularization loss. The first part prompts the 

model to answer correctly given the question type. 

The extra regularization loss requires that a model 

should be neutral when it sees the opposite 

question type for the same premise and same 

alternatives, since neither alternative is the correct 

answer.  

General PLMs take the first input sentence as 

the cause, and the second sentence as the effect. 

Mathematically, the logits of two input sentences 

in reverse cause-effect order should be as close as 

possible, even if one of two alternatives is 

semantically similar to the premise (the correct 

answer of the original question). 

 𝐿 = (1 − 𝜆) ∗ 𝐿𝐶𝐸 + 𝜆 ∗ 𝐿𝑅𝑒𝑔   (3) 

 𝐿𝑅𝑒𝑔 =  ‖𝑧0
𝑟 − 𝑧1

𝑟‖2
2 (4) 

𝑧𝑖
𝑟  is the logit of input [𝑒𝑖; 𝑐𝑖]  computed by 

equation (1), which reverses the order of cause and 

effect of choice 𝑖 . We set 𝜆 = 0.01  in all 

experiments corresponding to regularization loss. 

3.3 Result and Analysis 

Table 4 demonstrates the performance of our 

improved models on the COPA-test set, the 

BCOPA-CE set and the COPA-hard set. It’s noted 

that the models with a regularization loss not only 

have improved performance on BCOPA-CE set, 

A Sample in COPA-test set New Samples in BCOPA-CE test set 

Premise: The accident was my fault. 

ask-for: “effect” 

Alt1: I felt guilty. √ 

Alt2: I pressed charges. × 

Premise: The accident was my fault. 

ask-for: “effect” 

Alt1: I felt guilty. √ 

Alt2:I was absent-minded. × 

Premise: The accident was my fault. 

ask-for: “cause” 

Alt1: I felt guilty. × 

Alt2: I was absent-minded. √ 

Table 3 The samples in COPA-test set and BCOPA-CE test set. 
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but also perform better than the original PLMs on 

COPA-test set. Previous debiased models on token 

distribution perform worse than the original model, 

which is consistent with our conjecture that they 

amplify the semantic bias. Our solution also 

performs better on COPA-test-hard than the 

original PLMs, which has balanced token 

distribution as Kavumba et al. (2019) introduced. 

Regularization in our method considers debiasing 

token distribution as well, because we tend to stop 

the models from capturing any cues when it 

reverses the input order. 

3.4 Error Analysis 

We conduct an error analysis for the SOTA model, 

DeBERTa, using the run that is closest to the 

average of 20 runs. We give an example (the 

second row) from the BCOPA-CE dataset in Table 

5 where DeBERTa predicts wrongly but the 

regularized DeBERTa model succeeds. 

Interestingly, both models make a correct 

prediction on the original sample (the first row) 

from COPA-test set, which indicates that the new 

alternative we generate perturbs the choice of the 

original DeBERTA model. 

We calculate the word importance of all tokens 

in correct answer through erasure (Li et al., 2017). 

The importance score is computed by the relative 

difference in log likelihood on gold-standard labels 

while replacing the token with [MASK]. We 

observe two models predict correctly in this 

original sample but with different attention on 

tokens. As is shown in Figure 2, DeBERTa chooses 

Alt2 by focusing on “He” and “spoke”, but 

DeBERTa-reg pays the most attention to 

“microphone”, which is more in line with human 

causal intuition. When people make such inference, 

the causal relation between "microphone" and " 

projected clearly throughout the auditorium" 

should be more important than the co-reference 

relationship.  

4 Conclusion 

In this paper, we explore whether COPA models 

rely excessively on semantic similarity for 

prediction. We add the regularization loss to the 

training objective to alleviate this weakness. 

Results show that our solution is effective in our 

adversarial test, and improve the generalization 

ability and the robustness of models on previous 

COPA-hard dataset. Moreover, previous debiased 

models on token distribution rely on semantic bias 

more seriously than the original models, which 

reminds us if debiasing bring more other bias. 
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Model 
Test 

 

BCOPA-

CE  

 

 

Test-

hard  

b-l 69.5  51.5  18.0  61.6  

b-l-reg 71.1  64.1  7.0  63.6  

b-l-aug 70.0  51.1  18.9  69.7  

rb-l 86.3  73.0  13.3  83.1  

rb-l-reg 87.7  83.9  3.8  84.5  

rb-l-aug 87.3  69.2  18.2  87.0  

alb 88.0  80.5  7.6  86.9  

alb-reg 89.4  86.7  2.7  88.6  

alb-aug 87.9  71.4  16.5  88.0  

db-l 91.6  72.3  19.3  88.6  

db-l-reg 92.2  86.3  5.9  89.7  

db-l-aug 91.8  69.8  21.9  90.5  

Table 4 The performance of PLMs and their 

variants on challenging set. Bold represents the 

best model setting in the same PLM. 

 

Figure 2: Heatmap of importance of each token in 

correct answer for the db-l model and db-l-reg 

model. 

Original 

sample 

Premise: The man's voice projected 

clearly throughout the auditorium. 

Ask-for: cause 

Alt1: He greeted the audience. × 

Alt2: He spoke into the microphone. √ 

New 

sample 

Premise: The man's voice projected 

clearly throughout the auditorium. 

Ask-for: cause 

Alt1: Everyone heard him. × 

Alt2: He spoke into the microphone. √ 

Table 5 The case where DeBERTa is perturbed but 

regularized DeBERTa not. 
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Appendix  

A Implementation Details 

PLMs: We randomly split the training set 

(COPA-dev, or BCOPA) into training set and 

development set with a ratio of 9:1, and finetune 

our model up to 20 epochs by implementing an 

early-stopping strategy with a patience of 5 epochs 

and using AdamW optimizer. We run 20 different 

random seeds for each supervised model and report 

the mean of the non-degenerate runs for each 

model, which have higher than 80% of accuracy in 

the training set as in previous work (Niven and Kao, 

2019).  

CS: We reproduce the preprocessing of their 

work and achieve 70.8% accuracy, which is 

slightly lower than the reported accuracy of 71.4%.  

All parameters are learned from the 

development set by manual tuning. The best-

performing parameter is determined by the 

accuracy of the model in the development set. The 

final parameters in our experiments are shown in 

Table 6. 

B Construction Details of BCOPA-CE 

We asked five fluent English speakers who have 

background knowledge of NLP to create the new 

alternative with the specific guidelines. We 

instructed creators with requirements of sentence 

length, overlap rules, and expressions similar to 

Kavumba et al. (2019). 

C Human Evaluation on BCOPA-CE 

We have 1000 samples in BCOPA-CE set, which 

consist of. 500 samples whose answers are same 

with original COPA-test set (the left sample in the 

second column in Table 3, referred to as COPA-

CE-ori) and 500 samples whose answers are the 

choices that we generate (the right sample in the 

second column in Table 3, referred to as COPA-

CE-opp). To ensure the quality of generated dataset, 

we conduct a quality evaluation with two questions:  

 Q1: Are the instances in BCOPA-CE dataset 

comparable in difficulty to the COPA-test 

instances?  

 Q2: Is the new alternative we collect plausible 

for the opposite question type? 

We evaluate the accuracy of human on both 

COPA-CE-ori dataset and COPA-CE-opp dataset 

to answer the Q1 and evaluate the human 

performance on COPA-CE-opp set for Q2. The 

COPA-CE-opp set changes the question type and 

takes the generated event as gold answers, hence it 

can be evaluated for the plausibility of generated 

alternatives. We asked 9 people to make choices, 

each group of 3 people for one dataset. We 

determine the final choice by majority voting. The 

inter-annotator agreement is calculated by Fleiss’ 

Kappa. As is shown in Table 7, the BCOPA-CE set 

has comparable difficulty with COPA-test. The 

performance on COPA-CE-opp shows that the new 

alternatives we create are plausible. 

 
COPA-

test 
COPA-

CE-ori 
COPA-CE-

opp 
Accuracy 0.980  0.990  1.000  

Fleiss’ Kappa 0.919  0.893  0.890  

Table 7: Human evaluation result of generated 

dataset.  

Model LR BS WD WP 𝝀 

b-l 
1e-4 

32 0.01 0.1 
- 

b-l-aug 

b-l-reg 8e-5 0.01 

rb-l 
8e-6 

32 0.01 0.06 
- 

rb-l-aug 

rb-l-reg 1.2e-5 0.01 

alb 
1.1e-4 

48 0 0 
- 

alb-aug 

alb-reg 6e-5 0.01 

db-l 
5e-6 

32 0.01 0.06 
- 

db-l-aug 

db-l-reg 1e-5 0.01 

Table 6. The best Batch Size (BS), Learning Rate 

(LR), Warm up rate (WP)， and Weight Decay value 

(WD) we used in our experiments. 
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Abstract

A current open question in natural language
processing is to what extent language models,
which are trained with access only to the form
of language, are able to capture the meaning of
language. In many cases, meaning constrains
form in consistent ways. This raises the pos-
sibility that some kinds of information about
form might reflect meaning more transparently
than others. The goal of this study is to in-
vestigate under what conditions we can expect
meaning and form to covary sufficiently, such
that a language model with access only to form
might nonetheless succeed in emulating mean-
ing. Focusing on propositional logic, we gen-
erate training corpora using a variety of moti-
vated constraints, and measure a distributional
language model’s ability to differentiate logi-
cal symbols (¬, ∧, ∨). Our findings are largely
negative: none of our simulated training cor-
pora result in models which definitively differ-
entiate meaningfully different symbols (e.g., ∧
vs. ∨), suggesting a limitation to the types of
semantic signals that current models are able
to exploit.

1 Introduction

A current open question in natural language pro-
cessing is to what extent language models (LMs;
neural networks trained to predict the likelihood of
word forms given textual context) are capable of
truly understanding language. Bender and Koller
(2020) argue that, since such models are trained ex-
clusively on the form of language, they cannot pos-
sibly learn the meaning of language. We argue that
the question of whether language models can learn
meaning cannot be settled a priori. While language
models only have direct access to form, linguistic
form often correlates with meaning. The strength
of the correlation varies across both different as-
pects of language and different tests of linguistic
competence. While several intuitive tests of un-

derstanding (e.g., demonstrating knowledge of the
word dog by identifying pictures of dogs) are out
of scope for LMs, many tasks which NLP aspires
to solve (e.g., question answering, machine transla-
tion) operate entirely on natural language input and
output. Thus, a relevant question is whether models
which operate only on the forms of language can
nonetheless learn to differentiate meanings.

Our goal is to focus on a tractable subproblem
in order to improve our intuitions about the types
of distributional signals that LMs can use to extract
information relevant to meaning. We simulate a
language modeling setup using propositional logic,
in which we can naturally operationalize form to
be strings of symbols in the language and mean-
ing to be truth conditions. We define the semantic
transparency of a text-only training corpus to be
the degree to which an LM trained on that cor-
pus learns to differentiate between aspects of form
that affect truth conditions and aspects of form that
do not. We have two primary research questions.
First, what constraints on corpus generation pro-
duce greater semantic transparency? And second,
are any such constraints sufficient for an LM to
adequately differentiate meanings?

2 Experimental Design

2.1 Dataset Generation

We consider the form of a sentence to be simply the
observed, syntactically-valid strings of characters
and the meaning to be the truth conditions. Propo-
sitional logic is a simple language in which we can
characterize both form and meaning. We use the
grammar in Table 1, with standard semantics.

We focus our analysis on whether the represen-
tations of logical operators (∧,∨,¬) are influenced
by distributional patterns that go beyond their su-
perficial syntactic similarity evident in the grammar.
That is, if a trained LM identifies that the meanings

158



S → (S ∧ S) | (S ∨ S) | (¬S) | (sym)
∧ → ∧1 | ∧2 · · · | ∧K
∨ → ∨1 | ∨2 · · · | ∨L
¬ → ¬1 | ¬2 · · · | ¬M
sym→ sym1 | sym2 · · · | symN

Table 1: Propositional logic grammar.

of ∧1 · · · ∧k are identical to one another, and differ-
ent from the meanings of ∨1 · · · ∨l, we expect the
embeddings for the ∧i to be more similar to one
another than they are to any of the ∨i or the ¬i. We
consider a corpus to be semantically transparent if
an LM trained on the corpus learns semantically-
clustered representations of the logical operators.

We generate four different training corpora, mo-
tivated by different assumptions one might make
about how natural language corpora arise. These
constraints are as follows, ordered roughly from
weakest to strongest:

1. Syntactic Constraint. Speakers only generate
sentences which are syntactically well-formed (that
can be parsed by a syntactic parser). Here, this
amounts to sampling from the grammar without
additional constraints.

2. Truthfulness Constraint. Speakers of the
language are constrained to generate sentences
that are true in some context, i.e., that evaluate
to True in at least one possible world. To im-
plement this, we again sample from the grammar
but additionally check with a satisfiability checker
and omit sentences which are not satisfiable. E.g.,
(sym1 ∧ (¬(sym1))) would not appear.

3. Informativity Constraint. Speakers generate
sentences not just to state true facts, but to provide
listeners with information about a particular state
of affairs. To simulate such a constraint, we ran-
domly sample a set of “target worlds” T and a set
of “alternative worlds” A such that T ∩A = ∅. We
then generate the shortest sentence s such that s
is true in every world in T and s is false in every
world in A. We experiment with several sizes of
T and A, but report only on |T | = |A| = 2 as this
provides the right balance of contextual diversity.
See Appendix for additional discussion.

4. Explicit Grounding. We consider a setting
in which speakers explicitly dictate the full state
of affairs, without ambiguity. This is not intended
as a realistic model of how corpora are generated,

but rather to provide an upper bound on semantic
transparency by giving models a corpus in which
form is perfectly correlated with meaning. We
generate this corpus in the same way as the Truth-
fulness corpus, but append an explicit marker of the
truth values1of the variables in the sentence, e.g.:
(sym1 ∧ (¬(sym2))) <sep> sym1 T sym2 F.

Sampling Parameters. Each dataset consists of
100K training and 1K validation sentences. We
set the number of non-reserved symbols (N in the
above grammar) to 5,000, and the number of “syn-
onyms” of each logical symbol (K,L,M) to be 5.
Thus, a sentence in one of our datasets might look
like (sym1 ∧3 (¬4(sym85))), and would be true if
and only if sym1 is true and sym85 is false 2.

We generate sentences using a probabilistic
context-free grammar with the rules shown above.
The tree depth d of a generated sentence is con-
trolled by a parameter γ such that P (d|d−1) = γd.
The number of unique variables in a sentence3 is
sampled from a non-zero Poisson distribution pa-
rameterized by λ. We set λ = 2 and γ = .85 in
the reported experiments, but don’t find parameter
choice affects our conclusions. Note that the In-
formativity dataset is generated deterministically,
and thus sampling parameters do not apply and sen-
tences in that dataset are shorter. Dataset statistics
and data generation parameter sensitivity are in the
Appendix.

2.2 Models and Training

We consider LSTM and Transformer LMs of differ-
ing sizes, shown in Table 2. Each model is trained
on one of the above four datasets until convergence
on the associated validation set using early stop-
ping with a patience of 15 epochs. The LMs were
implemented in PyTorch (Paszke et al., 2019) and
took roughly 5 hours to converge on TitanV, Ti-
tanRTX, and QuadroRTX GPUs 4. We randomly
initialize the embedding layer. Hyperparameter
details can be found in the Appendix. We train 5
random restarts of each setting. Due to the regular
nature of our synthetic data, we found larger mod-

1Sampled from the set of satisfying variable assignments.
2We began by experimenting with many different dataset

sizes and vocab counts. However, we did not find that models
behaved differently on larger datasets and so focused on the
smaller ones for convenience. See Appendix for results with
different model sizes.

3We set a maximum number of variables per sentence in
order to bound the number of possible variable assignments.

4Code publicly available at https://github.com/
attraylor/semantic-transparency-code.
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Model Syntactic Truthfulness Informativity Grounded

Small LSTM (192K) 21.2 / 87.7 / 87.7 17.6 / 88.7 / 88.6 21.5 / 99.6 / 99.5 21.2 / 87.5 / 87.5
Medium LSTM (545K) 17.6 / 90.2 / 90.1 17.5 / 89.6 / 89.5 20.9 / 99.9 / 99.8 8.3 / 89.3 / 86.8
Small Trans. (311K) 11.8 / 86.9 / 84.6 12.4 / 87.2 / 85.4 21.7 / 98.4 / 98.2 10.3 / 86.2 / 83.1
Medium Trans. (377K) 11.4 / 91.3 / 90.6 9.9 / 92.0 / 91.3 18.1 / 99.5 / 99.5 9.1 / 91.7 / 89.8

Table 2: Summary of language modeling performance. For each model, on each training dataset, we report PPL /
%Syn / %Sem where PPL is the perplexity on heldout data (drawn from the same distribution as the training cor-
pus), %Syn is the percentage of generated sentences that are syntactically well formed (i.e., parseable), estimated
on a set of 1,000 generations sampled from the trained model, and % Sem is the percentage of generated sentences
that are semantically well formed (i.e., satisfiable), estimated on the same set of 1,000.

els overfit the training data quickly, and thus focus
on smaller models.

3 Results and Discussion

Language Modeling Performance. We first
sanity check that the trained models indeed func-
tion as LMs before evaluating the lexical represen-
tations. We compute the models’ perplexity on
heldout data. However, since perplexity is not com-
parable across conditions (since each constraint
leads to differently distributed corpora) we also
sample 1,000 generated sentences from each model
and compare by measuring whether the sentences
are 1) syntactically well-formed (i.e., parseable)
and 2) semantically well-formed (i.e., satisfiable).
Even in the case of models trained with the Syntac-
tic constraint, as seen in Table 2, most of the sen-
tences produced are nonetheless satisfiable. We see
no difference between the Syntactic, Truthfulness,
and Explicit Grounding conditions on these met-
rics. (The Informativity numbers are likely higher
due to the shorter sentences that result from that
generative process.) The fact that models trained
only on satisfiable sentences nonetheless generate
sentences which do not abide by such constraints
suggests the models fail to encode less overt distri-
butional patterns, which depend, for example, on
recognizing abstract relations such as “sameness”
of symbols in order to recognize violations (e.g.,
(A ∧(¬ A)). The failure to capture such properties
of the data even in this simplified setting might
have negative implications for the models’ ability
to infer abstract semantic relationships from more
complex natural language corpora.

Representations of Logical Symbols. Again,
our first question is: What constraints on corpus
generation yield the greatest amounts of semantic
transparency? We quantify this by measuring how

well the embeddings learned by the trained LMs
correspond to our truth-theoretic notions of seman-
tic equivalence: e.g., are ∧1 and ∧2 more similar
to one another than ∧1 and ∨1? We use a nearest
neighbors probing classifier to evaluate whether
models distinguish the operators at the lexical level.
We run k-fold cross validation, in each iteration
choosing one symbol per class (i.e., one ∧, one ∨,
one ¬) as the class exemplars, and then classifying
the remaining points using cosine similarity. We set
k to 125, so that we observe every symbol combi-
nation as exemplars. We report accuracy averaged
across folds and random restarts.

Probing classifier results are shown in Figure 1.
Figure 2 shows an embedding visualization for one
model (Medium Transformer). We find that train-
ing on the Syntactic and on the Explicit Grounding
dataset leads to the least and the most distinguish-
able operators respectively for all models, and the
other conditions end up between these values.

These results address our first question: there is
some difference in semantic transparency between
differently constrained datasets. Interestingly, the
Transformer models perform better in the Truth-
fulness condition than in the Syntactic condition,
which the LSTMs fail to differentiate. This sug-
gests that, even if it does not necessarily manifest in
the models’ generations (Table 2), the Transformer
architecture may nonetheless be capable of picking
up on some of the more abstract distributional pat-
terns via which syntax and semantics are correlated.
Further work on larger models would be required
to explore this in depth.

In addition, we observe little difference between
the quality of the representations learned in the
Informativity condition and those learned in the
Truthfulness condition; one exception might be
in the Medium LSTM, though we cannot confirm
that this difference is robustly reproducible. Thus,
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Figure 1: Each value in this graph represents average classification score across 125 iterations of a simple nearest
neighbor probing classifier averaged across 5 random seeds of the model (625 accuracy numbers per box and
whiskers plot). The dotted line is random chance / maximum class accuracy (33%).

Random Syntactic
AND synonyms
OR synonyms
NOT synonyms

Truthfulness Explicit Grounding

Figure 2: PCA of the representations created by the
Medium Transformer model.

based on our experiments, there is no evidence that
Informativity alone yields greater semantic trans-
parency. However, we note that the experimental
setup for Informativity is not directly comparable
to the others (e.g., sentences are shorter and less
diverse than in Truthfulness) and thus further study
would be needed to make strong claims, positive or
negative.

Finally, we note that in nearly all cases, models
are able to differentiate ¬ from the other opera-
tors, likely because it is a unary operator and thus
syntactically different from the binary operators.
Thus the difference in accuracy is almost entirely
due to whether the representations of ∧ and ∨ are
differentiated (as shown in Figure 2). This gives a
negative answer to our second question concerning
whether any constraints are sufficient for an LM
to adequately differentiate meaning. Apart from
the Small Transformer on the Explicit Grounding
condition, none of the models can completely dis-
tinguish between symbols that are similar in form
but different in meaning.

4 Related Work

It is an open question whether neural models can
learn abstract functions (Marcus, 2001). Our work
builds upon a large body of research intended to
probe which aspects of language and meaning are
being captured by large LMs. Most closely re-
lated is work that assesses whether models can per-
form symbolic reasoning about language (Kassner
et al., 2020) e.g., quantifiers or negation (Talmor
et al., 2020; Ettinger, 2020; Kassner and Schütze,
2020; Wang et al., 2018) or by measuring the sys-
tematicity of models’ inferences (Goodwin et al.,
2020; Kim and Linzen, 2020; Yanaka et al., 2020;
Warstadt et al., 2019). Such work has tended to
find that LMs reason primarily contextually as op-
posed to abstractly. Our evaluation method– which
asks whether word embeddings cluster according to
their truth-conditional meaning– is related to recent
work which defines text-only models as “grounded”
if the learned embedding space is isomorphic to
the similarity function defined over a ground-truth
meaning representation (Merrill et al., 2021). More
distantly related is work on LMs’ ability to reason
about numbers (Wallace et al., 2019) or perform
multi-hop reasoning (Yang et al., 2018). Prior work
that examines neural networks’ ability to perform
logical reasoning is superficially related (Evans
et al., 2018). In this way, our work builds on past
work that uses synthetic rather than natural lan-
guage datasets in order to probe model behavior
in the absence of confounds. Notable examples
are SCAN for measuring compositionality and gen-
eralization (Lake and Baroni, 2018) and Kassner
et al. (2020) which investigates LM knowledge ac-
quisition and fact memorization using a synthetic
dataset of entity-relation tuples.
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5 Conclusion

Using propositional logic corpora to simulate a con-
trolled language modeling setting, we ask: 1) Do
properties of the training corpus affect LMs’ abili-
ties to differentiate the meanings of logical opera-
tors? and 2) Do any training corpora lead to models
that differentiate these meanings to a satisfactory
degree? Our results imply a positive answer to (1):
Models trained on corpora generated with differ-
ent constraints appear to perform differently at the
task of separating ∧ from ∨. However, these differ-
ences are a function of both data and model. For
example, the Transformer architecture seems better
able to learn from weaker signal (corpora generated
only with a Truthfulness constraint), while LSTMs
require more explicit signal (direct access to truth
values). On question (2), our results are largely neg-
ative for the syntactically similar operators. Even
the most semantically transparent training data did
not enable models to separate the representations
of symbols with similar form but different meaning.
Only the Small Transformer trained on the Explicit
Grounding condition can perfectly differentiate ∧
from ∨ at the lexical level, despite the task’s con-
trolled nature. However, every model did separate
¬ from both ∧ and ∨, illustrating how syntactic
differences can support differentiation of meaning.

Overall, we contribute a novel framework, based
on syntax and semantics of propositional logic, via
which we can explore questions of the linguistic
capabilities and weaknesses of neural LMs. Our
experiments represent a first step in this line of
work, but further work is needed to fully appre-
ciate the implications of these results in natural
language settings, in particular, how closely the
constraints explored here mirror real corpora, and
how such learning is influenced by noise and am-
biguity found in human language. One specific
limitation of our experiments is that we constrain
our analysis to the lexical representations– i.e., we
assume that differences between the meanings of ∧
and ∨ should be encoded in the lexicon, via context-
invariant type embeddings. While this assumption
is commonplace in formal semantics, neural LMs
open the possibility of alternative representations
of lexical and compositional semantics. Our results
do not rule out the possibility that the relevant se-
mantic distinctions are encoded elsewhere in the
model, above the lexical layer. However, we take
the combination of the lexical probing results and
LM generation results as suggestive but not con-

firmational evidence of a more general negative
finding.
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7 Appendix

7.1 Dataset generation parameters
There are several parameters involved in the cre-
ation of our synthetic propositional logic datasets:

• Number of sentences in the training set

• Number of unique non-reserved variables (N)

• Number of each operator (K, L, M)

• Sentence depth parameter (γ)

• Poisson distribution parameter for unique non-
reserved variables in sentence (λ)

In comparison to dataset sizes for large language
models in modern natural language processing,
the dataset size (100k training examples) and vo-
cabulary size (5k symbols + 5 of each operator)
of our main experimental results (Figure 1) are
rather small. We sought to determine whether our
choice for dataset size and non-restricted variable
count greatly changed the final results– do our con-
clusions change based on these parameters? We
trained models on different variations of our initial
parameters.

First, we swept across training set sizes (20k,
100k, and 500k examples) and number of symbols
(500, 5k, 50k) while holding all other parameters
constant (γ = .85, λ = 2, K, L, M = 5). We used
the Medium Transformer model, which performed
the best across our four models, and observed the
results of the probing classifier on the embeddings
after training separately on each model.

The results of the above sweep are shown in
Figure 3. We do not find that the models perform
dramatically differently on any of the datasets when
dataset size and number of non-reserved symbols
are varied.

We also experimented with changing the num-
ber of operator synonyms (e.g. ∧1,∧2, ...∧K) We
experimented with three different sizes– (K, L, M)
= 5, 25, 100– for each of our 4 datasets. Those re-
sults are shown in Figure 5, and average frequency
is shown in Table 3. We found that adding addi-
tional synonyms of each operator hurt performance–
likely because adding additional synonyms of ∧
and ∨ made generalization more challenging, caus-
ing the models’ performance to drop.

In a set of earlier experiments, to choose the
sentence depth (γ) and Poisson distribution (λ) pa-
rameters, we hyperparameter searched on the Ex-
plicit Grounding condition across three values of

K, L, M Syn. Tru. Inf. Grd.
5 49.7k 49.2k 16.3k 49k
25 9.94k 9.84k 3.25k 9.81k
100 2.49k 2.46k 0.81k 2.45k

Table 3: Average count of each operator across each of
the datasets.

each (nine datasets in total). Specifically, we tested
λ = 2, 3, 5 and γ = .7, .8, .85. We then trained
the transformer model once on each of the nine
datasets, and the results are shown in Figure 6. We
chose λ = 2 and γ = .85.

7.2 Informativity dataset information
We tested different settings of |T | (number of tar-
get worlds) and |A| (number of alternative worlds).
For |T | = 1, |A| = 1, the best choice of s will
always be a single sym or its negation. For ex-
ample, with variables sym1,sym2, we might sam-
ple max variables = 2 and thus T = (sym1 =
T,sym2 = F), A = (sym1 = F,sym2 = F).
The shortest sentence would then be sym1, as
it sufficiently distinguishes T from A. How-
ever, with |T | = 1, |A| = 2, we might generate
T = (sym1 = T,sym2 = F), A = ((sym1 =
F,sym2 = F), (sym1 = T,sym2 = T)). Now
the shortest sentence that can be generated is
(sym1 ∧1 ¬1(sym2)).
|T | = 1, |A| = 2 and |T | = 2, |A| = 1 result

in sentences that are both short and structurally
nearly identical, although inverted. This is due
to the truth conditions allowed by each operator.
We generate the datasets for each combination and
report the results in Table 4. We excluded these
datasets because of the simplicity and similarity
of the sentences. We found that |T | = 2, |A| = 2
allows for sentences that are much more varied.
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Figure 3: Average probing classifier score across example count / number of unique non-variable symbols for the
Medium Transformer model.
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Figure 4: This graph contains the same experiments as Figure 1, but is only the accuracy on ∧ and ∨, excluding
the results of the negation operator.
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Inform. 1T/1A Inform. 1T/2A Inform. 2T/1A
Sent. Count Sent. Count Sent. Count
a 4523 (a ∧ b) 27047 (a ∨ b) 27236
¬(a) 4460 (a ∧ ¬(b)) 21474 ¬((a ∧ b)) 21392

¬((a ∨ b)) 21338 (a ∨ ¬(b)) 21260
(¬(a) ∧ b) 21061 (¬(a) ∨ b) 21045
¬(a) 4544 a 4559
a 4536 ¬(a) 4508

Table 4: All sentences generated for the first three Informativity datasets fell into one of these templates. Arbitrary
symbols are replaced with a and b. This distinction happens because of the truth conditions that are allowed by the
∧ and ∨ operators.

Dataset Sent. Len. Average sym count Average op count Average Unique syms
Syntactic 28.51 6.19 7.44 2.27
Truthfulness 28.25 6.14 7.37 2.33
Inform. (2T/2A) 10.92 2.83 2.70 2.20
Expl. Ground 34.06 8.51 7.40 2.33

Table 5: Averaged statistics per sentence for the different datasets (training sets). All datasets are 100K training
examples and 1k heldout examples.

Model LR symb dim hidden dim # heads # layers dropout
Small LSTM .0001 4 32 1 0.0

Medium LSTM .0001 32 64 2 0.2
Small Transformer .0001 4 32 2 4 0.0

Medium Transformer 5e-05 32 128 4 4 0.2

Table 6: Hyperparameters for each model.
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Figure 5: Sweep across number of operators using the
Medium Transformer model.
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Abstract

The predominant challenge in weakly super-
vised semantic parsing is that of spurious pro-
grams that evaluate to correct answers for the
wrong reasons. Prior work uses elaborate
search strategies to mitigate the prevalence of
spurious programs; however, they typically
consider only one input at a time. In this work
we explore the use of consistency between the
output programs for related inputs to reduce
the impact of spurious programs. We bias the
program search (and thus the model’s training
signal) towards programs that map the same
phrase in related inputs to the same sub-parts
in their respective programs. Additionally, we
study the importance of designing logical for-
malisms that facilitate this kind of consistency-
based training. We find that a more consis-
tent formalism leads to improved model perfor-
mance even without consistency-based train-
ing. When combined together, these two in-
sights lead to a 10% absolute improvement
over the best prior result on the Natural Lan-
guage Visual Reasoning dataset.

1 Introduction

Semantic parsers map a natural language utterance
into an executable meaning representation, called a
logical form or program (Zelle and Mooney, 1996;
Zettlemoyer and Collins, 2005). These programs
can be executed against a context (e.g., database,
image, etc.) to produce a denotation (e.g., answer)
for the input utterance. Methods for training seman-
tic parsers from only (utterance, denotation) super-
vision have been developed (Clarke et al., 2010;
Liang et al., 2011; Berant et al., 2013); however,
training from such weak supervision is challeng-
ing. The parser needs to search for the correct
program from an exponentially large space, and the
presence of spurious programs—incorrect repre-

∗Work done while interning with Allen Institute for AI.

Figure 1: Utterance x and its program candidates
z1-z4, all of which evaluate to the correct denotation
(True). z2 is the correct interpretation; other programs
are spurious. Related utterance x′ shares the phrase
yellow object above a black object with x. Our consis-
tency reward would score z2 the highest since it maps
the shared phrase most similarly compared to z′.

sentations that evaluate to the correct denotation—
greatly hampers learning. Several strategies have
been proposed to mitigate this issue (Guu et al.,
2017; Liang et al., 2018; Dasigi et al., 2019). Typi-
cally these approaches consider a single input utter-
ance at a time and explore ways to score programs.

In this work we encourage consistency between
the output programs of related natural language ut-
terances to mitigate the issue of spurious programs.
Consider related utterances, There are two boxes
with three yellow squares and There are three yel-
low squares, both containing the phrase three yel-
low squares. Ideally, the correct programs for the
utterances should contain similar sub-parts that cor-
responds to the shared phrase. To incorporate this
intuition during search, we propose a consistency-
based reward to encourage programs for related
utterances that share sub-parts corresponding to
the shared phrases (§3). By doing so, the model is
provided with an additional training signal to distin-
guish between programs based on their consistency
with programs predicted for related utterances.
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We also show the importance of designing the
logical language in a manner such that the ground-
truth programs for related utterances are consistent
with each other. Such consistency in the logical
language would facilitate the consistency-based
training proposed above, and encourage the seman-
tic parser to learn generalizable correspondence
between natural language and program tokens. In
the previously proposed language for the Natural
Language Visual Reasoning dataset (NLVR; Suhr
et al., 2017), we notice that the use of macros leads
to inconsistent interpretations of a phrase depend-
ing on its context. We propose changes to this
language such that a phrase in different contexts
can be interpreted by the same program parts (§4).

We evaluate our proposed approaches on NLVR
using the semantic parser of Dasigi et al. (2019)
as our base parser. On just replacing the old log-
ical language for our proposed language we see
an 8% absolute improvement in consistency, the
evaluation metric used for NLVR (§5). Combin-
ing with our consistency-based training leads to
further improvements; overall 10% over the best
prior model, reporting a new state-of-the-art on the
NLVR dataset.

2 Background

In this section we provide a background on the
NLVR dataset (Suhr et al., 2017) and the semantic
parser of Dasigi et al. (2019).

Natural Language Visual Reasoning (NLVR)
dataset contains human-written natural language
utterances, where each utterance is paired with 4
synthetically-generated images. Each (utterance,
image) pair is annotated with a binary truth-value
denotation denoting whether the utterance is true
for the image or not. Each image is divided into
three boxes, where each box contains 1-8 objects.
Each object has four properties: position (x/y coor-
dinates), color (black, blue, yellow), shape (trian-
gle, square, circle), and size (small, medium, large).
The dataset also provides a structured represen-
tation of each image which we use in this paper.
Figure 1 shows an example from the dataset.

Weakly supervised iterative search parser We
use the semantic parser of Dasigi et al. (2019)
which is a grammar-constrained encoder-decoder
with attention model from Krishnamurthy et al.
(2017). It learns to map a natural language utter-
ance x into a program z such that it evaluates to the

correct denotation y = JzKr when executed against
the structured image representation r. Dasigi et al.
(2019) use a manually-designed, typed, variable-
free, functional query language for NLVR, inspired
by the GeoQuery language (Zelle and Mooney,
1996).

Given a dataset of triples (xi, ci, yi), where xi is
an utterance, ci is the set of images associated to it,
and yi is the set of corresponding denotations, their
approach iteratively alternates between two phases
to train the parser: Maximum marginal likelihood
(MML) and a Reward-based method (RBM). In
MML, for an utterance xi, the model maximizes
the marginal likelihood of programs in a given set
of logical forms Zi, all of which evaluate to the
correct denotation. The set Zi is constructed either
by performing a heuristic search, or generated from
a trained semantic parser.

The reward-based method maximizes the (ap-
proximate) expected value of a reward functionR.

max
θ

∑

∀i
Ep̃(zi|xi;θ)R(xi, zi, ci, yi) (1)

Here, p̃ is the re-normalization of the probabili-
ties assigned to the programs on the beam, and the
reward function R = 1 if zi evaluates to the cor-
rect denotation for all images in ci, or 0 otherwise.
Please refer Dasigi et al. (2019) for details.

3 Consistency reward for programs

Consider the utterance x = There is a yellow object
above a black object in Figure 1. There are many
program candidates decoded in search that eval-
uate to the correct denotation. Most of them are
spurious, i.e., they do not represent the meaning
of the utterance and only coincidentally evaluate
to the correct output. The semantic parser is ex-
pected to distinguish between the correct program
and spurious ones by identifying correspondence
between parts of the utterance and the program can-
didates. Consider a related utterance x′ = There are
2 boxes with a yellow object above a black object.
The parser should prefer programs for x and x′

which contain similar sub-parts corresponding to
the shared phrase p = yellow object above a black
object. That is, the parser should be consistent in
its interpretation of a phrase in different contexts.
To incorporate this intuition during program search,
we propose an additional reward to programs for
an utterance that are consistent with programs for
a related utterance.
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Specifically, consider two related utterances x
and x′ that share a phrase p. We compute a reward
for a program candidate z of x based on how simi-
larly it maps the phrase p as compared to a program
candidate z′ of x′. To compute this reward we need
(a) relevant program parts in z and z′ that corre-
spond to the phrase p, and (b) a consistency reward
that measures consistency between those parts.

(a) Relevant program parts Let us first see how
to identify relevant parts of a program z that corre-
spond to a phrase p in the utterance.

Our semantic parser (from Krishnamurthy et al.
(2017)) outputs a linearized version of the pro-
gram z = [z1, . . . , zT ], decoding one action at
a time from the logical language. At each time
step, the parser predicts a normalized attention vec-
tor over the tokens of the utterance, denoted by
[at1, . . . , a

t
N ] for the zt action. Here,

∑N
i=1 a

t
i = 1

and ati ≥ 0 for i ∈ [1, N ]. We use these attention
values as a relevance score between a program ac-
tion and the utterance tokens. Given the phrase
p with token span [m,n], we identify the relevant
actions in z as the ones whose total attention score
over the tokens in p exceeds a heuristically-chosen
threshold τ = 0.6.

A(z, p) =
{
zt
∣∣ t ∈ [1, T ] and

n∑

i=m

ati ≥ τ
}

(2)

This set of program actions A(z, p) is consid-
ered to be generated due to the phrase p. For
example, for utterance There is a yellow ob-
ject above a black object, with program objEx-
ists(yellow(above(black(allObjs))), this approach
could identify that for the phrase yellow object
above a black object the actions corresponding to
the functions yellow, above, and black are relevant.

(b) Consistency reward Now, we will define a
reward for the program z based on how consis-
tent its mapping of the phrase p is w.r.t. the pro-
gram z′ of a related utterance. Given a related
program z′ and its relevant action set A(z′, p), we
define the consistency reward S(z, z′, p) as the F1
score for the action set A(z, p) when compared to
A(z′, p). If there are multiple shared phrases pi
between x and x′, we can compute a weighted av-
erage of different S(z, z′, pi) to compute a singular
consistency reward S(z, z′) between the programs
z and z′. In this work, we only consider a sin-
gle shared phrase p between the related utterances,
hence S(z, z′, p) = S(z, z′, p) in our paper.

As we do not know the gold program for x′,
we decode top-K program candidates using beam-
search and discard the ones that do not evaluate
to the correct denotation. We denote this set of
programs by Z ′c. Now, to compute a consistency
reward C(x, z, x′) for the program z of x,we take a
weighted average of S(z, z′) for different z′ ∈ Z ′c
where the weights correspond to the probability of
the program z′ as predicted by the parser.

C(x, z, x′) =
∑

z′∈Z′c
p̃(z′|x′; θ)S(z, z′) (3)

Consistency reward based parser Given x and
a related utterance x′, we use C(x, z, x′) as an ad-
ditional reward in Eq. 1 to upweight programs for
x that are consistent with programs for x′.

max
θ

∑

∀i
Ep̃(zi|xi;θ)

[
R(xi, zi, ci, yi)+C(xi, zi, x′i)

]

This consistency-based reward pushes the parser’s
probability mass towards programs that have con-
sistent interpretations across related utterances,
thus providing an additional training signal over
simple denotation accuracy. The formulation pre-
sented in this paper assumes that there is a single
related utterance x′ for the utterance x. If multiple
related utterances are considered, the consistency
reward C(x, z, x′j) for different related utterances
x′j can be summed/averaged to compute a single
consistency reward C(x, z) the program z of utter-
ance x based on all the related utterances.

4 Consistency in Language

The consistency reward (§3) makes a key assump-
tion about the logical language in which the ut-
terances are parsed: that the gold programs for
utterances sharing a natural language phrase actu-
ally correspond to each other. For example, that the
phrase yellow object above a black object would
always get mapped to yellow(above(black)) irre-
spective of the utterance it occurs in.

On analyzing the logical language of Dasigi et al.
(2019), we find that this assumption does not hold
true. Let us look at the following examples:
x1: There are items of at least two different colors
z1: objColorCountGrtEq(2, allObjs)
x2: There is a box with items of at least two differ-
ent colors
z2: boxExists(

memberColorCountGrtEq(2, allBoxes))
Here the phrase items of at least two different colors
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Model
Dev Test-P Test-H

Acc. Cons. Acc. Cons. Acc. Cons.

ABS. SUP. (Goldman et al., 2018) 84.3 66.3 81.7 60.1 - -
ABS. SUP. + RERANK (Goldman et al., 2018) 85.7 67.4 84.0 65.0 82.5 63.9
ITERATIVE SEARCH (Dasigi et al., 2019) 85.4 64.8 82.4 61.3 82.9 64.3

+ Logical Language Design (ours) 88.2 73.6 86.0 69.6 - -
+ Consistency Reward (ours) 89.6 75.9 86.3 71.0 89.5 74.0

Table 1: Performance on NLVR: Design changes in the logical language and consistency-based training, both
significantly improve performance. Larger improvements in consistency indicate that our approach efficiently
tackles spurious programs.

is interpreted differently in the two utterances. In
x2, a macro function memberColorCountGrtEq is
used, which internally calls objColorCountGrtEq
for each box in the image. Now consider,
x3: There is a tower with exactly one block
z3: boxExists(memberObjCountEq(1,allBoxes))
x4: There is a tower with a black item on the top
z4: objExists(black(top(allObjs)))
Here the phrase There is a tower is interpreted dif-
ferently: z3 uses a macro for filtering boxes based
on their object count and interprets the phrase using
boxExists. In the absence of a complex macro for
checking black item on the top, z4 resorts to using
objExists making the interpretation of the phrase
inconsistent. These examples highlight that these
macros, while they shorten the search for programs,
make the language inconsistent.

We make the following changes in the logical
language to make it more consistent. Recall from
§2 that each NLVR image contains 3 boxes each
of which contains 1-8 objects. We remove macro
functions like memberColorCountGrtEq, and in-
troduce a generic boxFilter function. This function
takes two arguments, a set of boxes and a filtering
function f: Set[Obj]→ bool, and prunes the input
set of boxes to the ones whose objects satisfies the
filter f. By doing so, our language is able to reuse
the same object filtering functions across different
utterances. In this new language, the gold program
for the utterance x2 would be
z2: boxCountEq(1, boxFilter(allBoxes,

objColorCountGrtEq(2)))
By doing so, our logical language can now con-
sistently interpret the phrase items of at least two
different colors using the object filtering function
f: objColorCountGrtEq(2) across both x1 and x2.
Similarly, the gold program for x4 in the new logi-
cal language would be

z4: boxExists(boxFilter(allBoxes, black(top)))
making the interpretation of There is a box consis-
tent with x3. Please refer appendix §A for details.

5 Experiments

Dataset We report results on the standard de-
velopment, public-test, and hidden-test splits of
NLVR. The training data contains 12.4k (utterance,
image) pairs where each of 3163 utterances are
paired with 4 images. Each evaluation set roughly
contains 270 unique utterances.

Evaluation Metrics (1) Accuracy measures the
proportion of examples for which the correct de-
notation is predicted. (2) Since each utterance
in NLVR is paired with 4 images, a consistency
metric is used, which measures the proportion of
utterances for which the correct denotation is pre-
dicted for all associated images. Improvement in
this metric is indicative of correct program pre-
diction as it is unlikely for a spurious program to
correctly make predictions on multiple images.

Experimental details We use the same parser,
training methodology, and hyper-parameters as
Dasigi et al. (2019). For discovering related ut-
terances, we manually identify ∼10 sets of equiv-
alent phrases that are common in NLVR. For ex-
ample, there are NUM boxes, COLOR1 block on a
COLOR2 block, etc. For each utterance that con-
tains a particular phrase, we pair it with one other
randomly chosen utterance that shares the phrase.
We make 1579 utterance pairs in total. Refer ap-
pendix §B for details about data creation.1

Baselines We compare against the state-of-the-
art models; ABS. SUP. (Goldman et al., 2018) that

1We release the data and code at https://www.
github.com/nitishgupta/allennlp-semparse/tree/nlvr-v2/
scripts/nlvr v2
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uses abstract examples, ABS. SUP. + RERANK

that uses additional data and reranking, and the
iterative search parser of Dasigi et al. (2019).

Results Table 1 compares the performance of our
two proposed methods to enforce consistency in the
decoded programs with the previous approaches.
We see that changing the logical language to a more
consistent one (§4) significantly improves perfor-
mance: the accuracy improves by 2-4% and con-
sistency by 4-8% on the dev. and public-test sets.
Additionally, training the parser using our proposed
consistency reward (§3) further improves perfor-
mance: accuracy improves by 0.3-0.4% but the
consistency significantly improves by 1.4-2.3%.2

On the hidden-test set of NLVR, our final model
improves accuracy by 7% and consistency by 10%
compared to previous approaches. Larger improve-
ments in consistency across evaluation sets indi-
cates that our approach to enforce consistency be-
tween programs of related utterances greatly re-
duces the impact of spurious programs.

6 Conclusion

We proposed two approaches to mitigate the issue
of spurious programs in weakly supervised seman-
tic parsing by enforcing consistency between out-
put programs. First, a consistency based reward
that biases the program search towards programs
that map the same phrase in related utterances to
similar sub-parts. Such a reward provides an ad-
ditional training signal to the model by leveraging
related utterances. Second, we demonstrate the
importance of logical language design such that
it facilitates such consistency-based training. The
two approaches combined together lead to signifi-
cant improvements in the resulting semantic parser.
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A Logical language details

In Figure 2, we show an example utterance with
its gold program according to our proposed logi-
cal language. We use function composition and
function currying to maintain the variable-free na-
ture of our language. For example, action z7

uses function composition to create a function
from Set[Object]→ bool by composing two func-
tions, from Set[Object] → bool and Set[Object]
→ Set[Object]. Similarly, action z11 creates a
function from Set[Object]→ Set[Object] by com-
posing two functions with the same signature.

Actions z8 - z10 use function currying to curry
the 2-argument function objectCountGtEq by giv-
ing it one int=2 argument. This results in a
1-argument function objectCountGtEq(2) from
Set[Object]→ bool.

B Dataset details

To discover related utterance pairs within the
NLVR dataset, we manually identify 11 sets of
phrases that commonly occur in NLVR and can be
interpreted in the same manner:

1. { COLOR block at the base, the base is
COLOR }

2. { COLOR block at the top, the top is COLOR
}

3. { COLOR1 object above a COLOR2 object }

4. { COLOR1 block on a COLOR2 block,
COLOR1 block over a COLOR2 block }

5. { a COLOR tower }

6. { there is one tower, there is only one tower,
there is one box, there is only one box }

7. { there are exactly NUMBER towers, there
are exactly NUMBER boxes }

8. { NUMBER different colors }

9. { with NUMBER COLOR items, with
NUMBER COLOR blocks, with NUMBER
COLOR objects }

10. { at least NUMBER COLOR items, at least
NUMBER COLOR blocks, at least NUMBER
COLOR objects }

11. {with NUMBER COLOR SHAPE, are NUM-
BER COLOR SHAPE, with only NUM-
BER COLOR SHAPE, are only NUMBER
COLOR SHAPE }

In each phrase, we replace the abstract COLOR,
NUMBER, SHAPE token with all possible options
from the NLVR dataset to create grounded phrases.
For example, black block at the top, yellow object
above a blue object. For each set of equivalent
grounded phrases, we identify the set of utterances
that contains any of the phrase. For each utterance
in that set, we pair it with 1 randomly chosen ut-
terance from that set. Overall, we identify related
utterances for 1420 utterances (out of 3163) and
make 1579 pairings in total; if an utterance con-
tains two phrases of interest, it can be paired with
more than 1 utterance.
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x: There is one box with at least 2 yellow squares
z: boxCountEq(1, boxFilter(allBoxes, objectCountGtEq(2)(yellow(square))))

Program actions for z:
z1: bool→ [<int,[Set[Box]:bool>, int, Set[Box]]
z2: <int,[Set[Box]:bool>→ boxCountEq
z3: int→ 1
z4: Set[Box]→ [<Set[Box],<Set[Object]:bool>:Set[Box]>, Set[Box], <Set[Object]:bool>]
z5: <Set[Box],<Set[Object]:bool>:Set[Box]>→ boxFilter
z6: Set[Box]→ allBoxes
z7: <Set[Object]:bool>→ [*, <Set[Object]:bool>, <Set[Object]:Set[Object]>]
z8: <Set[Object]:bool>→ [<int,Set[Object]:bool>, int]
z9: <int,Set[Object]:bool>→ objectCountGtEq
z10: int→ 2
z11: <Set[Object]:Set[Object]>→ [*, <Set[Object]:Set[Object]>, <Set[Object]:Set[Object]>]
z12: <Set[Object]:Set[Object]>→ yellow
z13: <Set[Object]:Set[Object]>→ square

Figure 2: Gold program actions for the utterance There is one box with at least 2 yellow squares according to
our proposed logical language. The grammar-constrained decoder outputs a linearized abstract-syntax tree of the
program in an in-order traversal.
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Abstract

In this paper, we present an improved model
for voicing silent speech, where audio is syn-
thesized from facial electromyography (EMG)
signals. To give our model greater flexibility
to learn its own input features, we directly use
EMG signals as input in the place of hand-
designed features used by prior work. Our
model uses convolutional layers to extract fea-
tures from the signals and Transformer lay-
ers to propagate information across longer dis-
tances. To provide better signal for learning,
we also introduce an auxiliary task of predict-
ing phoneme labels in addition to predicting
speech audio features. On an open vocabulary
intelligibility evaluation, our model improves
the state of the art for this task by an absolute
25.8%.

1 Introduction

EMG-based voicing of silent speech is a task that
aims to synthesize vocal audio from muscular sig-
nals captured by electrodes on the face while words
are silently mouthed (Gaddy and Klein, 2020; Toth
et al., 2009). While recent work has demonstrated
a high intelligibility of generated audio when re-
stricted to a narrow vocabulary (Gaddy and Klein,
2020), in a more challenging open vocabulary set-
ting the intelligibility remained low (68% WER). In
this work, we introduce an new model for voicing
silent speech that greatly improves intelligibility.

We achieve our improvements by modifying sev-
eral different components of the model. First, we
improve the input representation. While prior work
on EMG speech processing uses hand-designed fea-
tures (Jou et al., 2006; Diener et al., 2015; Meltzner
et al., 2018; Gaddy and Klein, 2020) which may
throw away some information from the raw signals,
our model learns directly from the complete sig-
nals with minimal pre-processing by using a set of
convolutional neural network layers as feature ex-

tractors. This modification follows recent work in
speech processing from raw waveforms (Collobert
et al., 2016; Schneider et al., 2019) and gives our
model the ability to learn its own features for EMG.

Second, we improve the neural architecture of
the model. While other silent speech models have
been based around recurrent layers such as LSTMs
(Janke and Diener, 2017; Gaddy and Klein, 2020),
we use the self-attention-based Transformer archi-
tecture (Vaswani et al., 2017), which has been
shown to be a more powerful replacement across a
range of tasks.

Finally, we improve the signal used for learn-
ing. Since the relatively small data sizes for this
task creates a challenging learning problem, we
introduce an auxiliary task of predicting phoneme
labels to provide additional guidance. This auxil-
iary loss is inspired by prior work on the related
problem of generating speech from ECoG sensors
on the brain, which greatly benefited from inter-
mediate prediction of phonemic information (Anu-
manchipalli et al., 2019).

We evaluate intelligibility of audio synthesized
by our model on the single-speaker data from
Gaddy and Klein (2020) in the most challenging
open-vocabulary setting. Our results reflect an ab-
solute improvement in error rate of 25.8% over the
state of the art, from 68.0% to 42.2%, as measured
by automatic transcription. Evaluation by human
transcription gives an even lower error rate of 32%.

2 Model

At a high level, our system works by predicting
a sequence of speech features from EMG signals
and using a WaveNet vocoder (van den Oord et al.,
2016) to synthesize audio from those predicted fea-
tures, as was done in Gaddy and Klein (2020). The
first component, dubbed the transduction model,
takes in EMG signals from eight electrodes around
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Figure 1: Model overview

the face and outputs a sequence of speech features
represented as Mel-frequency cepstral coefficients
(MFCCs). The final step of vocoding audio from
MFCCs is unchanged in our work, so we defer
to Gaddy and Klein (2020) for the details of the
WaveNet model.

The neural architecture for our transduction
model is made up of a set of residual convolu-
tion blocks followed by a transformer with rela-
tive position embeddings, as shown in Figure 1.
We describe these two components in Sections 2.1
and 2.2 below. Next, in Section 2.3 we describe
our training procedure, which aligns each silent
utterance to a corresponding vocalized utterance as
in Gaddy and Klein (2020) but with some minor
modifications. Finally, in Section 2.4 we describe
the auxiliary phoneme-prediction loss that provides
additional signal to our model during training.1

2.1 Convolutional EMG Feature Extraction
The convolutional layers of our model are designed
to directly take in EMG signals with minimal pre-
processing. Prior to use of the input EMG signals,
AC electrical noise is removed using band stop fil-
ters at harmonics of 60 Hz, and DC offset and drift
are removed with a 2 Hz high-pass filter. The sig-
nals are then resampled from 1000 Hz to 800 Hz,
and the magnitudes are scaled down by a factor of
10.

Our convolutional architecture uses a stack of
3 residual convolution blocks inspired by ResNet
(He et al., 2016), but modified to use 1-dimensional

1Code for our model is available at https://github.
com/dgaddy/silent_speech.

Figure 2: Convolution block architecture

convolutions. The architecture used for each con-
volution block is shown in Figure 2, and has two
convolution-over-time layers along the main path
as well as a shortcut path that does not do any ag-
gregation over the time dimension. Each block
downsamples the signal by a factor of 2, so that the
input signals at 800 Hz are eventually transformed
into features at 100Hz to match the target speech
feature frame rate. All convolutions have channel
dimension 768.

Before passing the convolution layer outputs to
the rest of the model, we include an embedding of
the session index, which helps the model account
for differences in electrode placement after elec-
trodes are reattached for each session. Each session
is represented with a 32 dimensional embedding,
which is projected up to 768 dimensions with a
linear layer before adding to the convolution layer
outputs at each timestep.

2.2 Transformer with Relative Position
Embeddings

To allow information to flow across longer time
horizons, we use a set of bidirectional Transformer
encoder layers (Vaswani et al., 2017) on top of the
convolution layers in our model. To capture the
time-invariant nature of the task, we use relative
position embeddings as described by Shaw et al.
(2018) rather than absolute position embeddings.
In this variant, a learned vector p that depends on
the relative distance between the query and key po-
sitions is added to the key vectors when computing
attention weights. Thus, the attention logits are
computed with

eij =
(WKxj + pij)

>(WQxi)√
d
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where pij is an embedding lookup with index i− j,
up to a maximum distance k in each direction (x
are inputs to the attention module,WQ andWK are
query and key transformations, and d is the dimen-
sion of the projected vectorsWQxi). For our model,
we use k = 100 (giving each layer a 1 second view
in each direction) and set all attention weights with
distance greater than k to zero. We use six of these
Transformer layers, with 8 heads, model dimension
768, feedforward dimension 3072, and dropout 0.1.

The output of the last Transformer layer is
passed through a final linear projection down to
26 dimensions to give the MFCC audio feature
predictions output by the model.

2.3 Alignment and Training
Since silent EMG signals and vocalized audio fea-
tures must be recorded separately and so are not
time-aligned, we must form an alignment between
the two recordings to calculate a loss on predic-
tions from silent EMG. Our alignment procedure is
similar to the predicted-audio loss used in Gaddy
and Klein (2020), but with some minor aspects
improved.

Our loss calculation takes in a sequence of
MFCC features ÂS predicted from silent EMG
and another sequence of target features AV from a
recording of vocalized audio for the same utterance.
We compute a pairwise distance between all pairs
of features

δ[i, j] =
∥∥∥AV [i]− ÂS [j]

∥∥∥
2

and run dynamic time warping (Rabiner and Juang,
1993) to find a minimum-cost monotonic alignment
path through the δ matrix. We represent the align-
ment as a[i]→ j with a single position j in ÂS for
every index i inAV , and take the first such position
when multiple are given by dynamic time warp-
ing. The loss is then the mean of aligned pairwise
distances:

L =
1

NV

NV∑

i=1

δ[i, a[i]]

In addition to the silent-EMG training, we also
make use of EMG recordings during vocalized
speech which are included in the data from Gaddy
and Klein (2020). Since the EMG and audio targets
are recorded simultaneously for these vocalized ex-
amples, we can calculate the pairwise distance loss
directly without any dynamic time warping. We
train on the two speaking modes simultaneously.

To perform batching across sequences of differ-
ent lengths during training, we concatenate a batch
of EMG signals across time then reshape to a batch
of fixed-length sequences before feeding into the
network. Thus if the fixed batch-sequence-length is
l, the sum of sample lengths across the batch is NS ,
and the signal has c channels, we reshape the inputs
to size (dNS/le , l, c) after zero-padding the con-
catenated signal to a multiple of l. After running
the network to get predicted audio features, we do
the reverse of this process to get a set of variable-
length sequences to feed into the alignment and
loss described above. This batching strategy allows
us to make efficient use of compute resources and
also acts as a form of dropout regularization where
slicing removes parts of the nearby input sequence.
We use a sequence length l = 1600 (2 seconds)
and select batches dynamically up to a total length
of NSmax = 204800 samples (256 seconds).

We train our model for 80 epochs using the
AdamW optimizer (Loshchilov and Hutter, 2017).
The peak learning rate is 10−3 with a linear warm-
up of 500 batches, and the learning rate is decayed
by half after 5 consecutive epochs of no improve-
ment in validation loss. Weight decay 10−7 is used
for regularization.

2.4 Auxiliary Phoneme Loss
To provide our model with additional training sig-
nal and regularize our learned representations, we
introduce an auxiliary loss of predicting phoneme
labels at each output frame.

To get phoneme labels for each feature frame of
the vocalized audio, we use the Montreal Forced
Aligner (McAuliffe et al., 2017). The aligner
uses an acoustic model trained on the LibriSpeech
dataset in conjunction with a phonemic dictionary
to get time-aligned phoneme labels from audio and
a transcription.

We add an additional linear prediction layer and
softmax on top of the Transformer encoder to pre-
dict a distribution over phonemes. For training, we
modify the alignment and loss cost δ by appending
a term for phoneme negative log likelihood:

δ′[i, j] =
∥∥∥AV [i]− ÂS [j]

∥∥∥
2
− λPV [i]

> log P̂S [j]

where P̂S is the predicted distribution from the
model softmax and PV is a one-hot vector for the
target phoneme label. We use λ = .1 for the
phoneme loss weight. After training, the phoneme
prediction layer is discarded.
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Model WER

Gaddy and Klein (2020) 68.0
This work 42.2

Ablation: Replace convolution features with hand-designed features 45.2
Ablation: Replace Transformer with LSTM 46.0
Ablation: Remove phoneme loss 51.7

Table 1: Open vocabulary word error rate results from an automatic intelligibility evaluation.

3 Results

We train our model on the open-vocabulary data
from Gaddy and Klein (2020). This data contains
19 hours of facial EMG data recordings from a
single English speaker during silent and vocalized
speech. Our primary evaluation uses the automatic
metric from that work, which transcribes outputs
with an automatic speech recognizer2 and com-
pares to a reference with a word error rate (WER)
metric. We also evaluate human intelligibility in
Section 3.1 below.3

The results of the automatic evaluation are
shown in Table 1. Overall, we see that our model
improves intelligibility over prior work by an abso-
lute 25.8%, or 38% relative error reduction. Also
shown in the table are ablations of our three primary
contributions. We ablate the convolutional feature
extraction by replacing those layers with the hand-
designed features used in Gaddy and Klein (2020),
and we ablate the Transformer layers by replacing
with LSTM layers in the same configuration as that
work (3 bidirectional layers, 1024 dimensions). To
ablate the phoneme loss, we simply set its weight in
the overall loss to zero. All three of these ablations
show an impact on our model’s results.

3.1 Human Evaluation

In addition to the automatic evaluation, we per-
formed a human intelligibility evaluation using a
similar transcription test. Two human evaluators
without prior knowledge of the text were asked to
listen to 40 synthesized samples and write down
the words they heard (see Appendix A for full in-
structions given to evaluators). We then compared
these transcriptions to the ground-truth reference
with a WER metric.

2An implementation of DeepSpeech (Hannun et al.,
2014) from Mozilla (https://github.com/mozilla/
DeepSpeech)

3Output audio samples available at https://dgaddy.
github.io/silent_speech_samples/ACL2021/.

The resulting word error rates from the two
human evaluators’ transcriptions are 36.1% and
28.5% (average: 32.3%), compared to 42.2% from
automatic transcriptions. These results validate the
improvement shown in the automatic metric, and
indicate that the automatic metric may be under-
estimating intelligibility to humans. However, the
large variance across evaluators shows that the au-
tomatic metric may still be more appropriate for
establishing consistent evaluations across different
work on this task.

4 Phoneme Error Analysis

One additional advantage to using an auxiliary
phoneme prediction task is that it provides a more
easily interpretable view of model predictions. Al-
though the phoneme predictions are not directly
part of the audio synthesis process, we have ob-
served that mistakes in audio and phoneme pre-
diction are often correlated. Therefore, to better
understand the errors that our model makes, we
analyze the errors of our model’s phoneme pre-
dictions. To analyze the phoneme predictions, we
align predictions on a silent utterance to phoneme
labels of a vocalized utterance using the procedure
described above in Sections 2.3 and 2.4, then eval-
uate the phonemes using the measures described in
Sections 4.1 and 4.2 below.

4.1 Confusion

First, we measure the confusion between each pair
of phonemes. We use a frequency-normalized met-
ric for confusion: (ep1,p2 + ep2,p1)/(fp1 + fp2),
where ep1,p2 is the number of times p2 was pre-
dicted when the label was p1, and fp1 is the num-
ber of times phoneme p1 appears as a target label.
Figure 3 illustrates this measure of confusion us-
ing darkness of lines between the phonemes, and
Appendix B lists the values of the most confused
pairs.

We observe that many of the confusions are be-
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Figure 3: Phoneme confusability (darker lines indicate
more confusion - maximum darkness is 13% confu-
sion)

tween pairs of consonants that differ only in voic-
ing, which is consistent with the observation in
Gaddy and Klein (2020) that voicing signals ap-
pear to be subdued in silent speech. Another find-
ing is a confusion between nasals and stops, which
is challenging due to the role of the velum and
its relatively large distance from the surface elec-
trodes, as has been noted in prior work (Freitas
et al., 2014). We also see some confusion between
vowel pairs and between vowels and consonants,
though these patterns tend to be less interpretable.

4.2 Articulatory Feature Accuracy

To better understand our model’s accuracy across
different consonant articulatory features, we per-
form an additional analysis of phoneme selection
across specific feature dimensions. For this anal-
ysis, we define a confusion set for an articulatory
feature as a set of English phonemes that are iden-
tical across all other features. For example, one of
the confusion sets for the place feature is {p, t, k},
since these phonemes differ in place of articula-
tion but are the same along other axes like manner
and voicing (a full listing of confusion sets can be
found in Appendix C). For each feature of interest,
we calculate a forced-choice accuracy within the
confusion sets for that feature. More specifically,
we find all time steps in the target sequence with
labels belonging in a confusion set and restrict our
model output to be within the corresponding set
for those positions. We then compute an accuracy
across all those positions that have a confusion set.

To evaluate how much of the articulatory feature
accuracies can be attributed to contextual infer-
ences rather than information extracted from EMG,

40 60 80 100

Place

Oral manner

Nasality

Voicing

Accuracy

Full context Phoneme context Majority class

Figure 4: Accuracy of selecting phonemes along artic-
ulatory feature dimensions. We compare our full EMG
model (full context) with a majority class baseline and
a model given only phoneme context as input.

we compare our results to a baseline model that is
trained to make decisions for a feature based on
nearby phonemes. In the place of EMG feature
inputs, this baseline model is given the sequence
of phonemes predicted by the full model, but with
information about the specific feature being tested
removed by collapsing phonemes in each of its con-
fusion sets to a single symbol. Additional details
on this baseline model can be found in Appendix C.

The results of this analysis are shown in Figure 4.
By comparing the gap in accuracy between the
full model and the phoneme context baseline, we
again observe trends that correspond to our prior
expectations. While place and oral manner features
can be predicted much better by our EMG model
than from phonemic context alone, nasality and
voicing are more challenging and have a smaller
improvement over the contextual baseline.

5 Conclusion

By improving several model components for voic-
ing silent speech, our work has achieved a 38%
relative error reduction on this task. Although the
problem is still far from solved, we believe the
large rate of improvement is a promising sign for
continued progress.
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A Instructions to Human Evaluators

The following instructions were given to human
evaluators for the transcription test described in
Section 3.1:

Please listen to each of the attached sound files
and write down what you hear. There are 40 files,
each of which will contain a sentence in English.
Write your transcriptions into a spreadsheet such
as Excel or Google sheets so that the row numbers
match the numbers in the file names. Many of the
clips may be difficult to hear. If this is the case,
write whatever words you are able to make out,
even if it does not form a complete expression. If
you are not entirely sure about a word but can
make a strong guess, you may include it in your
transcription, but only do so if you beleive it is more
likely than not to be the correct word. If you cannot
make out any words, leave the corresponding row
blank.
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B Phoneme Confusability

This section provides numerical results for
phoneme confusions to complement the illustration
given in Section 4.1 of the main paper. We com-
pare the frequency of errors between two phonemes
to the frequency of correct predictions on those
phonemes. We define the following two quantities:

Confusion: (ep1,p2 + ep2,p1)/(fp1 + fp2)

Accuracy: (ep1,p1 + ep2,p2)/(fp1 + fp2)

where ep1,p2 is the number of times p2 was pre-
dicted when the label was p1, and fp1 is the num-
ber of times phoneme p1 appears as a target label.
Results for the most confused pairs are shown in
the table below.

Phonemes Confusion (%) Accuracy (%)

Ã Ù 13.2 49.4
v f 10.4 72.0
p b 10.3 64.3
m b 9.3 74.3
k g 8.9 77.2
S Ù 8.3 59.8
p m 8.1 73.0
t d 7.2 64.0
z s 6.6 80.0
I E 6.5 60.6
t n 6.3 67.1
n d 6.0 66.8
I 2 6.0 65.8
ô Ä 5.7 78.2
t s 5.5 72.8
E æ 4.7 70.9
u oU 4.3 77.4
T D 4.1 76.9
2 æ 3.2 72.1
I æ 3.1 64.9

C Articulatory Feature Analysis Details

The following table lists all confusion sets used in
our articulatory feature analysis in Section 4.2.

Feature Confusion Sets

Place {p,t,k} {b,d,g} {m,n,N}
{f,T,s,S,h} {v,D,z,Z}

Oral manner {t,s} {d,z,l,r} {S,Ù} {Z,Ã}
Nasality {b,m} {d,n} {g,N}
Voicing {p,b} {t,d} {k,g} {f,v}

{T,D} {s,z} {S,Z} {Ù,Ã}

The phoneme context baseline model uses a
Transformer architecture with dimensions identi-
cal to our primary EMG-based model, but is fed
phoneme embeddings of dimension 768 in the
place of the convolutional EMG features. The
phonemes input to this model are the maximum-
probability predictions output by our primary
model at each frame, but with all phonemes from
a confusion set replaced with the same symbol.
We train a separate baseline model for each of the
four articulatory feature types to account for dif-
ferent collapsed sets in the input. During training,
a phoneme likelihood loss is applied to all posi-
tions and no restrictions are enforced on the output.
Other training hyperparameters are the same be-
tween this baseline and the main model.

D Additional Reproducability
Information

All experiments were run on a single Quadro RTX
6000 GPU, and each took approximately 12 hours.
Hyperparameters were tuned manually based on
automatic transcription WER on the validation set.
The phoneme loss weight hyperparameter λ was
chosen from {1, .5, .1, .05, .01, .005}. We report
numbers on the same test split as Gaddy and Klein
(2020), but increase the size of the validation set to
200 examples to decrease variance during model
exploration and tuning. Our model contains ap-
proximately 40 million parameters.
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Abstract

Whereas much of the success of the current
generation of neural language models has been
driven by increasingly large training corpora,
relatively little research has been dedicated
to analyzing these massive sources of textual
data. In this exploratory analysis, we delve
deeper into the Common Crawl, a colossal
web corpus that is extensively used for train-
ing language models. We find that it contains
a significant amount of undesirable content, in-
cluding hate speech and sexually explicit con-
tent, even after filtering procedures. We dis-
cuss the potential impacts of this content on
language models and conclude with future re-
search directions and a more mindful approach
to corpus collection and analysis.

1 Introduction

In recent years, much of the progress in Natu-
ral Language Processing (NLP) research has been
largely driven by Transformer-based language mod-
els, which have pushed forward the state-of-the-
art in tasks such as question answering (Rajpurkar
et al., 2018) and natural language inference (Bow-
man et al., 2015). However, these increasingly
complex models also require increasingly large
amounts of data to train them, which is often a
combination of curated, high-quality datasets such
as encyclopedic articles and books and non-curated
content from the Web (Radford et al., 2018, 2019).
This second category of large, non-curated dataset
is becoming increasingly popular as they are re-
quired to train large language models.

The current largest dataset used for training neu-
ral language models, the Common Crawl, is a
non-curated corpus consisting of multilingual snap-
shots of the web. New versions of the Common
Crawl are released monthly, with each version con-
taining 200 to 300 TB of textual content scraped
via automatic web crawling. This dwarfs other
commonly used corpora such as English-language

Wikipedia, which adds up to roughly 5.6 TB of
data, and the BookCorpus, which only represents
around 6 GB (Zhu et al., 2015). The Common
Crawl has been used to train many of the recent
neural language models in recent years, including
the GPT model series (Radford et al., 2018; Brown
et al., 2020), BERT (Devlin et al., 2018) and Fast-
Text (Grave et al., 2018) and, given its size, often
represents the majority of data used to train these
architectures.

In the current article, we present an initial anal-
ysis of the Common Crawl, highlighting the pres-
ence of several types of explicit and abusive content
even after filtering. We discuss our findings and,
given the potential downstream impact of this con-
tent on language models, we discuss the importance
of ensuring that the corpora we use for training lan-
guage models are extracted more mindfully and
with more emphasis on their quality and propose
avenues of research to achieve this goal.

2 Related Work

In recent years, a growing body of research in NLP
has unearthed biases in common language mod-
els (Bolukbasi et al., 2016; Sheng et al., 2019; Zhao
et al., 2019; Bordia and Bowman, 2019; Hutchin-
son et al., 2020). This work has raised important
questions regarding the impact of these embedded
biases on downstream decision-making, given the
increasing usage of these models in various applica-
tions. Consequently, much work has also been ded-
icated to creating standardized diagnostic tests to
detect these biases (Caliskan et al., 2017; May et al.,
2019; Nadeem et al., 2020; Sweeney and Najafian,
2019) and to remove them (Bolukbasi et al., 2016;
Zhao et al., 2018; Manzini et al., 2019), although
the extent to which this is possible is still under de-
bate (Gonen and Goldberg, 2019). In fact, research
has found that “The biases found in Internet-scale
language models like GPT-2 are representative of
the data on which the model was trained” (So-
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laiman et al., 2019), which can be directly linked to
the presence of hate speech on the Internet (Abid
et al., 2021).

However, given the importance of this research,
comparatively little attention has been dedicated to
analyzing the corpora used to train language mod-
els. This is understandable because frequently used
datasets such as the Common Crawl contain truly
massive amounts of data, making it challenging
to mine it for meaningful insights. In fact, a re-
cent survey on automatic web page classification
has deemed the task difficult not only due to the
complexity and heterogeneity of web content, but
also due its the high computational cost, suggest-
ing that machine learning (ML) approaches have
much to contribute to it (Hashemi, 2020). While
certain notable endeavors have indeed analyzed
specific aspects of corpora such as the Common
Crawl (Kolias et al., 2014; Caswell et al., 2021) and
Wikipedia (Hube, 2017), they have only scratched
the surface of what these bodies of text contain. For
instance, recent work has found that the Common
Crawl contained over 300,000 documents from un-
reliable news sites and banned subReddit pages
containing hate speech and racism (Gehman et al.,
2020), while complementary research has shown
that individual training examples can be extracted
by querying language models (Carlini et al., 2020),
together illustrating that the presence of question-
able content is a significant issue for statistical lan-
guage models. In the current work, we endeavor
to understand the content and quality of the Com-
mon Crawl as a first step towards establishing more
consistent approaches to filtering and refining it.

3 Analyzing the Common Crawl

Given its size, both downloading and analyzing
the Common Crawl are time-consuming and costly
endeavors. The most recent version of the Common
Crawl, dating from November/December 2020, has
2.6 billion web pages in raw text format, saved in
‘shards’ each containing of tens of thousands of
pages. Given our hardware constraints, we chose to
focus on a subset of the corpus, randomly sampling
1% of the files it contains, which after filtering by
language amounts to roughly 115 GB of textual
content or 5,835,339 web pages in total, which we
analyzed in terms of hate speech, adult content, and
efficacy of perplexity-based filtering 1. In this work,

1All code used in these analysis are publicly available:
https://github.com/josephdviviano/whatsinthebox

we focus on detecting sexually-explicit and hate
speech, since they represent common examples of
“undesirable” content that can be generally seen
as inappropriate for a language model to generate
in most situations. We acknowledge that desirable
model behaviour is application specific, and believe
our findings can extend to any other “undesirable”
topic that might be present in available language
corpora. We present our results in the sections
below.

3.1 Detecting Hate Speech
The existence of hate speech on the internet has
been described as “an important societal problem
of our time”, with “profound and lasting” psycho-
logical effects on its victims (Mishra et al., 2019).
As such, a substantial amount of NLP research ded-
icated to automating hate speech detection, with
several datasets and approaches being proposed in
recent years (Schmidt and Wiegand, 2017; Mishra
et al., 2019; Vidgen and Derczynski, 2020; Kir-
itchenko and Mohammad, 2018). Most of this re-
search is carried out on data extracted from social
media sources such as Twitter (Founta et al., 2018;
Basile et al., 2019; Waseem and Hovy, 2016) and
Reddit (Tadesse et al., 2019; Farrell et al., 2019),
with both ML-based (Badjatiya et al., 2017) and
count-based approaches (Davidson et al., 2017)
achieving comparable results (Fortuna and Nunes,
2018). In order to estimate the quantity of hate
speech in the Common Crawl, we endeavored to
compare 3 approaches: DELIMIT, a recent BERT-
based model trained on social media data (Aluru
et al., 2020), Hate Sonar, a Logistic Regression
approach trained on data from Web fora and Twit-
ter (Davidson et al., 2017) and a n-gram-based ap-
proach using a list of n-grams extracted from Hate
Base. We present samples of text flagged by all of
these approaches in Table 1, below.

We found that the three approaches compared
suggest similar proportions of websites containing
hate speech : 5.24% of websites from our sample
were flagged by DELIMIT, 4.02% by HateSonar,
and 6.38% by the n-gram approach 2. Qualita-
tive analysis of a sample of sites flagged by each
approach showed that while n-grams picked up
on racial slurs, HateSonar also detected debates
about racial supremacy and racially-charged con-
spiracy theories. Many of the sites that DELIMIT

2We are conscious of the high false positive rate of n-gram
approaches and therefore only consider sites to be flagged if
they contain 3 or more n-grams from the list.

183



Approach Text

HateSonar
Their US/Euro plan put in your face:
demonic jews hate white goyim!

Such sick and twisted people, white
people are.

Delimit they are only stupid arab from wp-ar haha

Yeah, dumb ass n*gger †
N-gram nude attention whore asian bastards

In America all male look like this homo

Table 1: Examples of hate speech found by the ap-
proaches tested. Examples with † have been censored
by the authors.

flagged were adult content with mentions of vio-
lent acts towards specific ethnic groups, illustrat-
ing the fine line between sexual violence and hate
speech, which we elaborate further in the following
subsection. Generally speaking, the presence of
even a small fraction of websites that incite hate in
training corpora is worrisome since it can result in
models that replicate this kind of discourse when
prompted (Wolf et al., 2017; Carlini et al., 2020).

3.2 Sexually Explicit Content

Compared to hate speech, the detection of sexually
explicit content has received less attention from
the NLP community, with existing ML approaches
focusing mainly on the detection of explicit im-
ages (Wehrmann et al., 2018; Rowley et al., 2006)
and URLs (Matic et al., 2020), whereas n-gram-
based approaches remain predominantly used in
practice by web providers (Hammami et al., 2003;
Polpinij et al., 2006; Ho and Watters, 2004). In
our analysis, we used a list of n-grams extracted
from adult websites in order to establish the per-
centage of websites from our sample that contained
sexually explicit content; however, we found no
available statistical or ML-based approach that we
could use to compare our count-based approach
with. The n-gram approach detected that 2.36% of
the web pages that we analyzed contained at least
one of the words from our list, with 1.36% contain-
ing 3 or more and 0.73% containing 10 or more
(see Table 3 for results). We show a sample of the
URLs flagged by our approach in Table 2, below.

While a few percent of sexually explicit content
may not seem like much, the type of language and
content contained on adult websites can have harm-
ful repercussions. For instance, the prevalence of
sexual violence towards women, especially towards
women of color, on adult websites (Foubert et al.,

Page URL (http:// removed)
adultmovietop100.com/

erohon.me/

celebrityfan.net/

queantube.com/

adelaide-femaleescorts.webcam

Table 2: Sample of URLs of adult content websites
identified by the n-gram approach. Protocol removed
to prevent URL generation.

2019; Shim et al., 2015; Fritz et al., 2020) may con-
tribute to further dissemination and amplification
of these biases in downstream models. As modern
language models have no way to evaluate genera-
tion appropriateness, models trained with even a
small proportion of these undesirable inputs can-
not be guaranteed to avoid generating outputs with
similar biases if presented with a specific context
or prompt. This is a risk that is important to mit-
igate in applications, where the general-purpose
language models can end up being used in appli-
cations used by sensitive groups in professional
contexts or minors, such as chatbots and toys.

3.3 Filtering by Perplexity Score
While the analyses described above were car-
ried out on unfiltered web pages from the Com-
mon Crawl, the training pipeline of many large-
scale NLP models involves some type of fil-
tering and cleaning, from excluding low-quality
content (Grave et al., 2018) to fuzzy deduplica-
tion (Brown et al., 2020). One such popular filter-
ing approach is based on training a language model
on a target, high-quality domain such as Wikipedia,
and using it to calculate the perplexity score of
web pages using this model (Wenzek et al., 2020).
To test the efficacy of this scoring procedure, we
calculated the perplexity score of each web page
from our sample of the Common Crawl and used it
to separate pages into 3 equal buckets (high, mid-
dle and low-quality) based on their perplexity. We
compare the percentages of hate speech and sexu-
ally explicit content for the entire sample, as well
as the high- and low-quality documents, in Table 3.

While filtering by perplexity does seem to fil-
ter out many websites containing sexual content,
it does not detect much of the hate speech that is
flagged by the count-based or statistical methods.
In fact, perplexity scores had low correlations with
all detection methods tested (Figure 1). This sup-
ports the methodology of Wenzek et al. (2020),
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Entire
Sample

High
Quality

Low
Quality

1+ sexual
n-grams 2.36% 1.81% 3.97%

3+ sexual
n-grams 1.36% 0.42% 3.11%

10+ sexual
n-grams 0.73% 0.08% 1.98%

1+ hate
n-grams 17.78% 18.95% 17.19%

3+hate
n-grams 6.38% 6.19% 8.26%

10+ hate
n-grams 1.16% 1.17% 1.70%

Hate speech
(Sonar) 4.02% 3.47% 5.09%

Hate speech
(Delimit) 5.24% 5.77% 5.66%

Table 3: Comparison of hate speech and sexual content
detected in the entire corpus, as well as high- and low-
quality sites.

who noted that while “perplexity was a relative
good proxy for quality”, also argued that some of
the lower-quality texts could still be useful for spe-
cific applications, and therefore did not use it to
exclude documents from the training set of their
language model. While we are exploring ways
of modifying the original approach in order to be
more discerning, we believe that there more nu-
anced metrics that can be used for estimating and
filtering documents based on text, potentially cou-
pling embedding-based approaches with statistical
ones.

3.4 Behaviour of Different Detection
Methods

The approaches that we compared in the current
study are different in the features that they use and
techniques employed for detecting particular types
of content. HateSonar employs classical NLP tech-
niques for hate speech detection, constructing fea-
tures from Penn Part-of-Speech N-grams with TF-
IDF weighting based on a hand-crafted hate speech
dataset, training simple classifier ensembles using
Support Vector Machines, random forests, naive
Bayes, and linear models. Delimit, on the other
hand, is A BERT-based model trained on Twitter
and Reddit posts, not relying on any handcrafted
features. Our simple n-gram approach unsurpris-

Figure 1: Correlation coefficients (Pearson’s r) calcu-
lated between all content metrics investigated and per-
plexity, a commonly-used text quality metric.

ingly was more in agreement with HateSonar than
Delimit, given that both rely on count-based fea-
tures. The fact that all methods identified differ-
ent instances of clear hate speech implies that we
are far from a general purpose dataset-filtering ap-
proach. These results also imply that deep learning
models learn very different features to classify hate
speech than other methods, and given their sen-
sitivity to the specific composition of the dataset
used to train them (as exposed by the propensity
of large models to memorize training examples
(Carlini et al., 2020)), the presence of undesirable
content in the corpora used to train them should be
taken seriously.

4 Discussion

4.1 Summary of Results
We recognize that the exploratory work presented
above is only the tip of the iceberg in terms of the
analyses that can be done on the massive web cor-
pora that are feeding our language models. How-
ever, analyzing the Common Crawl would require
computational resources far in excess of what is
available to most research institutions. We there-
fore hope that this initial analysis will inspire our
fellow researchers to continue to dig deeper into
this topic, and to propose more scalable, thorough,
and nuanced approaches for analyzing the massive
corpora used to train language models. We also
recognize this analysis would have been more com-
prehensive on a small curated dataset, but given the
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amount of data needed to train modern language
models, we believe the community needs to move
beyond analysis techniques only compatible with
small-data, toward something that will scale to the
datasets used to train these large models.

Also, while we have currently adopted a purely
descriptive approach, we feel that it is worth dis-
cussing and debating the consequences of our anal-
ysis, and those of our peers, within the NLP com-
munity. While it can be argued that the Common
Crawl corpus is an accurate portrayal of the dis-
course of modern society – which includes sexual
content, hate speech, and racial and gender biases
– we believe that it is up for debate whether this
discourse is the one that we, as a community, want
to use to train the models that translate our texts,
influence our search results and answer our ques-
tions. Notably, the Common Crawl over-represents
those populations that are avid users of the inter-
net: younger, English-speaking individuals from
developed countries, who are those who have the
most access to the internet globally (World Bank,
2018). Furthermore, internet communities sup-
ported by anonymity and and particular norms can
amplify toxic discourse that would not be found
in mainstream corpora (Massanari, 2017) often ex-
acerbated by the well-documented ’online disinhi-
bition’ phenomenon where users find themselves
more likely to engage in anti-social behaviours due
to the lack of immediate social feedback (Wachs
et al., 2019; Mathew et al., 2019; de Lima et al.,
2021). This can further perpetuate the lack of di-
verse, representative language models that can ad-
equately mirror society beyond the boundaries of
internet communities.

4.2 Future Work

Given the general superior performance of large
language models on common benchmarks, and that
they require ever larger datasets to train them, we
believe it is important that for the ML community
to carry out a more extensive analysis of: 1) the
impact of undesirable content in the datasets used
to train these models on downstream performance;
2) the effect of properly filtering these examples
out of the dataset before model training, and 3)
approaches for regularizing model outputs to be
acceptable regardless of the data used to train the
model. All three directions require a better under-
standing of the contents of the datasets, which we
believe requires new tools that are scalable to the

Common Crawl (or similarly large and diverse cor-
pora) to identify such examples. Models trained to
detect undesirable examples, like the ones used in
this paper, need to be improved such that they can
reliably generalize to the Common Crawl, which
constitutes a significant undertaking. Additionally,
future work could explore the utility of controlling
model generation using labelled “undesirable” ex-
amples (Zhang et al., 2020; Engel et al., 2017), or
human-in-the-loop learning methods (Wang et al.,
2021) for fine-tuning a language model trained us-
ing undesirable examples. It will also be important
to evaluate whether curation is sufficient: it remains
possible that a model could create an undesirable
generation from multiple distinct innocuous exam-
ples (Bender et al., 2021; Gehman et al., 2020). It is
also worth considering that for some applications,
task-focused models with curated training exam-
ples may perform better than large models trained
on unfiltered corpora, so that their behaviour can be
more reliably guaranteed: these are all interesting
avenues for future work.

Finally, while larger corpora generally result
in better models (Kaplan et al., 2020; Sun et al.,
2017), data quality and corpora content also plays
a major role in the caliber and appropriateness of
these models for the various downstream applica-
tions (Florez, 2019; Abid et al., 2021; Bhardwaj
et al., 2021). To produce high quality and safe neu-
ral language models will likely require the commu-
nity to adopt more mindful data collection practices
(Gehman et al., 2020; Bender and Friedman, 2018;
Gebru et al., 2018; Jo and Gebru, 2020; Paullada
et al., 2020; Bender et al., 2021), establish standard-
ized filtering pipelines for corpora (Roziewski and
Stokowiec, 2016; Ortiz Suarez et al., 2019; Wenzek
et al., 2020), and develop methods for evaluating
the bias in trained models (Schick et al., 2021). We
recognize that this is not a straightforward task with
a one-size-fits all solution, but we propose that as
much attention should be dedicated to the corpora
used for training language models as to the mod-
els themselves, and that corpora transparency is a
prerequisite for language model accountability.
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Abstract

Most current quality estimation (QE) models
for machine translation are trained and evalu-
ated in a static setting where training and test
data are assumed to be from a fixed distribu-
tion. However, in real-life settings, the test
data that a deployed QE model would be ex-
posed to may differ from its training data. In
particular, training samples are often labelled
by one or a small set of annotators, whose
perceptions of translation quality and needs
may differ substantially from those of end-
users, who will employ predictions in practice.
To address this challenge, we propose an on-
line Bayesian meta-learning framework for the
continuous training of QE models that is able
to adapt them to the needs of different users,
while being robust to distributional shifts in
training and test data. Experiments on data
with varying number of users and language
characteristics validate the effectiveness of the
proposed approach.

1 Introduction

Quality Estimation (QE) models aim to evaluate
the output of Machine Translation (MT) systems at
run-time, when no reference translations are avail-
able (Blatz et al., 2004; Specia et al., 2009). QE
models can be applied for instance to improve trans-
lation productivity by selecting high-quality trans-
lations amongst several candidates. A number of
approaches have been proposed for this task (Spe-
cia et al., 2009, 2015; Kim et al., 2017; Kepler et al.,
2019; Ranasinghe et al., 2020), and a shared task
yearly benchmarks proposed approaches (Fonseca
et al., 2019; Specia et al., 2020).

Different users of MT output have varying qual-
ity needs and standards, depending for instance on
the downstream task at hand, or the level of their
knowledge of the languages involved, and training
for the task. Thus, the perception of the quality

of MT output can be subjective, and therefore the
quality estimates obtained from a model trained on
data from one set of users may not serve the needs
of a different set users. However, most existing QE
models are trained and evaluated in a static setting
which assumes a fixed distribution of train and test
data. This consequently leads to suboptimal perfor-
mance when faced with test data from a different
set of users in practice.

The few previous approaches to develop QE
models that are able to learn from a continuous
stream of data suffer from the following limita-
tions: they do not have an explicit objective that
encourages the model to exploit common structures
shared among different users to continually adapt
efficiently for new users (Turchi et al., 2014), or as-
sume a fixed number of users, and that the identity
of each user is known in advance (de Souza et al.,
2015). In addition, these previous approaches do
not explicitly account for the underlying uncertain-
ties in the data in order to improve performance.

In contrast, we propose a continual meta-
learning framework that makes none of the afore-
mentioned assumptions, but instead considers each
user as a task and explicitly meta-learns the com-
mon structure shared among different users. This
approach further exploits the underlying uncertain-
ties in the streaming data through Bayesian infer-
ence to improve performance. In addition, the
proposed approach is applicable even in a setting
where no user identities are available, for instance
due to privacy concerns, but where we still want
to learn and adapt as efficiently as possible from
supervision data that arrives incrementally.

2 Background

2.1 Continual Learning

Continual learning (Ring, 1994; Thrun, 1996; Zhao
and Schmidhuber, 1996) aims to develop mod-
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els that are capable of learning from a continuous
stream of sequential tasks, T1, T2, .., TT , with each
task Tt having its associated train Dtrain

t , valida-
tion Dval

t and test Dtest
t splits. A major challenge

associated with learning in this setting is the issue
of catastrophic forgetting, where a model forgets
knowledge of how to perform previous tasks as
new tasks are encountered. Most recent work in
lifelong learning has focused on ways of mitigat-
ing catastrophic forgetting, and approaches pro-
posed include replay-based methods (Rebuffi et al.,
2017; Lopez-Paz and Ranzato, 2017; Chaudhry
et al., 2019), which replay either stored or gener-
ated samples to remind the model of how to per-
form previous tasks; regularization-based methods
(Kirkpatrick et al., 2017; Zenke et al., 2017), which
utilize an additional regularization term to enforce
retaining knowledge learned from previous tasks;
and parameter-isolation methods, which make use
of dedicated parameters for each task to prevent
interference among tasks (Rusu et al., 2016; Fer-
nando et al., 2017). Lange et al. (2019) presents
an overview of recent continual learning methods.
Research in continual learning can generally be
carried in one of two settings (Aljundi et al., 2019):
in a task-incremental continual learning setting,
where the learner is sequentially given access to
all the data of each task and is allowed to make
multiple passes over it, with task boundaries and
identities known to the learner; or in an online con-
tinual learning setting, where the learner is only
allowed a single pass over the data of each task,
and with no task identities or boundaries known to
the learner. In this work we conduct experiments
in the online continual learning setting.

2.2 Meta-Learning

The goal of meta-learning, also known as learn-
ing to learn (Schmidhuber, 1987; Thrun and Pratt,
1998), is to develop models that can learn more
efficiently over time, by generalizing from knowl-
edge of how to solve related tasks from a given
distribution of tasks. Given a learner model fw, for
instance a neural network parametrized by w, and
a distribution p(T ) over tasks T , gradient-based
meta-learning approaches such as MAML (Finn
et al., 2017) seek to learn the parameters of the
learner model which can be quickly adapted to new
tasks sampled from the same distribution of tasks.
In formal terms, these approaches seek parameters

that optimize the meta-objective:

min
w

ET ∼p(T ) [LT (Uk (w;DT ))] (1)

where LT is the loss and DT is training data from
task T , and Uk denotes k steps of a gradient descent
learning rule such as SGD.

In order to account for uncertainty and improve
robustness, Bayesian approaches to meta-learning
have also been proposed (Kim et al., 2018; Finn
et al., 2018; Ravi and Beatson, 2019; Wang et al.,
2020; Nguyen et al., 2020).

2.3 Meta-Learning for Continual Learning

Meta-learning for continual learning methods gen-
erally make use of the meta-learning objective one
task at a time to ensure that learning on the current
task does not lead to catastrophic forgetting on pre-
vious tasks. For instance, both Riemer et al. (2019)
and Obamuyide and Vlachos (2019) propose to
combine REPTILE (Nichol and Schulman, 2018),
a first order meta-learning algorithm, together with
experience replay to improve performance during
continual learning. Javed and White (2019) pro-
posed an online-aware meta-learning (OML) objec-
tive for learning representations that are less prone
to catastrophic forgetting during continual learning.
Holla et al. (2020) proposed to combine the OML
objective together with experience replay for im-
proved continual learning performance. Recently,
Gupta et al. (2020) proposed Look-Ahead MAML
(LA-MAML), which meta-learns per-parameter
learning rates to help adapt to changing data distri-
butions during continual learning.

These approaches have demonstrated that meta-
learning can yield performance improvements for
continual learning. Our work builds on these ap-
proaches and additionally demonstrates that the
performance of meta-learning for continual learn-
ing can be further improved with the combination
of an adaptive learning rate and Bayesian inference.

2.4 Bayesian Inference with Stein Variational
Gradient Descent

Stein Variational Gradient Descent (SVGD) (Liu
and Wang, 2016) is a Bayesian inference method
which works by initializing a set of samples, also
known as particles, from a simple distribution and
iteratively updating the particles to match samples
from a target distribution. Because its particle up-
date rule is deterministic and differentiable, it can
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be used to perform Bayesian inference in the meta-
learning inner loop, since the entire update pro-
cess can still be differentiated through for gradient-
based updates from the outer loop.

In order to obtain N samples from a posterior
P (w), SVGD maintains N samples of model pa-
rameters, and iteratively transports the samples to
match samples from the target distribution. Let the
samples be represented by W = {wn}Nn=1. At
each successive iteration t, SVGD updates each
sample with the following update rule:

wt+1 ← wt + αtφ (wt) (2)

where φ (wt) =

1

N

N∑

n=1

[
k (wn

t ,wt)∇wn
t
log p (wn

t ) +∇wn
t
k (wn

t ,wt)
]

(3)

αt is a step-size parameter and k (., .) is a positive-
definite kernel, such as the RBF kernel.

Intuitively, the first term in Equation 3 im-
plies that a particle determines its update direction
through a weighted aggregate of the gradients from
the other particles, with the kernel distance between
the particles serving as the weight. Thus, closer
particles have more weight in the aggregate. The
second term of the equation can be understood as
a repulsive force that prevents the particles from
collapsing to a single point. For the case when
the number of particles is one, the SVGD update
procedure reduces to standard gradient ascent on
the objective p(w) for any kernel with the property
∇wk (w,w) = 0, such as the RBF kernel. SVGD
has been applied in a wide range of settings, in-
cluding reinforcement learning (Liu et al., 2017;
Haarnoja et al., 2017), uncertainty quantification
(Zhu and Zabaras, 2018) and to improve perfor-
mance in an offline meta-learning setup (Kim et al.,
2018) which requires all tasks ahead of training. In
this work we adapt SVGD to an online continual
meta-learning setting for a natural language task.

3 Meta-Learning for Continual Learning
with Adaptive SVGD

Learning continually from a stream of observa-
tions with varying underlying distributions involves
dealing with various sources of uncertainty, which
a model should properly account for in order to
enhance its continual learning performance. One
source of uncertainty is in the learning rate, that
is, how fast learning should proceed on new data

in order to both reduce catastrophic forgetting and
enhance performance on the current task. Another
source is the inherent uncertainty in the values of
the model’s parameters themselves. Learning an
adaptive learning rate, for instance as proposed
in Gupta et al. (2020), can help account for the
first source of uncertainty, and Bayesian inference
can be used to help a model account for the other
source of uncertainty. In order to properly model
both sources of uncertainty during continual learn-
ing, we propose to both perform inference of model
parameters with SVGD, and meta-learn an adap-
tive per-parameter learning rate for SVGD updates.
Thus, the SVGD update in Equation 2 now be-
comes:

wt+1 ← wt +αt · φ (wt) (4)

where αt is a learnable parameter containing per-
parameter learning rates, and · is the dot product.

The aim is then to meta-learn both the parame-
ters of the model and the per-parameter learning
rates that enhance continual learning performance.
The advantage of this approach is that it allows for
greater flexibility to adapt to non-stationary data
distributions during continual learning. In the ex-
periments, we demonstrate that this change leads
to improved performance for the task of contin-
ual quality estimation. The proposed approach is
illustrated in Algorithm 1.

We first initialize the parameters of the QE
model, and the learning rate (line 1). Then for
each mini-batch in a task t that arrives, we store its
training instances in the buffer with a probability p
(lines 2-6). In the inner loop, we performK SVGD
updates (using Equation 4) starting from the initial
model parameters W0 (lines 7-9). In the outer loop,
instances in the current mini-batch are augmented
with instances sampled from the buffer (line 10).
Finally, the augmented mini-batch is used to per-
form a meta-update on the learning rate (line 11),
and on the parameters of the QE model (line 12).
Because this approach can also be considered the
online counterpart to the Bayesian Model Agnos-
tic Meta-Learning approach of Kim et al. (2018),
we refer to it as Continual Quality Estimation with
Online Bayesian Meta-Learning (CQE-OBML).

4 Experiments and Results

The QT21 Dataset We evaluate our approach
with the publicly available QT21 (Specia et al.,
2017), a large-scale dataset containing translations
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Algorithm 1 Continual Quality Estimation with
Online Bayesian Meta-Learning (CQE-OBML)
Require: QE model fW0 , learning rates α0, β
Require: Buffer B, update probability p
1: Initialize W0 , α0

2: for t = 1,2,3,... do
3: for each (Xt, Yt) in Dtrain

t do
4: if random() < p then
5: Update B ← B ∪ (Xt, Yt)
6: end if
7: for k = 1,..K do
8: Wk = SV GD(Wk−1,α0, Xt, Yt)
9: end for

10: (Xv, Yv)← (Xt, Yt) ∪ sample(B)
11: α0 ← α0 − β∇α0Lt (fWk (Xv), Yv)
12: W0 ←W0 −αo · ∇W0Lt (fWk (Xv), Yv)
13: end for
14: end for

PE ID Train Dev Test

PE1 1440 360 200
PE2 2160 540 300
PE3 1444 361 195
PE4 1834 459 244
PE5 4866 1217 617
PE6 1677 420 203
PE7 1567 392 241

Total 14988 3749 2000

(a) QT21 en-lv (nmt)

PE ID Train Dev Test

PE1 9952 2488 559
PE2 3445 862 193
PE3 8770 2193 537
PE4 4579 1145 276
PE5 7651 1913 435

Total 34397 8601 2000

(b) QT21 en-cs (smt)

Table 1: Number of instances per post-editor (PE) for
the QT21 dataset.

from both statistical (smt) and neural (nmt) ma-
chine translation systems in multiple language di-
rections.1 This is the largest dataset with annota-
tor information available. We use data from the
English-Latvian (en-lv) and English-Czech (en-cs)
language pairs. These languages were chosen as
they contain the largest number of annotators. Each
instance in the dataset is a tuple of source sen-
tence, its machine translation, the corresponding
post-edited translation by a professional translator
(post-editor), a reference translation and other in-
formation such as (anonymized) post-editor identi-
fier. We construct a QE dataset from this corpus by

1http://www.qt21.eu/resources/data/

computing the HTER (Snover et al., 2006) values
between each source sentence and its post-edited
translation. We thereafter split the data into train,
dev and test splits for each post-editor. A break-
down of the number of train, dev and test instances
per post-editor is available in Table 1.

Benchmark Approaches SEQUENTIAL is a
baseline trained sequentially over the streaming
data of each task. In each round, the model param-
eters are initialized from that of the previous round;
A-GEM (Chaudhry et al., 2019) is a continual learn-
ing method which utilizes the gradients of samples
of previous tasks saved in a buffer as an optimiza-
tion constraint to prevent catastrophic forgetting;
OML-ER (Holla et al., 2020) augments the Online-
Aware Meta-Learning approach of Javed and White
(2019) with experience replay from a buffer; LA-
MAML (Gupta et al., 2020) learns per-parameter
learning rates using meta-learning; MTL-IID is
trained on the concatenated and shuffled data from
all users for multiple epochs in multi-task fashion.
It assumes i.i.d access to the data from all users, and
thus serves as an upper-bound for the performance.

QE Model The quality estimation model used by
all continual learning methods is based on multi-
lingual DistilBERT (Sanh et al., 2019), a smaller
version of multi-lingual BERT (Devlin et al., 2019)
trained with knowledge distillation (Buciluǎ et al.,
2006; Hinton et al., 2015). It accepts as input the
source and machine translation outputs concate-
nated as a single text, separated by a ‘[SEP]’ token
and prepended with a ‘[CLS]’ token. The repre-
sentation of the ‘[CLS]’ token is then passed to a
linear layer to predict HTER (Snover et al., 2006)
values as regression targets.

Evaluation We report Pearson’s r correlation
scores and Mean Absolute Error (MAE) between
model output and gold labels, both standard evalu-
ation metrics in QE.

Each experiment is repeated across five (5) differ-
ent orders of the tasks and five (5) different random
seeds, and we report the average.

4.1 Comparison with Benchmark
Approaches

The results of our approach in comparison with
other benchmark approaches are presented in Table
2. We can observe that naively training sequentially
on the data of each task as it arrives (SEQUEN-
TIAL) leads to poor results.
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Method
en-lv en-cs

Pearson ↑ MAE ↓ Pearson ↑ MAE ↓
MTL-IID 59.17 0.1450 54.79 0.1547

SEQUENTIAL 47.07 0.1773 50.08 0.1689
A-GEM 46.29 0.1794 46.49 0.1736
OML-ER 52.58 0.1621 50.40 0.1635
LA-MAML 52.86 0.1621 50.56 0.1631

CQE-OBML 53.67 0.1596 51.19 0.1619

Table 2: Comparison with benchmark approaches.

OML-ER outperforms both SEQUENTIAL and
A-GEM, likely because of its combination of meta-
learning and experience replay, which makes it
better able to combat forgetting. LA-MAML
slightly improves over the results of OML-ER,
as a result of its meta-learned learning rate. We
find that our approach, CQE-OBML, which com-
bines a meta-learned adaptive learning rate together
with Bayesian inference, outperforms previous ap-
proaches. This demonstrates the effectiveness of
adequately modelling the various sources of uncer-
tainty in continual meta-learning.

4.2 Analysis of Model Components

We investigate the effect of the various compo-
nents of our approach through an ablation study.
As shown in Table 3, our approach (CQE-OBML)
without the adaptive learning rate (-LR (α)) has a
drop in performance, especially for en-cs. With-
out inference with SVGD (-SVGD), we observe a
larger reduction in performance on both datasets,
demonstrating the usefulness of incorporating
Bayesian inference into the continual meta-learning
of quality estimation models.

Method
en-lv en-cs

Pearson ↑ MAE ↓ Pearson ↑ MAE ↓
CQE-OBML 53.67 0.1596 51.19 0.1619

- LR (α) 53.48 0.1598 50.94 0.1623
- SVGD 52.86 0.1621 50.56 0.1631

Table 3: Ablation of model components.

5 Conclusions

We proposed a framework for the continual meta-
learning of machine translation quality estimation
models, which is able to learn continually from the
streaming data of multiple quality estimation users.
We further incorporate an adaptive learning rate to-
gether with online Bayesian inference for improved

performance. In experiments on quality estimation
data from two language directions, we demonstrate
improved performance over recent state-of-the-art
continual learning methods.
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José Guilherme Camargo de Souza, Matteo Negri,
Elisa Ricci, and Marco Turchi. 2015. Online mul-
titask learning for machine translation quality esti-
mation. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing of the Asian Federation of
Natural Language Processing, ACL 2015, July 26-
31, 2015, Beijing, China, Volume 1: Long Papers,
pages 219–228. The Association for Computer Lin-
guistics.

Lucia Specia, Frédéric Blain, Marina Fomicheva, Er-
ick Fonseca, Vishrav Chaudhary, Francisco Guzmán,
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de Souza, and Matteo Negri. 2014. Adaptive quality
estimation for machine translation. In Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics, ACL 2014, June 22-27,
2014, Baltimore, MD, USA, Volume 1: Long Papers,
pages 710–720. The Association for Computer Lin-
guistics.

Zhenyi Wang, Yang Zhao, Ping Yu, Ruiyi Zhang,
and Changyou Chen. 2020. Bayesian meta sam-
pling for fast uncertainty adaptation. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020.

Friedemann Zenke, Ben Poole, and Surya Ganguli.
2017. Continual Learning Through Synaptic Intel-
ligence. In Proceedings of the 34th International
Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages
3987–3995, International Convention Centre, Syd-
ney, Australia.

Jieyu Zhao and Jurgen Schmidhuber. 1996. Incremen-
tal self-improvement for life-time multi-agent rein-
forcement learning. In From Animals to Animats
4: Proceedings of the Fourth International Con-
ference on Simulation of Adaptive Behavior, Cam-
bridge, MA, pages 516–525.

Yinhao Zhu and Nicholas Zabaras. 2018. Bayesian
deep convolutional encoder-decoder networks for
surrogate modeling and uncertainty quantification. J.
Comput. Phys., 366:415–447.

196



A Additional Results

We present additional results on the WPTP12
dataset (Koponen et al., 2012),which is a small
English-Spanish (en-es) translation dataset con-
sisting of documents from the news domain. It
features translations from eight different machine
translation systems. Each instance in the dataset in-
cludes the corresponding post-edited translation
along with post-editing time and HTER scores
computed between the translation and the corre-
sponding post-edit. Statistics about the number of
instances per post-editor are in Table 4.

Table 5 contains the results obtained on this
dataset. As a result of its size, all methods gener-
ally find it challenging, with reduced performance
across-the-board. Despite reduced performance in
terms of mean absolute error, our approach obtains
better Pearson correlation than all previous meth-
ods.

PE ID Train Dev Test

A1 121 40 42
A2 121 40 42
A3 121 40 42
A4 121 40 42
A5 121 40 42
A6 121 40 42
A7 121 40 42
A8 121 40 42

Total 968 320 336

Table 4: Number of instances per Post Editor (PE) for
the WPTP12 dataset.

Method
WPTP12

Pearson ↑ MAE ↓
SEQUENTIAL 33.05 0.2061
A-GEM 38.95 0.2066
OML-ER 39.17 0.1786
LA-MAML 38.89 0.1772
CQUEST-OBML 40.11 0.1780

Table 5: Averaged performance for all methods.

B Additional Experimental Details

All models make use of the same values for hyper-
parameters such as learning rate and batch size,
selected by manual search in initial experiments.
These are provided in Table 6.

Hyper-parameter Value

Learning rate 3e-5
Mini-batch size 16

Max. sequence length 100

Table 6: Hyper-parameter values for all compared ap-
proaches
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Abstract

Sequential sentence classification aims to clas-
sify each sentence in the document based on
the context in which sentences appear. Most
existing work addresses this problem using a
hierarchical sequence labeling network. How-
ever, they ignore considering the latent seg-
ment structure of the document, in which con-
tiguous sentences often have coherent seman-
tics. In this paper, we proposed a span-based
dynamic local attention model that could ex-
plicitly capture the structural information by
the proposed supervised dynamic local atten-
tion. We further introduce an auxiliary task
called span-based classification to explore the
span-level representations. Extensive experi-
ments show that our model achieves better or
competitive performance against state-of-the-
art baselines on two benchmark datasets.

1 Introduction

The goal of Sequential Sentence Classification
(SSC) is to classify each sentence in a document
based on rhetorical structure profiling process (Jin
and Szolovits, 2018), and the rhetorical label of
each sentence is related to the surrounding sen-
tences, which is different from the general sentence
classification that does not involve context. An
example is shown in Figure 1, the document is di-
vided into rhetorical labels such as “background”
and “outcome” for five sentences in NICTA dataset.
The SSC task is crucial for downstream domains
such as information retrieval (Edinger et al., 2017),
question answering (Cohen et al., 2018) and so on.

Traditional statistical methods, such as
HMM (Lin et al., 2006), CRF (Hirohata et al.,
2008; Hassanzadeh et al., 2014), etc., heavily rely
on numerous carefully hand-designed features.
In contrast, recent methods based on end-to-end
neural networks utilize hierarchical sequence

∗*Corresponding author

Figure 1: An example of NICTA dataset for SSC task.
The text has five sentences and is divided into two seg-
ments {(s1, s2), (s3, s4, s5)} by labels.

encoders followed by the CRF layer to contextu-
alize sentence representations, which achieved
promising results. The first neural network
approach (Lee and Dernoncourt, 2016) combined
RNN with CNN that incorporates preceding
sentences to encode the contextual content and
further use a CRF layer to optimize the predicted
label sequence. Recently, Jin and Szolovits (2018)
propose a hierarchical sequential labeling network
to make use of the contextual information within
surrounding sentences to help classify. Conversely,
Cohan et al. (2019) employ BERT (Devlin et al.,
2018) to capture contextual dependencies without
hierarchical encoding or CRF layer. Yamada
et al. (2020) introduce Semi-Markov CRFs (Ye
and Ling, 2018) to assign a rhetorical label at
span-level rather than single sentence.

Nevertheless, the above-mentioned methods ig-
nore the latent structural information (e.g. seg-
mentation) in the document, which is the grouping
of content into topically coherent segments. In-
tuitively, a segment with several continuous sen-
tences is expected to be more coherent semantics
than the text spanning different segments, e.g., the
text with two segments in Figure 1. In this paper,
we propose a novel span-based dynamic local atten-
tion model to explore the latent segment structure
in a document for SSC task. First, we introduce
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dynamic local attention guided by segmentation
supervision signal to focus on the surrounding sen-
tences with coherent semantics, called Supervised
Dynamic Local Attention (SDLA). Furthermore,
we introduce an auxiliary task called span-based
classification, which calculates semantic represen-
tations of spans and performs span classification
on them to obtain predicted rhetorical labels. The
dynamic local attention mechanism and the aux-
iliary task complement each other to enhance the
model capacity to perceive segment structure and
improve the performance of SSC task. The results
on two benchmark datasets show that our method
achieves better or competitive performance than
state-of-the-art baselines.

2 Proposed Method

In this paper, we propose a Span-based Dynamic
Local Attention Model for sequential sentence clas-
sification with two novel components: supervised
dynamic local attention and auxiliary span-based
classification task, respectively. The architecture
of our model is shown in Figure 2.

2.1 Sentence Representations
For SSC task, given a sequence of sentences
X = {x1, x2, · · · , xN}, the model needs to predict
the label of each sentence Y = {y1, y2, · · · , yN}
based on the context which the sentence appears,
where N is the number of sentences. Following the
previous work (Yamada et al., 2020), we first feed
each sentence into BERT pre-trained with PubMed
(Peng et al., 2019) and then extract the encoding
corresponding to [CLS] token as sentence encod-
ing S = {s1, s2, · · · , sN} (we implement it using
Sentence-BERT (Reimers and Gurevych, 2019)).
Then, we employ two bidirectional LSTM layers to
produce context-informed sentence representation
hci ∈ Rd for whole document :

Hc = {hc1, hc2, · · · , hcN} (1)

2.2 Supervised Dynamic Local Attention
In this section, we introduce dynamic local atten-
tion guided by a supervised segmentation signal
to learn latent segment structure in a document.
Firstly, we generate the sentence-level attention
spans for each sentence by training soft mask-
ing (Nguyen et al., 2020), using pointing mech-
anism (Vinyals et al., 2015) to approximate left and
right boundary positions of the mask vector. Given
the query Q and key K, where Q = K = Hc,

Figure 2: The overview of our model, exemplified by
the sample in Figure 1. The labels ’b’ and ’o’ stand
for “background” and “outcome”, respectively. Cspan

denotes Auxiliary Span-based Classification Task.

we calculate the left and right boundary matrix
φ̂l, φ̂r ∈ RN×N for query Q as follows:

φ̂l = S(
QTWQ

L (KWK
L )T√

d
�M) (2)

φ̂r = S(
QTWQ

R (KWK
R )T√

d
�MT ) (3)

Mij =

{
−∞, i < j
1, i ≥ j (4)

where S is the softmax function, � is element-
wise product, and WQ

L ,W
K
L ,W

Q
R ,W

Q
R ∈ Rd×d

are trainable parameters. Eq. (2)-(3) approximate
the left and right boundary positions of the mask
matrix for the query Q (Each row approximate the
mask vector of the entire document correspond-
ing to each sentence in sequence order). Note that
we additionally introduce mask matrix M to en-
sure that the left boundary position l and the right
boundary position r generated at position i satisfy
this relationship such that 0 ≤ l ≤ i ≤ r ≤ N .

Given the above definitions, the attention span
masking matrix Ma can be achieved by composit-
ing the left and right boundary matrix :

Ma = (φ̂lLN )� (φ̂rL
T
N ) (5)

where LN ∈ {0, 1}N×N denotes a unit-value (1)
upper-triangular matrix.

Then we combine self-attention with the atten-
tion span masking, enabling the model to focus
on semantically related sentences around the target
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position and eliminate noisy aggregations :

A =
(QWQ)(KWK)T√

d
�Ma (6)

Hatt = S(A)(HcWH) (7)

where WQ,WK ,WH are the trainable parameters.
However, in the absence of a supervised process,

the dynamic local attention may fail to focus on the
corresponding informative sentences of the target,
especially for limited data, so we further introduce
the segmentation signal to guide the learning of dy-
namic local attention to capture coherent semantics
more accurately. Specifically, we employ binary
cross-entropy loss to describe the differences be-
tween attention matrix A and segment signal Y att:

Latt = BCE(σ(A), Y att) (8)

Y att
ij =

{
1, Eij = 1
0, else

(9)

where σ is sigmoid function. Eij = 1 denotes i-
th sentence and j-th are in the same segment (e.g.
(s1, s2) and (s4, s5) in Figure 1).

Finally, we concatenate Hc and Hatt as the con-
textual representations H and add a CRF layer to
classify each sentence.

2.3 Auxiliary Span-based Classification Task
Due to the obvious label consistency of sentences
within spans, we introduce an additional auxiliary
task called span-based classification to improve the
performance at the span-level. To this effect, we
consider all possible spans of various lengths and
propose a tagging scheme for span-based classifica-
tion. The scheme uses the same labels as sentence-
level to represent the label of a span. Firstly, we
represent a span from the i-th sentence to the j-th
sentence as a vector hij , which is concatenated by
four-vectors similar to Zhao et al. (2020):

hij = {hi;hj ; ĥi:j ;ϕ(j − i+ 1)} (10)

where ĥi:j is the attention output over the final
sentence representation H in the span, and ϕ(j −
i+ 1) is the feature vector encoding the span size.

We employ a cross-entropy category loss for
span-based classification:

Lspan = CE(Ŷ span, Y span) (11)

Y span
ij =

{
label, Fij = 1
0, else

(12)

where Ŷ span is the output probability at span-level,
Fij denotes i-th sentence and j-th sentence (i, j sat-
isfy the relationship i < j ) are in the same segment
and i, j is the beginning and end of the segment
respectively (e.g. (s1, s2) and (s3, s5) in Figure 1).

2.4 Objective Function

The overall objective function includes cross-
entropy loss Lsen, Lspan for sentence and span-
based classification and supervised attention loss
Latt :

L = Lsen + λattLatt + λspanLspan (13)

where λatt, λspan are the hyperparameters for bal-
ancing the strength of Latt and Lspan.

3 Experiments

3.1 Experimental Setup

Datasets and Baselines To evaluate the effec-
tiveness of our model, we conduct extensive exper-
iments on two standard benchmark datasets from
medical scientific abstracts, i.e. NICTA-PIBOSO
(Kim et al., 2011) and PubMed 20k RCT (Dernon-
court and Lee, 2017). The detailed description of
both datasets can be found in the appendix. We
compare our model with three recent strong neu-
ral models, i.e., those of Jin and Szolovits (2018),
Cohan et al. (2019), Yamada et al. (2020).

Implementation Details We set the size of
hidden state to 200 and apply dropout with the prob-
ability of 0.5 for BiLSTM. Both hyperparameters
λatt and λspan are set to 0.3. The batch size is 30.
We use Adam optimizer with learning rate 0.003
and weight decay 0.99 for training. For evaluation,
we maximize the score from sentence-level CRF
to get the predicted labels of the corresponding se-

Models Sentence-F1 Span-F1 Pk

NICTA-PIBOSO
Jin and Szolovits (2018) 82.3 51.1 17.3

Cohan et al. (2019) 83.0 54.3 21.3
Yamada et al. (2020) 84.4 58.7 –

Ours 86.8 62.9 12.2
PubMed 20k RCT

Jin and Szolovits (2018) 92.8 82.9 5.3
Cohan et al. (2019) 92.9 82.2 5.1

Yamada et al. (2020) 93.1 84.3 –
Ours 92.8 84.5 4.1

Table 1: The results comparison of our model and base-
lines on two benchmark datasets.
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background other intervention study design population outcome
Avg Num. Sent. 2.8 2.6 1.3 1.0 1.1 5.2

Jin and Szolovits (2018) 53.5 34.0 31.7 64.1 70.8 51.4
Cohan et al. (2019) 55.5 41.0 36.9 63.0 69.9 57.4

Yamada et al. (2020) 60.5 44.8 34.3 62.4 72.9 64.3
Ours 60.8 35.4 49.0 71.4 77.6 64.4

Table 2: Average number of sentences in spans and Span-F1 scores for each rhetorical label on NICAT-PIBOSO.

background objective methods results conclusions
Avg Num. Sent. 2.6 1.5 4.1 4.2 1.8

Jin and Szolovits (2018) 73.8 73.8 86.7 83.1 90.8
Cohan et al. (2019) 70.6 70.8 86.3 83.9 92.0

Yamada et al. (2020) 74.7 73.8 88.5 85.8 91.9
Ours 67.1 74.4 89.3 85.7 93.2

Table 3: Average number of sentences in spans and Span-F1 scores for each rhetorical label on PubMed 20k RCT.

quence. Following Yamada et al. (2020), we use
Sentence-F1 and Span-F1 as evaluation metrics1.

3.2 Experimental Results

Tabel 1 report the performance of our approaches
against other methods on PubMed 20k RCT and
NICTA-PIBOSO, respectively. The results of other
methods are obtained from Yamada et al. (2020).

We can observe that our model, whether
Sentence-F1 or Span-F1, is significantly better
than other methods on NICTA-PIBOS, and we get
a result comparable to Yamada et al. (2020) on
PubMed 20k RCT. We believe that our model has
remarkable performance on NICTA-PIBOS, which
has fewer training samples but larger label space,
because our model can capture latent segment struc-
ture by SDLA component and improve span repre-
sentations by auxiliary span-based classification.

In addition, table 2 and 3 show the detail re-
sults of Span-F1 scores for each rhetorical label.
Our model achieves better or similar performance
than other baselines, except for “other” on NICAT-
PIBOSO and “background” on PubMed 20k RCT.
We speculate that the reason is that the sentence
semantics corresponding to the “other” label are
diverse and not significantly distinguishable from
other labels, while the “background” usually ap-
pears before the “objective”, and the sentence pre-
sentations of the two are easily confused.

3.3 Segmentation Performance Evaluation

Specially, if we ignore the rhetorical labels of sen-
tences and only consider the segment boundaries
(i.e. binary classification, whether it’s a boundary),

1Please refer to Yamada et al. (2020) for the detailed cal-
culation way of Sentence-F1 and Span-F1.

Ablation Models Sentence-F1 Span-F1
NICTA-PIBOSO

Ours 86.8 62.9
- w/o SDLA 85.1 59.7
- w/o supervised signal 84.9 59.1
- w/o span-based classification 85.6 61.0

PubMed 20k RCT
Ours 92.8 84.5
- w/o SDLA 92.3 82.4
- w/o supervised signal 92.6 82.9
- w/o span-based classification 92.6 83.4

Table 4: Ablation study on two datasets.

this can be regarded as text segmentation (Koshorek
et al., 2018). We evaluate the segmentation per-
formance of our model using the probabilistic Pk

(Beeferman et al., 1999) error score (lower num-
ber, the better). The results2 are shown in the last
column of Table 1. Our model consistently out-
performs other baselines, suggesting that it also
contributes to the text segmentation task.

3.4 Ablation Study
To investigate the effectiveness of the designed
components, we conduct an ablation study on the
proposed model, and the results are listed in Ta-
ble 4. With the help of the SDLA component, the
performances are improved significantly, and the
way we impose the supervised signal to guide the
attention proves effective for yielding more true
positives. And the auxiliary task of span classifica-
tion effectively improves Span-F1.

3.5 Attention Visualization and Case Study
As shown in Figure 3, by incorporating supervised
signal, the attention focus on a continuous local

2Since Yamada et al. (2020) don’t release their codes, we
are unable to evaluate its Pk performance. The Pk results of
other models are obtained by running their codes.
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Sentence Gold Base Ours

Tizanidine hydrochloride , an alpha ( 2 ) - adrenergic receptor agonist , is a widely used B B B
medication for the treatment of muscle spasticity .
Clinical studies have supported its use in the management of spasticity caused by multiple B B B
sclerosis ( MS ) , acquired brain injury or spinal cord injury .
It has also been shown to be clinically effective in the management of pain syndromes , such as : B B B
myofascial pain , lower back pain and trigeminal neuralgia .
This review summarizes the recent findings on the clinical application of tizanidine . O B O
Our objective was to review and summarize the medical literature regarding the evidence for the O B O
usefulness of tizanidine in the management of spasticity and in pain syndromes such as
myofascial pain .
We reviewed the current medical and pharmacology literature through various internet literature O B O
searches .
This information was then synthesized and presented in paragraph and table form . O O O

Table 5: Examples of label predictions for NICTA-PIBOSO abstract by BERT+BiLSTM+CRF (Base) and our
proposed method (Ours). B and O denote background and other labels respectively.

Figure 3: Visualization of attention weights (left) and
supervised signal (right). The deeper color means the
higher weight.

span around the gold span. The visualization re-
sults not only verifies the effectiveness of the su-
pervised signal, but also reveals the interpretability
of our proposed SDLA.

Table 5 shows the results of Base and Ours
method for an abstract obtained from NICTA-
PIBOSO. Our model correctly identified the bound-
ary between the spans labeled by background (B)
and other (O), which shows our model benefit from
capturing latent segment structure identifying the
more indistinguishable segmentation boundaries.

4 Conclusion

In this paper, we propose a novel model for SSC
task, which includes a supervised dynamic local
attention to explore the latent segment structure
of the document, and an auxiliary task to improve
the performance at span-level representations. We
demonstrate the effectiveness of our model on two
datasets and find that our model also performs well
in the text segmentation scenario. In future work,
we will consider joint learning sequential sentence
classification and text segmentation.
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Abstract

Ordered word sequences contain the rich struc-
tures that define language. However, it’s of-
ten not clear if or how modern pretrained lan-
guage models utilize these structures. We
show that the token representations and self-
attention activations within BERT are surpris-
ingly resilient to shuffling the order of input
tokens, and that for several GLUE language
understanding tasks, shuffling only minimally
degrades performance, e.g., by 4% for QNLI.
While bleak from the perspective of language
understanding, our results have positive impli-
cations for cases where copyright or ethics ne-
cessitates the consideration of bag-of-words
data (vs. full documents). We simulate such a
scenario for three sensitive classification tasks,
demonstrating minimal performance degrada-
tion vs. releasing full language sequences.

1 Introduction

Masked language models (MLMs) like BERT (De-
vlin et al., 2019) use an ordered sequence of tokens
as input. And rightfully so! Any model capable
of “language understanding” undoubtedly should
need access to the hierarchical, syntactic structures
implicitly encoded in language. But are MLMs
really doing better because they have access to full
word sequences?

To assess this question, we first compare the
internal representations of BERT and RoBERTa
(Liu et al., 2019) when the sequence of unigrams
is not available.1 We do this by using the bag-
of-words counts of an input to generate a random
ordering of the unigrams, i.e., “shuffling” the input.
For example, in a sentiment classification corpus,
if an intact input was “The movie was great!”, a
possible shuffled ordering might be “movie the
great was” (tokenization details are in §4). We
find that, though BERT appears to become more

1We use the “base” models supplied by the authors

sensitive to ordering in later layers, shuffled token
representations and self-attention activations still
closely resemble their unshuffled counterparts.

Following cues from prior work (Sugawara et al.,
2020; Si et al., 2019; K et al., 2020), we next report
the performance of pre-trained MLMs fine-tuned
on GLUE, a suite of English-language understand-
ing benchmarks, when given access only to uni-
gram count information by handing models ran-
domly ordered sequences of words (an approach
we call BoW-BERT, for short). For most GLUE
tasks, performance degradation when shuffling is
minimal, e.g., MNLI, QQP, and QNLI accuracy
degrade by less than 5 accuracy points.

The bad news: Despite BERT being trained on
intact word sequences, BoW-BERT demonstrates
that MLMs can readily ignore syntax (while main-
taining strong performance) when fine-tuned for
even carefully designed downstream language un-
derstanding tasks.2 We thus advocate for reporting
BoW-BERT’s performance as a strong baseline.

The good news: BoW-BERT offers a practical
modeling choice for researchers who must oper-
ate with only bag-of-words representations for le-
gal or ethical reasons.3 Bag-of-words data re-
leases are sometimes the only legal format in which
copyright-sensitive corpora may be distributed, e.g.,
HathiTrust4 (16M historical volumes) (Christen-
son, 2011), Google N-grams (Michel et al., 2011),
etc. And while ethical considerations sometimes
preclude the full release of privacy-sensitive docu-

2Bowman and Dahl (2021) provide perspective on “fixing”
NLU tasks.

3This is a surprisingly common case: our initial motivation
for BoW-BERTwas our experience in exploring such a corpus.

4In Authors Guild, Inc. v. HathiTrust (2014), the 2nd
Circuit U.S. Court of Appeals ruled that showing only “the
number of times [a search term] appears on each page” con-
stitutes legal fair use, but “[displaying] to the user any text
from the underlying copyrighted work” might not.
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ments (e.g., medical transcriptions), bag-of-words
data release offers the potential for compromise.
While releasing unigram counts is one way of
anonymizing documents (Gallé and Tealdi, 2015),
recent work in differential privacy (Dwork, 2008;
Fernandes et al., 2019; Schofield et al., 2019;
Schein et al., 2019) has resulted in randomized
algorithms capable of privatizing BoW count data
(under varying definitions of privacy).5

We explore classification tasks on three sensitive
corpora, simulating different input fidelity availabil-
ity: full sequences, BoW counts, and differentially
private (DP) BoW counts. We find that BoW-BERT
often significantly outperforms prior BoW models,
especially for shorter documents. And, for longer
documents, BoW-BERT can even outperform full-
sequence BERT. Finally, for the (naive) DP con-
figuration we consider, BoW-BERT is a viable op-
tion for classifying shorter privatized documents,
though linear BoW models remain competitive for
longer documents.

2 Related Work

Shuffling inputs to non-pretrained models.
Word order shuffling has been tested as part of
the full training process for non-pretrained mod-
els. Sankar et al. (2019) shuffle words in a dialog
corpus, and find that LSTMs are more sensitive
than Transformers to word order. Khandelwal et al.
(2018) show that shuffling distant context words
(e.g., beyond 50 tokens) has little effect in outcome
for LM-LSTMs. Adi et al. (2017) show that LSTM
autoencoders encode significant ordering informa-
tion when fit to a corpus of Wikipedia sentences.
Nie et al. (2019) report minimal performance de-
creases from word shuffling while training a num-
ber of model architectures, e.g., ESIM (Chen et al.,
2017), for SNLI/MNLI tasks. In a multimodal set-
ting, Cirik et al. (2018) show that shuffling doesn’t
affect performance for an LSTM in a referring ex-
pression task.

Shuffling inputs to pretrained MLMs. While
at the time of submission of this work, shuffling
results had not been fully reported on the popu-
lar GLUE taskset, prior results have used word-
shuffling as a baseline with varying results.

Sugawara et al. (2020) operationalize ablations
of reading comprehension skills from Kintsch

5Releasing BoW counts is related to, but distinct from, the
setting considered by Beigi et al. (2019), who produce private
vector representations with uninterpretable dimensions.

(1988), and report that shuffling n-grams in 10 QA
corpora results in 10-20% performance decreases
for BERT. Si et al. (2019) report similar results
when shuffling questions+answers in MCRC cor-
pora, reporting absolute accuracy drops of between
5-20% when shuffling both passage/question words
(e.g., BERT on DREAM drops from 63→ 41 ac-
curacy relative to a 33% constant baseline). K et al.
(2020) report that swapping tokens during pretrain-
ing of a multilingual BERT model results in mod-
erate performance degradation for XNLI (e.g., 71
→ 63 for en-es) but more significant performance
degradation for NER (63→ 40 in the same setting).
They find that a purely frequency-based corpus “is
not enough for a reasonable cross-lingual perfor-
mance.”

Several works have examined shuffling inputs in
multi-language scenarios (e.g., translation) when
languages have variable syntax (Ahmad et al.,
2019; Liu et al., 2020). Zhao et al. (2020) use
a random token permutation to provide a baseline.
Yang et al. (2019) find that self-attention networks
are surprisingly bad at identifying two tokens that
are swapped in the input. Ettinger (2020) show that
shuffling BERT inputs decreases word cloze pre-
diction performance on a corpus of 102 sentences
without fine-tuning. Wang et al. (2020) incorporate
a deshuffling objective into pre-training.

In some cases, shuffled inputs provide a stronger
baseline than might be assumed, while in oth-
ers, shuffling significantly degrades performance.
At present, determining whether or not order is
“needed” for a particular task is largely an experi-
mental, empirical endeavor.

Syntax in MLMs. Prior works have investigated
BERT’s capacity to represent syntax: some re-
searchers have designed prediction tasks that re-
quire syntactic knowledge (Linzen et al., 2016;
Jawahar et al., 2019; Lin et al., 2019; Goldberg,
2019), while others have probed representations
for linguistic information directly (Mareček and
Rosa, 2018; Liu et al.; Hewitt and Manning, 2019;
Reif et al., 2019). Tenney et al. (2019) find that con-
textual representations outperform lexical represen-
tations on many syntactic tasks, but not in a suite
of semantic prediction tasks. Htut et al. (2019) and
Clark et al. (2019) find that some attention heads
encode information useful for dependency parsing.
Glavaš and Vulić (2020) show that intermediate
supervised training of a biaffine parser has little
effect on downstream MLM performance.
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A Bouquet of Contemporaneous Work. While
this work was in submission, several related works
were posted to arXiv. Gupta et al. (2021) examine
NLI, paraphrase detection, and sentiment classifi-
cation, and show that destructive interventions do
not significantly affect either model predictions or
model confidence. Sinha et al. (2020) find a similar
result for NLI tasks, and, in follow-up work, Sinha
et al. (2021) demonstrate pretraining is possible
on unordered sequences. Pham et al. (2020) look
specifically at GLUE classification for BERT-based
models. Beyond contemporaneous confirmation of
the GLUE results, our work contributes to this bou-
quet by: 1) examining internal activations/layers
and 2) exploring classification settings where one
might need to operate on (potentially differentially
private) count-only data.

3 Representation analysis

We might expect that shuffling the order of tokens
in an input sentence would significantly corrupt
the internal representations of BERT, but is that
actually the case? We investigate with two new
metrics. Consider applying a pre-trained, fixed
BERT model to x =“the movie was great” and the
shuffled x′ =“movie the great was”.

Token identifiability measures the similarity of
BERT’s vector representations of a word token
(e.g., “movie”) in x and x′. Identifiability is high
if the model has similar representations for tokens
after their order is shuffled.

Self-attention distance measures if BERT attends
to similar tokens for each token in x and x′ regard-
less of their order (e.g., is “the movie was great”
≈ “movie the great was” to BERT?). Self-attention
distance is low if the model attends to the same
tokens after input shuffling.

Token Identifiability. Let MLMl(x) be a Rt×d

matrix, where t is the number of tokens in sen-
tence x, d is the MLM’s dimension, and l is the
layer index. In this setting, row i of MLMl(x) is the
MLM’s representation of the ith token in sentence
x. We compare MLMl(x) to E[MLMl(X ′)], where
X ′ is drawn uniformly from the permutations of x:
perm(x). For a specific sample x′ ∼ perm(x), we
first take the row-wise cosine similarity of MLMl(x)
and MLMl(x′), and treat the resulting t× tmatrix as
an instance of a bipartite linear assignment problem.
The assignment accuracy (AA) score for (x, x′) is
the proportion of assigned token pairs that have
the same underlying word type. To avoid biasing
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Figure 1: Token identifiability and attention distance by
layer for BERT and RoBERTa; dashed lines represent
baseline values of metrics with unshuffled sequences,
error bars are 95% CI for mean, scatterplot=per-
attention head result. Identifiability decreases towards
1 (pure random token features) when shuffled inputs
produce very different embeddings from the intact in-
puts, while self-attention distance increases towards 1
(pure random attention) in this case. While later layers
in both models are more order-sensitive, information is
retained for shuffled inputs.

towards shorter sentences, we take the ratio of the
accuracy relative to chance, i.e.,

ID-MLM(x, l) =
EX′ [AA(MLMl(x),MLMl(X

′))]
ERAND[AA(MLMl(x),RAND)]

,

(1)

where RAND is a random matrix of reals Rt×d.6

Self-Attention Distance. Let AMLMl,h(x) be
the row-l1-normalized Rt×t matrix representing
the self-attention matrix at layer l for atten-
tion head h. We can compute the same ma-
trix for a shuffled input AMLMl,h(x′), and then
perform a transformation to re-order the rows
and columns of this matrix to match the origi-
nal order of tokens in x, yielding AMLMxl,h(x

′).
We then define the row-wise Jensen-Shannon di-
vergence DS-JSD(AMLMl,h(x),AMLM

x
l,h(x

′)) as
the mean row-wise JSD between AMLMl,h(x)
and the DeShuffled reordered attention ma-
trix AMLMxl,h(x

′). As before, to reduce the
effect of sentence length, we normalize us-
ing RND-JSD(AMLMl,h(x),AMLM

x
l,h(x

′)), which
chooses a random row/column permutation. 7 The

6In practice, we simply compute the assignment step of
AA using a Rt×t matrix drawn from U [0, 1).

7If there are multiple possible valid permutations of x′

that match x (e.g., if there are repeated words), DS-JSD will
choose the order that minimizes the JSD, and RND-JSD will
search through a number of random orderings equal to the
number of valid permutations. If the number of valid permuta-
tions is > 16, 16 random valid permutations are sampled.
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MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE
Acc/Acc F1/Acc Acc Acc MCC PCC-r/SCC-ρ F1/Acc Acc

RoBERTa (full seq) 87.3/87.1 72.0/88.8 92.9 95.8 58.8 89.5/88.8 90.2/86.6 69.9
BoW-RoBERTa 81.1/82.8 68.8/87.5 86.8 85.5 10.4 85.0/83.8 82.1/76.6 58.8

BERT (full seq) 84.2/83.2 71.6/89.1 90.6 92.6 50.7 87.3/86.4 87.5/82.8 68.4
BoW-BERT 79.8/79.7 68.3/87.5 86.2 86.7 14.3 81.8/80.3 82.9/75.2 60.4

CBOW GloVe 56.0/56.4 51.4/79.1 72.1 80.0 0.0 61.2/58.7 81.5/73.4 54.1

Table 1: GLUE test set prediction results.

final attention distance metric is defined as

AD-MLM(x, l, h) =

EX′ [DS-JSD(AMLMl,h(x),AMLM
x
l,h(X

′))]

EX′ [RND-JSD(AMLMl,h(x),AMLMxl,h(X
′))]

(2)

Results. We randomly sample 100 sentences
from each training set of 8 GLUE tasks, for a to-
tal of 800 sentences. To approximate expectations
from Equations 1 and 2, we sample 32 random per-
mutations per sentence. Figure 1 gives the per-layer
token identifiability/attention similarity scores for
both MLMs. For both metrics, later layers are more
order sensitive to order, i.e., ID-MLM ↓ and AD-
MLM ↑. Attention heads vary significantly in their
order sensitivity: each attention head is a single
point in the scatterplot of Figure 1b. But, even at
late layers, both metrics suggest significantly more
than random correspondence: internal represen-
tations of BoW-(Ro)BERT(a)clearly resemble
their unshuffled counterparts.

4 BoW-BERT for Classification

We compare BERT and RoBERTa to their BoW
counterparts on nine tasks from GLUE (Wang
et al., 2019).8 We run single-task training for six
epochs, use early stopping, and optimize batch size
({16, 32}) and learning rate ({5, 2, 1, .5} × 10−5)
via grid search on the validation set. To shuffle
documents: we lowercase, tokenize, remove all to-
kens that consist only of punctuation, shuffle, then
concatenate with whitespaces. We re-shuffle the
training tokens each epoch, but fix validation and
test tokens to one shuffled permutation.

8These tasks span NLI (MNLI (Williams et al., 2018),
QNLI (Rajpurkar et al., 2016), and RTE (Dagan et al., 2006;
Bar Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009)); semantic similarity estimation (QQP,9 MRPC
(Dolan and Brockett, 2005), STS-B (Cer et al., 2017)); senti-
ment analysis (SST-2 (Socher et al., 2013)), and grammatical-
ity judgement (CoLA (Warstadt et al., 2019)). We omit WNLI
(Levesque et al., 2011) as is common (all models achieve
chance performance on that corpus).

Results. Table 1 gives the GLUE test set results
of our algorithms vs. GloVe CBOW, the best BoW
baseline on the GLUE leaderboard at the time of
submission. In all cases BoW-BERT outperforms
CBOW. The extent to which BoW-BERT under-
performs relative to BERT varies for each dataset,
but in terms of relative percent performance de-
crease, ranges from over ↓70% for CoLA to only
↓3% QQP. Outside of CoLA, performance degrada-
tion never exceeds 10 absolute points for any task’s
metric.

According to the GLUE diagnostic set (which
tests 33 categories of linguistic phenomena)
BoW-BERT has the most trouble with dealing with
double negations (e.g., “I have never seen a hum-
mingbird not flying.”: MCC degrades 31.7→ -4.3
when switching BERT→ BoW-BERT), quantifiers
(“our sympathy to all [vs. some] of the victims”:
61.8→ 46.1); and temporal logic (“Mary left be-
fore John entered”: 8.0→ -8.6). Results for GLUE
diagnostic meta-categories are: Knowledge (24.4
→ 24.3); Pred-Arg Structure (39.2→ 39.1); Logic
(24.7→ 22.1); Lexical Semantics (39.7→ 31.5).

Classification for Sensitive Texts
Privacy and legal concerns frequently necessitate
BoW-only data releases. We ask: for potentially
sensitive text classification tasks, how does perfor-
mance degrade if only bag of words counts are
available (instead of full sequences)? We con-
sider three such tasks: Reddit controversy pre-
diction on AskWomen/AskMen (CONT) (Hessel
and Lee, 2019), offensiveness prediction in social
media (SBF) (Sap et al., 2020), and sample med-
ical transcript categorization (MTSAMP).10 For
each task, we compare models with access to se-
quences vs. models that can only access bag-of-
words features. Our baselines are unigram/tfidf
linear models, and CBOW models GloVe and fast-
text (Mikolov et al., 2018). Table 2 contains corpus

10https://www.mtsamples.com/
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statistics and prediction results. For CONT and
SBF, BoW-BERT outperforms all BoW methods.
For all tasks, performance drop-off from a full-
sequence fine-tuned MLM to its BoW counterpart
is less than 1%. CBOW/tfidf remain strong for
MTSAMP, in which documents are longer.

Given that de-shuffling BoW representations is
at least partially possible (Tao et al., 2021), we ad-
ditionally consider a more robust differentially pri-
vate (DP) unigram count data release (also known
as the “local model” of DP) (Warner, 1965; Dwork
et al., 2006; Schein et al., 2019). We follow a
process similar to Schofield et al. (2019) by first
compressing the original unigram count matrices
via Gaussian random projection to 500D.11 In the
compressed space, we add noise per-entry with the
Laplace mechanism (Dwork et al., 2006) with a
per-feature privacy budget of ε. Then, we invert the
random projection, normalize the vector to be a cat-
egorical word distribution, and sample (unordered)
pseudodocuments from the resulting distribution
with length ∼ Poisson(`).

We report results in an easier setting ` =
256, ε = 100 and a harder setting ` = 128, ε = 50
in the bottom half of Table 2. For these settings
of DP, the linear baselines generally outperform
BoW-(Ro)BERT(a). However, MLMs are again
most competitive for the shortest document setting,
SBF, where BoW-(Ro)BERT(a)exceeds the best
linear model performance (60.4 vs. 62.0 F1).

Taken together, these results suggest 1) that re-
leasing word counts instead of full document se-
quences is a viable data release strategy for some
sensitive classification tasks; 2) BoW-BERT offers
a means of accessing the representational power of
modern MLMs in cases where only BoW informa-
tion is available; and 3) for at least some local DP
settings, linear models remain competitive particu-
larly for long documents, while BoW-RoBERTa is
viable when the underlying documents are shorter.

5 Conclusion and Future Work

We advocate for BoW-(Ro)BERT(a)as a surpris-
ingly strong baseline for language understanding
tasks, as well as a performant practical option for

11Our original submission used DP PCA instead. But it
was brought to our attention that the paper proposing that
algorithm was retracted for being non-private (+ discontinued
in the library we used after we submitted). We have adjusted
our code and recompiled our experiments using a comparable
mechanism. Our intent isn’t to advocate for this particular DP
method, but rather, to fairly compare NLP algorithms on the
same DP corpora.

CONT SBF MTSAMP

Mean len (toks) 111 23 578
# of docs 6.3K 45K 5.0K
# classes 2 2 40

Acc F1 Acc/W-F1

BERT (full seq) 65.2 84.1 30.1/27.4
BoW-BERT 64.1 83.4 34.3/29.6

RoBERTa (full seq) 66.5 84.8 31.5/29.1
BoW-RoBERTa 62.9 82.9 34.9/32.0

CBOW fasttext 61.7 77.7 39.4/36.0
CBOW GloVe 61.1 77.0 38.8/35.2
Unigram tfidf 57.3 78.9 36.2/25.0
Unigram Counts 58.0 79.5 33.5/20.6

Popular Class 50.0 0.0 20.7/7.1
Random Prediction 51.2 47.3 8.9/8.5

DP ε=100
`=256 BoW-BERT 53.4 59.5 29.0/15.7

DP ε=100
`=256 BoW-RoBERTa 53.0 62.0 28.9/14.9

DP ε=100
`=256 Best Linear 57.7 60.4 31.3/21.5

DP ε=50
`=128 BoW-BERT 50.5 57.0 22.4/10.8

DP ε=50
`=128 BoW-RoBERTa 51.8 58.9 21.8/10.7

DP ε=50
`=128 Best Linear 55.0 58.8 25.9/17.8

Table 2: Top: text classification prediction results on
sensitive texts; best BoW bolded, best overall itali-
cized. Bottom: DP = results on differentially pri-
vate data; “Best Linear” is the most performant lin-
ear model, tfidf for DP ε=100

`=256 and unigram counts for
DP ε=50

`=128.

classifying (privatized) BoW texts when documents
are short. Future work includes:

1. Evaluating BoW-BERT representations on
BoW-only corpora in unsupervised text clus-
tering scenarios (vs. classification) + designing
self-supervised objectives for fine-tuning MLM
weights from unlabelled domain-specific BoW
corpora, e.g., HathiTrust.;

2. Extending (K et al., 2020) by further exploring
BoW classification using non-English MLMs,
where model dependence on syntactic informa-
tion may differ;

3. Designing local private data release methods
better adapted to MLM fine-tuning.
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Abstract

Recent works have made significant advances
on summarization tasks, facilitated by sum-
marization datasets. Several existing datasets
have the form of coherent-paragraph sum-
maries. However, these datasets were curated
from academic documents written for experts,
making the essential step of assessing the sum-
marization output through human-evaluation
very demanding.

To overcome these limitations, we present a
dataset1 based on article summaries appearing
on the WikiHow website, composed of how-
to articles and coherent-paragraph summaries
written in plain language. We compare our
dataset attributes to existing ones, including
readability and world-knowledge, showing our
dataset makes human evaluation significantly
more manageable and effective. A human eval-
uation conducted on PubMed and the proposed
dataset reinforces our findings.

1 Introduction

Summarization is the task of preserving the key
information in a text while reducing its length.
Recently, many summarization datasets were pub-
lished and helped push the boundaries of new sum-
marization systems. These datasets differ on sev-
eral properties, including the domain (e.g., aca-
demic or news) and the summary form. PubMed,
arXiv, and BigPatent (Cohan et al., 2018; Sharma
et al., 2019) provide a summary in the form of
coherent paragraphs (i.e., each sentence flows
smoothly into the next). In contrast, other sum-
marization datasets (Hermann et al., 2015; Grusky
et al., 2018; Koupaee and Wang, 2018; Ladhak
et al., 2020) offer a summary in the form of a key
points list (i.e., highlights). In this paper, we focus
on coherent paragraph summarization datasets.

∗ Co-first author
†Work done while at Amazon

1The dataset and human evaluation are available at
https://registry.opendata.aws/wikisum.

Figure 1: Examples of how-to questions and their cor-
responding answer’s summarization in WikiSum.

Automatic evaluation of summarization systems,
e.g., by using the ROUGE metric, is challenging
(Lloret et al., 2018) and is often inconsistent with
human evaluation (Liu and Liu, 2008; Cohan and
Goharian, 2016; Tay et al., 2019; Huang et al.,
2020). To understand – and later improve – the
quality of summarization systems, it is necessary
to conduct a human evaluation. A human evalua-
tion’s quality depends on the ease of reading and
understanding of the measured text: a simple text
does not require annotators with unique expertise,
can be evaluated faster, and is easier to annotate
correctly. However, existing coherent-paragraph
summarization datasets consist of academic papers
and cannot be considered easy to read. Evaluat-
ing such summarization samples requires unique
expertise, takes time, and comes at a high cost.

In this work, we present WikiSum, a new sum-
marization dataset from the WikiHow knowledge
base2. The WikiSum documents are written in
simple English, and the summaries provide “non-
obvious tips that mimic the advice a knowledge-
able, empathetic friend might give.”3 Unlike previ-
ous WikiHow summarization (Koupaee and Wang,
2018; Ladhak et al., 2020) datasets and summaries

2https://www.wikihow.com
3https://www.wikihow.com/Write-or-Edit-a-Quick-

Summary-on-wikiHow
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Figure 2: Category distribution in WikiSum.

from the news domain, the summaries of WikiSum
are in the form of a coherent paragraph written
by the document authors (examples in Figure 1).
Moreover, in contrast to other coherent-paragraph
summarization datasets from the academic domain,
WikiSum is written using simple English. This
critical property can help with the challenging task
of evaluating summarization systems and provide
insights that can go unnoticed using automatic eval-
uation methods.

The key attributes of WikiSum are: (1) Sum-
maries written as a single, coherent passage. (2)
Articles and summaries that are easy to read. (3) Ar-
ticles and summaries require less world knowledge
to understand. We evaluate the dataset readabil-
ity and estimate the required world-knowledge in
Section 3. Moreover, we reinforce our results by
conducting a human-evaluation of a summariza-
tion dataset in Section 4. Finally, to establish a
baseline on the proposed dataset, we benchmark
WikiSum using recent summarization systems and
report their performance on Section 5.

2 Related Work

The summarization landscape can be roughly di-
vided into three primary summary-forms: (1) Sin-
gle sentence (Napoles et al., 2012; Grusky et al.,
2018; Narayan et al., 2018; Kim et al., 2019) - sum-
marize the document in a single sentence; (2) High-
lights (Hermann et al., 2015; Koupaee and Wang,
2018; Ladhak et al., 2020) - a summary in the form
of bullets listing the key points in the text; (3) Co-
herent summary (Sharma et al., 2019; Cohan et al.,
2018) - short coherent paragraphs describing the
salient information. The summarization datasets
from the news domain, which are commonly used
for human evaluation, include summaries in the
form of highlights or single-sentence summaries.
However, summarization datasets written in a co-

herent format come from the academic domain,
making them extremely difficult to annotate man-
ually. Our proposed WikiSum is the only dataset
written in a coherent format, yet easy for human
evaluation. We do not claim that coherent para-
graph summaries are better, but rather different;
each format has its use cases, and human evalua-
tion should be done on each of the different formats
separately.

The existing WikiHow datasets (Koupaee and
Wang, 2018; Ladhak et al., 2020) can be consid-
ered the closest to WikiSum, as they originate from
the same knowledge base. However, while the
existing WikiHow datasets split the article to gen-
erate the document and summary, WikiSum uses
the entire article as the document and a summary
specifically written by the article’s author (called
the Article Quick Summary). The former uses the
concatenation of the first line of each step, called
the step header, as the list of highlights and the re-
mainder of step text’s concatenation called ”wrap-
text,” as the document4. In addition to the different
summary-form of the highlight-based WikiHow
and WikiSum, the content of the summaries is sig-
nificantly different, which can be illustrated by the
low BLEU-4 (0.065) between the two.

BigPatent (Sharma et al., 2019), Arxiv and
PubMed (Cohan et al., 2018) are recent summariza-
tion datasets with coherent paragraph summaries.
These datasets focus on the academic domain and
are written for experts. Like these datasets, Wik-
iSum is composed of long documents and coherent
paragraph summaries. Nonetheless, it uses com-
mon everyday language and ranges over many do-
mains (see Figure 2). Finally, Table 1 compares
WikiSum to common existing datasets. Additional
details on WikiSum are available in the appendix.

3 Measuring Text Difficulty

This section focuses on two crucial attributes: ease
of readability and external knowledge required,
shown (in Section 4) to be important for easy and ef-
fective human evaluation. For brevity, we focus on
summarization datasets with coherent-paragraph
summaries.

4WikiHow author instructions (wikihow.com, 2020) specif-
ically states that the authors can use the wrap-text to describe
why the step header is important. This leads to many cases
where the step headers are not a summary of the wrap-text.

5We used WikiSum as the reference, the results are very
similar when WikiHow is used as a reference. ROUGE-1, 2
and L are 0.37, 0.13, and 0.23, respectively.
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Domain # Docs Comp. Summary Doc
ratio # word # sent # word

WIKISUM instructional 39,775 13.9 101.2 5.0 1,334.2
ARXIV academic 215,913 39.8 292.8 9.6 6,913.8
PUBMED academic 133,215 16.2 214.4 6.9 3,224.4
BIGPATENT academic 1,341,362 36.4 116.5 3.5 3,572.8
WIKIHOW instructional 215,365 14.5 69.0 7.2 500.8
CNN/DM news 312,085 13.0 55.6 3.8 789.9
NYT news 654,788 12.0 44.9 2.0 795.9
NEWSROOM news 1,212,726 43.0 30.4 1.4 750.9
XSUM news 226,711 18.8 23.3 1.0 431.1

Table 1: Statistics comparison of summarization
datasets. Datasets not in coherent-paragraph form are
marked in gray.

3.1 Readability

Readability metrics attempt to indicate how dif-
ficult a passage in English is to read. We used
classical readability measures, including FKGL
(Farr et al., 1951), GFI (Robert, 1968), SMOG
(Mc Laughlin, 1969), ARI (Senter and Smith,
1967), CLI (Coleman and Liau, 1975). All these
metrics are based on lexical features of the text,
e.g., number of words in a sentence or mean num-
ber of syllables per word. They produce a score
that is interpreted as the number of years of formal
education required (for a native English speaker)
to understand a piece of text6.

For each document, we measured readability
scores7 for the document and the ground truth sum-
mary. The document is longer than the summary,
so its readability is of higher importance. We report
the average readability score for all the samples in
the dataset.

Readability scores for the documents are pre-
sented at the top of Table 2. The table shows that
WikiSum is significantly easier to read than other
documents from coherent-summary datasets (arXiv,
PubMed, BigPatent). Similar results can be found
for the readability scores for the summaries (bottom
of Table 2). To conclude, WikiSum is measured
as drastically simpler to read than other coherent-
summary datasets.

3.2 External Knowledge

Existing datasets are composed of academic docu-
ments that are written for experts. Often, to fully
understand academic texts requires domain knowl-
edge, which makes the annotator pool smaller, and

6Other readability metrics such as FRE (Flesch, 1948),
LIX and RIX (Björnsson, 1968), have a similar trend to the
shown metrics, but require a translation to years of education,
omitted from this paper for brevity.

7https://github.com/mmautner/readability

Dataset ARI FKGL GFI SMOG CLI

D
oc

um
en

t WikiSum 7.4 6.82 10.15 9.71 8.83
arXiv 14.02 13.51 18.47 15.44 14.31
PubMed 16.74 16.27 20.64 17.03 15.01
BigPatent 13.46 13.32 17.47 14.68 11.68

Su
m

m
ar

y WikiSum 9.71 8.49 11.91 10.24 8.78
arXiv 16.44 16.1 20.5 16.8 15.23
PubMed 17.73 17.35 21.6 17.44 16.6
BigPatent 22.47 20.91 25.12 18.75 14.0

Table 2: Readability scores for the documents (top) and
summaries (bottom), measured in years of formal edu-
cation required to read the text. Smaller is simpler.
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Figure 3: Ratio of uncommon words in the document,
which cannot be found in the Top-K OpenSubtitles
words, for different k values.

thus, in most cases, more expensive. Word fre-
quency is a strong indicator of how familiar a word
is (Paetzold and Specia, 2016), where rare words
tend to be less familiar.

We used OpenSubtitles (Lison and Tiedemann,
2016), text corpora compiled from an extensive
database of movie and TV subtitles to obtain word
frequencies. We hypothesize that movie and TV
subtitles can roughly represent common knowledge
among many people. In Figure 3, we show the
percentage of non-frequent words in a document
(i.e., words that cannot be found in the top-k words
in OpenSubtitles) as a function K, averaged over
a random sample of 10, 000 documents from each
dataset. This figure clearly shows that WikiSum is
composed of significantly fewer words unpopular
in TV shows and movies, requiring less specialized
external knowledge.

4 Human Evaluation

We conducted a standard human evaluation on a
summarization task, in addition to the automatic
readability and the external knowledge metrics. We
gathered a pool of 6 annotators, without any prior
knowledge of the project, all with a graduate degree
(M.sc. or Ph.D.) and proficient English reading-
level. We asked them to evaluate summaries gen-
erated by Pegasus (Zhang et al., 2020). The an-
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dataset time
(minutes)

difficulty
(rating)

exhausting
(rating)

qualified
(rating)

unknown
(%)

WikiSum 6.8±1.2 1.9±0.3 2.2±0.5 4.2±0.3 0.2±0.1
PubMed 10.0±1.2 3.7±0.3 3.9±0.4 2.2±0.4 3.7±1.4

Table 3: Evaluation time per sample, evaluation dif-
ficulty/exhaustion rating, perceived qualification, and
the ratio of unknown words in the document. ± de-
notes 95% confidence interval according to student’s t
distribution (df=20). Difficulty, qualification, and tiring
were marked on a 1-5 scale.

notation task followed Huang et al. (2020) and
consisted of relevance, consistency, fluency, and
coherency.

Due to resource limitations (and the difficulty
of annotating articles from the academic domain),
we had to pick one coherent-paragraph dataset for
comparison with WikiSum. To avoid annotators’
domain bias, we selected articles from PubMed,
which contains articles not in the area of exper-
tise of any annotator, in addition to WikiSum. We
sampled random articles with 950 - 1050 words
to avoid length bias, ensuring that article length is
similar in both datasets. All annotators allocated
1 hour, which amounted to 42 annotations, 21 for
each dataset.

During the annotation task, we measured the
evaluation time and asked the annotators to mark
unfamiliar words. In addition, we asked the anno-
tators to rate the following aspects on a 1-5 scale:
(a) How difficult was the task? (b) How tiring was
it? (c) How qualified are you for this task? After
each pair of PubMed and WikiHow samples were
completed, the annotators selected which dataset
they prefer to evaluate.

In Table 3 we show the annotators’ assessment of
the tasks. Compared to PubMed, a WikiSum anno-
tation takes significantly less time, is less difficult,
and less tiring. Moreover, the annotators revealed
that they were much more qualified to assess the
WikiSum task summary. Finally, in 90% of the
cases (19 out of 21), the annotators revealed that
they preferred a WikiSum annotation task. This re-
inforces our findings that WikiSum is significantly
easier to annotate than PubMed.

In the annotation task, we also asked the anno-
tators to mark unfamiliar words in the article. We
found a strong correlation between the count of
unfamiliar words and the task difficulty, evaluation
time, and perceived required qualification (Pear-
son correlation of 0.57, 0.36,−0.488, respectively,

8Many unfamiliar words implied annotators perceived

Models LEAD-3 TextRank PEGASUSLARGE

WIKISUM 25.3/6.84/16.2 32.7/8.8/18.9 43.35/15.48/26.91
ARXIV 25.53/5.98/15.22 33.1/9.7/18.1 43.07/19.70/34.79
PUBMED 26.38/8.73/16.6 35.3/13.1/20.4 44.70/17.27/25.80
BIGPATENT 28.9/7.96/18.17 33.0/9.8/19.6 45.49/19.90/27.69

Table 4: ROUGE-1/2/L F1 scores on coherent-
summary datasets. Pegasus baseline results are from
(Zhang et al., 2020), except for WikiSum.

p < 0.05). Strong correlation was also found be-
tween the ARI readability metric (Section 3.1) and
the above-mentioned annotation metrics (Pearson
correlation of 0.69, 0.49,−0.76, p < 0.05). This
demonstrates the effect of readability on the diffi-
culty of an annotation task.

Finally, we found that unfamiliar words corre-
spond to low-frequency OpenSubtitles words (Sec-
tion 3.2). The unfamiliar words on WikiSum and
PubMed appear in the top 91, 550 and 230, 596
words on average, respectively, while familiar
words appear in the top 16, 935 and 59, 244 words
on average, respectively. It also further validates
Paetzold and Specia (2016) hypothesis about the
strong correlation between word frequency and
complexity.

5 Model Results and Discussion

To provide both abstractive and extractive
baselines for WikiSum, we evaluate on
PEGASUSLARGE (Zhang et al., 2020), Tex-
tRank (Mihalcea and Tarau, 2004), and the
common LEAD-3 that selects the first three
sentences of the document as the summary. We
compare the results on WikiSum to the Arxiv,
PubMed, and BigPatent Datasets results. Table 4
reports the F1 scores of ROUGE-1, 2 and L for all
the models. The results show that the models’ per-
formance on WikiSum is not drastically different
from the other datasets, making it an interesting
dataset for benchmarking summarization systems.
The detailed evaluation setup can be found in the
supplementary materials.

To conclude, this paper presents the WikiSum
dataset, which is drastically simpler for human eval-
uation than existing summarization datasets where
the summary appears as a coherent paragraph. We
showed WikiSum’s simplicity via various readabil-
ity metrics and demonstrated that the text requires
less external knowledge to be understood. Finally,
we validated our finding via a human evaluation
task on WikiSum and PubMed.

themselves as less unqualified.
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A Data Description

A.1 Gathering the data

We use Scrapy scraper9 to download articles and
summaries from the wikihow.com website. We re-
moved HTML tags using BeautifulSoup10. Finally,
we removed any sample in which the summary
is a list of bullet points; around 7k samples were
excluded in this manner.

A.2 Authors Instructions for Writing Quick
Summaries

The wikihow.com website provides the following
guidelines for authors writing a quick summary.11

The goal of the “Quick Summary” sec-
tion on wikiHow is to provide a short
summary of non-obvious tips that mimic
the advice a knowledgeable, empathetic
friend might give you if you asked them
for help on the given topic. Among other
uses, Quick Summaries help smart de-
vices like Google Homes and Amazon
Echos deliver wikiHow advice to listen-
ers in need of how-to guidance.

9www.scrapy.org
10https://pypi.org/project/beautifulsoup4
11https://www.wikihow.com/Write-or-Edit-a-Quick-

Summary-on-wikiHow

We remark that the quick summaries are indeed
used by commercial voice assistants to answer how-
to questions. As voice assistants gain popularity,
so does the importance of such coherent-paragraph
summaries.

A.3 Data Layout
Raw data is available in the supplementary material,
in a json format. Each line consists of a single
sample, with the following fields

1. Link to the original article

2. Article title

3. Article text

4. Quick summary

5. Split fold (train, dev, or test)

Finally, it also includes step headers: the first
line in each step. This is part of the article but
might be considered more important, and therefore,
it might find further uses by system designers.

A.4 Dataset Statistics
Most dataset statistics appear in Table 1 in the arti-
cle’s main body and are repeated here for complete-
ness. The total number of samples in the WikiSum
dataset is 39, 775. On average, each summary con-
sists of 101.2 words, while each article consists of
1, 334.2 words. The average compression ratio is
13.9.

A.5 Evaluation details
We randomly split WikiSum into 35,775 (docu-
ment, summary) training pairs, as well as 2,000
validation pairs and 2,000 test pairs. The rest of the
datasets were downloaded from the HuggingFace
dataset repository12.

All the datasets were evaluated using TextRank13

and Pegasus-large. The ROUGE scores through-
out the paper were calculated using rouge-score14.
We utilized TextRank to generate three summary
sentences. The Pegasus results on Arxiv, Pubmed,
and Arxiv were taken from the Pegasus paper. The
results on WikiSum were computed by using the
Github repository of the Pegasus paper15. Pegasus
was trained on a single NVIDIA V100 Tensor Core

12https://huggingface.co/datasets
13https://pypi.org/project/summa
14https://pypi.org/project/rouge-score/
15https://github.com/google-research/pegasus
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GPU, using max input and output sequence lengths
of 1024 and 256, respectively.

B Example Summaries

In this appendix, we provide an example summary
from WikiSum and arXiv, PubMed, and bigPatent.
Note that the article can be quite long (for arXiv
and PubMed, it is a full academic paper), so it is
not presented in this appendix. Instead, we provide
a link to the online version of the full article.

B.1 WikiSum

The WikiSum example summary is provided be-
low:

“To ace a test, even if you’re not prepared, start
by glancing over the test before you get started to
get an idea of how long it is so you can manage
your time better. Then, read through each question
twice and try to answer it. If you can’t answer a
question, skip it and come back to it later if you can,
which will save you from wasting all of your time
on one question. If your test is multiple choice and
you don’t know the answer, eliminate two answers,
so you’re left with just two options. Then, guess if
necessary since you’ll have a 50-percent chance of
being right.”

The article is available at https://www.

wikihow.com/Ace-a-Test.

B.2 WikiHow

For the sake of comparison between WikiHow and
WikiSum datasets, we provide the WikiHow sum-
mary originating from the same raw material (i.e.,
the same wikihow.com how-to article) as the Wik-
iSum example at Appendix B.1. We remark that
the article to be summarized is not exactly the same,
as the WikiHow example does not contain the step
headers from the article’s text. The WikiHow sum-
mary is provided below.

“Study well before the test. Get a study friend.
Take breaks. Relax. Pay attention in class. Do all
available practice questions. Get some sleep the
night before. Have proper meals before the test
day. Have your test-taking materials assembled
and ready. Listen to music you like. Go into the
test in a positive manner. Take deep breaths to try
to keep calm. Read the questions carefully. Do the
easy questions first. Go with your first answer. Use
logic if you’re stuck on a multiple choice question.
Review your answers thoroughly when you are
done.”

It can easily be seen that the WikiSum summary
is a coherent, fluent paragraph, while the WikiHow
summary is a set of bullet points. The content of
the two summaries are also quite different between
the two datasets.

B.3 arXiv
“the effect of a random phase diffuser on fluctua-
tions of laser light ( scintillations ) is studied. not
only spatial but also temporal phase variations in-
troduced by the phase diffuser are analyzed. the
explicit dependence of the scintillation index on
finite - time phase variations is obtained for long
propagation paths. it is shown that for large ampli-
tudes of phase fluctuations , a finite - time effect
decreases the ability of phase diffuser to suppress
the scintillations.”

The article is available at https://arxiv.org/
pdf/0903.5449.pdf.

B.4 PubMed
“tardive dystonia ( td ) is a serious side effect of
antipsychotic medications, more with typical an-
tipsychotics, that is potentially irreversible in af-
fected patients. studies show that newer atypical
antipsychotics have a lower risk of td. as a re-
sult, many clinicians may have developed a false
sense of security when prescribing these medica-
tions. we report a case of 20-year - old male with
hyperthymic temperament and borderline intellec-
tual functioning, who developed severe td after low
dose short duration exposure to atypical antipsy-
chotic risperidone and then olanzapine. the goal
of this paper is to alert the reader to be judicious
and cautious before using casual low dose second
generation antipsychotics in patient with no core
psychotic features, hyperthymic temperament, or
borderline intellectual functioning suggestive of or-
ganic brain damage, who are more prone to develop
adverse effects such as td and monitor the onset of
td in patients taking atypical antipsychotics.”

The article is available at
https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC5330001/.

B.5 BigPatent
“this invention relates to novel calcium phosphate -
coated implantable medical devices and processes
of making same. the calcium - phosphate coatings
are designed to minimize the immune response to
the implant and can be used to store and release
a medicinally active agent in a controlled manner.
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such coatings can be applied to any implantable
medical devices and are useful for a number of
medical procedures including balloon angioplasty
in cardiovascular stenting, ureteral stenting and
catheterisation. the calcium phosphate coatings
can be applied to a substrate as one or more coat-
ings by a sol - gel deposition process, an aerosol
- gel deposition process, a biomimetic deposition
process, a calcium phosphate cement deposition
process, an electro - phoretic deposition process
or an electrochemical deposition process. the coat-
ing can contain and elude a drug in an engineered
manner.”

The article is available at https:

//patentscope.wipo.int/search/en/detail.

jsf?docId=WO2007147234.
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Abstract

Despite the success of various text generation
metrics such as BERTScore, it is still diffi-
cult to evaluate the image captions without
enough reference captions due to the diversity
of the descriptions. In this paper, we introduce
a new metric UMIC, an Unreferenced Metric
for Image Captioning which does not re-
quire reference captions to evaluate image cap-
tions. Based on Vision-and-Language BERT,
we train UMIC to discriminate negative cap-
tions via contrastive learning. Also, we ob-
serve critical problems of the previous bench-
mark dataset (i.e., human annotations) on im-
age captioning metric, and introduce a new
collection of human annotations on the gen-
erated captions. We validate UMIC on four
datasets, including our new dataset, and show
that UMIC has a higher correlation than all
previous metrics that require multiple refer-
ences. We release the benchmark dataset and
pre-trained models to compute the UMIC1.

1 Introduction

Image captioning is a task that aims to generate
a description that explains the given image in a
natural language. While there have been many ad-
vances for caption generation algorithms (Vinyals
et al., 2015; Anderson et al., 2018) and target
datasets (Fang et al., 2015; Sharma et al., 2018),
few studies (Vedantam et al., 2015; Anderson et al.,
2016; Cui et al., 2018; Lee et al., 2020) have fo-
cused on assessing the quality of the generated
captions. Especially, most of the evaluation metrics
only use reference captions to evaluate the cap-
tion although the main context is an image. How-
ever, as shown in Figure 1, since there are many
possible reference captions for a single image, a
candidate caption can receive completely differ-
ent scores depending on the type of reference (Yi

1https://github.com/hwanheelee1993/UMIC

Ref 1: A dog standing in the snow with a 
stick in its mouth. 
Ref 2: A little dog holding sticks in its mouth.
Candidate: A dog standing on the snow with 
a dog
CIDEr with Ref 1: 3.166
CIDEr with Ref 2: 0.281

Human Judgments : 1.875 out of 5

Figure 1: An example where the metric score for a
given candidate caption varies significantly depending
on the reference type.

et al., 2020). Because of this diverse nature of im-
age captions, reference-based metrics usually use
multiple references which are difficult to obtain. To
overcome this limitation, we propose UMIC, an
Unreference Metric for Image Captioning, which
is not dependent on the reference captions and
use an image-caption pair to evaluate a caption.
We develop UMIC upon UNITER (Chen et al.,
2020) which is a state-of-the-arts pre-trained rep-
resentation for vision-and-language tasks. Since
UNITER is pre-trained to predict the alignment for
large amounts of image-text pairs, we consider that
UNITER can be a strong baseline for developing
an unreferenced metric. We fine-tune UNITER via
contrastive learning, where the model is trained
to compare and discriminate the ground-truth cap-
tions and diverse synthetic negative samples. We
carefully prepare the negative samples that can rep-
resent most of the undesirable cases in captioning,
such as grammatically incorrect, irrelevant to the
image, or relevant but have wrong keyword.

When evaluating the metric’s performance, it
is required to compare the correlations between
human judgments and the metric’s evaluation
score for given datasets. We choose three standard
benchmark datasets (i.e., Composite (Aditya et al.,
2015), Flickr8k (Hodosh et al., 2013), PASCAL-
50s (Vedantam et al., 2015)) and further analyze the
quality of the dataset. Interestingly, we found that
there exist critical issues in the benchmark datasets,
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such as poor-label or polarized-label. To perform
a rigorous evaluation as well as stimulate the re-
search in this area, we collect new 1,000 human
judgments for the model-generated caption. Finally,
we evaluate our proposed metric on four benchmark
datasets, including our new dataset. Experimental
results show that our proposed unreferenced metric
is highly correlated with human judgments than all
of the previous metrics that use reference captions.

2 Related Work

Image Captioning Metrics Following other text
generation tasks such as dialogue systems and ma-
chine translation, n-gram similarity metrics such
as BLEU (Papineni et al., 2002), ROUGE (Lin,
2004) and METEOR (Banerjee and Lavie, 2005)
are widely used to evaluate an image caption. Es-
pecially, CIDEr (Vedantam et al., 2015), which
weights each n-gram using TF-IDF, is widely used.
SPICE (Anderson et al., 2016) is a captioning met-
ric based on scene graph. BERTScore (Zhang et al.,
2019), which computes the similarity of the contex-
tualized embeddings, are also used. BERT-TBR (Yi
et al., 2020) focuses on the variance in multiple hy-
pothesis and ViLBERTScore (VBTScore) (Lee
et al., 2020) utilizes ViLBERT (Lu et al., 2019) to
improve BERTScore.

Different from these metrics, VIFIDEL (Mad-
hyastha et al., 2019) computes the word mover
distance (Kusner et al., 2015) between the object
labels in the image and the candidate captions, and
it does not require reference captions. Similar to
VIFIDEL, our proposed UMIC does not utilize the
reference captions. However, UMIC directly uses
image features and evaluates a caption in various
perspectives compared to VIFIDEL.

Quality Estimation Quality Estimation (QE) is
a task that estimates the quality of the generated
text without using the human references and this
task is same as developing an unreferenced met-
ric. QE is widely established in machine translation
(MT) tasks (Specia et al., 2013; Martins et al., 2017;
Specia et al., 2018). Recently, (Levinboim et al.,
2021) introduces a large scale human ratings on
image-caption pairs for training QE models in im-
age captioning tasks. Our work also trains caption
QE model, (i.e. unreferenced captioning metric)
but we do not use human ratings to train the met-
ric. Instead, we create diverse synthetic negative
samples and train the metric with these samples via
ranking loss.

UNITER

𝑆𝑆𝑥𝑥

𝑆𝑆�𝑥𝑥
𝑆𝑆𝑥𝑥 𝑆𝑆�𝑥𝑥

UNITER

A person on bike going through green 
light with red bus nearby in a sunny day.

Ranking Loss

A person on bike going through green 
light with red truck nearby in a sunny day.

Figure 2: Overall training procedure of UMIC. Given
an image I , a positive caption x and a negative caption
x̂, we compute the score of each image-caption pair Sx

and Sx̂ using UNITER respectively. Then, we fine-tune
UNITER using raking loss that Sx is higher than Sx̂.

3 UMIC

We propose UMIC, an unreferenced metric for im-
age captioning using UNITER. We construct nega-
tive captions using the reference captions through
the pre-defined rules. Then, we fine-tune UNITER
to distinguish the reference captions and these syn-
thetic negative captions to develop UMIC.

3.1 Modeling

Since UNITER is pre-trained to predict the align-
ment of large amounts of image-text pairs, we
use the output of the layer that predicts this align-
ment as the baseline of UMIC to be fine-tuned.
Specifically, we compute the score of a caption
S(I,X) for given image I = (i1, ..., iN ) and
X = (x1, ..., xT ) as follows.

We first compute the contextual embedding for
I and X using UNITER to get the joint representa-
tion of image and text as follows.

i[CLS], i1, ..., iN , x1, ..., xT =UNITER(I,X), (1)

where i[CLS] is a joint representation of the input
image and input caption. Then we feed it into a sin-
gle fully-connected layer to get a score as follows.

S(I,X) = sigmoid(Wi[CLS] + b), (2)

where W and b are trainable parameters.

3.2 Negative Samples

To model negative captions, we observe the cap-
tions’ common error types in the model-generated
captions. Specifically, we pick 100 bad captions
in the order of whose human judgments are low
in Composite and Flickr8k, respectively. Then, we
categorize the main errors into three types:relevant
but have wrong keywords, totally irrelevant to the
image, grammatically incorrect. To model most
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Original: a woman hugging a girl who is holding a suitcase

Substitiution: a boy hugging a girl who is holding a suitcase

Random(Hard Negative): a very small cute child by a suitcase

Repetition & Removal:  a woman hugging a girl is holding a 

suitcase suitcase 

Target Image
Similar Image

Figure 3: An example of the generated negative cap-
tions for the left image to train UMIC. Hard negative
caption is one of the reference captions for the right
image which is similar to the left image.

imperfect captions including these frequent type
errors, we prepare negative captions as follows.

Substituting Keywords To mimic the captions
that are relevant but have wrong keywords, as in the
example of Figure 2, we randomly substitute 30%
of the words in the reference captions and use them
as negative samples like Figure 3. The motivation
we choose 30% is that the average length of the gen-
erated caption is about 10 words and the number
of keywords is usually around three. We only sub-
stitute verb, adjective, and noun, which are likely
to be keywords since they are usually visual words.
Also, we substitute them with the words with the
same POS-Tags using the pre-defined dictionaries
for the captions in the training set to conserve the
sentence structure.

Random Captions We randomly sample cap-
tions from other images and use them as nega-
tive samples to generate totally irrelevant captions
for the given image. Also, similar to the image-
text retrieval task, we use hard-negative captions,
which are difficult to be discerned, with a proba-
bility of 50%. Specifically, we utilize the captions
of the images similar to the given images using
the pre-trained image retrieval model. We get neg-
ative captions that are the captions of the similar
image sets computed by image-text retrieval model
VSE++ (Faghri et al., 2018) as in (Wang et al.,
2020). Then, we sample the captions in the refer-
ence captions of the Top-3 similar image sets like
the example in Figure 3.

Repetition & Removal We find that some of the
captions have repeated words or have incomplete
sentences. Hence, we randomly repeat or remove

some words in the reference captions with a proba-
bility of 30% in the captions to generate these kinds
of captions. Specifically, we choose to repeat or re-
move with a probability of 50% for the sampled
word.

Word Order Permutation We further generate
negative samples by randomly changing the word
order of the reference captions, so that the model
sees the overall structure of the sentence, not just
the specific visual words.

3.3 Contrastive Learning

Using the negative captions generated by the above
rules, we fine-tune UNITER via contrastive loss
for positive caption X and negative caption X̂ as
follows.

Loss = max(0,M − (S(I,X)−S(I, X̂))), (3)

where M is the margin for the ranking loss, which
is a hyperparameter. We make each batch com-
posed of one positive caption and four negative
captions that are made by each negative sample
generation technique.

4 Dataset

We briefly explain the previous benchmark datasets
for captioning metrics and analyze the problems
for two of these datasets, Flickr8k and Composite.
Also, we introduce a new benchmark dataset to
alleviate the addressed problems.

4.1 Commonly Used Datasets

Composite consists of 11,985 human judgments
for each candidate caption generated from three
models and image pair. This dataset’s human judg-
ments range from 1 to 5, depending on the rele-
vance between candidate caption and image.

Flickr8k provides three expert annotations for
each image and candidate caption on 5,822 im-
ages. The score ranges from 1 to 4, depending on
how well the caption and image match. All of the
captions in this dataset are reference captions or
captions from other images.

PASCAL50s contains 1,000 images from UIUC
PASCAL Sentence Dataset with 50 reference cap-
tions for each image. Different from other datasets,
this dataset provides 4,000 caption triplet <A, B,
C> composed of 50 reference captions(A) and two
candidate captions(B, C) for the given image. There
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Figure 4: Score distributions of human judgments
in Composite, Flickr8k and our proposed CapEval1k
dataset. All scores were normalized from 0 to 1.

are human annotated answers to which is more sim-
ilar to “A”, “B” or “C”.

4.2 Problems in Flickr8k and Composite

We investigate the human judgments in Flickr8k
and Composite, and visualize the distributions of
judgment scores for two datasets, Flickr8k and
Composite in Figure 4, and find several problems.

For the Flickr8k, most of the scores are less than
0.2 since the candidate captions were sampled by
an image retrieval system from a reference cap-
tion pool, not model-generated captions. Therefore,
most captions are not related to images and differ
significantly from the model-generated captions.
We argue that this naive configuration is not enough
to distinguish the performance of the metric pre-
cisely.

For the Composite, most of the scores are placed
near 0 or 1. We explain this because only a single
annotator annotates each sample’s score resulting
in biased output. We also manually investigated the
captions and found that the captions are coarsely
generated. Note that the captions for this dataset
were generated by the old model (Karpathy and Fei-
Fei, 2015; Aditya et al., 2015). For these reasons,
we conclude that additional benchmark dataset is
necessary to evaluate the captioning metrics.

4.3 CapEval1k Dataset

To alleviate the addressed issues in Flickr8k and
Composite, we introduce a new dataset CapEval1k,
which is composed of human judgments for the
model-generated captions from four recently pro-
posed models: Att2in (Rennie et al., 2017), Trans-
former (Vaswani et al., 2017), BUTD (Anderson
et al., 2018) and AoANet (Huang et al., 2019). Dif-
ferent from Flickr8k and Composite, we ask each

Metric Flickr8k Composite CapEval1k PASCAL50s

BLEU-1 0.274 0.406 0.233 74.3
BLEU-4 0.286 0.439 0.238 73.4
ROUGE-L 0.300 0.417 0.220 74.9
METEOR 0.403 0.466 0.288 78.5
CIDEr 0.419 0.473 0.307 76.1
SPICE 0.457 0.486 0.279 73.6
BERTScore 0.396 0.456 0.273 79.5
BERT-TBR 0.467 0.439 0.257 80.1
VBTScore 0.525 0.514 0.352 79.6

VIFIDEL 0.336 0.191 0.143 70.0
UMIC 0.468 0.561 0.328 85.1
UMIC-C 0.431 0.554 0.299 84.7

Table 1: Columns 1 to 3 represent Kendall Correla-
tion between human judgments and various metrics on
Flickr8k, Composite and CapEval1k. All p-values in
the results are < 0.01. The last column shows the ac-
curacy of matches between human judgments in PAS-
CAL50s.

annotator to evaluate the captions by considering
three dimensions: fluency, relevance, descriptive-
ness. We hire 5 workers who are fluent in English
for each assignment from Amazon Mechanical
Turk and use the average score. We also provide
the full instructions and details in Appendix.

Since our CapEval1k dataset is composed of an-
notations via recently proposed models, the overall
scores are relatively higher than other datasets as
shown in Figure 4. Compared to other datasets,
CapEval1k contains the annotators’ comprehensive
judgment across multiple dimensions in evaluating
the quality of the generated captions, so we can see
that the score distribution score is not concentrated
in a particular area.

5 Experiments

5.1 Implementation Details

We use the pre-trained UNITER-base with 12
layers in the official code provided by the au-
thors (Chen et al., 2020)2. We use the COCO
dataset (Fang et al., 2015) to fine-tune UNITER
through ranking loss. We use the train and valida-
tion split of COCO dataset in (Chen et al., 2020).
The number of the training set is 414k, and the
validation set is 25k. We set the batch size of 320,
learning rate of 2e-6, and fine-tune UNITER for
a maximum of 4k steps. We select the model that
shows the minimum loss in the validation set. We
set margin M as 0.2 in the ranking loss. We repeat
training 5 times for each best-performing model.

5.2 Performance Comparison

We compute caption-level Kendall’s correlation co-
efficient with human judgments for the Composite,

2https://github.com/ChenRocks/UNITER
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Flickr8k, and our proposed CapEval1k. For the
PASCAL50s, we compute the number of matches
between human judgments for each candidate cap-
tion pair. For all of the reference based metrics,
we use five reference captions and then get av-
erage score among the five references except for
BERTScore where we use maximum.

We present the experimental results for all four
datasets in Table 1. We show that although UMIC
does not utilize any reference captions, UMIC out-
performs the baseline metrics except for VBTScore
in all of the datasets that depend on multiple ref-
erences. We also report the strong unreferenced
baseline UMIC-C, which is directly using the pre-
trained weights from UNITER without contrastive
learning. Interestingly, UMIC-C shows a higher per-
formance than most of the metrics. This high perfor-
mance shows that pre-trained image-text matching
layer of UNITER already has a good representa-
tion for evaluating image captions. Especially for
Composite, both UMIC and UMIC-C significantly
outperform baseline metrics. We explain this in the
polarized distribution of human judgments as we
explained in Section 4.2. In other words, the rele-
vance of most image-caption pairs in this dataset is
too obvious so that UNITER can easily distinguish
them. However, while UMIC shows higher perfor-
mance on all datasets, UMIC-C shows relatively
low performance on Flickr8k and CapEval1k. And
this demonstrates the effectiveness and generaliza-
tion ability of our contrastive learning objective to
develop UMIC.

Also, we can observe that the performance of
each metric is relatively low and the rank of each
metric changes in our proposed CapEval1k dataset.
We explain that this is because the captions in
CapEval1k are relatively difficult to be evaluated
since the score distribution is not biased as ex-
plained in Section 4.3.

5.3 Case Study

We visualize one sample each showing the
strengths and weaknesses of UMIC in Figure 5.
In the above example, the candidate caption is par-
tially relevant to the image, but the single word
“three” in the caption is totally incorrect since there
are only “two” giraffes in the image. And this leads
to a low human judgment of 0.2. Nevertheless, un-
like our UMIC, widely used metrics and UMIC-C
give this caption a high score due to the many
words overlaps or missing the keywords. The bot-

References
- two giraffe standing next to each other in a field.
- two giraffes are climbing a hill with mountains in 
the background.

Candidate
- three giraffes standing in a field of grass

BLEU1: 0.324 ROUGE-L: 0.320 METEOR: 0.173 CIDER: 0.866

SPICE: 0.289 UMIC: 0.352 UMIC/ି𝑪: 0.770 Human: 0.200 

References
- a person breadking a bottle with a baseball bat
- a boy in yellow shirt swinging a baseball bat

Candidate
- a man swinging a baseball bat at a ball

BLEU1: 0.360 ROUGE-L: 0.354 METEOR: 0.176 CIDER: 1.205

SPICE: 0.192 UMIC: 0.094 UMIC/ି𝑪: 0.062 Human: 0.450

Figure 5: Case study for the various metrics on candi-
date captions in CapEval1k Dataset. Human judgments
are normarlized from 0 to 1.

tom example shows one of the error cases and the
limitations of our proposed method. Since the de-
tection model in UMIC could not recognize the
important object like the “baseball bat”, UMIC out-
puts very low score.

6 Conclusion

In this paper, we propose UMIC, an unreferened
metric that does not require any reference captions
for image captioning task through contrastive learn-
ing in UNITER. Also, we propose a new bench-
mark dataset for image captioning that relieve the
issues in previous datasets. Experimental results on
four benchmark datasets, including our new dataset,
show that UMIC outperforms previous metrics.
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Abstract

Good quality monolingual word embeddings
(MWEs) can be built for languages which have
large amounts of unlabeled text. MWEs can
be aligned to bilingual spaces using only a
few thousand word translation pairs. For low
resource languages training MWEs monolin-
gually results in MWEs of poor quality, and
thus poor bilingual word embeddings (BWEs)
as well. This paper proposes a new approach
for building BWEs in which the vector space
of the high resource source language is used
as a starting point for training an embedding
space for the low resource target language. By
using the source vectors as anchors the vec-
tor spaces are automatically aligned during
training. We experiment on English-German,
English-Hiligaynon and English-Macedonian.
We show that our approach results not only
in improved BWEs and bilingual lexicon in-
duction performance, but also in improved tar-
get language MWE quality as measured using
monolingual word similarity.

1 Introduction

Bilingual Word Embeddings are useful for cross-
lingual tasks such as cross-lingual transfer learning
or machine translation. Mapping based BWE ap-
proaches rely only on a cheap bilingual signal, in
the form of a seed lexicon, and monolingual data to
train monolingual word embeddings (MWEs) for
each language, which makes them easily applicable
in low-resource scenarios (Mikolov et al., 2013b;
Xing et al., 2015; Artetxe et al., 2016). It was
shown that BWEs can be built using a small seed
lexicon (Artetxe et al., 2017) or without any word
pairs (Lample et al., 2018a; Artetxe et al., 2018)
relying on the assumption of isomorphic MWE
spaces. Recent approaches showed that BWEs can
be built without the mapping step. Lample et al.
(2018b) built FASTTEXT embeddings (Bojanowski
et al., 2017) on the concatenated source and target

language corpora exploiting the shared character
n-grams in them. Similarly, the shared source and
target language subword tokens are used as a cheap
cross-lingual signal in Devlin et al. (2019); Con-
neau and Lample (2019). Furthermore, the advan-
tages of mapping and jointly training the MWEs
and BWEs were combined in Wang et al. (2020)
for even better BWEs.

While these approaches already try to mini-
mize the amount of bilingual signal needed for
cross-lingual applications, they still require a larger
amount of monolingual data to train semantically
rich word embeddings (Adams et al., 2017). This
becomes a problem when one of the two languages
does not have sufficient monolingual data available
(Artetxe et al., 2020). In this case, training a good
embedding space can be infeasible which means
mapping based approaches are not able to build
useful BWEs (Michel et al., 2020).

In this paper we introduce a new approach to
building BWEs when one of the languages only
has limited available monolingual data. Instead of
using mapping or joint approaches, this paper takes
the middle ground by making use of the MWEs
of a resource rich language and training the low
resource language embeddings on top of it. For
this, a bilingual seed lexicon is used to initialize
the representation of target language words by tak-
ing the pre-trained vectors of their source pairs
prior to target side training, which acts as an in-
formed starting point to shape the vector space
during the process. We randomly initialize the rep-
resentations of all non-lexicon target words and
run Continuous Bag-of-Words (CBOW) and skip-
gram (SG) training procedures to generate target
embeddings with both WORD2VEC (Mikolov et al.,
2013a) and FASTTEXT (Bojanowski et al., 2017).
Our approach ensures that the source language
MWE space is intact, so that the data deficit on
the target side does not result in lowered source
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embedding quality. The improved monolingual
word embeddings for the target language outper-
form embeddings trained solely on monolingual
data for semantic tasks such as word-similarity pre-
diction. We study low-resource settings for English-
German and English-Hiligaynon, where previous
approaches have failed (Michel et al., 2020), as
well as English-Macedonian.

2 Method

Previous mapping approaches rely on the alignment
of two pre-trained monolingual word embedding
spaces. In case one of the two languages has signif-
icantly fewer resources available, this will strongly
affect the resulting mapping negatively. This is also
an issue for joint approaches because the shared to-
ken representations are biased towards the language
with more training samples. Our approach instead
leverages the high resource language to improve
performance on the low-resource language.

We pre-train MWEs for the source language and
use the source MWEs to initialize the space of the
low resource target language. Using a set of initial
seed pairs, the representation of a seed word in
the target space is replaced with the representation
of its translation (anchor points). Then, training
is performed on the initialized space using only
monolingual data from the low resource language
by only updating the representation of non-seed
words which are initialized randomly. Through this
method a BWE representation is directly induced
from the anchor points of the fixed vectors.

In some cases there are multiple valid transla-
tions for a single target language word. We experi-
ment with either initializing with the average over
these possible translations or randomly selecting
only one of them. The averaging helps by finding a
common anchor for the different semantic nuances
the token might represent in different target lan-
guage contexts. Additionally, we experiment with
enabling or disabling the updates of anchor vectors
during training. We implemented the anchor point
based initialization in both WORD2VEC and FAST-
TEXT with only complete token representations
serving as potential anchors. In the case of FAST-
TEXT these initializations have no influence on the
subword (character n-gram) embeddings which are
still initialized randomly, which makes intuitive
sense in the common case of morphologically dif-
ferent language pairs. Training is performed using
standard hyperparameters included in the GENSIM

WORD2VEC and FASTTEXT packages (Řehůřek
and Sojka, 2010). Unless stated otherwise, vectors
are of dimensionality 300 with a context window
of 5 words used during training. All models are
trained for 5 epochs without further hyperparame-
ter tuning utilizing a single desktop machine on a
Intel Core i7-7700K CPU with 4.20Ghz, a NVIDIA
GeForce GTX 1080 Ti graphics card and 32 GB
of DDR4 SDRAM. The parameters of each trained
model are equal to the standard implementation
of the packages as listed above. Training time is
largely dependent on input size, but corresponds to
a few seconds up to roughly 5 minutes in the low
resource setting.

2.1 Experimental Setup

First we conduct experiments on the German and
English language pair, since large available cor-
pora made it easier to test different sized dictionar-
ies and corpora during training. The basic setup
trains a MWE on the source language (English) up
front. For this training the WMT 2019 News Crawl
corpus in English, including approximately 532
million tokens, was chosen (Barrault et al., 2019).
Similarly for the target language, we used the Ger-
man WMT 2019 News Crawl from which we uni-
formly sample to obtain training sets of different
sizes. All dataset are tokenized and lowercased
before training.

To evaluate, we translate German words to En-
glish. We use the MUSE German-English dictio-
nary (Lample et al., 2018a). There are 102K trans-
lation pairs with a total of roughly 68K unique
German words. For each German word there might
be multiple valid English translations, which are
listed in the dictionary. For the initialization we
select either randomly one translation option or the
averaged word representations of all available trans-
lations, as discussed in section 2. However, many
German words have only one valid translation. We
used the MUSE test set containing roughly 3000
translation pairs in the frequency range 5000-6500,
leaving 99K pairs as potential candidates for the ini-
tialization. In our experiments we mostly consider
setups with much smaller training lexicon sizes, by
taking the top-n most frequent source words and
their translations from the lexicon.

In addition to the German experiments we test
our system on two lower resource languages: Mace-
donian and Hiligaynon. For Macedonian we use
data in the form of a Wikipedia dump, as well
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as the MUSE dictionary for the language pair
Macedonian-English for our test setup.1 For Hili-
gaynon we use a corpus containing roughly 350K
tokens as well as a corresponding dictionary con-
taining 1100 translated terms between English and
Hiligaynon and an additional test set of 200 terms
released by Michel et al. (2020).

After training, bilingual lexicon induction (BLI)
is done by taking the top n closest vectors measured
by cross-domain similarity local scaling (CSLS)
distance. For better comparability we use the eval-
uation method provided by MUSE (Lample et al.,
2018a) for both the comparison baseline as well
as our system. For Hiligaynon we use cosine to
compare directly with (Michel et al., 2020).

3 Results

The following section evaluates different models
quantitatively using acc@5 and acc@1 as a metric.
The baseline runs MUSE tool in supervised mode
using iterative procrustes refinement to obtain the
mapping using default parameters as reported in
Lample et al. (2018a). For the English embedding
the full corpus size was used, while in the case
of the (low-resource) languages the corpora sizes
were varied to observe changes in performance.

3.1 Bilingual experiments

BLI was performed using the method from sec-
tion 2. Since Word2Vec SG and FastText embed-
dings performed much worse with the anchored
training, all following numbers report Word2Vec
CBOW embeddings.

Table 1 shows the comparison between four dif-
ferent possible setups for the proposed method as
explained in Section 2: Either fixing anchor-vectors
or allowing them to train or initializing with single
word vectors or averaged ones. The overall best
performing model utilizes averaged and non-fixed
anchor vectors. Table 1 also shows the baselines at
varying corpora sizes. Overall the anchor method
performs much better than the baseline at lower
corpora sizes and stays competitive as corpus size
increases. Results are similarly consistent when
looking at either acc@5 or acc@1.

One important parameter for the proposed
method is how it scales with the available amount
of anchor-vectors used for training. In a range of
experiments, different initialization sizes were com-

1https://dumps.wikimedia.org/mkwiki/ (downloaded on
01/31/21)

Figure 1: Anchor method for English-German with
fixed vectors and baseline with varying training-
dictionary sizes at corpus size 20 million

pared. Figure 1 shows the result for varying the
number of anchor vectors. The general trend is that
the more anchor vectors, the better the performance,
which slowly caps off at the higher end, as more
vectors of lower frequency words start introducing
noise. The same development is not true for the
baseline, which does not benefit equally from in-
creasing the potential seed lexicon vocabulary and
even starts losing performance at larger dictionary
sizes.

This difference is likely rooted in the inclusion of
less frequent word pairs in the larger dictionaries.
These words have worse quality representations
which introduces noise in the mapping process,
thus restricting the precision of their orthogonal
alignment as described by (Søgaard et al., 2018).
In contrast, our method initializes all target lan-
guage word embeddings given their pairs, i.e., per-
fectly aligning all words in the training dictionary,
which serve as high quality anchor points for the
remaining words.

3.2 Macedonian and Hiligaynon

Another set of experiments was done on the lan-
guage pair English-Macedonian, a language that
already offers less resources than German and is
also more dissimilar from English.

Results for experiments comparing between the
MUSE baseline and the anchor method are shown
in Table 2. The best performing model again com-
bines averaged initialization with trainable anchors.

Compared to the previous experiments with Ger-
man, results for Macedonian are similar, while the
baseline model is overall weaker than before, sug-
gesting the anchor method benefits more strongly
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Model // Corpus Size 100K 300K 500K 1M 2M 5M 10M 20M 50M
Baseline Word2Vec (CBOW) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.3 (0.0) 0.6 (0.2) 6.1 (1.4) 15.9 (4.2) 26.7 (12.8) 40.2 (21.3)
Baseline FastText (SG) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.6 (0.2) 1.9 (0.5) 8.9 (3.9) 19.7 (8.6) 32.1 (18.1) 45.1 (28.9)
Fixed not Averaged (CBOW) 1.3 (0.9) 0.8 (0.3) 0.8 (0.3) 1.5 (0.5) 4.1 (1.7) 13.6 (5.6) 23.9 (12.2) 26.3 (13.4) 35.7 (21.0)
Fixed and Averaged (CBOW) 1.3 (0.4) 1.2 (0.1) 1.8 (0.2) 1.8 (0.6) 4.3 (1.9) 13.1 (5.5) 23.3 (11.9) 33.2 (18.4) 44.1 (26.3)
Trained not Averaged (CBOW) 1.3 (0.9) 0.8 (0.4) 1.4 (0.8) 3.3 (0.5) 7.3 (1.7) 18.0 (5.6) 27.0 (12.2) 35.8 (21.0) 45.2 (28.4)
Trained and Averaged (CBOW) 1.7 (0.4) 1.5 (0.5) 2.9 (1.4) 4.5 (1.3) 10.7 (4.8) 22.3 (11.9) 32.2 (18.3) 40.5 (25.0) 48.5 (31.5)

Table 1: Evaluation of models at varying data-sizes for English-German. Baselines (MUSE) and proposed methods,
reporting acc@5 (acc@1).

Model // Corpus Size 1M 2M 5M 10M 20M 37M
Baseline Word2Vec (CBOW) 0.0 (0.0) 0.7 (0.0) 6.0 (1.9) 18.1 (7.9) 28.0 (15.1) 37.0 (20.4)
Trained and Averaged (CBOW) 1.6 (0.4) 4.7 (1.6) 13.1 (5.6) 26.3 (13.4) 35.5 (18.4) 44.7 (24.2)

Table 2: Anchor method vs. baseline (MUSE) at varying data sizes reporting acc@5 (acc@1) for English-
Macedonian.

Algorithm Acc@5
Baseline Michel et al. 50D 0.5
Baseline Michel et al. 300D 0.0
Anchor fixed not averaged CBOW 300D 2.6
Anchor trained not averaged CBOW 300D 4.3

Table 3: BLI on Hiligaynon-English.

from a high-resource embedding, even when lan-
guage pairs become more dissimilar.

For English-Hiligaynon previous approaches
failed due to limitations of the available monolin-
gual training data. Table 3 shows the performance
for translating Hiligaynon words to English. The
evaluation was done using cosine-distance for bet-
ter comparability between the Michel et al. (2020)
paper and our results. Since there were only single
translations of words in the provided dictionary,
the method of averaging vectors for initialization
was not used. Similarly, during evaluation only one
valid term per word was possible. While Michel
et al. (2020) reported 0.5% for 50 dimensional vec-
tors, in our baseline the 50 dimensional vectors
achieved a constant 0 (not shown). The numbers
are comparable to the low frequency experiments
between German and English as seen in Table 1.

3.3 Monolingual experiments

In addition to better BWEs, our approach also
improves the low-resource embedding for purely
monolingual tasks. To confirm this, the anchor-
vector trained embeddings for German were eval-
uated on monolingual word similarity and com-
pared to the results achieved by regular training
of the embedding space. We evaluate on multiple
datasets: GUR350 and GUR65 (Gurevych, 2005),
SEMEVAL17 (Cer et al., 2017), SIMLEX-999 (Le-
viant and Reichart, 2015), WS-353 (Agirre et al.,

2009) and ZG22 (Zesch and Gurevych, 2006), and
report the averaged Spearman’s rho correlation be-
tween cosine similarity of vector pairs and human
annotations. Similar monolingual datasets are not
available for Macedonian and Hiligaynon. In Fig-
ure 2 the effect of employing the anchor method on
monolingual word similarity performance is com-
pared against Word2Vec CBOW trained without
anchor initialization. The improvements across
different training corpora sizes are in favor of the
proposed method, suggesting that it can be em-
ployed to improve performance on monolingual
tasks. Overall this serves to demonstrate the ad-
vantage of the anchor-method on small datasets
and allows to learn better monolingual represen-
tation from the same amount of data by utilizing
the information from a pretrained embedding for
a completely different language with more readily
available training data. The thus learned representa-
tion can not only serve as an already aligned space
for translation tasks as shown above, but is also the
better performing representation of the monolin-
gual space.

4 Conclusion

We proposed a novel approach to build BWEs
to improve performance on language pairs with
limited monolingual data on the target side. By
utilizing pre-trained MWEs of resource rich lan-
guages and a seed lexicon to fix anchor points
before training, a structurally similar embedding
space can be learned for the low resource lan-
guage which is aligned with the source repre-
sentations. We evaluated our approach on the
BDI task using English-German to test varying
training parameters and corpora sizes, on English-
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Figure 2: Spearman’s rho correlation on monolingual
word similarity across corpora sizes for German.

Macedonian and the extremely low resource lan-
guage pair English-Hiligaynon on which previous
approaches failed. We showed that the performance
of existing mapping approaches degrades drasti-
cally with lower monolingual data sizes, even when
there are large seed lexicons available. In contrast,
our proposed system outperformed previous map-
ping based approaches on these setups including
English-Hiligaynon. On top of improved BWEs,
we showed improved MWE quality as well for the
target language by outperforming standard MWEs
on the monolingual word similarity task showing
that it is beneficial for monolingual tasks as well.
We implemented our approach for both Word2Vec
and FastText which we publicly release to promote
reproducibility and further research.2

Ethical Considerations

The proposed system acts as a tool to specifically
help in the low resource setting that predominantly
affects less researched languages. Even though
part of the experiments were done on the higher
resource language pair English-German, the results
were further confirmed for other pairs of languages.

As a word embedding based system, the result-
ing mappings and embedding spaces are highly
affected by the kind of monolingual content that
goes into their training, which is why we made
sure to train the embeddings on texts that should
adhere to a higher standard, such as verified news
media and online articles, instead of a general
web crawl. Additionally the seed lexicons used
come from verified sources, such as the popular
MUSE lexicons in the case of English-German and

2http://cistern.cis.lmu.de/anchor-embeddings

English-Macedonian as well as from translations
by a native speaker of Hiligaynon in the case of
English-Hiligaynon.

We hope that in general the proposed methods
can help alleviating some of the resource problems
less researched languages are facing and thus to
close the gap for language technology working with
and on these languages.

As part of the ethical responsibility to ensure re-
producibility and responsibility in terms of compu-
tational resources, we reported results with a set of
standard hyperparameters instead of searching for
the most optimal setting for our proposed method.
Our models are as lightweight as regular training
methods for word embeddings and are therefore
not very demanding in terms of computation. This
is especially true in the low-resource setting, where
training time is reduced to just a fraction compared
to the bigger corpora.
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Abstract

Although multilingual neural machine transla-
tion (MNMT) enables multiple language trans-
lations, the training process is based on inde-
pendent multilingual objectives. Most multi-
lingual models can not explicitly exploit dif-
ferent language pairs to assist each other, ig-
noring the relationships among them. In this
work, we propose a novel agreement-based
method to encourage multilingual agreement
among different translation directions, which
minimizes the differences among them. We
combine the multilingual training objectives
with the agreement term by randomly sub-
stituting some fragments of the source lan-
guage with their counterpart translations of
auxiliary languages. To examine the effective-
ness of our method, we conduct experiments
on the multilingual translation task of 10 lan-
guage pairs. Experimental results show that
our method achieves significant improvements
over the previous multilingual baselines.

1 Introduction

Multilingual neural machine translation (MNMT)
has experienced rapid growth in recent years (John-
son et al., 2017; Zhang et al., 2020; Aharoni et al.,
2019; Wang et al., 2019). It is not only capable
of translating among multiple language pairs by
encouraging the crosslingual knowledge transfer to
improve low-resource translation performance (Fi-
rat et al., 2016b; Zoph et al., 2016; Sen et al., 2019;
Qin et al., 2020; Hedderich et al., 2020; Raffel et al.,
2020), but also can handle multiple language pairs
in a single model, reducing model parameters and
training costs (Firat et al., 2016a; Blackwood et al.,
2018; Wang et al., 2020; Sun et al., 2020).

Previous works in MNMT simply optimize in-
dependent translation objectives and do not use ar-

∗Contribution during internship at Microsoft Research
Asia.

†Corresponding author.
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Figure 1: Comparison between (a) the multilingual
translation and (b) our agreement-based method.

bitrary auxiliary languages to encourage the agree-
ment across different translation directions. As
shown in Figure 1, the multilingual baseline is
separately trained on French-English and German-
English directions and cannot explicitly promote
each other. The German-English translation only
implicitly helps the French-English translation
since both translation directions share the same
encoder. There still exists a gap between German-
English and French-English translation directions.
As a result, minimizing the difference across differ-
ent translation directions by an explicit paradigm
requires further exploration.

In this paper, we propose a novel agreement-
based method, which explicitly models the shared
semantic space for multiple languages and encour-
ages the agreement across them. Our training pro-
cedure extends the multilingual translation with
the agreement term, which encourages the model
to produce the source sentence with multiple lan-
guages into the target sentence. As Figure 1 shows,
we randomly substitute some source phrases with
their counterparts of other languages to create code-
switched sentences using word alignment. Our
model is jointly trained with the multilingual trans-
lation and agreement objectives, where the code-
switched sentences are translated into the target
sentences. The key idea is to encourage the agree-
ment among different translation directions simul-
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Figure 2: Overview of our method. xLi
mi

denotes the mi-th token in the sentence of language Li. We randomly
substitute source phrases of language Lsrc = Li with the translations of other languages Laux ∈ Lall to create
code-switched sentences. Different words/phrases with the same meanings may contain different numbers of to-
kens. Then the code-switched source sentences are translated to the target language Ltgt = Lk by the multilingual
model. This process greatly encourages multilingual agreement across different translation directions.

taneously by leveraging alignment information of
the bilingual source sentence pairs.

Experimental results on the multilingual trans-
lation task of WMT demonstrate that our method
outperforms the multilingual baseline by a large
margin. To better explain the BLEU improvements,
we visualize the sentence-level crosslingual repre-
sentations and the attention weights across different
languages, which shows that our method effectively
encourages the agreement between languages.

2 Our Approach

2.1 Multilingual Machine Translation
Our multilingual model is based on the single
Transformer model (Vaswani et al., 2017) and
shares all embedding matrices by a common vo-
cabulary of all languages. Given M languages
Lall = {L1, . . . , LM}, the multilingual model ap-
pends special symbols to the source text to indicate
the translation direction from the source language
Lsrc to the target language Ltgt.

2.2 Agreement-based Training
Multilingual models can translate multiple source-
side languages into target-side languages. Given
N bilingual corpora DB = {DB1 , . . . , DBN }, the
multilingual model with parameters θ is jointly
trained over N language directions to optimize the
combined objective as below:

LMT =

N∑

n=1

Ex,y∈DBn
[− logPθ(y|x)] (1)

where x, y denote the sentence pair in the bilingual
corpus DBn . LMT is the combined translation
objective of the multilingual model.

The agreement objective over the code-switched
corpora DC is calculated by:

LAT = ExLsrc/Laux ,y∈DC
[− logPθ(y|xLsrc/Laux)] (2)

where xLsrc/Laux is the code-switched sentence in
which some phrases are substituted by their coun-
terpart phrases in other languages and y is the target
sentence. Laux is the auxiliary language.

We combine the bilingual corpora DB and code-
switched corpora DC to train our agreement-based
model, which minimizes the gaps among different
translation directions using word alignment:

LALL = LMT + LAT (3)

where LALL is the combined objective.

2.3 Constructing Training Samples
We use Lsrc as the source language, Ltgt as tar-
get language, and Laux as auxiliary languages to
construct training samples. As shown in Figure 2,
xLsrc = (xLsrc1 , . . . , xLsrcm ) is the source sentence
with m tokens and xLaux = (xLaux1 , . . . , xLauxn )
is the auxiliary sentence with n tokens. xLsrcu:v de-
notes the sentence fragment of xLsrc from the u-th
to v-th token and xLauxs:t denotes the fragment of
xLaux from the s-th to t-th token, where xLauxs:t of
language Laux is the translation of the xLsrcu:v of lan-
guage Lsrc. Formally, the code-switched sequence
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En→ X Fr Cs De Fi Lv Et Ro Hi Tr Gu Avg

Bilingual NMT 36.3 22.3 40.2 15.2 16.5 15.0 23.0 12.2 13.3 7.9 20.2

One-to-Many 34.2 20.9 40.0 15.0 18.1 20.9 26.0 14.5 17.3 13.2 22.0
One-to-Many + Pseudo 35.5 21.7 42.0 16.4 19.3 22.0 26.6 16.2 17.9 17.8 23.5
One-to-Many + AT (our method) 35.7 22.0 42.1 16.6 20.1 22.2 26.9 16.6 18.2 17.9 23.9

Table 1: En→X test results for bilingual and multilingual models of 10 language pairs on the WMT benchmark.

X→ En Fr Cs De Fi Lv Et Ro Hi Tr Gu Avg

Bilingual NMT 36.2 28.5 40.2 19.2 17.5 19.7 29.8 14.1 15.1 9.3 23.0

Many-to-One 34.8 29.0 40.1 21.2 20.4 26.2 34.8 22.8 23.8 19.2 27.2
Many-to-One + Pseudo 35.4 30.1 42.1 22.0 21.2 29.0 35.8 27.3 26.0 22.6 29.1
Many-to-One + AT (our method) 35.7 30.2 42.6 22.3 21.8 29.5 36.4 27.6 26.7 22.8 29.6

Table 2: X→En test results for bilingual and multilingual models of 10 language pairs on the WMT benchmark.

xLsrc/Laux is described as:

xLsrc/Laux = (xLsrc
1 , . . . , xLaux

s:t , . . . , xLsrc
m ) (4)

where most words in the code-switched sentence
xLsrc/Laux are derived from xLsrc , while some
source phrases xLsrcu:v are substituted by their coun-
terpart phrases xLauxs:t .

Given the parallel sentences among M different
languages, we can construct code-switched source
sentence xLsrc/Laux with different auxiliary lan-
guages. Therefore, the code-switched corpora DC

can be constructed in a similar way for other lan-
guages to encourage the agreement across different
translation directions to help each other.

3 Experiment Setup

3.1 Multilingual Data

We use the same training, valid, and test sets as
the previous work (Wang et al., 2020) to evaluate
multilingual models by parallel data from multiple
WMT datasets with various languages, including
English (En), French (Fr), Czech (Cs), German
(De), Finnish (Fi), Latvian (Lv), Estonian (Et), Ro-
manian (Ro), Hindi (Hi), Turkish (Tr), and Gujarati
(Gu). For each language, we concatenate the WMT
data of the latest available year and get at most 10M
sentences by randomly sampling. Detailed statis-
tics of datasets are listed in Table 3. All sentences
in our experiments are tokenized by SentencePiece1

(Kudo and Richardson, 2018).

1https://github.com/google/
sentencepiece

Train Size Valid Test

En-Fr 10.00M newstest13 newstest15
En-Cs 10.00M newstest16 newstest18
En-De 4.60M newstest16 newstest18
En-Fi 4.80M newstest16 newstest18
En-Lv 1.40M newsdev17 newstest17
En-Et 0.70M newsdev18 newstest18
En-Ro 0.50M newsdev16 newstest16
En-Hi 0.26M newsdev14 newstest14
En-Tr 0.18M newstest16 newstest18
En-Gu 0.08M newsdev19 newstest19

Table 3: The statistics of the training, valid, and test
sets on WMT datasets of 10 language pairs.

3.2 Baselines and Evaluation

We compare our method against the following base-
lines. Bilingual baseline is trained on each lan-
guage pair separately. One-to-Many and Many-
to-One are trained on the En→X and X→En direc-
tions respectively. We collect all English sentences
(33M) of the bilingual corpora described above and
translate them into other languages sentences. We
extract alignment pairs (Dyer et al., 2013) across
different languages for our method. One-to-Many
+ Pseudo and Many-to-One + Pseudo are trained
on multilingual data combined with the pseudo
data. We average the last 5 checkpoints and employ
the beam search strategy with a beam size of 5 for
evaluation. The evaluation metric is case-sensitive
detokenized sacreBLEU2 (Post, 2018).

2BLEU+case.mixed+lang.{src}-
{tgt}+numrefs.1+smooth.exp+tok.13a+version.1.4.14
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3.3 Training Details
We adopt the Transformer big architecture as
the backbone model for all our experiments, which
has 6 layers with an embedding size of 1024, a
dropout of 0.1, the feed-forward network size of
4096, and 16 attention heads. We train multilingual
models with Adam (Kingma and Ba, 2015) (β1 =
0.9, β2 = 0.98). The learning rate is set as 5e-
4 with a warm-up step of 4,000. The models are
trained with the label smoothing cross-entropy with
a smoothing ratio of 0.1. The batch size is 5,120
tokens and the parameters are updated every 16
iterations to simulate a 128-GPU environment.

4 Results

The results of our model are separately listed in
Table 1 and Table 2. Table 1 shows that One-
to-Many outperforms bilingual NMT by +1.8
BLEU points on average. Our method further im-
proves over both One-to-Many and One-to-Many
+ Pseudo consistently. Using pseudo and code-
switched data brings more improvements to the
low-resource languages (Et, Ro, Hi, Tr, and Gu)
than high-resource languages (Fr, Cs, De, Fi, and
Lv). These results suggest that our model encour-
ages the agreement between different translation
directions.

Table 2 reports the results on the X→En test sets.
Many-to-One outperforms the bilingual NMT by
+4.2 BLEU points on average. We combine the
parallel data with the pseudo data, leading to an
improvement of +1.9 BLEU points over Many-
to-One. Our method further outperforms Many-
to-One + Pseudo by a large gain of +0.5 BLEU
points on average, showing the effectiveness of our
agreement-based method and the significance of
multilingual agreement.

5 Analysis

Attention Visualization The representations of
attention in Figures 3 and 4 are averaged over all
16 heads of the last layer. Figure 3 shows the self-
attention weights of a code-switched English sen-
tence, where the source phrase “coordination be-
tween law enforcement” is substituted by the Ger-
man phrase “Koordinierung zwischen Strafverfol-
gung sbehörden”. Similar to the common attention
pattern, our model can learn better crosslingual rep-
resentations in this code-switching case. Figure
4 shows that the cross-attention weights between
the input code-switched English sentence and the
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Figure 3: Visualization for the self-attention weights.
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Figure 4: Visualization for the cross-attention weights
between the code-switched input and target sentence.

output German sentence. The words with similar
meanings are aligned together between the code-
switched input and target output.

Crosslingual Representation We select 500 par-
allel sentences across different languages and visu-
alize their sentence vectors of multilingual baseline
and our method in Figure 5. The vector of the
special language symbol of the source sentence is
used as the sentence representation for visualiza-
tion. Compared to Figure 5(a), different languages
become closer and overlap with each other in Fig-
ure 5(b), which shows our method aligns repre-
sentations and minimizes the differences among
different languages.

Substitution Strategy We employ both word-
level and phrase-level substitution strategies for
code-switching. The word-level and phrase-level
methods replace some words or spans of the source
sentence with other languages. In Table 4, phrase-
level substitution works better. Furthermore, we
investigate the effect of the substitution ratio of the
source words. From Figure 6, the best substitution
ratio is 10%. When increasing the ratio to 30%, the
performance gets worse, which indicates substitut-
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(a) (b)

Figure 5: t-SNE (Maaten and Hinton, 2008) visualiza-
tion of parallel sentences vector space of all languages
from the multilingual baseline (a) and our method (b).
Each color denotes one language.

X→ En De Lv Ro Tr Avg

Word-level 42.5 21.5 35.9 26.2 31.5
Phrase-level 42.6 21.8 36.4 26.7 31.9

Table 4: Comparison of BLEU points between the
word-level and the phrase-level substitution strategies
on X→En directions.

ing too many words may degrade the performance.
As Equation 3 formulates, our method uses both

the original corpora and code-switched corpora
simultaneously to reduce the effect of the word
alignment errors. Besides, fast align (Dyer
et al., 2013) is a simple, fast, and effective tool
with a lower alignment error rate. Therefore, our
method can avoid the disturbance introduced by
the word alignment errors as much as possible.

Time Cost of Word Alignment In this work, we
try a large pseudo parallel corpus (33M) to train
the multilingual corpora. In most scenarios, the
size of the parallel corpus is less than 33M and thus
consumes less time to generate the alignment pairs.
All the alignment pairs are offline generated only
once before the training phase. Therefore, the time
cost of the word alignment is much smaller than
that of the model training.

6 Related Work

Multilingual Machine Translation Previous
works (Zoph et al., 2016; Firat et al., 2016b;
Johnson et al., 2017) have explored different set-
tings of the multilingual neural machine translation
(MNMT). Recent studies show that MNMT (Black-
wood et al., 2018; Platanios et al., 2018; Gu et al.,
2018) helps improve the performance of the low-
resource or zero-shot translation. Some researchers

0% 5% 10% 15% 20% 25% 30%
Substitution Ratio

28.9

29.1

29.3

29.5

BL
EU

Our method

Figure 6: Average results of X→En directions on differ-
ent substitution ratio settings. Large substitution ratio
may degrade the model performance and is even worse
than the multilingual baseline.

use the sentence pairs to enhance the bilingual
neural machine translation (Conneau and Lample,
2019; Song et al., 2019; Yang et al., 2020b).

Agreement-based Learning Many works try to
use the agreement-based method (Liang et al.,
2007, 2006; Al-Shedivat and Parikh, 2019) to en-
courage agreement among different translation or-
ders and directions (Liang et al., 2006; Castilho,
2020; Yang et al., 2020a; Cheng et al., 2016; Zhang
et al., 2019). Besides, the agreement-based method
is also used to minimize the difference between
the representation of source and target sentence
(Yang et al., 2019). Our method further explores
the approach of the multilingual agreement.

7 Conclusion

We propose a novel agreement-based framework
to encourage multilingual agreement across differ-
ent translation directions by the agreement term.
Experimental results on the multilingual transla-
tion task demonstrate that our method effectively
minimizes the gaps among different translation di-
rections and significantly outperforms the multilin-
gual baselines. The analytic experiment about the
crosslingual representation shows the effectiveness
of our multilingual agreement in minimizing the
differences among different languages.
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Abstract

Weighted finite-state machines are a funda-
mental building block of NLP systems. They
have withstood the test of time—from their
early use in noisy channel models in the 1990s
up to modern-day neurally parameterized con-
ditional random fields. This work examines
the computation of higher-order derivatives
with respect to the normalization constant for
weighted finite-state machines. We provide
a general algorithm for evaluating derivatives
of all orders, which has not been previously
described in the literature. In the case of
second-order derivatives, our scheme runs in
the optimal O(A2N4) time where A is the
alphabet size and N is the number of states.
Our algorithm is significantly faster than
prior algorithms. Additionally, our approach
leads to a significantly faster algorithm for
computing second-order expectations, such
as covariance matrices and gradients of
first-order expectations.

1 Introduction

Weighted finite-state machines (WFSMs) have a
storied role in NLP. They are a useful formalism for
speech recognition (Mohri et al., 2002), machine
transliteration (Knight and Graehl, 1998), morphol-
ogy (Geyken and Hanneforth, 2005; Lindén et al.,
2009) and phonology (Cotterell et al., 2015) inter
alia. Indeed, WFSMs have been “neuralized” (Ras-
togi et al., 2016; Hannun et al., 2020; Schwartz
et al., 2018) and are still of practical use to the
NLP modeler. Moreover, many popular sequence
models, e.g., conditional random fields for part-of-
speech tagging (Lafferty et al., 2001), are naturally
viewed as special cases of WFSMs. For this reason,
we consider the study of algorithms for the WFSMs
of interest in se for the NLP community.

This paper considers inference algorithms for
WSFMs. When WFSMs are acyclic, there exist

simple linear-time dynamic programs, e.g., the
forward algorithm (Rabiner, 1989), for inference.
However, in general, WFSMs may contain cycles
and such approaches are not applicable. Our work
considers this general case and provides a method
for efficient computation of mth-order derivatives
over a cyclic WFSM. To the best of our knowl-
edge, no algorithm for higher-order derivatives has
been presented in the literature beyond a general-
purpose method from automatic differentiation. In
contrast to many presentations of WFSMs (Mohri,
1997), our work provides a purely linear-algebraic
take on them. And, indeed, it is this connection
that allows us to develop our general algorithm.

We provide a thorough analysis of the sound-
ness, runtime, and space complexity of our algo-
rithm. In the special case of second-order deriva-
tives, our algorithm runs optimally in O(A2N4)
time and space where A is the size of the alpha-
bet, and N is the number of states.1 In contrast,
the second-order expectation semiring of Li and
Eisner (2009) provides an O(A2N7) solution and
automatic differentiation (Griewank, 1989) yields a
slightly fasterO(AN5+A2N4) solution. Addition-
ally, we provide a speed-up for the general family
of second-order expectations. Indeed, we believe
our algorithm is the fastest known for computing
common quantities, e.g., a covariance matrix.2

2 Weighted Finite-State Machines

In this section we briefly provide important nota-
tion for WFSMs and a classic result that efficiently
finds the normalization constant for the probability
distribution of a WFSM.

1Our implementation is available at https://github.
com/rycolab/wfsm.

2Due to space constraints, we keep the discussion of our
paper theoretical, though applications of expectations that we
can compute are discussed in Li and Eisner (2009), Sánchez
and Romero (2020), and Zmigrod et al. (2021).
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Definition 1. A weighted finite-state machineM
is a tuple 〈α, {W(a)}a∈A,ω〉 where A is an al-

phabet of size A, A def
= A ∪ {ε}, each a ∈ A

has a symbol-specific transition matrix W(a) ∈
R≥0N×N where N is the number of states, and
α,ω ∈ R≥0N are column vectors of start and
end weights, respectively. We define the matrix
W

def
=
∑

a∈AW(a).

Definition 2. A trajectory τi ` is an ordered se-
quence of transitions from state i to state `. Visually,
we can represent a trajectory by

τi `
def
= i

a−→ j · · · k a′−→ `

The weight of a trajectory is

w(τi `)
def
= αi




∏

(j
a−→k)∈τi `

W
(a)
jk


ω` (1)

We denote the (possibly infinite) set of trajectories
from i to ` by Ti` and the set of all trajectories by
T def

=
⋃
i,`∈[N ] Ti`.3 Consequently, when we say

τi ` ∈ T , we make i and ` implicit arguments to
which Ti` we are accessing.

We define the probability of a trajectory τi `∈T ,

p(τi `)
def
=

w(τi `)

Z
(2)

where

Z
def
= α>

∞∑

k=0

Wk ω (3)

Of course, p is only well-defined when 0< Z<
∞.4 Intuitively, α>Wk ω is the total weight of all
trajectories of length k. Thus, Z is the total weight
of all possible trajectories as it sums over the total
weight for each possible trajectory length.

Theorem 1 (Corollary 4.2, Lehmann (1977)).

W? def
=

∞∑

k=0

Wk = (I−W)−1 (4)

Thus, we can solve the infinite summation that
defines W? by matrix inversion in O(N3) time.5

3|T | is infinite if and only ifM is cyclic.
3Another formulation for Z is

∑
τi `∈T w(τi `).

4This requirement is equivalent to W having a spectral
radius < 1.

5This solution technique may be extended to closed semir-
ings (Kleene, 1956; Lehmann, 1977).

Corollary 1.

Z = α>W?ω (5)

Proof. Follows from (4) in Theorem 1. �
By Corollary 1, we can find Z in O(N3 +AN2).6

Strings versus Trajectories. Importantly, WF-
SMs can be regarded as weighted finite-state ac-
ceptors (WFSAs) which accept strings as their in-
put. Each trajectory τi ` ∈ T has a yield γ(τi `)
which is the concatenation of the alphabet symbols
of the trajectory. The yield of a trajectory ignores
any ε symbols, a discussion regarding the seman-
tics of ε is given in Hopcroft et al. (2001). As
we focus on distributions over trajectories, we do
not need special considerations for ε transitions.
We do not consider distributions over yields in this
work as such a distribution requires constructing a
latent-variable model

p(σ) =
1

Z

∑

τi `∈T ,
γ(τi `)=σ

w(τi `) (6)

where σ ∈ A∗ and γ(τi `) is the yield of the tra-
jectory. While marginal likelihood can be found
efficiently,7 many quantities, such as the entropy
of the distribution over yields, are intractable to
compute (Cortes et al., 2008).

3 Computing the Hessian (and Beyond)

In this section, we explore algorithms for efficiently
computing the Hessian matrix∇2Z. We briefly de-
scribe two inefficient algorithms, which are derived
by forward-mode and reverse-mode automatic dif-
ferentiation. Next, we propose an efficient algo-
rithm which is based on a key differential identity.

3.1 An O(A2N7) Algorithm with
Forward-Mode Automatic Differentiation

One proposal for computing the Hessian comes
from Li and Eisner (2009) who introduce a method
based on semirings for computing a general family
of quantities known as second-order expectations

6Throughout this paper, we assume a dense weight matrix
and that matrix inversion is O(N3) time. We note, however,
that when the weight matrix is sparse and structured, faster
matrix-inversion algorithms exist that exploit the strongly con-
nected components decomposition of the graph (Mohri et al.,
2000). We are agnostic to the specific inversion algorithm, but
for simplicity we assume the aforementioned running time.

7This is done by intersecting the WFSA with another
WFSA that only accepts σ.
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(defined formally in §4). When applied to the com-
putation of the Hessian their method reduces pre-
cisely to forward-mode automatic differentiation
(AD; Griewank and Walther, 2008, Chap 3.1). This
approach requires that we “lift” the computation of
Z to operate over a richer numeric representation
known as dual numbers (Clifford, 1871; Pearlmut-
ter and Siskind, 2007). Unfortunately, the second-
order dual numbers that we require to compute the
Hessian introduce an overhead of O(A2N4) per
numeric operation of the O(N3) algorithm that
computes Z, which results in O(A2N7) time.

3.2 An O(AN5+A2N4) Algorithm with
Reverse-Mode Automatic Differentiation

Another method for materializing the Hessian
∇2Z is through reverse-mode automatic differ-
entiation (AD). Recall that we can compute Z
in O(N3 + AN2), and can consequently find
∇Z in O(N3+AN2) using one pass of reverse-
mode AD (Griewank and Walther, 2008, Chap-
ter 3.3). We can repeat differentiation to materi-
alize∇2Z. Specifically, we run reverse-mode AD
once for each element i of ∇Z. Taking the gra-
dient of (∇Z)i gives a row of the Hessian matrix,
∇[(∇Z)i] = [∇2Z](i,:). Since each of these passes
takes timeO(N3+AN2) (i.e., the same as the cost
of Z), and ∇Z has size AN2, the overall time is
O(AN5+A2N4).

3.3 Our Optimal O(A2N4) Algorithm
In this section, we will provide an O(A2N4)-time
and space algorithm for computing the Hessian.
Since the Hessian has sizeO(A2N4), no algorithm
can run faster than this bound; thus, our algorithm’s
time and space complexities are optimal. Our algo-
rithm hinges on the following lemma, which shows
that the each of partial derivatives of W? can be
cheaply computed given W?.

Lemma 1. For i, j, k, `∈ [N ] and a∈A

∂W?
i`

∂W
(a)
jk

= W?
ij

.
W

(a)
jk W

?
k` (7)

where
.
W

(a)
jk is shorthand for ∂W(a)

jk .
Proof.

∂W?
i`

∂W
(a)
jk

=
∂

∂W
(a)
jk

[
(I−W)−1i`

]

= −W?
ij

∂

∂W
(a)
jk

[(I−W)]W?
k`

= W?
ij

.
W

(a)
jk W

?
k`

The second step uses Equation 40 of the Matrix
Cookbook (Petersen and Pedersen, 2008). �

We now extend Lemma 1 to express higher-
order derivatives in terms of W?. Note that as
in Lemma 1, we will use

.
W

(a)
ij as a shorthand for

the partial derivative ∂W(a)
ij .

Theorem 2. For m≥1 and m-tuple of transitions
~τ = 〈i1 a1−→ j1, . . . , im

am−−→ jm〉
∂mZ

∂W
(a1)
i1j1
· · · ∂W(am)

imjm

=
∑

〈
i′1

a′1−→j′1,··· ,i′m
a′m−−→j′m

〉
∈S~τ

(8)

si′1
.
W

(a′1)
i′1j
′
1
W?

j′1i
′
2

.
W

(a′2)
i′2j
′
2
· · ·W?

j′m−1i
′
m

.
W

(a′m)
i′mj′m

ej′m

where s = α>W?, e = W?ω and S~τ is the multi-
set of permutations of ~τ .8

Proof. See App. A.1 �
Corollary 2. For i, j, k, l∈ [N ] and a, b∈A

∂2Z

∂W
(a)
ij ∂W

(b)
kl

= (9)

si
.
W

(a)
ij W?

jk

.
W

(b)
kl el + sk

.
W

(b)
kl W

?
li

.
W

(a)
ij ej

Proof. Application of Theorem 2 for them=2 case.
�

Theorem 2 shows that, if we have already com-
puted W?, each element of the mth derivative can
be found in O(mm!) time: We must sum over
O(m!) permutations, where each summand is the
product of O(m) items. Importantly, for the Hes-
sian (m = 2), we can find each element in O(1)
using Corollary 2. Algorithm Dm in Fig. 1 provides
pseudocode for materializing the tensor containing
the mth derivatives of Z.

Theorem 3. For m ≥ 1, algorithm Dm com-
putes ∇mZ in O(N3+mm!AmN2m) time and
O(AmN2m) space.
Proof. Correctness of algorithm Dm follows from
Theorem 2. The runtime and space bounds follow
by needing to compute and store each combina-
tion of transitions. Each line of the algorithm is
annotated with its running time. �
Corollary 3. The Hessian ∇2Z can be material-
ized in O(A2N4) time and O(A2N4) space. Note
that these bounds are optimal.

8As ~τ may have duplicates, S~τ can also have duplicates
and so must be a multi-set.
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1: def Dm(W,α,ω) :
2: . Compute the tensor of mth-order derivative of a

WFSM; requires O(N3+mm!AmN2m) time,
O(AmN2m) space.

3: W? ← (I−W)−1 . O(N3)

4: s← α>W?; e←W?ω . O(N2)

5: D← 0
6: for ~τ ∈([N ]×[N ]×A)m : . O(mm!AmN2m)

7: for
〈
i1

a1−→ j1, . . . , im
am−−→ jm

〉
∈ S~τ :

8: D~τ += si1
.
W

(a1)
i1j1

W?
j1i2

.
W

(a2)
i2j2

W?
j2i3

· · ·W?
jm−1im

.
W

(am)
imjm

ejm

9: return D

10: def E2(W,α,ω, r, t) :
11: . Compute the second-order expectation of a

WFSM; requires O(N3 +N2(RT +AR′T ′))
time, O(N2 +RT +N(R + T )) space where

R
def
= min(NR′, R) and T def

= min(NT ′, T ).
12: Compute W?, s, and e as in Dm . O(N3)

13: Z← α>W?ω
14: r̂s ← 0; r̂e ← 0; t̂s ← 0; t̂e ← 0
15: for i, j ∈ [N ], a ∈ A : . O(AN2)

16: r̂si += sj
.
W

(a)
ji W

(a)
ji r

(a)
ji . O(R′)

17: r̂ei +=
.
W

(a)
ij ej

.
W

(a)
ji W

(a)
ij r

(a)
ij . O(R′)

18: t̂si += sj
.
W

(i)
ajW

(a)
ji t

(a)
ji . O(T ′)

19: t̂ei +=
.
W

(a)
ij ejW

(a)
ij t

(a)
ij . O(T ′)

20: return 1
Z

[∑N
i,j=0 r̂

s
iW

?
ij t̂

e
j

>
+
[
t̂siW

?
ij r̂

e
j

>]>

+
∑

a∈A si
.
W

(a)
ij ejW

(a)
ij r

(a)
ij t

(a)
ij

>
]

. O(N2(R T+AR′T ′))

Figure 1: Algorithms

Proof. Application of Theorem 3 for them=2 case.
�

4 Second-Order Expectations

In this section, we leverage the algorithms of the
previous section to efficiently compute a family ex-
pectations, known as a second-order expectations.
To begin, we define an additively decomposable
function r: T 7→ RR as any function expressed as

r(τi `) =
∑

(j
a−→k)∈τi `

r
(a)
jk (10)

where each r(a)jk is an R-dimensional vector. Since
many r of interest are sparse, we analyze our al-
gorithms in terms of R and its maximum den-
sity R′ def

= max
j
a−→k
‖r(a)jk ‖0. Previous work has

considered expectations of such functions (Eisner,

2001) and the product of two such functions (Li
and Eisner, 2009), better known as second-order ex-
pectations. Formally, given two additively decom-
posable functions r: T 7→ RR and t: T 7→ RT , a
second-order expectation is

Eτi `
[
r(τi `)t(τi `)

>
]

def
= (11)

∑

τi `∈T
p(τi `)r(τi `)t(τi `)

>

Examples of second-order expectations include the
Fisher information matrix and the gradients of first-
order expectations (e.g., expected cost, entropy, and
the Kullback–Leibler divergence).

Our algorithm is based on two fundamental con-
cepts. Firstly, expectations for probability distri-
butions as described in (1), can be decomposed as
expectations over transitions (Zmigrod et al., 2021).
Secondly, the marginal probabilities of transitions
are connected to derivatives of Z.9

Lemma 2. For m ≥ 1 and m-tuple of transitions
~τ = 〈i1 a1−→ j1, . . . , im

am−−→ jm〉

p(~τ) =
1

Z

m∑

n=1

∂nZ

∂W
(a1)
i1j1

. . . ∂W
(an)
injn

n∏

k=1

W
(ak)
ikjk

(12)

Proof. See App. A.2. �
We formalize our algorithm as E2 in Fig. 1. Note

that we achieve an additional speed-up by exploit-
ing associativity (see App. A.3).

Theorem 4. Algorithm E2 computes the second-
order expectation of additively decomposable func-
tions r: T 7→ RR and t: T 7→ RT in:

O(N3+N2(RT+AR′T ′)) time

O(N2+RT+N(R+ T )) space

where R=min(NR′, R) and T=min(NT ′, T ).
Proof. Correctness of algorithm E2 is given in
App. A.3. The runtime bounds are annotated on
each line of the algorithm. We note that each r̂ and
t̂ is R and T sparse. O(N2) space is required to
store W?, O(RT ) is required to store the expecta-
tion, and O(N(R+ T )) space is required to store
the various r̂ and t̂ quantities. �

Previous approaches for computing second-
order expectations are significantly slower than E2.
Specifically, using Li and Eisner (2009)’s second-
order expectation semiring requires augmenting the

9This is commonly used in the case of single transition
marginals, which can be found by∇ log Z
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arc weights to be R × T matrices and so runs in
O(N3RT+AN2RT ). Alternatively, we can use
AD, as in §3.2, to materialize the Hessian and com-
pute the pairwise transition marginals. This would
result in a total runtime of O(AN5+A2N4R′T ′).

5 Conclusion

We have presented efficient methods that exploit
properties of the derivative of a matrix inverse to
find m-order derivatives for WFSMs. Addition-
ally, we provided an explicit, novel, algorithm for
materializing the Hessian in its optimal complex-
ity, O(A2N4). We also showed how this could
be utilized to efficiently compute second-order ex-
pectations of distributions under WFSMs, such as
covariance matrices and the gradient of entropy.
We hope that our paper encourages future research
to use the Hessian and second-order expectations
of WFSM systems, which have previously been
disadvantaged by inefficient algorithms.
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A Proofs

A.1
Theorem 2. For m≥1 and m-tuple of transitions ~τ = 〈i1 a1−→ j1, . . . , im

am−−→ jm〉

∂mZ

∂W
(a1)
i1j1

. . . ∂W
(am)
imjm

=
∑

〈
i′1

a′1−→j′1,...,i
′
m

a′m−−→j′m
〉
∈S~τ

si′1
.
W

(a′1)
i′1j
′
1
W?

j′1i
′
2

.
W

(a′2)
i′2j
′
2
· · ·W?

j′m−1i
′
m

.
W

(a′m)
i′mj′m

ej′m

where s = α>W?, e = W?ω and S~τ is the multi-set of permutations of ~τ .
Proof. We prove this by induction on m.
Base Case: m = 1 and ~τ = 〈i a−→ j〉:

∂Z

∂W
(a)
ij

=
∂

∂W
(a)
ij




N∑

k,l=0

αkW
?
klωl


 =

N∑

k,l=0

αkW
?
ki

.
W

(a)
ij W?

jlωl = si
.
W

(a)
ij ej

Inductive Step: Assume that the expression holds form. Let ~τ = 〈i1 a1−→ j1, . . . , im
am−−→ jm〉 and consider

the tuple ~τ ′, the concatenation of (i a−→ j) and ~τ .

∂m+1Z

W
(a)
ij ∂W

(a1)
i1j1

. . . ∂W
(am)
imjm

=
∂

∂W
(a)
ij

∑

〈
i′1

a′1−→j′1,...,i
′
m

a′m−−→j′m
〉
∈S~τ

si′1

.
W

(a′1)
i′1j
′
1
W?

j′1i
′
2
· · ·

.
W

(a′m)
i′mj′m

ej′m

Consider the derivative of each summand with respect to W
(a)
ij . By the product rule, we have

∂

∂W
(a)
ij

[
si′1

.
W

(a′1)
i′1j
′
1
W?

j′1i
′
2
· · ·

.
W

(a′m)
i′mj′m

ej′m

]

= si
.
W

(a)
ij W?

ji′1

.
W

(a′1)
i′1j
′
1
W?

j′1i
′
2
· · ·

.
W

(a′m)
i′mj′m

ej′m+

· · ·+ si′1 · · ·W
?
jki

.
W

(a)
ij W?

jik+1
· · · ej′m+

· · ·+ si′1

.
W

(a′1)
i′1j
′
1
W?

j′1i
′
2
· · ·

.
W

(a′m)
i′mj′m

W?
j′mi

.
W

(a)
ij ej

The above expression is equal to inserting i a−→ j in every spot of the induction hypothesis’s permutation,
thereby creating a permutation over ~τ ′. Reassembling with the expression for the derivative,

∂m+1Z

∂W
(a)
ij ∂W

(a1)
i1j1

. . . ∂W
(am)
imjm

=
∑

〈
i′1

a′1−→j′1,...,i
′
m+1

a′m+1−−−→j′m+1

〉
)∈S~τ ′

si′1

.
W

(a′1)
i′1j
′
1
W?

j′1i
′
2

.
W

(a′2)
i′2j
′
2
· · ·

.
W

(a′m+1)

i′m+1j
′
m+1

ej′m+1

�

A.2
Lemma 2. For m ≥ 1 and m-tuple of transitions ~τ = 〈i1 a1−→ j1, . . . , im

am−−→ jm〉

p(~τ) =
1

Z

m∑

n=1

∂nZ

∂W
(a1)
i1j1

. . . ∂W
(an)
injn

n∏

k=1

W
(ak)
ikjk

(10)
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Proof. Let T~τ be the set of trajectories such that τi ` ∈ T~τ ⇐⇒ ~τ ⊆ τi `. Then,

p(~τ) =
1

Z

∑

τi `∈T~τ
w(τi `)

We prove the lemma by induction on m.
Base Case: Then, m = 1 and ~τ = 〈i1 a1−→ j1〉. We have that

1

Z

∂Z

∂W
(a1)
i1j1

W
(a1)
i1j1

=
1

Z

∂

∂W
(a1)
i1j1


 ∑

τi `∈T
w(τi `)


W

(a1)
i1j1

(a)
=

1

Z


 ∑

τi `∈T~τ
w(τi `)


 = p(i1

a1−→ j1)

Step (a) holds because taking the derivative of Z with respect to W
(a1)
i1j1

yields the sum of the weights

all trajectories which include i1
a1−→ j1 where we exclude W

(a1)
i1j1

from the computation of the weight.

Then, we can push the outer W(a1)
i1j1

into the equation to obtain the sum of the weights of all trajectories

containing i1
a1−→ j1.

Inductive Step: Suppose that (10) holds for any m-tuple. Let ~τ = 〈i1 a1−→ j1, . . . , im+1
am+1−−−→ jm+1〉.

Without loss of generality, fix i1
a1−→ j1 and let ~τ ′ be ~τ without i1

a1−→ j1.

1

Z

m+1∑

n=1

∂nZ

∂W
(a1)
i1j1

. . . ∂W
(an)
injn

n∏

k=1

W
(ak)
ikjk

(b)
= W

(a1)
i1j1

∂

∂W
(a1)
i1j1

[
1

Z

m+1∑

n=2

∂(n−1)Z

∂W
(a2)
i2j2

. . . ∂W
(an)
injn

n∏

k=2

W
(ak)
ikjk

]

︸ ︷︷ ︸
Inductive hypothesis

(c)
= W

(a1)
i1j1

∂

∂W
(a1)
i1j1

︷ ︸︸ ︷
 1

Z

∑

τi `∈T~τ ′
w(τi `)




(d)
=

1

Z

∂

∂W
(a1)
i1j1


 ∑

τi `∈T~τ ′
w(τi `)


W

(a1)
i1j1

(e)
= p(~τ)

Step (b) pushes 1
Z and

∏n
k=2W

(ak)
ikjk

as constants into the derivative and step (c) uses our induction
hypothesis on ~τ ′. Then, step (d) takes 1

Z out of the derivative as we pushed it in as a constant. Finally,
step (e) follows by the same reasoning as step (a) in the base case above. �

A.3
Theorem 4. Algorithm E2 computes the second-order expectation of additively decomposable functions
r: T 7→ RR and t: T 7→ RT in:

O(N3+N2(RT+AR′T ′)) time

O(N2+RT+N(R+ T )) space

where R=min(NR′, R) and T=min(NT ′, T ).
Proof. We provide a proof of correctness (the time and space bounds are discussed in the main paper).
Zmigrod et al. (2021) show that we can find second-order expectations over by finding the expectations
over pairs of transitions. That is,

Eτi `
[
r(τi `)t(τi `)

>
]
=

N∑

i,j,k,l=0

∑

a,b∈A
p
(
i
a−→ j, k

b−→ l
)
r
(a)
ij t

(b)
kl

>
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We can use Lemma 2 for the m = 2 case, to find that the expectation is given by

Eτi `
[
r(τi `)t(τi `)

>
]

=
1

Z

[ N∑

i,j=0

∑

a∈A

∂Z

∂W
(a)
ij

W
(a)
ij r

(a)
ij t

(a)
ij

>
+

N∑

i,j,k,l=0

∑

a,b∈A

∂2Z

∂W
(a)
ij ∂W

(b)
kl

W
(a)
ij W

(b)
kl r

(a)
ij t

(b)
kl

>
]

The first summand can be rewritten as

N∑

i,j=0

∑

a∈A

∂Z

∂W
(a)
ij

W
(a)
ij r

(a)
ij t

(a)
ij

>
=

N∑

i,j=0

∑

a∈A
si

.
W

(a)
ij ejW

(a)
ij r

(a)
ij t

(a)
ij

>

The second summand can be rewritten as

N∑

i,j,k,l=0

∑

a,b∈A

∂2Z

∂W
(a)
ij ∂W

(b)
kl

W
(a)
ij W
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Abstract

The growth of online consumer health ques-
tions has led to the necessity for reliable and
accurate question answering systems. A re-
cent study showed that manual summariza-
tion of consumer health questions brings sig-
nificant improvement in retrieving relevant an-
swers. However, the automatic summarization
of long questions is a challenging task due to
the lack of training data and the complexity of
the related subtasks, such as the question fo-
cus and type recognition. In this paper, we in-
troduce a reinforcement learning-based frame-
work for abstractive question summarization.
We propose two novel rewards obtained from
the downstream tasks of (i) question-type iden-
tification and (ii) question-focus recognition
to regularize the question generation model.
These rewards ensure the generation of se-
mantically valid questions and encourage the
inclusion of key medical entities/foci in the
question summary. We evaluated our pro-
posed method on two benchmark datasets and
achieved higher performance over state-of-the-
art models. The manual evaluation of the
summaries reveals that the generated ques-
tions are more diverse and have fewer factual
inconsistencies than the baseline summaries.
The source code is available here: https:

//github.com/shwetanlp/CHQ-Summ.

1 Introduction

The growing trend in online web forums is to at-
tract more and more consumers to use the Internet
for their health information needs. An instinctive
way for consumers to query for their health-related
content is in the form of natural language questions.
These questions are often excessively descriptive
and contain more than required peripheral infor-
mation. However, most of the textual content is
not particularly relevant in answering the question

∗∗These authors contributed equally to this work.

(Kilicoglu et al., 2013). A recent study showed that
manual summarization of consumer health ques-
tions (CHQ) has significant improvement (58%)
in retrieving relevant answers (Ben Abacha and
Demner-Fushman, 2019). However, three major
limitations impede higher success in obtaining se-
mantically and factually correct summaries: (1)
the complexity of identifying the correct question
type/intent, (2) the difficulty of identifying salient
medical entities and focus/topic of the question,
and (3) the lack of large-scale CHQ summariza-
tion datasets. To address these limitations, this
work presents a new reinforcement learning based
framework for abstractive question summarization.
We also propose two novel question-aware seman-
tic reward functions: Question-type Identification
Reward (QTR) and Question-focus Recognition
Reward (QFR). The QTR measures correctly iden-
tified question-type(s) of the summarized question.
Similarly, QFR measures correctly recognized key
medical concept(s) or focus/foci of the summary.

We use the reinforce-based policy gradient ap-
proach, which maximizes the non-differentiable
QTR and QFR rewards by learning the optimal pol-
icy defined by the Transformer model parameters.
Our experiments show that these two rewards can
significantly improve the question summarization
quality, separately or jointly, achieving the new
state-of-the-art performance on the MEQSUM and
MATINF benchmark datasets. The main contribu-
tions of this paper are as follows:

• We propose a novel approach towards
question summarization by introducing two
question-aware semantic rewards (i) Question-
type Identification Reward and (ii) Question-
focus Recognition Reward, to enforce the gen-
eration of semantically valid and factually cor-
rect question summaries.

• The proposed models achieve the state-of-
the-art performance on two question summa-
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rization datasets over competitive pre-trained
Transformer models.

• A manual evaluation of the summarized ques-
tions reveals that they achieve higher abstrac-
tion levels and are more semantically and fac-
tually similar to human-generated summaries.

2 Related Work

In recent years, reinforcement learning (RL) based
models have been explored for the abstractive sum-
marization task. Paulus et al. (2017) introduced RL
in neural summarization models by optimizing the
ROUGE score as a reward that led to more readable
and concise summaries. Subsequently, several stud-
ies (Chen and Bansal, 2018; Pasunuru and Bansal,
2018; Zhang and Bansal, 2019; Gupta et al., 2020;
Zhang et al., 2019b) have proposed methods to op-
timize the model losses via RL that enables the
model to generate the sentences with the higher
ROUGE score. While these methods are primarily
supervised, Laban et al. (2020) proposed an unsu-
pervised method that accounts for fluency, brevity,
and coverage in generated summaries using multi-
ple RL-based rewards. The majority of these works
are focused on document summarization with con-
ventional non-semantics rewards (ROUGE, BLEU).
In contrast, we focus on formulating the semantic
rewards that bring a high-level semantic regular-
ization. In particular, we investigate the question’s
main characteristics, i.e., question focus and type,
to define the rewards.

Recently, Ben Abacha and Demner-Fushman
(2019) defined the CHQ summarization task and
introduced a new benchmark (MEQSUM) and a
pointer-generator model. Ben Abacha et al. (2021)
organized the MEDIQA-21 shared task challenge
on CHQ, multi-document answers, and radiology
report summarization. Most of the participating
team (Yadav et al., 2021b; He et al., 2021; Sänger
et al., 2021) utilized transfer learning, knowledge-
based, and ensemble methods to solve the question
summarization task. Yadav et al. (2021a) proposed
question-aware transformer models for question
summarization. Xu et al. (2020) automatically cre-
ated a Chinese dataset (MATINF) for medical ques-
tion answering, summarization, and classification
tasks focusing on maternity and infant categories.
Some of the other prominent works in the abstrac-
tive summarization of long and short documents
include Cohan et al. (2018); Zhang et al. (2019a);
MacAvaney et al. (2019); Sotudeh et al. (2020).

3 Proposed Method

Given a question, the goal of the task is to generate
a summarized question that contains the salient
information of the original question. We pro-
pose a RL-based question summarizer model over
the Transformer (Vaswani et al., 2017) encoder-
decoder architecture. We describe below the pro-
posed reward functions.

3.1 Question-aware Semantic Rewards

(a) Question-type Identification Reward: In-
dependent of the pre-training task, most language
models use maximum likelihood estimation (MLE)-
based training for fine-tuning the downstream tasks.
MLE has two drawbacks: (1) “exposure bias”
(Ranzato et al., 2016) when the model expects
gold-standard data at each step during training but
does not have such supervision when testing, and
(2) “representational collapse” (Aghajanyan et al.,
2021), is the degradation of generalizable represen-
tations of pre-trained models during the fine-tuning
stage. To deal with the exposure bias, previous
works used the ROUGE and BLEU rewards to train
the generation models (Paulus et al., 2017; Ranzato
et al., 2016). These evaluation metrics are based on
n-grams matching and might fail to capture the se-
mantics of the generated questions. We, therefore,
propose a new question-type identification reward
to capture the underlying question semantics.

We fine-tuned a BERTBASE network as a
question-type identification model to provide
question-type labels. Specifically, we use the
[CLS] token representation (h[CLS]) from the fi-
nal transformer layer of BERTBASE and add the
feed-forward layers on top of the h[CLS] to com-
pute the final logits

l = W (tanh(Uh[CLS] + a)) + b

Finally, the question types are predicted using the
sigmoid activation function on each output neu-
ron of logits l. The fine-tuned network is used
to compute the reward rQTR(Qp, Q∗) as F-Score
of question-types between the generated question
summary Qp and the gold question summary Q∗.

(b) Question-focus Recognition Reward: A
good question summary should contain the key
information of the original question to avoid fac-
tual inconsistency. In the literature, ROUGE-based
rewards have been explored to maximize the cov-
erage of the generated summary, but it does not
guarantee to preserve the key information in the

250



question summary. We introduce a novel reward
function called question-focus recognition reward,
which captures the degree to which the key in-
formation from the original question is present in
the generated summary question. Similar to QTR,
we fine-tuned the BERTBASE network for question-
focus recognition to predict the focus/foci of the
question. Specifically, given the representation ma-
trix (H ∈ Rn×d) of n tokens and d dimensional
hidden state representation obtained from the final
transformer layer of BERTBASE, we performed the
token level prediction using a linear layer of the
feed-forward network. For each token representa-
tion (hi), we compute the logits li ∈ R|C|, where
(|C|) is the number of classes and predict the ques-
tion focus as follows: fi = softmax(Whi + b).
The fine-tuned network is used to compute the re-
ward rQFR(Qp, Q∗) as F-Score of question-focus
between the generated question summary Qp and
the gold question summary Q∗.

3.2 Policy Gradient REINFORCE
We cast question summarization as an RL problem,
where the “agent” (ProphetNet decoder) interacts
with the “environment” (Question-type or focus pre-
diction networks) to take “actions” (next word pre-
diction) based on the learned “policy” pθ defined
by ProphetNet parameters (θ) and observe “reward”
(QTR and QFR). We utilized ProphetNet (Qi et al.,
2020) as the base model because it is specifically
designed for sequence-to-sequence training and it
has shown near state-of-the-art results on natural
language generation task. We use the REINFORCE
algorithm (Williams, 1992) to learn the optimal
policy which maximizes the expected reward. To-
ward this, we minimize the loss function LRL =
−EQs∼pθ [r(Qs, Q∗)], where Qs is the question
formed by sampling the words qst from the model’s
output distribution, i.e. p(qst |qs1, qs2, . . . , qst−1,S).
The derivative of LRL is approximated using a sin-
gle sample along with baseline estimator b:

5θLRL = −(r(Qs, Q∗)− b)5θ logpθ(Q
s) (1)

The Self-critical Sequence Training (SCST) strat-
egy (Rennie et al., 2017) is used to estimate the
baseline reward by computing the reward with the
question generated by the current model using the
greedy decoding technique, i.e., b = r(Qg, Q∗).
We compute the final reward as a weighted sum of
QTR and QFR as follows:

r(Qp, Q∗) = γQTR×rQTR(Qp, Q∗)+γQFR×rQFR(Qp, Q∗)
(2)

We train the network with the mixed loss as dis-
cussed in Paulus et al. (2017). The overall network
loss is as follows:

L = αLRL + (1− α)LML (3)

where, α is the scaling factor and LML is the
negative log-likelihood loss and equivalent to
−∑t=m

t=1 logp(q
∗
t |q∗1, q∗2, . . . , q∗t−1,S), where S is

the source question.

4 Experimental Results & Analysis

4.1 Datasets
We utilized two CHQ abstractive summarization
datasets: MEQSUM and MATINF1 to evaluate the
proposed framework. The MEQSUM2 training set
consists of 5, 155 CHQ-summary pairs and the test
set includes 500 pairs. We chose 100 samples from
the training set as the validation dataset.

For fine-tuning the question-type identification
and question-focus recognition models, we manu-
ally labeled the MEQSUM dataset with the ques-
tion type: (‘Dosage’, ‘Drugs’, ‘Diagnosis’, ‘Treat-
ments’, ‘Duration’, ‘Testing’, ‘Symptom’, ‘Usage’,

‘Information’, ‘Causes’) and foci. We use the la-
beled data to train the question-type identifica-
tion and question-focus recognition networks. For
question-focus recognition, we follow the BIO no-
tation and classify each token for the beginning of
focus token (B), intermediate of focus token (I),
and other token (O) classes. Since, the gold anno-
tations for question-types and question-focus were
not available for the MATINF dataset, we used
the pre-trained network trained on the MEQSUM

dataset to obtain the silver-standard question-types
and question-focus information for MATINF3.
The MATINF dataset has 5, 000 CHQ-summary
pairs in the training set and 500 in the test set.

4.2 Experimental Setups
We use the pre-trained uncased version4 of Prophet-
Net as the base encoder-decoder model. We use a
beam search algorithm with beam size 4 to decode
the summary sentence. We train all summarization
models on the respective training dataset for 20
epochs. We set the maximum question and sum-
mary sentence length to 120 and 20, respectively.

1Since the dataset was in Chinese, we translated it to En-
glish using Google Translate.

2https://github.com/abachaa/MeQSum
3https://github.com/WHUIR/MATINF
4https://huggingface.co/microsoft/

prophetnet-large-uncased
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Models MEQSUM MATINF∗

R-1 R-2 R-L R-1 R-2 R-L

B
as

el
in

es

Seq2Seq (Sutskever et al., 2014) 25.28 14.39 24.64 17.77 5.10 21.48
Seq2Seq + Attention (Bahdanau et al., 2015) 28.11 17.24 27.82 19.45 6.45 23.77
Pointer Generator (PG) (See et al., 2017) 32.41 19.37 36.53 23.31 7.01 26.61
SOTA (Ben Abacha and Demner-Fushman, 2019) 44.16 27.64 42.78 − − −
SOTA∗ (Ben Abacha and Demner-Fushman, 2019) 40.00 24.13 38.56 24.58 7.30 28.08
Transformer (Vaswani et al., 2017) 25.84 13.66 29.12 22.25 5.89 26.06
BertSumm (Liu and Lapata, 2019) 26.24 16.20 30.59 31.16 11.94 34.70
T5BASE (Raffel et al., 2019) 38.92 21.29 40.56 39.66 21.24 41.52
PEGASUS (Zhang et al., 2019a) 39.06 20.18 42.05 40.05 23.67 43.30
BARTLARGE (Lewis et al., 2019) 42.30 24.83 43.74 42.52 23.13 43.98
MINILM (Wang et al., 2020) 43.13 26.03 46.39 35.60 18.08 38.70
ProphetNet (Qi et al., 2020) 43.87 25.99 46.52 46.94 27.77 48.43
ProphetNet + ROUGE-L 44.33 26.32 46.90 48.17 28.13 48.66

Jo
in

t
L

ea
rn

in
g ProphetNet + Q-type 44.40 26.63 47.05 47.19 28.02 48.70

ProphetNet + Q-focus 44.62 26.61 47.28 47.14 28.06 48.64
ProphetNet + Q-type + Q-focus 44.67 26.72 47.34 47.18 28.04 48.65

Pr
op

os
ed

A
pp

ro
ac

h ProphetNet + QTR 44.60 26.69 47.38 47.51 28.40 48.94
ProphetNet + QFR 45.36 27.33 47.96 47.53 28.29 49.11
ProphetNet + QTR + QFR 45.52 27.54 48.19 47.73 28.54 49.33

Table 1: Comparison of the proposed models and various baselines. SOTA∗ denotes the method trained on the
same data that we used. MATINF∗ denotes a translated English subset of the original Chinese MATINF dataset.

Summary Label MEQSUM MATINF
M1 M2 M3 M4 M1 M2 M3 M4

Semantics Preserved (PC/FC) 14/19.5 9.5/29 18/28 19.5/29 6/32.5 9.5/33 13.5/34 14/35
Factual Consistent (PC/FC) 11/25 7.5/35 9.5/36.5 10/38 5.5/35 7/36 7.5/41 9/42.5
Incorrect 23 11 12.5 11 10.5 11.5 11.5 10
Acceptable 18.5 10 12.5 12.5 15 10.5 8.5 9.5
Perfect 8.5 29 25 26.5 24.5 28 30 30.5

Table 2: Results of the manual evaluation of the summaries generated by ProphetNet (M1), M1+QTR (M2),
M1+QFR (M3), and M1+QTR+QFR (M4). For Semantic Preserved and Factual Consistent, we report the partially
correct (PC) and fully correct (FC) numbers.

We first fine-train the proposed network by min-
imizing only the maximum likelihood (ML) loss.
Next, we initialize our proposed model with the
fine-trained ML weights and train the network with
the mixed-objective learning function (Eq. 3). We
performed experiments on the validation dataset
by varying the α, γQTR and γQFR in the range
of (0, 1). The scaling factor (α) value 0.95, was
found to be optimal (in terms of Rouge-L) for
both the datasets. The values of γQTR = 0.4 and
γQFR = 0.6 were found to be optimal on the vali-
dation sets of both datasets. To update the model
parameters, we used Adam (Kingma and Ba, 2015)
optimization algorithm with the learning rate of
7e − 5 for ML training and 3e − 7 for RL train-
ing. We obtained the optimal hyper-parameters
values based on the performance of the model on
the validation sets of MEQSUM and MATINF in
the respective experiments. We used a cosine an-
nealing learning rate (Loshchilov and Hutter, 2017)
decay schedule, where the learning rate decreases
linearly from the initial learning set in the optimizer

to 0. To avoid the gradient explosion issue, the gra-
dient norm was clipped within 1. For all the base-
line experiments, we followed the official source
code of the approach and trained the model on our
datasets. We implemented the approach of Ben
Abacha and Demner-Fushman (2019) to evaluate
the performance on both datasets. All experiments
were performed on a single NVIDIA Tesla V100
GPU having GPU memory of 32GB. The average
runtimes (each epoch) for the proposed approaches
M2, M3 and M4 were 2.7, 2.8 and 4.5 hours, re-
spectively. All the proposed models have 391.32
million parameters.

4.3 Results

We present the results of the proposed question-
aware semantic rewards on the MEQSUM and
MATINF datasets in Table-1. We evaluated the
generated summaries using the ROUGE (Lin,
2004) metric5. The proposed model achieves new
state-of-the-art performance on both datasets by

5https://pypi.org/project/py-rouge/
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Original Question-I: who makes bromocriptine i am wonder-
ing what company makes the drug bromocriptine... i have on
my pituitary gland ... i have to buy them...

Reference: who manufactures bromocriptine?

Generated Summary

ProphetNet: what is bromocriptine?
Proposed Approach: what company makes bromocriptine
and how much does it cost?

Original Question-II: Have been on methadone for four
years. I am interested in the rapid withdrawal under anes-
thesia, but do not have a clue where I can find a doctor or
hospital who does this. I also would like to know the ap-
proximate cost and if or what insurance companies pay for
this.
Reference: how can I find a physician (s) or hospital (s) who
specialize in rapid methadone withdrawal under anesthesia,
and the cost and insurance benefits for the procedure?

Generated Summary

ProphetNet: what is the treatment for rapid withdrawal of
methadone under anesthesia?
Proposed Approach: where can i find physician (s) who
specialize in rapid withdrawal of methadone?

Table 3: Correct/Incorrect summaries generated on
MEQSUM. Example-I shows a perfect summary over
ProphetNet. The second example shows an incorrect
summary with a partially extracted focus (‘under anes-
thesia’) and two missing types (‘cost’, ‘procedures’).

outperforming competitive baseline Transformer
models. We also compare the proposed model with
the joint learning baselines, where we regularize
the question summarizer with the additional
loss obtained from the question-type (Q-type)
identification and question-focus (Q-focus)
recognition model. To make a fair comparison
with the proposed approach, we train these joint
learning-based models with the same weighted
strategy shown in Eq. 3. The results reported in
Table 1 show the improvement over the ProphetNet
on both datasets.

In comparison to the benchmark model on MEQ-
SUM, our proposed model obtained an improve-
ment of 9.63%. A similar improvement is also
observed on the MATINF dataset. Furthermore,
the results show that individual QTR and QFR re-
wards also improve over ProphetNet and ROUGE-
based rewards. These results support two major
claims: (1) question-type reward assists the model
to capture the underlying question semantics, and
(2) awareness of salient entities learned from the
question-focus reward enables the generation of
fewer incorrect summaries that are unrelated to
the question topic. The proposed rewards are
model-independent and can be plugged into any

pre-trained Seq2Seq model. On the downstream
tasks of question-type identification and question-
focus recognition, the pre-trained BERT model
achieves the F-Score of 97.10% and 77.24%, re-
spectively, on 10% of the manually labeled MEQ-
SUM pairs.

Manual Evaluation: Two annotators, experts in
medical informatics, performed an analysis of 50
summaries randomly selected from each test set.
In MATINF, nine out of the 50 samples contained
translation errors. We thus randomly replaced them.
In both datasets, we annotated each summary with
two labels ‘Semantics Preserved’ and ‘Factual Con-
sistent’ to measure (1) whether the semantics (i.e.,
question intent) of the source question was pre-
served in the generated summary and (2) whether
the key entities/foci were present in the generated
summary. In the manual evaluation of the quality
of the generated summaries, we categorize each
summary into one of the following categories: ‘In-
correct’, ‘Acceptable’, and ‘Perfect’. We report
the human evaluation results (average of two an-
notators) on both datasets in Table-2. The results
show that our proposed rewards enhance the model
by capturing the underlying semantics and facts,
which led to higher proportions of perfect and ac-
ceptable summaries. The error analysis identified
two major causes of errors: (1) Wrong question
types (e.g. the original question contained multiple
question types or has insufficient type-related train-
ing instances) and (2) Wrong/partial focus (e.g. the
model fails to capture the key medical entities).

5 Conclusion

In this work, we present an RL-based framework
by introducing novel question-aware semantic re-
wards to enhance the semantics and factual con-
sistency of the summarized questions. The auto-
matic and human evaluations demonstrated the ef-
ficiency of these rewards when integrated with a
strong encoder-decoder based ProphetNet trans-
former model. The proposed methods achieve
state-of-the-art results on two-question summariza-
tion benchmarks. In the future, we will explore
other types of semantic rewards and efficient multi-
rewards optimization algorithms for RL.
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Abstract

Relation linking is a crucial component of
Knowledge Base Question Answering sys-
tems. Existing systems use a wide variety of
heuristics, or ensembles of multiple systems,
heavily relying on the surface question text.
However, the explicit semantic parse of the
question is a rich source of relation informa-
tion that is not taken advantage of. We pro-
pose a simple transformer-based neural model
for relation linking that leverages the AMR se-
mantic parse of a sentence. Our system sig-
nificantly outperforms the state-of-the-art on 4
popular benchmark datasets. These are based
on either DBpedia or Wikidata, demonstrating
that our approach is effective across KGs.

1 Introduction

Knowledge base question answering (KBQA) has
received significant interest due to its real-world
applications. KBQA is a task where a natural
language question is transformed into a precise
structured query, using Entity Linking and Rela-
tion Linking as necessary sub-tasks to retrieve an
answer. For example, the question “Who founded
the city where Pat Vincent died?” requires map-
ping (a) founded and died to relations dbo:founder
and dbo:deathPlace, and (b) entity Pat Vincent to
dbr:Pat Vincent, given DBpedia as the knowledge
base.

Semantic parses such as Abstract Meaning Rep-
resentation (AMR) have recently shown to be use-
ful for the KBQA task (Lim et al., 2020). However,
critical tasks for KBQA such as Relation Linking
continue to be addressed primarily using the ques-
tion text (Mulang’ et al., 2020; Sakor et al., 2019b;
Lin et al., 2020), ignoring the AMR parses of the
question which can introduce additional semantics.
In the literature, some systems such as SLING (Mi-
hindukulasooriya et al., 2020) have used AMR for

relation linking. However, similar to other rule-
based approaches (Sakor et al., 2019b), SLING de-
pends heavily on the specific target KG (DBpedia)
and it is based on a complex ensemble of different
approaches, making portability to new knowledge
bases a non-trivial task.

In this work, we propose SemReL; a single
Semantics-aware neural model for Relation linking.
SemReL takes as input the question text annotated
with its AMR parse and entity information and
outputs a ranked list of relations. The key contri-
butions of this work are as follows: (a) a simple,
knowledge graph agnostic neural model for rela-
tion linking over knowledge bases, (b) leveraging
AMR parses for better question representation, and
(c) an experimental evaluation using four datasets
based on DBpedia and Wikidata where we show
that SemReL consistently outperforms existing sys-
tems on all datasets.

2 Semantics-aware Relation Linking

We propose a relation linking system that exploits
the semantic structure of a sentence to retrieve rele-
vant relations from the underlying knowledge base.
We hypothesise that semantic representations ab-
stract away from lexical forms, providing struc-
tural clues that are more consistent across train-
ing examples than surface text. To this end, we
use the AMR graph of the sentence as its seman-
tic structure. AMRs are directed acyclic graphs
that capture who is doing what to whom in a sen-
tence. The nodes in the graph are concepts and the
edges are labelled with relations between those con-
cepts. Figure 1 shows example AMR graphs for the
question “Who founded the city where Pat Vincent
died?”. Note that the AMR graph for the question
represents the target of the query as a special node
labelled ‘amr-unknown’.

The inputs to our system are: the question text,
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Who founded the 
city where Pat 
Vincent died?

ARG1

Figure 1: A question AMR: The amr-unknown repre-
sents the query target and the name node marks entities.

its AMR graph and the entities in the question
marked and linked1. Relation linking is performed
in two steps. First, our system identifies the num-
ber of expected relations and their location both
in the sentence and in the AMR graph. Next, for
each identified slot, the most likely relation is pre-
dicted using a transformer based neural model, that
ranks them using their English labels from the KG.
The AMR structure of the sentence is crucial in
both steps. Figure 2 shows a schematic diagram of
overall system. In the following, we first explain
the process of finding potential relation slots using
AMR graph. Next we describe in detail our relation
linking module.

2.1 Relation Slot Prediction

AMR explicitly marks named entity nodes (see
Figure 1). These nodes are linked to knowledge
base entities using BLINK entity linker. The entity
nodes in graph are also used to predict the number
and locations of relation slots. A slot is defined
as a pair of nodes in the AMR graph, where the
corresponding entities have a relation in knowledge
base in the context of the question. For instance,
in Figure 3, nodes city and person are involved in
a KB relation death place relevant for this ques-
tion. Slot prediction is done using a determinis-
tic rule-based transformation described in (Kapa-
nipathi et al., 2021). In particular, we use their

1We use the stack transformer parser of Astudillo et al.
(2020); Lee et al. (2020) for generating AMR graphs and the
BLINK system of Wu et al. (2019) for entity linking.
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Relation  Linking

Knowledge 
BaseSlot: Node Pair

Candidate KB 
Relations

e1, r1, ex

e1, r7, ex

e1, r4, ex

e1

r1, r7, r4

relevant 
triples

Figure 2: Overall system flow: grey blocks are various
systems and white blocks show the inputs and outputs.

path-based approach where all the paths between
the amr-unknown node and the linked entity nodes
are retrieved. Then all node pairs along the path
that are joined by a predicate node are considered
a relation slot. We refer the reader to the original
publication for more details of the method.

2.2 Neural Relation Linking Model
SemReL employs a Siamese network, where the
input question and target relations are embedded
in the same vector space. The most likely relation
is the one whose representation is closest to that
of the input question. Figure 3 shows the overall
architecture of our model. We use a Transformer
model (Vaswani et al., 2017) as a shared encoder
for both the input questions and candidate rela-
tions. In particular, we use the pre-trained BERT
model (Devlin et al., 2018) to initialize the encoder
parameters. The output vector corresponding to the
starting [CLS] token is used as the vector represen-
tation of the input. This vector is passed through
a feed-forward linear layer that projects it to the
shared embedding space. Unlike the transformer
parameters, the weights of the linear projection
layer on top are not shared between the questions
and the relations.

Semantic information is given as part of the ques-
tion input to the encoder. As mentioned above, dur-
ing the preprocessing step, the pairs of nodes in
AMR graph are identified for relation linking. For
instance, in figure 3, the nodes ‘person’ and ‘city’
are marked in the input graph as the participants
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Figure 3: SemReL model architecture (left) and inputs to the model (right).

of a potential relation. The subgraph connecting
these nodes is traversed in a top-down manner to
form a linearized representation; in this case, it will
yield the linearized string ‘die :ARG1 person :lo-
cation city’. Note that the sense label of the node
‘die-01’ is dropped. Moreover, all reversed AMR
relations with -of suffix are normalized to their orig-
inal relation name and direction. In this example
:location-of is mapped to :location with direction
reversed. We prepend this linearized AMR path
string to the input question text along with a spe-
cial leading token [AMR]. The question text also
starts with a special leading token [TEXT]. The
word aligned to the root of the AMR subgraph is
marked as the predicate2, using special start and
end predicate tokens [SP] and [EP].

Figure 3 shows the complete input for the exam-
ple question that goes into the Question Encoder.
The same transformer model also serves as relation
encoder. Relation names are tokenized using BERT
tokenizer without any additional pre-processing.
We add special tokens [AMR], [TEXT], [SP] and
[EP] as well as the AMR relation labels into the
BERT vocabulary.

Training Objective: During training, for each
example, scores are computed for the gold relation
as well as a set of negative examples based on the
inner product of their vectors with that of the ques-
tion. For a relation ri with vector representation
ri and a question qn with vector representation qn,
the score would be s(ri, qn) = ri.qn. The training

2The AMR parser of Astudillo et al. (2020) provides node
to word alignments.

objective is to minimize cross-entropy loss between
the one-hot gold truth and the vector of predicted
scores:

L(rn, qn) = − log

(
exp(s(rn, qn))∑
i exp(s(ri, qn))

)

We take the top one thousand relations from
training data and use them as negative examples,
excluding the gold. We compute the vector repre-
sentation of all relations only once for each batch
during training. Since relation representations are
independent of the question representations, they
can be reused for all examples in the batch. How-
ever, due to parameter update, they need to be com-
puted anew for each batch.

Inference: During inference, we use s(r, q) for
scoring and ranking relations. Since the model
parameters stay fixed, we compute the relation rep-
resentations for all relations only once. If candidate
KB relations are available from Entity analysis, we
pick the highest-ranked relation from that set.

3 Evaluation

In this section, we detail our experimental setup and
evaluate our approach against the state-of-the-art
KBQA relation linking approaches. For fair com-
parisons, we replicate the same settings adopted
by the systems we compare with both in terms of
datasets and metrics.

3.1 Experimental Setup
Benchmarks: We perform experiments on four
datasets targeting two popular KBs, DBpedia and
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Wikidata. Each question in these datasets comes
with its corresponding SPARQL query, annotated
with gold relations. In particular, we used the fol-
lowing datasets:

• QALD-9 (Usbeck et al., 2017): a dataset
based on DBpedia with 150 test questions in
natural language.

• LC-QuAD 1.0 (Trivedi et al., 2017): another
dataset based on DBpedia with a total of 5,000
questions (4,000 train and 1,000 test) based
on templates.

• LC-QuAD 2.0 (Dubey et al., 2019): A large
dataset based on Wikidata with 6,046 test
questions and around 24k training questions.
Questions in this dataset have good variety
and complexity levels such as multi-fact ques-
tions, temporal questions and questions that
utilise qualifier information.

• SimpleQuestions (Diefenbach et al., 2017):
A version of the popular SimpleQuestions
dataset mapped to Wikidata. It comprises of
5,622 test questions, and around 19K training
questions. As the name implies, all questions
in this dataset are simple with queries encom-
passing a single triple in the KB.

Training: We train SemReL for DBpedia on the
train data of LC-QuAD 1.0 and QALD-9. In ad-
dition, we use a subset of 80k examples from the
distance supervisions data prepared by Mihinduku-
lasooriya et al. (2020). This dataset is generated
by retrieving Wikipedia sentences that contained
pairs of entities from Knowledge Base triples. For
our experiments, we filter our the sentences where
the AMR path between the entities is more than
two hops. For Wikidata experiments we train out
system on the LC-QuAD 2.0 train dataset. Encoder
parameters are initialized with the pretrained BERT
base model (Wolf et al., 2020).

Baselines: For the DBpedia-based benchmarks,
we compare SemReL with Falcon (Sakor et al.,
2019a) and SLING (Mihindukulasooriya et al.,
2020). As for Wikidata-based benchmarks, we
compare against Falcon 2.0 (Sakor et al., 2020) and
KB-Pearl (Lin et al., 2020).

3The KBPearl paper reports F1 of 0.41 due to a typo but
its authors confirmed the correct F1 to be 0.52.

Dataset Method P R F1

QALD-9
Falcon 0.23 0.23 0.23
SLING 0.39 0.50 0.44
SemReL 0.46 0.44 0.45

LC-QuAD 1.0
Falcon 0.42 0.44 0.43
SLING 0.41 0.55 0.47
SemReL 0.51 0.51 0.51

LC-QuAD 2.0
Falcon 2.0 0.44 0.37 0.40
SemReL 0.59 0.38 0.46

LC-QuAD 2.0 KB-Pearl∗ 0.57 0.48 0.523

(1942 set) SemReL 0.70 0.45 0.55

Simple Falcon 2.0 0.35 0.44 0.39
Questions SemReL 0.69 0.70 0.69

Table 1: SemReL compared to SoTA systems on the
DBpedia (above) and Wikidata (below) benchmarks.

Setup all one-hop multi-hop

SemReL 0.51 0.54 0.50

w/o AMR 0.49 0.53 0.47
w/o TEXT 0.38 0.37 0.39
w/o KB rels 0.46 0.48 0.45

Table 2: SemReL F1 for all, one-hop and multi-hop
questions with inputs ablated on LC-QuAD 1.0 testset.
‘KB rels’ refers to Knowledge Base relation candidates.

3.2 Results and Discussion

Table 1 compares SemReL with existing ap-
proaches. KB-Pearl used a subset of 1,942 test
questions in their LC-QuAD 2.0 evaluation. For
fair comparison, we also evaluate SemReL on the
same subset.

SemReL outperforms all baselines across all
benchmarks with respect to F1 score. Note that
the baseline systems, specially SLING, achieve
higher recall than precision. In contrast, SemReL
has either balanced precision and recall, or much
higher precision. This is in part due to missing
entity or slot predictions, indicating that improving
the preprocessing can further boost the system’s
performance. The results on SimpleQuestions are
also worth noting, since the corresponding training
set was not used in Wikidata model training. We
also performed a zero-shot cross-KB experiment
where we test our Wikidata model on a DBpedia
dataset, LC-QuAD 1.0. The model is tested as
is, and despite the relation names and granularity
differences, it achieves an F1 of 0.33.
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Ablation on Model Inputs: Table 2 shows the
results of ablation experiments on LC-QuAD 1.0
testset where each of the system inputs are removed
one at a time. As expected, the question text is the
most crucial input: when combined with either KB
candidates or AMR, it shows good performance.
When AMR is removed, overall score drops by
2 points; it mostly comes from multi-hop ques-
tions. This indicates that focusing on different
subgraphs of the input AMR improves retrieval
of multi-hop relations. A similar effect was ob-
served on QALD-9 and LC-QuAD 2.0 test sets
when AMR was removed, degrading performance
by 4.0 and 2.9 points respectively.

Impact on KBQA Performance: We integrated
SemReL into the Neuro-Symbolic Question An-
swering (NSQA) system of Kapanipathi et al.
(2021). NSQA is a modular system for KBQA
where each sub-task is handled by a different mod-
ule, allowing easy integration of new components.
We found that the impact of using AMR in relation
linking translates into nice performance gains in
overall KBQA results. When AMR is incorporated
in the relation linking module, the system perfor-
mance on LC-QuAD 1.0 test dataset improves by
2.4 achieving a new state-of-the-art F1 of 44.5. We
refer the reader to the NSQA paper (Kapanipathi
et al., 2021) for more details on the system and
experiments.

4 Related Work

Several relation linking systems have been pro-
posed recently (Mulang et al., 2017; Singh et al.,
2017; Dubey et al., 2018; Sakor et al., 2019a; Pan
et al., 2019; Lin et al., 2020). Most of these meth-
ods are rule-based and rely solely on the question
text and/or its dependency parse. Therefore, they
try to improve their question understanding by us-
ing standard NLP tools such as POS tagging, tok-
enization n-gram tiling and even lexical database
such as WordNet. FALCON 2.0 (Sakor et al., 2020)
is a joint entity and relation linking tool over Wiki-
data. it uses a search engine indexed with Wiki-
data, a pipeline of text processing including POS
tagging, tokenization, N-gram tiling/splitting and
a catalog of rules for entity and relation linking.
KBPearl (Lin et al., 2020) is another system that
performs joint entity and relation linking to Wiki-
data. It first create a semantic graph of text using
OpenIE and maps both entities and relations to a
given KB.

However, none of the above mentioned methods
for KBQA perform relation linking on two different
KBs using the same system whilst our work is the
first to perform relation linking over both DBpedia
and Wikidata using the same system. In addition,
some of these systems are KG-specific; e.g. Fal-
con (Sakor et al., 2019a) vs. Falcon 2.0 (Sakor
et al., 2020), where adapting it from one KG to
another requires non-trivial changes. Unlike these
systems, SemReL leverages well-established se-
mantic parsers such as AMR to achieve out-of-the-
box better question representation.

Similar to our approach, SLING (Mihindukula-
sooriya et al., 2020) is a relation linking framework
based on DBpedia which leverages semantic pars-
ing using AMR and distant supervision. It con-
sists of four distinct modules that capture different
signals such as linguistic cues, semantic represen-
tation, and information from the knowledge base.
Unlike SLING, SemReL is a KG-agnostic, single
end-to-end neural model that does not require vari-
ous ensemble components and yet achieves state-
of-the-art performance on DBPedia and Wikidata
datasets.

5 Conclusions and Future Work

In this paper, we present a simple transformer-
based neural model for relation linking that lever-
ages the semantic structure of a sentence. In con-
trast to existing systems such as SLING and Falcon,
which are either rule-based or ensembles of several
components, our neural architecture enables us to
adapt the system to multiple KGs (e.g. DBpedia
and Wikidata). It outperforms state-of-the-art sys-
tems on a variety of benchmarks.

Our ablation study shows that including the
AMR graph improves performance, even with the
relatively simple encoding scheme (plain text). In
future, we will explore modeling the graph struc-
ture explicitly. This model also relies on a determin-
istic slot-finding algorithm based on AMR. While
this identifies the correct relation slots most of the
time, it is rule-based, and not always correct. In
future work, we will explore learning algorithms to
identify the slots from the AMR graph.

Finally, AMR parsers can be trained jointly with
the relation linking objective. Currently, these
parsers are sensitive to small changes in the input.
Joint training can make them robust against text
variations and more sensitive to the errors affecting
slot identification and relation prediction.
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Abstract

Early fusion models with cross-attention
have shown better-than-human performance
on some question answer benchmarks, while
it is a poor fit for retrieval since it prevents
pre-computation of the answer representations.
We present a supervised data mining method
using an accurate early fusion model to im-
prove the training of an efficient late fusion re-
trieval model. We first train an accurate clas-
sification model with cross-attention between
questions and answers. The cross-attention
model is then used to annotate additional pas-
sages in order to generate weighted training ex-
amples for a neural retrieval model. The result-
ing retrieval model with additional data signif-
icantly outperforms retrieval models directly
trained with gold annotations on Precision at
N (P@N) and Mean Reciprocal Rank (MRR).

1 Introduction

Open domain question answering (QA) involves
finding answers to questions from an open cor-
pus (Surdeanu et al., 2008; Yang et al., 2015; Chen
et al., 2017; Ahmad et al., 2019). The task has
led to a growing interest in scalable end-to-end
retrieval systems for question answering.

When QA is formulated as a reading comprehen-
sion task, cross-attention models like BERT (De-
vlin et al., 2019) have achieved better-than-human
performance on benchmarks such as the Stanford
Question Answering Dataset (SQuAD) (Rajpurkar
et al., 2016). Cross-attention models are especially
well suited for problems involving comparisons be-
tween paired textual inputs, as they provide early
fusion of fine-grained information within the pair.
This encourages careful comparison and integra-
tion of details across and within the two texts.

However, early fusion across questions and an-
swers is a poor fit for retrieval, since it prevents pre-
computation of the answer representations. Rather,

neural retrieval models independently compute em-
beddings for questions and answers, typically us-
ing dual encoders for fast scalable search (Hender-
son et al., 2017; Gillick et al., 2018; Yang et al.,
2019b; Karpukhin et al., 2020). Using dual en-
coders results in late fusion within a shared embed-
ding space.

For machine reading, early fusion using cross-
attention introduces an inductive bias to compare
fine grained text spans within questions and an-
swers. This inductive bias is missing from the sin-
gle dot-product scoring operation of dual encoder
retrieval models. Thus, late fusion is expected to
require more training data to learn the necessary
representations for fine grained comparisons.

To support learning improved representations
for retrieval, we explore a supervised data augmen-
tation approach leveraging a complex classifica-
tion model with cross-attention between question-
answer pairs. Given gold question passage pairs,
we first train a cross-attention classification model
as the supervisor. Then any collection of questions
can be used to mine potential question passage
pairs under the supervision of the cross-attention
model. The retrieval model training benefits from
additional training pairs annotated with the graded
predictions from the cross-attention model aug-
menting the existing gold data. Experiments on
MultiReQA-SQuAD and MultiReQA-NQ estab-
lish significant improvements on Precision at N
(P@N) and Mean Reciprocal Rank (MRR).

The supervised mining approach is closely con-
nected to the recently studied hard negative min-
ing for neural retrieval models (Xiong et al., 2020;
Lu et al., 2020). The key differences is that the
proposed approach finds the positive training ex-
amples, while the negative mining approaches find
the negative examples for training. The two ap-
proaches are complementary and can be combined.
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2 Neural Passage Retrieval for Open
Domain Question Answering

Open domain question answering systems usually
follow a two-step approach: first retrieve ques-
tion relevant passages, and then scan the returned
text to identify the answer span using a read-
ing comprehension model (Jurafsky and Martin,
2018; Kratzwald and Feuerriegel, 2018; Yang et al.,
2019a). Prior work has focused on the answer span
annotation task and has even achieved super hu-
man performance on some datasets. However, the
evaluations implicitly assume the trivial availabil-
ity of passages for each question that are likely to
contain the correct answer. While the retrieval task
can be approached using traditional keyword based
retrieval methods such as BM25, there is a growing
interest in developing more sophisticated neural re-
trieval methods (Lee et al., 2019; Guu et al., 2020;
Karpukhin et al., 2020).

3 Retrieval Question-Answering (ReQA)

Ahmad et al. (2019) introduced Retrieval Question-
Answering (ReQA), a task that has been rapidly
adopted by the community (Guo et al., 2020; Chang
et al., 2020; Ma et al., 2020; Zhao and Lee, 2020;
Roy et al., 2020). Given a question, the task is to
retrieve the answer sentence from a corpus of candi-
dates. ReQA provides direct evaluation of retrieval,
independent of span annotation. Compare to Open
Domain QA, ReQA focuses on evaluating the re-
trieval component and, by construction, avoids the
need for span annotation.

We explore the proposed approach on
MultiReQA-NQ and MultiReQA-SQuAD (Guo
et al., 2020).1 MultiReQA (Guo et al., 2020)
established standardized training / dev / test splits.
Statistics for each tasks are listed in Table 1.

Dataset Training Pairs Test
Questions Candidates

NQ 106,521 4,131 22,118
SQuAD 87,133 10,485 10,642

Table 1: Statistics of MutiReQA NQ and SQuAD tasks:
# of training pairs, # of questions, # of candidates.

4 Methodology

In this section we describe the proposed approach
using a neural retrieval model augmented with su-

1https://github.com/
google-research-datasets/MultiReQA

Answer Candidate Corpus Model Training

Nerual
Retrieval
Model

Ques 1, Ans 1
Ques 2, Ans 2

…
Ques n, Ans n

Ques 1, Ans 1, S1
Ques 2, Ans 2, S2

…
Ques n, Ans n, Sn

Cross-attention Teacher Model

Pretrained 
Retrieval 
Module

Question Text

Figure 1: Use of a cross-attention model for the su-
pervised mining of additional QA pairs. Our accurate
cross-attention model supervises the mining process by
identifying new previously unannotated positive pairs.
Mined QA pairs augment the original training data for
the dual encoder based neural passage retrieval model.

pervised data mining. Figure 2 illustrates our ap-
proach using a cross-attention classifier to super-
vise the data augmentation process for training a
retrieval model. After training the cross-attention
model, we retrieve additional potential answers
to questions using an off-the-shelf retrieval sys-
tem2. The predicted scores from our classifier with
cross-attention are then used to weight and filter the
retrieved candidates with positive examples serv-
ing as additional training data for the dual encoder
based retrieval model.

4.1 BERT Classification Model

Cross-attention models like BERT are often used
for re-ranking after retrieval and can significantly
improve performance as they allow for fine-grained
interactions between paired inputs (Nogueira et al.,
2019; Han et al., 2020). Here we formalize a binary
classification task for predicting question answer
relatedness. We use the question-answer pairs from
the training set as our positive examples. Negatives
are sampled for each question using the following
strategies with a 1:1:1 ratio: (1) A sentence from
the top 10 nearest neighbors returned by a term
based BM25 (Robertson and Zaragoza, 2009) over
a sentence pool containing all supporting docu-
ments in a corpus. (2) A sentence from the top
10 nearest neighbors using the Universal Sentence
Encoder - QA (USE-QA) (Yang et al., 2019b). (3)
A sentence randomly sampled from its supporting
documents, excluding the question’s gold answer.
The sampled non-answer sentences are paired with
their questions as negative examples. A BERT
model is fine-tuned following the default setup
from the Devlin et al. (2019).
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Figure 2: The BERT dual encoder architecture. The
answer and context are concatenated and fed into the
answer encoder. Figure from (Guo et al., 2020).

4.2 Dual-Encoder Retrieval Model

We follow Guo et al. (2020) and employ a BERT
based dual-encoder model for retrieval. The model
architecture is illustrated in figure ??. The dual-
encoder model critically differs from the cross-
attention model in that there is no early interac-
tions (cross-attention) between the question and
answer. The resulting independent encodings are
only combined in the final dot-product scoring a
pair. The same BERT encoder is used for questions
and answers with the output of the CLS token taken
as the output encoding. For answers, the answer
and context are concatenated and segmented using
the segment IDs from the original BERT model.
A learned input type embedding is added to each
input token representation to distinguish questions
and answers within the encoding model.

The BERT dual-encoder model can be fine-tuned
using the in batch sampled softmax loss (Gillick
et al., 2018):

J =
∑

(x,y)∈Batch

eφ(x,y)

∑
ȳ∈Y e

φ(x,ȳ)
(1)

Where x is the question, y is the correct answer, Y
is all answers in the same batch that are used as
sampled negatives, and φ(x, y) is the dot product
of question and answer representations. Note that
the dot product is scaled by X100 during training,
which is a critical component when applying l2
normalization to the embeddings.

2Note the approach can also be applied to any collection
of questions, even for those without ground truth answers.

4.3 Mining Augmented Training Pairs

We create an augmented training set for the re-
trieval model using our cross-attention based QA
model. For each question in the training set, we em-
ploy USE-QA to mine the top 10 nearest neighbors
from the entire training set, and then remove those
retrieved pairs which are true positives. Next the
cross-attention based QA model is used to score
the retrieved pairs. The dual-encoder based neural
retrieval model is then trained on the combination
the additional scored positive pairs and the original
QA pairs from the training set. The original pairs
are assigned a score 1.

4.4 Weighted In-batch Softmax for
Dual-Encoder Retrieval Model

The neural retrieval model is trained using the batch
negative sampling loss (Gillick et al., 2018) in equa-
tion 2. We modify the standard formulation to in-
clude a weight, w(x, y), for each pair.

J ′ =
∑

(x,y)∈Batch
w(x, y)

eφ(x,y)

∑
ȳ∈Y e

φ(x,ȳ)
(2)

We setw(x, y) to 1 if (x, y) is a ground truth pos-
itive pair and p(x, y)2, otherwise, whereby p(x, y)
is the probability from the cross-attention model.

5 Evaluation

In this section we evaluate the proposed approach
using the MultiReQA evaluation splits for NQ
and SQuAD. Models are assessed using Precision
at N (P@N) and Mean Reciprocal Rank (MRR).
Following the ReQA setup (Ahmad et al., 2019),
we report P@N for N=[1, 5, 10]. P@N evaluates
whether the true answer sentence appears in the
top-N ranked candidates. MRR is calculated as
MRR = 1

N

∑N
i=1

1
ranki

, where N is the total num-
ber of questions, and ranki is the rank of the first
correct answer for the ith question.

5.1 Configurations

Our cross-attention QA models are fine-tuned from
the public English BERT for 10 epochs, using a
batch size of 256 and a weighted Adam optimizer
with learning rate 3e-5. We experiment with both
BERTBase and BERTLarge. All hyper-parameters
are set using a dev set split out from the training
data (10%). When mining for silver data, we only
keep candidate pairs with positive cross-attention
QA model scores (≥ 0.5).
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Models NQ SQuAD
ACC AUC-PR ACC AUC-PR

Majority 73.7 – 74.8 –
BERTdual encoder 75.8 49.3 80.3 62.0
(x-attn) BERTBase 84.3 92.8 92.6 96.5
(x-attn) BERTLarge 84.9 93.5 93.6 97.1

Table 2: Accuracy (ACC) and area under the precision-
recall curve (AUC-PR) for the classification task. Ma-
jority is a simple baseline that always predicts false.
(x-attn) indicates cross-attention QA models.

The BERTBase model is used to initialize the dual
encoder retrieval model. During training we use a
batch size of 64, and a weighted Adam optimizer
with learning rate 1e-4. The maximum input length
is set to 96 for questions and 384 for answers. Mod-
els are trained for 200 epochs. The embeddings
are l2 normalized. Hyper-parameters are manually
tuned on a held out development set.

5.2 Performance for the Classification Task

The classification data created using the method
from section 4.1 contains a total of 531k and 469k
training examples for NQ and SQuAD, respectively.
Test sets extracted from the SQuAD and NQ test
splits contain 15k and 41k examples.3

Table 2 provides the performance of the cross-
attention models, compared to a majority baseline
which always predict false and a BERTdual encoder
retrieval model without any mined examples that
uses cosine similarity for prediction. Cross-
attention based models outperform the baselines
by a wide margin,4 with BERTLarge achieving the
highest performance on all metrics. This is consis-
tent with our hypothesis that early fusion models
outperform late fusion based retrieval models. Both
models achieve better performance on SQuAD than
NQ. The SQuAD task has higher token overlap, as
described in section 3, making the task somewhat
easier. We use the BERTLarge model to supervise
the data augmentation in the next section.

5.3 Mined Examples

We mined the SQuAD and NQ training data to
construct additional QA pairs. After collecting
and scoring addition pairs using the method de-
scribed in section 4.3, we obtained 53% (56,148)
and 12% (10,198) more examples for NQ and

3The positive / negative ratio is roughly 1:3.
4The poor performance of BERTdual encoder is also aligned

with the hypothesis that cosine similarity score is not a globally
consistent measurement of how good a pair (Guo et al., 2018).

SQuAD, respectively. Table 4 illustrated the exam-
ples retrieved by USE-QA and predicted as positive
examples by our cross-attention QA classification
model. Both examples are clear positive QA pairs.

Much less data is mined for SQuAD then NQ.
We believe it is because of the way SQuAD was
created, whereby workers write the questions based
on the content of a particular article. The result-
ing questions are much more specific and biased
toward a particular question types, e.g. what ques-
tions Ahmad et al. (2019). Additionally, the can-
didate pool for SQuAD is only half that of NQ,
resulting in questions having fewer opportunities
to be matched to good additional answers.

5.4 Results on the Retrieval QA

Table 3 gives P@N and MRR@100 for retrieval
models on MultiReQA-SQuAD and MultiReQA-
NQ. The first two rows show the result from two
simple baselines: BM25 (Robertson and Zaragoza,
2009), USE-QA, and USE-QAfinetune reported by
Guo et al. (2020). BM25 remains a strong base-
line, especially with 62.8% P@1 and 70.5% MRR
for SQuAD. BM25’s performance on NQ is much
lower, as there is much less token overlap between
NQ questions and answers. USE-QA matches the
performance of BM25 on NQ but performs worse
on SQuAD.5 BERTdual encoder performs well com-
pared to other baselines, especially on NQ with
a +6.6 point improvement compared to the USE-
QAfinetune model.6 Its P@1 on SQuAD performs
better than USE-QA and BM25, but -3.1 points
MRR worse than USQ-QAfinetune. On average,
BERTdual encoder is the best among those baselines.

Performance improves by a large margin using
augmented training data from our cross-attention
QA model, obtaining a +8.6 and +7.0 improve-
ment on NQ P@1 and MRR. Compare to NQ,
the improvement on SQuAD is rather marginal.
The augmented BERTdual encoder retrieval model
only achieves slightly improved performance on
SQuAD, with +1 points for both P@1 and MRR.
As discussed in section 5.3, we mine much less
data from SQuAD compare to NQ, with only 10%
more data than the original training set. As demon-
strated by the strong BM25 performance and shown
in (Guo et al., 2020), the SQuAD QA pairs have
high token overlap between question and answers,

5USE-QA can be fine-tuned, which usually significantly
outperforms the default USE-QA model (Guo et al., 2020).

6Our Bertdual encoder performs better than the one reported
in Guo et al. (2020), likely due to additional training epochs.
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Models NQ SQuAD
P@1 P@5 P@10 MRR P@1 P@5 P@10 MRR

BM25 24.7 – – 36.6 62.8 – – 70.5
USE-QA 24.7 – – 34.7 51.0 – – 62.1
USE-QAfinetune 38.0 – – 52.3 66.8 – – 75.9
BERTdual encoder 44.7 77.1 85.1 58.9 62.8 85.4 91.0 72.8
BERTdual encoder Augmented 53.3 82.3 88.5 65.9 63.8 86.1 91.6 73.7

Table 3: Precision at N(P@N) (%) N=[1, 5, 10] and Mean Reciprocal Rank (MRR) (%) on the MultiReQA tasks.

Score Silver QA Pair

0.92

Q: what are the names of the two old muppets in the
balcony that heckle everyone ?
A: Statler and Waldorf are a pair of Muppet char-
acters known for their cantankerous opinions and
shared penchant for heckling.

0.90

Q: where the phrase dressed to the nines come from
A: It appears in book six of Jean - Jacques Rousseau
’s Confessions , his autobiography ...

Table 4: Mined positive examples identified using our
cross-attention QA classification model.

minimizing the advantage of the neural methods in
capturing more complex semantic relationships.

Effectiveness of Weighted Softmax. We further
experimented the Retrieval QA tasks using the
model with the non-modified softmax using the
augmented data. All other configurations are keep
the same. The MRR of the model using non-
modified softmax is 60.1 on MultiReQA-NQ and
71.9 on MultiReQA-SQuAD, which are much
worse than the model using weighted softmax. This
result indicates the weighted softmax is important
for the proposed approach.

6 Conclusion

In this paper, we propose a novel approach for mak-
ing use of an early fusion classification model to
improve late fusion retrieval models. The early fu-
sion model is used for data mining to augment the
training set for the late fusion model. The proposed
approach mines 53% (56,148) and 12% (10,198)
more examples for MultiRQA-NQ and MultiRQA-
SQuAD, respectively. Compared to the models
directly trained with gold annotations, the result-
ing retrieval models improve +8.6% and +1.0%
P@1 on NQ and SQuAD respectively. The cur-
rent pipeline assumes there exists annotated in-
domain question answer pairs to train the cross-
attention model. With a strong general purpose
cross-attention model, our method could be mod-
ified to train in-domain retrieval models without
gold data. We leave this to the future work.
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Abstract
Generating descriptive sentences that convey
non-trivial, detailed, and salient information
about images is an important goal of image
captioning. In this paper we propose a novel
approach to encourage captioning models to
produce more detailed captions using natu-
ral language inference, based on the motiva-
tion that, among different captions of an im-
age, descriptive captions are more likely to en-
tail less descriptive captions. Specifically, we
construct directed inference graphs for refer-
ence captions based on natural language in-
ference. A PageRank algorithm is then em-
ployed to estimate the descriptiveness score of
each node. Built on that, we use reference
sampling and weighted designated rewards to
guide captioning to generate descriptive cap-
tions. The results on MSCOCO show that
the proposed method outperforms the base-
lines significantly on a wide range of conven-
tional and descriptiveness-related evaluation
metrics1.

1 Introduction

Automatically generating visually grounded de-
scriptions for given images, a problem known as
image captioning (Chen et al., 2015), has drawn ex-
tensive attention recently. In spite of the significant
improvement of image captioning performance (Lu
et al., 2017; Anderson et al., 2018; Xu et al., 2015;
Lu et al., 2018), existing models tend to play safe
and generate generic captions. However, gener-
ating descriptive captions that carry detailed and
salient information is an important goal of image
captioning. For example, recent work (Luo et al.,
2018; Liu et al., 2018b, 2019a) leveraged cross-
modal retrieval (Faghri et al., 2017; Feng et al.,
2014) to solve this problem, based on the observa-
tion that more descriptive captions often result in
better discriminativity in retrieval.

1https://github.com/Gitsamshi/Nli-image-caption

In the paper, we explore to develop better de-
scriptive image captioning models from a novel
perspective— considering that among different cap-
tions of an image, descriptive captions are more
likely to entail less descriptive ones, we develop
descriptive image captioning models that leverage
natural language inference (NLI, or also known as
recognizing textual entailment) (Dagan et al., 2005;
MacCartney and Manning, 2009; Bowman et al.,
2015), which can utilize multiple references of cap-
tions (Young et al., 2014; Lin et al., 2014) to guide
the models to produce more descriptive captions.

Specifically, the proposed model first predicts
NLI relations for all pairs of references, i.e., entail-
ment or neutral2. Built on that, we construct infer-
ence graphs and employ a PageRank algorithm to
estimate descriptiveness scores for individual cap-
tions. We use reference sampling and weighted des-
ignated rewards to incorporate the descriptiveness
signal into the Maximum Likelihood Estimation
and Reinforcement Learning phase, respectively,
to guide captioning models to produce descriptive
captions. Extensive experiments were conducted
on the MSCOCO dataset using different benchmark
baseline methods (Huang et al., 2019; Luo et al.,
2018; Rennie et al., 2017).

We demonstrate that the proposed method out-
performs the baselines, achieving better perfor-
mances on various evaluation metrics. In summary,
the major contributions of the paper are three-fold:
(1) To the best of our knowledge, this is the first
attempt to connect natural language inference to
image captioning, which helps generate more de-
scriptive captions; (2) we propose a reference sam-
pling distribution and weighted designated rewards
to guide captioning model to produce more descrip-
tive captions; (3) the proposed method attains better
performance on various evaluation metrics over the

2As reference captions are unlikely to contradict to each
other, we ignore the contradiction relation in our study.

269



state-of-the-art baselines.

2 Related Work

Image captioning Image captioning aims at gen-
erating visually grounded descriptions for images.
It often leverages a CNN or variants as the image
encoder and an RNN as the decoder to generate
sentences (Vinyals et al., 2015; Karpathy and Fei-
Fei, 2015; Donahue et al., 2015; Yang et al., 2016).
To improve the performance on reference-based
automatic evaluation metrics, previous work has
used visual attention mechanism (Anderson et al.,
2018; Lu et al., 2017; Pedersoli et al., 2017; Xu
et al., 2015; Pan et al., 2020), explicit high-level
attributes detection (Yao et al., 2017; Wu et al.,
2016; You et al., 2016), reinforcement learning
methods (Rennie et al., 2017; Ranzato et al., 2015;
Liu et al., 2018a), contrastive or adversarial learn-
ing (Dai and Lin, 2017; Dai et al., 2017), multi-
step decoding (Liu et al., 2019a; Gu et al., 2018),
weighted training by word-image correlation (Ding
et al., 2019) and scene graph detection (Yao et al.,
2018; Yang et al., 2019; Shi et al., 2020).

The work of (Luo et al., 2018; Liu et al., 2018b)
is most related to ours, which uses retrieval loss
as a rewarding signal to encourage descriptive cap-
tioning. Different from the above approaches, our
method explicitly explore the different descriptive-
ness in references using NLI models and incorpo-
rate the information into the training objectives to
guide the model to generate more informative sen-
tences. We build our method on top of the existing
methods to verify the effectiveness.
Applications of NLI There are basically three ma-
jor application types for NLI, (1) Direct applica-
tion of trained NLI models. Trained NLI mod-
els are directly used in Fact Extraction and Ver-
ification (Thorne et al., 2018) to decide whether
a piece of evidence supports a claim (Nie et al.,
2019) and generation of longer sentences as a dis-
criminator (Holtzman et al., 2018) to prevent a text
decoder from contradicting itself; (2) NLI as a re-
search and evaluation task for new methods. It is
widely used as a major evaluation when develop-
ing novel language model pretraining (Devlin et al.,
2018; Peters et al., 2018; Liu et al., 2019c); (3) NLI
as a pre-training task in transfer learning. Training
neural network models on NLI corpora and then
fine-tuning them on target tasks often yields sub-
stantial improvements in performance (Liu et al.,
2019b; Phang et al., 2018).

Figure 1: A NLI matrix and inference graph.

3 Our Method

The goal of image captioning is to train condi-
tional generation model pθ(c | x) based on train-
ing instances (xi, Ci)mi=1 in a training dataset and
Ci = {c1i , · · · , cni }, wherem is the number of train-
ing instances and n is the number of reference cap-
tions for an image.

The typical models leverage a two-phase learn-
ing process to estimate pθ(c | x): the first uses
MLE objective, which minimizes a cross-entropy
loss with regard to the ground truth captions:

LML(θ) =−
m∑

i=1

n∑

j=1

log pθ(c
j
i | xi) (1)

RL is then used to optimize models by maximizing
the expected reward for generating captions.

LRL(θ) = −
m∑

i=1

Eĉ∼pθ(c|xi)[r(ĉ, xi)] (2)

where r(ĉ, xi) could be CIDEr reward (rcd) (Ren-
nie et al., 2017) or a combination of CIDEr (rcd)
and discriminative loss (ldis) (Luo et al., 2018).

In this work, we enhance these two basic learn-
ing objectives by considering the descriptiveness
of references {c1i , · · · , cni }.

3.1 Constructing Inference Graphs
NLI Matrix The SNLI corpus (Bowman et al.,
2015) is widely used for training natural language
inference models. To leverage the data for our
task, we extract a subset of SNLI to fit our needs,
e.g., removing contradiction sentence pairs (see
Appendix B for details). Our NLI model is built
upon BERT (Devlin et al., 2018), which achieves
near state-of-the-art performance and is sufficient
for our purpose. Given reference captions Ci =
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{c1i , · · · , cni } of an image, we obtain a NLI label
for each ordered pair 〈cji , cki 〉, forming a NLI rela-
tion matrix, as shown in Figure 1. Note that a NLI
relation matrix is not necessary to be a symmet-
ric matrix. For example, it is possible that 〈cji , cki 〉
has an entailment relation (i.e., cji entails cki ) and
〈cki , cji 〉 is neutral, by the definition in NLI (Bow-
man et al., 2015).
Inference Graphs Built on the NLI matrix, we
construct the inference graphs. For cji and cki , if the
ordered pair 〈cji , cki 〉 and 〈cki , cji 〉 are both entail-
ment in the NLI matrix, cji and cki are paraphrases.
If 〈cji , cki 〉 is entailment and 〈cki , cji 〉 is neutral, then
〈cji , cki 〉 is said to be a forward entailment (Fw-
dEntail). On the contrary, if 〈cji , cki 〉 is neural and
〈cki , cji 〉 is entailment, then 〈cji , cki 〉 is said to be a
reverse entailment (RevEntail). If both directions
are neutral, we call it mutual neutral (muNeutral).

To construct a directed inference graph, captions
in a given image are added as vertexes. We add
a directed edge from cji to cki if 〈cji , cki 〉 is revEn-
tail; i.e., the edge’s head cki is expected to be more
descriptive than the tail cji , and the edge points to-
wards cki . If 〈cji , cki 〉 is fwdEntail, we add an edge
from cki to cji . We do not add edges for paraphrase
and muNeural pairs.
Descriptiveness Scorer PageRank (Page et al.,
1999) is a link analysis model applied to collections
of nodes with quotations or references. We perform
PageRank on a inference graph to compute the de-
scriptiveness score for each node/caption, which
measures at which node a random walk is more
likely to stop. Nodes with a higher score assigned
by PageRank can be viewed as more descriptive.
We then normalize the score to obtain distribution
q(c | xi), c ∈ Ci.

3.2 Descriptiveness Regularized Learning
Reference sampling (Rs) for MLE We can verify
that LML in Equation (1) is equivalent to the KL di-
vergence between a uniform target reference distri-
bution U(c | xi) and model distribution pθ(c | xi):

LML(θ) =
m∑

i=1

KL(U(c | xi)||pθ(c | xi)) (3)

Note that Equation (3) indicates that any c that
belongs to reference set of Ci will be equally
learned without considering their descriptiveness.
To resolve the issue, for an image xi, we use
the probability distribution q obtained from graph

nodes. We obtain an enhanced MLE loss L′ML,
which is equivalent to minimizing the KL diver-
gence between the target reference sampling distri-
bution q and pθ:

L′ML(θ) =

m∑

i=1

KL(q(c | xi)||pθ(c | xi)) (4)

Weighted reward (Wr) for RL We modify the re-
ward function in RL to integrate the descriptiveness
score to encourage more contribution from descrip-
tive references in designated reward. Specifically,
we change the CIDEr reward item rcd in r(ĉ, xi) as
shown in equation (2) by replacing U(c | xi) with
q(c | xi):

r′cd(ĉ, xi)=
n∑

j=1

q(cji |xi)·CD(ĉ, cji ) (5)

where CD denotes the CIDEr similarity score.

4 Experiment

4.1 Setup

Dataset and Evaluation Metrics We perform
experiments on the Karpathy split of the
MSCOCO dataset (Lin et al., 2014; Karpa-
thy and Fei-Fei, 2015). We employ a wide
range of conventional image caption evalua-
tion metrics, i.e., SPICE(SP) (Anderson et al.,
2016), CIDEr(CD) (Vedantam et al., 2015),
METEOR(ME) (Denkowski and Lavie, 2014),
ROUGE-L(RG) (Lin, 2004), and BLEU (Papineni
et al., 2002) to evaluate the generated captions. Fol-
lowing (Liu et al., 2019a), we also use the caption
generated ĉ to retrieve image x using a separately
trained image-matching model (Lee et al., 2018).
The retrieval evaluation is based on 1K images (Lee
et al., 2018) from the Karpathy test set. Retrieval
performances are measured by R@K (K = 1, 5),
i.e., whether x is retrieved within the top K re-
trieved images. We also perform human evaluation
on descriptiveness, fluency, and fidelity.
Implementation Details To make a fair compar-
ison, we use the same experiment setup that the
compared baselines used. See more implementa-
tion details for NLI model, retrieval model in eval-
uation, and descriptiveness score normalization in
appendix B.
Compared Models We use AoANet, ATTN, and
DISC(λ set to 1) as the baselines. ATTN (Ren-
nie et al., 2017) is a LSTM based decoder with
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visual attention mechanism. AoANet (Huang et al.,
2019) adopts the attention on attention module. We
also leverage the discriminativity enhanced model
DISC (Luo et al., 2018) which is built upon ATTN.

4.2 Results and Analyses
Overall Performance Table 1 shows the overall
performance of different models.
Results on conventional metrics. Our method con-
sistently outperforms the baseline models on most
conventional metrics, especially SPICE and CIDEr;
e.g., the proposed model improves the AoANet
baseline from 118.4 to 119.1 on CIDEr, 21.5 to
21.7 on SPICE in the MLE phase, and improves
the ATTN baseline on CIDEr from 117.4 to 120.1,
SPICE from 20.5 to 21.0 in the RL phase. As
CIDEr is based on tf-idf weighting, it helps to
differentiate methods that generate more image-
specific details that are less commonly occur across
the dataset. As our method is designed to encour-
age models to generate sentences with more ob-
jects, attributes, or relations, the effect was also
suggested by the improvement on SPICE.

Figure 2: Inference labels in different models

Figure 3: Ablation Analysis based on AoANet

Performance on descriptiveness related metrics.
Our methods achieve consistently better results
on R@1 and R@5 in both the MLE and RL
optimization phases. Note that the proposed model
can further boost the retrieval performance on
the discriminativity enhanced baseline (DISC),
improving R@1 from 46.5 to 48.1 and R@5 from
83.6 to 87.9. Our weighted CIDEr reward is
complementary to the discriminative loss item in
DISC and further boost the retrieval performance.

Figure 4: Examples generated by different models.

Labels between generated sentences. We use the
externally trained NLI model (Section 3.1) to fur-
ther investigate the NLI relationships between the
captions generated by our method and by the base-
lines (AoA and DISC) on the testset. Figure 2
shows that our model generates more descriptive
sentences. For example, comparing the generation
results of AoA+RsWr and AoA on 5,000 testing im-
ages, captions generated by AoA+RsWr forward-
entails those generated by AoA on 1,591 images,
and reverse-entails on 341 images.
Ablation analysis. As shown in Figure 3, both
reference sampling (Rs) and weighted reward
(Wr) can improve performance in their respec-
tive optimization period, i.e., MLE to MLE(Rs),
MLE+RL to MLE+RL(Wr). There is also a
marginal improvement when using MLE(Rs) in-
stead of MLE before the RL(Wr) optimization
period, i.e., MLE+RL(Wr) to MLE(Rs)+RL(Wr),
showing that MLE(Rs) has a positive impact even
after RL(Wr) optimization.
Human Evaluation We further perform human
evaluation on our method and two baselines (here,
ATTN and DISC) using 100 images randomly sam-
pled from the test set. Three human subjects rate
captions with 1-5 Likert scales (higher is better)
with respect to three criteria: fluency, descriptive-
ness, and fidelity. See more details in appendix A
for rating details. Table 2 shows that ATTN+RsWr
performs better than ATTN on descriptiveness.
Moreover, DISC+RsWr can further improve the
descriptiveness performance over the baseline dis-
criminativity enhanced captioning model.
Case Study. Figure 4 includes three examples, in
which our model produces captions with more at-
tributes, objects, or relations.

5 Discussion

5.1 Descriptiveness and Entailment
We perform human analysis between descriptive-
ness and entailment. Specifically we randomly
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Maximum Likelihood Estimation Reinforcement Learning

BLEU4 ME RG CD SP R@1 R@5 BLEU4 ME RG CD SP R@1 R@5

AoA 36.8 28.3 57.3 118.4 21.5 54.1 87.6 39.0 29.0 58.9 128.7 22.6 54.3 88.6
AoA+RsWr 36.9 28.5 57.5 119.1 21.7 58.2 87.4 39.0 29.1 58.7 129.8 22.9 56.3 90.2

ATTN 35.5 27.0 56.0 108.9 19.8 42.8 79.7 35.8 27.1 56.7 117.4 20.5 40.8 77.3
ATTN+RsWr 35.8 27.3 56.3 112.1 20.5 48.2 84.4 36.2 27.3 56.7 120.1 21.0 44.9 84.8

DISC - - - - - - - 35.6 27.2 57.0 115.4 21.0 46.5 83.6
DISC+RsWr - - - - - - - 35.9 27.2 56.8 118.3 21.4 48.1 87.9

Table 1: Results on MSCOCO karpathy split. RsWr detnotes Reference sampling and Weighted reward.

Fluency Descriptiveness Fidelity

ATTN 3.90 2.53 3.46
ATTN+RsWr 3.91 2.86 3.50

DISC 3.52 3.08 3.28
DISC+RsWr 3.49 3.30 3.31

Table 2: Human evaluation on different models.

sample 50 images from the MSCOCO training set.
For one image, there are five references, constitut-
ing ten reference pairs. So we have 500 reference
pairs. For each reference pair, we ask three sub-
jects to annotate whether one sentence conveys
more non-trivial, important and detailed informa-
tion than the other in terms of the described image.
If the majority of the three subjects annotate yes,
they further annotate the NLI relation—entailment
or neutral, with the more informative caption as
premise and the other as the hypothesis. As a re-
sult, out of the 500 reference pairs, we obtained
208 pairs that have differences in descriptiveness.
The annotated NLI relations show that 164 of the
208 collected pairs have the entailment relation;
i.e., for around 80% of the 208 pairs, “descriptive
captions entail less descriptive captions” holds in
the randomly sampled MSCOCO subset, where
MSCOCO is a widely used multi-reference image
caption benchmark.

5.2 Pairwise similarity and Re-ranking

We apply a pairwise similarity approach to AoA,
in which we use Jaccard similarity between a pair
of sentences to build the graph and run PageRank
to get scores. Table 3 shows that pairwise similar-
ity baseline approach (AoA+Sim) did not further
improve performance over the corresponding base-
lines, showing pairwise similarity does not suggest
descriptiveness, unlike entailment.

We perform re-ranking on the ATTN baseline;
we use beam search with a beam size of 3, and then
rank the captions in the beam by descriptiveness

Pairwise Similarity Comparison

B@4 ME RG CD SP R@1 R@5

AoA 39.0 29.0 58.9 128.7 22.6 54.3 88.6
AoA+Sim 38.8 28.8 58.6 128.3 22.5 54.0 87.4
AoA+RsWr 39.0 29.1 58.7 129.8 22.9 56.3 90.2

Re-ranking Comparison

ATTN 35.8 27.1 56.7 117.4 20.5 40.8 77.3
ATTN+re-rank 35.7 27.2 56.8 117.0 20.6 41.5 78.8
ATTN+RsWr 36.2 27.3 56.7 120.1 21.0 44.9 84.8

Table 3: Comparison with pairwise similarity and re-
ranking.

scores, which is calculated by BERT based NLI
model. As shown in Table 3, the re-ranked sen-
tences in the beam do not have much improvement
in terms of baseline. Sentences generated by beam
search (c.f. appendix C) do not vary significantly
in terms of descriptiveness; these sentences are usu-
ally neutral to each other and sentences ranked low
in the beam may have the fidelity/fluency issues.

6 Conclusions

We explore a novel approach to encourage image
captioning models to produce more descriptive sen-
tences using natural language inference. We con-
struct inference graphs and descriptiveness scores
are assigned to nodes using the PageRank algo-
rithm. Built on that, we use reference sampling and
weighted designated rewards to guide captioning to
generate descriptive captions. We demonstrate the
effectiveness of the model on various evaluation
metrics and perform detailed analyses.
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A Human Evaluation Details

The human evaluation is performed with three non-
author human subjects. We ask the subjects to rate
on three 1-5 Likert scales, corresponding to fidelity
(the sentences’ fidelity to the corresponding im-
ages), fluency (the quality of captions in terms of
grammatical correctness and fluency), and descrip-
tiveness (how much the sentences convey more de-
tailed and faithful information about the images).

B More Implementation Details

NLI We exclude the training instances labeled
with contradiction, since our task does not need
to consider contradiction—reference captions for
the same image are unlikely to contradict each
other. We also sample training instances in the
SNLI dataset to make the subset’s length distribu-
tion similar to the caption references. We obtained
a filtered dataset with around 250K sentence pairs
as our training set, 4K and 4K as validation and test
set, respectively. We leverage BERT (Devlin et al.,
2018) as the framework for training which is a ba-
sis for many state-of-the-art models and achieve
near state-of-the-art performance, which is suffi-
cient for our purpose. The training gets stabled
after 3 epochs, reaching an accuracy around 88%
on the test set.

Retrieval Model in Evaluation The model is
trained with the published package of SCAN (Lee
et al., 2018). For the specific parameters, we fol-
lowed the “SCAN t-i LSE” setting in their pub-
lished report.

Descriptiveness Score We use the entailment
probability as the weights on the edges and then we
perform PageRank using the toolkit from (Hagberg
et al., 2008). We set the damping parameter of 0.95
for descriptiveness score at MLE training stage
and 0.1 for descriptiveness score at RL training
stage, as we find that a smooth score distribution
on reward (c.f. Equation 5) and a peaked score
distribution on MLE(c.f. Equation 4) lead to im-
proved performance in the RL and MLE training
stage respectively.

C Beam Search Generation

Example 1. {“image˙id”: 247625, “caption”: a
man holding a snowboard in the snow, a man stand-
ing on a snowboard in the snow, a man is standing
on a snowboard in the snow}

{“image˙id”: 131019, “caption”: a group of ze-
bras are standing in a field, a group of zebras are
standing in a field with a zebra, a group of zebras
are walking in a field}

These are sentences generated by beam search
by ATTN model after RL stage (before re-ranking).
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Abstract

We present an instance-based nearest neigh-
bor approach to entity linking. In contrast to
most prior entity retrieval systems which repre-
sent each entity with a single vector, we build
a contextualized mention-encoder that learns
to place similar mentions of the same entity
closer in vector space than mentions of differ-
ent entities. This approach allows all mentions
of an entity to serve as “class prototypes” as
inference involves retrieving from the full set
of labeled entity mentions in the training set
and applying the nearest mention neighbor’s
entity label. Our model is trained on a large
multilingual corpus of mention pairs derived
from Wikipedia hyperlinks, and performs near-
est neighbor inference on an index of 700 mil-
lion mentions. It is simpler to train, gives more
interpretable predictions, and outperforms all
other systems on two multilingual entity link-
ing benchmarks.

1 Introduction

A contemporary approach to entity linking repre-
sents each entity with a textual description de, en-
codes these descriptions and contextualized men-
tions of entities, m, into a shared vector space
using dual-encoders f(m) and g(de), and scores
each mention-entity pair as the inner-product be-
tween their encodings (Botha et al., 2020; Wu et al.,
2019). By restricting the interaction between e and
m to an inner-product, this approach permits the
pre-computation of all g(de) and fast retrieval of
top scoring entities using maximum inner-product
search (MIPS).

Here we begin with the observation that many
entities appear in diverse contexts, which may not
be easily captured in a single high-level descrip-
tion. For example, Actor Tommy Lee Jones played
football in college, but this fact is not captured in
the entity description derived from his Wikipedia

page (see Figure 1). Furthermore, when new en-
tities need to be added to the index in a zero-shot
setting, it may be difficult to obtain a high quality
description. We propose that both problems can be
solved by allowing the entity mentions themselves
to serve as exemplars. In addition, retrieving from
the set of mentions can result in more interpretable
predictions – since we are directly comparing two
mentions – and allows us to leverage massively
multilingual training data more easily, without forc-
ing choices about which language(s) to use for the
entity descriptions.

We present a new approach (MOLEMAN1) that
maintains the dual-encoder architecture, but with
the same mention-encoder on both sides. Entity
linking is modeled entirely as a mapping between
mentions, where inference involves a nearest neigh-
bor search against all known mentions of all en-
tities in the training set. We build MOLEMAN us-
ing exactly the same mention-encoder architecture
and training data as Model F (Botha et al., 2020).
We show that MOLEMAN significantly outperforms
Model F on both the Mewsli-9 and Tsai and Roth
(2016) datasets, particularly for low-coverage lan-
guages, and rarer entities.

We also observe that MOLEMAN achieves high
accuracy with just a few mentions for each entity,
suggesting that new entities can be added or ex-
isting entities can be modified simply by labeling
a small number of new mentions. We expect this
update mechanism to be significantly more flexible
than writing or editing entity descriptions. Finally,
we compare the massively multilingual MOLEMAN

model to a much more expensive English-only dual-
encoder architecture (Wu et al., 2019) on the well-
studied TACKBP-2010 dataset (Ji et al., 2010) and
show that MOLEMAN is competitive even in this
setting.

1Mention Only Linking of Entities with a Mention Anno-
tation Network
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Figure 1: Illustration of hypothetical contextualized mention (m) and multilingual description (d) embeddings for the entities
‘Tommy Lee Jones (Q170587)’ and ‘Tom Jones (Q18152778). The query mention [F] pertains to the former’s college football
career, which is unlikely to be captured by the high-level entity description. A retrieval against descriptions would get this query
incorrect, but with indexed mentions gets it correct. Note that prior dual-encoder models that use a single vector to represent
each entity are forced to contort the embedding space to solve this problem.

2 Overview

Task definition We train a model that performs
entity linking by ranking a set of entity-linked in-
dexed mentions-in-context. Formally, let a mention-
in-context x = [x1, ..., xn] be a sequence of n
tokens from vocabulary V , which includes desig-
nated entity span tokens. An entity-linked mention-
in-context mi = (xi, ei) pairs a mention with
an entity from a predetermined set of entities E .
LetMI = [m1, ...,mk] be a set of entity-linked
mentions-in-context, and let entity(·) :MI →
E be a function that returns the entity ei ∈ E asso-
ciated with mi, and x(·) returns the token sequence
xi.

Our goal is to learn a function φ(m) that maps
an arbitrary mention-in-context token sequence m
to a fixed vector hm ∈ Rd with the property that

y∗ = entity

(
argmax
m′∈MI

[φ(x(m′))Tφ(xq)]

)

gives a good prediction y∗ of the true entity label
of a query mention-in-context xq.

3 Method

3.1 Model

Recent state-of-the-art entity linking systems em-
ploy a dual encoder architecture, embedding
mentions-in-context and entity representations in
the same space. We also employ a dual encoder ar-
chitecture but we score mentions-in-context (here-
after, mentions) against other mentions, with no
consolidated entity representations. The dual en-
coder maps a pair of mentions (m,m′) to a score:

s(m,m′) =
φ(m)Tφ(m′)
‖φ(m)‖‖φ(m′)‖

where φ is a learned neural network that encodes
the input mention as a d-dimensional vector.

As in (Févry et al., 2020) and (Botha et al., 2020),
our mention encoder is a 4-layer BERT-based
Transformer network (Vaswani et al., 2017; Devlin
et al., 2019) with output dimension d = 300.

3.2 Training Process
3.2.1 Mention Pairs Dataset
We build a dataset of mention pairs using the 104-
language collection of Wikipedia mentions as con-
structed by Botha et al. (2020). This dataset maps
Wikipedia hyperlinks to WikiData (Vrandečić and
Krötzsch, 2014), a language-agnostic knowledge
base. We create mention pairs from the set of all
mentions that link to a given entity.

We use the same division of Wikipedia pages
into train and test splits used by Botha et al. (2020)
for compatibility to the TR2016 test set (Tsai and
Roth, 2016). We take up to the first 100k men-
tion pairs from a randomly ordered list of all pairs
regardless of language, yielding 557M and 31M
training and evaluation pairs, respectively. Of these,
69.7% of pairs involve two mentions from different
languages. Our index set contains 651M mentions,
covering 11.6M entities.

3.2.2 Hard Negative Mining and Positive
Resampling

Previous work using a dual encoder trained with in-
batch sampled softmax has improved performance
with subsequent training rounds using an auxiliary
cross-entropy loss against hard negatives sampled
from the current model (Gillick et al., 2019; Wu
et al., 2019; Botha et al., 2020). We investigate
the effect of such negative mining for MOLEMAN,
controlling the ratio of positives to negatives on a
per-entity basis. This is achieved by limiting each
entity to appear as a negative example at most 10
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times as often as it does in positive examples, as
done by Botha et al. (2020).

In addition, since MOLEMAN is intended to re-
trieve the most similar indexed mention of the cor-
rect entity, we experiment with using this retrieval
step to resample the positive pairs used to construct
our mention-pair dataset for the in-batch sampled
softmax, pairing each mention m with the highest-
scoring other mention m′ of the same entity in the
index set. This is similar to the index refreshing
that is employed in other retrieval-based methods
trained with in-batch softmax (Guu et al., 2020;
Lewis et al., 2020a).

3.2.3 Input Representations
Following prior work (Wu et al., 2019; Botha et al.,
2020), our mention representation consists of the
page title and a window around the mention, with
special mention boundary tokens marking the men-
tion span. We use a total context size of 64 tokens.

Though our focus is on entity mentions, the en-
tity descriptions can still be a useful additional
source of data, and allow for zero-shot entity
linking (when no mentions of an entity exist in
our training set). We therefore experiment with
adding the available entity descriptions as addi-
tional “pseudo-mentions”. These are constructed
in a similar way to the mention representations,
except without mention boundaries. Organic and
psuedo-mentions are fed into BERT using distinct
sets of token type identifiers. We supplement our
training set with additional mention pairs formed
from each entity’s description and a random men-
tion, adding 38M training pairs, and add these de-
scriptions to the index, expanding the entity set to
20M.

3.3 Inference

For inference, we perform a distributed brute-force
maximum inner product search over the index of
training mentions. During this search, we can ei-
ther return only the top-scoring mention for each
entity, which improves entity-based recall, or else
all mentions, which allows us to experiment with
k-Nearest Neighbors inference (see Section 4.1).

4 Experiments

4.1 Mewsli-9

Table 1 shows our results on the Mewsli-9 dataset
compared to the models described by Botha et al.
(2020). Model F is a dual encoder which scores

I HN R@1 R@10 R@100
Model F D N 63.0 91.7 97.4
Model F+ D Y 89.4 96.4 98.2
MGENRE – – 90.6 – –

MOLEMAN M N 89.5 97.4 98.3
B N 89.6 98.0 99.2
B Y 89.9 98.1 99.2

+ k=5 B Y 90.4 – –

Table 1: Results on Mewsli-9 compared to the models
described by (Botha et al., 2020) and (De Cao et al.,
2021). Column I indicates what is being indexed (De-
scriptions, Mentions, Both), and the HN indicates if ad-
ditional rounds of Hard Negative training are applied.

entity mentions against entity descriptions, while
Model F+ adds two additional rounds of training
with hard negative mining and an auxiliary cross-
lingual objective. Despite using an identically-
sized transformer, and trained on the same data,
MOLEMAN outperforms Model F+ when training
only on mention pairs, and sees minimal improve-
ment from a further round of training with hard
negative and resampled positives (as described in
Section 3.2.2). This suggests that training MOLE-
MAN is a simpler learning problem compared to
previous models which must capture all an entity’s
diverse contexts with a single description embed-
ding. Additionally, we examine a further benefit of
indexing multiple mentions per entity: the ability
to do top-K inference, and find that top-1 accuracy
improves by half a point with k=5.

We also compare to the recent MGENRE system
of De Cao et al. (2021), which performs entity link-
ing using constrained generation of entity names.
It should be noted that this work uses an expanded
training set that results in fewer zero- and few-shot
entities (see De Cao et al. (2021) Table 3).

4.1.1 Per-Language Results

Table 2 shows per-language results for Mewsli-9.
A key motivation of Botha et al. (2020) was to
learn a massively multilingual entity linking sys-
tem, with a shared context encoder and entity repre-
sentations between 104 languages in the Wikipedia
corpus. MOLEMAN takes a step further: the in-
dexed mentions from all languages are included in
the retrieval index, and can contribute to the predic-
tion in any language. In fact, we find that for 21.4%
of mentions in the Mewsli-9 corpus, MOLEMAN’s
top prediction came from a different language.
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Language R@1 R@10 R@100
ar +1.1 +0.9 +0.3
de -0.1 +1.5 +0.5
en +0.3 +2.8 +2.3
es -0.2 +1.1 +0.4
fa +1.1 +0.9 +0.9
ja +0.8 +1.2 +0.5
sr -0.1 +0.8 +0.5
ta +3.7 +1.3 +0.6

micro-avg +0.2 +1.6 +1.0
macro-avg +0.8 +1.3 +0.7

Table 2: MOLEMAN results on the Mewsli-9 dataset by
language, listed as a delta against Model F+ (Botha
et al., 2020).

4.1.2 Frequency Breakdown
Table 3 shows a breakdown in performance by en-
tity frequency bucket, defined as the number of
times an entity was mentioned in the Wikipedia
training set. When indexing only mentions, MOLE-
MAN can never predict the entities in the 0 bucket,
but it shows significant improvement in the other
frequency bands, particularly in the “few shot”
bucket of [1,10). This suggests when introducing
new entities to the index, labelling a small number
of mentions may be more beneficial than produc-
ing a single description. To further confirm this
intuition, we retrained MOLEMAN with a modified
training set which had all entities in the [1, 10) band
of Mewsli-9 removed, and only added to the index
at inference time. This model achieved +0.2 R@1
and +5.6 R@10 relative to Model F+ (which was
trained with these entities in the train set). When en-
tity descriptions are added to the index, MOLEMAN

outperforms Model F+ across frequency bands.

4.1.3 Inference Efficiency
Due to the large size of the mention index, nearest
neighbor inference is performed using distributed
maximum inner-product search. We also experi-
ment with approximate search using ScaNN (Guo
et al., 2020). Table 4 shows throughput and recall
statistics for brute force search as well as two ap-
proximate search approaches that run on a single
multi-threaded CPU, showing that inference over
such a large index can be made extremely efficient
with minimal loss in recall.

4.2 Tsai Roth 2016 Hard
In order to compare against previous multilingual
entity linking models, we report results on the
“hard” subset of Tsai and Roth (2016)’s cross-
lingual dataset which links 12 languages to English
Wikipedia. Table 5 shows our results on the same 4

languages reported by Botha et al. (2020). MOLE-
MAN outperforms all previous systems.

4.3 TACKBP 2010

Recent work on entity linking have employed dual-
encoders primarily as a retrieval step before rerank-
ing with a more expensive cross-encoder (Wu et al.,
2019; Agarwal and Bikel, 2020). Table 6 shows
results on the extensively studied TACKBP 2010
dataset (Ji et al., 2010). Wu et al. (2019) used a
24-layer BERT-based dual-encoder which scores
the 5.9 million entity descriptions from English
Wikipedia, followed by a 24-layer cross-encoder
reranker. MOLEMAN does not achieve the same
level of top-1 accuracy as their full model, as it
lacks the expensive cross-encoder reranking step,
but despite using a single, much smaller Trans-
former and indexing the larger set of entities from
multilingual Wikipedia, it outperforms this prior
work in retrieval recall at 100.

We also report the accuracy of a MOLEMAN
model trained only with English training data, and
using an Enlish-only index for inference. This
experiment shows that although the multilingual
index contributes to MOLEMAN’s overall perfor-
mance, the pairwise training data is sufficient for
high performance in a monolingual setting.

5 Discussion and Future Work

We have recast the entity linking problem as an
application of a more generic mention encoding
task. This approach is related to methods which
perform clustering on test mentions in order to im-
prove inference (Le and Titov, 2018; Angell et al.,
2020), and can also be viewed as a form of cross-
document coreference resolution (Rao et al., 2010;
Shrimpton et al., 2015; Barhom et al., 2019). We
also take inspiration from recent instance-based
language modelling approaches (Khandelwal et al.,
2020; Lewis et al., 2020b).

Our experiments demonstrate that taking an
instance-based approach to entity-linking leads to
better retrieval performance, particularly on rare en-
tities, for which adding a small number of mentions
leads to superior performance than a single descrip-
tion. For future work, we would like to explore
the application of this instance-based approach to
entity knowledge related tasks (Seo et al., 2018;
Petroni et al., 2020), and to entity discovery (Ji
et al., 2017).
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MOLEMAN
(mentions only)

MOLEMAN
(+ descriptions) mGENRE

Freq. bin R@1 R@10 R@1 R@10 R@1
[0, 1) -8.3† -33.9† -0.2 +18.3 +13.8
[1, 10) +0.4 +5.6 +1.7 +9.3 -10.4
[10, 100) +1.9 +3.8 +1.7 +3.7 -3.1
[100, 1k) +0.1 +1.8 -0.0 +1.9 +0.3
[1k, 10k) -1.1 +0.7 -1.2 +0.7 +0.6
[10k,+) +0.7 +0.6 +0.7 +0.5 +2.2
macro-avg -1.1 -3.6 +0.5 +5.7 +0.6

Table 3: Results from MOLEMAN (with and without the inclusion of entity descriptions) on the Mewsli-9 dataset,
by entity frequency in the training set plotted as a delta against Model F+. †Note that when using mentions only,
MOLEMAN scores zero on entities that do not appear in the training set.

QPS Latency (ms) R@1 R@100
Brute-force 9.5 5727 89.9 99.2

ScaNN 8000 2.9 89.9 99.1

Table 4: Max throughput (queries per second), latency
(ms per query) and recall for brute force inference
and approximate MIPS inference using the ScaNN li-
brary (Guo et al., 2020). See Appendix A.3 for further
details.

MF+ MM
de 0.62 0.64
es 0.58 0.59
fr 0.54 0.58
it 0.56 0.59

Avg 0.57 0.60

Table 5: Accuracy results on the TR2016hard test set
for Model F+ (MF+) and MOLEMAN (MM)

Method R@1 R@100
AT-Prior – 89.5
AT-Ext – 91.7
BM25 – 68.9
Gillick et al. (2019) – 96.3
Wu et al. (2019) 91.5† 98.3∗

MOLEMAN (EN-only) 85.8 98.4
MOLEMAN 87.9 99.1

Table 6: Retrieval comparison on TACKBP-2010. The
alias table and BM25 baselines are taken from Gillick
et al. (2019). For comparison to Wu et al. (2019), we
report R@1 for their “full Wiki, w/o finetune” cross-
encoder. Their R@100 model is a dual-encoder fine-
tuned on the TACKBP-2010 training set. MOLEMAN is
not finetuned.
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A Appendices

A.1 Training setup and hyperparameters

To isolate the impact of representing entities with
multiple mention embeddings, we follow the train-
ing methodology and hyperparameter choices pre-
sented in Botha et al. (2020) (Appendix A).

We train MOLEMAN using in-batch sampled
softmax (Gillick et al., 2018) using a batch size of
8192 for 500k steps, which takes about a day. Our
model is implemented in Tensorflow (Abadi et al.,
2016), using the Adam optimizer (Kingma and
Ba, 2014; Loshchilov and Hutter, 2017) with the
mention encoder preinitialized from a multilingual
BERT checkpoint2. All model training was carried
out on a Google TPU v3 architecture3.

2github.com/google-research/bert/
multi_cased_L-12_H-768_A-12

3cloud.google.com/tpu/docs/tpus
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A.2 Datasets Links
• Mewsli-9: http://goo.gle/

mewsli-dataset

• TR2016hard: cogcomp.seas.upenn.edu/

page/resource_view/102

• TACKBP-2010: https://catalog.ldc.

upenn.edu/LDC2018T16

A.3 Profiling Details
The brute-force numbers we’ve reported are the the-
oretical maximum throughput for computing 300D
dot-products on an AVX-512 processor running
at 2.2Ghz, and are thus an overly optimistic base-
line. Practical implementations, such as the one
in ScaNN, must also compute the top-k and rarely
exceed 70% to 80% of this theoretical limit. The
brute-force latency figure is the minimum time to
stream the database from RAM using 144 GiB/s of
memory-bandwidth. In practice, we ran distributed
brute-force inference on a large cluster of CPUs,
which took about 5 hours.

The numbers for ScaNN are empirical single-
machine benchmarks of an internal solution that
uses the open-source ScaNN library 4 on a single
24-core CPU. We use ScaNN to search a multi-
level tree that has the following shape: 78, 000 =>
83 : 1 => 105 : 1 (687.3 million datapoints). We
used a combination of several different anisotropic
vector quantizations that combine 3, 6, 12, or 24
dimensions per 4-bit code, as well as re-scoring
with an int8-quantization.

A.4 Expanded experimental results
Tables 7 and 8 present complete numerical com-
parisons between MOLEMAN and Model F+ on
Mewsli-9.

4https://github.com/google-research/
google-research/tree/master/scann
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Model F+ MOLEMAN MOLEMAN
(mentions only) (+ descriptions)

Language R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@10 R@100
ar 92.3 97.7 99.1 93.4 98.6 99.0 93.4 98.6 99.4
de 91.5 97.3 99.0 91.3 98.2 98.9 91.5 98.9 99.5
en 87.2 94.2 96.7 87.4 95.9 97.4 87.4 97.0 99.3
es 89.0 97.4 98.9 88.7 98.1 98.8 88.7 98.5 99.3
fa 91.8 97.4 98.7 93.5 98.5 99.1 92.9 98.3 99.6
ja 87.8 95.6 97.6 88.7 96.2 97.0 88.5 96.8 98.0
sr 92.6 98.2 99.2 92.2 98.7 99.5 92.5 99.0 99.7
ta 87.6 97.4 98.9 91.5 98.4 99.1 91.3 98.6 99.5

micro-avg 89.4 96.4 98.2 89.5 97.4 98.3 89.6 98.0 99.2
macro-avg 89.8 96.9 98.5 90.6 97.8 98.5 90.6 98.2 99.3

Table 7: Results on the Mewsli-9 dataset by language.

Model F+ MOLEMAN MOLEMAN
(mentions only) (+description)

Bin Queries R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@10 R@100
[0, 1) 3,198 8.3 33.9 62.7 0.0 0.0 0.0 8.1 52.2 74.7
[1, 10) 6,564 57.7 80.8 91.3 58.1 86.4 93.3 59.4 90.1 96.5
[10, 100) 32,371 80.4 92.8 96.7 82.2 96.5 98.8 82.1 96.5 98.9
[100, 1k) 66,232 89.6 96.6 98.2 89.7 98.4 99.5 89.6 98.5 99.5
[1k, 10k) 78,519 92.9 98.4 99.3 91.9 99.2 99.8 91.8 99.1 99.8
[10k, +) 102,203 94.1 98.8 99.4 94.8 99.4 99.6 94.8 99.3 99.5
micro-avg 89.4 96.4 98.2 89.5 97.4 98.3 89.6 98.0 99.2
macro-avg 70.5 83.5 91.3 69.4 80.0 81.8 70.9 89.3 94.8

Table 8: Results on the Mewsli-9 dataset, by entity frequency in the test set.
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Abstract

Bidirectional Encoder Representations from
Transformers (BERT) have been shown to
be extremely effective on a wide variety of
natural language processing tasks, including
sentiment analysis and emotion detection.
However, the proposed pre-training objectives
of BERT do not induce any sentiment or
emotion-specific biases into the model. In this
paper, we present Emotion Masked Language
Modeling, a variation of Masked Language
Modeling, aimed at improving the BERT
language representation model for emotion
detection and sentiment analysis tasks. Using
the same pre-training corpora as the original
BERT model, Wikipedia and BookCorpus,
our BERT variation manages to improve
the downstream performance on 4 tasks for
emotion detection and sentiment analysis
by an average of 1.2% F1. Moreover, our
approach shows an increased performance in
our task-specific robustness tests. We make
our code and pre-trained model available at
https://github.com/tsosea2/eMLM.

1 Introduction

Language models have been studied extensively in
the NLP community (Dai and Le, 2015; Howard
and Ruder, 2018; Peters et al., 2018; Devlin et al.,
2019; Liu et al., 2019), with approaches attaining
state-of-the-art results on multiple token-level or
sentence-level tasks. BERT (Devlin et al., 2019)
is a pre-trained language model, which proposed
a new pre-training objective inspired by the Cloze
task (Taylor, 1953), which enables the training of a
deep bi-directional transformer network. This ob-
jective, called Masked Language Modeling (MLM)
is used on large amounts of unlabeled data from
Wikipedia and BookCorpus to produce powerful
universal language representations. However, the
pre-training does not take into account the down-
stream task on which the model will be applied.

In this paper, we posit that we can leverage the
characteristics of a downstream task to design bet-
ter task-tailored pre-training objectives. Concretely,
we induce information from emotion or sentiment
lexicons into our BERT pre-training objective to
improve the performance on tasks from sentiment
analysis and emotion detection.

There are numerous studies that focus on emo-
tion detection (Demszky et al., 2020; Desai et al.,
2020; del Arco et al., 2020; Sosea and Caragea,
2020; Majumder et al., 2019; Mohammad and Kir-
itchenko, 2018; Abdul-Mageed and Ungar, 2017;
Mohammad and Kiritchenko, 2015; Mohammad,
2012; Strapparava and Mihalcea, 2008) and senti-
ment analysis (Yin et al., 2020; Tian et al., 2020;
Phan and Ogunbona, 2020; Zhai and Zhang, 2016;
Chen et al., 2016; Liu, 2012; Glorot et al., 2011;
Pang and Lee, 2005). Various lexicons have been
used to improve model performance on these tasks.
For instance, Katz et al. (2007) used occurrences of
emotion words to identify various emotion types in
news headlines. Moreover, emotion lexicons have
been used to produce important features which can
be used inside a machine learning algorithm to im-
prove the performance on emotion detection tasks
(Mohammad, 2012; Sykora et al., 2013; Khanpour
and Caragea, 2018; Biyani et al., 2014). In this
paper, however, instead of leveraging these lexi-
cons to design features, in contrast, we use them
to obtain language representations that are more
suitable for emotion and sentiment tasks.

To this end, we introduce Emotion Masked
Language Modeling (eMLM), a new pre-training
BERT (Devlin et al., 2019) objective aimed at im-
proving the BERT performance on tasks related
to sentiment analysis and emotion detection. In-
spired by the well-known Masked Language Mod-
eling objective, eMLM adds only a few simple, yet
powerful changes. Instead of uniformly masking
the tokens in the input sequence, eMLM leverages
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SENT They look absolutely perfect together I hope its that way in real life too
MLM 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

eMLM 0.09 0.09 0.09 0.50 0.09 0.09 0.50 0.09 0.09 0.09 0.09 0.09 0.09 0.09

SENT Most tiring thing was the drive one hour each way
MLM 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

eMLM 0.11 0.50 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Table 1: Comparison of masked probabilities between MLM and eMLM on two example sentences.

lexicon information, and assigns higher masking
probabilities to words that are more likely to be
important in the sentiment or emotion contexts. To
enable a fair comparison with the vanilla BERT
model, we train the eMLM BERT model in the
same fashion as the vanilla BERT, pre-training on
Wikipedia and BookCorpus (Zhu et al., 2015). To
our knowledge, we are the first to study different
masking probabilities for the BERT pre-training
procedure guided by sentiment and emotion lexi-
cons. Similar to our work, some studies also fo-
cused on incorporating sentiment information into
pre-trained language models. For example, Yin
et al. (2020) built an attention network on top of
BERT to predict sentiment labels of phrase nodes
obtained through a constituency parse tree. On the
other hand, Tian et al. (2020) designed various pre-
training objectives, such as masking and predicting
all words from a pre-defined small set of seeds, and
predicting an aspect-sentiment pair or the polar-
ity of words. In contrast, we leverage information
from available sentiment and emotion lexicons.

We show the feasibility of our approach by test-
ing eMLM on two sentiment analysis benchmark
datasets and two emotion detection datasets. These
datasets span diverse domains, such as movie re-
views, online health communities, and Reddit dis-
cussions, enabling a comprehensive analysis of
eMLM.

Our contributions are as follows: 1) We intro-
duce a new pre-training objective for BERT (lever-
aging available lexicons), aimed at producing bet-
ter task-guided universal representations for down-
stream tasks from sentiment analysis and emotion
detection. We offer the pre-trained model as an
easy way to leverage our approach on downstream
applications. 2) We show the efficacy of our ap-
proach by testing our method on four benchmark
datasets for emotion and sentiment and obtain an
average improvement in F1 score of 1.2%. 3) We
verify the robustness of our model in the face of
input perturbations, which occur frequently in in-
formal contexts (e.g., due to mispellings).

2 Proposed Approach

Background Bidirectional Encoder from Trans-
formers for Language Understanding (BERT) (De-
vlin et al., 2019) is a pre-trained language model
trained on large amounts of unlabeled data using
two objectives: 1) Masked Language Modeling
(MLM) randomly masks 15% of tokens in a se-
quence, followed by a supervised prediction of
the masked tokens; 2) Next Sentence Prediction
(NSP) predicts in a binary fashion if two sentences
follow each other. By using these two tasks on
large-scale data repositories such as BookCorpus
(800M words) (Zhu et al., 2015) and Wikipedia
(2, 500M words), BERT produces powerful univer-
sal language representations, applicable on a wide
range of tasks, such as sentiment analysis, question
answering, and commonsense reasoning.

However, to be used in various downstream
tasks, BERT has to undergo a task-specific fine-
tuning step (Devlin et al., 2019), where the con-
textualized embedding is adapted to the needed
task. We posit that we can improve the downstream
performance by focusing on the target task in the
pre-training phase as well. Specifically, we focus
on sentiment analysis and emotion detection, and
show that task-guided unsupervised pre-training
helps the performance considerably.

Masking Emotion Words Now we introduce
Emotion Masked Language Modeling (eMLM), a
variation of MLM targeted at inducing emotion or
sentiment-specific biases in the BERT pre-training
phase. Specifically, unlike BERT, which uses a
uniform probability (15%) to mask the tokens in
an input sentence, we assign higher probabilities to
tokens which are emotionally rich words from an
available lexicon L. We denote this probability by
k, which is a hyperparameter in our eMLM method.
Our masking process can be summarized as fol-
lows: Given an input sentence S: 1) We extract the
words that belong to the lexicon L, and we denote
them by E; 2) We set the masking probability of
these words as P (we) = k ∀ we ∈ E; 3) To ensure
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we mask 15% of the words in total, we lower the
masking probability of the non-emotionally-rich
words using the following formula:

P (wn) =
max(|S| · 0.15− |E| · k, 0)

|S| − |E| , ∀ wn /∈ E

where | · | represents the size of a set. We show
examples of how our masked probabilities change
from MLM to eMLM in Table 1. For instance,
in the first example, there are two emotion words,
perfect and hope, and we use a masking probability
of k = 0.50. While the probabilities of these two
words are set to 50%, the non emotionally-rich
word probability is lowered from 15% to 9% to
keep the sum of probabilities constant. The rest
of the training process is the same as the original
BERT pre-training. That is, we train our BERT
model from scratch using eMLM and NSP on the
same datasets: Wikipedia and BookCorpus. We
mention that we use whole word masking, both
for eMLM and the MLM (i.e., we mask all the
subtokens corresponding to a word).

3 Experiments and Results

In this section, we first describe our experimental
setup (§3.1), then present our datasets and lexicons
(§3.2), and then discuss the results that contrast
eMLM with the original BERT MLM (§3.3).

3.1 Experimental Setup

We use various benchmark datasets from sentiment
analysis and emotion detection to test our eMLM
approach. For every dataset considered, we use
the provided training, validation, and test splits.
To assert statistical significance, we fine-tune each
model 10 times with different random seeds and
report the average F1 score. We investigate various
masking probabilities k, ranging from 0.2 to 1.0,
and find that 0.5 works best in our setting. For low
values around 0.2 we notice that the performance is
similar to that of the original BERT, while for high
values (closer to 1.0), the performance is negatively
affected.

3.2 Datasets and Lexicons

We test our models on various benchmark datasets
described below.

Stanford Sentiment Treebank (SST) (Socher
et al., 2013) SST contains 11, 855 sentences from

SST-2 SST-5

ACC F-1 ACC F-1

BERT 0.912 0.922 0.532 0.541
eMLM (S) 0.919 0.928 0.541 0.552
eMLM (E) 0.920 0.931† 0.547 0.558†

Table 2: Performance on the sentiment analysis task.
We assert significance† if p < 0.05 under a t-test with
the vanilla BERT model.

movie reviews, annotated with five sentiment la-
bels: negative, somewhat negative, neutral, some-
what positive, and positive. First, we consider the
binarized dataset, called SST-2, where the exam-
ples with the negative and somewhat negative la-
bels are merged into a negative class, and the ex-
amples with the somewhat positive and positive
labels are merged into a positive class (with neutral
class being removed). Second, we consider the
SST fine-grained version (SST-5), which uses all
five labels.

GoEmotions (Demszky et al., 2020) is a
sentence-level multilabel dataset of 58, 000 com-
ments curated from Reddit and annotated with 27
emotion categories and the neutral class.

CancerEmo (Sosea and Caragea, 2020) is a
sentence-level multilabel dataset of 8, 500 sen-
tences labeled with the eight Plutchik (Plutchik,
1980) basic emotions from an Online Health Com-
munity for people suffering from diseases such as
cancer.

We analyze the behaviour of eMLM in diverse envi-
ronments: sentiment analysis or emotion detection,
various data platforms (e.g., Reddit, OHCs), and
variate emotion or sentiment granularity (from 2
classes to as many as 28 classes).

Lexicons As mentioned above, our eMLM fo-
cuses on emotionally rich words from a lexicon.
In this paper, we use EmoLex (Mohammad and
Turney, 2013), a lexicon of 6, 000 words associ-
ated with eight Plutchik basic emotions (Plutchik,
1980) (sadness, anger, joy, surprise, anticipation,
trust, fear, disgust) and 5, 555 words associated
with the positive and negative sentiments. We con-
sider the sentiment and emotion words separately
to analyze the impact of each on the performance
of eMLM. We denote the approach which masks
the emotion-revealing words by eMLM (E), and
the sentiment-revealing words by eMLM (S).
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EMOTION BERT eMLM (E) eMLM (S)

ADMIRATION 0.65 0.68† 0.67
AMUSEMENT 0.80 0.83† 0.82

ANGER 0.47 0.46 0.46
ANNOYANCE 0.34 0.34 0.34

APPROVAL 0.36 0.38 0.37
CARING 0.39 0.43 0.42

CONFUSION 0.37 0.37 0.37
CURIOSITY 0.54 0.57† 0.57

DESIRE 0.49 0.49 0.49
DISAPPOINTMENT 0.28 0.30 0.30

DISAPPROVAL 0.39 0.43† 0.41
DISGUST 0.45 0.48† 0.48

EMBARRASSMENT 0.43 0.43 0.44
EXCITEMENT 0.34 0.34 0.34

FEAR 0.60 0.64† 0.63
GRATITUDE 0.86 0.88† 0.87

GRIEF 0.00 0.00 0.00
JOY 0.51 0.53 0.52

LOVE 0.78 0.80† 0.80
NERVOUSNESS 0.35 0.37 0.36

NEUTRAL 0.68 0.67 0.68
OPTIMISM 0.51 0.53 0.52

PRIDE 0.36 0.36 0.36
REALIZATION 0.21 0.21 0.21

RELIEF 0.15 0.16 0.16
REMORSE 0.66 0.65 0.66
SADNESS 0.49 0.49 0.48

SURPRISE 0.50 0.53† 0.52

AVERAGE 0.462 0.476 0.469

Table 3: F-1 scores on the Goemotion dataset. We as-
sert significance† if p < 0.05 under a t-test with the
vanilla BERT model.

3.3 Results

Results on Sentiment Analysis We show the re-
sults of our approaches on SST in Table 2. First,
we observe that eMLM (E) and eMLM (S) im-
prove upon the vanilla BERT model on both tasks,
with eMLM (E) obtaining as much as 1.7% im-
provement in F1. Interestingly, eMLM (E) outper-
forms eMLM (S) suggesting that masking finer-
granularity emotion words in eMLM produces bet-
ter representations for the task. At the same time,
eMLM (E) achieves better performance on the fine-
grained SST-5 task, where the improvements over
the vanilla BERT are considerable.

Results on Emotion Detection We show the re-
sults of eMLM on the GoEmotions dataset in Table
3 and observe that, similar to sentiment analysis,
eMLM (E) is the best performing approach, im-
proving upon vanilla BERT by 1.4% in F1. We
show the results on CancerEmo in Table 4 and ob-
serve the same pattern: eMLM (E) consistently
outperforms the other approaches. We see im-
provements as high as 4% on Joy and 2% on Sad-

EMOTION BERT eMLM (E) eMLM (S)

SADNESS 0.71 0.73† 0.73†

JOY 0.81 0.85† 0.84
FEAR 0.77 0.77 0.77

ANGER 0.68 0.69 0.69
SURPRISE 0.68 0.68 0.67

DISGUST 0.59 0.58 0.57
TRUST 0.67 0.67 0.67

ANTICIPATION 0.70 0.78† 0.74

AVERAGE 0.701 0.718 0.706

Table 4: Performance on CancerEmo dataset. We assert
significance† if p < 0.05 under a t-test with the vanilla
BERT model.

K SST-2 SST-5 CANCEREMO GOEMOTIONS

0.15 0.922 0.541 0.701 0.462
0.30 0.923 0.540 0.704 0.466
0.50 0.931 0.558 0.718 0.476
0.70 0.921 0.539 0.700 0.455
0.90 0.911 0.540 0.691 0.412

Table 5: Average F-1 on the considered datasets using
various values of the emotion masking probability k.

ness. Overall, eMLM (E) obtains an 1.7% F1 im-
provement over the vanilla BERT model.

Discussion The presented results reveal the feasi-
bility of our proposed approach. Our BERT model
trained using the eMLM objective produces high
quality contextualized embeddings for downstream
tasks that span the sentiment analysis and emotion
detection tasks. Moreover, our methods incur no ad-
ditional computational cost over the original BERT
(Devlin et al., 2019), and undergo the same amount
of pre-training. We also tried combining and mask-
ing both sentiment and emotion words; however,
we did not see any performance improvements. As
a step forward, we are interested in gaining more
insights into the differences between eMLM (E)
and the vanilla BERT model. We study this in the
robustness context in the next section, and analyze
how our models behave in the face of various input
perturbations (i.e., noise).

Varying the Emotion Masking Probability k
To offer additional insights into our eMLM ap-
proach and show the impact of the sentiment or
emotion-rich word masking probability on down-
stream tasks, we show the results obtained using
various values of k in Table 5. First, we note that
using a slightly lower probability of 0.30 still adds
improvements to our model on three of the con-
sidered datasets. In contrast, too high of a proba-
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bility hurts the F1 performance. Concretely, using
k = 0.90, our eMLM approach decreases the F1
compared to the vanilla BERT by 1% on Cancer-
Emo, 5% on GoEmotions, and 1% on SST-2.

4 Robustness Test

It has been shown that neural models are often
sensitive to various input perturbations (Niu et al.,
2020; Belinkov and Bisk, 2018). In this section, we
aim to investigate the robustness of our proposed
approach in the face of input noise. We focus on
the following two questions: 1) Does eMLM im-
prove the robustness of the model? 2) What type of
input noise is successful in misleading our model?
We study these questions on the SST-5 sentiment
analysis task using the framework introduced by
Hsieh et al. (2019). We explore three ways to gen-
erate input perturbations and verify their “success.”
We say a perturbation is “successful” on a model
M for an example e if 1) The model M classifies e
correctly and 2) The model M misclassifies the ex-
ample e when noise is applied to it. Naturally, the
lower the perturbation success rate, the more robust
a model is. The perturbations that we considered
are as follows:

1. Random (Alzantot et al., 2018) replaces one
word from the input sentence with a random
word from the vocabulary. For a word, we
repeat this process 100 times. If at least one
of the replacements leads to an incorrect pre-
diction, the perturbation is deemed to be suc-
cessful.

2. LIST (Alzantot et al., 2018) replaces each
word (one at a time) in the input text with a
synonym. The input perturbation is successful
if at least one replacement leads to an incor-
rect prediction.

3. EmoWord If there is an emotion word in the
input sentence, then we zero out that word,
otherwise, we zero out a random word from
the input sequence.

Results We show the results of the robustness
tests for the vanilla BERT and the eMLM approach
in Table 6. First, EmoWord is the most successful
perturbation, being twice as effective compared to
the other methods. Second, we observe that Ran-
dom and LIST obtain the same success rates among
both the BERT and eMLM approach. However,

EMOTION RANDOM LIST EMOWORD

BERT 1.5% 2.4% 9.8%

eMLM 1.5% 2.4% 5.4%

Table 6: Robustness of our models in terms of pertur-
bation success rates. Lower success rates indicate more
robust models.

on EmoWord, our eMLM approach is consider-
ably more robust, outperforming the simple BERT
model by 4.4%. We argue that this is the byproduct
of the eMLM training procedure, which focuses on
predicting emotion words in the pre-training step.

5 Conclusion

In this paper, we introduced a new BERT pre-
training objective suited for sentiment analysis
and emotion detection tasks. We showed that the
approach is feasible; it needs no additional pre-
training compared to the vanilla BERT, and im-
proves the performance by 1.2% F1 on average
on various tasks. Our analysis also suggests that
eMLM is more robust in the face of input perturba-
tions. As future work, we note that our approach
is general enough, so we plan to leverage different
lexicons outside the sentiment analysis and emo-
tion detection domains to investigate if the model
generalizes well on other domains (e.g., financial).
We also plan to study if our method is effective for
non-English languages. Finally, we note that there
exist lexicons that assign to words not only their
emotion, but also their emotion intensity (Moham-
mad, 2018). Therefore, we plan to investigate if
associating the masking probability with the emo-
tion intensity (i.e., assign a higher probability to a
more intensive word) would further help improve
the performance.
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Abstract

Prior work has revealed that positive words oc-
cur more frequently than negative words in hu-
man expressions, which is typically attributed
to positivity bias, a tendency for people to re-
port positive views of reality. But what about
the language used in negative reviews? Con-
sistent with prior work, we show that English
negative reviews tend to contain more positive
words than negative words, using a variety of
datasets. We reconcile this observation with
prior findings on the pragmatics of negation,
and show that negations are commonly associ-
ated with positive words in negative reviews.
Furthermore, in negative reviews, the majority
of sentences with positive words express neg-
ative opinions based on sentiment classifiers,
indicating some form of negation.

1 Introduction

A battery of studies have validated the Pollyanna
hypothesis that positive words occur more fre-
quently than negative words in human expressions,
using corpora ranging from Google Books to Twit-
ter (Dodds et al., 2015; Garcia et al., 2012; Boucher
and Osgood, 1969; Kloumann et al., 2012). The
typical interpretation is connected with the posi-
tivity bias, which broadly denotes 1) a tendency
for people to report positive views of reality, 2) a
tendency to hold positive expectations, views, and
memories, and 3) a tendency to favor positive infor-
mation in reasoning (Carr, 2011; Augustine et al.,
2011; Hoorens, 2014). However, it remains an open
question whether the Pollyanna hypothesis holds
in negative reviews, where the communicative goal
is to express negative opinions.

In this work, we use a wide variety of review
datasets to examine the use of positive and nega-
tive words in negative reviews. Table 1 shows a
negative review from Yelp. Although the overall
opinion is clearly negative, the author expressed

Food was ok...not the money they charge. I was
unimpressed and will not return. I was excited
to try this place and was so disappointed as my
expectations were high. Service not great and
The parking is awful.

Table 1: Example negative review on Yelp. Positive
words are in blue and negative words are in red, based
on Vader (Hutto and Gilbert, 2014). Negations are in
italics. This short review contains three negations.

the excitement to try the place and deemed the food
OK. Zooming into individual words, they used the
same number of positive and negative words in this
negative review. Interestingly, this short review has
as many as three negations, one directly applied to
“great” (hence “not great”).

More generally, we find that negative reviews
contain more positive words than negative words,
which is consistent with the Pollyanna hypothesis.
Two possible reasons may explain this observa-
tion: 1) negative reviews tend to still include pos-
itive opinions due to a naı̈ve interpretation of the
positivity bias, where positive words express posi-
tive sentiments without accounting for negation or
other contextual meaning of these words; 2) nega-
tive reviews tend to use indirect expressions (i.e.,
applying negations to positive words) to indicate
negative opinions (e.g., “not clean”). Note that a
broad interpretation of positivity bias may encom-
pass the second reason,1 but indirect expressions
could also be related to other factors, e.g., verbal
politeness (Brown et al., 1987)).

We aim to delineate these two reasons by ex-
amining the use of negations. Our results provide
support for the latter reason: negative reviews tend
to use more negations than positive reviews. The

1Boucher and Osgood (1969) used a morphological anal-
ysis to show negative affixes are more commonly applied to
positive words than negative words (unhappy vs. non-violent).
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differences become even more salient when we
compare negations applied to positive words vs.
negative words. Finally, among sentences with pos-
itive words in negative reviews, the majority are
classified as negative than as positive by sentiment
classifiers, indicating some form of negation.

2 Related Work

In addition to positivity bias, our work is closely
related to experimental studies on understanding
the effect of direct (e.g., “bad”) and indirect (e.g.,
“not good”) wordings. Colston (1999) and Kamoen
et al. (2015) observe no difference in people’s inter-
pretation of direct and indirect wordings in negative
opinions; but direct wordings receive higher evalua-
tions than indirect ones in positive opinions. In this
work, we examine whether and how individuals use
indirect wordings in practice (in negative reviews).

Our work is also related to Potts (2010), which
finds that negation is used more frequently in neg-
ative reviews and is thus pragmatically negative.
We extend Potts (2010) in two ways: 1) we demon-
strate a high frequency of negation followed by
positive words in negative reviews compared to
other combinations, a new observation motivated
through the lens of positivity bias; 2) we conduct
a systematic study using a wide variety of datasets
with multiple dictionaries.

Finally, our work builds on sentiment classifica-
tion (Pang et al., 2002, 2008; Liu, 2012). The NLP
community has made significant progress in recog-
nizing the sentiment in texts of various languages,
obtaining accuracies of over 95% (English) in bi-
nary classification (Devlin et al., 2019; Liu et al.,
2019). Researchers have also developed novel ap-
proaches to identify fine-grained sentiments (e.g.,
aspect-level sentiment analysis (Schouten and Fras-
incar, 2015; Wang et al., 2016; Yang and Cardie,
2013)) as well as semi-supervised and unsuper-
vised approaches (Hu et al., 2013; Zhou et al., 2010;
Tan et al., 2011).

3 Datasets

We use a wide range of English review datasets to
ensure that our results are robust across domains.
• Yelp.2 We only consider restaurant reviews.
• IMDB movie reviews (Maas et al., 2011). This

dataset provides train and test splits, so we follow
their split when appropriate.

2https://www.yelp.com/dataset.

Figure 1: Sentence-length comparison. Although nega-
tive reviews can be much longer than positive reviews,
sentences in positive reviews and negative reviews have
similar lengths. Results on Amazon reviews are shown
in the appendix. Tiny error bars show standard errors.

• Stanford sentiment treebank (SST) (Socher et al.,
2013). SST contains processed snippets of re-
views from the Rotten Tomatoes website (movie
reviews). It has ground truth sentiment scores of
reviews at the sentence level and the word level.

• Tripadvisor (Wang et al., 2010). This dataset
consists of hotel reviews.

• PeerRead (Kang et al., 2018). We use reviews
for papers in ACL, CoNLL, and ICLR.

• Amazon (Ni et al., 2019). This dataset contains
Amazon reviews grouped by categories. We
choose five categories that are substantially differ-
ent from movies, hotels, and restaurants to ensure
that our results are robust, namely, “Automotive”,
“Cellphones and accessories”, “Luxury beauty”,
“Pet supplies”, and “Sports and outdoors”.
For datasets with ratings in 1-5 scale, we label

reviews with ratings greater than 3 as positive and
reviews with ratings less than 3 as negative fol-
lowing prior work (Pang et al., 2002), and ignore
reviews with rating 3. Similarly, for datasets with
ratings scale of 1-10 (IMDB, ICLR reviews in Peer-
Read ), we label reviews with ratings greater than
6 as positive and review with ratings less than 5 as
negative, and ignore reviews with ratings 5 and 6.

We use spaCy to tokenize the reviews in all
datasets (Honnibal and Montani, 2017), except that
Stanford Core NLP is used to tokenize SST reviews
(Manning et al., 2014). We present results for Ama-
zon reviews in the appendix, and our main results
are robust on Amazon reviews. Our code is avail-
able at https://github.com/madhu-aithal/Positivity-
Bias-in-Negative-Reviews.

Length of positive vs. negative opinions. In gen-
eral, negative opinions tend to be longer than posi-
tive opinions (p < 0.05 after Bonferroni correction
in 6 out 10 datasets; see the appendix for details).
In comparison, the difference in length is smaller
at the sentence level (Figure 1). Therefore, we use
sentences as the basic unit in this work. To further
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rule out sentence length as a confounding factor,
we also present word-level results in the appendix.

4 Results

We first investigate the occurrences of positive
words, negative words, and negations in reviews.
We find that negative reviews contain more posi-
tive words than negative words in all datasets. We
show that this observation relates to the prevalence
of negation in negative reviews compared to pos-
itive reviews in all datasets. Furthermore, these
negations are commonly associated with positive
words in all datasets, and sentences with positive
words tend to be negative based on sentence-level
prediction, supporting the prevalence of indirect
wordings in negative reviews.

4.1 Negative Reviews Have More Positive
Words than Negative Words

We use lexicon-based methods to examine the fre-
quency of positive and negative words in reviews.
For most of the datasets, we randomly sample
5,000 positive reviews and 5,000 negative reviews
to compute the lexicon distribution using LIWC
(Pennebaker et al., 2007) and Vader (Hutto and
Gilbert, 2014). In the case of SST, PeerRead, and
negative reviews of Amazon Luxury Beauty, we
use the entire dataset for our analysis as it has a
relatively small number of reviews.

Figure 2 shows that as expected, negative re-
views have more negative words and fewer positive
words than positive reviews, based on Vader. In-
triguingly, despite the negative nature of negative
reviews, they tend to have more positive words than
negative words (p < 0.001 on all datasets except
SST after Bonferroni correction). Our results are
robust at the word level and also hold based on
LIWC and validate the Pollyanna hypothesis even
in negative reviews.

4.2 Negative Reviews Have More Negations
and Indirect Expressions

We hypothesize that in addition to the tendency
to report positive views of reality, an important
factor that can explain this observation in negative
reviews is the use of indirect expressions (i.e., nega-
tion of positive words). To measure the amount
of negation, we use two approaches: 1) a lexicon-
driven approach based on Vader including aint, can-
not, not, and never (Hutto and Gilbert, 2014)3; 2)

3See the appendix for the full list of negation lexicons.

Figure 2: Number of positive and negative words based
on Vader. Negative reviews have more positive words
than negative words.

(a) Overall negation.

(b) Negation before positive and negative lexicons.

Figure 3: Negative reviews generally have more nega-
tions at the sentence level (Figure 3a). Among those
negations, Figure 3b shows that there are substantially
more negations before positive lexicons in negative re-
views than any other combinations.

the negation relation in dependency parsing.4 We
present the results based on Vader negation in the
main paper as it may have higher precision, and all
results hold using dependency parsing.
Negative reviews have more negations than pos-
itive reviews in all datasets. Figure 3a presents
the number of negations at the sentence level. In
all datasets, negative reviews have more negations
than positive reviews (p < 0.001 in all datasets).
In fact, the number of negations in negative re-
views almost doubles that in positive reviews in
Yelp, TripAdvisor, and PeerRead (see samples in
the appendix). This observation is robust at the
word level, which accounts for the fact that nega-
tive reviews tend to be longer.
Negations are commonly associated with posi-
tive words in negative reviews. To further exam-
ine the relation between negations and sentimental
lexicons, we investigate the occurrences of nega-
tions immediately followed by positive words and
negative words. Figure 3b shows that there are
more negations before positive words in negative
reviews than any other combination (p < 0.001 in
all datasets). The difference is especially salient in

4We used spaCy for dependency parsing (Honnibal and
Montani, 2017).
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Dataset Positive words associated with negations

Yelp recommend, sure, like, good, care, great,
special, impressed, fresh, help, ready, enjoy,
friendly, honor, helpful, clean, happy, accept,
greeted, amazing

IMDB like, care, funny, help, sure, recommend, good,
save, fit, great, special, interesting, enjoy, well,
play, better, giving, original, convincing, true

PeerRead clear, sure, convincing, convinced, ready, well,
true, clearly, surprising, novel, convincingly,
recommend, guarantee, improve, interesting,
support, satisfactory, help, acceptable, convince

Table 2: Most frequent positive words that immediately
follow negations in negative reviews, based on Vader.

Yelp, TripAdvisor, and PeerRead. In particular, in
negative reviews in PeerRead, negation before posi-
tive lexicon are approximately 20 times as frequent
as negation before negative lexicon. These results
demonstrate the prevalence of indirect wordings
when people express negative opinions. Moreover,
using indirect expressions to express negative opin-
ions (negation before positive words) is also com-
mon in positive reviews for IMDB and PeerRead.

Table 2 shows the 20 most common words
that immediately follow negations in Yelp, IMDB,
and PeerRead, highlighting the prevalence of “not
clear”, “not convincing”, and “not surprising” in
negative reviews of NLP/ML submissions.

A natural question is how much of the usage
of positive words in Figure 2 can be explained
by negations before positive words. We find that
it is sufficient to explain 11.3% on average. For
instance, negative reviews in Yelp have 0.389 posi-
tive words per sentence, out of which 0.033 words
follow a negation. This accounts for 8.7% of the
usage of positive words. This suggests that nega-
tions before positive words only account for a small
fraction of positive words, despite that they domi-
nate other combinations of negations and sentiment
lexicon. We hypothesize for positive words in neg-
ative reviews, they may be negated in ways beyond
immediate preceding negations (e.g., “nor is the
food great” and “fail to support”).

Similarly, the number of negations followed by
positive/negative words is a fraction of all the nega-
tions (14.2% in negative reviews and 9.7% in pos-
itive reviews). For example, “I will not return”
counts as negation but there is no sentimental lexi-
con. We hypothesize that these negations also tend
to express negative sentiments.

4.3 Sentence-level Sentiment Classification

To capture the sentiment of sentences with positive
words or negations beyond negations immediately
followed by positive words, we rely on sentiment
classifiers. Specifically, we use sentence-level clas-
sification to quantify the extent of negative sen-
tences in those contexts compared to the overall
average in negative reviews.

We fine-tune BERT (Devlin et al., 2019) to per-
form review-level classification for each dataset ex-
cept SST and PeerRead. This is because all reviews
in SST are very short and sentences in negative re-
views are mostly negative whether negation occurs
or not. In the case of PeerRead, the number of
samples is too small to fine-tune the BERT model.
For all other datasets except IMDB and Amazon
Luxury Beauty, we randomly sample 25K positive
reviews and 25K negative reviews as the training
set, and 5K positive reviews and 5K negative re-
views as the test set. For IMDB, we use 12.5K
positive and 12.5K negative training samples pro-
vided for fine-tuning, and for Luxury Beauty, we
use a balanced set of 2.3K positive and 2.3K neg-
ative samples for fine-tuning. We use 90% of the
training samples to fine-tune the BERT model and
10% as the development set to select hyperparame-
ters. We achieved accuracies varying from 94% to
98% for the test set reviews in all datasets. See the
appendix for details of the data split and accuracies.

We use the BERT model fine-tuned on reviews
to predict sentiment of sentences. Note that this
prediction entails a distribution shift as sentences
are shorter than full reviews used to fine-tune BERT
models. However, this is a common strategy for
evaluating rationales in the interpretable machine
learning literature and there exists evidence that
transformer-based models provide strong perfor-
mance despite the distribution shift in the form of
reduced inputs (DeYoung et al., 2020; Hsu et al.,
2020; Carton et al., 2020).5

Figure 4a shows that sentences with positive
words in negative reviews are more likely to be neg-
ative than to be positive (65.1% on average across
all datasets; notably, IMDB is lower but still at
56.13%, above 50%).6 It suggests that the majority
of positive words are negated in some way. While
the remaining minority of sentences with positive

5Bastan et al. (2020) investigates the reverse direction, i.e.,
from paragraph-level predictions to document-level predic-
tions.

6Similar trends hold if we adjust the estimates using TPR,
TNR, FPR, and FNR. See the appendix.
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(a) Fractions of negative sentences in negative reviews.

(b) Fractions of positive sentences in positive reviews.

Figure 4: Sentence-level prediction results based on
fine-tuned BERT classifiers. In negative reviews, sen-
tences with positive words tend to be negative, and
sentences with negations are overwhelmingly negative.
In comparison, sentences with negations are more bal-
anced (44.7% negative) in positive reviews.

words are indeed positive and align with the ten-
dency to report positive views, our results highlight
the important role of indirect expressions in ex-
plaining the positive words in negative reviews.

Furthermore, sentences with negation tend to be
negative (88.6%) based on our classifiers, confirm-
ing our hypothesis that most negations are used
to express negative sentiments in negative reviews.
This is even higher than the average fraction of
negative sentences (73.1%) among all sentences in
negative reviews. In comparison, Figure 4b shows
that positive words in positive reviews tend to re-
flect positive sentiments, indicating no common use
of negation associated with positive words. Mean-
while, negations are not usually associated with
negative sentiments in positive reviews (44.7%),
substantially lower than negations associated with
negative sentiments in negative reviews (88.6%).

5 Conclusion

In this paper, we investigate positivity bias in neg-
ative reviews and highlight the role of indirect ex-
pressions in understanding this phenomenon. We
show that negations followed by positive words are
more prevalent than any other combination in neg-
ative reviews. Given that these indirect wordings
account for only 11.3% of the occurrences of pos-
itive words in negative reviews, we further show
that such sentences with positive words tend to be
negative, based on sentiment classifiers.

While our findings support the prevalence of
indirect expressions, we do not take sentiment in-
tensity into account. In practice, “not good” pro-
vides a different meaning from “not amazing”. We
believe exploring the relationship between nega-
tion and semantic intensity is a promising direc-
tion. Our lexical-driven approaches are limited by
the lexicons included in the dictionaries, which
are typically evaluated independent of the context,
so their sentiment may be different in the specific
context.7 Similarly, our sentence-level prediction
results are limited by the distribution shift when ap-
plying BERT trained on documents to sentences. It
is reassuring that our high-level results hold across
multiple datasets based on both lexical-driven ap-
proaches and sentence-level prediction.

As our study focuses on negative reviews in En-
glish, it is important to examine the generalizability
of our results. For instance, it is important to un-
derstand to what extent the observed positivity bias
in general expressions is driven by such indirect
expressions. Another natural extension is to inves-
tigate other languages. Although our findings are
limited to English reviews, we believe that they
may be applicable to negative opinions in other
languages, as Pollyanna hypothesis (Boucher and
Osgood, 1969) has been validated across languages
and cultures. Finally, our work has implications for
sentiment-related applications in NLP. The preva-
lence of indirect expressions in negative reviews
underscores the importance of modeling and under-
standing negation in sentiment analysis and senti-
ment transfer (Ettinger, 2020).

In general, we believe that online reviews not
only provide valuable data for teaching machines
to recognize sentiments but also allow us to under-
stand how humans express sentiments. We hope
that our work encourages future work to further
investigate the framing choices when we express
emotions and opinions, and their implications on
NLP applications.
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A Vader Lexicons

Table 3 shows the list of negation lexicons in Vader.

aint, arent, cannot, cant, couldnt, darent, didnt, doesnt,
ain’t, aren’t, can’t, couldn’t, daren’t, didn’t, doesn’t, dont,
hadnt, hasnt, havent, isnt, mightnt, mustnt, neither, don’t,
hadn’t, hasn’t, haven’t, isn’t, mightn’t, mustn’t, neednt,
needn’t, never, none, nope, nor, not, nothing, nowhere,
oughtnt, shant, shouldnt, uhuh, wasnt, werent, oughtn’t,
shan’t, shouldn’t, uh-uh, wasn’t, weren’t, without, wont,
wouldnt, won’t, wouldn’t, rarely, seldom, despite

Table 3: Negation lexicons in Vader used for our nega-
tion analysis.

B Samples from PeerRead

Table 4 shows a list of 6 sentences with nega-
tion selected from random negative PeerRead re-
views. Negations are mostly associated with posi-
tive words, both directly and indirectly.

Please do not make incredibly unscientific statements like
this one :“

I’m not convinced about the value of having this artificial
dataset.

For example, at the end of sec 4.4, “ This result is not sur-
prising, given that FOV-R contains additional information
....

It is not clear whether the improvements (if there is) of
the ensemble disappear after data-augmentation.

Empirical analysis is not satisfactory.

But I’m not sure from reading the paper.

Table 4: Sentences with negation sampled from nega-
tive reviews of PeerRead. Positive words are in blue
and negative words are in red. Negations are in italics.

C Additional Plots

Length distribution. See Figure 5 for review-level
length and Figure 6 for sentence-level length distri-
bution for Amazon reviews.

Lexicon distribution. Figure 7 shows the sen-
timent lexicon distribution of all reviews using
LIWC. Figure 8 shows the lexicon distribution of
Amazon reviews using Vader.

Negation distribution. See Figure 9 and Figure 11
for the negation distribution of Amazon reviews
using Vader and dependency parsing respectively.
Figure 10 shows the negation distribution found us-
ing dependency parsing for non-Amazon reviews.

(a) SST, Yelp, IMDB, and Tripadvisor (non-
Amazon datasets).

(b) Amazon datasets.

Figure 5: Review-level length distribution. This shows
the length comparisons of positive and negative reviews
of different datasets. The values represent the average
number of tokens present in each review. Negative re-
views are longer than positive reviews in all datasets
except IMDB and Amazon Luxury Beauty.

Figure 6: Sentence-level length distribution of Amazon
datasets.

(a) Non-Amazon datasets.

(b) Amazon datasets.

Figure 7: Lexicon distributions based on LIWC. Fig-
ure 7a and Figure 7b shows the lexicon distribution of
reviews using posemo and negemo LIWC categories. In
all datasets, negative reviews have fewer positive emo-
tions than positive reviews. They also have more pos-
itive words than negative words. This trend is similar
to that obtained using Vader lexicons in case of non-
Amazon reviews.

In case of negation distributions found using depen-
dency parsing, we used Vader to identify positive
and negative words.

Sentiment predictions. See Figure 4a and Fig-
ure 12 for the fractions of negative sentences in neg-
ative non-Amazon reviews measured by the BERT
model. See Figure 13 for fractions of negative sen-
tences in negative reviews of Amazon. Figure 14
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Dataset Training set Validation set Test set Test accuracy (%)

Yelp 45000 5000 10000 97.51
IMDB 22500 2500 10000 94.38

Tripadvisor 45000 5000 10000 96.66
Automotive 45000 5000 10000 95.65

Cellphones and accessories 45000 5000 10000 95.39
Luxury beauty 4195 467 3040 96.10

Pet supplies 45000 5000 10000 95.60
Sports and outdoors 45000 5000 10000 95.12

Table 5: Dataset split and test accuracies of BERT fine-tuning. For all datasets except IMDB, Luxury Beauty, we
use 45K samples as training set, 5K as validation set, and 10K as test set, randomly sampled from the entire dataset.
In the case of IMDB, we use 22.5K samples for training and 2.5K samples for validation, randomly sampled from
the provided training set of size 25K. We then use 10K samples randomly sampled from the provided test set of
size 25K for testing purposes. In the case of Amazon Luxury Beauty, we use a balanced set of 4195 samples for
training and 467 samples for validation. We then use 3K samples (imbalanced) randomly sampled from the dataset
for testing. All these random samplings were done without replacement.

Figure 8: Lexicon distribution of Amazon datasets us-
ing Vader. Negative reviews have more positive words
than negative words, similar to the trend in SST, Yelp,
IMDB, Tripadvisor, and PeerRead.

(a) Overall negation.

(b) Negation before positive and negative lexicons.

Figure 9: Negation distribution of Amazon datasets us-
ing Vader lexicons. Negative reviews use more nega-
tion words compared to positive reviews. Negative re-
views have substantially more negation words associ-
ated with positive words than negative words.

shows the fractions of positive sentences in positive
reviews. Some of the fractions in our results are
computed based on the TPR, TNR, FPR, and FNR
of the BERT model. We used test set reviews of
the datasets to compute these metrics as they give
more accurate estimate of percentage of positive
and negative sentences in reviews. All BERT clas-
sifiers that we used for predicting the sentiment of
sentences are fine-tuned using the reviews of corre-
sponding datasets. Table 5 shows the dataset split

(a) Overall negation.

(b) Negation before positive and negative lexicons.

Figure 10: Negation distribution using dependency
parsing - non-Amazon datasets. In all non-Amazon
datasets, negative reviews use more negation words
than positive reviews. This observation is inline with
the negation results obtained using Vader lexicons. De-
pendency parsing is used to extract negations from re-
views, and to identify words associated with a negation
word.

and test accuracies of BERT fine-tuning.

Hyperparameter tuning. We did hyperparame-
ter tuning by varying number of epochs, batch
size, and learning rate. We fine-tuned BERT for 4
epochs with batch sizes of 2, 4 and 8, with a learn-
ing rates of 1e-5 and 2e-5. Based on validation
accuracies, the model trained for 2 epochs, with
a batch size of 8 and learning rate of 2e-5 turned
out to be the best performing model for most of the
datasets.

Word-level results. Figure 15 shows the lexicon
distribution using LIWC and Vader. See Figure 16
and Figure 17 for word-level results of negation
distribution using Vader and dependency parsing
respectively.
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(a) Overall negation.

(b) Negation before positive and negative lexicons.

Figure 11: Negation distribution using dependency
parsing - Amazon datasets. Figure 11a shows that neg-
ative reviews have substantially more negation words
than positive words. Figure 11b shows the negation dis-
tribution associated with positive and negative words.
This corresponds to about 16.68% of all negation words
used in the positive and negative reviews based on our
dictionary. Negative reviews also have substantially
more negations before positive words, compared to
other combinations.

Figure 12: Fractions of negative sentences in negative
reviews of Yelp, IMDB, and Tripadvisor. These frac-
tions are corrected using TPR, TNR, FPR, and FNR. It
can be seen that higher proportion of negative reviews
with negation are classified as negative by our BERT
model. This shows that negations in negative reviews
are mostly used to express negative opinions. This ob-
servation holds for other datasets also.

(a) Fractions based on accuracy.

(b) Fractions based on TPR, TNR, FPR, and FNR.

Figure 13: Fractions of negative sentences in nega-
tive Amazon reviews based on fine-tuned BERT clas-
sifiers. The distribution confirms our hypothesis that
most negations are used to express negative sentiments.

(a) Fractions based on accuracy.

(b) Fractions based on TPR, TNR, FPR, and FNR.

(c) Fractions based on TPR, TNR, FPR, and FNR.

Figure 14: Fractions of positive sentences in positive
reviews. We can see that negations in positive re-
views are more balanced with positive and negative
sentences when compared to negative reviews. Also,
sentences with positive lexicons are mostly positive
(86.5%). There are very few negative sentences with
positive lexicons. This holds for all datasets.
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(a) LIWC distribution of non-Amazon datasets. (b) Vader distribution of non-Amazon datasets.

(c) LIWC distribution of Amazon datasets. (d) Vader distribution of Amazon datasets.

Figure 15: Word-level lexicon distribution. At the word-level, positive reviews have more positive words than
negative reviews. However, negative reviews contain more positive words than negative words (except SST with
Vader). The trend that we observe in the sentence-level results can be seen here as well.

(a) Non-Amazon datasets. (b) Non-Amazon datasets.

(c) Amazon datasets. (d) Amazon datasets.

Figure 16: Word-level negation distribution using Vader. Figure 16a and Figure 16c indicate the more frequent use
of negation in negative reviews than in positive reviews at the word-level. Negative reviews have more negations
before positive words in all datasets. This difference is substantially large in case of Yelp, Tripadvisor, PeerRead
and Amazon reviews. This shows that although negative reviews have more positive words than negative words,
these positive words are associated with negations.

(a) Overall negation in non-Amazon datasets. (b) Negation before positive and negative lexicons in non-
Amazon datasets.

(c) Overall negation in Amazon datasets. (d) Negation before positive and negative lexicons in Amazon
datasets.

Figure 17: Word-level negation distribution of all reviews using dependency parsing. With dependency parsing,
we observe the same pattern as in Figure 16. Negative reviews in Yelp, Tripadvisor, PeerRead and Amazon
datasets have substantially more negations in general and also before positive words. This high number of negation
associated with positive words partially explains the higher proportion of positive words in negative reviews.
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Abstract

Large pre-trained language generation models
such as GPT-2 have demonstrated their effec-
tiveness as language priors by reaching state-
of-the-art results in various language genera-
tion tasks. However, the performance of pre-
trained models on task-oriented dialog tasks is
still under-explored. We propose a Pre-trained
Role Alternating Language model (PRAL), ex-
plicitly designed for task-oriented conversa-
tional systems. We design several techniques:
start position randomization, knowledge dis-
tillation, and history discount to improve pre-
training performance. In addition, we intro-
duce a high quality large-scale task-oriented
dialog pre-training dataset. We effectively
adapt PRAL on three downstream tasks. With
much less training data, PRAL outperforms or
is on par with state-of-the-art models.

1 Introduction and Related Work

Current approaches to building task-oriented dialog
systems still require a substantial amount of anno-
tations and therefore are labor-intensive. On the
other hand, large-scale pre-trained language mod-
els such as BERT (Devlin et al., 2019) and GPT
(Radford et al., 2019) have achieved great success
on various NLP tasks. There have been several
attempts to apply these language models to dialog
systems directly. For example, Transfer-Transfo
(Wolf et al., 2019) fine-tuned GPT on the Persona-
Chat dataset (Zhang et al., 2018b) and achieved
the state-of-the-art performance on chitchat dialog
generation. DialoGPT (Zhang et al., 2020) utilizes
a large Reddit corpus to further pre-train GPT-2
(Zhang et al., 2020). All of these studies pointed
to a promising direction towards building dialog
systems with large-scale language models and less
annotation.

∗ Equal contribution

However, these language models applied to dia-
log systems still have some limitations. First, fur-
ther pre-training language models for dialog sys-
tems requires a considerable amount of training
data. Small pre-training dialog datasets would not
provide a large amount of commonsense knowl-
edge needed for dialog generation. However, a
diverse collection of high-quality dialog datasets
is difficult to obtain. Besides, these language mod-
els usually do not consider dialog feature in their
structures.

To tackle these issues, we propose Pre-trained
Role Alternating Language model (PRAL), a lan-
guage model designed explicitly for dialog gen-
eration. To begin with, we collect and process
13 dialog datasets, ranging from TV transcripts to
pizza ordering dialogs, to enrich the pre-training
data with high-quality dialog corpora. Second, we
adopt ARDM proposed in Wu et al. (2019) and
use two separate GPT-2 to model the two speak-
ers in the dialog. Next, we apply Start Position
Randomization (SPR) to cope with the variable
lengths in dialogs, which prevents the language
model from binding the position index with the
text information. Additionally, we utilize a Teacher
model to perform knowledge distillation and incor-
porate common sense knowledge into the dialog
generation. Finally, we re-weigh each utterance
with discount factors and emphasize on the later
part in a dialog to better incorporate contextual
information.

In summary, we propose PRAL and design sev-
eral effective techniques to improve the dialog
model pre-training. Our pre-trained model im-
proves the success rate on CamRest676 and Mul-
tiWOZ dataset, and the coherence and diversity
scores on PersuasionForGood. Our model is data-
efficient and use 10x less than SOLOIST and 1000x
less than DialoGPT in terms of training data size.
We also process and present a collection of high-
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Figure 1: An overview of PRAL’s architecture. PRAL has separate language models for each speaker. The repre-
sentation of user utterance ut or system us is from word embedding E and the randomized position embedding
SPR. HD(t, T ) is the history discount weight of each utterance. Teacher GPT provides supervision for the two
language models. LossLM and LossKL denote the losses of the language models and the KL divergence.

‘

Dataset Statistics
# Datasets 13
# Dialogues 142,298
Avg. turns per dialogue 12.66
Avg. tokens per turn 11.78
Avg. tokens per dialogue 149.25
Total unique tokens 108,106

Table 1: Statistics of our dataset

quality dialog datasets suitable for pre-training
large-scale language models for dialog systems.

2 PretrainDial Dataset for Pre-training

Large clean dialog datasets are difficult to find.
Therefore, we constructed PretrainDial, a large-
scale multi-domain dialog corpus for dialog pre-
training. PretrainDial is a large-scale pre-training
dataset and can only be collected from existing
dialogs. We carefully selected 13 existing dialog
corpora, ranging from chitchat such TV transcripts
to task-oriented dialogs, and design a sophisticated
text processing pipeline. Table. 1 shows the statis-
tics of the PretrainDial dataset. Please check ap-
pendix A for more details about the dataset statistic
and the text processing pipeline.

3 Methods

In this section, we will first briefly introduce
ARDM, our base dialog model, and then describe
a set of techniques proposed in PRAL. Figure 1
shows the main structure of PRAL.

3.1 Alternating Roles Dialog Model

The basic idea behind ARDM (Wu et al., 2019)
is to simultaneously model the user and system
with two separate GPT-2 to capture the different
language styles among different speakers. A dialog
can be considered as a sequence of utterances d =
{u1, s1, u2, s2, . . . , uT , sT }, where T is the total
number of turns. We use pu and ps to represent
the probability of the user utterance and system
utterance. The dialog distribution is defined as:

p(d) =

T∏

t=1

pu(ut|u<t, s<t) ps(st|u≤t, s<t) (1)

However, ARDM does not contain prior knowl-
edge about dialog. In contrast, PRAL is designed
for dialog system and absorbs abundant dialog
knowledge during the pre-training process. To fur-
ther improve ARDM or other dialog generation
models, we propose three effective techniques to
improve pre-training efficiency.

3.2 Start Position Randomization

We propose to randomize the start position to im-
prove pre-training model’s quality. Transformer-
based language models use position embedding to
encode the location information for each token. It
supports a fixed maximum position, and the posi-
tion index always starts from 0. However, since
most dialogs contain less than 1024 tokens, most
vectors in the positional embedding would remain
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zero and not update during pre-training. Besides,
position embedding should only provide location
information. However, the fixed start position will
bond specific text with a particular position in-
dex. For example, “hi” is bonded with index 0
as “hi” usually appears at the beginning of the dia-
log. Therefore, the model is likely to overfit on the
first several positional embeddings.

To address this issue, we propose to perform
Start Position Randomization (SPR). L stands for
the total number of tokens in a dialog, and the
maximum start position index is 1024−L. We ran-
domize the start position to be any number between
0 to 1024− L. It would disentangle the positional
information from the textual meaning and force the
model to update all the positional embeddings.

3.3 Teacher GPT

Neural networks models suffer from catastrophic
forgetting (Kirkpatrick et al., 2016). Since we have
finetuned GPT-2 with a new dialog corpus, the up-
dated model is at risk in forgetting the prior knowl-
edge from the original GPT-2. Teacher Model is
used to calculate the distillation loss (Hinton et al.,
2015) between the fixed GPT and our two language
models. It constrains the language model from gen-
erating a token distribution that is too different from
the original token distribution. The Teacher Model
has two functions. First it avoids language model
from catastrophic forgetting the knowledge in the
original GPT-2 weights (Kirkpatrick et al., 2016).
Secondly, when GPT-2 Large is used as Teacher
Model, it imparts knowledge into our language
models. The ablation study in table 2a validates the
the functions.

3.4 History Discount

In dialog generation, historical utterances closer to
current utterance should have a more significant
impact on the generation than the ones that are fur-
ther. Because in human conversations, we tend to
prioritize local coherence over distant history co-
herence as well .Therefore, we introduce discount
factor γ to re-weigh the importance of each utter-
ance based on the turn number. For a dialog with a
total number of T utterances and its current utter-
ance index to be t, we weigh the language model
loss with γT−t. By incorporating the discount fac-
tor γ, the model focus more on recent history in
the generation process.

3.5 Optimization
We use a language modeling loss to optimize our
model, shown in Equation 2.

LossLM =

T∑

t=1

γT−t
Lt−1∑

l=1

CE(Ptl, Gt(l+1))

(2)
CE denotes the cross-entropy loss. T is the total

number of utterances in a dialog, and Lt is the total
number of tokens in the tth utterance. For the loss
of each utterance t in the dialog, it is weighed by
the discount factor described in section 3.4. We
combine loss from all words as the cross-entropy
between the output probability distribution Pt(l+1)

and the ground truth Gt(l+1).
The final loss combines the language model loss

and KL divergence loss:

Loss = LossLM + αKL(p, pconstriant) (3)

The factor α is used to expedite model conver-
gence and it decreases exponentially as the number
of iterations increases, i.e. α = α0 λ

iter.

4 Experiments

We pre-train PRAL on PretrainDial. We use GPT-
2 large as the Teacher model. We use AdamW
optimizer with warm-up steps as 10 percent of the
training step. The learning rate is set to be 1×10−4.
For the calculation of loss, we set α0 to be 0.1 and
set λ to be 0.9999. The discount factor γ is set
to be 0.95. To show the generalizability, we fine-
tune PRAL on three downstream dialog generation
tasks, CamRest676, MultiWOZ and PersuasionFor-
Good, as is shown in Table. 2. Refer to Appendix B
for more experiment setting.
CamRest676 (Rojas-Barahona et al., 2016) is a di-
alog dataset for restaurant recommendation contain-
ing 680 dialogs. We use BLEU-4 metrics to mea-
sure the quality of generated sentences, and Suc-
cess F1 to evaluate the responses on specific slots,
such as address, phone, postcode. Sequicity is
the state-of-the-art method in task-oriented dialog
tasks that requires annotations. PRAL beat all other
models, including a concurrent work SOLOIST
(Peng et al., 2020) on both BLEU-4 and Success
F1. It is worth noting that PRAL does not need
any annotation. SOLOIST and DialoGPT have
a close performance with our model. However,
SOLOIST uses around 1 Million dialogues, Di-
aloGPT uses around 147 million dialogues, mean-
while we only use around 142K dialogues, which
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Model BLEU-4 Success F1
Sequicity 21.4 0.852
Sequicity (w/o RL) 22.9 0.821
GPT-2-finetune 21.8 0.851
DialoGPT 25.2 0.861
SOLOIST 25.5 0.871
ARDM 26.2 0.864
PRAL 27.2 0.874

- w/ Teacher GPT(small) 26.9 0.869
- w/o Teacher GPT 25.0 0.865
- w/o loss discount 27.0 0.867
- w/o SPR 26.6 0.869

(a) Results on CamRest676 dataset.

Model
Supervision

BLEU-4 Inform Success
Dialog State Dialog Act

Human - - - 0.989 0.965

Baseline X × 18.9 0.825 0.729

HDSA X X 23.6 0.877 0.734

LaRL X × 12.8 0.828 0.792

SOLOIST X × 18.0 0.896 0.793

ARDM × × 20.6 0.874 0.728

PRAL × × 21.2 0.899 0.798

(b) Results on MultiWOZ dataset

Perplexity ↓ BLEU-1 ↑ BLEU-2 ↑ Fluency ↑ Logic ↑ Coherence ↑ Diversity ↑ Overall ↑ Avg.Donation ↑
ARDM 10.1 16.5 6.44 0.39 0.41 0.37 0.27 0.18 0.62
PRAL 10.3 17.3 10.9 0.61 0.59 0.63 0.73 0.82 0.99

(c) PersuasionForGood. Automatic Evaluation and Human Evaluation Results

Table 2: Evaluation on three datasets

is a thousand times less. This further shows PRAL
is data-efficient.

Ablation studies on CamRest676 shows that the
Teacher GPT plays the most important role. The
fact that PRAL with Teacher GPT (Small) in ta-
ble 2a outperforms PRAL without Teacher GPT
(Small) shows the importance of the knowledge in
the original model weights. When using GPT-2
Large as Teacher Model, the performance is better
than that of using GPT-2 small, which validates the
effect of knowledge distillation.

MultiWOZ (Budzianowski et al., 2018) contains
around 10k dialogues covering various domains.
We evaluate the models with on BLEU-4, Inform
Rate, and Success Rate which measures if the sys-
tem provides the requested information. PRAL
outperforms the attention seq2seq model which is
used as the baseline in Multiwoz (Budzianowski
et al., 2018) in all metrics. Without using any anno-
tation, PRAL also outperforms or achieve compara-
ble results with HDSA (Budzianowski et al., 2018),
LaRL (Zhao and Kawahara, 2019) and SOLOIST.
Except for HDSA which requires both dialog state
and dialog act, PRAL achieves a better BLEU score
than all other models. PRAL outperforms ARDM
in all metrics, which further validates the effective-
ness of the pre-training process.

PersuasionForGood We also evaluate our method
on PersuasionForood (Wang et al., 2019), where a
persuader tries to persuade users to donate money
to children. There are a total of 1,017 dialogues. Al-
though not a traditional task-oriented dialog bench-

mark, it is a good benchmark for human evaluation.
Automatic metrics evaluation is efficient but could
fail to capture the text quality on a deeper and com-
plicated level. We choose this task also because it
benefits children. Unlike CamRest676 and Multi-
woz, the language in PersuasionForGood dataset
is so diverse that BLEU-4 scores of all of the mod-
els are too low to be scientific metrics. Therefore,
we use BLEU-1 and BLEU-2 instead. Our model
achieves a significantly higher score on BLUE met-
rics, especially on BLEU-2 (63% up). In human
evaluation, we ask evaluators that how much they
are willing to donate after the conversation and ac-
quire their ratings in terms of fluency, logic, coher-
ence, and diversity. The result suggests that PRAL
outperforms ARDM on all the metrics. For human
evaluation details, please refer to Appendices C.

Case studies show some linguistic problems
in ARDM, such as repetition and unnaturalness.
Meanwhile, with pre-training, PRAL is more nat-
ural and persuasive. Please refer to Appendices D
for an example of PRAL and ARDM.

5 Conclusion

We propose PRAL, a large pre-trained dialog sys-
tem for task-oriented generation. We incorporated
methods that are designed for large dialog system
into PRAL with good performances on three down-
stream tasks. The model generates more fluent,
coherent, diverse, and logical dialogs according to
human evaluation results. We also release a high-
quality dialog dataset for the pre-training process.
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Tseng, Iñigo Casanueva, Ultes Stefan, Ramadan Os-
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A Dataset sources

Our dataset contains high-quality dialogues which
are selected from other 13 datasets listed in Table 3.
PretrainDial is a large-scale pre-training dataset
and can only be collected from existing dialogs.
Due to the page limit as a short paper, we didn’t
elaborate on the process in the paper. First, we
collected dialog datasets that are commonly used
in recent years. Then we filtered out the datasets
with various standards such as content appropri-
ateness. For example, we filtered “Conversations
Gone Awry” Dataset because the conversation in-
volves necessary background knowledge. Then,
we process the text in the selected datasets. This
step is essential since these datasets contain unnec-
essary noise, especially for datasets that contain
raw text such as Friends dataset. The processing in-
cludes: (1) We replaced less informative appeared
entity. For example, replace a long URL link with
the word “URL”. (2) Delete meaningless repeti-
tion. (3) Delete responses that are not written in
English. (4) Delete offensive language. (5).In some
datasets such as Reddit, the conversation involves
more than two people, so we extract a complete
conversation flow involving only two people. Note
there are more detailed process steps. We cannot
describe all of them. We will release the text pro-
cessing script, which we believe is helpful for the
community when collecting dialog datasets.

B Experiment Setting Detail

B.1 Training Details

We initialize PRAL with a large pre-trained lan-
guage model GPT-2 small with 117M parameters
(Radford et al., 2019). We follow a special for-
mat in GPT-2 as the “trigger” so that the model
can zero-shot dialog response generation, by pre-
fixing the user role token “A:” or “B:”, and suffix-
ing the end of utterance token “\n\n\n”. We first
pre-train PRAL on PretrainDial and then further
fine-tune PRAL on the specific task dataset. We
apply AdamW optimizer (Loshchilov and Hutter,
2019), and the number of warm-up ratio is set to 0.1.
Learning rate is 1 × 10−4 in the pre-training pro-
cess and 3×10−5 in fine-tune process.The dropout
rate is set to 0.1 for all tasks. For the calculation of
loss in the pre-training process, we set α0 to be 0.1
and set λ to be 0.9999. The discount factor γ is set
to be 0.95.

B.2 Decoding Details
In the downstream task, we decode utterances by
nucleus sampling (Holtzman et al., 2020) with dif-
ferent hyper-parameters (top-p, top-k). We also
vary the temperature of T < 1 to find the best set-
ting for the specific down-stream dialog task. We
use nucleus sampling for all methods. In Cam-
Rest676 task, we set top-p 0.2 and temperature 0.7
for our model. For MultiWOZ task, we set the
top-p to 0.2 and the temperature to 0.7. In Persua-
sionForGood task, to generate diverse responses,
we use a top-p of 0.9 and a temperature of 0.7.

C Human Evaluation Detail

Twenty people participated in the human evaluation.
ARDM is the state-of-the-art model for Persuasion-
ForGood task. Each person will have ten conversa-
tions with PRAL and ARDM in random orders, five
conversations for each model. 1) For the donation
task, the participants will be asked, “How much
will you donate after talking to the bot? Please
choose from 0-2$”. 2) For fluency, logic, and co-
herence, the participants will be asked, “Which one
do you think is more fluent/logic/coherent?” and
choose the model with better performance on the
corresponding metric. 3) For diversity, participants
compare performances across dialogs, so they will
be asked, “Which bot do you think generates more
diverse responses?” after talking with each model
for five times.

D Persuasion Example

Table 4 and Table 5 show an PRALexample and an
ARDM example.

E Ethical Statement

As knowledge in language model comes from train-
ing corpus, we used a strict pipeline to avoid offen-
sive and other inappropriate text. We believe such
a selective training source could contribute a more
unbiased dialog system. However, the Teacher
Model could be a potential source of biased knowl-
edge, although we notice that is not the case in
our experiments. In the future, we will also ex-
plore how to select the knowledge to import from
Teacher Model.
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1 CCPE-M dataset (Radlinski et al., 2019)
2 ChitChat-Dataset (Challenge, a)
3 Conversations Gone Awry Dataset(Wiki) (Zhang et al., 2018a)
4 Conversations Gone Awry Dataset(CMV) (Zhang et al., 2018a)
5 Cornell Movie-Dialogs Corpus (Danescu-Niculescu-Mizil and Lee, 2011)
6 DailyDialog (Li et al., 2017)
7 Frames Dataset (El Asri et al., 2017)
8 PersonaChat ConvAI2 Dataset (?)
9 The Schema-Guided Dialogue Dataset (Rastogi et al., 2019)
10 Self-dialogue Corpus (Fainberg et al., 2018)
11 Friends Series Dataset (Challenge, b)
12 Taskmaster-1 (Byrne et al., 2019)
13 Reddit Corpus (Reddit)

Table 3: 13 Dataset Sources

Role Utterance
SYS Good morning, how are you doing today?
USR Good!
SYS Have you ever heard of Save the Children?
USR I have not heard of it. Would you like to give an introduction?
SYS It is a charity that helps children in need around the world.
USR Cool
SYS I would like to give a little bit more information.
USR Sure. Go ahead.

SYS
Save the Children is an international non-governmental organization that promotes children’s
rights, provides relief and helps support children in developing countries.

USR It is a good organization. I am glad to know it.

SYS
Yes, they are a very professional organization. Would you be interested in donating some of
your task money to this charity?

USR Sure. I would like to donate some money to it.
SYS Thank you so much!
USR no problem.

SYS
How much do you like to donate to the charity now? Your donation will be directly deducted
from your task payment.

USR I would like to give $2 to them.
SYS Thank you so much!
USR You are welcome
SYS I hope you have a great day!
USR You too.

Table 4: An example conversation between a machine persuader trained by PRAL and a human persuadee.
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Role Utterance
SYS Good morning.
USR Good!
SYS Have you ever heard of Save the Children?
USR I have not heard of it. Would you like to give an introduction?
SYS It is a charity that helps children.
USR Cool
SYS Do you wanna know more about it?.
USR Sure. Go ahead.
SYS It is a charity that helps children.
USR I know. But what is this organization really about?

SYS
Save the Children is an international non-governmental organization that promotes children’s
rights, provides relief and helps support children in developing countries.

USR It is a good organization. I would like to make some contributions.

SYS
Would you be interested in donating some money to this charity?

USR Sure. I think I can do that.

SYS
How much do you like to donate to the charity now? Your donation will be directly deducted
from your task payment.

USR I would like to give $1 to them.
SYS Thank you so much! Bye!
USR Bye!

Table 5: An example conversation between a machine persuader trained by ARDM and a human persuadee.
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Abstract

Natural reading orders of words are crucial
for information extraction from form-like doc-
uments. Despite recent advances in Graph
Convolutional Networks (GCNs) on model-
ing spatial layout patterns of documents, they
have limited ability to capture reading orders
of given word-level node representations in a
graph. We propose Reading Order Equivari-
ant Positional Encoding (ROPE), a new po-
sitional encoding technique designed to ap-
prehend the sequential presentation of words
in documents. ROPE generates unique read-
ing order codes for neighboring words rel-
ative to the target word given a word-level
graph connectivity. We study two fundamen-
tal document entity extraction tasks including
word labeling and word grouping on the pub-
lic FUNSD dataset and a large-scale payment
dataset. We show that ROPE consistently im-
proves existing GCNs with a margin up to
8.4% F1-score.

1 Introduction

Key information extraction from form-like docu-
ments is one of the fundamental tasks of document
understanding that has many real-world applica-
tions. However, the major challenge of solving the
task lies in modeling various template layouts and
formats of documents. For example, a single doc-
ument may contain multiple columns, tables, and
non-aligned blocks of texts (e.g. Figure 1).

The task has been studied from rule-based mod-
els (Lebourgeois et al., 1992) to learning-based
approaches (Palm et al., 2017; Tata et al., 2021).
Inspired by the success of sequence tagging in
NLP (Sutskever et al., 2014; Vaswani et al., 2017;
Devlin et al., 2019), a natural extension is apply-
ing these methods on linearly serialized 2D docu-
ments (Palm et al., 2017; Aggarwal et al., 2020).

∗ Work done while an intern at Google Research.

Figure 1: Illustration of the proposed Reading Order
Equivariant Positional Encoding (ROPE). Top: a por-
tion of a form document with the original word reading
order. Bottom: given a graph connectivity, ROPE gen-
erates equivariant reading order codes with respect to
the target word (in this case the date “3/18/97”).

Nevertheless, scattered columns, tables, and text
blocks in documents make the serialization ex-
tremely difficult, largely limiting the performance
of sequence models. Katti et al. (2018); Zhao et al.
(2019) explore to directly work on 2D document
space using grid-like convolutional models to better
preserve spatial context during learning, but the per-
formance is restrictive to the resolution of the grids.
Recently, Qian et al. (2019); Davis et al. (2019);
Liu et al. (2019) propose to represent documents
using graphs, where nodes define word tokens and
edges describe the spatial patterns of words. Yu
et al. (2020) show state-of-the-art performance of
Graph Convolutional Networks (GCNs) (Duvenaud
et al., 2015) on document understanding.

Although GCNs capture the relative spatial re-
lationships between words through edges, the spe-
cific word ordering information is lost during the
graph aggregation operation, in the similar way to
the average pooling in Convolutional Neural Net-
works (CNNs). However, we believe reading orders
are strong prior to comprehending languages. In
this work, we propose a simple yet effective Read-
ing Order Equivariant Positional Encoding (ROPE)
that embeds the relative reading order context into

314



graphs, bridging the gap between sequence and
graph models for robust document understanding.
Specifically, for every word in a constructed graph,
ROPE generates unique reading order codes for
its neighboring words based on the graph connec-
tivity. The codes are then fed into GCNs with
self-attention aggregation functions for effective
relative reading order encoding. We study two fun-
damental entity extraction tasks including word
labeling and word grouping on the public FUNSD
dataset and a large-scale payment dataset. We ob-
serve that by explicitly encoding relative reading or-
ders, ROPE brings the same or higher performance
improvement compared to spatial relationship fea-
tures in existing GCNs in parallel.

2 Other Related Work

Attention models show state-of-the-art results in
graph learning (Veličković et al., 2018) and NLP
benchmarks (Vaswani et al., 2017). As attention
models with positional encodings are proven to be
universal approximators of sequence-to-sequence
functions (Yun et al., 2020), encoding positions
or ordering is an important research topic. For se-
quence, learned positional embeddings (Gehring
et al., 2017; Devlin et al., 2019; Shaw et al., 2018),
sinusoidal functions and its extensions (Liu et al.,
2020) have been studied. Beyond that, positional
encodings are explored in graphs (You et al., 2019),
2D images (Parmar et al., 2018) and 3D struc-
tures (Fuchs et al., 2020). Lastly, graph modeling
is also applied to other document understanding
tasks, including document classification (Yao et al.,
2019) and summerization (Yasunaga et al., 2017).

3 Method

We follow recent advances in using GCNs for doc-
ument information extraction that relax any serial-
ization assumptions by sequence modeling. GCNs
take inputs (word tokens in this case) of arbitrary
numbers, sizes, shapes and locations, and encode
the underlying spatial layout patterns of documents
through direct message passing and gradient up-
dates between input embedding in the 2D space.

Node definition. Given a document D with N
tokens denoted by T = {t1, t2, ..tN}, we refer ti
to the i-th token in a linearly serialized text se-
quence returned by the Optical Character Recogni-
tion (OCR) engine. The OCR engine generates the
bounding box sizes and locations for all tokens, as

Figure 2: Sample of a β-skeleton graph of a document
of FUNSD.

well as the text within each box. We define node
input representation for all tokens T as vertices
V = {v1, v2, ..vN}, where vi concatenates quan-
tifiable attributes available for ti. In our design, we
use two common input modalities: (a) word em-
beddings from an off-the-shelf pre-trained BERT
model (Devlin et al., 2019), and (b) spatial em-
beddings from normalized bounding box heights,
widths, and Cartesian coordinate values of four
corners.

Edge definition. While the vertices V represent
tokens in a document, the edges characterize the
relationship between the vertices. Precisely, we
define directional edges for a set of edges E, where
each edge eij connects two vertices vi and vj , con-
catenating quantifiable edge attributes. In our de-
sign, we use two input modalities given an edge
eij connecting two vertices: (a) spatial embeddings
from horizontal and vertical normalized relative
distances between centers, top left corners and bot-
tom right corners of the bounding boxes. It also
contains height and width aspect ratios of vi, vj ,
and relative height and width aspect ratios between
vi and vj . (b) Visual embeddings that utilizes Im-
ageNet pre-trained MobileNetV3 (Howard et al.,
2019) to extract visual representations of union
bounding boxes containing vi and vj . The visual
embedding in edge formation picks up visual cues
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Figure 3: Implementation of the proposed Reading Order Equivariant Positional Encoding (ROPE). Given a graph
connectivity, ROPE iterates through the neighboring word vertices in the original reading order and assigns new
ROPE codes (red numbers) to the neighbors, starting from zero. Note that the proposed ROPE codes remain
unchanged if the neighbors and the target shift equally in the document with the same relative reading order,
therefore being equivariant.

such as colors, fonts, separating symbols or lines
between two token bounding boxes (through their
union bounding box). We refer to the spatial em-
bedding in (a) as the edge geometric (EdgeGeo)
feature used in the experimental section.

Graph construction. Our implementation is
based on the β-skeleton graph (Kirkpatrick and
Radke, 1985) with β = 1 for graph construction.
By using the “ball-of-sight” strategy, β-skeleton
graph offers high connectivity between word ver-
tices for necessary message passing while being
much sparser than fully-connected graphs for effi-
cient forward and backward computations (Wang
et al., 2021). A β-skeleton graph example can be
found in Figure 2, and more can be found in Fig-
ure 5 in the Appendix.

Aggregation function. Inspired by the Graph At-
tention Networks (Veličković et al., 2018) and the
Transformers (Vaswani et al., 2017), we use multi-
head self-attention module as our GCN aggregation
(pooling) function. It calculates the importance of
individual message coming from its neighbors to
generate the new aggregated output.

3.1 Reading Order Equivariant Positional
Encoding (ROPE)

Positional encoding (Gehring et al., 2017) in se-
quence models is with an assumption that the input
is perfectly serialized. However, as illustrated in
Figure 1, form-like documents often contain multi-
ple columns or sections. A simple left-to-right and
top-to-bottom serialization commonly provided by
OCR engines does not provide accurate sequential
presentation of words – two consecutive words in
the same sentence might have drastically different
reading order indexes by naive serialization.

Instead of assigning absolute reading order in-
dexes for the entire document at the beginning, we

propose to encode the relative reading order con-
text of neighboring words w.r.t. the target word
based on the given graph connectivity. Figure 3
demonstrates the process of the proposed method:
ROPE iterates through the neighboring word ver-
tices in the original reading order and assigns new
ROPE codes p ∈ N (red numbers) to the neighbors,
starting from zero. The generated codes are then
appended to the corresponding incoming messages
during graph message passing. Hence, ROPE pro-
vides a relative reading order context of the neigh-
borhood for order-aware self-attention pooling.

Note that the generated ROPE codes remain
unchanged if the neighbors and the target shift
equally in the document with the same relative
order, therefore being equivariant. Additionally,
ROPE provides robust sequential output that is con-
sistent even when the neighborhood crosses multi-
ple columns or sections in a document.

Finally, we also explore sinusoidal encoding ma-
trix (Vaswani et al., 2017) besides the index-based
encoding. Our ablation study in Section 4 shows
that using both results in the best performance.

4 Experiments

We evaluate how reading order impacts overall per-
formance of graph-based information extraction
from form-like documents. We adopt two form un-
derstanding tasks as Jaume et al. (2019), including
word labeling and word grouping. Word labeling is
the task of assigning each word a label from a set of
predefined entity categories, realized by node clas-
sification. Word grouping is the task of aggregating
words that belong to the same entity, realized by
edge classification. These two fundamental entity
extraction tasks do not rely on perfect entity word
groupings provided by the dataset and therefore
help decouple the modeling capability provided by
the proposed ROPE in practice. These two tasks
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also effectively demonstrate the quality of the node
embedding and edge embedding of the proposed
graph architecture and decouple any performance
gain from sophisticated Conditional Random Field
(CRF) decoders often used on top of the model.

4.1 Datasets
Payment. We follow Majumder et al. (2020) to
prepare a large-scale payment document collection
that consists of around 18K single-page payments.
The data come from different vendors with differ-
ent layout templates. For both word labeling and
word grouping experiments, we use a 80-20 split
of the corpus as the training and test sets.

We use a public OCR service1 to extract words
from the payment documents. The service gener-
ates the text of each word with their corresponding
2D bounding box. The word boxes are roughly
arranged in an order from left to right and from
top to bottom. We then ask human annotators to
label the words with 13 semantic entities. Each
entity ground truth is described by an entity type
and a list of words generated by the OCR engine,
resulting in over 3M word-level annotations. La-
belers are instructed to label all instances of a field
in a document, therefore our GCNs are trained to
predict all instances of a field as well.

FUNSD. FUNSD (Jaume et al., 2019) is a public
dataset for form understanding in noisy scanned
documents, containing a collection of research,
marketing, and advertising documents that vary
widely in their structure and appearance. The
dataset consists of 199 annotated forms with 9,707
entities and 31,485 word-level annotations for 4 en-
tity types: header, question, answer, and other. For
both word labeling and word grouping experiments,
we use the official 75-25 split for the training and
test sets.

4.2 Experimental Setup
All GCN variants used in the experiment have the
same architecture: The node update function is a
2-layer Multi-Layer Perceptron (MLP) with 128
hidden nodes. The aggregation function uses a
3-layer multi-head self-attention pooling with 4
heads and 32 as the head size. The number of hops
in the GCN is set to 7 for payment dataset and
2 for FUNSD dataset due to the complexity and
scale of the former. We use cross-entropy loss for
both multi-class word labeling and binary word

1cloud.google.com/vision

Types of Word Word
Positional Encoding Labeling Grouping

(ours)
EdgeGeo ROPE F1 P R F1

Pa
ym

en
t 60.80 83.64 83.97 83.80

X 66.09 84.96 84.93 84.94
X 68.17 84.92 86.86 85.88

X X 74.55 86.75 86.53 86.64

FU
N

SD

50.86 82.09 92.21 86.86
X 53.16 87.56 87.17 87.37

X 51.78 88.90 89.67 89.28
X X 57.22 88.64 90.03 89.33

Table 1: Different positional encodings for GCNs on
information extraction tasks. We observe that the read-
ing order encoding (ROPE) is equally or more impor-
tant compared to edge geometric feature (EdgeGeo).

ROPE Word Word
Encoding Function Labeling Grouping
Index Sinusoidal F1 P R F1

Pa
ym

en
t 66.09 84.96 84.93 84.94

X 72.41 87.78 85.31 86.53
X 70.94 88.49 83.00 85.66

X X 74.55 86.75 86.53 86.64
FU

N
SD

53.16 87.56 87.17 87.37
X 55.48 85.95 92.15 88.94

X 54.14 88.72 89.51 89.12
X X 57.22 88.64 90.03 89.33

Table 2: Ablation of positional encoding function used
in the proposed ROPE. We observe that either index or
sine encoding works better than no positional encoding.
Combined works the best.

grouping tasks. We train the models from scratch
using Adam optimizer with the batch size of 1.
The learning rate is set to 0.0001 with warm-up
proportion of 0.01. The training is conducted on 8
Tesla P100 GPUs for approximately 1 day on the
largest corpus.

4.3 Results

We train the GCNs from scratch on all datasets. For
word labeling we use multi-class node classifica-
tion F1-scores as the metric and for word grouping
we use binary edge classification F1-scores as the
metric with the corresponding precision and recall
values.

Importance of reading order. Positional encod-
ing mechanisms are the key components to exploit-
ing layout patterns of words – Answer entities are
usually next to or below the Question entities.
Existing GCN approaches rely on edge geometric
(EdgeGeo) features to capture such spatial rela-
tionships between words in 2D space. Here we
evaluate the importance of the proposed reading
order encoding ROPE with various combinations
of EdgeGeo over the baseline GCN (Qian et al.,
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Figure 4: Sensitivity of ROPE to OCR reading order on
Payment. The proposed ROPE codes remain the same
if the connected neighboring words and target word
shift equally in the document.

2019) as summarized in Table 1. Without any posi-
tional encoding, word labeling F1 drops by 13.75
points and word grouping F1 drops by 2.84 points
on payment dataset. Then, we pass ROPE to incom-
ing messages and find that this reduces the drop to
6.38 points on word labeling and 0.76 points on
word grouping. Similar trend can be observed on
FUNSD as well. Surprisingly, ROPE reduces per-
formance drop more effectively than EdgeGeo on
the larger payment dataset. Given these ablations,
we conclude that reading order information is at
least the same or more important than geometric
features, and they bring orthogonal improvements
to the overall performance.

Reading order encoding function. In practice,
each target word usually has less than 8 neighbor-
ing words given a constructed β-skeleton graph.
Therefore, a natural approach to assigning relative
reading orders is to simply use the ROPE encoded
indexes. In Table 2 we observe that simple index en-
coding immediately improves GCN without ROPE
by 6.32 points on word labeling and 1.59 points
on word grouping using payment corpus. Next
we explore the popular sinusoidal function (with
3 base frequencies) for reading order encoding. It
improves GCN without ROPE by 4.85 points on
word labeling and 0.72 points on word grouping.
Interestingly, sine function provides on par perfor-
mance but does not outperform index encoding.
The reason might be because the β-skeleton graph
does not generate an extremely large number of
neighbors, so simple index encoding is sufficient.

Sensitivity to OCR reading order. We investi-
gate the robustness of ROPE to the quality of the
input reading order. We shuffle the reading order
provided by the OCR engine with a varying percent-
age of words before feeding into ROPE. Figure 4
exhibits the performance. For both word labeling
and word grouping tasks, ROPE provides perfor-
mance improvement up to less than 30% word or-

der shuffling on the large payment corpus. With
30% or more word order shuffled, we observe less
performance degradation on the word labeling, sug-
gesting that the word grouping task is more sensi-
tive to the original OCR reading order.

5 Conclusion

We present a simple and intuitive reading order
encoding method ROPE that is equivariant to rela-
tive reading order shifting. It embeds the effective
positional encoding from sequence models while
leveraging the existing spatial layout modeling ca-
pability of graphs. We foresee the proposed ROPE
can be immediately applicable to other document
understanding tasks.
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Figure 5: β-skeleton examples of documents of FUNSD. By using the “ball-of-sight” strategy, β-skeleton graph
offers high connectivity between word vertices for necessary message passing while being much sparser than
fully-connected graphs for efficient forward and backward computations
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Figure 6: Sample output of the word grouping task on FUNSD with a few failure cases.
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Abstract

Event extraction has long been a challenging
task, addressed mostly with supervised meth-
ods that require expensive annotation and are
not extensible to new event ontologies. In
this work, we explore the possibility of zero-
shot event extraction by formulating it as a
set of Textual Entailment (TE) and/or Ques-
tion Answering (QA) queries (e.g. “A city
was attacked” entails “There is an attack”), ex-
ploiting pretrained TE/QA models for direct
transfer. On ACE-2005 and ERE, our system
achieves acceptable results, yet there is still a
large gap from supervised approaches, show-
ing that current QA and TE technologies fail
in transferring to a different domain. To inves-
tigate the reasons behind the gap, we analyze
the remaining key challenges, their respective
impact, and possible improvement directions1.

1 Introduction

Event extraction (EE) has long been an impor-
tant and challenging NLP task. Figure 1 exem-
plifies a TRANSFER-OWNERSHIP event from
the ACE-2005 dataset (Walker et al., 2006), where
the trigger is “purchased” and the arguments in-
clude “China” (Buyer), “Russia” (Seller), etc. The
subtasks of EE involve identifying and classifying
event triggers and their corresponding arguments.

The predominant approaches normally require
supervision (e.g. Lin et al., 2020), which is both
expensive and inflexible when moving to new event
ontologies. Recent works (Chen et al., 2020; Du
and Cardie, 2020) have pointed out the connection
between Question Answering (QA) and EE in de-
veloping supervised systems. Meanwhile, several
efforts have explored unsupervised methods. Peng
et al. (2016) first attempted to extract event triggers
with minimal supervision using similarity-based

∗ This work was done when the author was visiting the
University of Pennsylvania.

1Our code and models will be available at http://
cogcomp.org/page/publication_view/943.

Figure 1: An example of an event from ACE-2005, and
how arguments are extracted via QA.

heuristics. Huang et al. (2018) and Lai et al. (2020)
explored both trigger and argument extraction un-
der a slightly different setting: training on some
event types and testing on unseen ones. Recently,
Liu et al. (2020) proposed a QA-based zero-shot
argument extraction method, which did not handle
triggers. So far, no method has been proposed to
extract both event triggers and arguments without
any EE training data2. Moreover, the performance
of existing zero-shot attempts, especially on ar-
guments, is still far from satisfactory, yet little is
known about possible underlying reasons.

In this work, we investigate the possibility of
zero-shot EE via transfer learning from Textual
Entailment (TE) and QA. Observe that given pre-
trained TE/QA models, extracting events can be
viewed as answering questions/verifying hypothe-
ses about a text. For example, the sentence in Fig-
ure 1, taken as the premise, would entail the hy-
pothesis “There is a transfer of ownership”, there-
fore providing the event type. Then, by asking Q1

“Who bought something?”, we obtain “China” as
the Buyer. Similarly, Q2, Q3 will yield the Seller
and Artifact, and so on.

Based on the observation above, we propose an
intuitive zero-shot EE approach. It does not re-
quire any event training data, but we still make
several design choices based on the development
set. To demonstrate the level of generalization,
we choose the optimal model with the ACE de-
velopment set, and evaluate it on both ACE and
ERE (LDC2015E29) test sets. The performance

2An exception is Zhang et al. (2021), done concurrently.
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surpasses previous zero-shot approaches on every
subtask when the gold trigger span is given, yet is
still unsatisfying compared to supervised methods,
revealing a large gap in using off-the-shelf TE/QA
models for direct transfer. To shed light on why it
is the case, we identify the key challenges behind
the gap, and attribute each of them to the intrin-
sic weakness of pretrained models, our usage of
them, or the task itself. We then anatomize their
individual impact with an ablation study.

Our contributions are: (1) We propose the first
TE/QA-based event extraction system that tackles
both triggers and arguments without any event train-
ing data; (2) We show that existing TE/QA models
do not support direct domain transfer well; and (3)
We provide insights into the remaining challenges,
their individual influence, and possible directions
for future research.

2 Approach
Our pipeline consists of two modules, trigger ex-
traction and argument extraction, both relying on
pretrained TE/QA models for direct transfer.

The pretrained models we use are all BERT-
based (Devlin et al., 2019; Liu et al., 2019; Lewis
et al., 2020), including a TE model trained on
MNLI (Williams et al., 2018), a Yes/No QA model
trained on BoolQ (Clark et al., 2019), and an extrac-
tive QA model trained on QAMR (Michael et al.,
2018) and/or SQuAD2.03 (Rajpurkar et al., 2018)4.
The TE model, when given a premise and a hypoth-
esis, predicts the relation between them (“entail-
ment”, “contradiction”, or “neutral”). The Yes/No
QA model takes as input a context and a Yes/No
question, and returns either Yes or No. Finally, the
extractive QA model is also given a context but
with a Wh-question, and the answer is a span in
the context. With these models, we design the two
modules for event extraction.

2.1 Trigger Extraction (T-Ext)

We formulate Trigger Extraction (T-Ext) as a TE or
a Yes/No QA task. Only the TE case is illustrated,
since the other only differs in the query format.

To obtain potential event triggers from a sen-
tence, we first run Semantic Role Labeling (SRL)
as a preprocessing step. We use a BERT-based
Verb+Nominal SRL model5. The sentence is then

3Abbreviated as SQuAD henceforth.
4See Appendix A and B for model and dataset details.
5https://github.com/CogComp/

SRL-English

Argument Question
Artifact “What is bought?”
Buyer “Who buys something?”
Seller “Who sells something?”
Price “How much does something

cost?”
Beneficiary “Who is something bought for?”
Time “When is the purchase?”
Place “Where is the purchase?”

Table 1: The predefined question for each argument
type in an TRANSFER-OWNERSHIP event.

chunked into “text pieces”, each containing an SRL
predicate and its core arguments (e.g. A0, A1, A2).

Then, for each text piece, we pass it to the TE
model as the premise, coupled with a hypothesis in
the format of “This text is about ...” for each event
type, inspired by Yin et al. (2019). For example,
the hypothesis for BE-BORN is “This text is about
someone’s birth.”. Then, for each hypothesis, the
model returns the probability that it is entailed by
the premise. If the highest entailment probability
across all event types surpasses a threshold, we
output the corresponding SRL predicate as an
event trigger of this type.6

2.2 Argument Extraction (A-Ext)
We formalize the task of Argument Extraction (A-
Ext) as a sequence of QA interactions with the
pretrained extractive QA model.

Given an input sentence and the extracted trigger,
we ask a set of questions based on the event type
definition, and retrieve the QA model’s answers as
argument predictions.

Consider the example in Figure 1. Assume that
T-Ext has identified a TRANSFER-OWNERSHIP
event with the trigger “purchased”. With this in-
formation, we consult a predefined set of ques-
tions for each argument type in the current event
type. For instance, Table 1 provides a full collec-
tion of questions for all arguments in TRANSFER-
OWNERSHIP. Finally, to obtain the head of the
argument (e.g. “submarines” in “two nuclear sub-
marines”), we implement a simple heuristics-based
head identifier based on the AllenNLP Dependency
Parser7 as a post-processing step.

An important caveat in the above process con-
cerns missing arguments. Specifically, many argu-
ment types in the event template do not occur in
every sentence, e.g. in Figure 1, there is no Place
argument. For simplicity, we call questions with a
non-empty gold answer “has-answer” (HA) ques-

6See Appendix C.2 for configuration details.
7https://demo.allennlp.org/dependency-parsing
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Setting System TI TI+TC AI AI+AC
scratch Lin et al. 20 78.2 74.7 59.2 56.8(supervised)

scratch
(zero-shot)

Huang et al. 188 55.6 49.1 27.8 15.8
Zhang et al. 20 58.3 53.5 16.3 6.3
Ours 45.5 41.7 27.0 16.8

gold TI
(zero-shot)

Huang et al. 18 - 33.5 - 14.7
Zhang et al. 20 - 82.9 - -
Ours - 83.7 38.9 24.2

gold TI+TC
(zero-shot)

Liu et al. 20 - - - 25.8
Ours - - 44.3 27.4

Table 2: The F1 score on ACE-2005. Subtasks include
Trigger Identification (TI), Trigger Classification (TC),
Argument Identification (AI), and Argument Classifica-
tion (AC). See Section 3 for setting definitions. SOTA
results among zero-shot methods are in boldface.

tions and the rest “no-answer” (NA) questions. The
QA model is considered to output NA when it pre-
dicts an empty span or the highest non-empty span
confidence is lower than a threshold.

3 Experimental Setup
We evaluate our system on the ACE-2005 dataset.
Its event ontology has 7 types and 33 subtypes, and
we evaluate T-Ext directly on the subtypes. The
same train/development/test split from Lin et al.
(2020) is used. We make several design choices9

on the development and report results on the test,
ignoring the training set.

To demonstrate how our model generalizes, we
also directly evaluate the optimal model on the
ERE dataset (LDC2015E29). To adapt to ERE, we
define a query for each new event type.

There are four subtasks of event extraction: Trig-
ger Identification (TI), Trigger Classification (TC),
Argument Identification (AI), and Argument Clas-
sification (AC). We experiment under three set-
tings: scratch, where the system performs all sub-
tasks without any gold annotation; gold TI, where
gold trigger spans are given; gold TC, where gold
trigger spans and types are given10.

Following Ji and Grishman (2008), Precision,
Recall, and F1 are used for evaluation11. We eval-
uate argument spans on the head level, consistent
with most prior work (Huang et al., 2018; Wadden
et al., 2019; Lin et al., 2020; Zhang et al., 2021).

4 Results
We report results in comparison with several ex-
isting zero-shot methods (Huang et al., 2018; Liu

8Trained on 10 event types; tested on unseen ones.
9See Appendix C.2 and C.3.

10We don’t have a gold AI setting, since the proposed QA-
based A-Ext module cannot do AC alone.

11Evaluation scripts are adapted from http://blender.
cs.illinois.edu/software/oneie.

Setting System TI TI+TC AI AI+AC
scratch Lin et al. 20 68.4 57.0 50.1 46.5(supervised)
scratch

Ours

39.8 31.8 23.0 15.0
gold TI - 58.4 30.8 18.8
gold TI+TC - - 47.9 27.5
(zero-shot)

Table 3: The F1 score on the ERE. The optimal model
is chosen on ACE dev and directly evaluated on ERE.

et al., 2020; Zhang et al., 2021), as well as a super-
vised SOTA system (Lin et al., 2020).

As shown in Table 2, on the ACE test set, our
system outperforms prior zero-shot methods in ev-
ery subtask under both the “gold TI” and “gold
TI+TC” settings. However, it fails in “scratch”, in-
dicating that the main bottleneck lies in identifying
exact trigger spans. Compared with the supervised
SOTA, our system is still notably worse on TI, AI,
and AC in particular, like other zero-shot systems.

Table 3 shows the results on ERE. Compared to
ACE, our argument detection module generalizes
well, whereas the trigger module does not. Under
the gold TI setting, the TC F1 on overlapping event
types is 70.4, whereas on new event types it is only
19.0, likely because the newly added event types
in ERE have a finer definition. For example, a
model needs to understand “whether a contact is
in-person or not” to distinguish between MEET
(in-person), CORRESPONDENCE (not in-person),
and CONTACT (unsure). Further research should
focus on how to effectively generalize to new event
types with subtle definitions.

5 Analysis
Using the results on ACE, we now present an anal-
ysis of the remaining core challenges of the task,
along with an ablation study on their individual
impact. To further understand the challenges, we
attribute each to the fragility of the pretrained mod-
els (M-Error), our usage of the models (U-Error),
or the task itself (T-Error).

5.1 Trigger Extraction

5.1.1 Error Analysis
We first analyze the distribution of error types.
Specifically, we manually check 100 wrong pre-
dictions and show the counts in Figure 2(a). Only
the most frequent types are discussed here, and the
remaining can be found in Appendix E.1.1.
Subtle trigger (M-Error): This is the main in-
trinsic error from the TE model (17%). Event types
like DIE & EXECUTE, ATTACK & INJURE, and
MEET & PHONE-WRITE are especially confus-
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Figure 2: Error types in trigger and argument extraction in 100 wrong predictions. The count sum exceeds 100
since a prediction can contain multiple types of error. Colors/patterns indicate the origin of the error type.

ing. Though their definitions slightly differ, the
model fails to capture this level of subtlety.
Distracting & Insufficient context (U-Error):
Two other error types from our usage of the TE
model concern distracting (18%) or insufficient
(19%) contexts. An example of distracting context
is “The woman’s parents ... found the decomposing
body”. Given the word “decomposing”, the model
predicts it as a DIE event trigger, due to “body”
in the premise. In contrast, insufficient contexts
provide too little information. For example, in the
sentence “Turkey sent 1,000 troops ... and said it
would send more”, the TE model is asked to pre-
dict the event type of “send” but only sees “it send
more” as the premise, since ”troops” is not part
of the SRL arguments of ”send”. As a result, the
model predicts a TRANSFER-MONEY instead of
TRANSPORT event.
Hypothetical event & Annotation ambiguity (T-
Error): Finally, two error types stem from the
task itself: “hypothetical events” (10%) and “anno-
tation ambiguity” (4%) . Hypothetical events refer
to sentences like “They will not buy it if it is too
expensive”, where the TE model predicts “buy” as a
TRANSFER-OWNERSHIP event trigger. Though
such events should be annotated as per the ACE An-
notation Guideline (3.4), this is not always strictly
followed. Other cases of inconsistent annotation
also cause errors, e.g. among all occurrences of
“give birth to”, the trigger is “give” in some cases,
while “birth” in others.

5.1.2 Ablation Study

We further explore the two U-Error types, by mea-
suring their influence on the performance while

controlling for other factors. Only one type is in-
cluded in this section, and the remaining can be
found in Appendix E.1.2.
Premise design: To see the impact of insuf-
ficient & distracting context, we select all in-
stances of these two types, and change the premise
design. The re-prediction is done under gold-TI.
For insufficient contexts, the premise is now the en-
tire sentence. For distracting contexts, we adopt a
“minimal-pair premise” strategy: Premise A is the
original (e.g. “...decomposing body...”); Premise
B is formed by deleting the candidate trigger from
A (e.g. “...body...”). Then, we take the event type
with the highest entailment probability difference
between A and B as the prediction. Intuitively, this
difference signifies the semantic contribution of the
candidate trigger toward an event type.

After re-prediction, 59% errors are corrected on
insufficient contexts. Among the remaining 41%,
it is either the case that the model still ignores
the context, or that the longer context now brings
distraction.

On distracting contexts, only 18% errors are cor-
rected. The model still cannot overcome the distrac-
tion in most remaining errors, which suggests that
a more complicated strategy is needed in addition
to manipulating the premise.

5.2 Argument Extraction

5.2.1 Error Analysis
Likewise, we analyze 100 wrong argument predic-
tions and discuss several major error types. Fig-
ure 2(b) shows their respective counts. For a full
explanation, see Appendix E.2.1.
Competitive entity & Non-competitive NA ques-
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tions (M-Error): The QA model is intrinsically
weak on “competitive entities” (24%) and “non-
competitive NA questions” (13%).

When identifying an argument for the target
event, another entity of the same type, i.e. a “com-
petitive entity”, can co-occur in the context. For
example, the sentence “A unit ... meets in confiden-
tial sessions to review terrorist activities in Europe”
has a MEET event. When asked “Where is the
meeting”, our model answers “Europe” whereas
the gold answer is empty, since “in Europe” is at-
tached to “activities”. We find that models trained
on extractive QA data are easily fooled by such
entities, if they are of the desired type asked by the
question. Note that competitive entities can occur
for both HA and NA questions.

The other type involves NA questions without
any competitive entity. For example, given the sen-
tence “Iraqi forces responded with artillery fire”,
the question “When is the fire” has no answer, and
there is no Time-type entity to distract the model.
However, the model can still give arbitrary answers
(e.g. “artillery”) with very high confidence, due to
its inherent incapacity for NA questions.
Ungrammatical question (U-Error): This rel-
atively frequent error type (15%) is attributable
to our usage of the QA model. To facilitate the
model to better locate the target event, we em-
bed the trigger in the questions whenever possible,
which sometimes unavoidably makes them ungram-
matical. For example, our question for the Place
argument in a TRANSFER-OWNERSHIP event is
“Where is the {trigger}”. This is only grammatical
when the trigger is a noun. Thus, the QA model
may be confused by such questions.

5.2.2 Ablation Study
To isolate A-Ext, we perform the ablation study
under the gold TI+TC setting. We explore four
error types involving both M-Error and U-Error,
two of which are included in this section, the rest
in Appendix E.2.2.
Pretraining data: To examine the influence of
NA questions, we compare QA models trained on
QAMR (He et al., 2020) and SQuAD2.0, only the
latter of which has NA questions. Results show
that the one trained on QAMR greatly outperforms
the one on SQuAD (+16.9 on AI; +13.6 on AC). To
unveil why it is the case, we propose three hypothe-
ses: (1) QAMR and ACE both have one-sentence
contexts, while SQuAD has paragraphs. (2) The
NA questions in SQuAD “confuses” the model, i.e.

SQuAD and ACE have similar types of HA ques-
tions, while different types of NA questions. (3)
The density of answers per sentence is high in both
QAMR and ACE, while low in SQuAD. We test
each hypothesis using controlled experiments, but
none of them turns out to provide a full explanation
of the performance difference12.

Moreover, we train a binary classifier for HA
and NA questions on a balanced sample of SQuAD,
resulting in over 86 in-domain accuracy. On ACE,
this number drops to 57. This shows that the QA
model cannot even distinguish well between HA
and NA questions when it comes to a new dataset,
let alone answer them.
Question grammaticality: To see the impact
of ungrammatical questions, we manually cor-
rect the grammatical error and re-predict with the
model. Among all relevant wrong predictions, 40%
are now correct. The rest 60% are mostly also NA
questions that prove to require more than just fixing
the grammar to solve.

6 Conclusions
We propose the first complete zero-shot event ex-
traction system via transfer learning from TE and
QA. While QA/TE models perform exceptionally
well on standard benchmarks (SQuAD, QAMR,
MNLI), they do not generalize as expected when
being used on EE datasets. We analyze the limited
success and several main challenges of the current
approach, and provide insights for future improve-
ments.
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A Dataset Statistics

The pretraining datasets we use include MNLI
(Williams et al., 2018), BoolQ (Clark et al., 2019),
QAMR (Michael et al., 2018), and SQuAD2.0 (Ra-
jpurkar et al., 2018). Our evaluation dataset is ACE-
2005 (LDC2006T06) and ERE (LDC2015E29).
Table 4 shows the number of examples in each
dataset.

Dataset Train Dev Test
MNLI 392,702 20,000 20,000
BoolQ 9,427 3,270 3,245
QAMR 73,561 27,535 26,994
SQuAD2.0 130,319 11,873 8,862
ACE-2005 17,172 923 832
ERE - - 2,069

Table 4: Number of examples in all datasets used.

B Details on Pretrained Models

We use three different pretrained representations,
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and BART (Lewis et al., 2020). All mod-
els are implemented with HuggingFace Transform-
ers13.

The pretrained model checkpoints we
use include: bert-base-uncased (110M
parameters), bert-large-uncased (336M

13https://github.com/huggingface/
transformers

parameters), roberta-base (125M param-
eters), roberta-large (335M parameters),
facebook/bart-base (373M parameters),
facebook/bart-large (406M parameters)14.

For TE and Yes/No QA, we finetune
the pretrained models using the stan-
dard SequenceClassification pipeline.
For extractive QA, we finetune the
models using the QuestionAnswering

pipeline15. The finetuning scripts are
adapted from the text-classification

and question-answering examples in the
HuggingFace Transformers repository16. The
hyperparameter values and pretrained models will
be made available via the HuggingFace model
sharing service.

We run our experiments on an NVIDIA GeForce
RTX 2080 Ti GPU, with half-precision floating
point format (FP16) with O1 optimization. The
finetuning take 3 hours to 20 hours depending on
the task.

C Details on Event Extraction System

We include here a full list of hyperparameter config-
urations explored in building our event extraction
system. To select the optimal configuration, we
perform grid-search on the development set based
on the F1 score.

C.1 Preprocessing

We adapt the preprocessing script from Lin et al.
(2020)17. In addition, we use several general-
purpose NLP tools to further process the text, in-
cluding a Part-of-Speech Tagger, a Dependency
Parser, a Constituency Parser18.

C.2 Trigger Extraction Module

Pretrained representation As said in Ap-
pendix B, we experiment with three representations
(BERT, RoBERTa, and BART) with their base and
large versions.

14All models above are available at https://
huggingface.co/transformers/pretrained_
models.html

15Both pipelines are available from https:
//huggingface.co/transformers/model_doc/

16https://github.com/huggingface/
transformers/tree/master/examples/legacy

17http://blender.cs.illinois.edu/
software/oneie

18The POS tagger is from http://www.nltk.org/;
the rest are from https://demo.allennlp.org/.
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Pretraining task We have two pretraining task
choices, TE (using MNLI as training data) and
Yes/No QA (using BoolQ as training data).
SRL constituents in the premise For each pred-
icate, we only include itself and a few core argu-
ments to form the premise. The combinations we
try include: Predicate only; Predicate, Arg0, Arg1,
Arg2; Predicate and all arguments.
Confidence threshold For an SRL predicate to
be identified as an event trigger, we require that
the confidence score of the TE model on the
“Entailment” label (resp. the Yes/No QA model
on the “Yes” label) exceeds a threshold. We
search the threshold value within the range of
[0.80, 0.85, 0.90, 0.95, 0.99].
Hypothesis format We experiment with two
strategies to phrase the hypothesis:

• Topical: The hypothesis is in the format
of “This text is about {topic}”, where the
“{topic}” is predefined for each event type.
For example, for ATTACK, the hypothesis is
“This text is about an attack”.

• Natural: The hypothesis is in a natural lan-
guage format. For example, for ATTACK, it
is “Someone is attacked”19.

The optimal configuration for trigger extraction is:
- Pretrained representation: RoBERTa-large;
- Pretraining task: TE;
- SRL arguments in the premise: Predicate, Arg0,
Arg1, Arg2;
- Confidence threshold: 0.99;
- Hypothesis format: Topical.

C.3 Argument Extraction Module
Pretrained representation As said in Ap-
pendix B, we experiment with three representations
(BERT, RoBERTa, and BART) with their base and
large versions.
Pretraining data We have two extractive QA
datasets for pretraining, SQuAD2.0 and QAMR
(and also their combination).
Question format We experiment with two ques-
tion formats:

• Static: The questions are fixed for each event
type. For example, the question for the Place
argument in an ATTACK event is always
“Where is the attack?”.

19See the Supplemental Material for a list of all hypotheses.

• Contextualized: The questions are instantiated
with the trigger of event instances when pos-
sible. For example, the question for the Place
argument in an ATTACK event is “Where is
the {trigger}?”, where “{trigger}” is the spe-
cific trigger token(s) of the current event in-
stance20.

Confidence threshold For the extractive QA
model to predict a non-empty answer, we require
that its confidence score should be higher than
a threshold. We search within the range of
[0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99].

The optimal configuration for argument extraction
is:
- Pretrained representation: RoBERTa-large;
- Pretraining data: QAMR;
- Question format: Contextualized;
- Confidence threshold: 0.0 (the threshold value
makes almost no difference, since most model
prediction confidence scores are over 0.99).

D Full Results

Complementary to Section 4, Table 5 and Table 6
shows the full results including Precision, Recall,
and F1 score on ACE and ERE respectively.

E Analysis (Continued)

This section elaborates on the remaining error types
and ablation study experiments not covered by Sec-
tion 5.

E.1 Trigger Extraction
E.1.1 Error Analysis
Ignoring context (M-Error): This is another
prevalent error type (11%), which can also be at-
tributed to the TE model. The model focuses too
much on the candidate trigger itself while disregard-
ing the context. Consider the sentence “He was in-
strumental in creating such shows as ‘married with
children’...”. The word “married” is wrongly pre-
dicted as a MARRY event trigger. The TE model
identifies it as an actual event rather than the name
of a show.
SRL coverage (U-Error): Among all errors, 3%
originate from the fact that the target trigger is not
covered by SRL in the first place. This is a matter

20See the Supplemental Material for a list of all questions.
21Trained on 10 event types; tested on unseen ones.
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Setting System TI TI+TC AI AI+AC
P R F P R F P R F P R F

scratch (Lin et al. 2020) - - 78.2 - - 74.7 - - 59.2 - - 56.8(supervised)

scratch
(zero-shot)

(Huang et al. 2018)21 85.7 41.2 55.6 75.5 36.3 49.1 28.2 27.3 27.8 16.1 15.6 15.8
(Zhang et al. 2020) 58.9 57.8 58.3 54.6 53.5 54.0 19.8 38.9 26.3 9.4 18.5 12.5
Ours 34.7 66.3 45.5 31.7 60.6 41.7 20.2 40.4 27.0 12.6 25.2 16.8

gold TI
(zero-shot)

(Huang et al. 2018) - - - - - 33.5 - - - - - 14.7
(Zhang et al. 2020) - - - - - 82.9 - - - - - -
Ours - - - - - 83.7 35.1 43.7 38.9 21.8 27.2 24.2

gold TI+TC
(zero-shot)

(Liu et al. 2020) - - - - - - - - - 25.5 26.0 25.8
Ours - - - - - - 39.4 50.7 44.3 24.4 31.4 27.4

Table 5: The full performance on ACE-2005.

Setting System TI TI+TC AI AI+AC
P R F P R F P R F P R F

scratch (Lin et al. 2020) - - 68.4 - - 57.0 - - 50.1 - - 46.5(supervised)
scratch

Ours

34.5 68.2 45.8 30.2 59.7 40.1 18.2 37.9 25.1 12.1 24.3 16.1
gold TI - - - - - 80.0 33.6 41.1 37.0 21.0 25.7 23.1
gold TI+TC - - - - - - 39.4 50.6 44.3 24.4 31.3 27.4
(zero-shot)

Table 6: The full performance on ERE.

of our usage of the TE model. Specifically, current
SRL systems cannot handle nominal triggers per-
fectly, and cannot detect multi-word triggers like
“step aside” or adjectival triggers like “dead” at all.
Others: Other less-frequent error types besides
those mentioned in the main text are related to
coreference (e.g. when pronouns like “this” are
triggers, ), proper names (e.g. historical events like
“intifada”), confidence scores being too low (thus
not identifying a gold trigger), ambiguity of the
hypothesis (e.g. a “nuclear test” is predicted as a
TRIAL-HEARING event because of the word “test”
and the hypothesis “There is a trial or hearing”.)

E.1.2 Ablation Study
SRL models: To examine the influence of SRL
coverage, we experiment with two more SRL mod-
els: Illinois SRL (Punyakanok et al., 2008)22, and
one that identifies almost every verb and nominal23.
None of the three can identify adjectival/multi-
word predicates. In comparison, every model can
cover over 90% verb triggers, while the nominal
trigger coverage varies from 60% to 95%. On
T-Ext, the highest-coverage model performs the
best (+4.0 F1 on TI, +6.8 on TC over the lowest-
coverage model), proving that the gain from greedy
identification does compensate for the cost in pre-
cision.
Pretraining task: Our results show that the TE-

22https://cogcomp.seas.upenn.edu/page/
software_view/SRL

23Also from https://github.com/CogComp/
SRL-English.

based TC far outperforms its Yes/No QA counter-
part (by 52.6%). One hypothesis is that the pretrain-
ing data for the TE model (MNLI; about 400K ex-
amples) is much larger than that for the QA model
(BoolQ; about 9K). To verify that, we retrain a
TE model on a portion of MNLI of the same size
as BoolQ. As a result, the gap shrinks to 31.4%,
though still quite large. This proves the importance
of the training data size. It also implies that in order
to further improve the current TE-based method,
using larger-scale training data might be promising.
Hypothesis design: It is observed that the hy-
pothesis format also plays a nontrivial role. As
said in Appendix C.2, we experiment with two hy-
pothesis designs, topical and natural. Experiments
show that “topical” is better than “natural” by 1.9%
on TC, suggesting the sensitivity of current TE
systems to the phrasing of texts.

E.2 Argument Extraction

E.2.1 Error Analysis

Too broad argument type (M-Error/U-Error):
For this error type (9%), both the model and our
usage are to blame. Though ACE has a strict def-
inition of arguments, the QA model sometimes
interprets them too broadly. For instance, with the
context “A blindfolded woman was shot in the head
by a hooded militant”, given the question “Where
is the shot”, the model answers “in the head”. This
is not technically wrong, but certainly not the de-
sired Place argument either. We cannot hold the
QA model entirely accountable, since the questions

330



are indeed too generic as well.
Inexact span (U-Error): 15% errors are because
of the inexact match of gold and predicted ar-
gument spans. For instance, the gold is “Satur-
day morning” while the predicted is “morning”.
Though in our evaluation, we compare only heads
of the phrases whenever possible, not all ACE argu-
ments (i.e. those of the “value” type instead of the
“entity” type) have head annotations. Under this cir-
cumstance, the current evaluation framework does
not give credit to a partial match, which can be an
imperfection for potential improvement.
Insufficient context (U-Error): Like in trigger
extraction, the model is sometimes given insuffi-
cient context when predicting arguments (11%).
The target argument can be entirely outside the
SRL constituents of the predicate, thus making it
impossible to extract.
Coreference & Annotation ambiguity (T-
Error): Error types ascribed to the task include
“coreference” (5%) and “annotation ambiguity”
(17%). The former refers to the case when the
model predicts a coreferent of the gold argument.
However, the current evaluation framework still
takes it as an error. The latter happens when
the model makes a sensible prediction, yet it is
inconsistent with the annotation. For example, in
the sentence “Iraqi forces responded with artillery
fire”, the model recognizes “artillery” as the
Instrument for the ATTACK event triggered by
“fire”. However, no Instrument is annotated. Future
evaluation framework should consider allowing
multiple correct answers in such cases of human
disagreement.
Others: Other errors are related to multiple argu-
ments (i.e. the model only predicts one of them),
lacking document-level knowledge (i.e. the sen-
tence itself is not informative enough), and also
arbitrary predictions with no obvious reason.

E.2.2 Ablation Study
Pretraining data: Continuing from the “Pretrain-
ing data” paragraph in Section 5.2.2, we test three
hypotheses for the gap between training on QAMR
and SQuAD.

Hypothesis(1): QAMR and ACE both have one-
sentence contexts, while SQuAD has paragraphs.

We try to verify it by retraining a QA model on
a new version of QAMR with longer contexts, sub-
ject to the same length distribution of SQuAD. This
is done by either a) adding random sentences, or b)
repeating the original sentence. It is observed that

a) almost doesn’t hurt AI at all but AC a little (3%),
and b) lowers AI by 4% and AC by 3%. Therefore,
though longer contexts do weaken the performance
slightly, it is not the main reason behind the gap
between QAMR and SQUAD.

Hypothesis(2): The NA questions in SQuAD
“confuses” the model, i.e. SQuAD and ACE have
similar types of HA questions, while different types
of NA questions.

To test this hypothesis, we retain all HA ques-
tions in SQuAD to make a new dataset. We also
construct a control set of the same size, but with
both NA and HA questions randomly sampled from
the original SQuAD. We retrain a QA model on
each dataset, and find that the HA-only set brings
about an increment by 7% on AI but a drop by
2% on AC, compared to the control set. This sug-
gests that the addition of NA questions in SQuAD
does have mixed effects on event extraction. Future
research should focus on how to better transfer a
model’s ability to identify NA questions to a differ-
ent domain.

Hypothesis (3): The density of answers per sen-
tence is high in both QAMR and ACE, while low
in SQuAD.

To see if this is the cause, we construct a new
version of QAMR by retaining only one QA pair
for each sentence. A control set of the same size,
but with multiple QA pairs per sentence, is also
constructed by randomly deleting sentences (along
with all their QA pairs) from the original QAMR.
Results show that the low-density set is only worse
than the control set on AI by 0.5% and on AC by
0.2%, indicating that the density of answers is not
a critical aspect.
Type constraints in question: Since generic
questions may have been a cause for too broad
argument types, we experiment with a new set of
question templates that contain specific entity-type
requirements whenever possible. For example, in-
stead of “Where is the shot”, we ask “What is the
location of the shot”, which may prevent the model
from answering “in the head”. However, only 11%
errors are fixed after re-prediction, indicating that
encoding type constraints is non-superficial.
Question design: Like the hypothesis format
in trigger extraction, the design of questions also
makes a difference for arguments. As mentioned in
Appendix C.3, we explore two formats, static and
Contextualized. Experiments show that switching
from “static” to “contextualized” boosts AI by 7%
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while impairs AC by 3%, suggesting that contex-
tualized questions overall helps the model better
locate the event.
Context design: To measure the influence of in-
sufficient context, we now use the entire sentence
as the context on these instances, similar to trig-
ger extraction. Results show that 27% of them are
now correct, and another 27% are partially correct
(inexact span).
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Abstract

Pre-trained language models have achieved
human-level performance on many Machine
Reading Comprehension (MRC) tasks, but it
remains unclear whether these models truly un-
derstand language or answer questions by ex-
ploiting statistical biases in datasets. Here, we
demonstrate a simple yet effective method to
attack MRC models and reveal the statistical
biases in these models. We apply the method to
the RACE dataset, for which the answer to each
MRC question is selected from 4 options. It is
found that several pre-trained language mod-
els, including BERT, ALBERT, and RoBERTa,
show consistent preference to some options,
even when these options are irrelevant to the
question. When interfered by these irrelevant
options, the performance of MRC models can
be reduced from human-level performance to
the chance-level performance. Human readers,
however, are not clearly affected by these irrele-
vant options. Finally, we propose an augmented
training method that can greatly reduce models’
statistical biases.

1 Introduction

Reading comprehension tasks are useful to quan-
tify language ability of both humans and machines
(Richardson et al., 2013; Xie et al., 2018; Berzak
et al., 2020). Deep neural network (DNN) models
have achieved high performance on many MRC
tasks, but these models are not easily explainable
(Devlin et al., 2019; Brown et al., 2020). It is also
shown that DNN models are often sensitive to ad-
versarial attacks (Jia and Liang, 2017; Ribeiro et al.,
2018; Si et al., 2019, 2020). Furthermore, it has
been shown DNN models can solve MRC tasks
with relatively high accuracy when crucial infor-
mation is removed so that the tasks are no longer
solvable by humans (Gururangan et al., 2018; Si
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et al., 2019; Berzak et al., 2020). All such evi-
dence suggests that the high accuracy DNN models
achieve on MRC tasks does not solely rely on these
models’ language comprehension ability. At least
to some extent, the high accuracy reflects exploita-
tion of statistical biases in the datasets (Gururangan
et al., 2018; Si et al., 2019; Berzak et al., 2020).

Here, we propose a new model-independent
method to evaluate to what extent models solve
MRC tasks by exploiting statistical biases in the
dataset. As a case study, we only focus on the clas-
sic RACE dataset (Lai et al., 2017), which requires
MRC models to answer multiple-choice reading
comprehension questions based on a passage. The
advantage of multiple-choice questions is that its
performance can be objectively evaluated. At the
same time, it does not require the answer to be
within the passage, allowing to test, e.g., the sum-
marization or inference ability of models. Never-
theless, since models are trained to select the right
option from 4 options, which are designed by hu-
mans and may contain statistical biases, models
may learn statistical properties of the right option.
Consequently, models may tend to select options
with these statistical properties similar to the prop-
erties of the right option without referring to the
passage and question. Our method is designed to
reveal this kind of statistical bias.

The logic of our method is straightforward: For
each multiple-choice question, we gather a large
number of options that are irrelevant to the ques-
tion and passage. We ask the model to score how
likely each irrelevant option is the right option. If a
model is biased, it may always assign higher scores
to some irrelevant options than others, even if all
the options are irrelevant. If a model is so severely
biased, which turns out to be true for all models
tested here, it may assign higher scores to some ir-
relevant options than the true answer and select the
irrelevant option as the answer. Here, the irrelevant
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options that are often selected as the answer are
referred to as magnet options.

2 Dataset and Pre-trained Models

We used RACE dataset in our experiment (Lai et al.,
2017), which is a large-scale reading comprehen-
sion data set covering more than 28,000 passages
and nearly 100,000 questions. The task was to an-
swer multi-choice questions based on a passage.
Specifically, each question contained a triplet (pi,
qi, oi), where pi denoted a passage, qi denoted a
question, and oi denoted a candidate set of 4 op-
tions, i.e., oi = {oi,1, oi,2, oi,3, oi,4}. Only one
option was the correct answer, and the accuracy
was evaluated by the percent of questions being
correctly answered.

We tested 3 pre-trained language models, i.e.,
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and ALBERT (Lan et al., 2019). For each
model, we separately tested the base version and
large version. We built our models based on pre-
trained transformer models in the Huggingface
(Wolf et al., 2020). We fine-tuned pre-trained mod-
els based on the RACE dataset and the parameters
we used for fine-tuning were shown in Appendix
A.1.

The passage, question, and an option were con-
catenated as the input to models, i.e., [CLS, pi,
SEP , qi, oi,j , SEP ]. The 4 options were sepa-
rately encoded. The concatenated sequence was
encoded through the models and the output embed-
ding of CLS was denoted as Ci,j . We used a linear
transformation to convert vector Ci,j into a scalar
S(oi,j), i.e., S(oi,j) = WCi,j . The scalar S(oi,j)
was referred to as the score of the option oi,j . A
score was calculated for each option, and the an-
swer to a question was determined as the option
with the highest score, i.e., argmaxjS(oi,j).

3 Adversarial Method

3.1 Screen Potential Magnet Options
We evaluated potential statistical biases in a
model by giving it a large number of irrelevant
options. For each question, we augmented
the options using a set of irrelevant options,
i.e., OA = {oa1, oa2, ..., oaN}. OA was ran-
domly selected from the RACE dataset with
2 constraints. First, the options belonged to
questions that were not targeted at passage
pi. Second, none of the options in OA was
identical to any of the original options in

oi. The augmented question was denoted as
(pi, qi, {oi,1, oi,2, oi,3, oi,4, oa1, ..., oaj , ..., oaN}).
A score was independently computed for each
option using the procedure mentioned above.
Since the options in OA were irrelevant, an ideal
model should never select them as answers. If
maxjS(oi,j) < S(oak) for any k, however, the
model would select the kth irrelevant option as the
answer. We define an interference score Tk using
the following equation.

Tk =
1

N

N∑

i=1

Ti,k, where

Ti,k =

{
1, if maxjS(oi,j) < S(oak)

0, otherwise

For an ideal model, Ti,k should always be 0.
For a model that makes mistakes but shows no
consistent bias, the interference score should be
comparable for all oak. If the model is biased, the
interference score may be always high for some
options so that the model always selects them as
the answer whether they are relevant to the question
or not.

3.2 Adversarial Attack

We constructed an adversary attack to the MRC
models using one magnet option. For each ques-
tion, we replaced a wrong option with a magnet
option, i.e., oak. The replaced option set was
{oi,1, oi,2, oi,3, oak}. The passage and the question
were not modified, and the answer did not change.
An example was shown in Figure 1. If the model
chooses the original answer even when a magnet
option is introduced, it is stable, not sensitive to the
attack. In contrast, if it chooses the magnet option,
i.e., oak, as the answer, it is successfully attacked.

4 Results and Analyses

4.1 Experiments Setup

To screen potential magnet options, we constructed
a large set of irrelevant options, i.e., OA, by ran-
domly selecting 300 passages from the RACE test
set, which were associated with 1064 questions.
Furthermore, to test whether options in the train-
ing set can cause stronger interference, we also
randomly selected 300 passages from the RACE
training set, which had 1029 questions. The op-
tions from the test and training set were pooled to
create OA, which had 8372 options in total.
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Figure 1: An example of the task and adversarial attack. The option in bold is the true answer, and the option in red
indicates the irrelevant option that was used for attack.

Figure 2: Interference score evaluated based on a sub-
set of questions.

For such a large number of irrelevant options,
it was computationally challenging to evaluate the
interference score of each option based on each
question in the RACE test set. Therefore, as a
screening procedure, we first randomly selected
100 passages from the RACE test set, which have a
total of 346 questions. The interference score for
each of the 8372 irrelevant options was evaluated
based on the 346 questions.

After potential magnet options were determined
by the screening procedure, the interference score
of magnet options were further evaluated using all
questions in RACE test set. For RACE test set,
the accuracy of the models ranged between about
0.6 and 0.85, with RoBERTa-large achieving the
highest performance (Table 1).

4.2 Screening for Magnet Options

The interference score for 8372 options was inde-
pendently calculated for each model. Results were
shown in Figure 2, where the interference score
was sorted for each model. It is found that most of
the irrelevant options had a non-zero interference

score, and some irrelevant options yielded high
interference scores around 0.8, which meant the
models would choose those irrelevant options as
the answer for about 80% of the questions. Irrel-
evant options from the training and test sets had
similar interference scores (Appendix B.1).

It was found that the options with exception-
ally high interference scores around 0.8 were op-
tions that combined other options, such as “all the
above”, which were called the option-combination
series. However, not all the magnet options were
from the option-combination series. Normal state-
ments, e.g., “The passage doesn’t tell us the end of
the story of the movie”, could also reach an average
interference score around 0.34.

The correlation between the interference score
between models were shown in Appendix B.2. We
separately showed the results for options from the
option-combination series and the others. The cor-
relation coefficient between models had an average
value around 0.76, which proved that the interfer-
ence score was correlated across models. From
another perspective, it also implied that our method
could work as a model-insensitive adversarial at-
tack method.

4.3 Validate Magnet Options and Adversarial
Attack

We further evaluated the interference score of po-
tential magnet options based on all the questions
in the RACE test set. To construct a set of magnet
options for this analysis, we averaged the inter-
ference score across 3 models, i.e., BERT-large,
RoBERTa-large, and ALBERT-large. All options
in OA were sorted based on the average score, and
we selected 20 options with the highest interference
scores to construct the magnet option set, with the
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BERT ALBERT RoBERTa
Version base large base large base large

Original accuracy 0.614 0.681 0.683 0.752 0.738 0.846
Adversarial accuracy1 0.094 0.167 0.217 0.064 0.166 0.297
Adversarial accuracy2 0.381 0.524 0.334 0.506 0.656 0.798

Table 1: Model performance on the RACE test set and model performance after being attacked. The superscript 1
meant use “A, B and C” to attack, and the superscript 2 meant use “The passage doesn’t tell us the end of the story
of the movie” to attack.

Figure 3: Interference score evaluated based on the
whole RACE test set.

Figure 4: Interference score for the human experiment
and the corresponding interference scores for the mod-
els.

following constraint: Since options with the high-
est interference scores were often from the option-
combination series, to increase diversity, we only
included 3 options from the option-combination
series. We listed all the 20 magnet options in
Appendix A.2. The interference score calculated
based on the whole RACE test set was shown in
Figure 3, which was very similar to the results
based on the subset of 346 questions in Figure 2
(comparing average-whole and average-subset in
Figure 3).

Table 1 showed the accuracy of models when
attacked by 2 example magnet options. When at-
tacked, the model performance could drop by as

much as 0.68.

4.4 Human Evaluation
Next, we verified whether humans were also con-
fused by the magnet options. We randomly selected
20 questions and 10 magnet options. The 10 mag-
net options selected were listed in Appendix A.3.
Ten questions were not modified while the other 10
questions were attacked using the procedure shown
in Figure 1. Twenty human evaluators answered
these 20 questions online. The accuracy of humans
did not reduce under attack (0.90 in the original
samples and 0.94 in the adversarial samples). The
interference score for humans, also the correspond-
ing interference score for the models, was shown
in Figure 4. Humans were not confused by the
magnet options.

4.5 Training with Adversarial Examples
To reduce sensitivity to magnet options and to po-
tentially reduce the statistical biases of MRC mod-
els, we proposed an augmented training method
and tested the method using the base version of all
models. In the augmented training method, 400
options with the highest interference scores were
selected as the irrelevant option set. For each ques-
tion in the RACE training set, the option set was
augmented by adding an option randomly chosen
from the irrelevant option set. In other words, al-
though each original question has 4 options, during
the augmented training each question has 5 options,
including the 4 original options and a randomly
chosen irrelevant option. We fine-tuned pre-trained
models based on the training set with augmented
options.

The accuracy of models fine-tuned using aug-
mented options were shown in Table 2, comparable
to the original accuracy in Table 1. When attacked,
however, the accuracy of models fine-tuned using
augmented options were much higher than the ad-
versarial accuracy in Table 1.

The 1000 options with the highest interference
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base version BERT ALBERT RoBERTa
Original accuracy 0.601 0.689 0.723

Adversarial accuracy1 0.576 0.681 0.725
Adversarial accuracy2 0.670 0.740 0.778

Table 2: Model performance on the RACE test set based on augmented training.

Figure 5: Interference score of 1186 randomly chosen
options that are not used in augmented training.

scores were selected to evaluate the effect of aug-
mented training, as shown in Appendix C. Result
showed that the interference score dropped for both
the 400 options used for augmented training and
the other 600 options that were not used for train-
ing. Therefore, the effect of augmented training
could generalize to samples not used for augmented
training.

Another experiment was implemented to explore
the impact of irrelevant option set selection. We
separately used options with high and low inter-
ference scores for training and found that options
with higher interference score were more effective
at reducing statistical biases (Figure 5).

4.6 Interference Score Analysis
Did the statistical biases revealed in previous anal-
yses originate from the pre-training process or the
fine-tuning process? Without fine-tuning, the pre-
trained models performed poorly on RACE. How-
ever, results showed that such an imprecise model
could show strong biases (Appendix B.3). Inter-
estingly, the interference score was not correlated
between the pre-trained model and the fine-tuned
model, suggesting that fine-tuning overrode the bi-
ases caused by pre-training and introduced new
forms of biases.

5 Related Work

Our attack strategy distinguishes from previous
work in two ways. First, unlike, e.g., gradient-

based methods (Ebrahimi et al., 2018; Cheng et al.,
2020), our method does not require any knowl-
edge about the structure of DNN models. Second,
some methods manipulate the passage in a passage-
dependent way (Jia and Liang, 2017; Si et al., 2020;
Zhao et al., 2018), while our method manipulate
the options in a passage-independent way. Further-
more, we proposed a strategy to train more robust
models that are insensitive to our attack.

Here, we restricted our discussion to RACE, but
our method is applicable to other tasks in which
the answer is selected from a limited set of op-
tions. For example, for span extraction tasks, such
as SQuAD, the method will insert a large number
of irrelevant phrases into the passage and analyze
which phrases are often selected as the answer. In
this way, our method is similar to the trigger-based
attack methods (Wallace et al., 2019), but the dif-
ference is that our method test whether the inserted
irrelevant phrase is selected as the answer while
the trigger-based methods test whether the content
following the trigger phrase is selected.

6 Conclusion

In summary, we propose a new method to evaluate
the statistical biases in MRC models. It is found
that current MRC models have strong statistical
biases, and are therefore sensitive to adversarial
attack. When attacked using the method proposed
here, model performance can drop from human-
level performance to chance-level performance. To
alleviate sensitivity to such attacks, we provided
an augmented training procedure that effectively
enhances the robustness of models.
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BERT ALBERT RoBERTa
version base large base large base large

learning rate 1.00E-05 1.00E-05 2.00E-05 1.00E-05 1.00E-05 1.00E-05
train epochs 5 5 / / 4 4
train steps / / 12000 12000 / /

train batch size 16 24 32 32 16 16
warmup steps 0 0 1000 1000 1200 1200
weight decay 0 0 0 0 0.1 0.1

Table 3: Hyperparameters for fine-tuning on RACE. We adapted these hyperparamemers from Lan et al. (2019);
Liu et al. (2019); Ran et al. (2019); Zhang et al. (2020).

Figure 6: Interference score evaluated based on a subset
of questions.

A Experimental Details

A.1 Fine-tuning Parameters
The parameters we used in the process of fine-
tuning the pre-trained models were shown in Table
3.

A.2 Magnet Options for Validate
The 20 magnet options used for evaluating the in-
terference scores in Section 4.3 were shown as
following. The sentences selected from the RACE
training set were shown in bold.

1. A, B and C
2. all of A, B and C
3. All of the above.
4. Not all of it can be avoided.
5. It’s well beyond what the author could be re-

sponsible for.
6. The passage doesn’t tell us the end of the

story of the movie
7. didn’t give the real answer

Figure 7: The scatter matrix diagram of the interference
scores of the irrelevant options among models.

8. make us know it’s important to listen to
people who offer a different perspective
through his experience

9. give us a turning point in mind
10. not strictly stuck to
11. You should purposely go out and make these

mistakes so that you can learn from them and
not have them ruin your entire life.

12. what’s inside a person is much more important
than his/her appearance.

13. Not all of it is man-made Ming dynasty
structure.

14. introduce the topic of the passage
15. The central command didn’t exactly state

what had caused the crash.
16. one good turn deserves another.
17. the growing population is not the real cause

of the environment problem.,
18. misfortune may be an actual blessing.
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BERT-base Correlation coefficient accuracy Average interference score
Pre-trained model -0.023 0.315 0.0518

Partly fine-tuned model 0.069* 0.315 0.0214
Fine-tuned model 1 0.613 0.0713
RoBERTa-base Correlation coefficient accuracy Average interference score

Pre-trained model -0.021 0.225 0.3553
Partly fine-tuned model 0.088** 0.289 0.2282

Fine-tuned model 1 0.743 0.0569
ALBERT-base Correlation coefficient accuracy Average interference score

Pre-trained model -0.013 0.254 0.1483
Partly fine-tuned model 0.231** 0.39 0.1043

Fine-tuned model 1 0.702 0.0703

Table 4: Interference score of 1000 randomly selected irrelevant options for the same model architecture before and
after fine-tuning. Correlation coefficient was counted between the interference score before and after fine-tuning
(**P < 0.01, and *P < 0.05).

19. may meet with difficulties sometimes
20. good answers are always coming when we

think outside of the box

A.3 Magnet Options for Human Evaluation

The 10 magnet options used for human evaluating
in Section 4.4.

1. all the above
2. Both B and C
3. do all of the above
4. A and B
5. not strictly stuck to
6. The passage doesn’t tell us the end of the story

of the movie
7. It’s well beyond what the author could be re-

sponsible for.
8. You should purposely go out and make these

mistakes so that you can learn from them and
not have them ruin your entire life.

9. make us know it’s important to listen to people
who offer a different perspective through his
experience

10. Not all of it is man-made Ming dynasty struc-
ture.

B Study of Interference Score

B.1 Comparison of Irrelevant Options from
RACE Training and Test Set

Different models in Figure 2 were separately shown
in Figure 6. It denoted that irrelevant options from
the training and test sets had similar interference
score. Only in BERT-large and ALBERT-large
models, the interference scores of the irrelevant
options from the training set were higher than those

Figure 8: Interference score comparison of models
evaluated based on a subset of questions.
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from the test set in a certain range.

B.2 Comparison of Interference Scores Based
on Different Models

The scatter matrix diagram of the interference
scores of the irrelevant options among different
models was shown in Figure 7. The detailed exper-
imental process was described in Section 4.2. Here,
text in black showed the correlation coefficient of
all options; text in green showed the options of the
option-combination series; text in blue showed the
options except the option-combination series.

In general, the interference scores between mod-
els had high correlation coefficients. Models from
the same architecture were more likely to have sim-
ilar interference scores.

B.3 Comparison of Interference Scores
During Fine-tuning

For each model architecture, the pre-trained model,
partly fine-tuned model (fine-tuned the linear trans-
formation mentioned in Section 2), and fully fine-
tuned model were collected, and were used to eval-
uate the interference score of 1,000 randomly se-
lected irrelevant options. The results were shown
in Table 4. The subset of questions mentioned in
Section 4.1 were used to evaluate the interference
score.

C Augmented Training Result

The augmented training results were shown in Fig-
ure 8. In the figures, the left side of the red line
contains the irrelevant options that were used in
augmented training, and the right is the irrelevant
options that were not involved in augmented train-
ing.
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Abstract

Extensive work has argued in favour of paying
crowd workers a wage that is at least equiva-
lent to the U.S. federal minimum wage. Mean-
while, research on collecting high quality an-
notations suggests using a qualification that re-
quires workers to have previously completed
a certain number of tasks. If most requesters
who pay fairly require workers to have com-
pleted a large number of tasks already then
workers need to complete a substantial amount
of poorly paid work before they can earn a fair
wage. Through analysis of worker discussions
and guidance for researchers, we estimate that
workers spend approximately 2.25 months of
full time effort on poorly paid tasks in order
to get the qualifications needed for better paid
tasks. We discuss alternatives to this qualifica-
tion and conduct a study of the correlation be-
tween qualifications and work quality on two
NLP tasks. We find that it is possible to re-
duce the burden on workers while still collect-
ing high quality data.

1 Introduction

Workers using Amazon Mechanical Turk earn a
median wage of $2.54 an hour (Hara et al., 2018),
far below the U.S.-federal minimum wage of $7.25.
Many researchers pay workers a higher wage, esti-
mating the time spent on a task and giving bonuses
when the time required is higher than expected. At
the same time, researchers try to maintain the qual-
ity of work completed using a variety of methods
(Mitra et al., 2015). One common approach, used
by 19% of tasks (HITs) on the platform (Hara et al.,
2018), is to restrict tasks to workers who have had
a certain number of HITs approved. Tasks with this
restriction have a median wage of $4.14 an hour,
far above the overall average. If most high pay-
ing requesters use this restriction it means workers
need to do a substantial amount of low paid “Quali-
fication Labour”: work to achieve the qualifications
necessary for fairly paid tasks. These tasks may

also be particularly unpleasant work that more ex-
perienced workers are unwilling to do, e.g., they
might involve unsavoury content.

This paper is the first to identify the qualification
labour issue and explore it. We study norms around
the setting of the qualification and the effort work-
ers put in to achieve common milestones. 5,000
accepted tasks, a common requirement, takes over
2 months of effort. We consider several ways to
address the issue, and study the work quality of
groups with different qualifications.1 Using two
tasks, coreference resolution and sentiment anal-
ysis, we find that high quality annotations can be
collected with a lower threshold, though there are
task dependent patterns.

2 Background and Related Work

Crowd work involves large groups of workers do-
ing small paid tasks, known as Human Intelligence
Tasks (HITs). Services such as Amazon Mechani-
cal Turk provide a marketplace to connect workers
with requesters. Requesters create tasks, workers
choose which tasks to do, then either complete
them or return them. Requesters approve or reject
the completed work. Tasks can be restricted to
workers with certain qualifications, e.g. location.
Amazon tracks some statistics that can be used as
qualifications. This work focuses on (1) the total
number of approved HITs a worker has, and (2) the
percentage of their HITs that were accepted.

Since the earliest uses of crowd work in NLP,
there has been work discussing issues such as poor
wages and the lack of worker rights (Fort et al.,
2011). These have also been discussed in the
Human-Computer Interaction research community
(Bederson and Quinn, 2011; Hara et al., 2018).
There has been work on proposing guidelines for
requesters (Sabou et al., 2014), incorporating work-
ers into the IRB process (Libuše Hannah Vepřek,

1Code for our experiments is attached to this paper
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2020), and developing tools to help workers ad-
dress the power imbalance in the online workplace
(Irani and Silberman, 2013, 2016). Concurrent with
this work, another study showed that crowdsourc-
ing is being used more each year in NLP research,
and there is limited awareness of the ethical issues
in this type of work (Shmueli et al., 2021).

Prior work has considered hidden labour in the
day-to-day work of the crowd (Hara et al., 2018).
By observing a large set of workers, they measured
time involved in searching for tasks, returned tasks,
and breaks. Some of these issues have received
additional attention, such as the wasted effort on
tasks that are returned rather than completed (Han
et al., 2019). While informative, those studies do
not account for the hidden labour identified in this
paper, which spans a long period and relates to
worker qualifications.

Part of this work uses online discussion between
workers to understand their work. Prior work has
used a similar approach to understand the overall
experience of crowd workers (Martin et al., 2014).

3 Norms for the Approved HITs Value

The value used as the Approved HITs threshold
is rarely reported in prior work. Three recent pa-
pers specify a 1,000 HIT threshold (Vandenhof,
2019; Oppenlaender et al., 2020; Whiting et al.,
2019). Outside of Computer Science, advice in arti-
cles (Young and Young, 2019) and tutorials (Dozo,
2020) is to set the value to 100 because that is
when another qualification (approval percentage)
becomes active. This difference may be because
other fields primarily use crowdsourcing for sur-
veys rather than data annotation or human computa-
tion systems. It is unclear how representative these
samples are. However, there are other sources that
can provide information about conventions.

One source is Amazon itself. The Mechanical
Turk web-interface provides six options: 50, 100,
500, 1,000, 5,000, 10,000. The MTurk blog has
mentioned this qualification in four posts over the
past eight years (Amazon Mechanical Turk, 2012,
2019, 2017, 2013). In three cases, the value was
5,000 and in the fourth it was 10,000.

Another source is forums and blogs. One pinned
thread on the MTurk Crowd forum advises that
“For your first 1000 HITs you may want to con-
centrate on approval milestones rather than $$$
... most of the better-paying requesters require
1000/5000/10000+ approved HITs” ([jklmnop],

2016). This advice is repeated elsewhere on the
forum and on Reddit ([WhereIsTheWork], 2019;
[CaptainSlop], 2019; [Crazybritzombie], 2018).
This is consistent with observations that 80% of
tasks available to new users pay less than 10 cents
(El Maarry et al., 2018). In one discussion be-
tween a worker and a requester, the worker recom-
mended a threshold of 5,000 ([clickhappier], 2016).
In the blog “Tips For Requesters On Mechanical
Turk”, one post recommends at least 5,000 if not
10,000 (Miele, 2012) while another recommends
at least 1,000 (Miele, 2018). A web article by a
Computer Vision researcher recommended 1,000
(Kumar, 2014). The CloudResearch blog mentions
the threshold once, noting that a value of 10,000
maintains quality without significantly increasing
the time to finish a set of HITs (Robinson, 2015).

Qualifications are also discussed by courses and
tutorials. In the Crowdsourcing & Human Com-
putation course at the University of Pennsylvania,
a guest lecture on “The Best Practices of the Best
Requesters” mentioned the approved HITs quali-
fication and used 10,000 as an example (Milland,
2016). One guide recommends a cutoff of 5,000
(Carlson , née Feenstra).

Overall, we conclude that while practises vary,
5,000 or higher are commonly used as a qualifica-
tion for tasks.

3.1 Impact on Workers

It is difficult to estimate how much time workers
have to spend to achieve this qualification. Aca-
demic studies of time spent on HITs may be skewed
by experienced workers, who have strategies for
finding and completing tasks rapidly. Posts on Red-
dit mention taking anywhere from a month to a
year to reach 5,000 approved HITs. The median of
values reported across several Reddit threads was
2.25 months ([alisonlovepowell], 2015; [Gnome-
Waiter], 2013; [FrobozzYogurt], 2020; [Wat3rloo],
2016). Assuming 20 hours of work a week that is
almost 200 hours of effort (140 seconds per task).

3.2 Potential Solutions

If this type of qualification undercuts our commit-
ment to paying a fair wage, what are alternative
ways to maintain quality? Options include:

1. Introduce screening questions that workers
must complete correctly to proceed to the rest of
the task, e.g., requiring 70%+ on three questions
(Shvartzshnaid et al., 2019). This approach is prob-

344



lematic because it the workers who fail the screen-
ing are doing unpaid labour.

2. Address quality after collection by either
dropping the lowest performing workers (e.g., the
bottom 25% in Bansal et al., 2019), aggregating
a larger number of responses per example, or in-
cluding attention check questions and discarding
workers who get them wrong. All of these incur a
substantial cost to researchers.

3. Controlled crowdsourcing (Roit et al., 2020)
uses an initial task that a broad set of workers can
complete and then limits participation to the work-
ers who did well on that task.2 The cost of this
solution depends on the percentage of workers who
do well on the initial task.

4. Lower the threshold, reducing the required
volume of earlier work. This reduces, but does not
eliminate the qualification labour issue.

These methods can also be combined. Con-
trolled crowdsourcing (method 3) with a very low
Accepted HITs threshold (method 4) for the initial
task would address the ethical concern we raise
here while limiting the additional cost to the re-
cruitment phase. Attention checks and aggregation
(method 2) would then address natural variation in
skill and attention during large-scale annotation.

4 Studying the Approved HITs Value

All of the options above have tradeoffs that will be
task dependent and in practise some combination is
most likely to be the best approach. The first three
have been studied in prior work, but the impact of
lowering the threshold has not. In this section, we
consider the quality of work completed by workers
grouped by how many tasks they have previously
completed and what percentage were accepted.3

4.1 Tasks

Coreference Resolution This is an unusual task
for crowdsourcing, with a novel user interface,
shown in Figure 1. Workers were shown a 244
word document from the Ontonotes dataset (Hovy
et al., 2006). We identified noun phrases using
the Allen NLP parser (Gardner et al., 2018) and
asked workers to identify when one of two spe-

2One potential drawback of this approach is that the fil-
tering step may produce a biased sample of workers. That
may be problematic for more subjective tasks, though with a
large enough sample, responses could be weighted to make
the results more representative.

3This was completed as part of a larger study approved by
the Michigan IRB under study ID HUM00155689.

Figure 1: The user interface for coreference resolu-
tion (zoomed in). Spans are noun phrases automati-
cally assigned by the Allen NLP syntactic parser (Gard-
ner et al., 2018). The two entities being identified are
the two most frequently mentioned entities in the text.
Workers select a label by clicking on it.

cific entities was mentioned. This is not the com-
plete coreference resolution task, but a useful sub-
set. We refined the task over several rounds of
trial annotation to ensure the instructions were
clear and the interface was efficient. Workers were
asked to check their answers if they tried to sub-
mit in less than 75 seconds. If they labeled 8
items in the first 19 words, they were reminded
to only label the two entities specified. We es-
timated that the task would take 3 minutes and
paid workers 60 cents ($12 / hour). Reviews
on TurkerView (https://turkerview.com/) in-
dicated that workers effective hourly rates were
$7.88, $11.25, $12.93, and $14.59.

We measure performance by comparing with
the Ontonotes annotations. An F-score of 80%
or above was considered acceptable, to allow for
minor errors and points of confusion.

Sentiment Analysis This task is very intuitive
and has been crowdsourced extensively in the past.
We closely followed the set up used to annotate
the Stanford Sentiment Treebank (Socher et al.,
2013), with the same task instructions. Workers
were shown ten examples whose true scores were
evenly spread across 0 to 1. We estimated that the
task would take 4 minutes and paid workers 80
cents ($12 / hour). Three reviews of the task on
TurkerView indicated that workers hourly earnings
were $22.15, $48.00, and $50.53, suggesting that
workers were faster than anticipated.
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Figure 2: Results for all fifteen combinations of qualifications. Left (coreference): The percentage of workers
scoring above 80 in each group. Right (sentiment): The percentage of workers whose average error was below
0.15 in each group. Each value is based on fifteen workers, except for sentiment there were fourteen for (98-99%,
500-1,000), and for coreference there were fourteen for (97-98%, 500-1,000), (97-98%, 1,000-2,500), (98-99%,
2,500-5,000), (98-99%, 5,000+), thirteen for (97-98%, 5,000+), and twelve for (97-98%, 2,500-5,000).

To evaluate, the labels are mapped to [0, 1] and
compared with the STS values. An average value
of below 0.15 was considered acceptable. This
cutoff was chosen based on the scores achieved by
two NLP students in our lab (0.11 and 0.09).

4.2 Recruitment
We considered 15 combinations of ranges for
“Approved HITs” and “Percentage Approved”, as
shown by the axis labels in Figure 2. The ranges
are based on the preset values provided by MTurk,
with the addition of a boundary at 2,500 to provide
slightly more detail in the shift between 1,000 and
5,000. Workers also had to be U.S.-based. We used
Javascript-based checks to ensure each worker com-
pleted the task only once. 224 workers completed
the sentiment task and 30 opened and returned it.
216 workers completed the coreference task and
657 opened and returned it. All but two conditions
had 14 or 15 workers (the 97-98%, 5,000+ case for
coreference had 13 and the 97-98%, 2,500-5,000
case for coreference had 12).

4.3 Results
The heatmap on the left of Figure 2 shows the per-
centage of workers scoring 80 or higher on the
coreference resolution task. When the acceptance
percentage is below 99, results are consistently
poor, with fewer than 25% of workers scoring

above 80. When the acceptance percentage is 99-
100, groups with higher approved HITs have better
scores. However, Figure 3 shows that more work-
ers returned the HIT4 in the groups with higher
performance (see the last column of the rightmost
plot), indicating that workers are self-selecting out.

This figure may be interpreted to suggest that
a threshold of 2,500 is necessary. However, the
distribution of workers is not uniform across these
qualification groups. In a follow up experiment
with constraints of 99-100% and 1,000+ using a rel-
atively new requester account, 60 out of 92 workers
scored 80 or above (65%), indicating that there are
more workers in the higher approved HITs groups.

Figure 2 also shows results for the sentiment
task. First, note that many more workers did well
on the task. Comparing the left and right, the trend
for percentage of HITs accepted is repeated, with
consistently poor performance from workers with
values below 99% (the left two columns). While
the best result is the same in both cases (the bottom-
right), the trend in the third column is somewhat
different. Rather than a steady increase in perfor-
mance as the approved HITs threshold increases,
there is a U-shaped pattern. This shows that the
pattern is somewhat task dependent.

4’Returning’ a task means a worker choose to stop working
on it, receives no pay, but also receives no penalty in their
profile for failing to complete the task.
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Figure 3: For coreference resolution, 657 workers opened and returned the HIT without completing it. These three
heatmaps show the number of workers who: left partially correct annotations (Non-Zero Score), left entirely incor-
rect annotations (Zero Score), did not interact with the page (No Action). We do not include plots for sentiment
analysis because only 30 workers opened and returned the HIT.

These results suggest that a lower qualification
can be used without a substantial impact on work
quality. In both tasks, the percentage HITs accepted
qualification had a clear impact, with substantial
decreases in quality from workers with a value be-
low 99%. While that qualification does not directly
force workers to do a substantial amount of work, it
can be impacted by requesters who unfairly reject
work. Our results also suggest that simply paying
workers more will not lead to better work, as the
sentiment analysis task paid considerably better
and did not solve the issue.

5 Ethics and Impact Statement

This work involved consideration of several po-
tential impacts. In terms of privacy, all data from
workers is aggregated for the purpose of presenting
results, and information from worker discussions
were only sourced from publicly shared content. In
terms of payment, we estimated the effort involved
and aimed to pay workers $12 USD an hour. See
the main text for worker reported values of hourly
earnings on the two tasks. This was approved by
the Michigan IRB under study ID HUM00155689.
One potential harm of this work is that it may en-
courage higher values of the Percentage of HITs
Accepted qualification, making workers more vul-
nerable to requesters who unfairly reject work.

6 Conclusion and Recommendations

This paper identifies the issue of Qualification
Labour: the implied labour created by the qual-

ifications we define. Based on a range of sources,
we found that 5,000 approved tasks is one common
threshold. That takes approximately two months to
achieve and the tasks are poorly paid. We con-
ducted a study of two tasks to understand how
work quality correlates with these qualifications.
We found that trends are task dependent, but lower
thresholds can often be used.

We recommend either not using the ”HITs ac-
cepted” qualification, or running preliminary tests
to identify the lowest suitable threshold for your
task. This calibration is necessary because worker
performance depends on many factors, including
the task type, data (including which language),
user interface, and instructions. One particularly
promising method is to use controlled crowdsourc-
ing (Roit et al., 2020) with a low threshold: run
a short task with low or no qualifications to iden-
tify workers, then for the full task only allow those
workers to participate. This reduces the burden on
workers while maintaining high quality work.
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Abstract

Human activities can be seen as sequences
of events, which are crucial to understanding
societies. Disproportional event distribution
for different demographic groups can mani-
fest and amplify social stereotypes, and po-
tentially jeopardize the ability of members in
some groups to pursue certain goals. In this pa-
per, we present the first event-centric study of
gender biases in a Wikipedia corpus. To facili-
tate the study, we curate a corpus of career and
personal life descriptions with demographic in-
formation consisting of 7,854 fragments from
10,412 celebrities. Then we detect events with
a state-of-the-art event detection model, cali-
brate the results using strategically generated
templates, and extract events that have asym-
metric associations with genders. Our study
discovers that Wikipedia pages tend to inter-
mingle personal life events with professional
events for females but not for males, which
calls for the awareness of the Wikipedia com-
munity to formalize guidelines and train the
editors to mind the implicit biases that contrib-
utors carry. Our work also lays the foundation
for future works on quantifying and discover-
ing event biases at the corpus level.

1 Introduction

Researchers have been using NLP tools to ana-
lyze corpora for various tasks on online platforms.
For example, Pei and Jurgens (2020) found that
female-female interactions are more intimate than
male-male interactions on Twitter and Reddit. Dif-
ferent from social media, open collaboration com-
munities such as Wikipedia have slowly won the
trust of public (Young et al., 2016). Wikipedia has
been trusted by many, including professionals in
work tasks such as scientific journals (Kousha and
Thelwall, 2017) and public officials in powerful
positions of authority such as court briefs (Gerken,
2010). Implicit biases in such knowledge sources

Name Wikipedia Description

Loretta
Young
(F)

Career: In 1930, when she was 17, she eloped
with 26-year-old actor Grant Withers; they were
married in Yuma, Arizona. The marriage was

annulled the next year, just as their second
movie together (ironically entitled Too Young
to Marry) was released .

Grant
Withers
(M)

Personal Life: In 1930, at 26, he eloped to
Yuma, Arizona with 17-year-old actress Loretta
Young. The marriage ended in annulment in
1931 just as their second movie together, titled
Too Young to Marry, was released .

Table 1: The marriage events are under the Career sec-
tion for the female on Wikipedia. However, the same
marriage is in the Personal Life section for the male.
yellow background highlights events in the passage.

could have a significant impact on audiences’ per-
ception of different groups, thus propagating and
even amplifying societal biases. Therefore, analyz-
ing potential biases in Wikipedia is imperative.

In particular, studying events in Wikipedia is im-
portant. An event is a specific occurrence under
a certain time and location that involves partici-
pants (Yu et al., 2015); human activities are essen-
tially sequences of events. Therefore, the distribu-
tion and perception of events shape the understand-
ing of society. Rashkin et al. (2018) discovered
implicit gender biases in film scripts using events
as a lens. For example, they found that events with
female agents are intended to be helpful to other
people, while events with male agents are moti-
vated by achievements. However, they focused on
the intentions and reactions of events rather than
events themselves.

In this work, we propose to use events as a lens
to study gender biases and demonstrate that events
are more efficient for understanding biases in cor-
pora than raw texts. We define gender bias as the
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asymmetric association of events with females and
males,1 which may lead to gender stereotypes. For
example, females are more associated with domes-
tic activities than males in many cultures (Leopold,
2018; Jolly et al., 2014).

To facilitate the study, we collect a corpus that
contains demographic information, personal life de-
scription, and career description from Wikipedia.2

We first detect events in the collected corpus using
a state-of-the-art event extraction model (Han et al.,
2019). Then, we extract gender-distinct events with
a higher chance to occur for one group than the
other. Next, we propose a calibration technique to
offset the potential confounding of gender biases
in the event extraction model, enabling us to fo-
cus on the gender biases at the corpus level. Our
contributions are three-fold:

• We contribute a corpus of 7,854 fragments
from 10,412 celebrities across 8 occupations
including their demographic information and
Wikipedia Career and Personal Life sections.

• We propose using events as a lens to study
gender biases at the corpus level, discover a
mixture of personal life and professional life
for females but not for males, and demonstrate
the efficiency of using events in comparison
to directly analyzing the raw texts.

• We propose a generic framework to analyze
event gender bias, including a calibration tech-
nique to offset the potential confounding of
gender biases in the event extraction model.

2 Experimental Setup

In this section, we will introduce our collected cor-
pus and the event extraction model in our study.

Dataset. Our collected corpus contains demo-
graphics information and description sections of
celebrities from Wikipedia. Table 2 shows the
statistics of the number of celebrities with Career
or Personal Life sections in our corpora, together
with all celebrities we collected. In this work, we
only explored celebrities with Career or Personal
Life sections, but there are more sections (e.g., Pol-
itics and Background and Family) in our collected

1In our analysis, we limit to binary gender classes, which,
while unrepresentative of the real-world diversity, allows us to
focus on more depth in analysis.

2https://github.com/PlusLabNLP/
ee-wiki-bias

Career Personal Life Collected

Occ F M F M F M

Acting 464 469 464 469 464 469
Writer 455 611 319 347 1,372 2,466
Comedian 380 655 298 510 642 1,200
Artist 193 30 60 18 701 100
Chef 81 141 72 95 176 350
Dancer 334 167 286 127 812 465
Podcaster 87 183 83 182 149 361
Musician 39 136 21 78 136 549

All 4,425 3,429 10,412

Table 2: Statistics showing the number of celebrities
with Career section or Personal Life section, together
with all celebrities we collected. Not all celebrities
have Career or Personal Life sections.

corpus. We encourage interested researchers to fur-
ther utilize our collected corpus and conduct studies
from other perspectives. In each experiment, we
select the same number of female and male celebri-
ties from one occupation for a fair comparison.

Event Extraction. There are two definitions of
events: one defines an event as the trigger word
(usually a verb) (Pustejovsky et al., 2003b), the
other defines an event as a complex structure includ-
ing a trigger, arguments, time, and location (Ahn,
2006). The corpus following the former definition
usually has much broader coverage, while the lat-
ter can provide richer information. For broader
coverage, we choose a state-of-the-art event detec-
tion model that focuses on detecting event trigger
words by Han et al. (2019).3 We use the model
trained on the TB-Dense dataset (Pustejovsky et al.,
2003a) for two reasons: 1) the model performs
better on the TB-Dense dataset; 2) the annota-
tion of the TB-Dense dataset is from the news
articles, and it is also where the most content of
Wikipedia comes from.4 We extract and lemma-
tize events e from the corpora and count their fre-
quencies |e|. Then, we separately construct dic-
tionaries Em = {em1 : |em1 |, ..., emM : |emM |} and
Ef = {ef1 : |ef1 |, ..., efF : |efF |} mapping events to
their frequency for male and female respectively.

Event Extraction Quality. To check the model
performance on our corpora, we manually anno-
tated events in 10,508 sentences (female: 5,543,

3We use the code at https://github.com/
rujunhan/EMNLP-2019 and reproduce the model trained
on the TB-Dense dataset.

4According to Fetahu et al. (2015), more than 20% of the
references are news articles on Wikipedia.
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Metric TB-D S S-F S-M

Precision 89.2 93.5 95.3 93.4
Recall 92.6 89.8 87.1 89.8
F1 90.9 91.6 91.0 91.6

Table 3: The performance for off-the-shelf event ex-
traction model in both common event extraction dataset
TB-Dense (TB-D) and our corpus with manual annota-
tion. S represents the sampled data from the corpus.
S-F and S-M represent the sampled data for female ca-
reer description and male career description separately.

male: 4,965) from the Wikipedia corpus. Table 3
shows that the model performs comparably on our
corpora as on the TB-Dense test set.

3 Detecting Gender Biases in Events

Odds Ratio. After applying the event detection
model, we get two dictionaries Em and Ef that
have events as keys and their corresponding occur-
rence frequencies as values. Among all events, we
focus on those with distinct occurrences in males
and females descriptions (e.g., work often occurs
at a similar frequency for both females and males
in Career sections, and we thus neglect it from our
analysis). We use the Odds Ratio (OR) (Szumilas,
2010) to find the events with large frequency differ-
ences for females and males, which indicates that
they might potentially manifest gender biases. For
an event en, we calculate its odds ratio as the odds
of having it in the male event list divided by the
odds of having it in the female event list:

Em(en)∑i
emi 6=en

i∈[1,...,M ]

Em(emi )
/

Ef (en)∑j

efj 6=en
j∈[1,...,F ]

Ef (efj )
(1)

The larger the OR is, the more likely an event
will occur in male than female sections by Equa-
tion 1. After obtaining a list of events and their
corresponding OR, we sort the events by OR in de-
scending order. The top k events are more likely to
appear for males and the last k events for females.

Calibration. The difference of event frequencies
might come from the model bias, as shown in other
tasks (e.g., gender bias in coreference resolution
model (Zhao et al., 2018)). To offset the potential
confounding that could be brought by the event
extraction model and estimate the actual event fre-
quency, we propose a calibration strategy by 1)

generating data that contains target events; 2) test-
ing the model performance for females and males
separately in the generated data, 3) and using the
model performance to estimate real event occur-
rence frequencies.

We aim to calibrate the top 50 most skewed
events in females’ and males’ Career and Per-
sonal Life descriptions after using the OR sepa-
rately. First, we follow two steps to generate a
synthetic dataset:

1. For each target event, we select all sentences
where the model successfully detected the tar-
get event. For each sentence, we manually
verify the correctness of the extracted event
and discard the incorrect ones. For the rest,
we use the verified sentences to create more
ground truth; we call them template sentences.

2. For each template sentence, we find the
celebrity’s first name and mark it as a Name
Placeholder, then we replace it with 50
female names and 50 male names that are
sampled from the name list by Ribeiro et al.
(2020). If the gender changes during the name
replacement (e.g., Mike to Emily), we replace
the corresponding pronouns (e.g., he to she)
and gender attributes (Zhao et al., 2018) (e.g.,
Mr to Miss) in the template sentences. As a re-
sult, we get 100 data points for each template
sentence with automatic annotations. If there
is no first name in the sentence, we replace
the pronouns and gender attributes.

After getting the synthetic data, we run the event
extraction model again. We use the detection re-
call among the generated instances to calibrate the
frequency |e| for each target event and estimate the
actual frequency |e|∗, following:

|e|∗ = |e|
TP (e)/(TP (e) + FP (e))

(2)

Then, we replace |e| with |e|∗ in Equation 1, and
get k female and k male events by sorting OR as be-
fore. Note that we observe the model performances
are mostly unbiased, and we have only calibrated
events that have different performances for females
and males over a threshold (i.e., 0.05).6

5ACE dataset: https://www.ldc.upenn.edu/
collaborations/past-projects/ace

5We did not show the result for the artists and
musicians due to the small data size.

6Calibration details and quantitative result in App. A.2.

352



Occupation Events in Female Career Description Events in Male Career Description WEAT∗ WEAT

Writer divorce, marriage, involve, organize,
wedding

argue, election, protest, rise,
shoot -0.17 1.51

Acting divorce, wedding, guest, name, commit support, arrest, war, sue, trial -0.19 0.88

Comedian birth, eliminate, wedding, relocate,
partner

enjoy, hear, cause, buy, conceive -0.19 0.54

Podcaster land, interview, portray, married, report direct, ask, provide, continue, bring -0.24 0.53

Dancer married, marriage, depart, arrive,
organize

drop, team, choreograph, explore
break -0.14 0.22

Artist paint, exhibit, include, return, teach start, found, feature, award, begin -0.02 0.17

Chef hire, meet, debut, eliminate, sign include, focus, explore, award, raise -0.13 -0.38

Musician run, record, death, found, contribute sign, direct, produce, premier, open -0.19 –0.41

Annotations: Life Transportation Personell Conflict Justice Transaction Contact

Table 4: Top 5 extracted events that occur more often for females and males in Career sections across 8 occupations.
We predict event types by applying EventPlus (Ma et al., 2021) on sentences that contain target events and take the
majority vote of the predicted types. The event types are from the ACE dataset.5 We calculate WEAT scores with
all tokens excluding stop words (WEAT∗ column) and only detected events (WEAT column) for Career sections.
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Figure 1: The percentile of extracted events among all detected events, sorted by their frequencies in descending
order. The smaller the percentile is, the more frequent the event appears in the text. The extracted events are
among the top 10% for the corresponding gender (e.g., extracted female events among all detected events for female
writers) and within top 40% percent for the opposite gender (e.g., extracted female events among all detected events
for male writers). The figure shows that we are not picking rarely-occurred events, and the result is significant.

WEAT score. We further check if the extracted
events are associated with gender attributes (e.g.,
she and her for females, and he and him
for males) in popular neural word embeddings
like Glove (Pennington et al., 2014). We quantify
this with the Word Embedding Association Test
(WEAT) (Caliskan et al., 2017), a popular method
for measuring biases in text. Intuitively, WEAT
takes a list of tokens that represent a concept (in
our case, extracted events) and verifies whether
these tokens have a shorter distance towards fe-
male attributes or male attributes. A positive value
of WEAT score indicates that female events are
closer to female attributes, and male events are
closer to male attributes in the word embedding,
while a negative value indicates that female events
are closer to male attributes and vice versa.7

7Details of WEAT score experiment in App. A.4.

To show the effectiveness of using events as a
lens for gender bias analysis, we compute WEAT
scores on the raw texts and detected events sepa-
rately. For the former, we take all tokens excluding
stop words.8 Together with gender attributes from
Caliskan et al. (2017), we calculate and show the
WEAT scores under two settings as “WEAT∗” for
the raw texts and “WEAT” for the detected events.

4 Results

The Effectiveness of our Analysis Framework.
Table 4 and Table 5 show the associations of both
raw texts and the extracted events in Career and
Personal Life sections for females and males across
occupations after the calibration. The values in
WEAT∗ columns in both tables indicate that there

8We use spaCy (https://spacy.io/) to tokenize the
corpus and remove stop words.
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Occupation Events in Female Personal Life Description Events in Male Personal Life Description WEAT∗ WEAT

Writer bury, birth, attend, war, grow know, report, come, charge, publish -0.05 0.31

Acting pregnant, practice, wedding, record, convert accuse, trip, fly, assault, endorse -0.14 0.54

Comedian feel, birth, fall, open, decide visit, create, spend, propose, lawsuit -0.07 0.07

Podcaster date, describe, tell, life, come play, write, born, release, claim -0.13 0.57

Dancer marry, describe, diagnose, expect, speak hold, involve, award, run, serve -0.03 0.41

Chef death, serve, announce, describe, born birth, lose, divorce, speak, meet -0.02 -0.80

Annotations: Life Transportation Personell Conflict Justice Transaction Contact

Table 5: Top 5 events in Personal Life section across 6 occupations.9 There are more Life events (e.g., “birth”
and “marry”) in females’ personal life descriptions than males’ for most occupations. While for males, although
we see more life-related events than in the Career section, there are events like “awards” even in the Personal Life
section. The findings further show our work is imperative and addresses the importance of not intermingling the
professional career with personal life regardless of gender during the future editing on Wikipedia.

was only a weak association of words in raw texts
with gender. In contrast, the extracted events are
associated with gender for most occupations. It
shows the effectiveness of the event extraction
model and our analysis method.

The Significance of the Analysis Result. There
is a possibility that our analysis, although it picks
out distinct events for different genders, identifies
the events that are infrequent for all genders and
that the frequent events have similar distributions
across genders. To verify, we sort all detected
events from our corpus by frequencies in descend-
ing order. Then, we calculate the percentile of
extracted events in the sorted list. The smaller the
percentile is, the more frequent the event appears
in the text. Figure 1 shows that we are not picking
the events that rarely occur, which shows the signif-
icance of our result.10 For example, Figure 1a and
Figure 1b show the percentile of frequencies for
selected male and female events among all events
frequencies in the descending order for male and
female writers, respectively. We can see that for the
corresponding gender, event frequencies are among
the top 10%. These events occur less frequently for
the opposite gender but still among the top 40%.

Findings and Discussions. We find that there
are more Life events for females than males in
both Career and Personal Life sections. On the
other hand, for males, there are events like “awards”
even in their Personal Life section. The mixture
of personal life with females’ professional career
events and career achievements with males’ per-
sonal life events carries implicit gender bias and re-

10See plots for all occupations in Appendix A.5.

inforces the gender stereotype. It potentially leads
to career, marital, and parental status discrimina-
tion towards genders and jeopardizes gender equal-
ity in society. We recommend: 1) Wikipedia ed-
itors to restructure pages to ensure that personal
life-related events (e.g., marriage and divorce) are
written in the Personal Life section, and profes-
sional events (e.g., award) are written in Career
sections regardless of gender; 2) future contributors
should also be cautious and not intermingle Per-
sonal Life and Career when creating the Wikipedia
pages from the start.

5 Conclusion

We conduct the first event-centric gender bias anal-
ysis at the corpus level and compose a corpus by
scraping Wikipedia to facilitate the study. Our anal-
ysis discovers that the collected corpus has event
gender biases. For example, personal life related
events (e.g., marriage) are more likely to appear
for females than males even in Career sections. We
hope our work brings awareness of potential gen-
der biases in knowledge sources such as Wikipedia,
and urges Wikipedia editors and contributors to be
cautious when contributing to the pages.
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Ethical Considerations

Our corpus is collected from Wikipedia. The con-
tent of personal life description, career description,
and demographic information is all public to the
general audience. Note that our collected corpus
might be used for malicious purposes. For example,
it can serve as a source by text generation tools to
generate text highlighting gender stereotypes.

This work is subject to several limitations: First,
it is important to understand and analyze the event
gender bias for gender minorities, missing from
our work because of scarce resources online. Fu-
ture research can build upon our work, go be-
yond the binary gender and incorporate more anal-
ysis. Second, our study focuses on the Wikipedia
pages for celebrities for two additional reasons be-
sides the broad impact of Wikipedia: 1) celebri-
ties’ Wikipedia pages are more accessible than non-
celebrities. Our collected Wikipedia pages span
across 8 occupations to increase the representa-
tion of our study; 2) Wikipedia contributors have
been extensively updating celebrities’ Wikipedia
pages every day. Wikipedia develops at a rate of
over 1.9 edits every second, performed by editors
from all over the world (wik, 2021). The celebri-
ties’ pages get more attention and edits, thus better
present how the general audience perceives impor-
tant information and largely reduce the potential
biases that could be introduced in personal writings.
Please note that although we try to make our study
as representative as possible, it cannot represent
certain groups or individuals’ perceptions.

Our model is trained on TB-Dense, a public
dataset coming from news articles. These do not
contain any explicit detail that leaks information
about a user’s name, health, negative financial sta-
tus, racial or ethnic origin, religious or philosophi-
cal affiliation or beliefs, trade union membership,
alleged or actual crime commission.
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A Appendix

A.1 Quality Check: Event Detection Model

To test the performance of the event extraction
model in our collected corpus from Wikipedia.
We manually annotated events in 10,508 (female:
5,543, male: 4,965) sampled sentences from the
Career section in our corpus. Our annotators are
two volunteers who are not in the current project
but have experience with event detection tasks. We
asked annotators to annotate all event trigger words
in the text. During annotation, we follow the defini-
tion of events from the ACE annotation guideline.11

We use the manual annotation as the ground truth
and compare it with the event detection model out-
put to calculate the metrics (i.e., precision, recall
and F1) in Table 3.

A.2 Calibration Details

To offset the potential confounding that could be
brought by the event extraction model and esti-
mate the actual event frequency of |e|∗, we use
the recall for the event e to calibrate the event fre-
quency |e| for females and males separately. Fig-
ure 2 shows the calibration result for the 20 most
frequent events in our corpus. Please note that
Figure 2 (a)-(h) show the quantitative result for
extracted events in the Career sections across 8
occupations, and Figure 2 (i)-(n) for the Personal
Life sections.

Example Sentence Substitutions for Calibra-
tion. After checking the quality of selected sen-
tences containing the target event trigger, we
use 2 steps described in Section 3 Calibration
to compose a synthetic dataset with word sub-
stitutions. Here is an example of using Name
Placeholder: for target event trigger “married”
in Carole Baskin’s Career section, we have:

At the age of 17, Baskin worked at a Tampa
department store. To make money, she be-
gan breeding show cats; she also began res-
cuing bobcats, and used llamas for a lawn
trimming business. In January 1991, she
married her second husband and joined his
real estate business.

First, we mark the first name Baskin as Name
Placeholder and find all gender attributes and

11https://www.ldc.upenn.edu/
sites/www.ldc.upenn.edu/files/
english-events-guidelines-v5.4.3.pdf

pronouns which are consistent with the celebrity’s
gender. Then, we replace Baskin with 50 female
names and 50 male names from Ribeiro et al.
(2020). If the new name is a male name, we change
the corresponding gender attributes (none in this
case) and pronouns (e.g., she to he, her to his).

Another example is for the context containing
the target event trigger “married” in Indrani
Rahman’s Career section, where there is no first
name:

In 1952, although married, and with a child,
she became the first Miss India, and went
on to compete in the Miss Universe 1952
Pageant, held at Long Beach, California.
Soon, she was travelling along with her
mother and performing all over the world...

We replace all pronouns (she to he, her to his) and
gender attributes (Miss to Mr).

Interpret the Quantitative Calibration Result.
We use the calibration technique to calibrate po-
tential gender biases from the model that could
have complicated the analysis. In Figure 2, we can
see that there is little gender bias at the model level:
the model has the same performance for females
and males among most events.

Besides, we notice that the model fails to detect
and has a low recall for few events in the gener-
ated synthetic dataset. We speculate that this is
because of the brittleness in event extraction mod-
els triggered by the word substitution. We will
leave more fine-grained analysis at the model level
for future work. We focus on events for which the
model performs largely different for females and
males during our calibration. Thus, we select and
focus on the events that have different performance
for females and males over a threshold, which we
take 0.05 during our experiment, to calibrate the
analysis result.

A.3 Top Ten Extracted Events
Table 6 and Table 7 show the top 10 events and
serves as the supplement of top 5 events that we
reported for Career and Personal Life sections.

A.4 Details for Calculating WEAT Score
The WEAT score is in the range of −2 to 2. A high
positive score indicates that extracted events for
females are more associated with female attributes
in the embedding space. A high negative score
means that extracted events for females are more
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Occupation Events in Female Career Description Events in Male Career Description

Writer divorce, marriage, involve, organize, wedding,
donate, fill, pass, participate, document

argue, election, protest, rise, shoot,
purchase, kill, host, close, land

Acting divorce, wedding, guest, name, commit,
attract, suggest, married, impressed, induct

support, arrest, war, sue, trial,
vote, pull, team, insist, like

Comedian birth, eliminate, wedding, relocate, partner,
pursue, impersonate, audition, guest, achieve

enjoy, hear, cause, buy, conceive,
enter, injury, allow, acquire, enter

Podcaster land, interview, portray, married, report,
earn, praise, talk, shoot, premier

direct, ask, provide, continue, bring,
election, sell, meet, read, open

Dancer married, marriage, depart, arrive, organize
try, promote, train, divorce, state

drop, team, choreograph, explore, break,
think, add, celebrate, injury, suffer

Artist paint, exhibit, include, return, teach,
publish, explore, draw, produce, write

start, found, feature, award, begin,
appear, join, influence, work, create

Chef hire, meet, debut, eliminate, sign,
graduate, describe, train, begin, appear

include, focus, explore, award, raise,
gain, spend, find, launch, hold

Musician run, record, death, found, contribute,
continue, perform, teach, appear, accord

sign, direct, produce, premier, open,
announce, follow, star, act, write

Table 6: The top 10 extracted events in Career section.

Occupation Events in Female Personal Life Description Events in Male Personal Life Description

Writer bury, birth, attend, war, grow,
serve, appear, raise, begin, divorce

know, report, come, charge, publish,
claim, suffer, return, state, describe

Acting pregnant, practice, wedding, record,
convert, honor, gain, retire, rap, bring

accuse, trip, fly, assault, endorse,
meeting, donate, fight, arrest, found

Comedian feel, birth, fall, open, decide,
date, diagnose, tweet, study, turn

visit, create, spend, propose, lawsuit,
accord, arrest, find, sell, admit

Podcaster date, describe, tell, life, come,
leave, engage, live, start, reside

play, write, bear, release, claim,
birth, divorce, meet, announce, work

Dancer marry, describe, diagnose, expect, speak,
post, attend, come, play, reside

hold, involve, award, run, serve,
adopt, charge, suit, struggle, perform

Chef death, serve, announce, describe, born,
die, life, state, marriage, live

birth, lose, divorce, speak, meet,
work, diagnose, wedding, write, engage

Table 7: The top 10 extracted events in Personal Life section.

associated with male attributes. To calculate the
WEAT score, we input two lists of extracted events
for females Ef and males Em, together with two
lists of gender attributes A and B, then calculate:

S(Ef , Em, A,B) =
∑

ef∈Ef

s(ef , A,B)−
∑

em∈Em

s(em, A,B),

(3)

where

s(w,A,B) = meana∈Acos(~w,~a)−meanb∈Bcos(~w,~b).
(4)

Following Caliskan et al. (2017), we have “female,
woman, girl, sister, she, her, hers, daughter” as
female attribute list A and “male, man, boy, brother,
he, him, his, son” as male attributes list B. To
calculate WEAT∗, we replace the input lists Ef

and Em with all non-stop words tokens in raw texts
from either Career section or Personal Life section.

A.5 Extracted Events Frequency Distribution
We sort all detected events from our corpus by
their frequencies in descending order according to
Equation 1. Figure 3 (a)-(l) show the percentile
of extracted events in the sorted list for another 6
occupations besides the 2 occupations reported in
Figure 1 for Career section. The smaller the per-
centile is, the more frequent the event appears in the
text. These figures indicate that we are not picking
events that rarely occur and showcase the signif-
icance of our analysis result. Figure 3 (m)-(x)
are for Personal Life sections across 6 occupations,
which show the same trend as for Career sections.
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Figure 2: Detection recall on the strategically-generated data. (c: Career section, pl: Personal Life section)
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Figure 3: The percentile of extracted event frequencies. (c: Career section, pl: Personal Life section)
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Abstract

Neural machine translation has achieved great
success in bilingual settings, as well as in
multilingual settings. With the increase of
the number of languages, multilingual systems
tend to underperform their bilingual counter-
parts. Model capacity has been found crucial
for massively multilingual NMT to support
language pairs with varying typological char-
acteristics. Previous work increases the mod-
eling capacity by deepening or widening the
Transformer. However, modeling cardinality
based on aggregating a set of transformations
with the same topology has been proven more
effective than going deeper or wider when in-
creasing capacity. In this paper, we propose
to efficiently increase the capacity for multilin-
gual NMT by increasing the cardinality. Un-
like previous work which feeds the same in-
put to several transformations and merges their
outputs into one, we present a Multi-Input-
Multi-Output (MIMO) architecture that allows
each transformation of the block to have its
own input. We also present a task-aware atten-
tion mechanism to learn to selectively utilize
individual transformations from a set of trans-
formations for different translation directions.
Our model surpasses previous work and estab-
lishes a new state-of-the-art on the large scale
OPUS-100 corpus while being 1.31 times as
fast.

1 Introduction

Multilingual translation between multiple language
pairs with a single model (Firat et al., 2016a; John-
son et al., 2017; Aharoni et al., 2019) has some
advantages compared to bilingual systems (Bah-
danau et al., 2015; Gehring et al., 2017; Vaswani
et al., 2017; Barrault et al., 2020), e.g., easy deploy-
ment, enabling transfer learning across languages
and zero-shot translation.

∗ Corresponding author.

Despite their advantages, multilingual systems
tend to underperform their bilingual counterparts as
the number of languages increases (Johnson et al.,
2017; Aharoni et al., 2019). This is due to the fact
that multilingual NMT must distribute its model-
ing capacity over different translation directions.
Zhang et al. (2020) show that the model capacity is
crucial for massively multilingual NMT to support
language pairs with varying typological characteris-
tics, and propose to increase the modeling capacity
by deepening the Transformer.

However, compared to going deeper or wider,
modeling cardinality based on aggregating a set
of transformations with the same topology has
been proven more effective when we increase the
model capacity (Xie et al., 2017). In this paper,
we efficiently increase the capacity of the multilin-
gual NMT model by increasing the cardinality, i.e.
stacking sub-layers that aggregate a set of transfor-
mations with the same topology.

Our main contributions are as follows:

• We propose to efficiently increase the capacity
of the multilingual NMT model by increasing
cardinality, and present a novel MIMO design
that allows transformations in the subsequent
layer to take different outputs from the current
layer as their inputs, unlike previous studies
(Xie et al., 2017; Yan et al., 2020) which feed
the same input to several transformations and
merge their outputs into one;

• We propose to learn a task-aware attention
mechanism for the MIMO transformation, al-
lowing the model to weigh different transfor-
mations of the set differently for specific trans-
lation directions;

• In our experiments on the OPUS-100 corpus,
our approach outperforms previous work and
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Figure 1: Block transformations. (a) takes the same input into a set of transformations, and adds up their outputs
as the output of the block. (b) takes the same input and processes it with these transformations without merging
their outputs. (c) is the MIMO architecture that combines weighted outputs of these transformations as inputs
to the subsequent transformation set. (d) combines weighted outputs of these transformations into one. Dashed
arrows indicate learned attention probabilities. Each “Trans” is a sub-layer that runs in the order of: transforming
→ dropout → residual connection → layer normalization, where the transforming unit can be either multi-head
attention or FFN, as depicted in Figure 2. We aggregate the final output of layer normalization of each “Trans” in
the block into the input fed to the next block in different ways (i.e., (a)-(d)).

achieves a new state-of-the-art while being
1.31 times as fast.

2 Preliminaries

Zhang et al. (2020) overcome the capacity bottle-
neck of multilingual NMT via deepening NMT
architectures.

Xie et al. (2017) present a highly modularized
network architecture for image classification. The
network is constructed by repeating a building
block that aggregates a set of transformations with
the same topology. For a given input i, the block
adopts n networks of the same topology trans to
process i and merges their outputs into the final
output o of the layer:

o =
n∑

k=1

transk(i) (1)

This design strategy exposes a new dimension,
namely “cardinality” (the size of the set of transfor-
mations), as an essential factor in addition to the
dimensions of depth and width. Xie et al. (2017)
empirically show that increasing cardinality is more
effective than going deeper or wider when we in-
crease the capacity to improve classification accu-
racy.

Yan et al. (2020) present a multi-unit Trans-
former to efficiently improve the translation perfor-

Transformation
(Multi-head Attn / FFN)

+

Output

Layer Norm

Input

Figure 2: The “Trans” unit.

mance by increasing cardinality instead of depth.
However, their work implements stacks of input→
performing multiple transformations → merging
blocks (as illustrated in Figure 1 (a)), is developed
for bilingual sentence-level transformation, and re-
quires the additional design of a biasing module
and sequential dependency that guide and encour-
age complementariness among different units. By
contrast, our work aims at efficiently increasing
the capacity for multilingual translation, proposes
the MIMO transformation (Figure 1 (c)) between
stacked blocks, and naturally uses the translation
task in attention form to guide individual transfor-
mations of the set to learn different representations
for different translation directions.
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3 Our Approach

3.1 Multi-Input-Multi-Output (MIMO)
Transformation

In contrast to previous approaches (Xie et al.,
2017; Yan et al., 2020) that follow a stack of
transformation-merging procedures (Figure 1 (a))
to increase cardinality, in our approach we allow
our set of transformations to take different inputs.
Compared to using the same input, this may en-
courage transformations to learn complementary
representations. Furthermore, merging the outputs
of different transformations into one is likely to
incur information loss. This is avoided in our ap-
proach.

We employ a MIMO transformation between
stacked layers (Figure 1 (c)) to enable each transfor-
mation of the block to selectively learn to operate
on its own unique input.

Specifically, we keep n outputs of the set of
transformations to produce multiple inputs for the
next layer instead of merging them into one. The
input ijk to the kth transformation of the jth layer
transjk is a weighted accumulation of the outputs
oj−1 of the layer j − 1.

ijk =
n∑

m=1

pjm ∗ oj−1
m (2)

where pjm are softmax-normalized learnable param-
eters to model translation task-aware attention for
multilingual NMT described in Section 3.2.
ojk is produced by transjk with ijk as its input:

ojk = transjk(i
j
k) (3)

In the case of a Transformer for multilingual
NMT, transjk can be either the multi-head atten-
tion or the feed-forward neural network. We adopt
a one-to-many transformation (Figure 1 (b)) for
the self-attention layer in the first encoder/decoder
layer to project one input from the embedding layer
to multiple inputs to subsequent layers, and per-
form a many-to-one transformation (Figure 1 (d))
with the outputs of the feed-forward layer of the
last decoder layer to build a single input for the
classifier.

3.2 Task-Aware Attention
Rather than separating the multilingual NMT
model into 2 parts: 1) the shared part for all lan-
guage pairs trained on the full dataset; 2) the lan-
guage isolated part which will only be activated

in the corresponding translation task and trained
on the part of the whole dataset specifically for
the language, we compute all transformations of
each block regardless of the translation task, thus
all model parameters can utilize and benefit from
the whole training set. At the same time, we intro-
duce a task-aware attention mechanism to utilize
different transformations of the block differently
for specific translation directions.

Specifically, we learn an embedding v for each
translation direction (i.e., to X (e.g., en, zh, de)) for
each transformation to weightedly aggregate multi-
ple outputs of the block below. v is first normalized
into a probability p:

p = softmax(v) (4)

Next, p is used in Equation 2 for weighted aggre-
gation. p is expected to assign a higher weight to
corresponding transformations of the block which
are more important for the translation direction.

3.3 Discussion

Increasing model capacity via increasing cardinal-
ity is more efficient than deepening a model or
widening it (Xie et al., 2017; Yan et al., 2020).
Compared to widening a model, increasing cardi-
nality removes connections between hidden units
and reduces both parameters and computation.
Compared to deepening a model, increasing cardi-
nality allows to parallelize the computation of all
transformations of a set, accelerating both training
and decoding.

4 Experiments

4.1 Settings

We conducted our experiments on the challeng-
ing massively many-to-many translation task on
the OPUS-100 corpus (Tiedemann, 2012; Aharoni
et al., 2019; Zhang et al., 2020). We followed
Zhang et al. (2020) for experiment settings. We
implemented our approaches based on the Neutron
implementation (Xu and Liu, 2019) of the Trans-
former translation model. Parameters were initial-
ized under the Lipschitz constraint (Xu et al., 2020).
We adopted BLEU (Papineni et al., 2002) for trans-
lation evaluation with the SacreBLEU toolkit (Post,
2018).1 We report average BLEU over 94 lan-
guage pairs BLEU94, win ratio WR (%) compared

1BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a
+version.1.4.1
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Models Direction BLEU94 WR BLEU4 BLEUzero Speed-Up

Zhang et al. (2020)
En→xx 23.36

-
19.45

14.08 1.00
xx→En 30.98 26.78

Ours
En→xx 24.17 78.72 20.08 14.71 1.31
xx→En 32.19 87.23 27.92

Table 1: Main results

Models
BLEU94

En→xx xx→En

Full 24.17 32.19
-MIMO 23.78 31.61
-MIMO-Task Attention 23.54 31.27

Table 2: Ablation on the MIMO and task-aware atten-
tion.

#Layers #Trans.
BLEU94

En→xx xx→En

4 6 23.92 31.76
6 4 24.17 32.19
8 3 24.08 31.94

Table 3: Results of different configurations.

to Zhang et al. (2020), average BLEU over 4 se-
lected typologically different target languages (de,
zh, br, te) BLEU4, and average BLEU for zero-shot
translation BLEUzero.

4.2 Main Results

For fair comparison, we use a 6-layer model where
each attention/FFN block contains 4 transforma-
tions, which leads to a similar number of parame-
ters compared to the 24-layer model of Zhang et al.
(2020). Results are shown in Table 1.

Table 1 shows that our approach achieves better
performance in all evaluations while being 1.31
times as fast.

4.3 Ablation Study

We study removing MIMO transformations and
task-aware attention. Results are shown in Table 2.

Table 2 verifies that both mechanisms contribute
to the performance.

We also examine different combinations of depth
and cardinality. Results are shown in Table 3.

Table 3 shows that using 6 layers with 4 trans-
formations in each block leads to the best perfor-

Main en de fr ar zh ru

1 rw sv pt he ja sh
2 yi da it mt ko lt
3 gd nn ca fa th sr
4 de nb es ga vi mk
5 xh no mt yo bn lv

Table 4: Languages with similar task-aware attention
weights.

mance.

4.4 Task-Aware Attention Weight Analysis

To verify whether task-aware attention learns to ag-
gregate similar languages together, we extract the
learned task-aware attention probabilities, flatten
them into vectors, and select the languages with
the top-5 cosine similarity. Results for several lan-
guages are shown in Table 4.

Table 4 shows that close languages are aggre-
gated together.

5 Related Work

Multilingual NMT includes one-to-many (Dong
et al., 2015), many-to-many (Firat et al., 2016a)
and zero-shot (Firat et al., 2016b) scenarios. A
simple solution is to insert a target language token
at the beginning of the input sentence (Johnson
et al., 2017).

Multilingual NMT has to handle different lan-
guages in one joint representation space, neglecting
their linguistic diversity, especially for massively
multilingual NMT (Aharoni et al., 2019; Zhang
et al., 2020; Freitag and Firat, 2020). Most studies
focus on how to mitigate this representation bot-
tleneck (Zoph and Knight, 2016; Blackwood et al.,
2018; Wang et al., 2018; Platanios et al., 2018;
Wang et al., 2019a; Tan et al., 2019b; Wang et al.,
2019b; Tan et al., 2019a; Bapna and Firat, 2019;
Zhu et al., 2020; Lyu et al., 2020).

There are also studies on the trade-off between
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shared and language-specific parameters (Sachan
and Neubig, 2018; Zhang et al., 2021), on the train-
ing of multilingual NMT (Al-Shedivat and Parikh,
2019; Siddhant et al., 2020; Wang et al., 2020b,a),
and on analyzing translations from multilingual
NMT (Lakew et al., 2018) or the trained model
(Kudugunta et al., 2019; Oncevay et al., 2020).
Transferring a pre-trained multilingual NMT model
can help improve the performance of downstream
language pairs (Kim et al., 2019; Lin et al., 2020),
especially for low-resource scenarios (Dabre et al.,
2019). Multilingual data also has been proven use-
ful for unsupervised NMT (Sen et al., 2019; Sun
et al., 2020).

6 Conclusion

We propose to efficiently increase the capacity for
multilingual NMT by increasing the cardinality.
We present a MIMO architecture that allows each
transformation of the block to have its own input.
We also present a task-aware attention mechanism
to learn to selectively utilize individual transfor-
mations from a set of transformations for different
translation directions.

Our model surpasses previous work and estab-
lishes a new state-of-the-art on the large scale
OPUS-100 corpus while being 1.31 times as fast.
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Abstract

kNN-MT, recently proposed by Khandelwal
et al. (2020a), successfully combines pre-
trained neural machine translation (NMT)
model with token-level k-nearest-neighbor
(kNN) retrieval to improve the translation ac-
curacy. However, the traditional kNN algo-
rithm used in kNN-MT simply retrieves a
same number of nearest neighbors for each tar-
get token, which may cause prediction errors
when the retrieved neighbors include noises.
In this paper, we propose Adaptive kNN-MT
to dynamically determine the number of k
for each target token. We achieve this by
introducing a light-weight Meta-k Network,
which can be efficiently trained with only a
few training samples. On four benchmark ma-
chine translation datasets, we demonstrate that
the proposed method is able to effectively fil-
ter out the noises in retrieval results and sig-
nificantly outperforms the vanilla kNN-MT
model. Even more noteworthy is that the
Meta-k Network learned on one domain could
be directly applied to other domains and ob-
tain consistent improvements, illustrating the
generality of our method. Our implementa-
tion is open-sourced at https://github.
com/zhengxxn/adaptive-knn-mt.

1 Introduction

Retrieval-based methods (Gu et al., 2018; Zhang
et al., 2018; Bapna and Firat, 2019; Khandel-
wal et al., 2020a) are increasingly receiving at-
tentions from the machine translation (MT) com-
munity recently. These approaches complement
advanced neural machine translation (NMT) mod-
els (Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017; Hassan et al., 2018) to al-
leviate the performance degradation when trans-
lating out-of-domain sentences (Dou et al., 2019;
Wei et al., 2020), rare words (Koehn and Knowles,

∗ Corresponding author.

2017), etc. The ability of accessing any provided
datastore during translation makes them scalable,
adaptable and interpretable.
kNN-MT, recently proposed in (Khandelwal

et al., 2020a), equips a pre-trained NMT model
with a kNN classifier over a datastore of cached
context representations and corresponding target
tokens, providing a simple yet effective strategy
to utilize cached contextual information in infer-
ence. However, the hyper-parameter k is fixed for
all cases, which raises some potential problems.
Intuitively, the retrieved neighbors may include
noises when the target token is relatively hard to
determine (e.g., relevant context is not enough in
the datastore). And empirically, we find that the
translation quality is very sensitive to the choice of
k, results in the poor robustness and generalization
performance.

To tackle this problem, we propose Adaptive
kNN-MT that determines the choice of k regarding
each target token adaptively. Specifically, instead
of utilizing a fixed k, we consider a set of possible
k that are smaller than an upper bound K. Then,
given the retrieval results of the current target to-
ken, we propose a light-weight Meta-k Network to
estimate the importance of all possible k-Nearest
Neighbor results, based on which they are aggre-
gated to obtain the final decision of the model. In
this way, our method dynamically evaluate and uti-
lize the neighbor information conditioned on differ-
ent target tokens, therefore improve the translation
performance of the model.

We conduct experiments on multi-domain ma-
chine translation datasets. Across four domains,
our approach can achieve 1.44∼2.97 BLEU score
improvements over the vanilla kNN-MT on aver-
age when K ≥ 4. The introduced light-weight
Meta-k Network only requires thousands of param-
eters and can be easily trained with a few training
samples. In addition, we find that the Meta-k Net-
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Figure 1: An overview of the proposed Adaptive kNN-MT, which could dynamically evaluate and aggregate a set
of kNN predictions based on the distances as well as count of distinct values of retrieved neighbors.

work trained on one domain can be directly applied
to other domains and obtain strong performance,
showing the generality and robustness of the pro-
posed method.

2 Background: kNN-MT

In this section, we will briefly introduce the back-
ground of kNN-MT, which includes two steps: cre-
ating a datastore and making predictions depends
on it.

Datastore Creation. The datastore consists of a
set of key-value pairs. Formally, given a bilingual
sentence pair in the training set (x, y) ∈ (X ,Y), a
pre-trained autoregressive NMT decoder translates
the t-th target token yt based on the translation con-
text (x, y<t). Denote the hidden representations of
translation contexts as f(x, y<t), then the datastore
is constructed by taking f(x, y<t) as keys and yt
as values,

(K,V) =
⋃

(x,y)∈(X ,Y)
{(f(x, y<t), yt), ∀yt ∈ y}.

Therefore, the datastore can be created through a
single forward pass over the training set (X ,Y).

Prediction. While inference, at each decoding
step t, the kNN-MT model aims to predict ŷt given
the already generated tokens ŷ<t as well as the con-
text representation f(x, ŷ<t), which is utilized to
query the datastore for k nearest neighbors w.r.t
the l2 distance. Denote the retrieved neighbors as
N t = {(hi, vi), i ∈ {1, 2, ..., k}}, their distribu-

tion over the vocabulary is computed as:

pkNN(yt|x, ŷ<t) ∝ (1)
∑

(hi,vi)

1yt=vi exp(
−d(hi, f(x, ŷ<t))

T
),

where T is the temperature and d(·, ·) indicates the
l2 distance. The final probability when predicting
yt is calculated as the interpolation of two distribu-
tions with a hyper-parameter λ:

p(yt|x, ŷ<t) = λ pkNN(yt|x, ŷ<t)

+ (1− λ) pNMT(yt|x, ŷ<t),
(2)

where pNMT indicates the vanilla NMT prediction.

3 Adaptive kNN-MT

The vanilla kNN-MT method utilizes a fixed num-
ber of translation contexts for every target token,
which fails to exclude noises contained in retrieved
neighbors when there are not enough relevant items
in the datastore. We show an example with k = 32
in Figure 1. The correct prediction spreadsheet
has been retrieved as top candidates. However, the
model will finally predict table instead because
it appears more frequently in the datastore than
the correct prediction. A naive way to filter the
noises is to use a small k, but this will also cause
over-fitting problems for other cases. In fact, the
optimal choice of k varies when utilizing different
datastores in vanilla kNN-MT, leading to poor ro-
bustness and generalizability of the method, which
is empirically discussed in Section 4.2.

To tackle this problem, we propose a dynamic
method that allows each untranslated token to uti-
lize different numbers of neighbors. Specifically,
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we consider a set of possible ks that are smaller
than an upper bound K, and introduce a light-
weight Meta-k Network to estimate the importance
of utilizing different ks. Practically, we consider
the powers of 2 as the choices of k for simplicity,
as well as k = 0 which indicates ignoring kNN and
only utilizing the NMT model, i.e., k ∈ S where
S = {0} ∪ {ki ∈ N | log2 ki ∈ N, ki ≤ K}. Then
the Meta-k Network evaluates the probability of
different kNN results by taking retrieved neighbors
as inputs.

Concretely, at the t-th decoding step, we first
retrieve K neighbors N t from the datastore, and
for each neighbor (hi, vi), we calculate its dis-
tance from the current context representation di =
d(hi, f(x, ŷ<t)), as well as the count of distinct val-
ues in top i neighbors ci. Denote d = (d1, ..., dK)
as distances and c = (c1, ..., cK) as counts of val-
ues for all retrieved neighbors, we then concatenate
them as the input features to the Meta-k Network.
The reasons of doing so are two-fold. Intuitively,
the distance of each neighbor is the most direct
evidence when evaluating their importance. In ad-
dition, the value distribution of retrieved results is
also crucial for making the decision, i.e., if the val-
ues of each retrieved results are distinct, then the
kNN predictions are less credible and we should
depend more on NMT predictions.

We construct the Meta-k Network fMeta(·) as
two feed-forward Networks with non-linearity be-
tween them. Given [d; c] as input, the probability
of applying each kNN results is computed as:

pMeta(k) = softmax(fMeta([d; c])). (3)

Prediction. Instead of introducing the hyper-
parameter λ as Equation (2), we aggregate the
NMT model and different kNN predictions with
the output of the Meta-k Network to obtain the
final prediction:

p(yt|x, ŷ<t) =
∑

ki∈S
pMeta(ki) · pkiNN(yt|x, ŷ<t),

(4)
where pkiNN indicates the ki Nearest Neighbor pre-
diction results calculated as Equation (1).

Training. We fix the pre-trained NMT model and
only optimize the Meta-k Network by minimiz-
ing the cross entropy loss following Equation (4),
which could be very efficient by only utilizing hun-
dreds of training samples.

4 Experiments

4.1 Experimental Setup
We evaluate the proposed model in domain adap-
tation machine translation tasks, in which a pre-
trained general-domain NMT model is used to
translate domain-specific sentences with kNN
searching over an in-domain datastore. This is
the most appealing application of kNN-MT as
it could achieve comparable results with an in-
domain NMT model but without training on any
in-domain data. We denote the proposed model as
Adaptive kNN-MT (A) and compare it with two
baselines. One of that is vanilla kNN-MT (V) and
the other is uniform kNN-MT (U) where we set
equal confidence for each kNN prediction.

Datasets and Evaluation Metric. We use the
same multi-domain dataset as the baseline (Khan-
delwal et al., 2020a), and consider domains includ-
ing IT, Medical, Koran, and Law in our exper-
iments. The sentence statistics of datasets are il-
lustrated in Table 1. The Moses toolkit1 is used
to tokenize the sentences and split the words into
subword units (Sennrich et al., 2016) with the bpe-
codes provided by Ng et al. (2019). We use Sacre-
BLEU2 to measure all results with case-sensitive
detokenized BLEU (Papineni et al., 2002).

Dataset IT Medical Koran Laws

Train 222, 927 248, 009 17, 982 467, 309
Dev 2000 2000 2000 2000
Test 2000 2000 2000 2000

Table 1: Statistics of dataset in different domains.

Implementation Details. We adopt the fairseq
toolkit3(Ott et al., 2019) and faiss4(Johnson et al.,
2017) to replicate kNN-MT and implement our
model. We apply the WMT’19 German-English
news translation task winner model (Ng et al.,
2019) as the pre-trained NMT model which is also
used by Khandelwal et al. (2020a). For kNN-MT,
we carefully tune the hyper-parameter λ in Equa-
tion (2) and report the best scores for each domain.
More details are included in the supplementary
materials. For our method, the hidden size of the
two-layer FFN in Meta-k Network is set to 32. We

1https://github.com/moses-smt/
mosesdecoder

2https://github.com/mjpost/sacrebleu
3https://github.com/pytorch/fairseq
4https://github.com/facebookresearch/

faiss
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Domain IT (Base NMT: 38.35) Med (Base NMT: 39.99) Koran (Base NMT: 16.26) Law (Base NMT: 45.48) Avg (Base NMT: 35.02)

Model V U A V U A V U A V U A V U A

K

1 42.19 41.21 42.52 51.41 50.32 51.82 18.12 17.15 18.10 58.76 58.05 58.81 42.62 41.68 42.81
2 44.20 41.43 46.18 53.65 52.44 55.20 19.37 17.36 19.12 60.80 59.81 61.76 44.50 42.76 45.56
4 44.89 42.31 47.23 54.16 53.01 55.84 19.50 17.88 19.69 61.31 60.75 62.89 44.97 43.49 46.41
8 45.96 42.46 48.04 54.06 53.46 56.31 20.12 18.59 20.57 61.12 61.37 63.21 45.32 43.97 47.03
16 45.36 43.05 47.71 53.54 54.08 56.41 20.30 19.45 21.09 60.21 61.52 63.07 44.85 44.53 47.07
32 44.81 43.78 47.68 52.52 53.95 56.21 19.66 19.99 20.96 59.04 61.53 63.03 44.00 44.81 46.97

σ2
(K ≥ 4) 0.21 0.33 0.08 0.42 0.18 0.05 0.10 0.65 0.30 0.81 0.10 0.01 0.24 0.26 0.07

Table 2: The BLEU scores of the vanilla kNN-MT (V) and uniform kNN-MT (U) baselines and the proposed
Adaptive kNN-MT model (A). Underline results indicate the best results of baselines, and our best results are
marked bold. σ2 indicates the variance of results among different Ks.

Adaptive kNN-MT IT Medical Koran Law Avg

In-domain 47.68 56.21 20.96 63.03 46.97
IT domain 47.68 56.20 20.52 62.33 46.68

Table 3: Generality Evaluation. We train the model on
the IT domain and directly apply to other test sets.

Model IT⇒Medical Medical⇒ IT

Base NMT 39.99 38.35

kNN-MT 25.82 15.79
Adaptive kNN-MT 37.78 30.09

Table 4: Robustness Evaluation, where the test sets are
from Medical/IT domains and the datastore are from
IT/Medical domains respectivally.

directly use the dev set (about 2k sents) to train the
Meta-k Network for about 5k steps. We use Adam
(Kingma and Ba, 2015) to optimize our model, the
learning rate is set to 3e-4 and batch size is set to
32 sentences.

4.2 Main Results

The experimental results are listed in Table 2. We
can observe that the proposed Adaptive kNN-MT
significantly outperforms the vanilla kNN-MT on
all domains, illustrating the benefits of dynamically
determining and utilizing the neighbor information
for each target token. In addition, the performance
of the vanilla model is sensitive to the choice of
K, while our proposed model is more robust with
smaller variance. More specifically, our model
achieves better results when choosing larger num-
ber of neighbors, while the vanilla model suffers
from the performance degradation when K = 32,
indicating that the proposed Meta-k Network is
able to effectively evaluate and filter the noise in re-
trieved neighbors, while a fixed K cannot. We also
compare our proposed method with another naive
baseline, uniform kNN-MT, where we set equal
confidence for each kNN prediction and make it

close to the vanilla kNN-MT with small k. It
further demonstrates that our method could really
learn something useful but not bias smaller k.

Generality. To demonstrate the generality of our
method, we directly utilize the Meta-k Network
trained on the IT domain to evaluate other domains.
For example, we use the Meta-k Network trained
on IT domain and medical datastore to evaluate
the performance on medical test set. For compari-
son, we collect the in-domain results from Table 2.
We set K = 32 for both settings. As shown in
Table 3, the Meta-k Network trained on the IT do-
main achieves comparable performance on all other
domains which re-train the Meta-k Network with
in-domain dataset. These results also indicate that
the mapping from our designed feature to the con-
fidence of retrieved neighbors is common across
different domains.

Robustness. We also evaluate the robustness of
our method in the domain-mismatch setting, where
we consider a scenario that the user inputs an out-
of-domain sentence (e.g. IT domain) to a domain-
specific translation system (e.g. medical domain)
to evaluate the robustness of different methods.
Specifically, in IT ⇒ Medical setting, we firstly
use medical dev set and datastore to tune hyper-
parameter for vanilla kNN-MT or train the Meta-k
Network for Adaptive kNN-MT, and then use IT
test set to test the model with medical datastore.
We set K = 32 in this experiment. As shown in
Table 4, the retrieved results are highly noisy so
that the vanilla kNN-MT encounters drastic perfor-
mance degradation. In contrast, our method could
effectively filter out noises and therefore prevent
performance degradation as much as possible.

Case Study. Table 5 shows a translation example
selected from the test set in Medical domain with
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Source Wenn eine gleichzeitige Behandlung mit Vitamin K Antagonisten erforderlich ist, müssen die
Angaben in Abschnitt 4.5 beachtet werden.

Reference therapy with vitamin K antagonist should be administered in accordance with the information
of Section 4.5.

Base NMT If a simultaneous treatment with vitamin K antagonists is required, the information in section
4.5 must be observed.

kNN-MT If concomitant treatment with vitamin K antagonists is required, please refer to section 4.5.

Adaptive kNN-MT When required, concomitant therapy with vitamin K antagonist should be administered in
accordance with the information of Section 4.5.

Table 5: Translation examples of different systems in Medical domain.

Adaptive kNN-MT (K = 8) 48.04

- value count feature 46.76

- distance feature 45.60

Table 6: Effect of different features in Meta-k Network.

100 200 500 1000 2000
Training Sentences

46

47

48

B
LE

U
 S

co
re

s

47.59 47.56
48.14 47.93 48.04

Adaptive kNN-MT kNN-MT

8 16 32 64 128
Meta-k Network Hid Size

46

47

48
47.68

47.99 48.04 47.88 47.74

Figure 2: Effect of different number of training sen-
tences and the hidden size of Meta-k Network.

K = 32. We can observe that the Meta-k Network
could determine the choice of k for each target
token respectively, based on which Adaptive kNN-
MT leverages in-domain datastore better to achieve
proper word selection and language style.

Analysis. Finally, we study the effect of two de-
signed features, number of training sentences and
the hidden size of the proposed Meta-k Network.
We conduct these ablation study on IT domain with
K = 8. All experimental results are summarized
in Table 6 and Figure 2. It’s obvious that both of
the two features contribute significantly to the ex-
cellent performance of our model, in which the dis-
tance feature is more important. And surprisingly,
our model could outperforms the vanilla kNN-MT
with only 100 training sentences, or with a hidden
size of 8 that only contains around 0.6k parameters,
showing the efficiency of our model.

5 Conclusion and Future Works

In this paper, we propose Adaptive kNN-MT model
to dynamically determine the utilization of re-
trieved neighbors for each target token, by intro-
ducing a light-weight Meta-k Network. In the ex-
periments, on the domain adaptation machine trans-

lation tasks, we demonstrate that our model is able
to effectively filter the noises in retrieved neighbors
and significantly outperform the vanilla kNN-MT
baseline. In addition, the superiority of our method
on generality and robustness is also verified. In
the future, we plan to extend our method to other
tasks like Language Modeling, Question Answer-
ing, etc, which can also benefit from utilizing kNN
searching (Khandelwal et al., 2020b; Kassner and
Schütze, 2020).
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Datastore IT Medical Koran Laws

Size 3, 613, 350 6, 903, 320 524, 400 19, 070, 000
Hard Disk Space (Datastore) 6.9 Gb 15 Gb 1.1 Gb 37 Gb
Hard Disk Space (faiss index) 266 Mb 492 Mb 54 Mb 1.3 Gb

Table 7: Statistics of datastore in different domains.

ms / sent K Batch=1 Batch=16 Batch=32 Batch=64

NMT 0 165 16.3 10.5 7.9

kNN-MT
8 291.0(×1.76) 51.0(×3.1) 43.6(×4.2) 38.0(×4.8)
16 311.4(×1.89) 81.1(×5.0) 70.4(×6.7) 64.4(×8.2)
32 385.5(×2.34) 136.5(×8.4) 123.8(×11.8) 114.9(×14.5)

Adaptive kNN-MT
8 299.1(×1.81) 51.1(×3.1) 42.8(×4.1) 38.1(×4.8)
16 315.0(×1.91) 80.2(×4.9) 70.2(×6.7) 63.7(×8.1)
32 394.5(×2.40) 147.5(×9.0) 128.0(×12.2) 116.8(×14.8)

Table 8: Decoding time of different models. All results are tested on 20 cores Intel(R) Xeon(R) Gold 6248 CPU
@ 2.50GHz with a V100-32GB GPU.

A Appendix

A.1 Datastore Creation

We first use numpy array to save the key-value pairs
over training sets as datastore. Then, faiss is used
to build index for each datastore to carry out fast
nearest neighbor search. We utilize faiss to learn
4k cluster centroids for each domain, and search
32 clusters for each target token in decoding. The
size of datastore (count of target tokens), and hard
disk space of datastore as well as faiss index are
shown in Table 7.

A.2 Hyper-Parameter Tuning for kNN-MT

The performance of vanilla kNN-MT is highly re-
lated to the choice of hyper-parameter, i.e. k, T
and λ. We fix T as 10 for IT, Medical, Law, and
100 for Koran in all experiments. Then, we tuned
k and λ for each domain when using kNN-MT and
the optimal choice for each domain are shown in
Table 9. The performance of kNN-MT is unstable
with different hyper-parameters while our Adaptive
kNN-MT avoids this problem.

Dataset IT Medical Koran Laws

k 8 4 16 4
T 10 10 10 100
λ 0.7 0.8 0.8 0.8

Table 9: Optimal choice of hyper-parameters for each
domain in vanilla kNN-MT.

A.3 Decoding Time

We compare the decoding time on IT test set
of NMT, kNN-MT (our replicated) and Adaptive

kNN-MT condition on different batch size. In de-
coding, the beam size is set to 4 with length penalty
0.6. The results are summarized in Table 8.
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Abstract

Orthogonality constraints encourage matrices
to be orthogonal for numerical stability. These
plug-and-play constraints, which can be conve-
niently incorporated into model training, have
been studied for popular architectures in nat-
ural language processing, such as convolu-
tional neural networks and recurrent neural
networks. However, a dedicated study on
such constraints for transformers has been
absent. To fill this gap, this paper stud-
ies orthogonality constraints for transformers,
showing the effectiveness with empirical evi-
dence from ten machine translation tasks and
two dialogue generation tasks. For example,
on the large-scale WMT’16 En→De bench-
mark, simply plugging-and-playing orthogo-
nality constraints on the original transformer
model (Vaswani et al., 2017) increases the
BLEU from 28.4 to 29.6, coming close to the
29.7 BLEU achieved by the very competitive
dynamic convolution (Wu et al., 2019).

1 Introduction

Transformers (Vaswani et al., 2017) are a class of
neural architectures that have made a tremendous
transformative impact on modern natural language
processing research and applications. Transform-
ers have not only served as a powerful inductive
bias for general-purpose sequence transduction (Ott
et al., 2018) but also lived as the core of large pre-
trained language models (Devlin et al., 2018; Rad-
ford et al., 2018; Dai et al., 2019). That said, the
study of more effective training for this class of
models is still an open research question, bearing
great potential to impact a myriad of applications
and domains.

To improve numerical stability during training,
the trick of enforcing orthogonality constraints has

∗Equal contribution.
†Work was done at NTU.

surfaced recently. In the analysis of numerical
stability, enforcing orthogonality constraints can
upper-bound the Lipschitz constant of linear trans-
formations. The Lipschitz constant is a measure
that approximates the rate of change (variation)
of representations. Theoretically, controlling the
Lipschitz constant, which may be achieved via or-
thogonality constraints, yields representations that
are robust and less sensitive to perturbations.

In view of this, orthogonality constraints have
been studied for convolutional neural networks
(CNNs) (Bansal et al., 2018; Huang et al., 2018)
and recurrent neural networks (RNNs) (Arjovsky
et al., 2016; Vorontsov et al., 2017; Rodrı́guez et al.,
2016). Such plug-and-play constraints can be in-
corporated into model training without additional
hassle. For example, CNN-based models incorpo-
rating orthogonality constraints have demonstrated
empirical effectiveness for tasks such as person re-
identification (Han et al., 2019) and keyword spot-
ting (Lee et al., 2019), while RNN-based models
that enforce such constraints have shown promis-
ing empirical results for response generation (Tao
et al., 2018) and text classification (Wei et al., 2020;
Krishnan et al., 2020). However, a dedicated study
on orthogonality constraints for transformers has
been absent so far.

To fill this research gap, we study orthogonality
constraints for transformers, which are imposed
on (i) linear transformations in self-attention and
position-wise feed-forward networks and (ii) the
affinity matrix in self-attention. Mathematically, or-
thogonality constraints on the weights of these lin-
ear transformations can be motivated by bounded
Lipschitz constants. We also formally analyze the
self-attention mechanism by bounding perturba-
tions to the affinity matrix in the face of input
changes.

Furthermore, we conduct extensive experiments
on ten neural machine translation (both subword-
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level and character-level) tasks and two dialogue
generation tasks. Our experimental results are
promising, demonstrating that the performance
of transformers can be consistently boosted with
orthogonality constraints. For example, on the
large-scale WMT’16 En→De benchmark, simply
plugging-and-playing orthogonality constraints on
the original transformer model (Vaswani et al.,
2017) increases the BLEU from 28.4 to 29.6, com-
ing close to the 29.7 BLEU achieved by the very
competitive dynamic convolution (Wu et al., 2019).

Notation For any vector x and any matrix X,
‖x‖ and ‖X‖ denote their L2-norm and spectral
norm, respectively.

2 Orthogonality Constraints for
Transformers

Recall that in the transformer architecture, keys,
queries, and values all come from the same place in
the self-attention module. They are linearly trans-
formed for computing multiple attention heads,
where all the heads are aggregated by another lin-
ear transformation. The position-wise feed-forward
network is also built on two linear transformations
with activations. In the following, we will de-
scribe orthogonality constraints for (i) linear trans-
formations in self-attention and position-wise feed-
forward networks and (ii) the affinity matrix in
self-attention.

2.1 For Linear Transformations in
Self-Attention and Position-wise
Feed-Forward Networks

Note that linear transformations in self-attention
and position-wise feed-forward networks are in the
form:

y = Wx+ b,

where y is the output, x is an input, W is a linear
transformation weight matrix, and b is an optional
bias term. This form provides us with convenient
tools for motivating the application of orthogonality
constraints to the weights of such linear transfor-
mations.

Specifically, as described in Section 1, robust-
ness of linear transformations to small perturba-
tions can be measured by Lipschitz constants. Thus,
we begin with motivating orthogonality constraints
from the perspective of bounding Lipschitz con-
stants of linear transformations.

Formally, the linear transformation (layer) of the
aforementioned form y = Wx+b has a Lipschitz
constant equal to the largest singular value of the
weight matrix W. The linear layer is Lipschitz
continuous with the constant L if for all x and x′,
it holds that

‖(Wx+ b)− (Wx′ + b)‖ ≤ L‖x− x′‖,

which can be re-written as

‖W(x− x′)‖
‖x− x′‖ ≤ L,

where x 6= x′. Therefore, the smallest Lipschitz
constant is

sup
x 6=x′

‖W(x− x′)‖
‖x− x′‖ .

For numerical stability, our goal is to force the
Lipschitz constant to be no greater than one at every
linear transformation so that their multiplication
throughout compositions of transformations is also
upper bounded by one. Mathematically, we need
to constrain the Lipschitz constant (the largest sin-
gular value) of W to be no greater than one, which
requires the following orthogonality constraint:

W>W ≈ I.

Back to the context of multi-head self-attention
of transformers, denote by P the concatenation
of the linear transformation weights for the query,
key, value, and the multi-head aggregation. To
impose the orthogonality constraint for these linear
transformations, we add the following loss to the
transformer model for every layer:

LLA = λ‖P>P− I‖2F .

Likewise, for position-wise feed-forward net-
work with two linear transformation weight matri-
ces M1 and M2, the orthogonality constraint can
be imposed with another additional loss:

LLF = λ
[
‖M>1 M1 − I‖2F + ‖M>2 M2 − I‖2F

]
.

2.2 For the Affinity Matrix in Self-Attention
In transformers, given the query matrix Q and the
key matrix K in the self-attention module, the affin-
ity matrix

A = softmax(αQK>), (1)
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where α is typically 1√
d

(d is the dimension of the
key and the query). Given the value matrix V,
the self-attention computes representations via the
matrix multiplication AV.

Within the context of sequence transduction,
when an input word token is aligned with another
semantically similar token, we would expect a
small change in the behavior of the self-attention
mechanism, rather than a huge change in the output.
In the affinity matrix A as defined in (1), let Ai,∗
be the row vector indexed by i. Essentially, each
Ai,∗ is a probability distribution over the tokens
in the sequence that directs the alignment-based
pooling operation. Intuitively, for a robust self-
attention mechanism, noisy perturbations should
have a limited effect on the affinity scores of the
tokens.

More formally, let us analyze the self-attention
mechanism by bounding perturbations to the affin-
ity matrix in the face of input changes. Mathemat-
ically, changes to the affinity scores are bounded
such that ‖A′i,∗ − Ai,∗‖ ≤ 2α‖K‖ε, where ε =
‖Q′i,∗ −Qi,∗‖ is the noise from the query matrix.
We can see this as the result of the following theo-
rem.

Theorem 2.1 (Bounded Perturbations to the Affin-
ity Matrix). Expressing Ai,∗ to be the ith row of the
affinity matrix A as defined in (1) and Qi,∗ to be
the ith row of the query matrix Q, the perturbation
to the affinity matrix is bounded as such:

‖A′i,∗ −Ai,∗‖ ≤ 2α‖K‖ε,

where A′ = softmax(αQ′K>) and ε = ‖Q′i,∗ −
Qi,∗‖ is the L2 perturbation value in Qi,∗.

The detailed proof of Theorem 2.1 is provided
in the appendix. In standard training, the spec-
tral norm of the key matrix ‖K‖ or the noise ε
from the query matrix may be large, and as a result
the changes to affinity scores may become “un-
bounded”. We speculate that this may hurt the
generalization of the self-attention mechanism.

We impose orthogonality constraints on the affin-
ity matrix A. More concretely, we obtain an addi-
tional loss term for every layer of the transformer
model using the Frobenius norm ‖ · ‖F :

LAM = λ‖A>A− I‖2F ,

where I is the identity matrix and λ is a scaling
factor to control the ratio to the original task loss.

With orthogonally constrained affinity scores,
each row vector of A is now orthonormal to all

the other row vectors. Given that each row vector
is a probability distribution over the tokens in the
sequence that directs the alignment-based pooling
operation, a diverse form of the self-attention mech-
anism would be more encouraged. This could be
viewed as an additional quality of orthogonality
constrained transformers.

3 Experiments

We evaluate the effectiveness of orthogonality con-
strained transformers (OC-transformers for brevity)
on ten neural machine translation tasks and two di-
alogue generation tasks. Specifically, we assess
three variants, largely pertaining to where orthogo-
nality constraints are applied, i.e., (i) AM (for the
affinity matrix in self-attention), (ii) LA (for the
linear transformations in self-attention), and (iii)
LF (for the linear transformations in position-wise
feed-forward networks). We evaluate them in an
incremental fashion with three main model labels:
VAR-I (AM only), VAR-II (AM + LA), and VAR-
III (AM + LA + LF). The scaling factor λ is tuned
amongst {10−6, 10−8, 10−10}.

3.1 Neural Machine Translation
For neural machine translation (NMT), we evaluate
on both the subword-level and character-level tasks.

Experimental Setup For subword-level NMT,
we evaluate our models on seven NMT datasets us-
ing the Tensor2Tensor1 framework (Vaswani et al.,
2018), namely IWSLT’14 De→En, IWSLT’14
Ro→En, IWSLT’15 En→Vi, IWSLT’17 En→Id,
WMT’17 En→Et, SETIMES En→Mk, and the
well-established large-scale WMT’16 En→De.

All the models are trained with the transformer-
base setting. Owing to the smaller size, we use the
transformer-small setting for IWSLT’14 datasets.
For the WMT’16 En→De dataset, we train both
the transformer-base and transformer-big settings
on 4× GPUs with gradient accumulation of 2×
to emulate 8× GPU training. By determining im-
provement on approximate BLEU scores on the
validation set, we train models for 2M steps for
the transformer-base setting and 800K steps for
the transformer-big setting. Note that between the
standard transformer and OC-transformer, we main-
tain all the other hyperparameters to keep the com-
parisons as fair as possible. For character-level
NMT, we evaluate on three language pairs, namely

1https://github.com/tensorflow/
tensor2tensor
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Table 1: Experimental results on subword-level neural machine translation.

BLEU
Model De→En Ro→En En→Vi En→Id En→Et En→Mk
Transformer 34.68 32.36 28.43 47.40 14.17 13.96
OC-transformer (VAR-I) 34.87 32.68 30.16 48.09 14.83 14.74
OC-transformer (VAR-II) 34.92 32.63 30.51 48.05 15.06 14.70
OC-transformer (VAR-III) 35.20 32.44 30.42 48.33 14.87 14.62
Relative Gain (%) +1.5% +1.0% +7.3% +2.0% +6.3% +5.3%

Table 2: Experimental results on neural machine translation with the WMT’16 En→De newstest2014 test set.

Model BLEU
MoE (Shazeer et al., 2017) 26.0
Transformer-base (Vaswani et al., 2017) 27.3
Transformer-big (Vaswani et al., 2017) 28.4
Transformer-ott-big (Ott et al., 2018) 29.3
Dynamic convolution (Wu et al., 2019) 29.7
OC-transformer-base based on (Vaswani et al., 2017) (VAR-III) 28.5
OC-transformer-big based on (Vaswani et al., 2017) (VAR-III) 29.6

WMT En→Fr, IWSLT’14 Ro→En, and IWSLT’15
De→En. The transformer-small setting is used for
all the three language pairs and trained for 200K
steps.

Experimental Results Table 1 reports experi-
mental results on subword-level NMT datasets.
Overall, we note that performance of transform-
ers is consistently boosted by orthogonality con-
straints, ascertaining the effectiveness of adopting
such plug-and-play tricks. More specifically, they
are able to achieve +1.0% to +7.3% relative gain
over the standard transformer. Notably, all the
variants (VAR-I, VAR-II, and VAR-III) boost the
performance of transformers: it demonstrates that
orthogonality constraints are indeed useful. More-
over, orthogonal constraints on the self-attention
affinity matrix are beneficial in general even if the
rest of the model is not fully enforced with orthog-
onality constraints.

Table 2 reports the results on the large-scale
WMT’16 En→De dataset. Orthogonality con-
straints boost the performance of the transformer-
big setting based on (Vaswani et al., 2017), increas-
ing the BLEU from 28.4 to 29.6. This result outper-
forms the more advanced transformer-ott-big pro-
posed in (Ott et al., 2018) and comes close to 29.7
that was achieved by the very competitive dynamic
convolution model (Wu et al., 2019). Likewise, or-
thogonality constraints also boost the performance
of the transformer-base setting with the BLEU in-

creased from 27.3 to 28.5.
Table 3 reports the results on character-level

NMT. We observe that orthogonality constraints
consistently boost the performance of standard
transformers on all the three language pairs:
En→Fr (+3.5%), Ro→En (+2.6%), and De→En
(+1.6%).

3.2 Sequence-to-Sequence Dialogue
Generation

We conduct experiments on the sequence-to-
sequence dialog generation task whereby the goal
is to generate the reply in a two-way conversation.

Experimental Setup We use two datasets: Per-
sonaChat (Zhang et al., 2018) and DailyDialog
(Li et al., 2017). We implement our task in Ten-
sor2Tensor using the transformer-small setting in
a sequence-to-sequence fashion (Sutskever et al.,
2014). We train all the models for 20K steps,
which we find sufficient for model convergence.
Beam search of beam size 4 and length penalty 0.6
is adopted for decoding the output sequence. We
evaluate all the models with the language genera-
tion evaluation suite in (Sharma et al., 2017).

Experimental Results Table 4 reports our re-
sults on the PersonaChat and DailyDialog datasets.
The key observation is that all the variants of enforc-
ing orthogonality constraints boost performance
of standard transformers. The best results of OC-
transformers make a substantial improvement in all
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Table 3: Experimental results on character-level neural machine translation.

BLEU
Model En→Fr Ro→En De→En
Transformer (Vaswani et al., 2017) 18.74 22.04 27.59
OC-transformer based on (Vaswani et al., 2017) (VAR-III) 19.40 22.61 28.02
Relative Gain (%) +3.5% +2.6% +1.6%

Table 4: Experimental results on the PersonaChat dataset (Zhang et al., 2018) and the DailyDialog dataset (Li et al.,
2017) on nine evaluation measures (Sharma et al., 2017). SkipT stands for SkipThought cosine similarity, EmbA
stands for embedding average, VecE stands for vector extrema, and GreedyM stands for greedy matching.

Transformer
OC-transformer

(VAR-I)
OC-transformer

(VAR-II)
OC-transformer

(VAR-III)
Relative Gain

PersonaChat
BLEU-1 13.2 15.1 15.4 16.3 +23.5%
BLEU-4 2.04 2.28 2.38 2.50 +22.5%
Meteor 6.10 6.55 6.60 6.70 +9.8%
Rouge 14.2 14.7 15.1 15.1 +6.3%
CIDEr 18.2 18.7 19.3 18.3 +6.0%
SkipT 41.9 42.8 43.9 43.3 +4.8%
EmbA 84.3 84.6 84.9 84.6 +0.7%
VecE 49.0 48.2 49.0 48.6 +0.0%
GreedyM 65.8 66.2 66.5 66.4 +1.1%

DailyDialog
BLEU-1 12.1 13.5 13.3 14.0 +15.7%
BLEU-4 6.22 6.70 6.52 7.11 +14.3%
Meteor 8.23 8.43 8.39 8.72 +6.0%
Rouge 21.1 21.4 21.7 21.7 +2.8%
CIDEr 79.3 79.2 79.6 82.1 +3.5%
SkipT 66.9 67.1 67.1 67.2 +0.4%
EmbA 84.9 85.7 85.6 85.5 +0.9%
VecE 53.1 53.3 53.4 53.2 +0.5%
GreedyM 72.1 72.3 72.6 72.2 +0.7%

the nine evaluation measures. Notably, on both
datasets, the best variants are either VAR-II or
VAR-III. VAR-I performs decently and boosts per-
formance of standard transformers on both tasks,
signifying that the orthogonality constrained affin-
ity matrix in self-attention is sufficiently effective.
This mirrors the results on neural machine trans-
lation and is consistent across the findings. The
relative gain of applying orthogonality constraints
is also promising, peaking at +23.5% on BLEU-1
scores and +2.8% to +6.3% on Rouge.

4 Conclusion

We studied orthogonality constraints for trans-
formers, which are imposed on (i) linear transfor-
mations in self-attention and position-wise feed-
forward networks and (ii) the affinity matrix in

self-attention. We showed that such plug-and-play
constraints, which can be conveniently incorpo-
rated, consistently boost performance of transform-
ers on ten different machine translation tasks and
two dialogue generation tasks. For example, on
the large-scale WMT’16 En→De benchmark, sim-
ply plugging-and-playing orthogonality constraints
on the original transformer model (Vaswani et al.,
2017) increases the BLEU from 28.4 to 29.6, com-
ing close to the 29.7 BLEU achieved by the very
competitive dynamic convolution (Wu et al., 2019).

Broader Impact Given widespread adoptions of
transformer models, the proposed plug-and-play
orthogonal constraints could also be useful to com-
puter vision, automatic speech recognition, time
series analysis, and biological sequence analysis.
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A Proof of Theorem 2.1

Proof. Let x = Qi,∗, g(x) = xK>, and f(y) =
softmax(y). Expressing each row in A as Ai,∗ =
softmax(αQi,∗K>), we have

Ai,∗ = f(αg(x)). (2)

We first consider bounding g(x) with respect to
‖x′ − x‖:

‖g(x′)− g(x)‖ = ‖(x′ − x)K>‖.

Recalling the definition of the spectral norm,
‖A‖ = maxx∈Rl\{0}

‖xA‖
‖x‖ :

‖g(x′)− g(x)‖ ≤ ‖K‖‖x′ − x‖. (3)

Here, we can observe that the Lipschitz constant
for g is ‖K‖.

Next, we bound f(y) = softmax(y) with re-
spect to ‖y′ − y‖. Since f is a differentiable func-
tion, it holds that

‖f(y′)− f(y)‖ ≤ ‖J‖∗‖(y′ − y)‖, (4)

where J is the Jacobian matrix of f(y) with respect
to y, i.e., Ji,j = ∂f(y)i

∂yj
, and ‖J‖∗ = maxy ‖J‖.

Since f(y)i = eyi∑
eyj

, for diagonal entries of J we
have

Ji,i =
∂f(y)i
∂yi

=
eyi

∑
eyj
− e2yi

(
∑
eyj )2

= fi − fi2,
where fi = f(y)i for brevity. For non-diagonal
entries of J where i 6= j, we have

Ji,j =
∂f(y)i
∂yj

= − eyieyj

(
∑
eyj )2

= −fifj .
With this, we can express the Jacobian J as

J =



f1 − f12 · · · −f1fn

...
. . .

...
−fnf1 · · · fn − fn2




= diag(fi)− f>f ,

where f = [f1, .., fn] and f>f is the outer product
of f . We can then express the spectral norm of J as

‖J‖ = ‖diag(fi)− f>f‖
≤ ‖diag(fi)‖+ ‖f>f‖.

(5)

Note that diag(fi) and f>f are both symmetric
matrices. The spectral norm of a symmetric matrix
M is the largest absolute value of its eigenvalues
λ:

‖M‖ = max
i
|λi(M)|. (6)

For a diagonal matrix like diag(fi), its eigen-
vectors are the standard basis vector while its
eigenvalues are the non-zero diagonal entries, i.e.,
λi(diag(fi)) = fi. Thus, we can get

‖diag(fi)‖ = max
i
fi. (7)

Next, we find ‖f>f‖ through the eigenvalues of
f>f . When we take the product of f>f and f>,

f>f · f> =



f1
...
fn



[
f1 · · · fn

]


f1
...
fn




=



f1
...
fn


 ·
∑

i

fi
2

=

(∑

i

fi
2

)
f>.

From this, we know λ1(f
>f) =

∑
i fi

2, with
the corresponding eigenvector v1 = f>. Since the
remaining n− 1 eigenvectors are orthogonal to v1,
i.e., v>1 vi = fvi = 0, ∀i 6= 1, we have

f>f · vi = f>(f · vi)

= 0.

This implies that
∑

i fi
2 is the only non-zero

eigenvalue of f>f . Thus, with (6), this gives

‖f>f‖ =
∑

i

fi
2.

Combining this with (5) and (7), we get

‖J‖ ≤ max
i
fi +

∑

i

fi
2. (8)

Recall that ‖J‖ is the largest possible spectral
norm of J, i.e., ‖J‖∗ = maxy ‖J‖. Moreover, by
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definition of probability, it holds that fi ≤ 1 and
sum of probabilities

∑
fi ≤ 1. Therefore,

‖J‖∗ ≤ max
i,y

fi +max
y

∑

i

fi
2

≤ 1 + 1 = 2.

(9)

With (4) and (9), we get

‖f(y′)− f(y)‖ ≤ 2‖(y′ − y)‖. (10)

Bounding ‖A′i,∗ −Ai,∗‖ with (2), (10), and (3),
this gives

‖A′i,∗ −Ai,∗‖ = ‖f(αg(x′))− f(αg(x))‖
≤ ‖2αg(x′)− 2αg(x)‖
= 2α‖g(x′)− g(x)‖
≤ 2α‖K‖‖x′ − x‖
= 2α‖K‖ε.
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Abstract

Imagine you are in a supermarket. You have
two bananas in your basket and want to buy
four apples. How many fruits do you have
in total? This seemingly straightforward qu-
estion can be challenging for data-driven lan-
guage models, even if trained at scale. Ho-
wever, we would expect such generic langu-
age models to possess some mathematical abi-
lities in addition to typical linguistic compe-
tence. Towards this goal, we investigate if a
commonly used language model, BERT, po-
ssesses such mathematical abilities and, if so,
to what degree. For that, we fine-tune BERT
on a popular dataset for word math problems,
AQuA-RAT, and conduct several tests to un-
derstand learned representations better.
Since we teach models trained on natural lan-
guage to do formal mathematics, we hypothe-
size that such models would benefit from tra-
ining on semi-formal steps that explain how
math results are derived. To better accommo-
date such training, we also propose new pre-
text tasks for learning mathematical rules. We
call them (Neighbor) Reasoning Order Predic-
tion (ROP or NROP). With this new model,
we achieve significantly better outcomes than
data-driven baselines and even on-par with
more tailored models. We also show how to
reduce positional bias in such models.

1 Introduction

Automatically solving math word problems has a
long history dating back to the middle sixties (Bo-
brow, 1964). Early approaches were rule-based
matching systems that solve the problem symbo-
lically. Even though there are some impressive
symbolic systems that operate in a relatively nar-
row domain, the inability to successfully scale them
up is sometimes presented as a critique of the good-
old-fashioned AI, or GOFAI (Dreyfus et al., 1992).

∗Authors have contributed equally.

One issue is to create a formalism that covers all
the aspects needed to solve these problems. On the
other hand, deep learning (LeCun et al., 2015) aims
to develop artificial general intelligence that scales
better to various problems.

However, despite many successes in computer vi-
sion and natural language processing (Devlin et al.,
2018; He et al., 2016; Krizhevsky et al., 2012; Lan
et al., 2019; Mikolov et al., 2013), data-driven me-
thods evade our dream of building a system with
basic, every-day, mathematical skills. As large-
scale natural language models become more com-
mon (Devlin et al., 2018; Brown et al., 2020), we
would expect them to also reason mathematically.

Since natural language understanding also invo-
lves symbolic manipulation (Liang, 2016), we treat
mathematical reasoning as a language understan-
ding and revisit the data-driven paradigm. For that,
we rely on a recent language model, BERT (De-
vlin et al., 2019), and challenge it with math word
problems (Ling et al., 2017). Even though such
language models have initially shown promising
results, more recent investigation shows they may
rely on various biases in their predictions (Hen-
dricks et al., 2018; Brown et al., 2020; Bhardwaj
et al., 2020; Kurita et al., 2019). Here, we also
follow that line of investigation and show these mo-
dels can answer correctly without an understanding
of the rationale behind it.

Furthermore, as directly predicting answers to
math problems often requires multiple steps of re-
asoning, we show that we can improve BERT’s
generalization by exposing it to rationales (Ling
et al., 2017; Hendricks et al., 2016; Lei et al., 2016).
These are, however, only used during training simi-
larly to a teacher that shows a student a justification
for each answer. But then, the student is evaluated
only on the ability to answer these questions du-
ring the college exam correctly with no access to
rationales. Finally, to learn a better representation
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Figure 1: BERT (right) and our novel extension (left). We use
shared architecture but we separate question tokens (green
blocks) from rationales (blue blocks) using different segment
and positional embeddings. We show all three losses. MLM
predicts masked tokens (depicted here as PrQ,k). We use ROP
or NROP to predict if the ordering of rationale steps is correct.
For question-answering, we fine-tune the whole model with a
classification layer using softmax. We use the embedding that
corresponds to the [CLS] token as the input representation.

from rationales and to improve the generalization
even further, we introduce novel pretext tasks and
corresponding losses, which we name (Neighbor)
Reasoning Order Prediction (ROP or NROP). We
also show that permutation invariant losses can lead
to less biased representations. With that, we out-
perform other data-driven baselines, and are even
on-par with methods that are more tailored to math-
world problems and the AQuA-RAT dataset.

2 Methods

We use the following methods, each initialized with
BERT-base pre-trained on Wikipedia and Books
Corpus (Devlin et al., 2018; Zhu et al., 2015). Note
that, in fine-tuning they all have the same number
of parameters.
1) BERT-base. We fine-tune BERT to predict the
correct answer and show its transfer to math word
problems.
2) BERT-AQuA. We use the MLM loss on the
AQuA-RAT questions before training to predict
correct answer.
3) BERT-AQuA-RAT. We use the MLM loss on
the AQuA-RAT questions and rationales and show
if we can inject knowledge from rationales into
BERT.
4) BERT-(N)ROP. We use the MLM loss and the
novel (N)ROP loss for coherence prediction (defi-
ned later) and show if we can improve the results
by focusing the model on rationales.

Later in this paper, we propose permutation in-
variant losses that additionally reduce positional
biases of the BERT-base model, and can work with
all the pretext tasks described above.

Figure 2: ROP or NROP with positive (left) and negative
(right) labels. We randomly swap two rationales and classify
if that change has happened.

2.1 Architectures, pretext tasks and losses

We base our architecture on BERT (Devlin et al.,
2019) that has 12 transformer blocks (Vaswani
et al., 2017). As the core, we use the standard confi-
guration described in (Devlin et al., 2019). We use
three self-supervised losses. One is the standard
Masked Language Modelling (MLM) but extended
to work on rationales. Other two are our new losses,
(Neighbour) Reasoning Order Prediction (ROP or
NROP). Figure 1 shows two variants of our models.
Note that, during fine-tuning, rationales and all the
self-supervised losses are discarded.
MLM is the Masked Language Modelling (Devlin
et al., 2019). We randomly mask 15% of the input
tokens by a special token [MASK]. The objective
of this loss is to predict the masked token using its
context casted as a classification problem over the
tokenizer vocabulary. Loss is calculated only on
masked tokens. We extend this loss to rationales.
First, we randomly choose whether we mask a qu-
estion or rationale. Next, we follow the procedure
above applied to either a question or rationale. Ho-
wever, to encourage binding between questions and
rationales, we use the whole context for the pre-
dictions. Interestingly, there are parallels between
masking numbers and solving mathematical equ-
ations, where it can be seen as solving the equation
with unknown. For example, 2 + [MASK] = 4
becomes 2 + x = 4. As a consequence, models
during training organically deal with mathematical
calculations without defining a specific loss for ma-
thematics allowing soft transitions between natural
and more formal languages.
ROP is our novel coherence loss. Since rationa-
les are sequences of consecutive reasoning steps,
the order of the execution is critical as shown in
Figure 2. Following this intuition, we introduce
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Reasoning Order Prediction (ROP) that predicts
whether the order of the rationale steps is prese-
rved. Hence it encourages the network to pay more
attention to rationales. The loss is similar to Sen-
tence Order Prediction (SOP) (Lan et al., 2019),
but ours is focused on learning reasoning steps.
NROP is an extension of ROP where only conse-
cutive rationale steps are swapped making the pre-
diction (swap or no swap) task more challenging
and, hence, it can arguably lead to a better repre-
sentation as understanding the correct ordering is
more nuanced. Indeed, we observe that our models
trained with NROP correctly predict if swap has
occurred in about 75% cases, while with ROP in
about 78% cases (both on the validation set). This
indeed, confirms our hypothesis that NROP task is
more challenging than ROP.

3 Results

Dataset. We use AQuA-RAT (Ling et al., 2017). It
has about 100k crowd-sourced math questions with
five candidate answers (one is correct). Each qu-
estion has a rationale – a step-by-step explanation
of how the answer is computed – that is only availa-
ble during training. At test time answer predictions
are based on questions. The train set has roughly
100k question-answer-rationale triples, while dev
and test about 250 question-answer pairs each.
Main results. Table 1 shows our main results. We
see that our method is the state-of-the-art among
the models with minimal inductive biases and is
very competitive to the other two models that are
more specific to handle word math problems (e.g.,
requires programs). Moreover, even though BERT
is already a stronger model than LSTM, it is better
to use its MLM pretext task and loss on the AQuA-
RAT questions (BERT-AQuA) or even better on
questions and rationales (BERT-AQuA-RAT). Ho-
wever, models with our novel coherence prediction
losses can better learn from rationales (BERT-ROP
and BERT-NROP).

Moreover, we observe a highly sensitive rela-
tionship between dev and test sets (Figure 3, left),
where small changes in the accuracies in the for-
mer set can lead to more dramatic changes at test
time. Indeed, the correlation of results between
both sets is only 0.082. As the validation set is qu-
ite small, we propose an extended dev consisting of
5000 randomly chosen samples from the training
set extended by the whole dev set. Although not
ideal, and the sensitive relationship is still present

Model Accuracy

Random chance 20.0%

LSTM (Ling et al., 2017) 20.8%

BERT-base (ours) 28.3(±2.0)%
BERT-AQUA (ours) 29.1(±1.7)%
BERT-AQuA-RAT (ours) 32.3(±1.8)%
BERT-ROP (ours) 35.4(±1.0)%
BERT-NROP (ours) 37.0(±1.1)%
AQuA-RAT (Ling et al., 2017) 36.4%

MathQA (Amini et al., 2019) 37.9%

Table 1: Comparison of data-driven (first six rows) with two
hybrid approaches that use stronger and hence more specific
inductive biases (last two rows). Standard deviation estimates
(over random initializations) is given in parentheses, where
we see our losses can reduce the variability slightly.

Figure 3: Accuracies for dev and test sets. Green lines show
the iteration that maximizes validation accuracy. The image
also shows the sensitivity of relationship between test and the
original (left) or our extended (right) validation set.

(Figure 3, right), we have increased the correlation
to 0.401. With such a new validation set, we report
37% test accuracy but we can also see that 40% is
within the reach (Figure 3, right).
Rationales. We hypothesize that rationales con-
tain information that is either missing or hard to
extract from questions. For instance, their structure
is different; they are more formal with emphasis
on the logical steps. However, testing that hypothe-
sis is non-trivial as there is a confounding factor –
adding more rationales results in more data. The-
refore, we artificially modify the dataset so that
both models (one trained only on questions, and
another one on questions and rationales) are tra-
ined on roughly the same number of data points.
For that, we have estimated that rationales have
1.7 times more tokens than questions. This means
that a question combined with rationale has around
3 times more tokens than just a question. If our
hypothesis is valid, training on 20% questions and
rationales should give better results than training
on 60% questions (counting the number of tokens).
We therefore created samples of respective sizes of
just questions and questions combined with ratio-
nales. We show our results in Figure 4. The results
suggest that adding more questions is insufficient
and only slightly improves the overall performance.
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Figure 4: Accuracy scores conditioned on the number of
tokens available for training. To support our argument that
training on rationales is qualitatively different than questions,
we align both together so that we have comparable number of
tokens in both cases. Plot shows the progression of the dataset
size. Starting with 650K of tokens - 20% dataset BERT-AQuA
and 6.66% for BERT-NROP and ending with 3.25M - 100% of
dataset for BERT-AQuA and 33.3% dataset for BERT-NROP.
This shows that training with rationales leads to a better
representation. Even better than training with more questions.

On the other hand, using rationales is more helpful.
Embeddings. To better understand the difference
between BERT and BERT+NROP, we analyze the-
irs embeddings. For our analysis, we sample 2500
questions with a single operator in rationales, and
next we visualise them with T-SNE (Van der Ma-
aten and Hinton, 2008). We show both in Figure 5.
We observe that BERT+NROP embeddings prese-
rve more information about different operators.
Permutation consistency. Random guessing on
AQuA-RAT yields 20%. With that in mind to se-
parate questions that were solved by chance, we
have constructed a new evaluation task – permuta-
tion consistency test – where each question gets 5
answers at different positions. Table 2 shows our
procedure. Here, models only score a single point
if they solve all 5 questions correctly. Hence, a
random chance is 0.032% in such experiments.

Table 3 shows our results. BERT+NROP solves
almost three times as many questions as BERT.
Additionally, further inspection shows that BERT
relies on choosing the answers that most stand out,
e.g., numbers ending with zeros or floats while
every other option is an integer. We didn’t observe
that simple patterns with BERT+NROP. Questions
solved by BERT+NROP usually contain one or
two operations and show that BERT+NROP better
understands the problem. Below, we exemplify two
math problems solved by both models.

Example of a problem solved by BERT+NROP: 8 man

work for 6 days to complete a work. How many men are

required to complete same work in 1/2 day?

Answers: A)93, B)94, C)95, D)96, E)97

Original question
How much is 27 / 3 A)13 B)9 C)3 D)12 E)17

Generated questions
How much is 27 / 3 A)9 B)13 C)3 D)12 E)17

How much is 27 / 3 A)13 B)9 C)3 D)12 E)17

How much is 27 / 3 A)13 B)3 C)9 D)12 E)17

How much is 27 / 3 A)13 B)12 C)3 D)9 E)17

How much is 27 / 3 A)13 B)17 C)3 D)12 E)9

Table 2: Our generation method for the permutation consi-
stency test. Models get a point only if they solve all them.

Correct Option: D

Example of a problem solved by BERT A ship went on a

voyage. After it had traveled 180 miles a plane started with

10 times the speed of the ship. Find the distance when they

meet from starting point.?

Answers: A)238, B)289, C)200, D)287, E)187

Correct Option: C

Model Score

Random chance 0.032%

BERT 4.33%

BERT+NROP 11.02%

BERT AUG 13.4%

BERT+NROP AUG 19.7%

BERT SEP-NC 15.0%

BERT+NROP SEP-NC 22.7%

BERT SEP-C 16.1%

BERT+NROP SEP-C 23.9%

Table 3: Our results for the permutation consistency test.

Drop from 37.0% to 11.02% (Table 3) suggests
that models rely strongly on the order of answers.
To reduce such a bias, we test several permutation
invariant losses.
1) AUG. We sample randomly 25 permutations of
all the possible answers and use them during tra-
ining. Original ordering is not used, so there is no
order bias. This is a data augmentation technique.
2) SEP-NC. The original models are trained on
a 5-class classification task, where we build the
representation by using questions and all the candi-
date answers, i.e., BERT(Q||P ). Here, || denotes
concatenation, Q is the question and P represents
the sequence of all answers. In SEP-NC, we block
the path between all the candidate answers and the
BERT-base. Next, we use a late-fusion to predict
if the given candidate answer matches with the
question. That is, we use the following formula-
tion f(BERT(Q)||BERT(C)), where C ∈ P is a
single candidate answer and f is a multi-layer per-
ception (with two layers). At test time, the model
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Figure 5: BERT and BERT+NROP embeddings. Colours represent different operators in rationales (T-SNE). BERT+NROP
embeddings better separate operators.

is prompted to score all five candidate answers and
select the one with the highest score. Appendix has
more information about this method.
3) SEP-C. As models trained with SEP-NC do not
have access to all the possible answers, their biases
to answer positions are significantly reduced. Ho-
wever, these models cannot compare each answer
to all other candidate answers. Here, we use the fol-
lowing formulation f(BERT(Q||P )||BERT(C))
to measure the compatibility of the input (question
Q and all the candidate answers P ) with the given
candidate answer C ∈ P . We also reset the po-
sitional encoding between every possible answer
in P . In such a way, we hypothesise the network
can learn a less biased representation, and on the
other hand, use relationship between the candidate
answers. Table 3 shows SEP-NC and SEP-C vastly
outperform the original model on the permutation
consistency test. Details are in the appendix.

SEP-NC and SEP-C improve permutation con-
sistency tests. Yet, they give similar results to ori-
ginal methods in accuracy measuring task. They
achieve respectively 33.5% (SEP-NC) and 35.4%
(SEP-C).
Questions difficulty. To better understand the mo-
dels’ performance, we check which questions are
difficult for the model. We categorize questions
by their difficulty for BERT-NROP and BERT. To
estimate a question’s difficulty, we have ranked the
candidate answers according to the model’s uncer-
tainties. For instance, if the correct answer has the
2nd largest probability, we assign to that question
difficulty two. With that, we group questions into
5 difficulty categories, from the easiest: D1, .., D5.

Manual inspection shows that for BERT+NROP:
D5 requires additional knowledge or implicitly de-
fined numbers (e.g., adding first 100 numbers), D4

requires geometry or non-linear equations and sys-
tems, D3 requires solving linear systems with a

few basic operations, D2 requires solving simple
equations, and D1 has one or two basic operations
with clearly written numbers. We show an example
from each group in the supplementary material. We
didn’t observe a similar pattern for BERT with the
exception of the easiest group D1 where the model
chooses the answer that is somewhat different from
other candidates. We provide an example of each
group in the supplementary materials.

Finally, we also compare the difficulty of qu-
estions with the difficulty perceived by humans.
For that, we have conducted a small-group human
study, where we have asked participants to solve
some AQuA-RAT questions and rate their difficulty.
We find a positive correlation between the difficulty
measured by our models (as described above) to
the difficulty judged by humans. We give more
details in the appendix.
Conclusions. We have investigated if BERT (De-
vlin et al., 2019) – a pre-trained, large language
model – can deal with mathematical reasoning. We
find that its representation is biased (Brown et al.,
2020; Bhardwaj et al., 2020; Kurita et al., 2019)
also in mathematics. We investigate and describe
that bias. Our novel pretext tasks and losses re-
duce that bias, but the network still finds shortcuts.
We hope our work will spark interest of the com-
munity in developing language models capable of
mathematical reasoning.
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Impact Statement

Our research follows the data-driven paradigm for
creating general-purpose language models with
some mathematical skills. We expect that mathe-
matically aware language models will broaden the
spectrum of topics they can understand, increasing
their reliability and making them more useful.

Improving mathematical abilities and coherence
in language models is likely to affect question-
answering or dialogue systems, search engines or
text summarization systems.

One considerable risk in developing language
models at scale is that they could use various worka-
rounds and biases to achieve their results. We have
shown that issues in the context of mathematical
reasoning. Such problems can become hazardous
when wrong numbers could lead to bad decisions.
Additionally, a person could easily fall into the fal-
lacy that the order of magnitude is correct even if
the answer is incorrect. As we showed, the model
can favour round numbers over the ones close to
the right answer. To mitigate the risk, we enco-
urage considering additional tests and investigating
the models more rigorously.
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A AQuA-RAT example
Question: A starts a business with Rs.40,000. After 2 months,
B joined him with Rs.60,000. C joined them after some more
time with Rs.120,000. At the end of the year, out of a total
profit of Rs.375,000, C gets Rs.150,000 as his share. How
many months after B joined the business, did C join?
Options: A) 30, B) 32, C) 35, D) 36, E) 40
Rationale:

Assume that C was there in the business for x months
A : B : C = 40000 ∗ 12 : 60000 ∗ 10 : 120000 ∗ x
= 40 ∗ 12 : 60 ∗ 10 : 120x = 40 : 5 ∗ 10 : 10x

= 8 : 10 : 2x
= 4 : 5 : x

C’s share = 375000 ∗ x/(9 + x) = 150000
=> 375x/(9 + x) = 150

=> 15x = 6(9 + x)
=> 5x = 18 + 2x

=> 3x = 18
=> x = 18/3 = 6

It means C was there in the business for 6 months. Given that
B joined the business after 2 months. Hence C joined after 4

months after B joined
Answer is B

Additional examples are in the supplementary
material.

B Input representation

All BERT variants use the representation that corre-
sponds to a special token [CLS] that we put at the
beginning of the whole input sequence consisting
of question tokens followed by rationale tokens,
and in the downstream, question-answering task,
rationale tokens are replaced by the answer options.
With that, the classification uses the contextual em-
bedding of [CLS] that captures the entire input.
MLM classifies over the entire vocabulary of possi-
ble words while the other two losses use a binary
cross-entropy loss for the predictions.

C Training protocol

We train all our architectures on AQuA-RAT using
the following training phases. In all cases, we cho-
ose our best model based on the performance on
the validation set (dev set), and report the final
performance on the test set.

Pre-training. Each model is pre-trained on a
large corpus of texts written in natural language
sampled from English Wikipedia and BooksCor-
pus (Devlin et al., 2018; Zhu et al., 2015). We
use this as the base (BERT-base) model that is also
used in all other variants of BERT. In practice, we
initialize all the models with the weights using the
HuggingFace library (Wolf et al., 2019) and don’t
keep final layer for fine-tuning. Our model there-
fore has the same number of weights as BERT-base.

Self-supervision. Here, we use our newly intro-
duced losses, ROP and NROP, where our models
use questions and possibly rationales from the
AQuA-RAT dataset. Both questions and rationales
use the same word embeddings. However, to distin-
guish between both modalities we use two segment
embeddings. The first one for all the question to-
kens, and the second one for all the rationale tokens.
That is, the segment embedding is shared among
all the question tokens, and separately among all
the rationale tokens. We use dynamic masking (Liu
et al., 2019). Here, tokens are randomly masked
for each batch. We naturally extend this approach
to other losses that we use in this phase. That is,
ROP and NROP negative examples are randomly
recreated every k epochs, where k = 2 in our case.

Fine-tuning is the last training phase. Here, once
our models have learnt the representation during
the self-supervised phase, we tune such a represen-
tation to the question-answering downstream task.
In this task, our input consists of question tokens
and possible answer options. There are five such
options that comes with the dataset. Like other
methods, we tread this as a five-class classification
task where the classification head is added on top
of the final embedding of the input. We consider
the embedding corresponding to the first (from the
left) [CLS] token as such the final representation.

D Implementation details

In our experiments, we use four TITAN V GPUs.
We use a multi-gpu setup. In the pre-training phase,
we use batch size equals to four for each GPU de-
vice. Therefore the effective batch size equals to
sixteen. We use the learning rate 5 · 10−5 and tra-
ined the models for 24 epochs. In the fine-tuning
phase, we use early stopping criteria, based on the
accuracy score on the validation set. We use the fol-
lowing criteria. If the model does not improve the
performance in 15 consecutive epochs, we stop tra-
ining, and evaluate a model that yields the highest
validation performance. We use ADAM optimizer
with learning rate 10−5 and gradient clipping that
sets the maximal gradient’s norm to one. All our
settings use the same hyper-parameters but they
differ due to the random initialization of our self-
supervised networks (during the self-supervised tra-
ining phase) and the classification networks (during
the fine-tuning phase). Self-supervision phase ta-
kes around 4 days on 4 GPUs, whereas fine-tuning
takes 8 hours on a single GPU.
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E Permutation invariant methods

In the main paper, we have shown that typical mo-
dels can use positional biases in achieving answers.
This results in a low permutation consistency score
(Table 3 in the main paper). To handle that issue,
we have defined extra variants that do not use posi-
tional encodings for the answer options and instead
they rely on the retrieval mechanics where input
representations are matched against the candidate
answers. Here, we describe two such variants.

E.1 Original methods
Original models create an embedding of a sentence
extended by possible questions. This embedding
is then transformed by a linear layer to predict the
correct answer. That is,

o1 = f1(BERT(Q||P ))

where o1 is a 5-dimensional vector with probabi-
lities for each possible answer, Q is a question, P
are all possible answers, || represents concatena-
tion, f1 is a single fully connected layer from 768-
dimensional space to 5-dimensional space with the
softmax activation. BERT is a BERT-base sen-
tence embedding. The same approach is used for
BERT+(N)ROP.

E.2 SEP-NC
In SEP-NC and SEP-C, we use separate embed-
dings for a question and SEParate embedding for a
candidate answer. They differ, however, in the fact
that SEP-C has access to all five possible answers,
while SEP-NC has access only to one prompted
candidate answer. Therefore NC stands for ńo can-
didates", while C stands for ćandidates".

We train the SEP-NC model on a binary clas-
sification task to predict whether each candidate
answer C is correct. The method produces two
embeddings, one for question and another one for
a candidate answer C ∈ P , and next concatenates
them. That is,

o2 = f2(BERT(Q)||BERT(C))

where o2 is an estimated probability that C is a
correct answer, P is the sequence of all possible
answers, f2 is a single fully connected layer from
1536 (768 * 2) dimensional space to 1-dimensional
space with the sigmoid activation. Note that, all
candidate answers are independent of the question.
That is, BERT cannot use positional biases in deri-
ving an answer. At test time, the model is prompted

to score all five candidate answers and select the
one with the highest score. We naturally extended
that approach to BERT+ROP and BERT+NROP.
Table 3 (the main paper) shows a significant impro-
vement over the baseline method.

E.3 SEP-C

SEP-NC method could be too restrictive as it does
not allow the model to compare against different
answers. Therefore, we propose another approach
that 1) alleviate the issue with positional biases, but
2) can compare between different answer options.
We call that approach SEP-C.

Originally for each token, a positional encoding
is assigned based on its position. In SEP-C, be-
fore assigning positional encoding, we artificially
reset the position at the beginning of each possi-
ble answer. For example, if possible answers are:
a)10, b)20, c)30, d)40, e)50 they are changed into
10; 20; 30; 40; 50 and after the tokenization, we get
the following list of tokens: [’1’,’0’, ’;’, ’2’, ’0’,
’;’, ’3’, ’0’, ’;’ ,’4’, ’0’, ’;’, ’5’, ’0’]. Modified po-
sitional encoding will assign value based only on
the relative position to the beginning of the current
possible answer. Therefore, in the example above,
each ’0’ will receive the same positional encoding,
and ’1’ will get the same positional encoding as
’2’, ’3’, and so on.

Formally, we have

o3 = f3(BERT(Q||Pm)||BERT(C))

where Pm is the sequence of all the possible an-
swers but modified as explained above. Note that,
in this formulation, the model can use the informa-
tion for all the possible answer options, but their
order is not taken into account. Table 3 (the main
paper) shows a significant improvement over the
baseline method.

E.4 Human study

We carried an initial human study on the group of
16 volunteers from University of Warsaw. Volun-
teers were Mathematics and Informatics students
from the Faculty of Mathematics, Informatics and
Mechanics. We asked the participants to solve
questions sampled from the AQuA-RAT dataset.
We are interested in the relation between BERTs
difficulty, BERT+NROP difficulty and human dif-
ficulty. Therefore to have a full image we would
like to have 2 questions for each question difficulty
pair, for example (D1 BERT, D2: BERT+NROP)

392



Figure 6: The average human-judged difficulty for questions
from each model difficulty group.

. However, that would give 25 combinations and
50 questions if we wanted to have 2 questions per
combination. That would be too much to ask from
a volunteer participant. In order to reduce the num-
ber of questions, we group our 5 difficulty groups
into 3 categories as follows.

• Easy: D1

• Medium: D2 and D3 combined

• Hard: D4 and D5 combined

Because of that we have only 9 possible com-
binations and by sampling 2 questions from each
combination we still have a feasible number of
questions (18).

Apart from solving the question, we asked to rate
question difficulty on a scale from 1 (the simplest)
to 10 (the most challenging). In general, our parti-
cipants were knowledgeable in math and solved all
the questions correctly. With that grouping we now

The average human-rated difficulty for each of
9 combinations is presented in Figure 6. The re-
sults show that the progression of human difficulty
is correlated with the difficulty judged by the mo-
dels. Additionally, the human difficulty seems to
be more sensitive to BERT+NROP difficulty than
to BERTs. In other words, increasing the diffi-
culty of BERT+NROP will increase the human dif-
ficulty more than the increasing difficulty of BERT.
This observation fits our previous observations that
BERT+NROP solves the most straightforward qu-
estions while BERT is looking for some leaks, like
looking for the roundest answer.

dataset A B C D E

train 21.03% 22% 22.87% 19.95% 14.15%

dev 27.17% 25.98% 16.93% 19.69% 10.24$

test 24.80% 22.83% 20.87% 18.11% 13.38%

Table 4: Answer distribution in each dataset.

F Distribution of answers

Table 4 shows the distribution of the answers in
the AQuA-RAT (Ling et al., 2017) dataset in all
the folds. Imbalance in distributions could poten-
tially be used by models to find easy, shortcut solu-
tions. For instance, a constant classifier that always
choose the first answer (A) gets about 24% test
accuracy.

G Negative results

While developing our self-supervised losses, we
have developed another loss that turned out to be
unhelpful. Here, we describe that loss as some
its parts could be insightful for others. (N)ROP
is a local loss focusing on rationales but not on
the connections between questions and rationales.
For that, we have developed Question Rationale
Alignment (QRA). QRA changes a rationale with
50% probability to a randomly chosen rationale
from the current batch. However, simply changing
rationales would result in trivially solvable task in
most cases. All the model would have to do is
check whether numbers in the rationale and the qu-
estion match. Hence, we mask number tokens with
a special token QRA alone or QRA combined with
NROP does not improve the results, it gives it gives
33.9% accuracy on the test in the best combination,
so we didn’t include it in the main results.

H Related work

We are inspired by the following research.
BERTology. We use BERT (Devlin et al., 2019)
as our core. It uses Transformers (Vaswani et al.,
2017); powerful neural architectures that applies a
trainable function to all the pairs of input embed-
dings. It also uses masking that covers a fraction
of the input words and requires the network to pre-
dict the hidden words based on the context. With
both ingredients, the meaning (representation) of a
word emerges from the “company it keeps” (Firth,
1961). In practice, often, such representations are
pre-trained on large textual corpora with no need
for annotations, and next fine-tuned on the down-
stream tasks. BERT’s strong performance has re-
sulted in the Cambrian explosion of studies of the
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inner working mechanisms and various modifica-
tions (Clark et al., 2019; de Vries et al., 2019; Lan
et al., 2019; Liu et al., 2019; Sanh et al., 2019; Rad-
ford et al.; Raffel et al., 2019; Yang et al., 2019).
Finally, our Reasoning Order Prediction (ROP) is
inspired by Sentence Order Prediction (SOP) (Lan
et al., 2019). However, ROP works with multiple
rationale sentences, where by changing the order
we force the network to understand the consecutive
“reasoning” steps. We have also further extended
ROP to a more difficult Neighbor Reasoning Order
Prediction (NROP).
Language and math. Development psychologi-
sts (Cocking et al., 1988; Mestre, 2013) often argue
for the necessity of learning languages and point
out that those with limited language skills are in
danger of under-performing at school. Moreover, it
is also believed that language studies involve disci-
pline in learning and manipulating formal structu-
res, and thus may promote the development of the
organization of thoughts also required in mathema-
tical reasoning. The similarity between linguistic
competence and mathematics is especially pronoun-
ced when solving math word problems (Fuchs et al.,
2006, 2008; Wang et al., 2016). Interestingly, atten-
tion appears to be crucial in problem solving (Fuchs
et al., 2006; Pasolunghi et al., 1999). (Crossley
et al., 2017) show that language skills are corre-
lated with the performance in mathematical tests
also among the university students. In particular,
they pointed out that ability to use complex syn-
tactic structures and cohesion devices are linked
to better scores in a blended discrete mathematics
course. We take inspiration from all such studies
and decide to build our mathematical model based
on language models.
Math word problems. Solving math word pro-
blems is a significant component of the mathema-
tics curriculum and is taught very early, thoroughly,
and universally. Such the emphasize is often moti-
vated by that solving them is among the best pre-
dictors of employability, and is considered as a
distinct area of mathematical competence (Mur-
nane et al., 2001; Wang et al., 2016). Since so-
lving such problems is unique to human intelli-
gence, math word problems are also interesting for
the AI community. This results in various appro-
aches, more traditional symbolic methods, neural
networks, and neuro-symbolic methods. (Bobrow,
1964; Charniak, 1969; Shi et al., 2015; Ling et al.,
2017; Amini et al., 2019; Parisotto et al., 2016;

Wang et al., 2018; Zou and Lu, 2019) as well as
datasets (Ling et al., 2017; Amini et al., 2019; Hu-
ang et al., 2016; Saxton et al., 2019) An interesting
approach is proposed in (Rabe et al., 2020), in
which authors use self-supervised tasks on parsing
trees of formal expressions. This approach requires
syntax trees, and hence we would have to use an
external parser. As our goal was to make an end to
end model, we did not experiment with it, but there
are no obstacles against using it in symbiosis with
our methods. (Geva et al., 2020) also proposes
self-supervised training for improving mathema-
tical abilities in language models. We, however,
focused on a data-driven approach to exclude cho-
ice biases and therefore restricted ourselves from
using generated data.
Rationales. In human communication, we always
expect there is some rationale behind each decision.
Hence, we set the same expectations to our artificial
agents. Symbolic or semi-symbolic architectures
naturally produce justifications as a sequence of for-
mulas in some formal language (Lane et al., 2005;
Core et al., 2006; Lomas et al., 2012; Johnson;
Liang, 2016; Malinowski and Fritz, 2014). Ideally,
such rationales would also be shared and commu-
nicated to us through some language. The latter
approach is especially appealing when applied to
black-box neural networks. For instance, (Hen-
dricks et al., 2016) propose a system that classifies
the input image as well as it produces a textual
explanation on “why this class is suitable for the
given image”.

Systems that produce explanations either in the
form of the language (Ling et al., 2017; Hendricks
et al., 2016), attention (Bahdanau et al., 2014; Mnih
et al., 2014; Gulcehre et al., 2016; Malinowski
et al., 2018; Xu and Saenko, 2016; Yang et al.,
2016), phrase selection (Lei et al., 2016), distilla-
tion into programs (Hajipour et al., 2020), or deci-
sion trees (Alaniz and Akata, 2019) can potentially
increase the transparency of the black-box neural
networks. However, most of these approaches cre-
ate rationales posthoc where the justification is con-
ditioned on answers or by querying the network. In
our work, we use rationales to learn a finer represen-
tation that can potentially lead to better decisions.
In this sense, our technique is conceptually closer
to methods that derive answers based on the pro-
gram and use rationales paired with questions to
guide the program induction process (Ling et al.,
2017).

394



Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Short Papers), pages 395–401

August 1–6, 2021. ©2021 Association for Computational Linguistics

Happy Dance, Slow Clap:
Using Reaction GIFs to Predict Induced Affect on Twitter

Boaz Shmueli1,2,3 , Soumya Ray2, and Lun-Wei Ku3

1Social Networks and Human-Centered Computing, TIGP, Academia Sinica
2Institute of Service Science, National Tsing Hua University

3Institute of Information Science, Academia Sinica
shmueli@iis.sinica.edu.tw soumya.ray@iss.nthu.edu.tw lwku@iis.sinica.edu.tw

Abstract

Datasets with induced emotion labels are
scarce but of utmost importance for many NLP
tasks. We present a new, automated method for
collecting texts along with their induced reac-
tion labels. The method exploits the online use
of reaction GIFs, which capture complex affec-
tive states. We show how to augment the data
with induced emotions and induced sentiment
labels. We use our method to create and pub-
lish ReactionGIF, a first-of-its-kind affective
dataset of 30K tweets. We provide baselines
for three new tasks, including induced senti-
ment prediction and multilabel classification
of induced emotions. Our method and dataset
open new research opportunities in emotion
detection and affective computing.

1 Introduction

Affective states such as emotions are an elemental
part of the human condition. The automatic de-
tection of these states is thus an important task in
affective computing, with applications in diverse
fields including psychology, political science, and
marketing (Seyeditabari et al., 2018). Training ma-
chine learning algorithms for such applications
requires large yet task-specific emotion-labeled
datasets (Bostan and Klinger, 2018).

Borrowing from music (Gabrielsson, 2001) and
film (Tian et al., 2017), one can distinguish between
two reader perspectives when labeling emotions in
text: perceived emotions, which are the emotions
that the reader recognizes in the text, and induced
emotions, which are the emotions aroused in the
reader. However, with the exception of Buechel
and Hahn (2017), this distinction is mostly miss-
ing from the NLP literature, which focuses on the
distinction between author and reader perspectives
(Calvo and Mac Kim, 2013).

The collection of perceived emotions data is con-
siderably simpler than induced emotions data, and

presently most human-annotated emotion datasets
are labeled with perceived emotions (e. g., Strap-
parava and Mihalcea, 2008; Preoţiuc-Pietro et al.,
2016; Hsu and Ku, 2018; Demszky et al., 2020).
Induced emotions data can be collected using phys-
iological measurements or self-reporting, but both
methods are complex, expensive, unreliable and
cannot scale easily. Still, having well-classified
induced emotions data is of utmost importance
to dialogue systems and other applications that
aim to detect, predict, or elicit a particular emo-
tional response in users. Pool and Nissim (2016)
used distant supervision to detect induced emotions
from Facebook posts by looking at the six available
emoji reactions. Although this method is automatic,
it is limited both in emotional range, since the set of
reactions is small and rigid, and accuracy, because
emojis are often misunderstood due to their visual
ambiguity (Tigwell and Flatla, 2016).

To overcome these drawbacks, we propose a new
method that innovatively exploits the use of reac-
tion GIFs in online conversations. Reaction GIFs
are effective because they “display emotional re-
sponses to prior talk in text-mediated conversations”
(Tolins and Samermit, 2016). We propose a fully-
automated method that captures in-the-wild texts,
naturally supervised using fine-grained, induced
reaction labels. We also augment our dataset with
sentiment and emotion labels. We use our method
to collect and publish the ReactionGIF dataset.1

2 Automatic Supervision using GIFs

Figure 1a shows a typical Twitter thread. User
A writes “I can’t take this any more!”. User B
replies with a reaction GIF depicting an embrace.
Our method automatically infers a hug reaction,
signaling that A’s text induced a feeling of love and
caring. In the following, we formalize our method.

1github.com/bshmueli/ReactionGIF
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(a) A root tweet (“I can’t take...”) with
a hug reaction GIF reply.

(b) The reaction categories menu of-
fers 43 categories (hug, kiss, ...).

(c) The top reaction GIFs offered to
the user from the hug category.

Figure 1: How reaction GIFs are used (left) and inserted (middle, right) on Twitter.

2.1 The Method

Let (t,g) represent a 2-turn online interaction
with a root post comprised solely of text t, and
a reply containing only reaction GIF g. Let R ={R1,R2, ...,RM} be a set of M different reaction cat-
egories representing various affective states (e. g.,
hug, facepalm). The function R maps a GIF g to
a reaction category, g↦R(g), R(g) ∈ R. We use
r =R(g) as the label of t. In the Twitter thread
shown in Figure 1a, the label of the tweet “I can’t
take this any more!” is r =R(g) = hug.

Inferring R(g) would usually require humans to
manually view and annotate each GIF. Our method
automatically determines the reaction category con-
veyed in the GIF. In the following, we explain how
we automate this step.

GIF Dictionary We first build a dictionary of
GIFs and their reaction categories by taking ad-
vantage of the 2-step process by which users post
reaction GIFs. We describe this process on Twitter;
other platforms follow a similar approach:

Step 1: The user clicks on the GIF button. A
menu of reaction categories pops up (Figure 1b).
Twitter has 43 pre-defined categories (e. g., high
five, hug). The user clicks their preferred category.

Step 2: A grid of reaction GIFs from the selected
category is displayed (Figure 1c). The user selects
one reaction GIF to insert into the tweet.

To compile the GIF dictionary, we collect the
first 100 GIFs in each of the M = 43 reaction cate-
gories on Twitter. We save the 4300 GIFs, along
with their categories, to the dictionary. While in
general GIFs do not necessarily contain affective
information, our method collects reaction GIFs that
depict corresponding affective states.

Computing R(g) Given a (t,g) sample, we la-
bel text t with reaction category r by mapping re-
action GIF g back to its category r =R(g). We
search for g in the GIF dictionary and identify the
category(ies) in which it is offered to the user. If
the GIF is not found, the sample is discarded. For
the small minority of GIFs that appear in two or
more categories, we look at the positions of the
GIF in each of its categories and select the category
with the higher position.

2.2 Category Clustering

Because reaction categories represent overlapping
affective states, a GIF may appear in multiple cat-
egories. For example, a GIF that appears in the
thumbs up category may also appear in the ok cate-
gory, since both express approval. Out of the 4300
GIFs, 408 appear in two or more categories. Ex-
ploiting this artefact, we propose a new metric: the
pairwise reaction similarity, which is the number
of reaction GIFs that appear in a pair of categories.

To automatically discover affinities between re-
action categories, we use our similarity metric and
perform hierarchical clustering with average link-
age. The resulting dendrogram, shown in Figure 2,
uncovers surprisingly well the relationships be-
tween common human gesticulations. For exam-
ple, shrug and idk (I don’t know) share common
emotions related to uncertainty and defensiveness.
In particular, we can see two major clusters cap-
turing negative sentiment (left cluster: mic drop
to smh [shake my head]) and positive sentiment
(right cluster: hug to slow clap), which are useful
for downstream sentiment analysis tasks. The two
rightmost singletons, popcorn and thank you, lack
sufficient similarity data.
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Figure 2: Hierarchical clustering (average linkage) of reaction categories shows relationships between reactions.

3 ReactionGIF Dataset

We applied our proposed method to 30K English-
language (t,g) 2-turn pairs collected from Twitter
in April 2020. t are text-only root tweets (not con-
taining links or media) and g are pure GIF reactions.
We label each tweet t with its reaction category
r =R(g). See Appendix A for samples. The result-
ing dataset, ReactionGIF, is publicly available.

Figure 3 shows the category distribution’s long
tail. The top seven categories (applause to eye-
roll) label more than half of the samples (50.9%).
Each of the remaining 36 categories accounts for
between 0.2% to 2.8% of the samples.

Label Augmentation Reaction categories con-
vey a rich affective signal. We can thus augment
the dataset with other affective labels. We add sen-
timent labels by using the positive and negative
reaction category clusters, labeling each sample
according to its cluster’s sentiment (§2.2). Fur-
thermore, we add emotion labels using a novel
reactions-to-emotions mapping: we asked 3 anno-
tators to map each reaction category onto a subset
of the 27 emotions in Demszky et al. (2020) —
see Table 1. Instructions were to view the GIFs
in each category and select the expressed emo-
tions. Pairwise Cohen’s kappa indicate moderate
interrater agreements with κ12 = 0.512, κ13 = 0.494,
κ23 = 0.449, and Fleiss’ kappa κF = 0.483. We use
the annotators’ majority decisions as the final many-
to-many mapping and label each sample according
to its category’s mapped emotions subset.

GIFs in Context As far as we know, our dataset
is the first to offer reaction GIFs with their eliciting
texts. Moreover, the reaction GIFs are labeled with
a reaction category. Other available GIF datasets
(TGIF by Li et al., 2016, and GIFGIF/GIFGIF+,
e. g., Jou et al., 2014) lack both the eliciting texts
and the reaction categories.

Admiration Curiosity Fear Pride
Amusement Desire Gratitude Realization
Anger Disappointment Grief Relief
Annoyance Disapproval Joy Remorse
Approval Disgust Love Sadness
Caring Embarrassment Nervousness Surprise
Confusion Excitement Optimism

Table 1: The 27 emotions in Demszky et al. (2020).

4 Baselines

As this is the first dataset of its kind, we aim to
promote future research by offering baselines for
predicting the reaction, sentiment, and emotion in-
duced by tweets. We use the following four models
in our experiments:

• Majority: A simple majority class classifier.

• LR: Logistic regression classifier (L-BFGS
solver with C = 3, maximum iterations 1000,
stratified K-fold cross validation with K = 5)
using TF-IDF vectors (unigrams and bigrams,
cutoff 2, maximum 1000 features, removing
English-language stop words).

• CNN: Convolutional neural network (100 fil-
ters, kernel size 3, global max pooling; 2 hid-
den layers with 0.2 dropout; Adam solver, 100
epochs, batch size 128, learning rate 0.0005)
with GloVe embeddings (Twitter, 27B tokens,
1.2M vocabulary, uncased, 100d) (Pennington
et al., 2014).

• RoBERTa: Pre-trained transformer model
(base, batch size 32, maximum sequence
length 96, 3 training epochs) (Liu et al., 2019).

We hold out 10% of the samples for evalua-
tion. The code is publicly available along with the
dataset for reproducibility. The experiment results
are summarized in Table 2.
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Figure 3: Distribution of the 43 reaction categories in ReactionGIF

Task → Reaction Sentiment Emotion

Model ↓ Acc P R F1 Acc P R F1 LRAP

Majority 10.4 1.1 10.4 2.0 58.0 33.7 58.0 42.6 0.445
LR 22.7 19.5 22.7 18.0 64.7 64.4 64.7 62.4 0.529
CNN 25.5 17.3 25.5 19.1 67.1 66.8 67.1 66.3 0.557
RoBERTa 28.4 23.6 28.4 23.9 70.0 69.7 70.0 69.8 0.596

Table 2: Baselines for the reaction, sentiment, and emotion classification tasks. All metrics are weight-averaged.
The highest value in each column is emboldened.

Affective Reaction Prediction is a multiclass
classification task where we predict the reaction
category r for each tweet t. RoBERTa achieves a
weight-averaged F1-score of 23.9%.

Induced Sentiment Prediction is a binary clas-
sification task to predict the sentiment induced by
tweet t by using the augmented labels. RoBERTa
has the best performance with accuracy 70.0% and
F1-score of 69.8%.

Finally, Induced Emotion Prediction uses our
reaction-to-emotion transformation for predicting
emotions. This is a 27-emotion multilabel classifi-
cation task, reflecting our dataset’s unique ability
to capture complex emotional states. RoBERTa is
again the best model, with Label Ranking Average
Precision (LRAP) of 0.596.

5 Discussion

Reaction GIFs are ubiquitous in online conversa-
tions due to their uniqueness as lightweight and
silent moving pictures. They are also more effec-
tive and precise2 when conveying affective states
compared to text, emoticons, and emojis (Bakhshi
et al., 2016). Consequently, the reaction category
is a new type of label, not yet available in NLP
emotion datasets: existing datasets use either the
discrete emotions model (Ekman, 1992) or the di-
mensional model of emotion (Mehrabian, 1996).

2For example, the facepalm reaction is “a gesture in which
the palm of one’s hand is brought to one’s face, as an expres-
sion of disbelief, shame, or exasperation.”, Oxford University
Press, lexico.com/en/definition/facepalm

The new labels possess important advantages, but
also present interesting challenges.

Advantages The new reaction labels provide a
rich, complex signal that can be mapped to other
types of affective labels, including sentiment, emo-
tions and possibly feelings and moods. In addi-
tion, because reaction GIFs are ubiquitous in on-
line conversations, we can automatically collect
large amounts of inexpensive, naturally-occurring,
high-quality affective labels. Significantly, and in
contrast with most other emotion datasets, the la-
bels measure induced (as opposed to perceived) af-
fective states; these labels are of prime importance
yet the most difficult to obtain, with applications
that include GIF recommender systems, dialogue
systems, and any other application that requires
predicting or inducing users’ emotional response.

Challenges The large number of reaction cate-
gories (reflecting the richness of communication by
gestures) makes their prediction a challenging task.
In addition, the category distribution has a long tail,
and there is an affective overlap between the cate-
gories. One way to address these issues is by accu-
rately mapping the reactions to emotions. Precise
mapping will require a larger GIF dictionary (our
current one has 4300 GIFs), a larger dataset, and
new evaluation metrics. A larger GIF dictionary
will also improve the reaction similarity’s accuracy,
offering new approaches for studying relationships
between reactions (§2.2).

398



6 Conclusion

Our new method is the first to exploit the use of
reaction GIFs for capturing in-the-wild induced af-
fective data. We augment the data with induced
sentiment and emotion labels using two novel map-
ping techniques: reaction category clustering and
reactions-to-emotions transformation. We used our
method to publish ReactionGIF, a first-of-its-kind
dataset with multiple affective labels. The new
method and dataset offer opportunities for advances
in emotion detection.

Moreover, our method can be generalized to cap-
ture data from other social media and instant mes-
saging platforms that use reaction GIFs, as well as
applied to other downstream tasks such as multi-
modal emotion detection and emotion recognition
in dialogues, thus enabling new research directions
in affective computing.
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Ethical Considerations and Implications

Data Collection

The ReactionGIF data was collected from Twit-
ter using the official API in full accordance with
their Development Agreement and Policy (Twitter,
2020). Similar to other Twitter datasets, we include
the tweet IDs but not the texts. This guarantees
that researchers who want to use the data will also
need to agree with Twitter’s Terms of Service. It
also ensures compliance with section III (Updates
and Removals) of the Developer Agreement and
Policy’s requirement that when users delete tweets
(or make them private), these changes are reflected
in the dataset (Belli et al., 2020).

Annotation

Annotation work was performed by three adult stu-
dents, two males and one female, who use social
media regularly. The labeling involved viewing 43
sets of standard reaction GIFs, one for each reac-
tion category. These reaction GIFs are the standard

offering by the Twitter platform to all its users. As
a result, this content is highly familiar to users of
social media platforms such as Facebook or Twitter,
and thus presents a very low risk of psychological
harm. Annotators gave informed consent after be-
ing presented with details about the purpose of the
study, the procedure, risks, benefits, statement of
confidentiality and other standard consent items.
Each annotator was paid US$18. The average com-
pletion time was 45 minutes.

Applications
The dataset and resulting models can be used to
infer readers’ induced emotions. Such capability
can be used to help online platforms detect and fil-
ter out content that can be emotionally harmful, or
emphasize and highlight texts that induce positive
emotions with the potential to improve users’ well-
being. For example, when a person is in grief or
distress, platforms can give preference to responses
which will induce a feeling of caring, gratitude,
love, or optimism. Moreover, such technology
can be of beneficial use in assistive computing ap-
plications. For example, people with emotional
disabilities can find it difficult to understand the
emotional affect in stories or other narratives, or
decipher emotional responses by third parties. By
computing the emotional properties of texts, such
applications can provide hints or instructions and
provide for smoother and richer communication.
However, this technology also has substantial risks
and peril. Inducing users’ affective response can
also be used by digital platforms in order to stir
users into specific action or thoughts, from prod-
uct purchase and ad clicking to propaganda and
opinion forming. Deployers must ensure that users
understand and agree to the use of such systems,
and consider if the benefit created by such systems
outweigh the potential harm that users may incur.
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Record 

ID 
Tweet GIF Response 

Reaction 

Category 
Sentiment Emotions 

13241 
“so...I have a job 

now �” 

 

dance positive 

Amusement, 

Excitement, 

Joy 

1320 
“dyed my hair...... 

Pics soon” 

 

applause positive 

Admiration     

Approval       

Excitement     

Gratitude      

Surprise 

17 
“Don't forget to 

Hydrate!” 

 

yawn negative 
Disappointment    

Disapproval 

808 

“Folks, I have a 

BIG BIG 

announcement 

coming tomorrow 

night at 9 PM 

EST”  

scared negative 

Confusion 

Fear 

Nervousness 

Surprise 

 
Figure 4: ReactionGIF samples.

A Dataset Samples

Figure 4 includes four samples from the dataset.
For each sample, we show the record ID within the
dataset, the text of the tweet, a thumbnail of the
reaction GIF, the reaction category of the GIF, and
the two augmented labels: the sentiment and the
emotions.
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Abstract

This work explores a framework for fact veri-
fication that leverages pretrained sequence-to-
sequence transformer models for sentence se-
lection and label prediction, two key sub-tasks
in fact verification. Most notably, improving
on previous pointwise aggregation approaches
for label prediction, we take advantage of T5
using a listwise approach coupled with data
augmentation. With this enhancement, we ob-
serve that our label prediction stage is more
robust to noise and capable of verifying com-
plex claims by jointly reasoning over multiple
pieces of evidence. Experimental results on
the FEVER task show that our system attains
a FEVER score of 75.87% on the blind test set.
This puts our approach atop the competitive
FEVER leaderboard at the time of our work,
scoring higher than the second place submis-
sion by almost two points in label accuracy and
over one point in FEVER score.

1 Introduction

In recent years, the Internet has become an effec-
tive platform for creating and sharing content to
large audiences. Unfortunately, there have been oc-
currences of bad actors taking advantage of this to
propagate manipulative information for their bene-
fit, often to the point of spreading misinformation.
With the large amount of data being generated on
the Internet each day, it is infeasible to manually
verify it all, motivating recent research into auto-
mated fact verification.

In this work, we explore a fact verification
framework built with the pretrained sequence-to-
sequence transformer T5 (Raffel et al., 2020) as
its backbone which we call LisT5. Within a stan-
dard three-stage architecture, we focus mostly on
the label prediction problem. We adopt a “listwise
approach”, where all candidate sentences that form
the evidence set of a claim are considered together.

Our main contribution is a data augmentation tech-
nique that involves deliberately introducing noise
into training data to combat data sparsity and pro-
duce a more robust model. At its introduction, a full
pipeline using our techniques represents the state of
the art, achieving the top scoring run on the FEVER
leaderboard. An additional minor contribution ex-
ploits named entities during the sentence selection
phase, which has a small but noticeable effect on
generating a better candidate set for downstream
label prediction. We believe that these techniques
can be potentially valuable to a broader range of
NLP tasks that also involve aggregation of infor-
mation from upstream retrieval models.

2 Background and Related Work

As this work focuses on the Fact Extraction and
VERification (FEVER) task (Thorne et al., 2018),1

we begin by briefly describing the task setup. We
are given a textual claim q, to be verified against a
corpus comprised of a subset of Wikipedia. Each
claim is associated with a three-way veracity la-
bel v(q) ∈ {SUPPORTS, NOINFO, REFUTES} and
a set of reference sentences S(q) that provide sup-
port.2 An example claim q, its label v(q), and
supporting evidence S(q) are given in Figure 1.

The primary evaluation metric, FEVER score,
is computed as the proportion of claims where the
system has predicted the correct veracity label con-
ditioned on also having retrieved a complete set of
reference sentences. Most current systems adopt a
three-stage approach to this task, comprising doc-
ument retrieval, sentence selection, and label pre-
diction. In this work, our contributions are focused
on the second and third sub-tasks; for document
retrieval, we simply augment current best practices
with BM25 (Yang et al., 2017; Lin et al., 2021).
1Details of the FEVER sets are included in Appendix A.1.
2Each claim may have multiple different sets of reference
sentences, any of which is sufficient as the support set.
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Claim: The Rodney King riots took place in the
most populous county in the USA.

Evidence 1 (wiki/Los Angeles Riots):
The 1992 Los Angeles riots, also known as
the Rodney King riots were a series of riots,
lootings, arsons, and civil disturbances that
occurred in Los Angeles County, California in
April and May 1992.

Evidence 2 (wiki/Los Angeles County):
Los Angeles County, officially the County of
Los Angeles, is the most populous county in the
USA.

Label: SUPPORTS

Figure 1: An example claim and its corresponding evi-
dence and label from the FEVER dataset.

By construction, the veracity of each claim is de-
termined by the (candidate) supporting sentences,
taken together. One simple and popular approach
to fact extraction and verification is to consider the
veracity of the claim with respect to each candidate
independently (i.e., classification), and then aggre-
gate the evidence (Hanselowski et al., 2018; Zhou
et al., 2019; Soleimani et al., 2019; Liu et al., 2020;
Pradeep et al., 2021b). For convenience, we refer to
these as “pointwise approaches”, borrowing from
the learning to rank literature (Li, 2011).

As an alternative, researchers have proposed ap-
proaches that consider multiple candidates at once
to jointly arrive at a veracity prediction (Thorne
et al., 2018; Nie et al., 2019a; Zhou et al., 2019;
Stammbach and Neumann, 2019; Pradeep et al.,
2021a). For convenience, we refer to these as “list-
wise approaches”, also borrowing from the learn-
ing to rank literature (Li, 2011). Such listwise
approaches have also been used for information
aggregation in other NLP tasks such as question
answering (Wang et al., 2018; Nie et al., 2019b).
At a high level, this strategy suffers from a number
of challenges, including data sparsity and a high
level of sensitivity to noisy inputs. Following this
thread of work, we adopt the listwise approach
and improve it by training with a data augmenta-
tion technique that involves deliberately introduc-
ing noise into the training data to produce a more
robust model.

3 Methods

Our work adopts a three-stage pipeline comprising
document retrieval, sentence selection, and label
prediction, which we detail in this section.

3.1 Document Retrieval
Given a claim q, our first step is to retrieve
the top K most relevant documents D̂(q) =
{d1, ..., dK}. Since the corpus contains over 5.4M
documents, we first perform document retrieval
to narrow our search space. We leverage the Py-
serini toolkit (Yang et al., 2017; Lin et al., 2021),
which is based on the popular Lucene search en-
gine, using the BM25 scoring function (Robertson
and Zaragoza, 2009) to rank documents. Addi-
tional document retrieval details are described in
Appendix A.3. We also incorporate document re-
trieval using the MediaWiki API, which has been
shown in previous work to form a strong base-
line (Hanselowski et al., 2018). We combine the
results of the two methods by alternating through
the two ranked lists of documents, skipping dupli-
cates and keeping the top K unique documents.

3.2 Sentence Selection
Given a claim q and retrieved documents D̂(q),
the next stage in the pipeline selects the top
L most relevant evidence sentences Ŝ(q) =
{sk1,i1 , ..., skL,iL}, where sk,i is the i-th sentence
from document dk. Similar to how Soleimani et al.
(2019) and Subramanian and Lee (2020) frame
this stage as a semantic matching problem using
BERT-based models, we use T5 to rank the similar-
ities between the claim and the sentences in each
document. Introduced by Nogueira et al. (2020),
like Pradeep et al. (2021a), we use T5 (Raffel
et al., 2020) as a pointwise reranker, which they
dub monoT5. Empirically, T5 has been found to be
more effective at ranking than BERT-based models
across a wide variety of domains.

As a sequence-to-sequence model, ranking is
performed using the following input template:

Query: q Document: sk,i Relevant:

where q and sk,i are the claim and evidence sen-
tence, respectively. To provide a broader context
and to resolve ambiguities, we prepend each sen-
tence sk,i with the title of document dk.

We fine-tune the model to generate the token
“true” if sk,i ∈ S(q) and “false” otherwise. In
terms of training data for fine-tuning, we use the
gold evidence in the evidence sets in S(q) for “true”
samples, but for the “false” samples, we sample
negatives from the sentences in D̂(q).

At inference time, we construct a candidate set
comprised of sentences from each document in
D̂(q) in its retrieved order. Using the same input

403



format, for each sentence, we probe the logits of
the “true” and “false” tokens and apply the softmax
function to produce a relevance probability score
between 0 and 1; these scores are used to select the
top L (= 5) sentences. For efficiency, instead of
reranking all sentences in D̂(q), we take the first
200 sentences and only rerank this subset. Since
there is an average of five non-empty sentences per
document, we are roughly considering the top 40
documents from D̂(q).

On top of the basic reranking input template
of Nogueira et al. (2020), we introduce a novel
enhancement where we append any named entities
found within the claim to the input of monoT5.
The intuition here is to prompt monoT5 to pro-
mote sentences that come from documents with
titles that are similar to those entities, which tend
to contain information that is relevant to verify-
ing the claims. During fine-tuning, we use the
names of the documents that contain the gold evi-
dence as entities, but during inference, we extract
named entities from the claims using the named
entity recognition (NER) module built into spaCy’s
en core web sm model.3 We append these en-
tities, denoted as e1, ..., ej , to our monoT5 input
template as follows:

Query: q Document: sk,i Entity1: e1
· · · Entityj: ej Relevant:

Additional details are described in Appendix A.3.

3.3 Label Prediction
Given claim q and evidence Ŝ(q), the final stage of
the pipeline is to predict a veracity label v̂(q).

Pointwise Aggregation One common method in
the literature for label prediction is to combine
the claim and each evidence sentence individually
as the inputs to some model and aggregate those
model outputs to obtain a veracity prediction. With
the sequence-to-sequence nature of T5, we achieve
this by fine-tuning the model with samples of the
following input sequence:

query: q sentence: sk,i relevant:

There are many different methods to aggregate the
outputs: Soleimani et al. (2019) assumes NOINFO

unless there are unanimous outputs of SUPPORTS

or REFUTES, while Zhou et al. (2019) chooses the
most frequently occurring label as well as attend-
ing over the outputs with the vector representations
of each claim and evidence pair. Assume that the
3https://spacy.io

input sequence with evidence sentence sk,i, after
passing through T5 and applying the softmax func-
tion to the logits of the three classes, produces
the probabilities Pr(S | q, sk,i) for SUPPORTS,
Pr(R | q, sk,i) for REFUTES, and Pr(N | q, sk,i)
for NOINFO. We experiment with two aggregation
schemes that achieves the best results for us, which
we denote by sum and max, as follows:

sum : v̂(q) = argmax
l∈{S,R,N}

∑

sk,i∈Ŝ(q)
Pr(l | q, sk,i)

max : v̂(q) = argmax
l∈{S,R,N}

max
sk,i∈Ŝ(q)

Pr(l | q, sk,i)

For fine-tuning, we use S(q) as the evidence for
SUPPORTS and REFUTES samples. Similar to sen-
tence selection, for NOINFO samples, we sample
negatives from the top predicted sentences from
upstream, which in this case, is sentence selection,
using the full reranked candidate list instead of just
the top L sentences in Ŝ(q).

Listwise Concatenation Another common strat-
egy for label prediction is to concatenate all L sen-
tences into a single input to some model and have
the model directly classify the claim and list of
evidence Ŝ(q) as one of SUPPORTS, NOINFO, and
REFUTES. Again, with T5, we use the following
input sequence:

query: q sentence1: sk1,i1 · · ·
sentenceL: skL,iL relevant:

To obtain fine-tuning training data, we use the same
method as for pointwise aggregation.

Listwise Data Augmentation To make label pre-
diction more tolerant to noisy evidence in the top L
sentences, we fine-tune T5 with augmented, noisy
evidence sets: this mimics the model during in-
ference more closely as there usually exists some
non-gold evidence in Ŝ(q). To accomplish this, in-
stead of fine-tuning directly with the gold evidence
sets S(q), we fine-tune using I(S(q)), which “in-
fuses” S(q) with Ŝ(q). Specifically, we define the
transformation I as:

• If v(q) ∈ {SUPPORTS, REFUTES}, we check if
S(q) ⊆ Ŝ(q). For each s ∈ S(q) such that
s 6∈ Ŝ(q), we randomly select an index k of Ŝ(q)
where Ŝ(q)[k] 6∈ S(q) and insert s at Ŝ(q)[k].
This is repeated iteratively, and so I(S(q)) re-
turns the resulting list of sentences Ŝ(q).

• If v(q) = NOINFO, I(S(q)) = Ŝ(q).
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Method Dev Test

LA (%) FS (%) LA (%) FS (%)
(1a) UNC (Nie et al., 2019a) 66.14 69.60 72.56 67.26
(1b) Soleimani et al. (2019) 72.42 74.59 71.86 69.66
(1c) HESM (Subramanian and Lee, 2020) 75.77 73.44 74.64 71.48
(1d) CorefRoBERTa (Ye et al., 2020) – – 75.96 72.30
(1e) GEAR (Zhou et al., 2019) 74.84 70.69 71.60 67.10
(1f) DREAM (Zhong et al., 2020) – – 76.85 70.60
(1g) nudt nlp∗ – – 77.38 74.42
(1h) dominiks∗ – – 76.60 74.27

(2a) Oracle – 94.74 – –
(2b) T5 w/ sum pointwise aggregation 63.19 59.45 – –
(2c) T5 w/ max pointwise aggregation 70.31 66.15 – –
(2d) T5 w/ listwise concatenation 70.66 67.18 – –
(2e) T5 w/ listwise data augmentation 81.26 77.75 79.35 75.87

Table 1: Label prediction results on the FEVER development set and blind test set. LA refers to label accuracy and
FS refers to FEVER score. Other top submissions on the FEVER leaderboard at the time of our work are denoted
with the symbol ∗.

Note that we use the same T5 input format as list-
wise concatenation. Training details for the label
prediction stage can be found in Appendix A.3.

4 Results

We report the overall results of LisT5 on the
FEVER development and blind test sets in Table 1,
comparing the label prediction variations presented
in Section 3.3. We also include the oracle FEVER
score for our retrieved Ŝ(q) on line (2a). For ref-
erence, we compare LisT5 against several base-
lines and state-of-the-art techniques (drawn from
the leaderboard) at the time of our work, shown in
lines (1a)–(1h).

From the results in Table 1, it is clear that the dif-
ferent label prediction strategies lead to vastly dif-
ferent FEVER scores. The top-performing method,
according to both label accuracy and FEVER score,
is trained with augmented data in a listwise man-
ner, found on line (2e). This run represents the
state of the art atop the FEVER leaderboard at the
time of our work. The other methods that fine-tune
with only gold evidence data, found on lines (2b)
to (2d), seem to trail by over 10 points. These
results suggest the importance of training with aug-
mented listwise evidence sets, which is presented
in Section 3.3.

Contrary to the results reported in some papers,
our concatenation methods consistently outperform
corresponding aggregation methods: this suggests

that T5 is able to capture inter-sentence seman-
tics and use information from multiple, possibly
diverse, pieces of evidence to come to veracity
conclusions. Specifically, the T5 variant on line
(2e) achieves 78.02%4 (174/223) label accuracy on
claims in the development set that require retriev-
ing at least two pieces of evidence in conjunction
to verify, which is close to our overall label accu-
racy of 81.26%. This finding suggests that T5 is
capable of incorporating and corroborating the in-
formation contained in multiple pieces of evidence,
which is one of the most common needed areas of
improvement described in previous papers.

Table 2 compares the LisT5 sentence selection
results of the monoT5 variations described in Sec-
tion 3.2. We include some results from baselines,
using recall at five as the primary sentence selec-
tion metric, which by definition is an upper-bound
for the downstream FEVER score. We format
the results for LisT5 as an ablation analysis fo-
cused on sentence selection. Line (2a) shows the
results of the full monoT5 model with NER and
fine-tuned on the FEVER dataset; monoT5 without
NER features but fine-tuned on the FEVER dataset
is shown on line (2b). Finally, we have zero-shot
monoT5 on line (2c) to show the results of monoT5
without fine-tuning on the FEVER dataset, i.e., di-
rectly from the model checkpoints of Nogueira

4These only include claims where an entire gold evidence set
is contained in the sentence selection output Ŝ(q).
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Method P@5 (%) R@5 (%) F1@5 (%) MAP@5 (%)
(1a) UNC (Nie et al., 2019a) 36.49 86.79 51.38 –
(1b) Soleimani et al. (2019) 25.13 88.29 39.13 –
(1c) HESM (Subramanian and Lee, 2020) – 90.50 – –
(1d) GEAR (Zhou et al., 2019) 40.60 86.36 55.23 –
(1e) DREAM (Zhong et al., 2020) 26.67 87.64 40.90 –
(2a) monoT5 w/ NER (full model) 25.66 90.54 37.17 85.62
(2b) monoT5 w/o NER (fine-tuned) 25.50 90.08 36.94 84.87
(2c) monoT5 w/o NER (zero-shot) 22.70 85.39 33.86 76.87

Table 2: Comparison of sentence selection methods on the FEVER development set.

et al. (2020). We explain this in more detail in
Appendix A.3. From these results, it is clear that
monoT5 supplemented with named entities – on
line (2a) – performs the best, achieving the highest
recall and mean average precision, better than the
other monoT5 variations or any of the baselines.
It is worth noting that the full monoT5 model on
line (2a) achieves 90.53 recall on the blind test set,
consistent with the development set results.

While document retrieval is not our focus, our
pipeline performs competitively compared to prior
work and is further discussed in Appendix A.4.

5 Error Analysis

We randomly select 200 incorrectly predicted
claims by LisT5 and summarize the most common
issues, hoping to identify areas of improvement for
future fact verification systems.

One common issue is failing to distinguish be-
tween similar but semantically different words or
phrases. An example of this is the claim “Shane
McMahon officially retired on the first day of 2010”
to which our document retrieval and sentence selec-
tion stages retrieve the sentence “In 2009, McMa-
hon announced his resignation from WWE which
went into effect January 1, 2010”. Here, retirement
and resignation are semantically similar words that
both describe individuals leaving their positions.
These similarities may have been learned by the
pretrained transformer, but it is not always the case
that the words imply one another, leading to an
incorrect prediction for this claim.

Another frequent issue is incorrectly labelled
claims in the FEVER dataset, often due to missing
evidence in S(q). An example of this is the claim
“Mickey Rourke appeared in a sequel” to which our
document retrieval and sentence selection stages
retrieve the sentence “Since then, Rourke has ap-

peared in several commercially successful films
including the 2010 films Iron Man 2 and The Ex-
pendables and the 2011 film Immortals”. How-
ever, the claim was labelled NOINFO in the dataset,
which is incorrect due to Iron Man 2 indeed being
a sequel. In short, we are bumping into data quality
issues in the annotations themselves.

6 Conclusion

In this paper, we present the LisT5 framework for
automated fact verification. LisT5 consists of a
three-stage pipeline – document retrieval, sentence
selection, and label prediction. For document re-
trieval, we combine two strong document retrieval
baselines. For sentence selection, we fine-tune a
T5 model as a reranker with named entities pro-
vided as additional features. For label prediction,
we present evidence in a listwise manner to a T5
model, trained on augmented data. Our experimen-
tal results indicate that LisT5 achieves the state
of the art on the FEVER task, which we attribute
to the framework’s ability to reason jointly over
multiple pieces of evidence.
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A Appendix

A.1 FEVER Dataset
The dataset used for training and evaluating our fact
verification system is FEVER (Thorne et al., 2018),
a large-scale dataset consisting of 185K claims with
evidence taken from Wikipedia. We include the
label distribution of the dataset across its training,
development, and blind test set in Table 3.

Split SUPPORTS REFUTES NOINFO

Train 80,035 29,775 35,639
Dev 6,666 6,666 6,666
Test 6,666 6,666 6,666

Table 3: Label distribution of the FEVER dataset.

A.2 Baseline Details
As discussed in Section 3, most fact verification
systems, especially for the FEVER task, consist
of a three-stage pipeline similar to the one used in
LisT5. The stages are as follows:

Document Retrieval Many systems use the doc-
ument retrieval component of DrQA (Chen et al.,
2017a), which performs retrieval with TF-IDF fea-
ture vectors along with bigram features. Some
other systems leverage external search APIs, such
as Hanselowski et al. (2018), who use the Me-
diaWiki API, Wikipedia’s own search engine,
and Chakrabarty et al. (2018), who use the Google
Search API.

Sentence Selection When the FEVER task was
introduced in 2018, many of the initial top-scoring
systems (Nie et al., 2019a; Hanselowski et al.,
2018) employed variations of the Enhanced Se-
quential Inference Model (ESIM) (Chen et al.,
2017b), which consists of Bidirectional Long Short-
Term Memory networks (BiLSTMs) (Schuster and
Paliwal, 1997) as its primary building block. How-
ever, with the advent of the transformer architec-
ture (Vaswani et al., 2017), most systems today
(Soleimani et al., 2019; Subramanian and Lee,
2020) use transformers to perform semantic match-
ing between the claim and each candidate sentence.

Label Prediction Framing the problem as that
of natural language inference (NLI), Nie et al.
(2019a), Yoneda et al. (2018), and Hanselowski
et al. (2018) again use variations of ESIM for la-
bel prediction. Similar to the sentence selection
stage, many recent systems use transformers for

this stage as well. However, there has also been
active research into graph-based models for knowl-
edge aggregation by modelling evidence sentences
as nodes in a graph (Zhou et al., 2019; Liu et al.,
2020; Zhong et al., 2020).

A.3 Implementation and Training Details

Document Retrieval We retrieve with BM25 us-
ing the parameters k1 = 0.6 and b = 0.5. These
parameters are tuned by running a grid search over
parameter values in 0.1 increments over a subset of
the training set.

Sentence Selection Whenever we fine-tune
monoT5, we use the T5-3B variant, which as its
name suggests, contains three billion parameters.
We fine-tune the model with batch size 128 over
one epoch, using the configurations prescribed by
Raffel et al. (2020), except that we use learning
rate 0.0001 instead of 0.001. While training, we
save checkpoints at evenly spaced iteration inter-
vals, usually around 1000 iterations per checkpoint
depending on the size of the training data. Thus,
whenever we report the results of a model, we use
the results of the best performing checkpoint on
the FEVER development set. We fine-tune on TPU
v3-8 nodes on the Google Cloud Platform, which
takes around 24 hours.

Note that we first fine-tune a pretrained T5 model
on the MS MARCO passage dataset (Bajaj et al.,
2018) for 10000 iterations, following best practices
reported in previous work (Akkalyoncu Yilmaz
et al., 2019; Nogueira et al., 2020; Zhang et al.,
2020; Pradeep et al., 2020, 2021c,b), which has
shown that this leads to improved effectiveness.
This procedure also gives us a zero-shot setting for
fact verification, which we experiment with before
fine-tuning on the FEVER dataset directly.

In our experiments, we note that negative sam-
pling sentences from highly-ranked documents in
D̂(q) leads to poorly performing models. This
may be due to false negatives in the data, where
some claims are labelled as NOINFO but are ac-
tually verifiable, with relevant evidence retrieved
by our document retrieval stage. To avoid negative
sampling such false negative evidence, we negative
sample sentences ranked between 50 and 200.

Label Prediction Again, we use the T5-3B vari-
ant as the model for label prediction. We use simi-
lar settings for fine-tuning T5 as before for monoT5,
except that we use the default learning rate 0.001.
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Method R@1000 (%)
MediaWiki API 89.56
Anserini 94.76
Anserini + MediaWiki API 96.87

Table 4: Comparison of document retrieval methods
on the FEVER development set. The code for retrieval
using the MediaWiki API is courtesy of Hanselowski
et al. (2018).

We also fine-tune on TPU v3-8 nodes on the Google
Cloud Platform, which takes around 8 hours.

To avoid similar negative sampling issues en-
countered in fine-tuning models for sentence selec-
tion, we sample from sentences ranked between 10
and 25 here.

A.4 Document Retrieval Results
We report the importance of combining the two doc-
ument retrieval methods described in Section 3.1
by comparing their recall at rank 1000 in Table 4.
These figures show that combining the two tech-
niques results in being only a few points away from
perfectly retrieving all relevant documents.
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Abstract

Sentence embedding methods using natural
language inference (NLI) datasets have been
successfully applied to various tasks. How-
ever, these methods are only available for lim-
ited languages due to relying heavily on the
large NLI datasets. In this paper, we pro-
pose DefSent, a sentence embedding method
that uses definition sentences from a word dic-
tionary, which performs comparably on un-
supervised semantics textual similarity (STS)
tasks and slightly better on SentEval tasks
than conventional methods. Since dictionar-
ies are available for many languages, DefSent
is more broadly applicable than methods us-
ing NLI datasets without constructing addi-
tional datasets. We demonstrate that DefSent
performs comparably on unsupervised seman-
tics textual similarity (STS) tasks and slightly
better on SentEval tasks to the methods us-
ing large NLI datasets. Our code is publicly
available at https://github.com/hpprc/
defsent.

1 Introduction

Sentence embeddings represent sentences as dense
vectors in a low dimensional space. Recently, sen-
tence embedding methods using natural language
inference (NLI) datasets have been successfully ap-
plied to various tasks, including semantic textual
similarity (STS) tasks. However, these methods are
only available for limited languages due to relying
heavily on the large NLI datasets. In this paper, we
propose DefSent, a sentence embedding method
that uses definition sentences from a word dictio-
nary. Since dictionaries are available for many lan-
guages, DefSent is more broadly applicable than
the methods using NLI datasets without construct-
ing additional datasets.

Defsent is similar to the model proposed by Hill
et al. (2016) in that it generates sentence embed-
dings so that the embeddings of a definition sen-

w|V|

Definition sentence

w1 w2 w3 ...

Sentence B

BERTBERT

pooling pooling

vu

ContradictionEntailment Neutral

Label prediction layer

[u; v; |u − v | ]

pooling

u

Word prediction layer

BERT

Sentence A

Figure 1: Sentence-BERT (left) and DefSent (right).

tence and the word it represents are similar. How-
ever, while Hill et al. (2016)’s model is based on
recurrent neural network language models, Def-
Sent is based on pre-trained language models such
as BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), with a fine-tuning mechanism as well
as Sentence-BERT (Reimers and Gurevych, 2019).
Sentence-BERT is one of the state-of-the-art sen-
tence embedding models, which is based on pre-
trained language models that are fine-tuned on NLI
datasets. Overviews of Sentence-BERT and Def-
Sent are depicted on Figure 1.

2 Sentence Embedding Methods

In this section, we introduce BERT, RoBERTa, and
Sentence-BERT, followed by a description of Def-
Sent, our proposed sentence embedding method.

2.1 BERT and RoBERTa

BERT is a pre-trained language model based on
the Transformer architecture (Vaswani et al., 2017).
Utilizing masked language modeling and next sen-
tence prediction, BERT acquires linguistic knowl-
edge and outputs contextualized word embeddings.
In masked language modeling, a specific propor-
tion of input tokens is replaced with a special token
[MASK], and the model is trained to predict these
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masked tokens. Next sentence prediction is a task
to predict whether two sentences connected by a
sentence separator token [SEP] are consecutive
sentences in the original text data. BERT uses the
output embedding of the unique token [CLS] at
the beginning of each such sentence for prediction.

RoBERTa has the same structure as BERT. It
attempts to improve BERT by removing the next
sentence prediction from pre-training objectives
and increasing the data size and batch size. While
both Sentence-BERT and DefSent are applicable
to BERT and RoBERTa, we use BERT for the ex-
planations in this paper.

2.2 Sentence-BERT
Conneau et al. (2017) proposed InferSent, a sen-
tence encoder based on a Siamese network struc-
ture. InferSent trains the sentence encoder such
that similar sentences are distributed close to each
other in the semantic space. Reimers and Gurevych
(2019) proposed Sentence-BERT, which also uses
a Siamese network to create BERT-based sentence
embeddings. An overview of Sentence-BERT is
depicted on the left side of Figure 1. Sentence-
BERT first inputs the sentences to BERT and then
constructs a sentence embedding from the output
contextualized word embeddings by pooling. They
utilize the following three types of pooling strategy.

CLS Using the [CLS] token embedding.; When
using RoBERTa, since the [CLS] token does
not exist, the beginning-of-sentence token
<s> is used as an alternative.

Mean Using the mean of the contextualized em-
beddings of all words in a sentence.

Max Using the max-over-time of the contextual-
ized embeddings of all words in a sentence.

Let u and v be the sentence embeddings for each
of the sentence pairs obtained by pooling. Then
compose a vector [u; v; |u − v|] and feed it to the
label prediction layer, which has the same number
of output dimensions as the number of classes. For
fine-tuning, Reimers and Gurevych uses the SNLI
dataset (Bowman et al., 2015) and the Multi-Genre
NLI dataset (Williams et al., 2018), which together
contain about one million sentences.

2.3 DefSent
Since they have the same meaning, we focus on
the relationship between a definition sentence and
the word it represents. To learn how to embed

sentences in the semantic vector space, we train
the sentence embedding model by predicting the
word from definitions. An overview of DefSent
is depicted on the right side of Figure 1. We call
the layer that predicts the original token from the
[MASK] embeddings used in the masked language
modeling during BERT pre-training a word predic-
tion layer. Also, we use wk to denote the word
corresponding to a given definition sentence Xk.

DefSent inputs the definition sentence Xk to
BERT and derives the sentence embedding u by
pooling the output embeddings. As in Sentence-
BERT, three types of pooling strategy are used:
CLS, Mean, and Max. Then, the derived sentence
embedding u is input to the word prediction layer
to obtain the probability P (wk|Xk). We use cross-
entropy loss as a loss function and fine-tune BERT
to maximize P (wk|Xk).

In DefSent, the parameters of the word predic-
tion layer are fixed. This setting allows us to fine-
tune models without training an additional classi-
fier, as is the case with both InferSent and Sentence-
BERT. Additionally, since our method uses a word
prediction layer that has been pre-trained in masked
language modeling, the sentence embedding u is
expected to be similar to the contextualized word
embedding of wk when wk appears as the same
meaning as Xk.

3 Word Prediction Experiment

To evaluate how well DefSent can predict words
from sentence embeddings, we conducted an ex-
periment to predict a word from its definition.

3.1 Dataset

DefSent requires pairs of a word and its defini-
tion sentence. We extracted these from the Oxford
Dictionary dataset used by Ishiwatari et al. (2019).
Each entry in the dataset consists of a word and its
definition sentence, and a word can have multiple
definitions. We split this dataset into train, dev, and
test sets in the ratio of 8:1:1 word by word to eval-
uate how well the model can embed unseen defini-
tions of unseen words. It is worth noting that since
DefSent utilizes the pre-trained word prediction
layer of BERT and RoBERTa, it is impossible to
obtain probabilities for out-of-vocabulary (OOV)
words. Therefore, we cannot calculate losses of
these OOV words in a straightforward way.1 In our

1Although we could substitute the mean of subwords as
OOV word embeddings, we opted to filter out OOV words for
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experiments, we only use words and their respec-
tive definitions in the dataset, as contained by the
model vocabulary. The statistics of the datasets are
listed in Table 1.

3.2 Settings

We used the following pre-trained models: BERT-
base (bert-base-uncased), BERT-large (bert-large-
uncased), RoBERTa-base (roberta-base), and
RoBERTa-large (roberta-large) from Transformers
(Wolf et al., 2020). The batch size was 16, a fine-
tuning epoch size was 1, the optimizer was Adam
(Kingma and Ba, 2015), and we set a linear learn-
ing rate warm-up over 10% of the training data.
For each respective model and pooling strategy,
the learning rate was chosen based on the highest
recorded Mean Reciprocal Rank (MRR) for the dev
set in the range of 2x× 10−6, x ∈ {0, 0.5, 1, ..., 7}.
We conducted experiments with ten different ran-
dom seeds, and their mean was used as the eval-
uation score. Top-k accuracy (the percentage of
correct answers within the first, third, and tenth
positions) and MRR were calculated from the out-
put word probabilities when a definition sentence
was fed into the model. Also, we evaluated the
performance of BERT-base without fine-tuning for
comparison.

3.3 Results

Table 2 shows the experimental results.2 Max was
the best pooling strategy for BERT-base without
fine-tuning, but its top-1 accuracy was extremely
low at 0.0157. This indicates that it is not adequate
for predicting words from definitions without fine-
tuning. DefSent performed higher for larger mod-
els. In the case of BERT, CLS was the best pooling
strategy for both base and large models. CLS was
also the best pooling strategy for RoBERTa-base
but Mean was the best for RoBERTa-large.

4 Extrinsic Evaluations

Next, to evaluate the general quality of the con-
structed sentence embedding, we conducted eval-
uations on semantic textual similarity (STS) tasks
and SentEval tasks (Conneau and Kiela, 2018).

simplicity and intuitiveness.
2We report the fine-tuning time and computing infrastruc-

ture in Appendix A, and report the learning rate, means, and
standard deviations on the word prediction experiment in Ap-
pendix B. We also show the actual predicted words when
definition sentences and other sentences are given as inputs in
Appendices C and D, respectively.

All Words Definitions Avg. length
Train 29,413 97,759 9.921
Dev 3,677 12,127 9.874
Test 3,677 12,433 9.846

In BERT vocab. Words Definitions Avg. length
Train 7,732 54,142 9.531
Dev 936 6,544 9.512
Test 979 6,930 9.551

In RoBERTa vocab. Words Definitions Avg. length
Train 7,269 53,935 9.376
Dev 901 6,625 9.372
Test 925 6,945 9.410

Table 1: Statistics of datasets.

Model Pooling MRR Top1 Top3 Top10
BERT-base CLS .0009 .0000 .0000 .0000
(no fine-tuning) Mean .0132 .0001 .0043 .0242

Max .0327 .0157 .0320 .0626
BERT-base CLS .3200 .2079 .3670 .5418

Mean .3091 .1972 .3524 .5356
Max .2939 .1840 .3350 .5207

BERT-large CLS .3587 .2388 .4139 .6011
Mean .3286 .2091 .3792 .5723
Max .2925 .1814 .3356 .5194

RoBERTa-base CLS .3436 .2241 .3983 .5836
Mean .3365 .2170 .3906 .5783
Max .3072 .1941 .3523 .5386

RoBERTa-large CLS .3863 .2611 .4460 .6364
Mean .3995 .2699 .4634 .6599
Max .3175 .2015 .3646 .5543

Table 2: Results of word prediction experiments.

4.1 Settings
We compared the performance of DefSent with
several existing sentence embedding methods in-
cluding InferSent (Conneau et al., 2017), Universal
Sentence Encoder (Cer et al., 2018), and Sentence-
BERT (Reimers and Gurevych, 2019). For the pool-
ing strategies, we used the strategy that achieved
the highest MRR in the word prediction task for
each pre-trained model.3 The performance of the
existing methods was taken from Reimers and
Gurevych (2019).

4.2 Semantic textual similarity tasks
We evaluated DefSent on unsupervised STS tasks.
In these tasks, we compute semantic similarities
of given sentence pairs and calculate Spearman’s
rank correlation ρ between similarities and gold
scores of sentence similarities. In the unsupervised
setting, none of the models are optimized on the
STS datasets. Instead, the similarities of the given
sentence embeddings are calculated using common
similarity measures such as negative Manhattan
distance, negative Euclidean distance, and cosine-
similarity. In this study, we used cosine-similarity.

3We report the means and standard deviations on the un-
supervised STS tasks and SentEval tasks for each respective
model and pooling strategy in Appendices E and F.
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
Avg. GloVe embeddings (Pennington et al., 2014) 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
Avg. BERT embeddings 38.78 57.98 57.98 63.15 61.06 46.35 58.40 54.81
BERT CLS-vector 20.16 30.01 20.09 36.88 38.08 16.50 42.63 29.19
InferSent - Glove (Conneau et al., 2017) 52.86 66.75 62.15 72.77 66.87 68.03 65.65 65.01
Universal Sentence Encoder (Cer et al., 2018) 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22
Sentence-BERT-base (Mean) 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
Sentence-BERT-large (Mean) 72.27 78.46 74.90 80.99 76.25 79.23 73.75 76.55
Sentence-RoBERTa-base (Mean) 71.54 72.49 70.80 78.74 73.69 77.77 74.46 74.21
Sentence-RoBERTa-large (Mean) 74.53 77.00 73.18 81.85 76.82 79.10 74.29 76.68
DefSent-BERT-base (CLS) 67.56 79.86 69.52 76.83 76.61 75.57 73.05 74.14
DefSent-BERT-large (CLS) 66.22 82.07 71.48 79.34 75.38 73.46 74.30 74.61
DefSent-RoBERTa-base (CLS) 65.55 80.84 71.87 78.77 79.29 78.13 74.92 75.62
DefSent-RoBERTa-large (Mean) 58.36 76.24 69.55 73.15 76.90 78.53 73.81 72.36

Table 3: Spearman’s rank correlation ρ × 100 between cosine similarities of sentence embeddings and human
ratings. STS-B denotes STS Benchmark, and SICK-R denotes SICK-Relatedness.

Model MR CR SUBJ MPQA SST-2 TREC MRPC Avg.
Avg. GloVe embeddings 77.25 78.30 91.17 87.85 80.18 83.00 72.87 81.52
Avg. BERT embeddings 78.66 86.25 94.37 88.66 84.40 92.80 69.45 84.94
BERT CLS-vector 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
InferSent - GloVe 81.57 86.54 92.50 90.38 84.18 88.20 75.77 85.59
Universal Sentence Encoder 80.09 85.19 93.98 86.70 86.38 93.20 70.14 85.10
Sentence-BERT-base (Mean) 83.64 89.43 94.39 89.86 88.96 89.60 76.00 87.41
Sentence-BERT-large (Mean) 84.88 90.07 94.52 90.33 90.66 87.40 75.94 87.69
DefSent-BERT-base (CLS) 80.94 87.57 94.59 89.98 85.78 89.73 73.82 86.06
DefSent-BERT-large (CLS) 85.79 90.54 95.58 90.15 91.17 90.47 73.74 88.20
DefSent-RoBERTa-base (CLS) 83.94 90.44 94.05 90.70 89.16 90.80 75.52 87.80
DefSent-RoBERTa-large (Mean) 86.47 91.53 95.02 91.15 90.77 92.33 73.91 88.74

Table 4: Accuracy (%) for each task in SentEval.

We performed experiments on unsupervised STS
tasks using the STS12-16 (Agirre et al., 2012, 2013,
2014, 2015, 2016), STS Benchmark (Cer et al.,
2017), and SICK-Relatedness (Marelli et al., 2014)
datasets. These datasets contain sentence pairs and
their similarity scores, which is a real number from
0 to 5 assigned by human evaluations. Experiments
were conducted with ten different random seeds,
and the mean was used as the evaluation score.

Table 3 shows the experimental results. Al-
though the training data size used in DefSent
was only about 5% that of Sentence-BERT,
DefSent-BERT-base and DefSent-RoBERTa-base
performed comparably to Sentence-BERT-base and
Sentence-RoBERTa-base. In particular, DefSent-
RoBERTa models showed high performance in the
STS Benchmark.

4.3 SentEval

SentEval (Conneau and Kiela, 2018) is a popular
toolkit for evaluating the quality of universal sen-
tence embeddings that aggregates various tasks,
including binary and multi-class classification, nat-
ural language inference, and sentence similarity.
For the SentEval evaluations, we trained a logistic
regression classifier using sentence embeddings as

input features to evaluate the extent to which each
sentence embedding contained the important infor-
mation for each task. We used the same tasks and
settings as Reimers and Gurevych (2019) and per-
formed a 10-fold cross-validation. We conducted
experiments with three different random seeds, and
the mean was used as the evaluation score.

Table 4 shows the results.4 DefSent-RoBERTa-
large achieved the best average score among all
models. Also, increasing the model size improved
the performance consistently. The performances
of DefSent-BERT-large, DefSent-RoBERTa-base,
and DefSent-RoBERTa-large were better than the
performances of Sentence-BERT-based methods.
These results indicate that DefSent embeds useful
information that can be applied to various tasks.

5 Conclusion

In this paper, we proposed DefSent, a new sen-
tence embedding method using a dictionary, and
demonstrated its effectiveness through a series of
experiments. Its performance was comparable to
or even slightly better than existing methods using

4Reimers and Gurevych (2019) reported that there were
minor difference from Sentence-BERT, so we omitted the
results of Sentence-RoBERTa.
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large NLI datasets. DefSent is based on dictionar-
ies developed for many languages, so it does not
require new language resources when applied to
other languages. Since the model is trained with
the same word prediction process as the masked
language modeling, sentence embeddings derived
by DefSent are expected to be similar to contextu-
alized word embeddings of a word when it appears
with the same meaning as the definition.

In future work, we will evaluate the performance
of DefSent when it is applied to languages other
than English and when it is applied to a broader
range of downstream tasks, such as document clas-
sification tasks. We will also analyze the relation-
ship between the sentence embeddings by DefSent
and the contextualized word embeddings in the
semantic vector space and investigate how model
architecture and size influence the embeddings.
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A Average Runtime and Computing
Infrastructure

Fine-tuning for DefSent-BERT-base and DefSent-
RoBERTa-base took about 5 minutes on a single
NVIDIA GeForce GTX 1080 Ti. Fine-tuning for
DefSent-BERT-large and DefSent-RoBERTa-large
took about 15 minutes on a single Quadro GV100.

B Full Results of the Word Prediction
Experiment

Table 5 shows the experimental results on the word
prediction experiment for each model and pooling
strategy with learning rate.

C Predictions for definition sentences

Table 6 shows the predicted words when the em-
beddings of definition sentences are input. We used
BERT-large as a model and CLS as a pooling strat-
egy for the experiment. For prediction, sentences
were first input into the model to obtain sentence
embeddings. Then the sentence embeddings were
input into the pre-trained word prediction layer to
obtain word probabilities. We show the top five
words with the highest probability.

D Predictions for sentences other than
definition sentences

Table 7 shows the predicted words when the embed-
dings of sentences other than definition sentences
are input. We used BERT-large as a model and
CLS as a pooling strategy for the experiment. The
evaluation procedure is the same as for Appendix
C.

E Full Results of the STS Evaluation

Table 8 shows the experimental results on STS
tasks for each model and pooling strategy.

F Full Results of the SentEval Evaluation

Table 9 shows the experimental results on SentEval
tasks for each model and pooling strategy.
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Model Pooling Learning rate MRR Top1 Top3 Top10
BERT-base CLS 22.5 × 10−6 .3200±.0020 .2079±.0021 .3670±.0029 .5418±.0022

Mean 23.5 × 10−6 .3091±.0021 .1972±.0030 .3524±.0038 .5356±.0029

Max 23.5 × 10−6 .2939±.0021 .1840±.0026 .3350±.0023 .5207±.0045

BERT-large CLS 22.5 × 10−6 .3587±.0043 .2388±.0047 .4139±.0059 .6011±.0054

Mean 23.5 × 10−6 .3286±.0044 .2091±.0045 .3792±.0055 .5723±.0072

Max 23.0 × 10−6 .2925±.0138 .1814±.0113 .3356±.0172 .5194±.0181

RoBERTa-base CLS 22.5 × 10−6 .3436±.0016 .2241±.0016 .3983±.0027 .5836±.0017

Mean 23.0 × 10−6 .3365±.0017 .2170±.0014 .3906±.0029 .5783±.0022

Max 22.0 × 10−6 .3072±.0037 .1941±.0039 .3523±.0050 .5386±.0064

RoBERTa-large CLS 22.0 × 10−6 .3863±.0040 .2611±.0045 .4460±.0044 .6364±.0041

Mean 22.0 × 10−6 .3995±.0041 .2699±.0053 .4634±.0042 .6599±.0036

Max 22.5 × 10−6 .3175±.0069 .2015±.0054 .3646±.0087 .5543±.0092

Table 5: MRR, top-1, top-3, and top-10 accuracy on the word prediction experiment. The scores are the mean and
standard deviation of 10 evaluations with different random seeds.

Word Definition Predictions (1st, 2nd, 3rd)
cost be expensive for ( someone ) cost charge pay
preserve prevent ( food ) from rotting preserve keep spoil
good that which is pleasing or valuable or useful good pleasing pleasure
linux an open-source operating system modelled on unix. linux unix gnu
pile place or lay as if in a pile pile stack heap
weird very strange; bizarre weird strange bizarre
sale the general activity of selling selling sale retail
satellite a celestial body orbiting the earth or another planet. planet satellite orbit
logic the quality of being justifiable by reason reason justice certainty
custom a thing that one does habitually habit routine ritual
chief a person who is in charge leader boss master
nirvana an ideal or idyllic state or place paradise dream ideal

Table 6: Predicted words when the embeddings of definition sentences are input. The first two columns represent
words and their defining sentences, and the third to fifth columns represent the top three predicted words. Correctly
predicted words shown in bold.

Input Predictions (1st, 2nd, 3rd, 4th, 5th)
royal man king royal prince noble knight
royal woman queen princess royal regal sovereign
royal boy boy prince royal king baby
royal girl princess queen lady royal belle
good fine good great right solid
bad bad dirty awful ugly nasty
not good bad poor wrong awful terrible
not bad okay fair good fine ok
Star wars jedi star trek galaxy saga
Star wars in America jedi western fan hollywood movie
Star wars in Europe trek space adventure cinema fantas
Star wars in Japan godzilla anime gundam jedi manga
captain america marvel hero thor superhero hulk

Table 7: Predicted words when the embeddings of sentences other than definition sentences are input.
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Model Pooling STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERT-base CLS 67.56±0.26 79.86±0.25 69.52±0.39 76.83±0.32 76.61±0.33 75.57±0.37 73.05±0.32 74.14±0.25

Mean 67.30±0.44 81.96±0.24 71.92±0.28 77.68±0.47 76.71±0.48 76.90±0.40 73.28±0.30 75.11±0.21

Max 64.61±0.87 82.06±0.21 72.43±0.31 76.56±0.74 75.61±0.43 76.61±0.52 72.15±0.46 74.29±0.33

BERT-large CLS 66.22±0.79 82.07±0.39 71.48±0.33 79.34±0.44 75.38±0.60 73.46±0.45 74.30±0.50 74.61±0.41

Mean 64.18±0.96 82.76±0.42 73.14±0.32 79.66±0.92 77.93±0.78 77.89±0.89 73.98±0.46 75.65±0.53

Max 58.94±1.06 81.03±0.66 71.34±0.88 76.23±1.83 76.07±0.56 75.75±0.70 71.69±0.74 73.01±0.74

RoBERTa-base CLS 65.55±0.89 80.84±0.26 71.87±0.39 78.77±0.70 79.29±0.27 78.13±0.61 74.92±0.18 75.62±0.38

Mean 60.78±1.41 77.17±0.60 69.71±0.73 75.13±1.00 77.75±0.38 76.52±0.63 74.10±0.45 73.02±0.63

Max 63.85±0.86 78.55±0.90 71.19±0.86 76.55±1.12 77.86±0.59 78.02±0.77 73.97±0.46 74.28±0.62

RoBERTa-large CLS 63.84±1.34 77.33±2.53 68.64±1.34 72.86±1.96 77.13±1.32 78.32±1.08 74.14±1.31 73.18±1.20

Mean 58.36±1.16 76.24±0.87 69.55±0.85 73.15±1.32 76.90±0.94 78.53±0.54 73.81±0.88 72.36±0.73

Max 62.89±1.42 77.99±1.88 69.83±1.66 75.60±1.51 79.63±0.60 79.34±0.48 74.04±0.84 74.19±0.88

Table 8: Spearman’s rank correlation ρ × 100 between the cosine similarities of the sentence embeddings and
the human ratings for each model and pooling strategy. The scores are the mean and standard deviation of 10
evaluations with different random seeds.

Model Pooling MR CR SUBJ MPQA SST-2 TREC MRPC Avg.
BERT-base CLS 80.94±0.08 87.57±0.12 94.59±0.09 89.98±0.04 85.78±1.14 89.73±0.76 73.82±0.19 86.06±0.28

Mean 81.84±0.17 88.20±0.04 94.82±0.12 89.94±0.12 86.49±0.20 89.73±0.31 75.32±0.78 86.62±0.18

Max 80.74±0.16 88.00±0.09 94.32±0.07 89.92±0.25 85.03±0.09 89.13±0.50 74.11±0.49 85.89±0.02

BERT-large CLS 85.79±0.19 90.54±0.26 95.58±0.14 90.15±0.04 91.17±0.06 90.47±0.95 73.74±0.61 88.20±0.07

Mean 84.05±0.25 89.50±0.24 95.21±0.12 90.19±0.36 89.44±0.14 88.60±0.87 73.99±0.90 87.28±0.05

Max 83.48±0.30 89.04±0.37 94.55±0.09 89.88±0.17 87.50±0.26 90.87±1.30 74.28±1.27 87.09±0.27

RoBERTa-base CLS 83.94±0.30 90.44±0.49 94.05±0.06 90.70±0.17 89.16±0.22 90.80±0.35 75.52±0.42 87.80±0.20

Mean 84.88±0.21 91.09±0.01 94.60±0.10 90.69±0.07 89.73±0.54 93.13±0.12 77.22±0.46 88.76±0.08

Max 83.98±0.03 90.78±0.24 93.96±0.07 90.63±0.11 90.05±0.06 93.60±0.72 77.80±0.32 88.69±0.12

RoBERTa-large CLS 85.63±0.27 90.74±0.15 94.53±0.14 91.20±0.11 90.08±0.59 93.53±0.76 72.66±1.73 88.34±0.28

Mean 86.47±0.29 91.53±0.06 95.02±0.08 91.15±0.07 90.77±0.34 92.33±0.64 73.91±0.96 88.74±0.12

Max 85.60±0.26 90.73±0.70 94.21±0.65 91.09±0.32 90.65±0.37 91.53±1.70 76.15±0.33 88.56±0.57

Table 9: The percentage of correct answers (%) for each task of SentEval. The scores are the mean and standard
deviation of three evaluations with different random seeds.
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Abstract

Modern sentence encoders are used to gener-
ate dense vector representations that capture
the underlying linguistic characteristics for a
sequence of words, including phrases, sen-
tences, or paragraphs. These kinds of represen-
tations are ideal for training a classifier for an
end task such as sentiment analysis, question
answering and text classification. Different
models have been proposed to efficiently gen-
erate general purpose sentence representations
to be used in pretraining protocols. While av-
eraging is the most commonly used efficient
sentence encoder, Discrete Cosine Transform
(DCT) was recently proposed as an alternative
that captures the underlying syntactic charac-
teristics of a given text without compromis-
ing practical efficiency compared to averag-
ing. However, as with most other sentence
encoders, the DCT sentence encoder was only
evaluated in English. To this end, we utilize
DCT encoder to generate universal sentence
representation for different languages such as
German, French, Spanish and Russian. The ex-
perimental results clearly show the superior ef-
fectiveness of DCT encoding in which consis-
tent performance improvements are achieved
over strong baselines on multiple standardized
datasets.

1 Introduction

Recently, a number of sentence encoding repre-
sentations have been developed to accommodate
the need of sentence-level understanding; some of
these models are discussed in (Hill et al., 2016;
Logeswaran and Lee, 2018; Conneau et al., 2017),
yet most of these representations have focused on
English only.

To generate sentence representations in differ-
ent languages, the most obvious solution is to train
monolingual sentence encoders for each language.
However, training a heavily parameterized mono-

lingual sentence encoder for every language is in-
efficient and computationally expensive, let alone
the impact on the environment. Thus, utilizing a
non-parameterized model with ready-to-use word
embeddings is an efficient alternative to generate
sentence representations in various languages.

A number of non-parameterized models have
been proposed to derive sentence representations
from pre-trained word embeddings (Rücklé et al.,
2018; Yang et al., 2019; Kayal and Tsatsaronis,
2019). However, most of these models, including
averaging, disregard structure information, which
is an important aspect of any given language.
Recently, Almarwani et al. (2019) proposed a
structure-sensitive sentence encoder, which utilizes
Discrete Cosine Transform (DCT) as an efficient
alternative to averaging. The authors show that
this approach is versatile and scalable because it
relies only on word embeddings, which can be eas-
ily obtained from large unlabeled data. Hence, in
principle, this approach can be adapted to different
languages. Furthermore, having an efficient, ready-
to-use language-independent sentence encoder can
enable knowledge transfer between different lan-
guages in cross-lingual settings, empowering the
development of efficient and performant NLP mod-
els for low-resource languages.

In this paper, we empirically investigate the gen-
erality of DCT representations across languages as
both a single language model and a cross-lingual
model in order to assess the effectiveness of DCT
across different languages.

2 DCT as sentence Encoder

In signal processing domain DCT is used to decom-
pose signal into component frequencies revealing
dynamics that make up the signal and transitions
within (Shu et al., 2017). Recently, DCT has been
adopted as a way to compress textual information
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(Kayal and Tsatsaronis, 2019; Almarwani et al.,
2019). A key observation in NLP is that word vec-
tors obey laws of algebra King – Man + Woman
= (approx.) Queen (Mikolov et al., 2013). Thus,
given word embeddings, cast a sentence as a multi-
dimensional signal over time, in which DCT is used
to summarize the general feature patterns in word
sequences and compress them into fixed-length vec-
tors (Kayal and Tsatsaronis, 2019; Almarwani et al.,
2019).

Mathematically, DCT is an invertible function
that maps an input sequence of N real numbers
to the coefficients of N orthogonal cosine basis
functions of increasing frequencies (Ahmed et al.,
1974). The DCT components are arranged in order
of significance. The first coefficient (c[0]) repre-
sents the sum of the input sequence normalized
by the square length, which is proportional to the
average of the sequence (Ahmed et al., 1974). The
lower-order coefficients represent lower signal fre-
quencies which correspond to the overall patterns
in the sequence. For example, DCT is used for
compression by preserving only the coefficients
with large magnitudes. These coefficients can be
used to reconstruct the original sequence exactly
using the inverse transform (Watson, 1994).

In NLP, Kayal and Tsatsaronis (2019) applied
DCT at the word level to reduce the dimensional-
ity of the embeddings size, while Almarwani et al.
(2019) applied it along the sentence length as a
way to compress each feature in the embedding
space independently. In both implementations, the
top coefficients are concatenated to generate the
final representation for a sentence. As shown in
(Almarwani et al., 2019), applying DCT along the
features in the embeddings space renders repre-
sentations that yield better results. Also, Zhu and
de Melo (2020) noted that similar to vector aver-
aging the DCT model proposed by (Almarwani
et al., 2019) yields better overall performance com-
pared to more complex encoders, thus, in this work,
we adopt their implementation to extract sentence-
level representations.

Specifically, given a sentence matrix N ×d, a se-
quence of DCT coefficients c[0], c[1], ..., c[K] are
calculated by applying the DCT type II along the
d-dimensional word embeddings, where c[K] =√

2
N

∑N−1
n=0 vn cos

π
N (n+ 1

2)K (Shao and John-
son, 2008). Finally, a fixed-length sentence vector
of size Kd is generated by concatenating the first

Task Description
SentLen Length prediction
WC Word Content analysis
BShift Word order analysis
TreeDepth Tree depth prediction
Tense Verb tense prediction
CoordInv Coordination Inversion
SubjNum Subject number prediction
ObjNum Object number prediction
SOMO Semantic odd man out

Table 1: Probing Tasks as described in (Conneau et al.,
2018; Ravishankar et al., 2019).

K DCT coefficients, which we refer to as c[0 : K].1

3 Multi-lingual DCT Embeddings

3.1 Experimental Setups and Results

In our study, DCT is used to learn a separate en-
coder for each language from existing monolin-
gual word embeddings. To evaluate DCT em-
beddings across different languages, we used the
probing benchmark provided by Ravishankar et al.
(2019), which includes a set of multi-lingual prob-
ing datasets.2 The benchmark covers five lan-
guages: English, French, German, Spanish and
Russian, derived from Wikipedia. The task set
comprises 9 probing tasks, summarized in Table 1,
that address varieties of linguistic properties includ-
ing surface, syntactic, and semantic information
(Conneau et al., 2018; Ravishankar et al., 2019).
Ravishankar et al. (2019) used the datasets to evalu-
ate different sentence encoders trained by mapping
sentence representations to English. Unlike Ravis-
hankar et al. (2019), we use the datasets to evaluate
DCT embeddings for each language independently.
As a baseline, in addition to the DCT embeddings,
we use vector averaging to extract sentence repre-
sentations from the pre-trained embeddings.

For model evaluations, we utilize the SentE-
val framework introduced in (Conneau and Kiela,
2018). In all experiments, we use a single-layer
MLP on top of DCT sentence embeddings with the
following parameters: kfold=10, batch size=128,
nhid=50, optim=adam, tenacity=5, epoch size=4.

1Unlike (Almarwani et al., 2019), we note no further im-
provements with larger coefficients, thus, we only report the
results of 1 ≤ K ≤ 4.

2Refer to (Conneau et al., 2018) and (Ravishankar et al.,
2019) for more details about the probing tasks.
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Figure 1: Results of the probing tasks comparing XX languages performance relative to English. White indicates
a value of 1, demonstrating parity in performance with English. Red indicates better English performance while
green indicates better XX Lang results.

For the word embeddings, we relied on the publicly
available pre-trained FastText embeddings intro-
duced in (Grave et al., 2018).3

Results: Figure 1 shows a heat-map reflecting
the probing results of the different languages rela-
tive to English. Overall, French (FR) seems to be
the closest to English (EN) followed by Spanish
(ES) then German (DE) and then finally Russian
(RU) across the various DCT coefficients. Higher
coefficients reflect majority better performance
across most tasks for FR, ES and DE. We see the
most variation with worse results than English on
the syntactic tasks of TreeDepth, CoordInv, Tense,
SubjNum and ObjNum for RU. SOMO stands out
for RU where it outperforms EN. The variation in
Russian might be due to the nature of RU being
a more complex language that is morphologically
rich with flexible word order (Toldova et al., 2015).

In terms of the performance per number of DCT
coefficients, we observe consistent performance
gain across different languages that is similar to
the English result trends. Specifically, for the sur-
face level tasks, among the DCT models the c[0]
model significantly outperforms the AV G with
an increase of ∼30 percentage points in all lan-
guages. The surface level tasks (SentLen and WC)
show the most notable variance in performance, in
which the highest results are obtained using the c[0]
model. However, the performance decreases in all
languages when K is increased. On the other hand,
for all languages, we observe a positive effect on
the model’s performance with larger K in both the
syntactic and semantic tasks. The complete numer-
ical results are presented in the Appendix in Table

3Available at: https://fasttext.cc.

5.

4 Cross-lingual Mapping based on DCT
Encoding

4.1 Approach

Aldarmaki and Diab (2019)proposed sentence-level
transformation approaches to learn context-aware
representations for cross-lingual mappings. While
the word-level cross-lingual transformations utilize
an aligned dictionary of word embeddings to learn
the mapping, the sentence-level transformations
utilize a large dictionary of parallel sentence em-
beddings. Since sentences provide contexts that are
useful for disambiguation for the individual word’s
specific meaning, sentence-level mapping yields
a better cross-lingual representation compared to
word-level mappings.

A simple model like sentence averaging can be
used to learn transformations between two lan-
guages as shown in (Aldarmaki and Diab, 2019).
However, the resulting vectors fail to capture struc-
tural information such as word order, which may
result in poor cross-lingual alignment. There-
fore, guided by the results shown in (Aldarmaki
and Diab, 2019), we further utilize DCT to con-
struct sentence representations for the sentence-
level cross-lingual modeling.

4.2 Experiments Setups and Results

For model evaluation, we use the same cross-
lingual evaluation framework introduced in (Aldar-
maki and Diab, 2019). Intuitively, sentences tend
to be clustered with their translations when their
vectors exist in a well-aligned cross-lingual space.
Thus, in this framework, cross-lingual mapping ap-
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proaches are evaluated using sentence translation
retrieval by calculating the accuracy of correct sen-
tence retrieval. Formally, the cosine similarity is
used to find the nearest neighbor for a given source
sentence from the target side of the parallel corpus.

4.3 Evaluation Datasets and Results

To demonstrate the efficacy of cross-lingual map-
ping using the sentence-level representation gener-
ated by DCT models, similarly to Aldarmaki and
Diab (2019), we used the WMT’13 data set that
includes EN, ES and DE languages (Bojar et al.,
2013). We further used five language pairs from
the WMT’17 translation task to evaluate the effec-
tiveness of DCT-based embeddings. Specifically,
we used a sample of 1 million parallel sentences
from WMT’13 common-crawl data; this subset is
the same one used in (Aldarmaki and Diab, 2019).4

To assess efficacy of the DCT models for the cross-
lingual mapping, we reported the performances of
the sentence translation retrieval task within the
WMT’13 test set, which includes EN, ES, and DE
as test languages (Bojar et al., 2013). Specifically,
we first used the 1M parallel sentences for the align-
ment between source languages (ES and DE) to a
target language (EN) independently. We evaluated
the translation retrieval performance in all language
directions, from source languages to English: ES-
EN and DE-EN, as well as between the sources
languages: ES-DE.

Similarly, we conduct a series of experiments
on 5 different language pairs from the WMT’17
translation task, which includes DE, Latvian (LV),
Finnish (FI), Czech (CS), and Russian (RU), each
of which is associated with an English translation
(Zhang et al., 2018).5 For each language pair, we
sampled 1M parallel sentences from their train-
ing corpus for the cross-lingual alignment between
each source language and EN. Also, we used the
test set available for each language pair to evaluate
the translation retrieval performances.

In our experiments, we evaluate the translation
retrieval performance in all language directions us-
ing three type of word embeddings: 1- a publicly
available pre-trained word embeddings in which
we show the performance of DCT against averag-
ing, which we refer to hereafter as out-of-domain

4Evaluation scripts and WMT’13 dataset as de-
scribed in (Aldarmaki and Diab, 2019) are available in
https://github.com/h-aldarmaki/sent translation retrieval

5The pre-processed version of the WMT’17 dataset was
used. For more information refer to (Zhang et al., 2018).

Lang pair AV G c[0] c[0 : 1] c[0 : 2] c[0 : 3]

Lang→EN
ES→EN 65.67 64.87 71.26 71.80 70.13
DE→EN 51.80 50.30 57.23 58.13 56.57
RU→EN 45.22 52.75 61.91 64.35 63.33
CS→EN 41.87 42.50 52.89 54.99 55.05
FI→EN 40.46 42.00 47.57 47.80 46.16
LV→EN 21.26 40.13 51.42 56.37 60.16
EN→Lang
EN→ES 69.97 69.50 73.73 73.87 71.73
EN→DE 67.50 66.23 69.27 68.70 65.83
EN→RU 38.09 44.29 54.73 59.51 60.94
EN→CS 39.73 40.40 50.99 54.00 54.12
EN→FI 39.34 42.52 51.67 52.59 51.74
EN→LV 15.83 33.55 47.08 53.22 55.72
Lang1→Lang2
DE→ES 43.80 42.20 49.50 51.20 51.17
ES→DE 57.67 56.46 60.53 59.83 57.87

Table 2: Sentence translation retrieval accuracy based
on out of domain pre-trained Fasttext embeddings. Ar-
rows indicate the direction, with English (EN ), Span-
ish (ES), German (DE), Russian (RU ), Czech (CS),
Finnish (FI) , Turkish (TR), and Latvian (LV ).

embeddings as shown in Table 2. 2- Also, we
ran additional experiments in which we used a do-
main specific word embedding (that we trained on
genre that is similar to the translation task) and
3-contextualized word embedding, which we refer
to hereafter as in-domain embeddings as shown in
Table 3.

Out-of-domain embeddings: For all language
pairs, DCT-based models outperform AVG and c[0]
models in the sentence translation retrieval task.
In the direction → EN , while the c[0:2] model
achieve the highest accuracy for ES, DE, RU, and
FI languages, the c[0:3] model achieved the highest
accuracy for CS and LV languages. Specifically,
the c[0:2] model yields increases of 5.59%-30% in
the direction from source languages (ES, DE, RU,
and FI) to English compared to the AVG model.
Also, while the c[0:3] model yielded an increase of
13% gains over the baseline for CS, it provides the
most notable increase of 38% for LV. For the op-
posite directions EN → source, the DCT-based
embeddings model also outperformed AVG and
c[0] models. In particular, we observed accuracy
gains of at least 3.81% points using more coeffi-
cients in DCT-based models compared to the AVG
and c[0] models for all languages. A similar trend
is observed in the zero-shot translation retrieval
between the two non English languages (ES and
DE), in which DCT-based models outperform the
AVG and c[0] models.
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Lang pair Embed AV G c[0] c[0 : 1] c[0 : 2] c[0 : 3]

Lang→EN

ES→EN
FT 82.97 82.40 84.50 83.97 82.90
BERT 92.10 92.00 93.23 93.13 92.20

DE→EN
FT 79.33 78.73 81.87 80.20 77.93
BERT 89.76 89.66 91.83 91.20 90.57

EN→Lang

EN→ES
FT 82.33 82.07 85.47 84.60 83.17
BERT 93.63 93.66 94.10 94.00 92.80

EN→DE
FT 74.73 74.50 79.10 78.70 76.90
BERT 91.30 91.43 91.90 91.53 90.30

Lang1→Lang2

DE→ES
FT 73.27 72.20 77.43 75.96 74.60
BERT 87.80 87.57 90.23 90.36 88.96

ES→DE
FT 68.90 68.07 73.97 73.10 72.43
BERT 87.70 87.70 89.67 89.50 88.53

Table 3: Accuracy using in-domain FastText (FT) and
Contextualized mBERT embeddings. The best results
for each row in Bold & for each direction in gray .

In-domain embeddings: To ensure comparabil-
ity to state-of-the-art results, we further utilized in-
domain FastText embeddings as those used in (Al-
darmaki and Diab, 2019) as well as contextualized-
based word embeddings. For the in-domain Fast-
Text embeddings, the FastText (Bojanowski et al.,
2017) is utilized to generate word embeddings from
1 Billion Word benchmark (Chelba et al., 2014) for
English, and equivalent subsets of about 400 mil-
lion tokens from WMT’13 (Bojar et al., 2013) news
crawl data. For the contextualized-based embed-
dings, we utilized multilingual BERT (mBERT)
introduced in (Devlin et al., 2019) as contextual
word embeddings, in which representations from
the last BERT layer are taken as word embeddings.
As shown in Table 3, using in-domain word em-
beddings yields stronger results compared to the
pre-trained embeddings we use in the previous ex-
periments as illustrated in Table 2. On the other
hand, we observe additional improvements using
mBERT as word embeddings on all models. Fur-
thermore, increasing K has positive effect on both
embeddings, in which c[0 : 1] demonstrate per-
formance gains compared to other models in all
language directions. This trend is clearly observed
in the zero-shot performance between the non En-
glish languages.

Furthermore, as shown in Table 4, we obtained
a state-of-the-art result using mBERT c[0 : 1] with
91.83% average accuracy across all translation di-
rections compared to the 84.03% average accu-
racy of ELMo as reported in (Aldarmaki and Diab,
2019).

Model Average Accuracy
FastText (dict) [ALD2019] 69.04
ELMo (word) [ALD2019] 82.23
FastText (word) [ALD2019] 74.00
FastText AV G (sent) [ALD2019] 76.92
ELMo AV G (sent) [ALD2019] 84.03
FastText c[0] (sent) 76.33
FastText c[0 : 1] (sent) 80.39
FastText c[0 : 2] (sent) 79.42
FastText c[0 : 3] (sent) 77.99
mBERT AV G (sent) 90.38
mBERT c[0] (sent) 90.34
mBERT c[0 : 1] (sent) 91.83
mBERT c[0 : 2] (sent) 91.62
mBERT c[0 : 3] (sent) 90.56

Table 4: The average accuracy of various models across
all language retrieval directions as reported in (Aldar-
maki and Diab, 2019), refer to as [ALD2019] in the
table, along with the different DCT-based models in
this work, in which (word) refers to word-level map-
ping, (sent) refers to sentence-level mapping, and (dict)
refers to the baseline (using a static dictionary for map-
ping). Bold shows the best overall result.

5 Conclusion

In this paper, we extended the application of DCT
encoder to multi- and cross-lingual settings. Exper-
imental results across different languages showed
that similar to English using DCT outperform the
vector averaging. We further presented a sentence-
level-based approach for cross-lingual mapping
without any additional training parameters. In this
context, the DCT embedding is used to generate
sentence representations, which are then used in
the alignment process. Moreover, we have shown
that incorporating structural information encoded
in the lower-order coefficients yields significant
performance gains compared to the AVG in sen-
tence translation retrieval.
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Table 5 shows the complete numerical results for
the probing tasks on all languages.
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Language AVG c[0] c[0:1] c[0:2] c[0:3] c[0:4]
EN 56.28 89.03 88.91 88.95 88.7 88.08
ES 59.92 89.59 90.00 89.8 89.73 90.05

SentLen FR 57.9 93.72 93.44 93.14 92.82 92.38
DE 53.41 88.81 88.36 88.16 87.54 87.69
RU 54.42 89.66 89.12 89.18 88.26 88.04
EN 26.97 66.69 64.55 62.49 60.39 59.08
ES 25.4 64.80 62.18 60.62 58.76 57.64

WC FR 27.14 68.60 66.13 64.71 62.8 61.04
DE 29.33 64.99 64.52 63.93 63.12 61.54
RU 36.33 67.50 65.58 64.69 62.69 61.32
EN 54.78 54.98 54.58 54.86 54.81 55.58
ES 54.7 54.52 54.53 54.21 54.71 55.77

Bshift FR 54.69 54.7 54.68 54.91 55.53 56.50
DE 54.23 54.22 54.35 54.43 54.6 56.46
RU 56.48 56.8 56.81 56.28 57.4 58.51
EN 41.34 45.18 48.64 49.84 49.44 50.47
ES 42.9 48.53 52.29 53.34 53.87 53.54

TreeDepth FR 41.06 47.68 50.05 51.65 52.27 52.15
DE 37.06 41.97 45.14 47.33 47.55 47.36
RU 35.27 39.21 40.76 41.02 40.65 40.51
EN 86.49 89.23 91.83 92.17 92.26 92.21
ES 94.52 95.97 96.68 96.67 96.62 96.53

Tense FR 91.96 94.06 95.7 95.96 96.12 95.99
DE 94.13 94.71 95.82 96.44 96.28 95.92
RU 86.07 86.39 90.28 90.4 90.16 90.38
EN 73.47 74.22 84.56 87.20 87.03 87.19
ES 67.08 68.13 81.61 84.15 85.17 85.77

CoordInv FR 71.06 71.12 85.97 88.03 89.21 89.61
DE 74.25 74.33 89.99 92.52 93.45 94.09
RU 60.33 60.77 79.95 83.13 84.03 84.34
EN 76.46 77.41 80.49 81.68 81.76 82.31
ES 86.4 86.68 89.34 90.42 90.12 90.84

SubjNum FR 88.48 88.62 91.05 92.23 92.72 92.76
DE 75.94 75.78 78.79 78.9 79.25 79.28
RU 70.47 70.44 72.31 72.81 73.12 73.13
EN 68.44 69.71 71.78 73.24 73.98 74.93
ES 78.31 79.23 82.21 83.96 85.2 85.7

ObjNum FR 77.47 78.5 83.74 85.82 86.92 88.1
DE 68.38 68.74 69.88 70.41 71.14 71.90
RU 63.9 63.79 65.33 65.32 65.54 65.11
EN 50.12 50.91 51.72 51.71 51.36 50.42
ES 51.7 51.98 51.34 49.62 50.71 53.07

SOMO FR 50.7 48.85 48.87 49.44 49.56 49.36
DE 50.57 50.47 49.99 49.99 49.99 49.99
RU 52.49 52.91 52.86 52.8 53.07 53.13

Table 5: DCT embeddings Performance per language compared to AVG. EN=English, ES=Spanish, FR=French,
DE=German, and RU=Russian
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Abstract

High-quality alignment between movie scripts
and plot summaries is an asset for learning to
summarize stories and to generate dialogues.
The alignment task is challenging as scripts
and summaries substantially differ in details
and abstraction levels as well as in linguistic
register. This paper addresses the alignment
problem by devising a fully unsupervised ap-
proach based on a global optimization model.
Experimental results on ten movies show the
viability of our method with 76% F1-score and
its superiority over a previous baseline. We
publish alignments for 914 movies to foster re-
search in this new topic.

1 Introduction

Motivation and Problem. An important aspect of
language understanding is the ability to produce a
concise and fluent summary of stories, dialogues
and other textual contents. Automatic text summa-
rization is a long-standing topic in natural language
processing (Nenkova and McKeown, 2012; Dey
and Das, 2020), with numerous approaches for a
variety of inputs, largely focusing on news articles
and scholarly publications (e.g., See et al. (2017);
Hardy et al. (2019); Lev et al. (2019)).

In this paper, our focus is on less explored nar-
rative texts such as books and movie scripts. Our
goal is to automatically align scenes from movie
scripts with sentences from plot summaries. Such
alignments support story browsing and explorative
search over screenplays (e.g., find all love scenes),
and can also be an asset towards improving summa-
rization and text-generation models for dialogues
and other narratives.

Figure 1 shows an example: a scene snippet from
the movie script of Shrek, and its corresponding
sentence from the plot description of the movie’s
Wikipedia article. Establishing this alignment is
challenging for three reasons:

• Input Length: Movies have many scenes (often
more than a hundred), with longer dialogues
or multi-person conversations. Plot summaries,
on the other hand, are much shorter (e.g., 700
words for Shrek on Wikipedia).
• Disparate Registers: Scripts and summaries

have fundamentally different registers (i.e., lan-
guage styles, vocabulary and structure). Scripts
are dominated by direct speech in dialogues,
whereas plot summaries consist of, often com-
plex, descriptive sentences and may introduce
abstractions (e.g. “fell in love ...” instead of
giving details on dating, kissing etc.).
• Disparate Granularities: Scripts contain ev-

ery detail of the screenplay, whereas sum-
maries focus on salient points and can leave out
less important sub-stories. Thus, the units in
scripts–scenes–and the units in plot summaries–
sentences–are difficult to match.

Narrative Alignment Task: Given a script S con-
sisting of a sequence of m scenes {s1, s2, ..., sm}
and a summary U of n sentences {u1, u2, ..., un},
the narrative alignment task is to find a mapping
between S and U , where both sides can be par-
tial (i.e., some scenes and some sentences are not
mapped) and certain constraints are satisfied.

Prior Work and its Limitations. The task of
aligning narratives across different registers, like
script dialogues and plot summaries, has not re-
ceived much attention before. Gorinski and Lap-
ata (2015) proposed a graph-based summarization
method for movie scripts, exploiting given align-
ments between script scenes and plot sentences, to
select a chain of scenes representing a film’s story.
Their focus was on the generation of the textual
summary, and the alignment itself was addressed
merely by simple best-match heuristics based on
Nelken and Shieber (2006). Nevertheless, as this
work is the relatively closest to ours, it is treated as
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Script:
Suddenly the magic of the spell pulls Fiona away. She’s lifted up into the air and she hovers there while
the magic works around her. Suddenly Fiona’s eyes open wide. She’s consumed by the spell and then is
slowly lowered to the ground.

SHREK: (going over to her) Fiona? Fiona. Are you all right?
FIONA: (standing up, she’s still an ogre) Well, yes. But I don’t understand.

I’m supposed to be beautiful.
SHREK: But you ARE beautiful.

Summary:
Fiona is bathed in light as her curse is broken but is surprised that she is still an ogre, as she thought she would become beautiful,
to which Shrek replies that she is beautiful

Figure 1: Snippet from Shrek’s script, and its summary sentence from Shrek’s Wikipedia article.

the baseline against which we evaluate our method.
Tapaswi et al. (2015) used a graph-based method
to compute an alignment between book chapters
and video scenes using matching dialogues and
characters as cues. As far as we know, our work
is the first in-depth investigation of the narrative
alignment task between movie scripts and plot sum-
maries.

Approach and Contributions. We model the nar-
rative alignment task as a global optimization over
the possible pairs of scene-sentence mappings. To
cope with disparate language registers, we devise
embedding-based similarity measures. To cope
with the length issue and different granularities,
we design this for partial mappings where not all
scenes and not all sentences need to be mapped.
Typically, a notable subset of scenes is left out, but
most sentences are aligned. To keep the alignments
concise, we constrain the number of scenes that a
sentence can be mapped to, and vice versa. Fur-
thermore, we assume that script and summary both
follow the chronology of events in the movie. This
is modeled as a constraint for approximate order-
preservation. All these considerations are cast into
an Integer Linear Program (ILP).

The salient contributions of our work are:
• a fully unsupervised methodology using ILP

for aligning two narratives, and
• an aligned corpus of movie scripts and plot

summaries for 914 movies, which can serve as
training data for text summarization and story
generation tasks.

2 Approach

Our alignment method, AligNarr, has three steps:
(i) pre-processing, which includes linking names
found in both inputs, (ii) building a similarity ma-
trix between the text units of the two narratives,
and (iii) constructing the alignment mapping given
the similarity matrix as input.

2.1 Pre-Processing
Given a movie script S and its summary U , we first
segment them into corresponding units si and uj ,
which are scenes and sentences respectively. An in-
terior or exterior indicator ‘INT.’ or ‘EXT.’ is com-
monly used to mark a scene heading–separating
different scenes–followed by a location or setting.
A scene usually contains narrative descriptions as
well as dialogue lines, as shown in Figure 1.

Linking Story Entities. We retrieve all phrases
that are capitalized, as well as speaker names that
start the dialogue lines in a given script, as candi-
date names, excluding the beginning of sentences.
However, in movie scripts it is often the case that
words are in all-capitals for emphasis, e.g., ‘ARE’
in Figure 1. Therefore, we first ran Truecaser1 (Lita
et al., 2003) to avoid having such words identified
as candidate names.

For each pair of collected candidate names, we
compute string similarity based on Levenshtein
distance using FuzzyWuzzy2. Given the distance
matrix between pairs of names, we then cluster
the names using the DBSCAN algorithm (Ester
et al., 1996) in order to have a cluster of names
representing one story entity, e.g., E40: {‘Fiona’,
‘FIONA’, ‘Princess Fiona’}.

To resolve pronouns, we run AllenNLP corefer-
ence resolution3, an end-to-end neural model (Lee
et al., 2017) leveraging SpanBERT embeddings
(Joshi et al., 2020). All occurrences of clustered
names in the script and summary are then replaced
with the corresponding entity identifier (e.g., E40).
Note that we only consider linking story entities
appearing in the summary, since they represent a
subset of story entities that are central to the story.

1github.com/nreimers/truecaser
2github.com/seatgeek/fuzzywuzzy
3demo.allennlp.org/coreference-

resolution
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2.2 Similarity Matrix
We investigate three methods to measure similarity
between units of script S and summary U :

Document Relevance Score. After removing stop
words and punctuation, we compute the relevance
scores of script units {s1, ..., sm} (as the document
collection D), for a given summary unit uj (as the
query q), using a ranking function. In this work,
we use BM25 (Robertson and Zaragoza, 2009), a
TF-IDF-based ranking function.

Word Overlap Score. We consider the sum of
intersecting story entities and words (excluding
stop words) that are similar (e.g., ‘married’ in si
and ‘wedding’ in uj), weighted by their similarity
scores. As the similarity score between two words,
we take the cosine similarity of word2vec embed-
dings (Mikolov et al., 2013); words are considered
to be similar if their cosine similarity is above 0.5.

Sentence Similarity Score. We first compute
sentence embeddings for a given summary unit
uj and all sentences in a script unit si, us-
ing RoBERTa (Liu et al., 2019) in Sentence-
Transformers4 (Reimers and Gurevych, 2019) opti-
mized for the task of Semantic Textual Similarity
(stsb-roberta-large). Taken as the similarity score
is the highest cosine similarity between uj’s em-
beddings and embeddings of sentences in si. For
practical reasons, we only compute sentence simi-
larity scores for pairs of script and summary units
with non-zero word overlap scores.

2.3 Alignment Mapping
Given a similarity matrix between units of script
S = {s1, ..., sm} and summary U = {u1, ..., un},
we devise an Integer Linear Programming (ILP)
model to optimize the overall alignment mapping
as follows:

Objective Function. We want to maximize
the story coherence between S and U in
terms of textual similarity between the units:
max

∑
i

∑
j sim(si, uj) · Xij , where sim(si, uj)

is a numeric feature indicating the similarity or re-
latedness of si and uj resulting from the previous
step, and Xij is a decision variable: Xij = 1 if si
and uj are aligned, 0 otherwise.

Constraints. We define the following constraints
to make sure that the alignment mapping follows
the linear constraint of both narratives:

4sbert.net/

• Each summary sentence can only be aligned
with at most r scenes:

∑
j X∗j ≤ r.

• Each summary sentence can only be aligned
with a block of r consecutive scenes:∑

i

∑
j

∑
kXij + Xkj ≤ 1 if k ≥ i + r and∑

i

∑
j

∑
kXij +Xkj ≤ 1 if k ≤ i− r, i ≥ r.

• The next summary sentence can only be about
the same or the next scenes:

∑
i

∑
j

∑
kXij +

Xkj+1 ≤ 1 if k < i, j < n− 1.
• The previous summary sentence can only

be about the same or the previous scenes:∑
i

∑
j

∑
kXij +Xkj−1 ≤ 1 if k > i, j > 0.

Candidate Space Pruning. To speed up the ILP
inference, we exclude pairs of script and summary
units, si and uj , which are unlikely to be aligned.
We employ the following pruning conditions:
• Given a summary unit uj , we only consider

scenes that yield similarity scores above θ in
the ranked list of scenes.
• Given the most similar scene stop to a summary

unit uj , we only consider scenes si in which
sim(stop, uj)− sim(si, uj) < σ.
• The candidate pairs (si, uj) are within the diag-

onal line boundaries as depicted in Figure 2,
by considering only (i, j) pairs that satisfy
j < ni/m + τn and i < mj/n + τm with
hyper-parameter τ .

3 Experiments

Figure 2: Ground truth alignment for ten movies.

Dataset. We used the ScriptBase corpus5 (Gorin-
ski and Lapata, 2015, 2018) that contains pre-
processed scripts (with various automatic annota-
tions and scene segmentation), along with the cor-
responding plot summaries taken from Wikipedia.
Data statistics are given in Table 3. Two annota-
tors manually created the alignment mappings for
ten movies with varying script lengths, yielding
inter-annotator agreement of 0.79 Fleiss’ κ. The

5github.com/EdinburghNLP/scriptbase
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P R F1

Gorinski and Lapata (2015) .520 .739 .482

AligNarr bm25 .757 .719 .737
AligNarr bm25·w2v .789 .716 .746
AligNarr bm25·sts .789 .734 .756
AligNarr bm25·sts·w2v .808 .720 .754

AligNarr bm25·sts non-ILP .690 .717 .702

Table 1: AligNarr’s performance against baseline.

ground-truth alignments (for which both annota-
tors agree) are shown in Figure 2. These mappings
confirm our intuition that a summary normally fol-
lows the corresponding script narration in a linear
manner, with very few exceptions.

Hyper-Parameters. We defined r (in Section 2.3)
as the average ratio of scenes to summary sentences
dm/ne based on ten movies, setting it to r = 5.
θ was set to the 50th percentile (i.e., the median).
σ was set to the standard deviation of similarity
scores for all scenes given the summary sentence
uj . Hyper-parameter τ , for pruning elements out-
side the diagonal line boundaries, was set to 0.3.

Baseline. Gorinski and Lapata (2015) used a clas-
sifier with sentence-level features (lemma overlap
and word stem similarity) to compute sentence-to-
sentence alignments. These aligned sentences were
then used to identify aligned scene-sentence pairs
forming the “gold chain” of scenes in this work
(which focused more on the subsequent summariza-
tion task), in which a scene contains at least one
sentence aligned with a summary sentence. They
reported a precision of .53 at a recall rate of .82 for
four movies. We re-ran their aligner (provided by
the authors) on ten movies in our dataset.

4 Results and Discussion
We report macro-averaged precision (P), recall (R)
and F1 results in Table 1. The best performing
AligNarr variant, which runs ILP on the combina-
tion of document relevance and sentence similarity
scores (AligNarr bm25·sts) outperforms the baseline
by a large margin on precision and F1-score.

Ablation Study. Document relevance scores
alone (AligNarr bm25) already yield very good per-
formance with .737 F1-score averaged over ten
movies. When combined with word overlap scores
(AligNarr bm25·w2v), the overall performance is fur-
ther improved to .746 F1-score. Word overlap
scoring using word embeddings is particularly
useful when the summary uses different vocab-
ulary, for example, using “...a growing seedling”

movie bm25·sts·w2v bm25·sts·bert

P R F1 P R F1

Shrek .85 .80 .82 .92↑ .90↑ .91↑
Pulp Fiction .92 .86 .89 .89 .85 .87
Cars 2 .84 .72 .77 .87↑ .74↑ .79↑
The Silence of the Lambs .86 .78 .81 .82 .78 .80
Anastasia .87 .78 .82 .89↑ .79↑ .83↑
South Park: Bigger, Lo... .83 .72 .76 .82 .71 .75
Wall-E .92 .72 .79 .85 .74 .78
Swordfish .75 .65 .68 .70 .61 .64
The Butterfly Effect .63 .61 .62 .66↑ .61 .63↑
Cast Away .61 .56 .58 .59 .56 .57

average .81 .72 .75 .80 .73↑ .76↑

Table 2: AligNarr bm25·sts·w2v vs AligNarr bm25·sts·bert.

for describing a scene with “...a small plant in
its early stage of growth.” Combining document
relevance scores with sentence similarity scores
(AligNarr bm25·sts) results in the best performance
with .756 F1 score. Adding word overlap scores
on top of that (AligNarr bm25·sts·w2v) yields higher
precision of .808 but unfortunately at a lower recall
rate of .720. Detailed comparisons and runtime are
available in Appendix A and B.

We explored different strategies to combine the
similarity matrices, and found element-wise matrix
multiplication to perform the best.

Global vs. Local Alignments. To assess the bene-
fit of using ILP, we devised an alignment algorithm
focusing on finding the best scene alignment per
summary sentence, that is, locally without using the
ILP. Given a ranked list of scenes for a given sum-
mary sentence, we greedily pick scene-sentence
pairs while observing the constraints on at most r
consecutive scenes and the diagonal boundary for
order-preservation. This local alignment algorithm
results in .702 F1-score (AligNarr bm25·sts non-ILP),
showing the advantage of computing alignment
mappings via global optimization.

Principal Limitation. The ILP constraints and
diagonal line boundaries for candidate space prun-
ing (presented in Section 2.3) are too restrictive to
allow for 100% F1-score. Considering only candi-
date pairs that are within the diagonal line bound-
aries yields in reduced recall of .993, leading to
F1-score of .997. If we also take into account all
constraints employed by the ILP, recall is further
reduced to .944, leading to F1-score of .969.

Contextual Embeddings. We also investigate the
utility of contextual embeddings for computing
word overlap scores. Specifically, we utilized
a pretrained BERT model (bert-large-uncased)
from Huggingface (https://huggingface.co/
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movie #scenes #summary ratiosentences P R F1

Shrek 35 38 0.9 .89 .89 .89
Pulp Fiction 85 30 2.8 .89 .88 .88
Cars 2 113 36 3.1 .85 .75 .80
The Silence of the Lambs 136 28 4.9 .80 .79 .79
Anastasia 114 31 3.7 .80 .75 .77
South Park: Bigger, Lo... 120 41 2.9 .81 .72 .75
Wall-E 71 35 2.0 .84 .73 .77
Swordfish 193 29 6.7 .76 .66 .70
The Butterfly Effect 182 17 10.7 .65 .61 .63
Cast Away 300 32 9.4 .60 .56 .58

average 135 32 4.7 .79 .73 .76

Table 3: AligNarr bm25·sts’s performance on ten movies.

transformers/model_doc/bert.html) to embed
sentences from a given pair of script and summary
units. We then retrieved individual vectors for each
token (i.e., wordpiece) by summing together the
outputs of BERT’s last four layers.

For each token in the summary unit uj , we look
for similar tokens in the script unit si by computing
cosine similarity of their embeddings, and take the
highest one from each sentence as our intersecting
tokens (only if their cosine similarity is above 0.7).
Finally, BERT-based word overlap scores are the
sum of overlapping tokens (excluding stop words)
weighted by their cosine similarity.

Replacing word2vec embeddings with BERT
embeddings (AligNarr bm25·sts·bert in Table 2) yields
better performance for some movies like Shrek,
Cars 2 and Anastasia), which interestingly belong
to the same genre (animation). The better perfor-
mance may be attributed to the ability of BERT
to better represent less common words (e.g., ogre)
using contextual information. However, the overall
performance is comparable with the performance
of AligNarr bm25·sts·w2v, which requires much less
computing time (see Appendix B).

Movie Comparison. AligNarr’s performance per
movie is shown in Table 3. We observed a trend that
the higher the ratio of scenes to summary sentences,
the worse the alignment performance, particularly
for three movies with ratio above r (average ratio,
r = 5). This is potentially useful for estimating
AligNarr’s performance on other movies, which is
negatively correlated to the compression rate of a
given summary. The most difficult movie to align
is Cast Away, where (i) there was only one active
story entity throughout the narration, (ii) the sum-
mary is highly abstract (e.g., “He also has regular
conversations and arguments with Wilson.”), and
(iii) the story plots and entity names do not fully
match, possibly due to the outdated script version.
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Figure 3: Histograms of number of scenes and sum-
mary sentences in ScriptBase movies.

Data and Code. We provide alignments by Alig-
Narr for ten movies at d5demos.mpi-inf.mpg.de/
alignarr/experiments; the same platform was
used to manually annotate the alignment mappings.
The code for producing the alignments is published
at github.com/paramitamirza/AligNarr.

We applied the best performing AligNarr bm25·sts
on the ScriptBase corpus6 (Gorinski and Lapata,
2015, 2018), leveraging the XML version of movie
scripts in ScriptBase-J and Wikipedia plot sum-
maries from ScriptBase-alpha, totaling to 914
movies. Figure 3 shows the histograms of num-
ber of scenes and summary sentences in the corpus,
with most summaries containing 20-40 sentences
and most scripts consisting of around 100-180
scenes. The alignment mappings for those movies
are made available for viewing and downloading at
d5demos.mpi-inf.mpg.de/alignarr/script-

base.
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movie AligNarr bm25 AligNarr bm25·w2v AligNarr bm25·sts AligNarr bm25·sts·w2v

P R F1 P R F1 P R F1 P R F1

Shrek .85 .84 .85 .85 .81 .83 .89↑ .89↑ .89↑ .85 .80 .82
Pulp Fiction .85 .86 .86 .88↑ .85 .86 .89↑ .88↑ .88↑ .92↑ .86 .89↑
Cars 2 .86 .76 .80 .81 .71 .75 .85 .75 .80 .84 .72 .77
The Silence of the Lambs .76 .73 .75 .85↑ .76↑ .80↑ .80↑ .79↑ .79↑ .86↑ .78 .81↑
Anastasia .79 .75 .77 .87↑ .78↑ .82↑ .80↑ .75 .77 .87↑ .78↑ .82↑
South Park: Bigger, Lo... .80 .74 .77 .79 .71 .74 .81↑ .72 .75 .83↑ .72 .76↑
Wall-E .78 .71 .74 .86↑ .75↑ .79↑ .84↑ .73↑ .77↑ .92↑ .72 .79↑
Swordfish .65 .62 .63 .71↑ .63↑ .66↑ .76↑ .66↑ .70↑ .75 .65 .68
The Butterfly Effect .62 .61 .61 .62 .58 .60 .65↑ .61 .63↑ .63 .61 .62
Cast Away .61 .57 .59 .65↑ .58↑ .61↑ .60 .56 .58 .61↑ .56 .58

average .76 .72 .74 .79↑ .72 .75↑ .79↑ .73↑ .76↑ .81↑ .72 .75

Table 4: AligNarr’s performance on ten movies (ablation study).

movie text pre- ILP computing similarity matrix
processing (bm25·sts) bm25 w2v sts bert

Shrek 5.5 4.1 0.02 69.7 131.3 1972.5
Pulp Fiction 20.8 12.3 0.03 222.0 172.0 2576.2
Cars 2 56.5 36.1 0.04 168.9 210.2 3169.8
The Silence of the Lambs 29.5 29.4 0.04 329.1 199.9 2439.2
Anastasia 21.6 28.6 0.03 147.6 147.8 1919.6
South Park: Bigger, Lo... 62.2 1350.4 0.04 165.4 251.9 3603.4
Wall-E 6.2 11.6 0.02 172.5 169.3 2771.6
Swordfish 17.0 457.4 0.04 143.4 152.6 1893.6
The Butterfly Effect 8.1 84.2 0.05 233.9 130.0 1297.2
Cast Away 8.3 329.4 0.04 237.4 294.8 3069.5

average 23.6 234.4 0.04 189.0 186.0 2471.2

computing 4x Intel(R) Xeon(R) 1x AMD EPYC 7502P
infrastructure Gold 6136 # of cores: 32

# of cores: 48 # of threads: 64
# of threads: 96 Memory: 1TB
Memory: 1.5TB GPU: 4x NVIDIA Quadro RTX

8000, 48 GB GDDR6

Table 5: AligNarr’s runtime (in seconds).

A Detailed Ablation Study

We report in Table 4 the ablation study on Alig-
Narr’s performance using different similarity ma-
trices on ten movies. In general, leveraging word-

based (w2v) and sentence-based (sts) semantic sim-
ilarity scores via embeddings, in addition to doc-
ument relevance scores (bm25), results in signif-
icantly higher precision for some movies, while
recall remains more or less stable.

B AligNarr’s Runtime

In Table 5 we detail the average runtime of the
best performing AligNarr bm25·sts, along with the
computing infrastructure used.

Note that to compute sentence similarity scores
(sts) we need word overlap scores via word2vec
embeddings (w2v) to filter out scene-sentence pairs
that are unlikely to be similar, in order to speed up
the runtime. Computing word overlap scores using
BERT embeddings (bert) requires almost 13 times
the time of computing the scores with word2vec
embeddings.
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Abstract
Most studies on word-level Quality Estimation
(QE) of machine translation focus on language-
specific models. The obvious disadvantages
of these approaches are the need for labelled
data for each language pair and the high cost
required to maintain several language-specific
models. To overcome these problems, we
explore different approaches to multilingual,
word-level QE. We show that multilingual
QE models perform on par with the current
language-specific models. In the cases of zero-
shot and few-shot QE, we demonstrate that
it is possible to accurately predict word-level
quality for any given new language pair from
models trained on other language pairs. Our
findings suggest that the word-level QE mod-
els based on powerful pre-trained transformers
that we propose in this paper generalise well
across languages, making them more useful in
real-world scenarios.

1 Introduction

Quality Estimation (QE) is the task of assessing the
quality of a translation without having access to a
reference translation (Specia et al., 2009). Trans-
lation quality can be estimated at different levels
of granularity: word, sentence and document level
(Ive et al., 2018). So far the most popular task has
been sentence-level QE (Specia et al., 2020), in
which QE models provide a score for each pair of
source and target sentences. A more challenging
task, which is currently receiving a lot of attention
from the research community, is word-level quality
estimation. This task provides more fine-grained
information about the quality of a translation, in-
dicating which words from the source have been
incorrectly translated in the target, and whether
the words inserted between these words are cor-
rect (good vs bad gaps). This information can be
useful for post-editors by indicating the parts of a
sentence on which they have to focus more.

Word-level QE is generally framed as a super-
vised ML problem (Kepler et al., 2019; Lee, 2020)
trained on data in which the correctness of transla-
tion is labelled at word-level (i.e. good, bad, gap).
The training data publicly available to build word-
level QE models is limited to very few language
pairs, which makes it difficult to build QE models
for many languages. From an application perspec-
tive, even for the languages with resources, it is
difficult to maintain separate QE models for each
language since the state-of-the-art neural QE mod-
els are large in size (Ranasinghe et al., 2020b).

In our paper, we address this problem by develop-
ing multilingual word-level QE models which per-
form competitively in different domains, MT types
and language pairs. In addition, for the first time,
we propose word-level QE as a zero-shot cross-
lingual transfer task, enabling new avenues of re-
search in which multilingual models can be trained
once and then serve a multitude of languages and
domains. The main contributions of this paper are
the following:

i We introduce a simple architecture to perform
word-level quality estimation that predicts the
quality of the words in the source sentence, tar-
get sentence and the gaps in the target sentence.

ii We explore multilingual, word-level quality es-
timation with the proposed architecture. We
show that multilingual models are competitive
with bilingual models.

iii We inspect few-shot and zero-shot word-level
quality estimation with the bilingual and mul-
tilingual models. We report how the source-
target direction, domain and MT type affect the
predictions for a new language pair.

iv We release the code and the pre-trained models
as part of an open-source framework1.

1Documentation is available on http://tharindu.
co.uk/TransQuest/
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Figure 1: Model Architecture

2 Related Work

Quality Estimation Early approaches in word-
level QE were based on features fed into a tradi-
tional machine learning algorithm. Systems like
QuEst++ (Specia et al., 2015) and MARMOT (Lo-
gacheva et al., 2016) were based on features used
with Conditional Random Fields to perform word-
level QE. With deep learning models becoming
popular, the next generation of word-level QE algo-
rithms were based on bilingual word embeddings
fed into deep neural networks. Such approaches
can be found in OpenKiwi (Kepler et al., 2019).
However, the current state of the art in word-level
QE is based on transformers like BERT (Devlin
et al., 2019) and XLM-R (Conneau et al., 2020)
where a simple linear layer is added on top of the
transformer model to obtain the predictions (Lee,
2020). All of these approaches consider quality
estimation as a language-specific task and build a
different model for each language pair. This ap-
proach has many drawbacks in real-world appli-
cations, some of which are discussed in Section
1.

Multilinguality Multilinguality allows training a
single model to perform a task from and/or to mul-
tiple languages. Even though this has been applied
to many tasks (Ranasinghe and Zampieri, 2020,
2021) including NMT (Nguyen and Chiang, 2017;
Aharoni et al., 2019), multilingual approaches have
been rarely used in QE (Sun et al., 2020). Shah
and Specia (2016) explore QE models for more
than one language where they use multitask learn-
ing with annotators or languages as multiple tasks.
They show that multilingual models led to marginal
improvements over bilingual ones with a traditional
black-box, feature-based approach. In a recent

study, Ranasinghe et al. (2020b) show that multi-
lingual QE models based on transformers trained
on high-resource languages can be used for zero-
shot, sentence-level QE in low-resource languages.
In a similar architecture, but with multi-task learn-
ing, Sun et al. (2020) report that multilingual QE
models outperform bilingual models, particularly
in less balanced quality label distributions and low-
resource settings. However, these two papers are
focused on sentence-level QE and to the best of
our knowledge, no prior work has been done on
multilingual, word-level QE models.

3 Architecture

Our architecture relies on the XLM-R transformer
model (Conneau et al., 2020) to derive the rep-
resentations of the input sentences. XLM-R has
been trained on a large-scale multilingual dataset
in 104 languages, totalling 2.5TB, extracted from
the CommonCrawl datasets. It is trained using only
RoBERTa’s (Liu et al., 2019) masked language
modelling (MLM) objective. XML-R was used
by the winning systems in the recent WMT 2020
shared task on sentence-level QE (Ranasinghe et al.,
2020a; Lee, 2020; Fomicheva et al., 2020). This
motivated us to use a similar approach for word-
level QE.

Our architecture adds a new token to the XLM-
R tokeniser called <GAP> which is inserted be-
tween the words in the target. We then concatenate
the source and the target with a [SEP] token and
we feed them into XLM-R. A simple linear layer
is added on top of word and <GAP> embeddings
to predict whether it is ”Good” or ”Bad” as shown
in Figure 1. The training configurations and the
system specifications are presented in the supple-
mentary material.
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Language Pair Source MT System Competition Train Size
De-En Pharmaceutical Phrase-based SMT WMT 2018 25,963
En-Cs IT Phrase-based SMT WMT 2018 40,254
En-De Wiki fairseq-based NMT WMT 2020 7,000
En-De IT fairseq-based NMT WMT 2019 13,442
En-De IT Phrase-based SMT WMT 2018 26,273
En-Ru IT Online NMT WMT 2019 15,089
En-Lv Pharmaceutical Attention-based NMT WMT 2018 12,936
En-Lv Pharmaceutical Phrase-based SMT WMT 2018 11,251
En-Zh Wiki fairseq-based NMT WMT 2020 7,000

Table 1: Information about the language pairs used to predict word-level quality. The Language Pair column lists
the language pairs we used in ISO 639-1 codes. Source stands for the domain of the sentence and MT System
is the Machine Translation system used to translate the sentences. Competition refers to the quality estimation
competition in which the data was released and the last column indicates the number of instances the train dataset
has for each language pair respectively.

4 Experimental Setup

4.1 QE Dataset

We used several language pairs for which
word-level QE annotations were available:
English-Chinese (En-Zh), English-Czech (En-Cs),
English-German (En-De), English-Russian (En-
Ru), English-Latvian (En-Lv) and German-English
(De-En). The texts are from a variety of domains
and the translations were produced using both
neural and statistical machine translation systems.
More details about these datasets can be found in
Table 1 and in (Specia et al., 2018; Fonseca et al.,
2019; Specia et al., 2020).

4.2 Evaluation Criteria

For evaluation, we used the approach proposed
in the WMT shared tasks in which the classifica-
tion performance is calculated using the multiplica-
tion of F1-scores for the ‘OK’ and ‘BAD’ classes
against the true labels independently: words in the
target (‘OK’ for correct words, ‘BAD’ for incor-
rect words), gaps in the target (‘OK’ for genuine
gaps, ‘BAD’ for gaps indicating missing words)
and source words (‘BAD’ for words that lead to
errors in the target, ‘OK’ for other words) (Specia
et al., 2018). In recent WMT shared tasks, the most
popular category was predicting quality for words
in the target. Therefore, in Section 5 we only report
the F1-score for words in the target. Other results
are presented in the supplementary material. Prior
to WMT 2019, organisers provided separate scores
for gaps and words in the target, while after WMT
2019 they produce a single result for target gaps

and words. We follow this latter approach.

5 Results

The values displayed diagonally across section I of
Table 2 show the results for supervised, bilingual,
word-level QE models where the model was trained
on the training set of a particular language pair and
tested on the test set of the same language pair. As
can be seen in section V, the architecture outper-
forms the baselines in all the language pairs and
also outperforms the majority of the best systems
from previous competitions. In addition to the tar-
get word F1-score, our architecture outperforms the
baselines and best systems in target gaps F1-score
and source words F1-score too as shown in Tables
5 and 6. In the following sections we explore its
behaviour in different multilingual settings.

5.1 Multilingual QE

We combined instances from all the language pairs
and built a single word-level QE model. Our results,
displayed in section II (“All”) of Table 2, show that
multilingual models perform on par with bilingual
models or even better for some language pairs. We
also investigate whether combining language pairs
that share either the same domain or MT type can
be more beneficial, since it is possible that the learn-
ing process is better when language pairs share cer-
tain characteristics. However as shown in sections
III and IV of Table 2, for the majority of the lan-
guage pairs, specialised multilingual models built
on certain domains or MT types do not perform
better than multilingual models which contain all
the data.
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IT Pharmaceutical Wiki

Train
Language(s)

En-Cs
SMT

En-De
NMT

En-De
SMT

En-Ru
NMT

De-En
SMT

En-LV
NMT

En-Lv
SMT

En-De
NMT

En-Zh
NMT

I

En-Cs SMT 0.6081 (-0.09) (-0.07) (-0.09) (-0.15) (-0.02) (-0.01) (-0.10) (-0.11)
En-De NMT (-0.17) 0.4421 (-0.06) (-0.02) (-0.18) (-0.01) (-0.02) (-0.01) (-0.08)
En-De SMT (-0.01) (-0.05) 0.6348 (-0.67) (-0.14) (-0.06) (-0.04) (-0.06) (-0.09)
En-Ru NMT (-0.14) (-0.08) (-0.16) 0.5592 (-0.12) (-0.01) (-0.03) (-0.09) (-0.08)
De-En SMT (-0.43) (-0.23) (-0.33) (-0.31) 0.6485 (-0.29) (-0.32) (-0.25) (-0.28)
En-LV NMT (-0.12) (-0.09) (-0.14) (-0.03) (-0.12) 0.5868 (-0.01) (0.09) (-0.08)
En-Lv SMT (-0.04) (-0.16) (-0.10) (-0.09) (-0.16) (-0.01) 0.5939 (-0.15) (-0.14)
En-De NMT (-0.11) (-0.01) (-0.08) (-0.02) (-0.14) (-0.02) (-0.04) 0.5013 (-0.06)
En-Zh NMT (-0.19) (-0.08) (-0.17) (-0.03) (-0.16) (-0.03) (-0.06) (-0.07) 0.5402

II All 0.6112 0.4523 0.6583 0.5558 0.6221 0.5991 0.5980 0.5101 0.5229
All-1 (-0.01) (-0.01) (-0.05) (-0.02) (-0.12) (-0.01) (-0.01) (-0.01) (-0.05)

III Domain 0.6095 0.4467 0.6421 0.5560 0.6331 0.5892 0.5951 0.5021 0.5210

IV SMT/NMT 0.6092 0.4461 0.6410 0.5421 0.6320 0.5885 0.5934 0.5010 0.5205

V
Baseline-Marmot 0.4449 0.1812 0.3630 NR 0.4373 0.4208 0.3445 NR NR
Baseline-OpenKiwi NR NR NR 0.2412 NR NR NR 0.4111 0.5583
Best system 0.4449 0.4361 0.6246 0.4780 0.6012 0.4293 0.3618 0.6186 0.6415

Table 2: Target F1-Multi between the algorithm predictions and human annotations. Best results for each language
by any method are marked in bold. Sections I, II and III indicate the different evaluation settings. Section IV shows
the results of the state-of-the-art methods and the best system submitted for the language pair in that competition.
NR implies that a particular result was not reported by the organisers. Zero-shot results are coloured in grey and
the value shows the difference between the best result in that section for that language pair and itself.

5.2 Zero-shot QE

To test whether a QE model trained on a particular
language pair can be generalised to other language
pairs, different domains and MT types, we per-
formed zero-shot quality estimation. We used the
QE model trained on a particular language pair and
evaluated it on the test sets of the other language
pairs. Non-diagonal values of section I in Table
2 show how each QE model performed on other
language pairs. For better visualisation, the non-
diagonal values of section I of Table 2 show by how
much the score changes when the zero-shot QE
model is used instead of the bilingual QE model.
As can be seen, the scores decrease, but this de-
crease is negligible and is to be expected. For most
pairs, the QE model that did not see any training
instances of that particular language pair outper-
forms the baselines that were trained extensively
on that particular language pair. Further analysing
the results, we can see that zero-shot QE performs
better when the language pair shares some proper-
ties such as domain, MT type or language direction.
For example, En-De SMT⇒ En-Cs SMT is bet-
ter than En-De NMT ⇒ En-Cs SMT and En-De
SMT⇒ En-De NMT is better than En-Cs SMT⇒
En-De NMT.

We also experimented with zero-shot QE with
multilingual QE models. We trained the QE model
in all the pairs except one and performed predic-

tion on the test set of the language pair left out. In
section II (“All-1”), we show its difference to the
multilingual QE model. This also provides com-
petitive results for the majority of the languages,
proving it is possible to train a single multilingual
QE model and extend it to a multitude of languages
and domains. This approach provides better results
than performing transfer learning from a bilingual
model.

One limitation of the zero-shot QE is its inability
to perform when the language direction changes. In
the scenario where we performed zero-shot learn-
ing from De-En to other language pairs, results
degraded considerably from the bilingual result.
Similarly, the performance is rather poor when we
test on De-En for the multilingual zero-shot exper-
iment as the direction of all the other pairs used
for training is different. This is in line with results
reported by Ranasinghe et al. (2020b) for sentence
level.

5.3 Few-shot QE
We also evaluated how the QE models behave with
a limited number of training instances. For each
language pair, we initiated the weights of the bilin-
gual model with those of the relevant All-1 QE and
trained it on 100, 200, 300 and up to 1000 training
instances. We compared the results with those ob-
tained having trained the QE model from scratch
for that language pair. The results in Figure 2 show
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(a) En-Cs SMT IT (b) En-De NMT IT (c) En-De SMT IT

(d) En-Ru NMT IT (e) De-En SMT Pharmaceutical (f) En-Lv NMT Pharmaceutical

(g) En-Lv SMT Pharmaceutical (h) En-De NMT Wiki (i) En-Zh NMT Wiki

Figure 2: Target F1-Multi scores with Few-shot learning

that All-1 or the multilingual model performs well
above the QE model trained from scratch (Bilin-
gual) when there is a limited number of training
instances available. Even for the De-En language
pair, for which we had comparatively poor zero-
shot results, the multilingual model provided better
results with a few training instances. It seems that
having the model weights already fine-tuned in the
multilingual model provides an additional boost
to the training process which is advantageous in a
few-shot scenario.

6 Conclusions

In this paper, we explored multilingual, word-level
QE with transformers. We introduced a new ar-
chitecture based on transformers to perform word-
level QE. The implementation of the architecture,
which is based on Hugging Face (Wolf et al., 2020),
has been integrated into the TransQuest framework
(Ranasinghe et al., 2020b) which won the WMT
2020 QE task (Specia et al., 2020) on sentence-
level direct assessment (Ranasinghe et al., 2020a)2.

2TransQuest is available on GitHub https://github.
com/tharindudr/TransQuest

In our experiments, we observed that multilingual
QE models deliver excellent results on the language
pairs they were trained on. In addition, the multi-
lingual QE models perform well in the majority of
the zero-shot scenarios where the multilingual QE
model is tested on an unseen language pair. Fur-
thermore, multilingual models perform very well
with few-shot learning on an unseen language pair
when compared to training from scratch for that
language pair, proving that multilingual QE models
are effective even with a limited number of training
instances. While we centered our analysis around
the F1-score of the target words, these findings are
consistent with the F1-score of the target gaps and
the F1-score of the source words too. This suggests
that we can train a single multilingual QE model
on as many languages as possible and apply it on
other language pairs as well. These findings can
be beneficial to perform QE in low-resource lan-
guages for which the training data is scarce and
when maintaining several QE models for different
language pairs is arduous.
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Abstract

A sequence-to-sequence learning with neural
networks has empirically proven to be an ef-
fective framework for Chinese Spelling Cor-
rection (CSC), which takes a sentence with
some spelling errors as input and outputs the
corrected one. However, CSC models may
fail to correct spelling errors covered by the
confusion sets, and also will encounter unseen
ones. We propose a method, which continually
identifies the weak spots of a model to gener-
ate more valuable training instances, and ap-
ply a task-specific pre-training strategy to en-
hance the model. The generated adversarial ex-
amples are gradually added to the training set.
Experimental results show that such an adver-
sarial training method combined with the pre-
training strategy can improve both the general-
ization and robustness of multiple CSC models
across three different datasets, achieving state-
of-the-art performance for CSC task.1

1 Introduction

Chinese Spelling Correction (CSC) aims to de-
tect and correct spelling mistakes in Chinese texts.
Many Chinese characters are visually or phonolog-
ically similar, while their semantic meaning may
differ greatly. Spelling errors are usually caused by
careless writing, automatic speech recognition, and
optical character recognition systems. The CSC
task has received steady attention over the past
two decades (Chang, 1995; Xin et al., 2014; Wang
et al., 2018; Hong et al., 2019). Unlike English,
Chinese texts are written without using whitespace
to delimit words, and it is hard to identify whether
and which characters are misspelled without the
information of word boundaries. The context infor-
mation should be taken into account to reconstruct

†These authors contributed equally to this work.
*Corresponding Author
1The source codes are available at https://github.com/

FDChongli/TwoWaysToImproveCSC.

the word boundaries when correcting spelling mis-
takes, which makes CSC a long-standing challenge
for Chinese NLP community.

Many early CSC systems follow the same recipe
with minor variations, adopting a three-step strat-
egy: detect the positions of spelling errors; generate
candidate characters for these positions; and select
a most appropriate one from the candidates to re-
place the misspelling (Yeh et al., 2013; Yu and Li,
2014; Zhang et al., 2015; Wang et al., 2019). Re-
cently, a sequence-to-sequence (seq2seq) learning
framework with neural networks has empirically
proven to be effective for CSC, which transforms
a sentence with errors to the corrected one (Zhang
et al., 2020; Cheng et al., 2020b).

However, even if training a CSC model with
the seq2seq framework normally requires a huge
amount of high-quality training data, it is still un-
reasonable to assume that all possible spelling er-
rors have been covered by the confusion sets (i.e.
a set of characters and their visually or phono-
logically similar characters which can be poten-
tially confused) extracted from the training samples.
New spelling errors occur everyday. A good CSC
model should be able to exploit what it has already
seen in the training instances in order to achieve
reasonable performance on easy spelling mistakes,
but it can also explore in order to generalize well
to possible unseen misspellings.

In this study, we would like to pursue both the
exploration (unknown misspellings) and exploita-
tion (the spelling errors covered by the confusion
sets) when training the CSC models. To encourage
a model to explore unknown cases, we propose a
character substitution-based method to pre-train the
model. The training data generator chooses about
25% of the character positions at random for pre-
diction. If a character is chosen, we replace it with
the character randomly selected from its confusion
set (90% of the time) or a random character (10%
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of the time). Then, the model is asked to predict
the original character.

Because of the combination of spelling errors
and various contexts in which they occur, even
though the confusion sets are given and fixed, mod-
els may still fail to correct characters that are re-
placed by any character from its confusion set. To
better exploit what the models has experienced dur-
ing the training phase, we generate more valuable
training data via adversarial attack (i.e. tricking
models to make false prediction by adding imper-
ceptible perturbation to the input (Szegedy et al.,
2014)), targeting the weak spots of the models,
which can improve both the quality of training data
for fine-tuning the CSC models and their robustness
against adversarial attacks. Inspired by adversarial
attack and defense in NLP (Jia and Liang, 2017;
Zhao et al., 2018; Cheng et al., 2020a; Wang and
Zheng, 2020), we propose a simple but efficient
method for adversarial example generation: we
first identify the most vulnerable characters with
the lowest generation probabilities estimated by a
pre-trained model, and replace them with charac-
ters from their confusion sets to create the adver-
sarial examples.

Once the adversarial examples are obtained, they
can be merged with the original clean data to train
the CSC models. The examples generated by our
method are more valuable than those already ex-
isted in the training set because they are gener-
ated towards to the weak spots of the current mod-
els. Through extensive experimentation, we show
that such adversarial examples can improve both
generalization and robustness of CSC models. If
a model pre-trained with our proposed character
substitution-based method is further fine-tuned by
adversarial training, its robustness can be improved
about 3.9% while without suffering too much loss
(less than 1.1%) on the clean data.

2 Method

2.1 Problem Definition

Chinese Spelling Correction aims to identify incor-
rectly used characters in Chinese texts and giving
its correct version. Given an input Chinese sen-
tence X = {x1, ..., xn} consisting of n characters,
which may contain some spelling errors, the model
takes X as input and outputs an output sentence
Y = {y1, ..., yn}, where all the incorrect charac-
ters are expected to be corrected. This task can be
formulated as a conditional generation problem by

modeling and maximizing the conditional probabil-
ity of P (Y |X).

2.2 Base Models
We use vanilla BERT (Devlin et al., 2019) and
two recently proposed BERT-based models (Cheng
et al., 2020b; Zhang et al., 2020) as our base models.
When applying BERT to the CSC task, the input is
a sentence with spelling errors, and the output rep-
resentations are fed into an output layer to predict
target tokens. We tie the input and output embed-
ding layer, and all the parameters are fine-tuned
using task-specific corpora. Soft-Masked BERT
(Zhang et al., 2020) uses a Bi-GRU network to de-
tect errors, and applies a BERT-based network to
correct errors. SpellGCN (Cheng et al., 2020b) uti-
lizes visual and phonological similarity knowledge
through a specialized graph convolutional network
and substitutes parameters of the output layer of
BERT with the final output of it.

These models achieved state-of-the-art or close
to state-of-the-art performance on the CSC task.
However, we found that their performance and ro-
bustness could be further improved through pre-
training and adversarial training, which help mod-
els explore unseen spelling errors and exploit weak
points of themselves.

2.3 Pre-training Method
We collected unlabeled sentences from Wikipedia
and Weibo corpora (Shang et al., 2015), covering
both formal and informal Chinese texts. Training
example pairs are generated by substituting charac-
ters in clean sentences, and models are trained to
predict the original character. According to Chen
et al. (2011), a sentence contains no more than two
spelling errors on average, so we select and replace
25% characters in a sentence. The chosen Chinese
character will be substituted by a character ran-
domly selected from its confusion set (90% of the
time) or a random Chinese character (10% of the
time). The latter helps models to explore unknown
misspellings not covered by the confusion sets.

2.4 Adversarial Example Generation and
Adversarial Training

To efficiently identify and alleviate the weak spots
of trained CSC models, we designed an adversarial
attack algorithm for CSC tasks, which replaces the
tokens in a sentence with spelling mistakes.

The adversarial examples generation algorithm
in this paper can be divided into two main steps:
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(1) determine the vulnerable tokens to change (2)
replace them with the spelling mistakes that most
likely to occur in the contexts (Algorithm 1).

For the i-th position of input sentence X , the
positional score si can be obtained by the logit
output oi as follows:

si = oyii − omi
i (omi

i = max{ori , r 6= yi}) (1)

where ori denotes the logit output of character r
in the i-th position, and yi denotes the i-th character
of ground truth sentence Y . The lower the posi-
tional score, the less confident the model is in pre-
dicting the position. Attacking this position makes
the model output more likely to change. Once
the positional score of each character in the input
sentence is calculated, we sort these positions in
ascending order according to the positional scores.
This process can reduce the substitutions and main-
tain the original semantics as much as possible.

Once a vulnerable position is determined, the
token at that position is replaced with one of its
phonologically or visually similar characters. Con-
fusion set D contains a set of visually or phono-
logically similar characters. In order to fool the
target CSC model while maintaining the context,
the character with the highest logit output in the
confusion set is used as a replacement.

Given a sentence in training sets, its adversar-
ial examples are generated by substituting a few
characters based on the algorithm mentioned above.
Adversarial training was conducted with these ex-
amples, improving the robustness of CSC mod-
els by alleviating their weak spots, and exploiting
knowledge about easy spelling mistakes from con-
fusion sets to help models generalize better.

3 Experiments

3.1 Datasets
Statistics of the datasets used are shown in Table 1.

Pretraining data We generated a large corpus
by a character substitution-based method. Models
were first pre-trained on these nine million sentence
pairs, and then fine-tuned using the training data
mentioned below.

Training data The training data contained three
human-annotated training datasets, SIGHAN 2013
(Wu et al., 2013), SIGHAN 2014 (Yu et al., 2014),
and SIGHAN 2015 (Tseng et al., 2015). We also
utilized an automatically generated dataset (Wang
et al., 2018).

Algorithm 1 Adversarial Attack Algorithm
Input:

X = {x1, x2, . . . , xn}, input Chinese sentence;
Y = {y1, y2, . . . , yn}, the corresponding ground truth;
λ, proportion of characters can be changed;
f , a target CSC model;
D, a confusion set created based on visually or phonolog-
ically similar characters;

Output:
X̂ = {x̂1, x̂2, . . . , x̂n}, adversarial example;

1: X̂ ← X
2: if f (X) 6= Y then
3: return X̂
4: else
5: num← 0
6: while f(X̂) = Y && num ≤ λ · n do
7: O = {o1, o2, ..., on} ← Logit output of f(X̂)
8: P = {p1, p2, ..., pk} ← Sort the position pi in

ascending order based on spi ( 1 ≤ pi ≤ n and ypi
is a Chinese character )

9: for each i ∈ [1, k] do
10: if x̂pi 6= ypi then
11: continue
12: end if
13: x̂pi ← mpi , where mpi ∈ D (xpi) and

p
mpi
i = max {pri , pri ∈ D (xpi)}

14: break
15: end for
16: num← num+ 1
17: end while
18: end if
19: return X̂

Table 1: Statistics information on the used data re-
sources. A subset of the Wikipedia corpus and Weibo
corpus, denoted by Wikipedia∗ and Weibo∗ respec-
tively, was sampled from the entire corpus.

Pre-Training Data #Line Avg. Length

Wikipedia∗ 4,531,007 40.2
Weibo∗ 4,770,015 16.3

Training Data #Line Avg. Length #Errors

(Wang et al., 2018) 271,329 42.6 381,962
SIGHAN 2013 350 49.3 339
SIGHAN 2014 3,437 49.6 5,136
SIGHAN 2015 2,339 31.3 3,048

Test Data #Line Avg. Length #Errors

SIGHAN 2013 1,000 74.3 1,221
SIGHAN 2014 1,062 50.0 771
SIGHAN 2015 1,100 30.7 705

Test data Models’ performance in detection and
correction stage was evaluated in sentence level
on three benchmark datasets, in the metrics of F1
scores (detection and correction). Characters in
these datasets were transferred into simplified Chi-
nese characters using OpenCC2. We revised the
processed datasets for one simplified Chinese char-
acter may correspond to multiple traditional Chi-
nese characters.

2https://github.com/BYVoid/OpenCC
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Table 2: Performance of three models trained with the proposed pretraining strategy and adversarial training
method. “CLEAN” stands for the testing results on the clean data, and “ATTACK” denotes the F1 scores under
test-time attacks. “DET” and “COR” denote the F1 scores of detection and correction. The F1 scores were
increased 4.1% on average by our pre-training method across the various models on the different datasets. Models’
robustness was also improved about 3.9% while without suffering too much loss (less than 1.1%) on the clean data.

SIGHAN-2013 SIGHAN-2014 SIGHAN-2015

CLEAN ATTACK CLEAN ATTACK CLEAN ATTACK

Model DET COR DET COR DET COR DET COR DET COR DET COR

BERT 82.9 82.1 33.6 15.8 66.8 65.0 41.7 19.0 76.3 74.4 25.1 13.7
+ Pre-trained for CSC 84.9 84.4 48.5 29.6 70.4 68.6 51.4 32.4 79.8 78.0 39.0 26.9
+ Adversarial training 84.0 83.5 50.8 31.3 68.4 66.8 54.9 38.0 80.0 78.2 45.9 36.0

SpellGCN 80.8 80.0 25.6 22.6 64.8 63.6 29.0 24.3 73.6 71.5 18.8 17.4
+ Pre-trained for CSC 84.6 84.0 28.8 25.8 67.3 66.4 35.4 27.1 79.6 77.7 26.2 25.2
+ Adversarial training 83.4 82.6 30.2 26.0 66.4 65.4 35.9 29.5 79.6 77.8 28.2 25.2

Soft-masked BERT 80.6 79.1 27.7 4.0 62.2 59.6 29.8 7.1 72.4 69.6 15.5 5.3
+ Pre-trained for CSC 84.9 84.2 27.3 6.0 67.2 65.6 30.7 8.6 77.2 74.5 22.2 6.5
+ Adversarial training 84.1 83.3 32.5 8.1 65.0 62.7 40.5 13.4 76.2 73.8 30.3 11.4

3.2 Models and Hyper-parameter Settings
For BERT and Soft-Masked BERT, we used the
BERT model pre-trained on Chinese text provided
by transformers3 and fine-tuned it. Adam optimizer
was used and the learning rate was 2e-5, except
when adversarial training on SIGHAN 13 dataset,
which was 1e-5. We followed Zhang et al. (2020)
to set our hyper-parameters. The size of the hidden
state in Bi-GRU in Soft-Masked BERT was 256.

Similarly, we followed the hyper-parameters set-
tings of SpellGCN (Cheng et al., 2020b) except the
batch size. Batch size was reduced to eight due to
GPU memory. The BERT model used in SpellGCN
was provided by the repository of BERT4.

We conducted adversarial training on base mod-
els gained through pre-training and fine-tuning.
The threshold λ was tuned on the validation set
for each dataset. The number of sentence pairs di-
rectly used for training was twice that that used to
generate adversarial examples.

3.3 Results and Analysis
As shown in Table 2, through pre-training par-
ticularly designed for CSC, the models achieve
better results on three benchmark datasets. The
average improvement of correction F1 score was
4.3% over base CSC models, which proves that our
pre-training method has significant contribution to
improving the model. Notably, BERT achieves
state-of-the-art results on three datasets through
our method.

3https://github.com/huggingface/transformers
4https://github.com/google-research/bert

Figure 1: Trade-off between generalization and robust-
ness. The blue and orange lines respectively denote the
average F1 scores of BERT on the SIGHAN-2015 data
set and the adversarial examples generated (λ = 0.05).

Figure 1 shows the trade-off between general-
ization and robustness during adversarial training.
As the threshold increases, the robustness of BERT
also increases with a slight performance decrease
on clean dataset (less than 0.7%).

The experiments of the models under adversarial
attacks were conducted with the base, pre-trained
and adversarially trained models (λ = 0.02). We
found that CSC models are vulnerable to adver-
sarial examples as expected. The average drop in
F1 score of three base models was 51.6%. Under
the attacks, the F1 scores of adversarially trained
model decreased less (44.1%), which indicates the
adversarial training can substantially improve the
robustness of CSC models. Compared with other
models, BERT is more robust against adversarial
attack (-41.2%). The reason for the more serious
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robustness issues of other models may be related to
the modules added to BERT, which increases the
number of parameters, therefore it is more likely to
overfit on the CSC data set.

4 Conclusion

In this paper, we have described a character
substitution-based method to create large pseudo
data to pre-train the models by encouraging them
to explore unseen misspellings. We also proposed
a data augmentation method for training the CSC
models by continually adding the adversarial exam-
ples, particularly generated to alleviate the weak
spot of the current model, to the training set. By the
proposed pre-training strategy and adversarial train-
ing method, we can pursue both the exploration and
exploitation when training the CSC models. Exper-
imental results demonstrate that the CSC models
trained with the data augmented by these pseudo
data and adversarial examples can substantially be
improved in both generalization and robustness.
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Abstract

Adaptive Computation (AC) has been shown
to be effective in improving the efficiency of
Open-Domain Question Answering (ODQA)
systems. However, current AC approaches re-
quire tuning of all model parameters, and train-
ing state-of-the-art ODQA models requires
significant computational resources that may
not be available for most researchers. We
propose Adaptive Passage Encoder, an AC
method that can be applied to an existing
ODQA model and can be trained efficiently
on a single GPU. It keeps the parameters of
the base ODQA model fixed, but it overrides
the default layer-by-layer computation of the
encoder with an AC policy that is trained
to optimise the computational efficiency of
the model. Our experimental results show
that our method improves upon a state-of-the-
art model on two datasets, and is also more
accurate than previous AC methods due to
the stronger base ODQA model. All source
code and datasets are available at https://
github.com/uclnlp/APE.

1 Introduction

Open-Domain Question Answering (ODQA) re-
quires finding relevant information for a given ques-
tion and aggregating the information to produce
an answer. The retriever-reader architecture, pop-
ularised by Chen et al. (2017), has shown great
success in this task. The retriever acquires a set of
documents from external sources (e.g., Wikipedia)
and the reader extracts the answer spans from
these documents (Clark and Gardner, 2018; Yang
et al., 2019; Wang et al., 2019; Min et al., 2019;
Asai et al., 2020). Recently, Min et al. (2020);
Lewis et al. (2020b); Izacard and Grave (2020b)
showed that generative reader models that exploit
an encoder-decoder architecture can significantly
outperform previous extractive models, thanks to

Figure 1: Overview of our approach. The adaptive pas-
sage encoder overrides the layer-by-layer computation
of the encoder with an adaptive computation policy (in-
dicated in blue dash arrows).

their better capability in aggregating and combin-
ing evidence from multiple passages. However,
these generative models are much more compu-
tationally expensive than extractive models, and
often need to be trained with a large number of
passages, making it hard to train these models for
most researchers (Schwartz et al., 2020a).

Wu et al. (2020) show that Adaptive Computa-
tion (AC) can significantly improve the efficiency
of extractive ODQA models at inference time.
However, it requires fine-tuning all model parame-
ters with a multitask learning objective, making it
computationally challenging to apply this method
to current state-of-the-art models.

In this work, we explore an efficient approach
to apply adaptive computation to large generative
ODQA models. We introduce the Adaptive Pas-
sage Encoder (APE), a module that can be added
to the encoder of an existing ODQA model, which
has the following features: 1) it efficiently reuses
the encoder’s hidden representations for calculating
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the AC priorities; 2) it does not require tuning of
the base model and hence allows efficient training
under limited resource; 3) it does not require confi-
dence calibration. Our experimental results on Nat-
uralQuestions and TriviaQA show that our method
improves the performance of the state-of-the-art
model FiD (Izacard and Grave, 2020b), while also
producing more accurate results (12.4% EM) than
the AC method proposed by Wu et al. (2020).

2 Related Work

Open Domain Question Answering ODQA is
a task that aims to answer a factoid question given
a document corpus. Most works in this domain
follow a retriever-reader design first proposed by
Chen et al. (2017). The retriever collects a set of
relevant passages, then the reader comprehends and
aggregates the information from multiple passages
to produce the answer. Depending on the design
of the reader model, these systems could be further
categorised into extractive models and generative
models. Extractive models (Min et al., 2019; Yang
et al., 2019; Wang et al., 2019; Asai et al., 2020;
Karpukhin et al., 2020) exploit an answer extrac-
tion model to predict the probabilities of answer
spans, and use global normalisation (Clark and
Gardner, 2018) to aggregate the answer probabili-
ties across multiple passages.

However, thanks to recent advances in sequence-
to-sequence pretrained language models (Raffel
et al., 2020; Lewis et al., 2020a), generative ODQA
models (Min et al., 2020; Lewis et al., 2020b;
Izacard and Grave, 2020b) achieve significant im-
provement upon extractive models, demonstrating
stronger capability in combining evidence from
multiple passages. We focus on generative models
in this work.

Passage Retrieval and Re-Ranking Passage re-
trievers in ODQA systems are initially based on
sparse vector representations. Chen et al. (2017)
use TF-IDF, whereas Yang et al. (2019); Karpukhin
et al. (2020); Wang et al. (2019) rely on BM25
for ranking passages (Robertson, 2004). Recently,
Karpukhin et al. (2020); Lewis et al. (2020b); Izac-
ard and Grave (2020a) achieved substantial in-
crease in retrieval performance using dense rep-
resentations. Our work is based on the retrieval
results from a dense retriever (Izacard and Grave,
2020b), but we show that the proposed method can
still improve the quality of the support passages
despite the strong retrieval performance.

Nogueira and Cho (2019); Qiao et al. (2019);
Mao et al. (2021) show that adding a separate
cross-encoder re-ranker can improve the perfor-
mance, but that comes with a significant increase
of the computation at train or inference time. De-
spite that our proposed adaptive passage encoder
can be viewed as an encoder with an integrated
re-ranker, the focus of our work is to improve the
computational efficiency, namely, enhancing the
performance without a substantial increase in com-
putation.

Adaptive Computation Adaptive computation
allows the model to condition the computation cost
on the input. For example, Schwartz et al. (2020b);
Liu et al. (2020); Xin et al. (2020) propose models
that can dynamically decide to early exit at inter-
mediate layers when the confidence at the layer
exceeds a threshold. They show that adaptively
early exiting can significantly reduce the computa-
tional cost for various sequence classification tasks.
Closest to our work, Wu et al. (2020) introduced
adaptive computation for extractive ODQA mod-
els. We extend adaptive computation to generative
ODQA models, and our approach can be incorpo-
rated in existing generative ODQA models without
finetuning the base model.

3 Method

In this section, we will introduce the base model
and how our proposed adaptive passage encoder
works with it.

3.1 Base Model
Large generative ODQA models (Lewis et al.,
2020b; Izacard and Grave, 2020b) share a similar
encoder-decoder architecture. They first concate-
nate the question with all retrieved passages. Then
the encoder encodes all passages and produces their
hidden representations hL1 , · · · , hLN , where L is the
number of encoder layers and N is the number
of retrieved passages. We denote the hidden rep-
resentation of the i-th passage at its j-th encoder
layer as hji . The decoder will attend to these hid-
den representations and generate the answer tokens
sequentially.

3.2 Adaptive Passage Encoder
As shown in Fig. 1, the adaptive passage encoder
overrides the layer-by-layer computation of the en-
coder of the base model with an adaptive computa-
tion policy. It adds two components on top of the
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base encoder to define the policy: an answerability
prediction model HasAnswer and a scheduler.

The HasAnswer model predicts the probability
that a passage contains an answer to the question,
given its hidden representation hji . It first pools hid-
den representation hji into a vector, then feeds the
pooled representation to a multi-layer perceptron
to produce the probability pji .

The scheduler is then responsible for the selec-
tion and prioritisation of passages that are likely to
contain the answer (Wu et al., 2020). As shown
by the blue arrows in Fig. 1, the scheduler learns a
scheduling policy to allocate encoder layer compu-
tation to passages. The scheduler will exit in early
layers for those spurious passages while allocating
more layers to the ones that it finds promising.

To achieve this goal, the scheduler produces a
priority score qn for each passage:

qn = σ(g(plnn , n, ln))p
ln
n + f(plnn , n, ln) (1)

where n is the passage rank by the retriever, ln is
the index of its current encoder layer, g and f are
two multi-layer perceptrons that learn the weight
and bias respectively. Starting at the initial layer
for all passages, the scheduler will select a passage
with the maximum priority, forward one encoder
layer for it l′n = ln + 1, and updates its priorities
qn with its new hidden representation hl

′
n
n and has-

answer probability pl
′
n
n . This process will iterate

for B (budget) steps, and only k passages with the
most layers computed are retained in the end.

3.3 Training the Adaptive Passage Encoder

Differently from Wu et al. (2020), our method
does not require tuning the underlying base model.
Since the number of parameters introduced by the
HasAnswer model and the scheduler is less than
4% of the base model, APE can be trained very effi-
ciently. The HasAnswer model is first trained with
cross-entropy loss, supervised by the has-answer
labels of the passages. Then we fix HasAnswer
and train the scheduler with REINFORCE algo-
rithm (Williams, 1992) to maximise the expected
return, which is defined to encourage selection and
prioritisation of passages that contain the answer.
The selection action gains a positive reward (1− c)
if it selects a relevant passage, otherwise a negative
reward−c. Since the weight g and bias f in Eq. (1)
are automatically learned during the training of the
scheduler, our method does not require confidence

Train Validation Test

NaturalQuestions 79,168 8,757 3,610
TriviaQA 78,785 8,837 11,313

Table 1: Number of samples of the evaluated datasets.

calibration of the HasAnswer model, unlike the
method proposed by Wu et al. (2020).

4 Experiments

4.1 Experimental Setup

Datasets Following (Lee et al., 2019; Izacard and
Grave, 2020b), we evaluate our method on Natu-
ralQuestions (Kwiatkowski et al., 2019) and Trivi-
aQA (Joshi et al., 2017) whose statistics are shown
in Table 1.

Evaluation Metrics Following Wu et al. (2020),
we conduct the evaluation under different computa-
tional costs at inference time. Since the number of
passages k is almost linearly correlated with mem-
ory consumption and number of operations, we
evaluate the performances with various number of
passages k ∈ {5, 10, 20}. To evaluate the end per-
formance of ODQA models, we use the standard
Exact Match (EM) score, which is the proportion of
questions whose predicted answer matches exactly
with the ground truth. We also include the unre-
stricted setting to compare the best performances
of different models.

Technical Details We use FiD (Izacard and
Grave, 2020b) as our base model. FiD-base and
FiD-large contain L = 12 and 24 layers respec-
tively, and we set the budgetB = Lk. For the pool-
ing operation in the HasAnswer model, we found
max-pooling works better than mean-pooling and
the [CLS] token, so max-pooling is used in all our
experiments. We use discount factor γ = 0.8 and
step penalty c = 0.1 during the REINFORCE train-
ing of the scheduler. More hyperparameters are
presented in Appendix A.1.

Computational Feasibility Tuning a FiD-base
model with k = 20 or a FiD-large model with
k = 10 (batch size=1) would yield out-of-memory
errors on a V100 (16GB) GPU. Hence, it is infeasi-
ble to train FiD with the previous AC method (Wu
et al., 2020) in our setting. However, training with
our proposed approach can be done in the same
setting with a batch size 4 or larger within 8-15
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NaturalQuestions TriviaQA

Top-5 Top-10 Top-20 Unrestricted Top-5 Top-10 Top-20 Unrestricted

SkylineBuilder (Wu et al., 2020) 34.4 34.2 - 34.2 - - - -
DPR (Karpukhin et al., 2020) - 40.8 - 41.5 - - - 57.9
DPR (our implementation) 38.4 40.2 40.2 40.2 - - - -

RAG (Lewis et al., 2020b) 43.5 44.1 44.1 44.5 - - - 56.1

FiD-base (Izacard and Grave, 2020b) 39.5 42.9 45.3 48.2 53.9 57.9 60.7 65.0
Ours (APE+FiD-base) 40.3 43.7 46.0 48.2 55.4* 59.0* 62.0* 65.0

FiD-large (Izacard and Grave, 2020b) 42.5 45.8 48.3 51.4 57.2 60.6 63.7 67.6
Ours (APE+FiD-large) 43.4 46.6 49.1 51.4 57.9 61.4* 64.1* 67.6

Table 2: Exact match scores on NaturalQuestions and TriviaQA test sets. * indicates statistical significance.

NaturalQuestions TriviaQA

Top-5 Top-10 Top-20 Top-100 Top-5 Top-10 Top-20 Top-100

BM25 (Lee et al., 2019) - - 59.1 73.7 - - 66.9 76.7
DPR (Karpukhin et al., 2020) 67.1 - 78.4 85.4 - - 79.4 85.0

FiD (Izacard and Grave, 2020b) 66.2 73.9 79.2 86.1 69.8 74.9 78.9 84.8
Ours (APE+FiD-base) 67.4* 75.1* 80.4* 86.1 70.8* 75.8* 79.5 84.8
Ours (APE+FiD-large) 67.2 75.4* 80.2* 86.1 70.4 75.6* 79.2 84.8

Table 3: Top-k retrieval accuracy scores on NaturalQuestions and TriviaQA test sets. * indicates statistical signifi-
cance.

hours.

4.2 Experimental Results

As shown in Table 2 under restricted top-k, our
proposed method improves upon the FiD model
on both datasets, and by a statistically significant
margin on TriviaQA. It also outperforms the previ-
ous AC method (Wu et al., 2020) by 12.4% when
k = 10 due to the stronger base model. The addi-
tion of APE allows FiD to significantly outperform
RAG (Lewis et al., 2020b) on NaturalQuestions
when k ∈ {10, 20}.

Previous adaptive computation methods (Wu
et al., 2020; Schwartz et al., 2020b) was reported
to have plateaued or degraded performances in the
unrestricted setting. However, Table 2 shows that
our approach does not have this issue.

4.3 Analysis of Passage Quality

To understand how APE outperforms the baselines,
we analyse the quality of the final top-k passages
retained by APE. Table 3 reports the top-k retrieval
accuracy of the top-k passages. The results show
that the top-k accuracy of the selected collection
of documents by APE is significantly better than
BM25, DPR, and FiD, which are strong retrieval

baselines for ODQA. Combined with Table 2, it
indicates that the better passage quality yielded by
APE helps to improve the end ODQA performance
of the model.

5 Conclusions

In this work, we explore an adaptive computation
method that can be efficiently applied to an ex-
isting generative ODQA model. We find that, by
replacing the encoder of generative ODQA models
with our proposed adaptive passage encoder, we
can train an effective adaptive computation policy
without tuning the base model. This allows apply-
ing adaptive computation to large state-of-the-art
generative models, which was previously challeng-
ing computation-wise. Our experimental results
show that our method produces more accurate re-
sults than a state-of-the-art generative model on
both NaturalQuestions and TriviaQA, and it outper-
forms the previous AC method by a large margin.
The analysis also shows that our approach achieves
better passage quality that leads to improvements
in ODQA performance.

450



Acknowledgments

The first author would like to thank his wife Jane
for her love and support throughout the years.
We would also like to thank Gautier Izacard and
Edouard Grave for their help with using FiD. This
research was supported by the European Union’s
Horizon 2020 research and innovation programme
under grant agreement no. 875160.

References
Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi,

Richard Socher, and Caiming Xiong. 2020. Learn-
ing to retrieve reasoning paths over wikipedia graph
for question answering. In ICLR. OpenReview.net.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. In ACL (1), pages 1870–1879.
Association for Computational Linguistics.

Christopher Clark and Matt Gardner. 2018. Simple
and effective multi-paragraph reading comprehen-
sion. In ACL (1), pages 845–855. Association for
Computational Linguistics.

Gautier Izacard and Edouard Grave. 2020a. Distilling
knowledge from reader to retriever for question an-
swering. CoRR, abs/2012.04584.

Gautier Izacard and Edouard Grave. 2020b. Lever-
aging passage retrieval with generative models
for open domain question answering. CoRR,
abs/2007.01282.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In ACL (1), pages 1601–1611. Association for
Computational Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. 2020. Dense passage re-
trieval for open-domain question answering. In
EMNLP (1), pages 6769–6781. Association for
Computational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Jacob De-
vlin, Kenton Lee, Kristina Toutanova, Llion Jones,
Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai,
Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019.
Natural questions: a benchmark for question answer-
ing research. Trans. Assoc. Comput. Linguistics,
7:452–466.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In ACL (1), pages
6086–6096. Association for Computational Linguis-
tics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020a. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In ACL, pages 7871–7880. As-
sociation for Computational Linguistics.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
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A Experimental Details

A.1 Hyper-parameters

Hyper-parameter Value

learning rate 1e-4
batch size 24
epoch 2
optimiser Adam
Adam ε 1e-6
Adam (β1, β2) (0.9, 0.999)
max sequence length 256
pooling max-pooling
number of passages 5/10/20
device Nvidia V100

Table 4: Hyper-parameters for the HasAnswer model
training.

Hyper-parameter Value

learning rate 0.01
batch size 24
epoch 1
optimiser Adam
max number of steps 240
step cost c 0.1
discount factor γ 0.8
hidden size of MLPs 64
number of passages 20/30/50

Table 5: Hyper-parameters for scheduler model REIN-
FORCE training.
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Abstract

In this paper, we empirically investigate adver-
sarial attack on NMT from two aspects: lan-
guages (the source vs. the target language)
and positions (front vs. back). For autoregres-
sive NMT models that generate target words
from left to right, we observe that adversarial
attack on the source language is more effective
than on the target language, and that attack-
ing front positions of target sentences or po-
sitions of source sentences aligned to the front
positions of corresponding target sentences is
more effective than attacking other positions.
We further exploit the attention distribution of
the victim model to attack source sentences at
positions that have a strong association with
front target words. Experiment results demon-
strate that our attention-based adversarial at-
tack is more effective than adversarial attacks
by sampling positions randomly or according
to gradients.

1 Introduction

Despite remarkable progress in recent years, neural
machine translation (NMT) models are vulnerable
to small perturbations (Cheng et al., 2018; Zhao
et al., 2018). Adversarial training, which allows
NMT models to learn from adversarial samples
with perturbations, as a general approach, is widely
used to improve the robustness of NMT (Ebrahimi
et al., 2018; Vaibhav et al., 2019; Cheng et al., 2019,
2020a,a; Zou et al., 2019). Generally, NMT models
yield target translations in an autoregressive way1,
which makes previous incorrectly predicted target
tokens have a negative impact on future tokens to
be generated. However, most approaches to gen-
erating NMT adversarial examples inject perturba-
tions only into source sentences. Hence, are NMT

∗Corresponding author
1We leave the study of adversarial attack to non-

autoregressive NMT models to our future work.

models more vulnerable to adversarial attack on the
source side? What roles do injecting perturbations
into source sentences or into target translations play
in improving the robustness of NMT?

The key interest of this paper is to attempt to
answer these questions by an empirical and com-
parative study on different adversarial attacks on
NMT models. First, we investigate adversarial at-
tacks on the source side versus those on the target
side. This study is to know which attack is more
effective for NMT by measuring performance drop
of the attacked models. Second, we empirically
study the impact of attacking different positions on
either source sentences or target translations to find
whether NMT robustness is sensitive to positions.
Third, based on the findings of the study, we pro-
pose a new adversarial attack generation method
based on attention distribution.

Our contributions can be summarized as follows:

• By the study, we have empirically found that
adversarial attack on the source side is more
effective than that on the target side in terms of
the performance degradation of NMT models
under attack.

• We have further empirically found that adver-
sarial attacks on front positions are more ef-
fective than those on back positions on the tar-
get side due to the autoregressive translation
nature. We have also found that adversarial at-
tacks on positions of the source side which are
aligned to front positions of the target side are
more effective than attacks on other positions
on the source side.

• We propose a new adversarial attack genera-
tion approach that samples positions for inject-
ing perturbations according to the attention
distribution. Experiment results demonstrate
that attention-based position sampling is more
effective than random sampling and gradient-
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based sampling.

2 Related Work

Robustness is a well-known problem for neural
networks (Szegedy et al., 2014; Goodfellow et al.,
2015). Recent years have witnessed that many ad-
versarial training approaches have been proposed
to improve the robustness of NMT models. Cheng
et al. (2018) generate adversarial samples at the
lexical and feature level, and apply the adversar-
ial learning to make adversarial samples natural.
Zhao et al. (2018) utilize generative adversarial
networks to generate adversarial examples that lie
on the data manifold by searching in the seman-
tic space of dense and continuous data represen-
tations. Ebrahimi et al. (2018) propose an attack
framework for character-level NMT, which uses
gradient to rank adversarial manipulations and to
search for adversarial examples via either greedy
search or beam search methods. Belinkov and Bisk
(2018) attack character-level NMT by randomizing
the order of letters or randomly replacing letters
with their adjacent letters on the keyboard. Vaibhav
et al. (2019) use back translation to generate adver-
sarial samples that emulate natural noises. Cheng
et al. (2020a) exploit the projected gradient method
combined with gradient regularization to generate
adversarial samples. Zou et al. (2019) employ re-
inforcement learning to decide which positions to
attack. Tan et al. (2020) present a method to change
inflectional morphology of words to craft plausi-
ble and semantically similar adversarial examples.
Emelin et al. (2020) propose to generate adversarial
examples by eliciting disambiguation errors.

All these approaches attack the source side of
NMT in different ways. However distortions exist
in not only the source language, but also the target
language. This inspires us to compare the effective-
ness of adversarial attack on the source and target
side to NMT models. We have found that the NMT
models are vulnerable to both the source and tar-
get attack. However, to our best knowledge, only
Cheng et al. (2019) and Cheng et al. (2020b) take
noises in target sentences into account. They gener-
ate adversarial samples for both source and target
sentences. Their target-side adversarial examples
are generated according to the attacked positions in
corresponding source sentences, while their source-
side adversarial samples are generated by randomly
sampling positions to attack. We improve their
method by attacking the source side according to

the attention distribution. Experiments validate the
effectiveness of our method.

3 Data and Setup

We conducted experiments on two translation tasks:
English-Chinese and English-Japanese. Data for
English-Chinese translation are from the United
Nations English-Chinese corpus (Ziemski et al.,
2016). We built the training/validate/test set for
this task by randomly sampling 3M/2K/2K sen-
tence pairs from the whole corpus. For the English-
Japanese translation task, we aggregated the train-
ing set of KFTT (Neubig, 2011), JESC (Pryzant
et al., 2018) and TED talks (Cettolo et al., 2012) as
our training set, which consists of 3.9M sentence
pairs. We evaluated our models on the validation
set and test set of KFTT (Neubig, 2011). We split
words into sub-word units with subword regular-
ization (Kudo, 2018) and built a shared vocabulary
of 32K subwords for both English-Chinese and
English-Japanese.

We used the base Transformer model (Vaswani
et al., 2017) with 512 hidden units as the victim
model. The hyper-parameters of the base Trans-
former follows the default setting in Vaswani et al.
(2017). We implemented the adversarial attack
and training methods of Cheng et al. (2019) and
followed their hyper-parameter setting in our ex-
periments. The details of our implementation is
shown in Section 4.

We injected perturbations into either source sen-
tences or target sentences to generate adversarial
examples which were used to evaluate NMT mod-
els. Since we could not inject perturbations into the
target inputs of NMT models at the test time, we
evaluated NMT models with target-side adversarial
samples at training time on the validation dataset.
Except where otherwise specified, the performance
of the victim model was measured by word accu-
racy on the validation data. If we evaluated the vic-
tim model on the test set, detokenized BLEU (Pa-
pineni et al., 2002) and BERTScore (Zhang et al.,
2020) were reported. Although the target-side in-
puts of NMT models could not be attacked at test
time, there still exists noise or errors in them due
to error propagation in the autoregressive decoding.
Evaluating NMT with perturbated target sentences
at training time enables us to analyze the vulner-
ability of NMT to the noise in target-side inputs,
and inspires us to improve the robustness of NMT
models to such noise.
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src-tgt en-zh zh-en en-ja ja-en
noisy-clean 55.79 61.89 50.21 51.98
clean-noisy 61.32 64.00 52.74 52.58
clean-clean 71.16 78.76 60.35 62.30
noisy-noisy 46.55 46.55 40.63 40.78

Table 1: Word Translation accuracy of victim model un-
der the adversarial attack on the source (src) vs. target
(tgt)

4 Implementation Details

The adversarial attack and training framework used
in this paper is based on Cheng et al. (2019). They
inject perturbations into the source/target sentences
by replacing a word in a sentence with the words
that are semantically similar to the words being re-
placed. Words to be replaced in a source sentence
are sampled according to the uniform distribution,
while those in a target sentence are sampled accord-
ing to the attention distribution. We tried three dif-
ferent ways to sample words to inject perturbations
into source sentence in Section 8. Given a word to
be replaced, Cheng et al. (2019) use a bi-directional
language model to choose candidate words from
vocabulary which share similar semantics to it, and
then use gradients to search a word from candidate
words to replace it. Cheng et al. (2019) combine
a left-to-right and right-to-left language model to
rank candidate words, while we combine the two
uni-directional language models by multiplying
their likelihood for simplicity. Cheng et al. (2019)
train their NMT models with both clean data and
adversarial samples from scratch. To save training
time, we pretrain our NMT models with clean data
before adversarial training.

5 Adversarial Attack on Source vs.
Target

In this section, we compare the effect of the source
and target attack according to the performance of
the victim model. We adversarially inject perturba-
tions into source sentences and keep target transla-
tions unchanged (clean) for the source attack while
the target attack works the other way around. Our
adversarial examples for both the source and tar-
get attack are generated by the method of Cheng
et al. (2019). To make the comparison between the
source and target attack fair, we randomly sample
positions to attack for both of them.

Results are shown in Table 1. The NMT model
with noisy source and clean target performs worse

Figure 1: The word translation accuracy of an NMT
model under attack at different anchor positions on the
target side.

Figure 2: The BLEU score of an NMT model under
attack at different anchor positions on the source side.

than that with clean source and noisy target on
all translation tasks, in terms of word translation
accuracy, which indicates that the source attack
is more effective than the target attack. We also
oberve that the adversarial attack on the source
together with target side is much better than that on
a single side, therefore we suggest that adversarial
attacks on both the source and target side should
be conducted to deploy a robust NMT system.

6 Adversarial Attack at Different
Positions

In this section, we investigate the impact of at-
tacked positions in the source and target sentences
on NMT. We start with adversarial attack on the
target side. Adversarial attacks at the front of a
target sentence are supposed to be more effective
than those at the end of the target sentence, since
noises in the front of the target sentence will nega-
tively affect future target tokens, while noises at the
end of the target sentence could not affect already

456



generated tokens for a left-to-right decoder.
Given a sentence of length L, we uniformly se-

lect 10 anchor positions from the sentence:

x̂j = [
L× j

10
] (1)

where x̂j is the jth anchor position (0 <= j <
10), [·] is a rounding operation. For each anchor
position x̂j , we sample several positions close to
it according to the discrete Gaussian distribution,
which is formulated as:

p(x) =
e−(x−x̂)

2

L−1∑
i=0

e−(i−x̂)2
(2)

where p(x) is the probability that position x is at-
tacked, x̂ is the anchor position that we want the
sampled positions to surround. The denominator
normalizes the sum of the probabilities to 1.

Results of adversarial attack on different anchor
positions on the target side are shown in Figure
1. On all translation tasks, the word translation
accuracy of the victim model goes up as attacked
positions move from the starting position to the end
of target sentences, which confirms that attacking
at the front of a target sentence is more effective
than attacking at the end.

We also perform adversarial attack on source
sentences at different anchor positions. Results
are displayed in Figure 2. We measure the perfor-
mance of the victim model for the source attack at
different positions on the test set with the metric
of BLEU. On both English-Chinese and English-
Japanese tasks, BLEU scores go up as the attacked
positions move from the start to the end of source
sentences, which indicates that attacking the front
of a source sentence is also more effective than
attacking the end for both English-Chinese and
English-Japanese translation. We suppose that the
reason for this is that words at front positions of
source sentences usually align to words at front
positions of target sentences for the two language
pairs. Experiment results in Section 7 empirically
validate this hypothesis.

7 Attention Weights at Different
Positions

In section 6, we suppose that words at front posi-
tions of source sentences usually align to words at
front positions of target sentences for both English-
Chinese and English-Japanese. We empirically val-
idate this by comparing the attention weights from

Figure 3: Attention weights from different anchor po-
sitions of source sentences to the first token of target
sentences.

source tokens at different positions to the first tar-
get token. Following the sampling technique in
section 6, we uniformly select 10 anchor positions
from a source sentence and then sample positions
surrounding these anchor positions according to
the distribution formulated in Eq (2). For every
anchor position, we report the sum of attention
weights from the sampled source tokens around
the anchor position to the first target token. The
results are shown in Figure 3. As expected, the
attention weights from the sampled source tokens
to the first target token go down as the their corre-
sponding positions move from the start to the end
of the source sentence in both English-Chinese and
English-Japanese translation, which confirms that
words at front positions of source sentences have a
stronger association with words at front positions
of target sentences than other positions for the two
language pairs.

8 Adversarial Attack based on Attention
Distribution

In Section 6, we have found that generating per-
turbations at front positions on the target side is
more effective than attacking other positions. As
attention weights in NMT models can be seen as
the strength of association between the source and
target tokens (Bahdanau et al., 2015). Hence we
sample positions of a source sentence to inject per-
turbations according to the attention distribution.
Particularly, the query used to produce the attention
distribution is the representation of the first target
token and the key is the set of representations of
source tokens. There are multiple cross-attention
heads in Transformer, each of which produces an
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model
attack rand grad attn

BELU BERTScore BELU BERTScore BELU BERTScore
victim 19.2 83.8 22.2 84.7 17.4 83.4

train-rand 25.0 86.1 28.9 87.1 22.2 85.6
train-grad 23.6 85.7 28.6 87.1 21.3 85.2
train-attn 24.0 85.7 27.7 86.8 23.3 85.8

Table 2: BLEU and BERTScore of the victim model and three adversarially trained models. “rand”, “grad” and
“attn” indicates that adversarial examples are generated at attacked positions sampled randomly, according to gra-
dients and attention distribution, respectively. “train-X” denotes that NMT models are adversarially trained with
adversarial examples generated by the “X” method. The models were evaluated on the test set of the English-
Chinese corpus.

attention matrix. The average of attention distribu-
tions of all heads is hence used for attacking.

We compare our proposed attention-based attack
with attacks that either randomly sample source
positions or sample positions according to gradi-
ents. For gradient-based sampling, we follow Liang
et al. (2018) to estimate the L∞ norm of the gradi-
ent of a word embedding as the importance score
of the corresponding word, and then sample po-
sitions to attack from the normalized importance
score. We have implemented the three adversarial
attack methods based on the framework proposed
in Cheng et al. (2019).2 The only difference of
these methods is that they use different ways to
sample positions to attack. We also use the ad-
versarial training method proposed in Cheng et al.
(2019) to fine-tune NMT model with adversarial
samples generated with the three attacking meth-
ods.

BLEU scores and BERTScores of the three ad-
versarially trained models on the test set are shown
in Table 2. It can be seen that BLEU scores and
BERTScores of almost all models under our pro-
posed attack (“attn”) are lower than those under the
other two attacking methods, which indicates the
superiority of the proposed attention-based attack
over the other two attack methods. It is surprising
that the attack that samples positions according to
the gradient (“grad”) is not better than the attack
that samples from a uniform distribution (“rand”),
which may suggest that the L∞ norm of the gra-
dient cannot measure the importance of a word
in a sentence. We can further extend our method
to the black-box attack with the alignment from
SMT models (Och and Ney, 2003), which is left
to our future work. Our attention-based attack is
proposed for autoregressive NMT models that gen-

2Cheng et al. (2019) randomly sample positions to attack
source sentences in their paper.

erate target translations from left to right. It will
not work for non-autoregressive NMT models (Gu
et al., 2017) or autoregressive NMT models that
generates translations in an arbitrary order (Stern
et al., 2019).

9 Conclusion

In this paper, we have empirically investigated ad-
versarial attack on NMT models. We compare
adversarial attack on the source vs. target side,
and find that the former is more effective than the
latter. We also study adversarial attack at differ-
ent positions in either source or target sentences,
and observe that attacking front positions in either
source or target sentences for English-Chinese and
English-Japanese translation is more effective than
attacking back positions. We further exploit atten-
tion distribution to attack words of a source sen-
tence at positions that have a high association with
words at front positions of the corresponding target
sentence. Experiments validate the effectiveness of
our proposed attention-based attack.
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Abstract

SOTA coreference resolution produces in-
creasingly impressive scores on the OntoNotes
benchmark. However lack of comparable data
following the same scheme for more genres
makes it difficult to evaluate generalizability
to open domain data. This paper provides a
dataset and comprehensive evaluation show-
ing that the latest neural LM based end-to-end
systems degrade very substantially out of do-
main. We make an OntoNotes-like corefer-
ence dataset called OntoGUM publicly avail-
able, converted from GUM, an English corpus
covering 12 genres, using deterministic rules,
which we evaluate. Thanks to the rich syn-
tactic and discourse annotations in GUM, we
are able to create the largest human-annotated
coreference corpus following the OntoNotes
guidelines, and the first to be evaluated for
consistency with the OntoNotes scheme. Out-
of-domain evaluation across 12 genres shows
nearly 15-20% degradation for both determin-
istic and deep learning systems, indicating a
lack of generalizability or covert overfitting in
existing coreference resolution models.

1 Introduction

Coreference resolution is the task of grouping refer-
ring expressions that point to the same entity, such
as noun phrases and the pronouns that refer to them.
The task entails detecting correct mention or ‘mark-
able’ boundaries and creating a link with previous
mentions, or antecedents. A coreference chain is
a series of decisions which groups the markables
into clusters. As a key component in Natural Lan-
guage Understanding (NLU), the task can benefit
a series of downstream applications such as Entity
Linking, Dialogue Systems, Machine Translation,
Summarization, and more (Poesio et al., 2016).

In recent years, deep learning models have
achieved high scores in coreference resolution. The
end-to-end approach (Lee et al., 2017, 2018) jointly

scoring mention detection and resolution currently
not only beats earlier rule-based and statistical
methods but also outperforms other deep learn-
ing approaches (Wiseman et al., 2016; Clark and
Manning, 2016a,b). Additionally, language models
trained on billions of words significantly improve
performance by providing rich word and context-
level information for classifiers (Lee et al., 2018;
Joshi et al., 2019a,b).

However, scores on the identity coreference
layer of benchmark OntoNotes dataset (Pradhan
et al., 2013) do not reflect the generalizability of
these systems. Moosavi and Strube (2017) pointed
out that lexicalized coreference resolution models,
including neural models using word embeddings,
face a covert overfitting problem because of a large
overlap between the vocabulary of coreferring men-
tions in the OntoNotes training and evaluation sets.
This suggests that higher scores on OntoNotes-test
may not indicate a better solution to the coreference
resolution task.

To investigate the generalization problem of
neural models, several projects have tested other
datasets consistent with the OntoNotes scheme.
Moosavi and Strube (2018) conducted out-of-
domain evaluation on WikiCoref (Ghaddar and
Langlais, 2016), a small dataset employing the
same coreference definitions. Results showed that
neural models (with fixed embeddings) do not
achieve comparable performance (16.8% degrada-
tion in score) as on OntoNotes. More recently, the
e2e model using BERT (Joshi et al., 2019b) showed
gains on the GAP corpus (Webster et al., 2018) us-
ing contextualized embeddings; however GAP only
contains name-pronoun coreference, a very specific
subset of coreference, and is limited in domain to
the same single source – Wikipedia.

Though previous work has already identified the
overfitting problem, it also has three main short-
comings. First, the scale of out-of-domain evalua-
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Genre Documents Tokens Mentions Proper Pron. Other Clusters
academic (ac) 16 15,112 1,232 283 262 687 421
bio (bi) 20 17,963 2,312 934 796 582 487
conversation (cn) 5 5,701 1,027 40 728 259 176
fiction (fc) 18 16,312 2,740 259 1,700 781 469
interview (it) 19 18,060 2,622 501 1,223 898 608
news (nw) 21 14,094 1,803 796 340 667 477
reddit (rd) 18 16,286 2,297 117 1,336 844 578
speech (sp) 5 4,834 601 171 245 185 134
textbook (tx) 5 5,379 466 108 165 193 133
vlog (vl) 5 5,189 882 22 600 260 149
voyage (vy) 17 14,967 1,339 564 300 475 348
whow (wh) 19 16,927 2,057 53 1,001 1,003 491
Total 168 150,824 19,378 3,848 8,696 68,34 4,471

Table 1: Genre-breakdown Statistics of OntoGUM.

tion has been small and homogeneous: WikiCoref
only contains 30 documents with ∼60K tokens,
much smaller than the OntoNotes test set, and the
single genre Wiki domain in both WikiCoref and
GAP is arguably not very far from some OntoNotes
materials. Second, pretrained LMs, e.g. BERT (De-
vlin et al., 2019), popularized after the WikiCoref
paper, can learn better representations of markables
and surrounding sentences. Other than GAP, which
targets a highly specific subtask, no study has in-
vestigated if contextualized embeddings encounter
the same overfitting problem identified by Moosavi
and Strube. Third, previous work may underesti-
mate the performance degradation on WikiCoref
in particular due to bias: In Moosavi and Strube
(2018), embeddings were also trained on Wikipedia
themselves, potentially making the model easier to
learn coreference relations in Wikipedia text, de-
spite limitations in other genres.

In this paper, we explore the generalizability of
existing coreference models on a new benchmark
dataset, which we make freely available. Com-
pared with work using WikiCoref and GAP, our
contributions can be summarized as follows:

• We propose OntoGUM, the largest open, gold
dataset consistent with OntoNotes, with 168
documents (∼150K tokens, 19,378 mentions,
4,471 coref chains) in 12 genres,1 includ-
ing conversational genres, which complement
OntoNotes for training and evaluation.

• We show that the SOTA neural model with
contextualized embeddings encounter nearly
15% performance degradation on OntoGUM,
showing that the overfitting problem is not
overcome by contextualized language models.

1Text: News/Fiction/Bio/Academic/Forum/Travel/How-
to/Textbook; Speech: Interview/Political/Vlog/Conversation.

• We give a genre-by-genre analysis for two
popular systems, revealing relative strengths
and weaknesses of current approaches and
the range of easier/more difficult targets for
coreference resolution.

2 Related Work

OntoNotes and similar corpora OntoNotes is
a human-annotated corpus with documents anno-
tated with multiple layers of linguistic informa-
tion including syntax, propositions, named enti-
ties, word sense, and within document coreference
(Weischedel et al., 2011; Pradhan et al., 2013). It
covers three languages—English, Chinese and Ara-
bic. The English subcorpus has 3,493 documents
and ∼1.6 million words. WikiCoref, which is an-
notated for anaphoric relations, has 30 documents
from English Wikipedia (Ghaddar and Langlais,
2016), containing 7,955 mentions in 1,785 chains,
following OntoNotes guidelines.

GUM The Georgetown University Multilayer
(GUM) corpus (Zeldes, 2017) is an open-source
corpus of richly annotated texts from 12 types,
including 168 documents and over 150K tokens.
Though it originally contains more coreference phe-
nomena than OntoNotes using more exhaustive
guidelines, it also contains rich syntactic, semantic
and discourse annotations which allow us to create
the OntoGUM dataset described below. We also
note that due to its smaller size (currently about
10% the size of the OntoNotes coreference dataset),
it is not possible to train SOTA neural approaches
directly on this dataset while maintaining strong
performance.

Other corpora As mentioned above, GAP is
a gender-balanced labeled corpus of ambiguous

462



pronoun-name pairs, used for out-of-domain eval-
uation but limited in coreferent types and genre.
Several other comprehensive coreference datasets
exist as well, such as ARRAU (Poesio et al., 2018)
and PreCo (Chen et al., 2018), but these corpora
cannot be used for out-of-domain evaluation be-
cause they do not follow the OntoNotes scheme.
Their conversion has not been attempted to date.

Coreference resolution systems Prior to the in-
troduction of deep learning systems, the corefer-
ence task was approached using deterministic lin-
guistic rules (Lee et al., 2013; Recasens et al., 2013)
and statistical approaches (Durrett and Klein, 2013,
2014). More recently, three neural models achieved
SOTA performance on this task: 1) ranking the can-
didate mention pairs (Wiseman et al., 2015; Clark
and Manning, 2016a), 2) modeling global features
of entity clusters (Clark and Manning, 2015, 2016b;
Wiseman et al., 2016), and 3) end-to-end (e2e) ap-
proaches with joint loss for mention detection and
coreferent pair scoring (Lee et al., 2017, 2018; Fei
et al., 2019). The e2e method has become the domi-
nant one, gaining the best scores on OntoNotes. To
investigate differences between deterministic and
deep learning models on unseen data, we evaluate
the two approaches on OntoGUM.

3 Dataset Conversion

GUM’s annotation scheme subsumes all markables
and coreference chains annotated in OntoNotes,
meaning we do not need human annotation to
recognize additional mentions in the conversion
process, though mention boundaries differ subtly
(e.g. for appositions and verbal mentions). Since
GUM has gold syntax trees, we were able to pro-
cess the entire conversion automatically. Addition-
ally, most coreference evaluations use gold speaker
information in OntoNotes, which is available in
GUM (for fiction, reddit and spoken data) and
could be assembled automatically as well.

The conversion is divided into two parts: re-
moving coreference relations not included in the
OntoNotes scheme, and removing or adjusting
markables. For coreference relation deletion, we
cut chains by removing expletive cataphora, and
identifying the definiteness of nominal markables,
since indefinites cannot be anaphors in OntoNotes.
In addition to modifying existing mention clusters,
we also remove particular coreference relations and
mention spans, such as Noun-Noun compounding
(only included in OntoNotes for proper-name modi-

fiers), bridging anaphora, copula predicates, nested
entities (‘i-within-i’= single mentions containing
coreferring pronouns), and singletons (all not in-
cluded in OntoNotes). We note that singletons are
removed as the final step, in order to catch single-
tons generated during the conversion process. We
also contract verbal markable spans to their head
verb, and merge appositive constructions into sin-
gle mentions, following the OntoNotes guidelines.
2

To evaluate conversion accuracy, three annota-
tors, including an original OntoNotes project mem-
ber, conducted an agreement study on 3 documents,
containing 2,500 tokens and 371 output mentions.
Re-annotating from scratch based on OntoNotes
guidelines, the conversion achieves a span detec-
tion score of ∼96 and CoNLL coreference score of
∼92, approximately the same as human agreement
scores on OntoNotes. After adjudication, the con-
version was found to make only 8/371 errors, in
addition to 2 errors due to mistakes in the original
GUM data, meaning that degradation due to con-
version errors is marginal, and consistency should
be close to the variability in OntoNotes itself.

4 Experiments

We evaluate two systems on the 12 OntoGUM gen-
res, using the official CoNLL-2012 scorer (Pradhan
et al., 2012, 2014). The primary score is the aver-
age F1 of three metrics – MUC, B3, and CEAFφ4.

Deterministic coreference model We first run
the deterministic system (dcoref, part of Stanford
CoreNLP, Manning et al. 2014) on the OntoGUM
benchmark, as it remains a popular option for off-
the-shelf coreference resolution. As a rule-based
system, it does not require training data, so we
directly test it on OntoGUM’s test set. However,
POS tags, lemmas, and named-entity (NER) infor-
mation are predicted by CoreNLP, which does have
a domain bias favoring newswire. The system’s
multi-sieve structure and token-level features such
as gender and number remain unchanged. We ex-
pect that the linguistic rules will function similarly
across datasets and genres, notwithstanding biases
of the tools providing input features to those rules.

SOTA neural model Combining the e2e ap-
proach with a contextualized LM and span mask-
ing is the current SOTA on OntoNotes. The system

2The code and dataset are publicly available at https:
//github.com/yilunzhu/ontogum.
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Genre MUC B3 CEAFφ4 Mention Detection
P R F1 P R F1 P R F1 Avg. F1 P R F1

dcoref
ac 35.1 37.5 36.2 32.6 34.4 33.5 35.7 37.5 36.6 35.4 48.3 51.3 49.8
bi 58.0 61.6 59.8 36.8 43.6 39.9 32.1 33.5 32.8 44.1 58.9 62.3 60.6
cn 62.2 52.9 57.1 40.5 36.7 38.5 37.1 38.2 37.6 44.4 76.6 67.8 72.0
fc 57.7 43.9 49.9 50.4 33.2 40.0 37.1 49.0 42.2 44.0 68.2 59.0 63.3
it 57.3 53.3 55.2 29.3 21.6 24.8 22.4 24.6 23.5 27.6 64.3 60.3 62.2
nw 57.6 55.2 56.4 45.7 42.3 44.0 39.6 32.5 35.7 45.3 44.0 50.2 46.9
rd 59.6 65.1 62.3 38.3 53.5 44.6 32.9 34.0 33.5 46.8 60.5 64.6 62.5
sp 50.6 56.2 53.2 40.1 43.9 41.9 46.5 38.6 42.2 45.8 63.5 64.2 63.9
tx 36.0 34.2 35.1 32.7 31.0 31.9 23.9 39.9 29.9 32.3 18.1 45.8 26.0
vl 63.6 69.4 66.4 56.4 60.8 58.5 31.4 36.2 33.6 52.8 76.4 76.8 76.6
vy 34.7 37.1 35.9 30.7 28.7 29.7 29.7 35.8 32.5 32.7 46.6 62.4 53.3
wh 35.8 24.2 28.9 30.0 24.5 27.0 29.9 34.0 31.8 29.2 50.0 42.9 46.2
All OntoGUM 45.7 47.0 46.3 17.1 38.1 37.6 33.4 37.3 35.3 39.7 56.2 59.1 57.6
OntoNotes 57.5 61.8 59.6 68.2 68.4 68.3 47.7 43.4 45.5 57.8 66.8 75.1 70.7

Joshi et al. (2019a)
ac 84.5 53.0 65.1 83.3 48.5 61.3 83.2 47.0 60.1 62.2 91.0 55.2 68.7
bi 85.8 74.7 79.8 61.4 64.3 62.8 65.4 49.9 56.6 66.4 87.7 74.5 80.5
cn 85.0 73.4 78.7 67.9 64.5 66.2 70.2 51.1 59.1 68.0 93.0 77.9 84.8
fc 87.0 62.5 73.0 78.8 54.1 64.1 62.5 53.1 57.4 64.8 91.1 67.7 77.7
it 83.9 71.8 77.4 76.1 60.4 67.3 72.9 50.6 59.7 68.2 85.9 70.4 77.3
nw 65.3 65.8 65.5 60.1 59.6 59.9 58.9 54.3 56.5 60.6 71.9 70.5 71.2
rd 76.7 67.4 71.7 67.5 60.3 63.7 69.5 40.5 51.1 61.7 85.3 68.1 75.8
sp 83.3 63.4 72.0 71.2 56.6 63.1 77.3 57.3 65.8 67.0 91.9 69.4 79.0
tx 50.0 66.6 57.1 45.2 65.7 53.6 55.6 55.6 55.6 55.5 60.0 72.2 65.5
vl 86.1 86.1 86.1 78.4 79.8 79.1 63.6 47.7 54.5 73.3 89.4 85.4 87.4
vy 69.0 70.4 69.7 52.7 64.1 57.9 65.9 53.0 58.8 62.1 78.9 75.5 77.2
wh 84.8 40.9 55.2 83.4 39.2 53.3 71.4 57.4 63.6 57.4 93.2 52.4 67.1
All OntoGUM 79.7 66.3 72.4 69.5 58.58 63.7 67.7 50.7 58.0 64.6 85.4 69.2 76.5
OntoNotes 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6 89.1 86.5 87.8

Table 2: Results on the OntoGUM’s test dataset with the deterministic coref model (top) and the SOTA coreference
model (bottom). The blue text is the lowest score across 12 genres and red text is the highest.

utilizes the pretrained SpanBERT-large model, fine-
tuned on the OntoNotes training set. Hyperparame-
ters are identical to the evaluation of OntoNotes test
to ensure comparable results between the bench-
marks. We note that while we choose the SOTA
system as a ‘best case scenario’, most off-the-shelf
neural NLP toolkits (e.g. spaCy) actually use some-
what simpler e2e models than SpanBERT-large,
due to memory/performance constraints.

5 Results

OntoGUM vs. OntoNotes The last rows in each
half of Table 2 give overall results for the systems
on each benchmark. e2e+SpanBERT encounters
a substantial degradation of 15 points (19%) on
OntoGUM, likely due to lower test set lexical and
stylistic overlap, including novel mention pairs. We
note that its average score of 64.6 is somewhat opti-
mistic, especially given that the system receives ac-
cess to gold speaker information wherever available
(including in fc, cn and it, some of the better scor-
ing genres), which is usually unrealistic. dcoref,
assumed to be more stable across genres, also sees

losses on OntoGUM of over 18 points (30%). We
believe at least part of the degradation may be due
to mention detection, which is trained on differ-
ent domains for both systems (see the last three
columns in the table). These results suggest that
input data from CoreNLP degrades substantially on
OntoGUM, or that some types of coreferent expres-
sions in OntoGUM are linguistically distinct from
those in OntoNotes, or both, making OntoGUM
a challenging benchmark for systems developed
using OntoNotes.

Comparing genres Both systems degrade more
on specific genres. For example, while vl (with
gold speaker information) fares well for both sys-
tems, neither does well on tx, and even the SOTA
system falls well below (or around) 60s for the nw,
wh and tx genres. This might be surprising for vl,
which contains transcripts of spontaneous unedited
speech from YouTube Creative Commons vlogs
quite unlike OntoNotes data; conversely the result
is less expected for carefully edited texts which are
somewhat similar to data in OntoNotes: OntoNotes
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contains roughly 30% newswire text, and it is not
immediately clear that GUM’s nw section, which
comes from recent Wikinews articles, differs much
in genre. Examples (1)–(2) illustrate incorrectly
predicted coreference chains from both sources and
the type of language they contain.

(1) I’ve been here just crushing ultrasounds ...
I’ve been like crushing these all day today
... I got sick when I was on Croatia for
vacation. I have no idea what it says, but I
think they ’re cough drops. (example from
a radiologist’s vlog, incorrect: ultrasounds
6= cough drops)

(2) The report has prompted calls
for all edible salt to be iodised
... Tasmania was excluded from
the study - where a voluntary iodine for-

tification program using iodised salt in

bread , is ongoing (newswire example,
incorrect span and coref: [the study -
where a voluntary...])

These examples show that errors occur readily
even in quite characteristic news writing, while
genre disparity by itself does not guarantee low
performance, as in the case of the vlogs whose
lanugage is markedly different. In sum, these obser-
vations suggest that accurate coreference for down-
stream applications cannot be expected in some
common well edited genres, despite the prevalence
of news data in OntoNotes (albeit specifically from
the Wall Street Journal, around 1990). This moti-
vates the use of OntoGUM as a test set for future
benchmarking, in order to give the NLP commu-
nity a realistic idea of the range of performance we
may see on contemporary data ‘in the wild’.

We also suspect that prevalence of pronouns
and gold speaker information produce better scores
in the results. Table 3 ranks genres by their e2e
CoNLL score, and gives the proportions of pro-
nouns, as well as score rankings for span detec-
tion. Because pronouns are usually easier to de-
tect and pair than nouns (Durrett and Klein, 2013),
more pronouns usually means higher scores. On
genres with more than 50% pronouns and gold
speakers (vl, it, cn, sp, fc) e2e gets much higher
results, while genres with few pronouns (<30%)
have lower scores (ac, vy, nw). This diversity over
12 genres supports the usefulness of OntoGUM,
which can evaluate the genrealizability of corefer-
ence systems.

PRON (R) Other (R) Total CoNLL Span
vl 600 (.66) 309 (.34) 909 1 1
it 1223 (.45) 1485 (.55) 2708 2 6
cn 729 (.61) 323 (.39) 1052 3 2
sp 245 (.40) 364 (.60) 609 4 4
bi 796 (.34) 1529 (.66) 2325 5 3
fc 1700 (.61) 1091 (.39) 2791 6 5
ac 262 (.21) 997 (.79) 1259 7 10
vy 300 (.22) 1053 (.78) 1353 8 7
rd 1337 (.55) 1077 (.45) 2414 9 8
nw 340 (.19) 1483 (.81) 1823 10 9
wh 1001 (.47) 1129 (.53) 2130 11 11
tx 165 (.34) 315 (.66) 480 12 12

Table 3: Mention-type counts (ratios) & ranks of SOTA
scores by genre (CoNLL score + span detection).

6 Conclusion

This paper presented OntoGUM, the largest open,
gold coreference dataset following the OntoNotes
scheme, adding several new genres (including more
spoken data) to the OntoNotes family. The corpus
is automatically converted from GUM by modify-
ing the existing markable spans and coreference
relations using multi-layer annotations, such as de-
pendency trees. Results showed a lack of general-
izability of existing systems, especially in genres
low in pronouns and lacking speaker information.
We suspect that at least part of the success of SOTA
approaches is due to correct mention detection and
high matching scores in genres rich in pronouns,
and more so with gold speaker information. Suc-
cess for other types of mentions in OntoNotes data
appears to be much more sensitive to lexical fea-
tures, performing well on the benchmark test set
with high lexical overlap to the training data, but
degrading very substantially outside of it, even on
newswire texts from our OntoGUM data. This sup-
ports use of this challenging dataset for future work,
which we hope will benefit evaluations of systems
targeting the OntoNotes standard.
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Abstract

Visual Question Answering (VQA) methods
aim at leveraging visual input to answer ques-
tions that may require complex reasoning over
entities. Current models are trained on la-
belled data that may be insufficient to learn
complex knowledge representations. In this
paper, we propose a new method to enhance
the reasoning capabilities of a multi-modal
pretrained model (Vision+Language BERT)
by integrating facts extracted from an ex-
ternal knowledge base. Evaluation on the
KVQA dataset benchmark demonstrates that
our method outperforms competitive baselines
by 19%, achieving new state-of-the-art results.
We also perform an extensive analysis high-
lighting the limitations of our best performing
model through an ablation study.

1 Introduction

Visual Question Answering (VQA) is a popular
multi-modal task of answering a question about
an image. It tracks both inter-modal interactions
and reasoning capabilities of models (Wang et al.,
2017; Marino et al., 2019). Recent studies have
tested compositional reasoning (Johnson et al.,
2016; Hudson and Manning, 2019) and the inte-
gration of external knowledge (Wang et al., 2017,
2016; Shah et al., 2019; Marino et al., 2019) for
VQA. In this paper, we address Knowledge-aware
VQA (KVQA) (Shah et al., 2019)1 , defined as a
VQA task where it is not reasonable to expect a
model without access to a knowledge base to be
able to answer the questions in the test set.

In a uni-modal textual context, both synthetic
dataset (Kassner et al., 2020) and task-driven (Ding
et al., 2020) studies of neural models have shown
significant competence at symbolic reasoning. This
is encouraging, as neural pretrained Language
Models such as BERT (Devlin et al., 2019) achieve

1For data, examples, and licence information, please see
https://malllabiisc.github.io/resources/kvqa/

state-of-the-art results in a wide range of natural
language inference tasks and benchmarks such as
Natural Language Inference (Bowman et al., 2015).
(Rajani et al., 2019) uses pretraining on a domain-
specific dataset to improve CommonsenseQA by
10% absolute accuracy. Tamborrino et al. (2020)
develop an improved training objective to improve
COPA by 10% absolute accuracy.

Bouraoui et al. (2020) find that BERT is capable
of relational induction, whilst Broscheit (2019);
Petroni et al. (2020) find that BERT stores non-
trivial world-knowledge.

Previous work has argued that restriction to a
uni-modal context may itself impair reasoning per-
formance (Barsalou, 2008; Li et al., 2020). In a bi-
modal Vision + Language (V+L) context, datasets
such as CLEVR and GQA allow for the evaluation
of both model reasoning and language grounding.
Within this setting, Ding et al. (2020) and Lu et al.
(2020) show that appropriate neural models trained
on large quantities of data can exhibit accurate rea-
soning.

In this paper, we propose a new method of ap-
plying a massively pretrained V+L BERT model
(Chen et al., 2020) to the KVQA task (Shah et al.,
2019). Our method is able to learn a set of rea-
soning types (confirming findings in Ding et al.
(2020)) but can increase performance even more by
incorporating external factual information. KVQA
answers require attending to a knowledge base,
allowing us to quantify the contribution of both
explicit and implicit knowledge extracted from su-
pervised training data. We also quantify the degree
to which corpus bias makes certain question types
harder, and outline how future datasets may be bet-
ter balanced.

Our contributions are as follows:

• We perform factual integration into a V+L
BERT-based model architecture VQA, leading
to 19.1% accuracy improvement over previous
baselines on KVQA.
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• We evaluate our model’s reasoning capabili-
ties through an ablation study, proposing ex-
planations for poor performance on certain
question types as well as highlighting our
model’s strong preference for text and facts
over the image modality.

• We conduct a bias study of the KVQA dataset,
revealing both strengths and potential im-
provements for future VQA datasets.

2 Related Work

VQA tasks explicitly encourage grounded reason-
ing (Antol et al., 2015), with emphasis on a variety
of sub-domains, such as commonsense (Zellers
et al., 2019), compositionality and grounding (Suhr
et al., 2020), factual reasoning (Wang et al., 2017)
or external knowledge reasoning (Wang et al.,
2016; Marino et al., 2019; Shah et al., 2019).

State-of-the-art systems for external knowledge
VQA are based on Memory networks (MemNet,
(Weston et al., 2014)). In Shah et al. (2019), the
facts are extracted from the Knowledge Graph (KG)
by considering the visual (from image) and eventu-
ally textual (from Wikipedia caption) entities. They
are then embedded using a Bi-LSTM encoder and
fed into the memory. After the question is embed-
ded in a similar way, the resulting representation is
used to query the memory by soft attention. Sev-
eral stacked memory layers are used to better model
multi-hop facts.

Wang et al. (2016, 2017) introduce two datasets,
KB-VQA and FVQA respectively, and address the
task with systems that perform searches in a visual
knowledge graph formed from the image and a KB.
The question is first mapped to a query of the form
〈visual object, relationship, answer source〉, which
is then used to extract the supporting facts from the
KB. They report improved results when compared
to systems using LSTM, SVM and hierarchical
co-attention (Lu et al., 2016).

In Marino et al. (2019), the OK-VQA is pre-
sented with some baseline results obtained with
MUTAN (Ben-younes et al., 2017), a multimodal
tensor-based Tucker decomposition which models
interactions between visual (from CNN) and tex-
tual (from RNN) representations. Those systems
exhibit rather low performance compared to those
obtained on standard VQA, demonstrating that the
corpus requires external knowledge to be solved
correctly.

Recent work has introduced methods to incorpo-
rate visual information to create Vision+Language
BERT models through joint multimodal embed-
dings (Chen et al., 2020; Su et al., 2019; Lu et al.,
2019). First, image and text are embedded into the
same space, and then Transformer networks are ap-
plied as in the standard BERT model (Devlin et al.,
2019).

Our work is most similar to that of Shah et al.
(2019) since the same preprocessing pipeline is
used. However, our system does not use a memory
network, and instead relies on on a BERT-based
model (UNITER, see section 3) to model the rela-
tionship between question, facts, and image with
self-attention layers.

3 Methodology

To answer KVQA with Neural models, we first take
the V+L BERT model UNITER (Chen et al., 2020)
with the highest score on the commonsense VQA
task, VCR (Zellers et al., 2019).

In order to allow UNITER to accept external KG
facts, we cast these facts to a textual form ‘Entity1
Relation Entity2’. To keep the input facts count
small, we perform a conditional search of the KG.
The KVQA task consists in finding a∗:

a∗ = argmax
a∈A

p(a|q, i,K) ≈ argmax
a∈A

p(a|q, i, ki,q) (1)

where a∗ is the correct answer out of candidate
set A; and q, i, and K are a question, image and
knowledge base, respectively. As shown, we may
reduce the KG through a conditional search to find
the relevant subset of facts ki,q.

To define the subset ki,q, we follow Shah et al.
(2019) in extracting all facts from the knowledge
base that are up to two hops from any entities de-
tected by the textual entity linking or the face de-
tection.
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Figure 1: Our Model

Our model, as presented in section 2 consists
of two stages: preprocessing, which implements
relevant fact extraction, and reasoning, which se-
lects an answer from the question, facts, and image
features.

3.1 Preprocessing Stage

For preprocessing and fact acquisition, we broadly
reproduce the fact and feature extraction process
used in Shah et al. (2019). We perform object
detection with the Faster R-CNN network (Ren
et al., 2017). A seven-dimensional normalised size
and location vector is concatenated with the Faster
R-CNN features.

For person detection, we use MTCNN (Zhang
et al., 2016) and Facenet (Schroff et al., 2015) mod-
els, pretrained on the MS-celeb-1M (Guo et al.,
2016) dataset, to generate 128-dimensional em-
beddings. We predict names by nearest-neighbour
comparison with the KVQA reference dataset. We
treat the name identification as a multi-class clas-
sification problem, achieving a Micro-F1 of 0.539.
Since this is lower than reported in Shah et al.
(2019), we follow them in applying a textual entity
linker (van Hulst et al., 2020) over supplied im-
age descriptions. This setup achieves a per-image

Micro-F1 of 0.686.
Normalised image location facts are generated

from these detections, such as ‘Barack Obama at 42
78’, which would indicate that the centre bounding
box for Barack Obama is at normalised (0-100) po-
sition x=42, y=78 of the image. We use the names
of identified entities to query Shah et al.’s 2019
reduced Wikidata graph (Vrandečić and Krötzsch,
2014) up to two hops. The extracted facts are fi-
nally cast to the form ‘subject relation object’.

3.2 Reasoning Stage

The neural model we use, UNITER, is pre-
trained on MS COCO (Lin et al., 2014), Visual
Genome (Krishna et al., 2016), Conceptual Cap-
tions (Sharma et al., 2018), and SBU Captions (Or-
donez et al., 2011). It is a multi-task system that
is trained on performing Masked Language Mod-
eling, Image-Text Matching, and Masked Region
Modeling (Chen et al., 2020).

4 Experimental Setup

We select the KVQA dataset for two reasons: to
our knowledge, it is the largest external knowledge
dataset (with 183k questions), and the questions
are annotated with their reasoning types. We use
accuracy as the evaluation metric and provide re-
sults over both the entire dataset and also for each
question type as provided in the KVQA dataset.

The baseline systems for KVQA are those pre-
sented in (Shah et al., 2019) and discussed in sec-
tion 2. The first baseline is a stacked BLSTM
encoder, operating over question and facts. This
system has an overall accuracy of 48.0% . The
second is the MemNet architecture and has the pre-
viously highest performing baseline accuracy at
50.2%.

We use the UNITER BASE pretrained model
available at the ChenRocks GitHub repository2

with custom classification layers (MLP +softmax
output layer). For task training, we merge retrieved
facts with the question, dividing each statement
with the ‘[SEP]’ token, following research that
indicates that this token induces partitioning and
pipelining of information across attention layers
(Clark et al., 2019). The textual input stream is to-
kenised with the HuggingFace ‘bert-base-uncased’
tokeniser (Wolf et al., 2020). We set the maximum
WordPiece sequences length to 412, the maximum
visual objects count to 100, the learning rate to

2https://github.com/ChenRocks/UNITER
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Model

Question Type MemNet UNITER Entropy
(Base 2)

1-Hop 61.0 65.7 7.8
1-Hop Counting - 78.0 1.4
1-Hop Subtraction - 28.6 4.3
Boolean 75.1 94.6 1.1
Comparison 50.5 90.4 2.1
Counting 49.5 79.4 2.3
Intersection 72.5 79.4 1.2
Multi-Entity 43.5 77.1 3.3
Multi-Hop 53.2 87.9 3.7
Multi-Relation 45.2 75.2 7.1
Spatial 48.1 21.2 11.5
Subtraction 40.5 34.4 6.0
Overall 50.2 69.3 7.6

Table 1: Results in terms of % accuracy of the consid-
ered systems break down into question types along with
the question types distribution (last column).

8× 10−5 and use AdamW (Loshchilov and Hutter,
2017) as optimizer. Once preprocessing is com-
pleted, we train the UNITER model with the cross-
entropy objective function for 80,000 iterations,
which we empirically found to guarantee conver-
gence.

5 Results

Table 1 shows the results of our system (UNITER),
using a question label break-down similar to Shah
et al. (2019). Overall, we observe that our system
outperforms the previous baseline MemNet setting
(see ‘World+WikiCap+ORG’ in Shah et al. (2019))
with an absolute improvement of 19%.

Our results show that UNITER is learning to
perform reasoning more accurately than MemNet
in all but two cases. In the question types involv-
ing multiple entities (‘Multi-Entity’, ‘Multi-Hop’,
‘Multi-Relation’), the increase is the greatest, sug-
gesting that UNITER is able to robustly learn these
reasoning here. We speculate that stacked self-
attention layers in BERT are able to better attend
to the many involved entities than MemNet.

We now discuss the performance of our model
on its weakest categories, namely ‘Subtraction’ and
‘Spatial’. The poor performance on ‘Subtraction’
questions confirms previous results that BERT-like
models require specialised pretraining for numer-
ical reasoning tasks (Geva et al., 2020). In the
case of our model specifically, we note the lack of
numerical reasoning tasks in UNITER’s pretrain-
ing regime. ‘Spatial’ is the model’s least accurate
question type (21.4%) and the biggest absolute de-

Question Type Q+F+I Q+F Q+I F+I Q F I
1-Hop 65.7 65.7 32.4 3.9 32.4 3.8 4.5
1-Hop Counting 78.0 78.0 30.3 0.0 30.3 0.0 0.0
1-Hop Subtraction 28.9 28.6 28.8 0.8 30.3 0.6 6.5
Boolean 94.6 94.6 55.2 1.3 55.2 1.0 10.5
Comparison 90.4 90.4 38.7 1.0 38.7 0.9 10.7
Counting 79.4 79.4 66.1 0.6 65.9 0.4 1.4
Intersection 79.4 79.4 61.0 0.4 60.6 0.3 0.0
Multi-Entity 77.1 77.1 41.3 0.8 41.2 0.7 6.4
Multi-Hop 87.9 87.9 29.0 0.8 28.9 0.8 0.0
Multi-Relation 75.2 75.2 25.1 3.0 25.0 3.0 2.5
Spatial 21.2 21.2 0.0 13.0 0.0 13.0 0.0
Subtraction 34.4 34.4 1.3 1.0 0.9 0.7 0.0
Overall 69.3 69.3 31.6 3.1 31.5 3.0 3.6

Table 2: Ablation Study of Information. Q=Question,
I=Image, F=Facts. Image refers to the Image feature
stream. Results are expressed as % accuracy by ques-
tion type.

crease from MemNet (-26.7%). This question type
requires two-hop reasoning where the second hop is
a numerical operation of the form argmin

y
(xi−yi).

Both of these have been shown to be problematic
for BERT (Kassner et al., 2020; Geva et al., 2020).

6 Analysis

UNITER performs well at the reasoning tasks in
general, with the most surprising result being that it
apparently does better at multi-hop reasoning than
one-hop. We believe that this can be explained
by the presence of unbalanced distribution of an-
swer types in the dataset perturbing the results (see
Table 1). We discuss this in Section 6.1.

In order to better understand the reasoning ca-
pability of our model and the impact of each input
modality, we perform an inference time ablation
study, presented in Table 2.

Ablation of Image features (column ‘Q+F’) does
not change the performance, suggesting that the
model is not attending to image features. To con-
firm this hypothesis, we performed an experiment
with adversarial images, obtaining very similar re-
sults for each question type and the same overall
score (69.30%). We explain this behaviour by the
fact that the preprocessing pipeline extracts all the
required information as explicit facts which the
model prefers over the more ambiguous visual fea-
tures. We leave a deeper analysis for further work.

An interesting case is the ‘Spatial’ questions,
where facts alone are able to correctly answer 13%
of the questions. This is likely the result of the
answers to this question type being entities present
in the facts. Again, we observe that the model is
not able to learn this information from the visual
features.
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Train Ablation Adversarial Modality*
Question Type Q+I Q I F
1-Hop 47.09 38.5 65.9 31.3
1-Hop Counting 66.1 61.5 75.2 50.5
1-Hop Subtraction 29.4 29.7 28.1 26.2
Boolean 83.9 67.3 94.1 57.5
Comparison 83.4 60.3 90.6 47.8
Counting 75.4 75.2 78.9 70.2
Intersection 67.6 67.9 76.8 61.2
Multi-Entity 69.4 57.2 76.4 47.6
Multi-Hop 56.5 50.2 87.9 38.4
Multi-Relation 47.3 38.9 75.2 28.3
Spatial 3.3 1.2 21.1 0.0
Subtraction 2.1 2.6 39.2 1.6
Overall 47.0 40.8 69.3 32.8

Table 3: Further Ablation and Adversarial Studies.
*Adversarial Modality indicates that the sample from
that modality was randomly assigned from the entire
data split

6.1 Bias Studies

We briefly discuss the corpus bias, a well-known
concern in VQA (Goyal et al., 2019). We con-
sider question difficulty across three parameters:
reasoning difficulty, task design, and corpus bias.
Certain question types are inherently more com-
plex, as discussed in Section 5. Additionally, the
task may have different numbers of answer classes
per task, effectively weakening any priors mod-
els might form (see Entropy column in Table 1).
Finally, an unbalanced dataset may cause certain
reasoning types to be underrepresented, making it
harder for models to learn for them. ‘Spatial’ and
‘Substraction’ questions are among the least repre-
sented in the training dataset, which increase their
difficulty for the model.

Unseen answer classes are also an issue. For
‘Spatial’ questions, only 54.2% of the test answers
(output classes) are actually seen during training,
placing an upper bound on accuracy. We find
98.4% of ‘Spatial’ questions the model answered
correctly and 95.7% of ‘Spatial’ question the model
answered incorrectly were supplied with adequate
facts by the preprocessing pipeline.

Training time ablation and adversarial experi-
ments To further probe the task, we perform a
training time ablation with first facts, and then facts
and images removed (see Table 3). In this we seek
to exhibit the capability of our model to leverage
the available modalities and to compensate for the
missing ones.

Through comparing the training time and infer-
ence time ablations, we can better understand the

importance of a modality to solving the task.
Through comparing train and inference ablation

of facts (‘Q+I’ column of Table 3 and of Table 2)
we observe that when facts are unavailable at train
time, the model attends to images to obtain 47.0%
accuracy, which is 15.4% more than the 31.6% ob-
tained by the corresponding inference time ablation.
This indicates that the visual modality can provide
useful information for this task.

We observe a similar trend in the fact and im-
age ablation setting (‘Q’ column of Table 3 and
of Table 2) that the model is able to greater lever-
age questions to make accurate predictions when
additional modalities are never available.

We also perform adversarial checks, where ran-
dom images or facts from the data split are pre-
sented at inference time. These align closely with
the ablation study, with adversarial images (Col-
umn ‘I’ of Table 3) performing within 0.1% of
blanked images (Column ‘Q+F’ of Table 3) and
adversarial facts (Column ’F’ of Table 3) perform-
ing within 1% of blanked facts (Column ‘Q+I’ of
Table 3). These results confirm the importance of
factual data and the unimportance of raw image
features to a model trained on the full data.

7 Conclusion and Future Work

We evaluated our model and found that it improves
on the previous state of the art by a substantial
margin (19.1%). An ablation study revealed the
specific strengths and weaknesses of our model on
certain question categories when evaluated on the
KVQA dataset. We show that the UNITER model
is not actually using the visual input.

In the future, we seek to create a large exter-
nal knowledge dataset designed following KVQA
with more entities besides persons to encourage
grounded reasoning, and better calibration of an-
swer types. We will also consider pretraining our
model on closely related tasks. This will help to
form a model capable of learning robust reasoning
with a high degree of spatial specificity and entity
discrimination.
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Abstract

Neural models for automated fact verification
have achieved promising results thanks to the
availability of large, human-annotated datasets.
However, for each new domain that requires
fact verification, creating a dataset by manu-
ally writing claims and linking them to their
supporting evidence is expensive. We develop
QACG, a framework for training a robust
fact verification model by using automatically-
generated claims that can be supported, re-
futed, or unverifiable from evidence from
Wikipedia. QACG generates question–answer
pairs from the evidence and then convert them
into different types of claims. Experiments
on the FEVER dataset show that our QACG
framework significantly reduces the demand
for human-annotated training data. In a zero-
shot scenario, QACG improves a RoBERTa
model’s F1 from 50% to 77%, equivalent in
performance to 2K+ manually-curated exam-
ples. Our QACG code is publicly available.1

1 Introduction

Fact verification aims to validate a claim in the con-
text of evidence. This task has attracted growing
interest with the rise in disinformation in news and
social media. Rapid progress has been made by
training large neural models (Zhou et al., 2019; Liu
et al., 2020b; Zhong et al., 2020) on the FEVER
dataset (Thorne et al., 2018), containing more than
100K human-crafted (evidence, claim) pairs based
on Wikipedia.

Fact verification is demanded in many domains,
including news articles, social media, and scientific
documents. However, it is not realistic to assume
that large-scale training data is available for every
new domain that requires fact verification. Creating
training data by asking humans to write claims and

1https://github.com/teacherpeterpan/
Zero-shot-Fact-Verification

search for evidence to support/refute them can be
extremely costly.

We address this problem by exploring the possi-
bility of automatically generating large-scale (ev-
idence, claim) pairs to train the fact verification
model. We propose a simple yet general frame-
work Question Answering for Claim Generation
(QACG) to generate three types of claims from any
given evidence: 1) claims that are supported by
the evidence, 2) claims that are refuted by the
evidence, and 3) claims that the evidence does Not
have Enough Information (NEI) to verify.

To generate claims, we utilize Question Gener-
ation (QG) (Zhao et al., 2018; Liu et al., 2020a;
Pan et al., 2020), which aims to automatically ask
questions from textual inputs. QG has been shown
to benefit various NLP tasks, such as enriching QA
corpora (Alberti et al., 2019), checking factual con-
sistency for summarization (Wang et al., 2020), and
data augmentation for semantic parsing (Guo et al.,
2018). To the best of our knowledge, we are the
first to employ QG for fact verification.

As illustrated in Figure 1, given a passage P as
the evidence, we first employ a Question Genera-
tor to generate a question–answer pair (Q,A) for
the evidence. We then convert (Q,A) into a claim
C (QA-to-Claim) based on the following logical
assumptions: a) if P can answer Q and A is the
correct answer, then C is a supported claim; b)
if P can answer Q but A is an incorrect answer,
then C is a refuted claim; c) if P cannot answer
Q, then C is a NEI claim. The Question Genera-
tor and the QA-to-Claim model are off-the-shelf
BART models (Lewis et al., 2020), finetuned on
SQuAD (Rajpurkar et al., 2016) and QA2D (Dem-
szky et al., 2018) datasets.

We generate 100K (evidence, claim) pairs for
each type of claim, which we then use to train a
RoBERTa (Liu et al., 2019) model for fact verifi-
cation. We evaluate the model on three test sets
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Evidence (𝓟)

1992	Los	Angeles	riots

The 1992 Los Angeles riots, also known as 
the Rodney King riots were a series of riots, 
lootings, arsons, and civil disturbances that 
occurred in Los Angeles County, California 
in April and May 1992. 

By the time the riots ended, 63 people had 
been killed. 

Extra Contexts (𝓟𝒆𝒙𝒕)

⋯⋯

⋯⋯

⋯⋯

Q: Where did the Rodney King   
riots happen?

A: Los Angeles County

Q: How many people were killed in  
the Rodney King riots?

A: 63

Question Generator

Q: Where did the Rodney King 
riots happen?

A: San Francisco County

Answer Replacement

The Rodney King riots took place in 
Los Angeles County. 

The Rodney King riots took place in 
San Francisco County. 

63 people were killed in the Rodney 
King riots. 

SUPPORTED

REFUTED

NOT ENOUGH INFO

QA-to-Claim Model

Figure 1: Overview of our QACG framework, consisting of two modules: 1) Question Generator generates
questions from the evidence P and the extra contexts Pext given different answers extracted from the passage (in
green), and 2) QA-to-Claim converts question-answer pairs into claims with different labels.

based on the FEVER dataset. Although we do
not use any human-labeled training examples, the
model achieves over 70% of the F1 performance of
a fully-supervised setting. By finetuning the model
with only 100 labeled examples, we further close
the performance gap, achieving 89.1% of fully-
supervised performance. The above results show
that pretraining the fact verification model with
generated claims greatly reduces the demand for
in-domain human annotation. When evaluating the
model on an unbiased test set for FEVER, we find
that training with generated claims also produces a
more robust fact verification model.

In summary, our contributions are:

• To the best of our knowledge, this is the first work
to investigate zero-shot fact verification.

•We propose QACG, a novel framework to gener-
ate high-quality claims via question generation.

• We show that the generated training data can
greatly benefit the fact verification system in both
zero-shot and few-shot learning settings.

2 Methodology

Given a claim C and a piece of evidence P as
inputs, a fact verification model F predicts a la-
bel Y ∈ {supported,refuted,NEI} to ver-
ify whether C is supported, refuted, or can not be
verified by the information in P .

For the zero-shot setting, we assume no human-
annotated training example is available. Instead,
we generate a synthetic training set based on our
QACG framework to train the model.

2.1 Question Generator and QA-to-Claim
As illustrated in Figure 1, our claim generation
model QACG has two major components: a Ques-
tion Generator G, and a QA-to-Claim modelM.

The Question Generator takes as input an ev-
idence P and a text span A from the given evi-
dence and aims to generate a question Q with A
as the answer. We implement this with the BART
model (Lewis et al., 2020), a large transformer-
based sequence-to-sequence model pretrained on
160GB of text. The model is finetuned on the
SQuAD dataset processed by Zhou et al. (2017),
where the model encodes the concatenation of
the SQuAD passage and the answer text and then
learns to decode the question. We evaluate the ques-
tion generator using automatic and human evalua-
tion and investigate its impact on fact verification
in Appendix A.

The QA-to-Claim Model takes as inputs Q and
A, and outputs the declarative sentence C for the
(Q,A) pair, as shown in Figure 1. We also treat
this as a sequence-to-sequence problem and fine-
tune the BART (Lewis et al., 2020) model on the
QA2D dataset (Demszky et al., 2018), which con-
tains the human-annotated declarative sentence for
each (Q,A) pair in SQuAD.

2.2 Claim Generation
Given the pretrained question generator G and the
QA-to-Claim model M, we then formally intro-
duce how we generate claims with different labels.

Supported claim generation. Given an evi-
dence P , we use named entity recognition to iden-
tify all entities within P , denoted as E . For each
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entity a ∈ E , we treat each a in turn as an answer
and generate a question q = G(P, a) with the ques-
tion generator. The question–answer pair (q, a) are
then sent to the QA-to-Claim model to generate the
supported claim c =M(q, a).

Refuted claim generation. To generate a
refuted claim, after we generate the question–
answer pair (q, a), we use answer replacement
(shown in Figure 1) to replace the answer a with
another entity a′ with the same type such that a′ be-
comes an incorrect answer to the question q. Using
a as the query, we randomly sample a phrase from
the top-5 most similar phrases in the pretrained
Sense2Vec (Trask et al., 2015) as the replacing an-
swer a′. The new pair (q, a′) is then fed to the QA-
to-Claim model to generate the refuted claim.

To avoid the case that a′ is still the correct an-
swer, we define rules to ensure that the a′ has less
lexical overlap with a. However, this problem is
sometimes non-trivial and cannot be completely
avoided. For example, for the QA pair: (“Who
is the producer of Avatar?”; “James Cameron”),
another valid answer a′ is “Jon Landau”, who hap-
pens to be another producer of Avatar. However,
we observe that such coincidences rarely happen:
among the 100 randomly sampled claims, we only
observed 2 such cases. Therefore, we leave them
as the natural noise of the generation model.

NEI claim generation. We need to generate a
question q′ which is relevant but cannot be an-
swered by P . To this end, we link P back to its
original Wikipedia article W and expand the ev-
idence with additional contexts Pext, which are
five randomly-retrieved sentences fromW that are
not present in P . In our example in Figure 1, one
additional context retrieved is “By the time the ri-
ots ended, 63 people had been killed”. We then
concatenate P and Pext as the expanded evidence,
based on which we generate a supported claim
given an entity in Pext as the answer (e.g., “63”).
This results in a claim relevant to but unverifiable
by the original evidence P .

3 Experiments

By applying our QACG model to each of the
18, 541 Wikipedia articles in the FEVER train-
ing set, we generate a total number of 176, 370
supported claims, 360, 924 refuted claims,
and 258, 452 NEI claims. Our generated data is
around five times the size of the human-annotated

claims in FEVER. We name this generated dataset
as QACG-Full. We then create a balanced dataset
QACG-Filtered by randomly sampling 100, 000
samples for each class. Statistics of the FEVER
and the generated dataset are in Appendix B.

Evaluation Datasets. We evaluate fact verifica-
tion on three different test sets based on FEVER:
1) FEVER-S/R: Since only the supported and
refuted claims are labeled with gold evidence
in FEVER, we take the claim–evidence pairs of
these two classes from the FEVER test set for eval-
uation. 2) FEVER-Symmetric: this is a carefully-
designed unbiased test set designed by Schuster
et al. (2019) to detect the robustness of the fact
verification model. Note that only supported
and refuted claims are present in this test set. 3)
FEVER-S/R/N: The full FEVER test set are used
for a three-class verification. We follow Atanasova
et al. (2020) to use the system of Malon (2019) to
retrieve evidence sentences for NEI claims.

Fact Verification Models. As shown in Table 1,
we take a BERT model (S1) and a RoBERTa model
(S2) fine-tuned on the FEVER training set as the
supervised models. Their corresponding zero-shot
settings are Rows U5 and U6, where the models are
trained on our generated QACG-Filtered dataset.
Note that for binary classification (FEVER-S/R
and FEVER-Symmetric), only the supported
and refuted claims are used for training, while
for FEVER-S/R/N, the full training set is used.

We employ four baselines that also do not need
any human-annotated claims to compare with our
method. Random Guess (U1) is a weak base-
line that randomly predicts the class label. GPT2
Perplexity (U2) predicts the class label based on
the perplexity of the claim under a pretrained
GPT2 (Radford et al., 2019) language model,
following the assumption that “misinformation
has high perplexity” (Lee et al., 2020a). MNLI-
Transfer (U3) trains a BERT model for natural lan-
guage inference on the MultiNLI corpus (Williams
et al., 2018) and applies it for fact verification. LM
as Fact Checker (Lee et al., 2020b) (U4) lever-
ages the implicit knowledge stored in the pretrained
BERT language model to verify a claim. The im-
plementation details are given in Appendix C.

3.1 Main Results
Table 1 summarizes the fact verification perfor-
mance, measured by the macro Precision (P ), Re-
call (R), and F1 Score (F1).
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Model
FEVER

-Symmetric FEVER-S/R FEVER-S/R/N

P / R / F1 P / R / F1 P / R / F1

Supervised S1. BERT-base (Devlin et al., 2019) 81.5 / 81.3 / 81.2 92.8 / 92.6 / 92.6 85.7 / 85.6 / 85.6
S2. RoBERTa-large (Liu et al., 2019) 85.5 / 85.5 / 85.5 95.2 / 95.1 / 95.1 88.0 / 87.9 / 87.8

Zero-shot

U1. Random Guess 50.0 / 50.0 / 50.0 50.0 / 50.0 / 50.0 33.3 / 33.3 / 33.3
U2. GPT2 Perplexity 52.7 / 52.7 / 52.7 55.6 / 55.6 / 55.6 35.3 / 35.3 / 35.3
U3. MNLI-Transfer 62.2 / 55.5 / 58.7 63.6 / 60.5 / 61.8 41.4 / 39.6 / 40.7
U4. LM as Fact Checker (Lee et al., 2020b) 71.2 / 64.5 / 67.8 77.9 / 65.6 / 70.2 64.3 / 54.6 / 49.8
U5. QACG (BERT-base) 73.2 / 73.0 / 72.9 74.2 / 74.0 / 74.1 56.5 / 55.7 / 55.9
U6. QACG (RoBERTa-large) 77.3 / 77.0 / 77.1 78.1 / 78.1 / 78.1 64.6 / 62.0 / 62.6

Table 1: Fact verification performance for supervised models and zero-shot models on three different settings.

Comparison with supervised settings. The
zero-shot setting with RoBERTa-large (U6) attains
78.1 F1 on the FEVER-S/R and 62.6 F1 on the
FEVER-S/R/N. The F1 gap to the fully-supervised
RoBERTa-large (S2) is only 17.0 and 15.2 on these
two settings, respectively. These results demon-
strate the effectiveness of QACG in generating
good (evidence, claim) pairs for training the fact
verification model. The RoBERTa model (S2, U6)
is more effective than the BERT model (S1, U5)
for both the zero-shot and the supervised setting.

Comparison with zero-shot baselines. Our
model (U6) achieves the best results among all the
zero-shot baselines across all three test sets. We
find that validating a claim by its perplexity (U2)
only works slightly better than random guess (U1)
(+3.43 F1), showing that misinformation does not
necessary to have high perplexity. Although natural
language inference seems highly correlated with
fact verification, directly transferring the model
trained on the MNLI dataset (U3) only outperforms
random guess by 9.30 F1. We believe this is due to
the domain gap between FEVER (from Wikipedia)
and the MNLI (from fiction, letters, etc.) dataset.
As a generation framework, our model can avoid
the domain gap issue by generating pseudo training
data from the same domain (Wikipedia). Another
reason is the “task gap” between NLI and fact veri-
fication, in which the former makes inference about
the situation described in a sentence, while the lat-
ter focuses on claims about entities in Wikipedia.

Model Robustness. We observe a large perfor-
mance drop when the supervised model is evalu-
ated on the FEVER-Symmetric test set for both the
BERT model (−11.4 F1) and the RoBERTa model
(−9.6 F1). However, the models trained with our
generated data (U2, U3) drop only 1.2 and 1.0 F1

drop. This suggests that the wide range of different
claims we generate as training data helps eliminate
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Figure 2: The few-shot learning experiment. The figure
shows the F1 score on FEVER-Symmetric for progres-
sively larger training dataset sizes.

some of the annotation artifacts present in FEVER,
leading to a more robust fact verification model.

3.2 Few-shot Fact Verification

We then explore QACG’s effectiveness in the few-
shot learning setting where only a few human-
labeled (evidence, claim) pairs are available. We
first train the RoBERT-large fact verification model
with our generated dataset QACG-Filtered. Then
we fine-tune the model with a limited amount of
human-labeled claims in FEVER. The blue solid
line in Figure 2 shows the F1 scores on FEVER-
Symmetric after finetuning with different numbers
of labeled training data. We compare this with train-
ing the model from scratch with the human-labeled
data (grey dashed line).

Our model performs consistently better than
the model without pretraining, regardless of the
amount of labeled training data. The improvement
is especially prominent in data-poor regimes; for
example, our approach achieves 78.6 F1 with only
50 labeled claims for each class, compared with
52.9 F1 without pretraining (+25.7). This only
leaves a 7.9 F1 gap to the fully-supervised setting
(86.5 F1) with over 100K training samples. The re-
sults show pretraining fact verification with QACG
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Evidence Generated Claim

Budapest is cited as one of the most beautiful
cities in Europe, ranked as the most liveable
Central and Eastern European city on EIU’s
quality of life index, ranked as “the world’s
second best city” by Conde Nast Traveler,
and “Europe’s 7th most idyllic place to live”
by Forbes.

SUPPORTED claims
Budapest is ranked as the most liveable city in central Europe.
Budapest ranks 7th in terms of idyllic places to live in Europe.

REFUTED claims
Budapest ranks in 11th in terms of idyllic places to live in Europe.
Budapest is ranked the most liveable city in Asia.

NEI claims
Budapest is one of the largest cities in the European Union.
Budapest is the capital of Hungary.

Alia Bhatt received critical acclaim for portraying
emotionally intense characters in the road drama
Highway (2014), which won her the Filmfare
Critics Award for Best Actress, and the crime
drama Udta Punjab (2016), which won her the
Filmfare Award for Best Actress.

SUPPORTED claims
Bhatt won the Filmfare Award for Best Actress in Udta Punjab.
Bhatt received the Filmfare Critics Award for her role in Highway.

REFUTED claims
Alia Bhatt won the Best Original Screenplay award in Highway.
2 States (2014) won Alia Bhatt the Filmfare Award for Best Actress.

NEI claims
Alia Bhatt made her acting debut in the 1999 thriller Sangharsh.
Bhatt played her first leading role in Karan Johar’s romantic drama.

Table 2: Examples of evidence and claims generated by QACG, categorized by class labels. In the evidence, the
identified answers for question generation are highlighted in blue. For claims, the correct answers are highlighted
in blue for SUPPORTED claims and the replaced wrong answers are in red for REFUTED claims.

Evidence: Roman Atwood is best known for his vlogs,
where he posts updates about his life.

Claim: Roman Atwood is a content creator.
Evidence: In 2004, Slovenia entered NATO and the

European Union.
Claim: Slovenia uses the euro.
Evidence: He has traveled to Chad and Uganda to raise

awareness about conflicts in the regions.
Claim: Ryan Gosling has been to a country in Africa.

Table 3: Examples of claims in FEVER that require
commonsense or world knowledge (underlined).

greatly reduces the demand for in-domain human-
annotated data. Our method can provide a “warm
start” for fact verification system when applied to
a new domain where training data are limited.

3.3 Analysis of Generated Claims

Table 2 shows representative claims generated by
our model. The claims are fluent, label-cohesive,
and exhibit encouraging language variety. How-
ever, one limitation is that our generated claims are
mostly lack of deep reasoning over the evidence.
This is because we finetune the question generator
on the SQuAD dataset, in which more than 80% of
its questions are shallow factoid questions.

To better understand whether this limitation
brings a domain gap between the generated claims
and the human-written claims, we randomly sam-
pled 100 supported claims and 100 refuted
and analyze whether reasoning is involved to verify
those claims. We find that 38% of the supported

claims and 16% of the refuted claims in FEVER
require either commonsense reasoning or world
knowledge to verify. Table 3 show three typical
examples. Therefore, we believe this domain gap
is the main bottleneck of our system. Future stud-
ies are required to generate more complex claims
which involves multi-hop, numerical, and common-
sense reasoning, such that we can apply our model
to more complex fact checking scenario.

4 Conclusion and Future Work

We utilize the question generation model to ask
different questions for given evidence and convert
question–answer pairs into claims with different
labels. We show that the generated claims can train
a well-performing fact verification model in both
the zero-shot and the few-shot learning setting. Po-
tential future directions could be: 1) generating
more complex claims that require deep reasoning;
2) extending our framework to other fact checking
domains beyond Wikipedia, e.g., news, social me-
dia; 3) leveraging generated claims to improve the
robustness of fact checking systems.
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Ethical Considerations

We discuss two potential issues of claim genera-
tion, showing how our work sidesteps these issues.
While individuals may express harmful or biased
claims, our work only focuses on generating fac-
toid claims from a corpus. In this work, we take
Wikipedia as the source for objective fact. Practic-
ing this technique thus requires the identification
of an appropriate source of objective truth to gener-
ate claims from. Another potential misuse of claim
generation is to generate refuted claims and sub-
sequently spread such misinformation. We caution
practitioners to treat the generated claims with care.
In our case, we use the generated claims only to
optimize for the downstream fact verification task.
We advise against releasing generated claims for
public use — especially on public websites, where
they may be crawled and then subsequently used
for inference. As such, we will release the model
code but not the output in our work. Practitioners
can re-run the training pipeline to replicate experi-
ments accordingly.
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A Evaluation of Question Generation

To implement the question generator, we finetune
the pretrained BART model provided by Hugging-
Face library on the SQuAD dataset. The codes
are based on the SimpleTransformers2 library. The
success of our QACG framework heavily rely on
whether we can generate fluent and answerable
questions given the evidence. Therefore, we sep-
arately evaluate the question generator using both
automatic and human evaluation and investigate its
impact to zero-shot fact verification.

A.1 Automatic Evaluation
We employ BLEU-4 (Papineni et al., 2002), ME-
TEOR (Lavie and Agarwal, 2007), and ROUGE-
L (Lin, 2004) to evaluate the performance of our
implementation. We compare the BART model
with several state-of-the-art QG models, using their
reported performance on the Zhou split of SQuAD.

Table 4 shows the evaluation results compar-
ing against all baseline methods. The BART
model achieves a BLEU-4 of 21.32, outperforming
NQG++, S2ga-mp-gsa, and CGC-QG by large mar-
gins. This is as expected since these three baselines
are based on Seq2Seq and do not apply language
model pretraining. Compared with the current state-
of-the-art model UniLM, the BART model achieves
comparable results, with slightly lower BLEU-4
but higher METEOR.

Model B4 MR RL

NQG++ (Zhou et al., 2017) 13.5 18.2 41.6
S2ga-mp-gsa (Zhao et al., 2018) 15.8 19.7 44.2
CGC-QG (Liu et al., 2020a) 17.6 21.2 44.5
UniLM (Dong et al., 2019) 23.8 25.6 52.0
BART (Lewis et al., 2020) 21.3 27.1 43.6

Table 4: Performance evaluation of the Question Gen-
erator with different model implementations. We adopt
the BART model in our QACG framework. B4: BLEU-
4, MR: METEOR, RL: ROUGE-L.

A.2 Impact of Answerability
Given the evidence P and the answer A, the gen-
erated question Q must be answerable by P and

2https://github.com/ThilinaRajapakse/simpletransformers
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Model Answerable FV Performance
Rate P / R / F1

NQG++ 63.0% 62.2 / 62.4 / 62.3
BART 89.5% 76.3 / 76.0 / 76.1

Table 5: Answerable Rate: the ratio of answerable ques-
tions generated by the NQG++ and the BART model.
FV Performance: the zero-shot fact verification perfor-
mance on the FEVER-Symmetric.

take A as its correct answer. This is the premise of
generating a correct SUPPORTED claim. There-
fore, we specially evaluate this answerability prop-
erty via human ratings. We randomly sample 100
generated question-answer pairs with their corre-
sponding evidence and ask two workers to judge
the answerability of each sample. We do this for
both the NQG++ model and the BART model. To
investigate the impact of question quality on the
fact verification performance, we separately use
the NQG++ and BART as the question generator
to generate claims and train the RoBERTa model.
The performance is summarized in Table 5.

We find that the ratio of answerable questions
generated by the BART model is 89.5%, signif-
icantly outperforms the 63.5% achieved by the
NQG++ model. When switching the question gen-
erator to NQG++, the fact verification F1 drops to
62.3 (−22.1% compared with BART). This shows
that answerability plays an important role in ensur-
ing the validity of the generated claims and has a
huge impact on the fact verification performance.

B Dataset Statistics

Table 6 shows the basic data statistics of the
FEVER, FEVER-Symmetric, and our generated
dataset by QACG. We use the balanced dataset
QACG-Filtered sampled from QACG-Full to train
the fact verification model in the zero/few-shot set-
ting. Compared with the original FEVER dataset,
our generated QACG-Filtered dataset has a bal-
anced number of claims for each class. Moreover,
because QACG can generate three different types
of claims for the same given evidence (shown in
Figure 1), it results in a more “unbiased” dataset in
which the model must rely on the (evidence, claim)
pair rather than the evidence itself to make an infer-
ence of the class label.

C Model Implementation Details

BERT-base and RoBERTa-large (S1, S2, U5,
U6). We use the bert-base-uncased

Dataset Supported Refuted NEI

FEVER Train 80,035 29,775 35,517
Test 6,666 6,666 6,666

FEVER-Symmetric 710 710 −
QACG Full 176,370 360,924 258,452

Filtered 100,000 100,000 100,000

Table 6: Basic statistics of the FEVER dataset and the
dataset generated by QACG.

(110M parameters) and the roberta-large
(355M parameters) model provided by Hugging-
Face library to implement the BERT model and
the RoBERTa model, respectively. The model is
fine-tuned with a batch size of 16, learning rate of
1e-5 and for a total of 5 epochs, where the epoch
with the best performance is saved.

GPT2 Perplexity (U2). To measure the perplex-
ity, we use the HuggingFace implementation of the
medium GPT-2 model (gpt2-medium, 345M pa-
rameters). We then rank the claims in the FEVER
test set by their perplexity under the GPT-2 model.
We then predict the label for each claim based on
the assumption that misinformation has high per-
plexity. However, manually setting the perplexity
threshold is difficult. Since the FEVER test set con-
tains an equal number of claims for each class, we
predict the claims in the top 1/3 of the ranking list
as refuted, and the bottom 1/3 as supported.
The rest claims are set as NEI. Therefore, the num-
ber of predicted labels for each class is also equal.

MNLI-Transfer (U3). We use the HuggingFace
– BERT base model (110M parameters) fine
tuned on the Multi-Genre Natural Language In-
ference (MNLI) corpus3, a crowd-sourced col-
lection of 433K sentence pairs annotated with
textual entailment information. We then di-
rectly apply this model for fact verification in the
FEVER test set. The class label entailment,
contradiction, and neutral in the NLI task
is mapped to supported, refuted, and NEI,
respectively, for the fact verification task.

LM as Fact Checker (U4). Since there is no
public available code for this model, we imple-
ment our own version following the settings de-
scribed in Lee et al. (2020b). We use Hugging-
Face’s bert-base as the language model to pre-
dict the masked named entity, and use the NLI
model described in U3 as the entailment model.

3https://huggingface.co/textattack/bert-base-uncased-
MNLI
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Abstract
Scarcity of parallel data causes formality style
transfer models to have scarce success in pre-
serving content. We show that fine-tuning
pre-trained language (GPT-2) and sequence-
to-sequence (BART) models boosts content
preservation, and that this is possible even with
limited amounts of parallel data. Augmenting
these models with rewards that target style and
content –the two core aspects of the task– we
achieve a new state-of-the-art.

1 Introduction and Background

Style transfer is the task of automatically convert-
ing a text of one style into another, such as turning
the formal “I viewed it and I believe it is a qual-
ity program.” into the informal “I’ve watched it
and it is AWESOME!!!!”. This task, which can
be used for, e.g., personalised response generation,
translation of ancient text into modern text, and
text simplification, is particularly challenging since
style must be changed while ensuring that content
is preserved. Accordingly, the performance of style
transfer systems is commonly assessed on both
style strength and content preservation.

Due to the general scarcity of parallel data, un-
supervised approaches are popular. These include
disentangling style and content by learning a dis-
tinct representation for each (Shen et al., 2017; Fu
et al., 2018; John et al., 2019), and back transla-
tion (Zhang et al., 2018; Lample et al., 2019; Luo
et al., 2019; Prabhumoye et al., 2018). A common
strategy to enhance style accuracy is to introduce
a reward in the form of a style classifier (Lample
et al., 2019; Gong et al., 2019; Luo et al., 2019; Wu
et al., 2019; Sancheti et al., 2020). As a result, un-
supervised models achieve good accuracy in style
strength. Content preservation is however usually
unsuccessful (Rao and Tetreault, 2018).

Parallel data can help to preserve content, but is
limited. Niu et al. (2018) combine the train sets

of two different domains and incorporate machine
translation to train their models with a multi-task
learning schema, plus model ensembles. Sancheti
et al. (2020) use it to train a supervised sequence-to-
sequence model, and in addition to the commonly
used style strength reward, they include a reward
based on BLEU (Papineni et al., 2002) to enhance
content preservation. Shang et al. (2019) propose
a semi-supervised model combining parallel data
with large amounts of non-parallel data.

Pre-trained models, successful in a variety of
NLP tasks, have recently been used in formality
style transfer. Zhang et al. (2020) propose sev-
eral data augmentation methods for pre-training
a transformer-based (Vaswani et al., 2017) model
and then used gold data for fine-tuning. Using
GPT-2 (Radford et al., 2019), Wang et al. (2019)
and Wang et al. (2020) propose a harness-rule-
based preprocessing method, and joint training of
bi-directional transfer and auto-encoding with two
auxiliary losses. Contemporary work by Chawla
and Yang (2020) develops a semi-supervised model
based on BART large (Lewis et al., 2020).

Contributions Focusing specifically on formal-
ity transfer, for which parallel data is available, (i)
we take the contribution of pre-trained models a
step further by augmenting them with reward strate-
gies that target content and style, thereby achieving
new state-of-the-art results. (ii) We analyse sep-
arately the contribution of pre-trained models on
content and style, showing that they take care of
preserving content (the hardest part of style trans-
fer to date), while ensuring style strength. (iii)
Moreover, experimenting with training size, we
show that while parallel data contributes to content
preservation, fine-tuning pre-trained models with
10% of parallel data is more successful than train-
ing on 100% of data from scratch. Reducing the
need for parallel data opens up the applicability of
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Figure 1: Model architectures. We use three special symbols: [BOS] in front of every source sentence, [SEP]
between the source and target sentences (only in GPT-2), and [EOS] at the end of every target sentence.

supervised style transfer to new scenarios: tasks,
domains, languages.1

2 Method

We propose a framework to control the style of
output text for style transfer atop pre-trained mod-
els. Given a source sentence x = {x1, · · · , xn} of
length n with style s1 and a target style sentence
y = {y1, · · · , ym} of length m with style s2, our
model aims to learn two conditional distributions,
altering the style of a sentence while preserving
its original content. Our framework consists of (i)
fine-tuning pre-trained models on a formality trans-
fer parallel corpus; (ii) incorporating rewards to
enhance style change and content preservation.

2.1 Models

GPT-2 This model (Radford et al., 2019) is a
transformer-based network (Vaswani et al., 2017).
Given a sentence of tokens x = {x1, · · · , xl}, the
standard language modeling objective is to mini-
mize the following negative log likelihood:

L(φ) = −Σilog(p(xi|xi−k:i−1;φ)) (1)

where k is the size of the context window.
To make GPT-2 rephrase a text in the target style,

the input pair 〈Source Sentence, Target Sentence〉
is represented as a single sequence with three
special tokens to mark beginning [BOS] and end
[EOS] of every sequence, and to separate source
and target sentences [SEP] (Fig. 1(a)). During in-
ference, we feed to GPT-2 the source sentence with
[BOS] and [SEP] to infer the target sentence.

1All code at https://github.com/laihuiyuan/
Pre-trained-formality-transfer.

BART This is a denoising autoencoder for pre-
training sequence-to-sequence models (Lewis et al.,
2020). Given a source sentence x and a target sen-
tence y, the loss function is the cross-entropy be-
tween the decoder’s output and the target sentence:

L(φ) = −Σilog(p(yi|y1:i−1,x;φ)) (2)

2.2 Rewards
Atop the models, we implement two rewards, used
in isolation and together, to enhance style strength
(Style Classification Reward) and content preserva-
tion (BLEU Score Reward).

Style Classification Reward As often done in
previous work (see Section 1), we use a classifica-
tion confidence reward to encourage larger change
in the confidence of a style classifier (SC). We
pre-train the binary style classifier TextCNN (Kim,
2014) and use it to evaluate how well the trans-
ferred sentence y′ matches the target style. SC’s
confidence is formulated as

p(si|y′) = softmaxi(TextCNN(y′, θ)) (3)

where i = {1,2}, and represent source and target
style respectively. θ are the parameters of the style
classifier, fixed during fine-tuning. The reward is

Rcls = λcls[p(s2|y′)− p(s1|y′)] (4)

where y′ is the generated target sentence sampled
from the model’s distribution at each time step in
decoding. For the GPT-2 based model, we also add
a classification confidence reward to the source sen-
tence, similar to Eq. 4, since the model generates
sentence x′ with the original style while generating
the target sentence:

Rclssource = λcls[p(s1|x′)− p(s2|x′)] (5)

485



0 −→ 1 1 −→ 0

Domain Train Valid Test Valid Test

F&R 51,967 2,788 1,332 2,247 1,019
E&M 52,595 2,877 1,416 2,356 1,082

Table 1: GYAFC dataset. 0 = informal; 1 = formal.

BLEU Score Reward Following Sancheti et al.
(2020), we introduce a BLEU-based reward to fos-
ter content preservation as in Eq. 6, where y′ is the
target style text obtained by greedily maximizing
the distribution of model outputs at each time step,
and ys is sampled from the distribution.

Rbleu = λbleu[bleu(y′,y)− bleu(ys,y)] (6)

Gradients and Objectives The rewards are used
for policy learning. The policy gradient2 is

∇φJ(φ) = E[R · ∇φlog(P (ys|x;φ))] (7)

where R is the SC reward and/or the BLEU re-
ward, ys is sampled from the distribution of model
outputs at each decoding time step, and φ are the
parameters of the model. Similarly, we add the
policy gradient regarding the source sentence for
the SC reward (only for the GPT-2-based model).

The overall objectives for φ are the loss of the
base model (Eq. 1 or Eq. 2) and the policy gradient
of the different rewards (Eq. 7).

3 Experiments

Dataset Grammarly’s Yahoo Answers Formal-
ity Corpus (GYAFC) (Rao and Tetreault, 2018)
is a formality style transfer dataset with parallel
formal and informal sentences from two domains:
Entertainment & Music (E&M) and Family & Re-
lationships (F&R). Table 1 shows the number of
sentences in train, validation, and test. Four human
references exist for every valid/test sentence.

Setup All experiments are implemented atop
Huggingface’s transformers (Wolf et al., 2020).
Our base models are the GPT-2-based model
(117M parameters) and BART-based model (base
with 139M parameters and large with 406M). We
fine-tune them with the Adam optimiser (Kingma
and Ba, 2015) with batch size 32; the initial learn-
ing rates are 5e−5 (GPT-2) and 3e−5 (BART). The
final values for λ are set to 1 for SC and 0.2 for
BLEU based on validation results. We use early

2Additional details are provided in the Appendix.
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Figure 2: HM score of x%-sized training sets of GPT-
2-/BART-based models with different rewards (none,
+SC, +BLEU, +SC & BLEU) for the two domains
(E&M and F&R).

stopping (patience 3) if validation performance
does not improve. Test results are reported with the
best validation settings.

Evaluation Following previous work (Luo et al.,
2019; He et al., 2020; Sancheti et al., 2020), we
adopt the following strategies. The binary classi-
fier TextCNN (Kim, 2014) is pre-trained to evalu-
ate style strength; on the human references it has
an accuracy of 87.0% (E&M) and 89.3% (F&R).
Based on the four human references, we calculate
BLEU3 for content preservation. As overall score
we compute the harmonic mean (HM) of style ac-
curacy and BLEU. For our evaluation we also test
BLEURT, a recent metric for content preservation
which correlates better with human judgments than
other metrics that take semantic information into
account, e.g. METEOR (Sellam et al., 2020).

Baselines We train a basic supervised model (a
Bi-LSTM with attention from OpenNMT (Klein
et al., 2017)), to assess the impact of the size of
parallel training data. We compare our models to
the five baselines from Rao and Tetreault (2018),
and to the best performing formality style trans-
fer methods that report results on the datasets we
use. These are mentioned in Section 1 and sum-
marised as follows: Bi-directional FT (Niu et al.,

3We use multi-bleu.perl with default settings.
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Domain Model BLEURT BLEU ACC HM Model BLEURT BLEU ACC HM

E&M

OpenNMT + SC & BLEU (10% data) -0.919 0.231 0.886 0.366 OpenNMT + SC & BLEU (100% data) -0.420 0.403 0.804 0.537
(A) INFORMAL↔ FORMAL (B) INFORMAL −→ FORMAL

NMT-Combined (Rao and Tetreault, 2018) -0.100 0.501 0.797 0.615 GPT-CAT (train on E&M and F&R, Wang et al. (2019)) 0.176 0.725 0.876 0.793
GPT-2 + SC & BLEU (10% data, Ours) -0.058 0.495 0.799 0.611 Chawla’s (Chawla and Yang (2020)) 0.260 0.762 0.910 0.829
GPT-2 + SC & BLEU (100% data, Ours) -0.007 0.542 0.923 0.683 BART + SC & BLEU (train on E&M, Ours) 0.218 0.730 0.887 0.801
BART + SC & BLEU(10% data, Ours) -0.030 0.547 0.855 0.667 BART + SC & BLEU (train on E&M and F&R, Ours) 0.236 0.745 0.937 0.830
BART + SC & BLEU (100% data, Ours) 0.044 0.577 0.859 0.690 BART large + SC & BLEU (train on E&M and F&R, Ours) 0.274 0.765 0.929 0.839

(C) INFORMAL↔ FORMAL & COMBINED DOMAINS (D) BLEU EVALUATED AGAINST THE FIRST REFERENCE
Bi-directional FT (Niu et al., 2018) 0.023 0.554 0.818 0.661 *TS→CP (Sancheti et al. (2020)) - 0.292 - -
BART large + SC & BLEU (100% data, Ours) 0.078 0.596 0.905 0.719 BART + SC & BLEU (100% data, Ours) - 0.306 - -

F&R

OpenNMT + SC & BLEU (10% data) -0.706 0.303 0.859 0.448 OpenNMT + SC & BLEU (100% data) -0.304 0.477 0.789 0.595
(A) INFORMAL↔ FORMAL (B) INFORMAL −→ FORMAL

NMT-Combined (Rao and Tetreault, 2018) -0.089 0.527 0.798 0.635 *GPT-CAT (train on E&M and F&R, Wang et al. (2019) ) - 0.769 - -
GPT-2 + SC & BLEU (10% data, Ours) -0.027 0.528 0.849 0.651 Chawla’s (Chawla and Yang (2020)) 0.302 0.799 0.910 0.851
GPT-2 + SC & BLEU (100% data, Ours) 0.038 0.572 0.915 0.704 BART + SC & BLEU (train on F&R, Ours) 0.271 0.770 0.897 0.829
BART + SC & BLEU (10% data, Ours) 0.039 0.571 0.833 0.678 BART + SC & BLEU (train on F&R and E&M, Ours) 0.270 0.777 0.912 0.839
BART + SC & BLEU (100% data, Ours) 0.068 0.595 0.882 0.711 BART large + SC & BLEU (train on F&R and E&M, Ours) 0.324 0.793 0.920 0.852

(C) INFORMAL↔ FORMAL & COMBINED DOMAINS (D) 10% PARALLEL TRAINING DATA
Bi-directional FT (Niu et al. (2018) 0.037 0.568 0.839 0.677 *CPLS (Shang et al., 2019) - 0.379 - -
BART large + SC & BLEU (100% data, Ours) 0.100 0.611 0.900 0.728 BART + SC & BLEU (Ours) - 0.571 -

Table 2: Comparison of our models to previous work. The best score for each metric in each block is boldfaced.
Notes: (i) if the output of previous work is available, we re-calculate the scores using our evaluation metrics.
Otherwise, scores are from the paper and we mark this with (*); (ii) (B) shows our results on informal-to-formal
to compare with Wang et al. (2019) and Chawla and Yang (2020), who only transfer in this direction; (iii) in (C)
we train on the concatenated data from both domains, to compare against Niu et al. (2018); (iv) in (E&M (D)) we
re-evaluate our system against the first reference only, as done by Sancheti et al. (2020).

2018), CPLS (Shang et al., 2019), GPT-CAT (Wang
et al., 2019), S2S-SLS (GPT-2) (Wang et al.,
2020), Transformer (data augmentation) (Zhang
et al., 2020), TS→CP (Sancheti et al., 2020),
and Chawla’s (Chawla and Yang, 2020). Since
supervised methods significantly outperform un-
supervised approaches, results for the latter are
not considered as the baseline in our experiment..
Disentanglement-based methods are not included
since Lample et al. (2019) provide evidence that
they are surpassed.

Results Figure 2 shows the HM score of x%-
sized training sets on the E&M and the F&R do-
mains. Increasing train set size from 10% to 50%
has a greater boost on GPT-2-based models than
BART’s. However, BART-based models obtain the
highest results. Table 2 reports a selection of our
models 4 and previous state-of-the-art work. Zoom-
ing in on the single measures, we see in Table 2
how varying training size reveals the impact of
parallel data on content preservation: OpenNMT’s
BLEU score on E&M increases from 0.231 with
10% of the data to 0.403 with 100%. Style accu-
racy appears instead easier to achieve even with
limited supervision. Increasing training size for
fine-tuning either pre-trained model does not how-
ever yield dramatic improvements in content preser-
vation (e.g. from 0.547 to 0.577 BLEU for BART

4In the table we report results for the models that use both
rewards (BLEU and SC) since this setting mostly leads to best
results. Complete results for all models (and sample outputs)
are in the Appendix.

base on E&M). In fact, fine-tuning a pre-trained
model (either GPT-2 or BART) with just 10% of
parallel data, leads to better content preservation
(0.547 BLEU with BART on E&M) than Open-
NMT with 100% (0.403). This suggests that con-
tent preservation is largely taken care of by the
pre-trained models, already, and can explain why
the BLEU-based reward does not help too much in
isolation (see Fig. 2). Conversely, the SC reward
consistently boosts style accuracy in both BART
and GPT-2. Nevertheless, combining rewards can
be beneficial. Overall, BART-based models per-
form better on content preservation while results
on style strength are mixed.

Given the experimental setup of some previous
work, we ran additional comparisons (blocks (B),
(C), and (D) of Table 2). In all cases, our results are
higher than the previous state-of-the-art. For exam-
ple, in F&R (D) our model with 10% parallel data
outperforms Shang et al. (2019)’s semi-supervised
model, which uses about 9.5% parallel data and
large amounts of non-parallel data (BLEU 0.571 vs
0.379). Fine-tuning BART on both domains (C)5

leads to the best results to date on both datasets
(E&M: 0.719; F&R: 0.728).

With respect to the two evaluation metrics used
for content preservation (BLEU and BLEURT), we
can observe in Table 2 that they follow a similar
trend. In fact, they correlate very highly (Pearson’s
r = .951, p<.001, n = 14 for E&M, and r = .951,

5Following Kobus et al. (2017), we add a token to each
training instance that specifies its domain.
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System Sentence BLEURT BLEU ACC
FROM INFORMAL TO FORMAL

Source i say omarion.he has the hair clothes and body,a triple deal on one person. -
Reference 1 My choice is Omarion as he has high quality, hair, clothes, and body to create a triple deal in one person. -
Reference 2 I would say Omarion because he has the hair, clothes, and body; A triple deal on a single person. -
Reference 3 I pick Omarion, he has the hair, the clothes, and the body. A triple deal on one person. -
Reference 4 Omarion has the hair, clothes, and the body. -
PBMT-Combined (Rao and Tetreault, 2018) I say omarion. he has the hair, clothes and body, the deal on one person. -0.153 0.509 0.946
Bi-directional FT (Niu et al., 2018) I say Omarion, he has the hair clothes and body, and a triple deal on one person. -0.149 0.510 0.953
GPT-CAT (Wang et al., 2019) I say Omarion. He has the hair, clothes, and body, a triple deal on one person. 0.044 0.585 1.000
S2S-SLS (Wang et al., 2020) I say Omarion. He has the hair clothes and body, a triple deal on one person. -0.035 0.350 1.000
Transformer (Zhang et al., 2020) I say omarionhe has the hair clothes and body, a triple deal on one person. -0.255 0.462 0.892
Chawla’s (Chawla and Yang, 2020) I say Marion because he has the hair, clothes and body, a triple deal on one person. -0.538 0.534 0.989
OpenNMT + SC & BLEU (Ours) I say Omarion. He has the hair clothes and body. -0.325 0.147 1.000
GPT-2 + SC & BLEU (Ours) I say Omarion. He has the hair clothes and body, a triple deal on one person. -0.035 0.350 1.000
BART base + SC & BLEU (Ours) I would say Omar. He has the hair, clothes, and body. It is a triple deal on one person. -0.012 0.589 1.000
BART large + SC & BLEU (Ours) I would say Omarion. He has the hair, clothes, and body, a triple deal on one person. 0.096 0.657 1.000

FROM FORMAL TO INFORMAL
Source I suggest avoiding hot dogs, and not watching this movie with your little sister. -
Reference 1 Don’t eat hot dogs, or watch this movie with your little sister! -
Reference 2 Don’t do hot dogs or this movie with your kid sister. -
Reference 3 don’t eat hot dogs and don’t watch it w/ ur lil sis! -
Reference 4 Don’t eat hot dogs or watch this flick with your lil sis! -
PBMT-Combined (Rao and Tetreault, 2018) I suggest avoiding hot dogs, and not watching this movie with your little sister. -0.298 0.417 0.004
Bi-directional FT (Niu et al., 2018) I suggest avoiding hot dogs and not watching this movie with your little sister. -0.233 0.437 0.009
OpenNMT with SC & BLEU Can’t watch this movie with your little sister. -0.521 0.542 0.783
GPT-2 + SC & BLEU don’t watch this movie with your little sister. -0.415 0.599 1.000
BART + SC & BLEU avoid hot dogs and not watch this movie with your little sister. -0.016 0.610 0.925
BART large + SC & BLEU Avoid hot dogs and don’t watch this movie with your little sister. -0.171 0.800 0.825

Table 3: Sample model outputs and their sentence-level scores on the E&M domain, where red denotes improperly
generated words or content. Note that ACC indicates style confidence here.

p<.001, n = 13 for F&R).

Finer-grained Analysis Table 3 shows example
outputs and their evaluation according to the met-
rics we use; the outputs are produced by existing
systems we compare to, and our own models.6

In the “Informal to Formal” example, we can see
that text generated by most systems is assessed with
a high confidence in style conversion, except for
PBMT-Combined (Rao and Tetreault, 2018) and
Transformer (Zhang et al., 2020) (the name “omar-
ionhe” should be “Omarion”, and the word “he”
at the beginning of the sentence should be “He”).
However, the sentences generated by previous sys-
tems are not so fluent, and some of them fail in pre-
serving content (Transformer (Zhang et al., 2020)
(“omarionhe”) and Chawla’s (Chawla and Yang,
2020) (“Marion”)). For our models, the Bi-LSTM
based model fails in content preservation while the
systems based on pre-trained models are much bet-
ter at this task. Our model based on BART Large
generates this specific sentence accurately in terms
of content preservation, style strength, and fluency.

When looking at the “Formal to Informal” exam-
ple in Table 3, we observe that the two previously
existing systems replace very little (one comma by
the Bi-directional FT (Niu et al., 2018)) or noth-
ing at all (PBMT-Combined (Rao and Tetreault,
2018)). Conversely, our systems make substantial
modifications, resulting in output sentences that
are noticeably more informal than the input sen-

6More examples are in Appendix.

tence. OpenNMT and the GPT-2-based models
lose part of the content (the suggestion to avoid hot
dogs) while the two BART-based systems manage
to preserve the whole message.

4 Conclusions

Fine-tuning pre-trained models proves a successful
strategy for formality style transfer, especially to-
wards content preservation, thereby reducing the
need for parallel data. A sequence-to-sequence
pre-trained model (BART) outperforms a language
model (GPT-2) in content preservation, and overall,
and with the addition of rewards achieves new state-
of-the-art results. The fact that GPT-2 is instead
often better at style strength could be (partly) due
to how the style reward is implemented in the two
models (Eq. 4 and 5), and will need further investi-
gation. For a better understanding of the different
behaviour of BART and GPT-2 for this task, the
next natural step is to include human evaluation.
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A Appendices

This Appendices include: 1) detailed results for all experiments (A.1); 2) more details on policy gradient
(A.2); 3) some example outputs of various models and their sentence-level scores, to give an idea of
what the generated sentences look like when style transfer is applied. We specifically focus on the 100%
parallel data settings for our models (A.3).

A.1 Detailed Results of Models
We report here the full set of results for all our models and previous work.

(a) Detailed Results of Our Models

Model BLEURT BLEU ACC HM BLEURT BLEU ACC HM BLEURT BLEU ACC HM

Proportion of parallel training data 10% 50% 100%

OpenNMT (Bi-LSTM) -0.919 0.231 0.886 0.366 -0.489 0.392 0.789 0.524 -0.420 0.403 0.804 0.537
OpenNMT + SC -0.902 0.238 0.893 0.376 -0.500 0.386 0.821 0.526 -0.451 0.399 0.789 0.530
OpenNMT + BLEU -0.926 0.232 0.888 0.368 -0.485 0.389 0.800 0.523 -0.485 0.412 0.767 0.536
OpenNMT + SC & BLEU -0.903 0.234 0.890 0.371 -0.497 0.391 0.813 0.528 -0.442 0.403 0.810 0.538
GPT-2 base -0.042 0.492 0.741 0.592 0.004 0.541 0.825 0.653 0.006 0.549 0.821 0.658
GPT-2 + SC -0.048 0.492 0.810 0.612 -0.014 0.531 0.919 0.673 -0.001 0.543 0.917 0.682
GPT-2 + BLEU -0.041 0.497 0.735 0.593 0.006 0.539 0.833 0.655 0.005 0.546 0.822 0.656
GPT-2 + SC & BLEU -0.058 0.495 0.799 0.611 -0.014 0.530 0.903 0.668 -0.007 0.542 0.923 0.683
BART base 0.035 0.547 0.776 0.642 0.036 0.572 0.794 0.665 0.048 0.578 0.784 0.665
BART + SC 0.021 0.539 0.882 0.669 0.035 0.566 0.872 0.686 0.045 0.571 0.841 0.680
BART + BLEU 0.034 0.541 0.769 0.635 0.040 0.567 0.796 0.662 0.050 0.576 0.777 0.662
BART + SC & BLEU 0.030 0.547 0.855 0.667 0.042 0.562 0.817 0.666 0.044 0.577 0.859 0.690
BART large + SC & BLEU 0.035 0.560 0.847 0.674 0.070 0.585 0.900 0.709 0.072 0.584 0.886 0.704

COMBINED TWO DOMAINS WITHOUT DOMAIN TAG

BART base 0.038 0.559 0.731 0.634 0.050 0.581 0.795 0.671 0.054 0.585 0.809 0.679
BART + SC 0.031 0.546 0.830 0.659 0.043 0.575 0.865 0.691 0.039 0.585 0.884 0.704
BART + BLEU 0.033 0.555 0.743 0.635 0.042 0.575 0.810 0.673 0.054 0.583 0.814 0.679
BART + SC & BLEU 0.024 0.556 0.815 0.661 0.054 0.578 0.845 0.685 0.050 0.580 0.859 0.692
BART large + sc & BLEU 0.071 0.576 0.867 0.692 0.075 0.593 0.887 0.711 0.086 0.597 0.888 0.714

COMBINED TWO DOMAINS WITH DOMAIN TAG

BART base 0.042 0.552 0.754 0.637 0.054 0.579 0.748 0.653 0.060 0.582 0.787 0.669
BART + SC 0.035 0.555 0.831 0.666 0.039 0.571 0.833 0.678 0.046 0.579 0.895 0.703
BART + BLEU 0.039 0.554 0.745 0.635 0.056 0.578 0.745 0.651 0.049 0.588 0.825 0.685
BART + SC & BLEU 0.039 0.556 0.845 0.671 0.046 0.580 0.834 0.684 0.047 0.583 0.883 0.702
BART large + SC & BLEU 0.077 0.575 0.793 0.667 0.073 0.587 0.870 0.701 0.078 0.596 0.905 0.719

Table A.1.1: Evaluation results of x%-sized training sets (10%, 50% and 100%) on the E&M domain. The best
score for each metric in each table section is boldfaced. BLEURT scores are calculated based on the BLEURT-base
model with 128 tokens. Note that (i) Both BLEURT and BLEU are calculated against the four human references;
(ii) ACC is the accuracy of the output labeled as the target style by the binary classifier; and (iii) HM is the harmonic
mean of ACC and BLEU.
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Model BLEURT BLEU ACC HM BLEURT BLEU ACC HM BLEURT BLEU ACC HM

Proportion of parallel training data 10% 50% 100%

OpenNMT (Bi-LSTM) -0.706 0.303 0.859 0.448 -0.304 0.449 0.792 0.573 -0.304 0.477 0.789 0.595
OpenNMT + SC -0.695 0.322 0.860 0.469 -0.337 0.447 0.838 0.583 -0.289 0.466 0.824 0.595
OpenNMT + BLEU -0.712 0.311 0.829 0.452 -0.292 0.455 0.808 0.582 -0.246 0.478 0.789 0.595
OpenNMT + SC & BLEU -0.699 0.320 0.828 0.462 -0.332 0.444 0.847 0.583 -0.288 0.472 0.848 0.606
GPT-2 base -0.020 0.531 0.775 0.630 0.027 0.567 0.841 0.677 0.046 0.576 0.850 0.687
GPT-2 + SC -0.031 0.529 0.847 0.651 0.020 0.563 0.897 0.692 0.031 0.569 0.916 0.702
GPT-2 + BLEU -0.016 0.529 0.786 0.632 0.026 0.566 0.838 0.676 0.041 0.577 0.860 0.691
GPT-2 + SC & BLEU -0.027 0.528 0.849 0.651 0.015 0.562 0.917 0.697 0.038 0.572 0.915 0.704
BART base 0.045 0.565 0.719 0.633 0.071 0.589 0.786 0.673 0.080 0.600 0.801 0.686
BART + SC 0.041 0.569 0.833 0.676 0.061 0.592 0.869 0.704 0.067 0.601 0.874 0.712
BART + BLEU 0.041 0.566 0.719 0.633 0.072 0.590 0.789 0.675 0.078 0.602 0.798 0.686
BART + SC & BLEU 0.039 0.571 0.833 0.678 0.057 0.589 0.858 0.698 0.068 0.595 0.882 0.711
BART large + SC & BLEU 0.095 0.585 0.816 0.681 0.087 0.604 0.891 0.720 0.095 0.615 0.876 0.722

COMBINED TWO DOMAINS WITHOUT DOMAIN TAG

BART base 0.035 0.572 0.734 0.643 0.060 0.592 0.821 0.688 0.074 0.604 0.807 0.691
BART + SC 0.026 0.563 0.821 0.668 0.056 0.592 0.890 0.711 0.054 0.602 0.877 0.714
BART + BLEU 0.033 0.568 0.732 0.640 0.064 0.593 0.834 0.693 0.073 0.606 0.831 0.701
BART + SC & BLEU 0.028 0.572 0.812 0.671 0.054 0.596 0.843 0.698 0.063 0.601 0.872 0.712
BART large + SC & BLEU 0.087 0.598 0.869 0.708 0.094 0.607 0.871 0.715 0.100 0.610 0.889 0.724

COMBINED TWO DOMAINS WITH DOMAIN TAG

BART base 0.042 0.570 0.779 0.658 0.072 0.592 0.768 0.669 0.078 0.604 0.801 0.689
BART + SC 0.035 0.574 0.849 0.685 0.058 0.586 0.861 0.697 0.059 0.599 0.892 0.718
BART + BLEU 0.047 0.572 0.761 0.653 0.071 0.591 0.772 0.669 0.077 0.605 0.817 0.695
BART + SC & BLEU 0.043 0.573 0.850 0.685 0.057 0.595 0.849 0.700 0.064 0.603 0.896 0.721
BART large + SC & BLEU 0.089 0.590 0.801 0.679 0.099 0.604 0.869 0.713 0.100 0.611 0.900 0.728

Table A.1.2: Evaluation results of x%-sized training sets (10%, 50% and 100%) on the F&R domain. The best
score for each metric in each table section is boldfaced. BLEURT scores are calculated based on the BLEURT-base
model with 128 tokens. Note that (i) Both BLEURT and BLEU are calculated against the four human references;
(ii) ACC is the accuracy of the output labeled as the target style by the binary classifier; and (iii) HM is the harmonic
mean of ACC and BLEU.
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(b) Comparison of our models with the other models

Domain Model BLEURT BLEU ACC HM Model BLEURT BLEU ACC HM

E&M

(A) INFORMAL↔ FORMAL (B) INFORMAL −→ FORMAL
Rule-based (Rao and Tetreault, 2018) -0.221 0.420 0.704 0.526 GPT-CAT (train on E&M, Wang et al. (2019)) 0.170 0.713 0.905 0.801
NMT-baseline (Rao and Tetreault, 2018) -0.267 0.437 0.851 0.577 GPT-CAT (train on E&M and F&R, Wang et al. (2019)) 0.176 0.725 0.876 0.793
NMT-copy (Rao and Tetreault, 2018) -0.269 0.441 0.808 0.571 S2S-SLS(Wang et al. (2020)) 0.173 0.711 0.919 0.802
NMT-Combined (Rao and Tetreault, 2018) -0.100 0.501 0.797 0.615 Transformer (Zhang et al. (2020)) 0.191 0.734 0.887 0.803
PBMT-Combined (Rao and Tetreault, 2018) -0.088 0.502 0.753 0.602 Chawla’s (Chawla and Yang, 2020) 0.260 0.762 0.910 0.829
GPT-2 + SC & BLEU (10% data, Ours) -0.058 0.495 0.799 0.611 GPT-2 + SC & BLEU (train on E&M, Ours) 0.159 0.701 0.927 0.798
GPT-2 + SC & BLEU (100% data, Ours) -0.007 0.542 0.923 0.683 BART + SC & BLEU (train on E&M, Ours) 0.218 0.730 0.887 0.801
BART + SC & BLEU (10% data, Ours) 0.030 0.547 0.855 0.667 BART + SC & BLEU (train on E&M and F&R, Ours) 0.236 0.745 0.937 0.830
BART + SC & BLEU (100% data, Ours) 0.044 0.577 0.859 0.690 BART large + SC & BLEU (train on E&M and F&R, Ours) 0.274 0.765 0.929 0.839

(C) INFORMAL↔ FORMAL & COMBINED DOMAINS (D) BLEU EVALUATED AGAINST THE FIRST REFERENCE
Bi-directional FT (Niu et al., 2018) 0.023 0.554 0.818 0.661 *TS→CP (Sancheti et al., 2020) - 0.292 - -
BART large + SC & BLEU (10% data, Ours) 0.077 0.575 0.793 0.667 GPT-2 + SC & BLEU (100% data, Ours) - 0.296 - -
BART large + SC & BLEU (100% data, Ours) 0.078 0.596 0.905 0.719 BART + SC & BLEU (100% data, Ours) - 0.306 - -

F&R

(A) INFORMAL↔ FORMAL (B) INFORMAL −→ FORMAL
Rule-based (Rao and Tetreault, 2018) -0.226 0.450 0.738 0.559 *GPT-CAT (train on F&R, Wang et al. (2019)) - 0.773 - -
NMT-baseline (Rao and Tetreault, 2018) -0.183 0.500 0.818 0.621 *GPT-CAT (train on E&M and F&R, Wang et al. (2019)) - 0.769 - -
NMT-copy (Rao and Tetreault, 2018) -0.186 0.492 0.807 0.611 S2S-SLS(GPT-2, Wang et al. (2020)) 0.244 0.766 0.857 0.809
NMT-Combined (Rao and Tetreault, 2018) -0.089 0.527 0.798 0.635 Transformer (Zhang et al. (2020)) 0.246 0.770 0.890 0.827
PBMT-Combined (Rao and Tetreault, 2018) -0.062 0.517 0.788 0.624 Chawla’s (Chawla and Yang, 2020) 0.302 0.799 0.910 0.851
GPT-2 + SC & BLEU (10% data, Ours) -0.027 0.528 0.849 0.651 GPT-2 + SC & BLEU (train on F&R, Ours) 0.226 0.747 0.921 0.825
GPT-2 + SC & BLEU (100% data, Ours) 0.038 0.572 0.915 0.704 BART + SC & BLEU (train on F&R, Ours) 0.271 0.770 0.897 0.829
BART + SC & BLEU (10% data, Ours) 0.039 0.571 0.833 0.678 BART + SC & BLEU (train on F&R and E&M, Ours) 0.270 0.777 0.912 0.839
BART + SC & BLEU (100% data, Ours) 0.068 0.595 0.882 0.711 BART large + SC & BLEU (train on F&R and E&M, Ours) 0.324 0.793 0.920 0.852

(C) INFORMAL↔ FORMAL & COMBINED DOMAINS (D) 10% PARALLEL TRAINING DATA (FROM PAPER)
Bi-directional FT (Niu et al. (2018) 0.037 0.568 0.839 0.677 *CPLS (Shang et al., 2019) - 0.379 - -
BART large + SC & BLEU (10% data, Ours) 0.089 0.590 0.801 0.679 GPT-2 + SC & BLEU (Ours) - 0.528 - -
BART large + SC & BLEU (100% data, Ours) 0.100 0.611 0.900 0.728 BART + SC & BLEU (Ours) - 0.571 - -

Table A.1.3: Comparison of our models with the other models. The best score for each metric in each block is
boldfaced. BLEURT scores are calculated based on the BLEURT-base model with 128 tokens. Notes: (i) if the
output of a previous work is available, we re-calculate the scores using our evaluation metrics. Otherwise we take
the scores from the paper and mark this with a (*); (ii) in (B) we report our results on informal-to-formal alone to
compare with several systems which only transfer in this direction; (iii) in (C) we train systems on the concatenated
data from both domains, to compare against Niu et al. (2018); (iv) in (E&M (D)) we re-evaluate our system against
the first reference only, as this is what Sancheti et al. (2020) do.

A.2 Policy Gradient
Reinforcement learning (RL) is a sub-field of machine learning that is concerned with how intelligent
agents ought to take actions in an environment in order to maximize the cumulative reward. Here, we
employ the policy gradient algorithm (Williams, 1992) to maximize the expected reward (style strength
and/or content preservation) of the generated sequence ys, whose gradient with respect to the parameters
φ of the neural network model is estimated by sampling as:

∇φJ(φ) = R · ∇φ
∑

i

P (ysi |xi;φ)

=
∑

i

P (ysi |xi;φ)Ri∇θ log(P (ysi |xi;φ))

' 1

N

N∑

i=1

Ri∇φ log(P (ysi |xi;φ))

= E[R · ∇φlog(P (ys|x;φ))]

(8)

where J(·) is the objective function, ∇φJ(·) is the gradient of J(·) with respect to φ, Ri is the reward
of the ith sequence ys that is sampled from the distribution of model outputs at each decoding time step,
φ are the parameters of the model, N is the sample size, and E(·) is the expectation.

Regarding the reward of style classification for GPT-2 based model, we design two rewards (Eq. 4 and
Eq. 5) for source sentence and target sentence, respectively. The policy gradient is then

∇φJ(φ) = E[Rclssource · ∇φlog(P (yssource|xsource;φ))]

+ E[Rclstarget · ∇φlog(P (ystarget|xsource,target;φ))]
(9)
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A.3 Example Outputs of Various Models

System From informal to formal BLEURT BLEU ACC
Source i say omarion.he has the hair clothes and body,a triple deal on one person. -
Reference 1 My choice is Omarion as he has high quality, hair, clothes, and body to create a triple deal in one person. -
Reference 2 I would say Omarion because he has the hair, clothes, and body; A triple deal on a single person. -
Reference 3 I pick Omarion, he has the hair, the clothes, and the body. A triple deal on one person. -
Reference 4 Omarion has the hair, clothes, and the body. -
PBMT-Combined (Rao and Tetreault, 2018) I say omarion. he has the hair, clothes and body, the deal on one person. -0.153 0.509 0.946
Bi-directional FT (Niu et al., 2018) I say Omarion, he has the hair clothes and body, and a triple deal on one person. -0.149 0.510 0.953
GPT-CAT (Wang et al., 2019) I say Omarion. He has the hair, clothes, and body, a triple deal on one person. 0.044 0.585 1.000
S2S-SLS (Wang et al., 2020) I say Omarion. He has the hair clothes and body, a triple deal on one person. -0.035 0.350 1.000
Transformer (Zhang et al., 2020) I say omarionhe has the hair clothes and body, a triple deal on one person. -0.255 0.462 0.892
Chawla’s (Chawla and Yang, 2020) I say Marion because he has the hair, clothes and body, a triple deal on one person. -0.538 0.534 0.989
OpenNMT He has the hair clothes and body. -0.540 0.139 0.998
OpenNMT with SC I say Omarion, he has the hair clothes and body. -0.389 0.558 0.969
OpenNMT with BLEU I say Omarion. He has the hair clothes and body. -0.325 0.147 1.000
OpenNMT with SC & BLEU I say Omarion. He has the hair clothes and body. -0.325 0.147 1.000
GPT-2 base I say Omarion. He has the hair and body, a triple deal on one person. -0.087 0.342 1.000
GPT-2 + SC I say Omarion because he has the hair clothes and body. -0.264 0.634 0.976
GPT-2 + BLEU I say Omarion. He has the hair clothes and body, a triple deal on one person. -0.035 0.350 1.000
GPT-2 + SC & BLEU I say Omarion. He has the hair clothes and body, a triple deal on one person. -0.035 0.350 1.000
BART base I would say Omar. He has the hair, clothes, and body. It is a triple deal on one person. -0.012 0.589 1.000
BART + SC I would say Omar. He has the hair, clothes, and body. It is a triple deal on one person. -0.012 0.589 1.000
BART + BLEU I would say Omar. He has the hair, clothes, and body of a triple deal on one person. -0.230 0.600 1.000
BART + SC & BLEU I would say Omar. He has the hair, clothes, and body. It is a triple deal on one person. -0.012 0.589 1.000
BART large + SC & BLEU I would say Omarion. He has the hair, clothes, and body, a triple deal on one person. 0.096 0.657 1.000

System From formal to informal BLEURT BLEU ACC
Source I suggest avoiding hot dogs, and not watching this movie with your little sister. -
Reference 1 Don’t eat hot dogs, or watch this movie with your little sister! -
Reference 2 Don’t do hot dogs or this movie with your kid sister. -
Reference 3 don’t eat hot dogs and don’t watch it w/ ur lil sis! -
Reference 4 Don’t eat hot dogs or watch this flick with your lil sis! -
PBMT-Combined (Rao and Tetreault, 2018) I suggest avoiding hot dogs, and not watching this movie with your little sister. -0.298 0.417 0.004
Bi-directional FT (Niu et al., 2018) I suggest avoiding hot dogs and not watching this movie with your little sister. -0.233 0.437 0.009
OpenNMT hott dogs and not watching this movie with ur little sister -0.885 0.118 1.000
OpenNMT with SC Im not watching this movie with your little sister...I suggest him hot dogs. -0.765 0.349 0.981
OpenNMT with BLEU Well, and not watching this movie with your little sister. -0.826 0.445 0.633
OpenNMT with SC & BLEU Can’t watch this movie with your little sister. -0.521 0.542 0.783
GPT-2 base Don’t watch this movie with your little sister. -0.415 0.573 0.851
GPT-2 + SC don’t watch this movie with your little sister. -0.415 0.599 1.000
GPT-2 + BLEU Don’t watch this movie with your little sister! -0.360 0.634 0.919
GPT-2 + SC & BLEU don’t watch this movie with your little sister. -0.415 0.599 1.000
BART base avoid hot dogs and not watch this movie with your little sister. -0.016 0.610 0.925
BART + SC avoid hot dogs and not watch this movie with your little sister. -0.016 0.610 0.925
BART + BLEU avoid hot dogs and not watching this movie with your little sister. -0.034 0.514 0.910
BART + SC & BLEU avoid hot dogs and not watch this movie with your little sister. -0.016 0.610 0.925
BART large + SC & BLEU Avoid hot dogs and don’t watch this movie with your little sister. -0.171 0.800 0.825

Table A.3.1: Sample model outputs and their sentence-level scores on the E&M domain, where red denotes
improperly generated words or content. Note that ACC indicates style confidence here.
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Abstract

Existing works for aspect-based sentiment
analysis (ABSA) have adopted a unified ap-
proach, which allows the interactive relations
among subtasks. However, we observe that
these methods tend to predict polarities based
on the literal meaning of aspect and opinion
terms and mainly consider relations implic-
itly among subtasks at the word level. In addi-
tion, identifying multiple aspect–opinion pairs
with their polarities is much more challeng-
ing. Therefore, a comprehensive understand-
ing of contextual information w.r.t. the aspect
and opinion are further required in ABSA. In
this paper, we propose Deep Contextualized
Relation-Aware Network (DCRAN), which al-
lows interactive relations among subtasks with
deep contextual information based on two
modules (i.e., Aspect and Opinion Propagation
and Explicit Self-Supervised Strategies). Espe-
cially, we design novel self-supervised strate-
gies for ABSA, which have strengths in deal-
ing with multiple aspects. Experimental results
show that DCRAN significantly outperforms
previous state-of-the-art methods by large mar-
gins on three widely used benchmarks.

1 Introduction

Aspect-based sentiment analysis (ABSA) is a task
of identifying the sentiment polarity of associated
aspect terms in a sentence. Generally, ABSA is
composed of three subtasks, 1) aspect term ex-
traction (ATE), 2) opinion term extraction (OTE),
and 3) aspect-based sentiment classification (ASC).
Given the sentence “Food is good, but service is
dreadful.”, ATE aims to identify two-aspect terms
“food” and “service”, and OTE aims to determine
two-opinion terms “good” and “dreadful”. Then,

∗These two authors equally contributed to this work.
†This work was done while the author was an intern at

Kakao Enterprise.
‡Corresponding author.

Examples (Ground Truth) Model Aspect (Polarity) Opinion

E1
I’ve had better Japanese food (neg)
at a mall food court.

RACL Japanese food (pos) better
DCRAN Japanese food (neg) better

E2
The sushi (neg) is cut in blocks
bigger than my cell phone.

RACL sushi (neu) bigger
DCRAN sushi (neg) bigger

E3
While the smoothies (neg) are a little
bigger for me, the fresh juices (pos)
are the best I have ever had !

RACL
smoothies (pos)

fresh juices (pos)

bigger
fresh
best

DCRAN
smoothies (neg)
fresh juices (pos)

bigger
best

Table 1: Examples of ABSA results comparing to pre-
vious approach (Chen and Qian, 2020) that we reimple-
ment. All the results are based on BERTbase model for
a fair comparison. The polarity labels pos, neu, and neg,
denote positive, neutral, and negative, respectively.

ASC assigns a sentiment polarity of each aspect:
“food (positive)” and “service (negative)”.

Existing works for ABSA have adopted a two-
step approach, which considers each subtask sepa-
rately (Tang et al., 2016; Xu et al., 2018). However,
most recently, unified approaches have achieved
significant performance improvements in ABSA
task. Luo et al. (2020) focused on modeling the
interactions between aspect terms and Chen and
Qian (2020) exploited dyadic and triadic relations
between subtasks (i.e., ATE, OTE, ASC).

Despite the impressive results, their methods
have two limitations. First, they only consider re-
lations among subtasks at the word level and do
not explicitly utilize contextualized information of
the whole sequence. For example, E1 in Table 1,
the opinion term “better” seems to represent pos-
itive opinion of “Japanese food”. However, the
authentic meaning of E1 is “The Japanese food I
have had at the food court was more delicious than
the one I had at this restaurant”. Thus, previous
approaches tend to assign polarities based on the
literal meaning of aspect and opinion terms (E2).
Second, identifying multiple aspect–opinion pairs
and their polarities is much more challenging as the
model needs to not only detect multiple aspects and
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opinions but also correctly predict each polarity of
the aspect (E3).

To address the aforementioned issues, we pro-
pose Deep Contextualized Relation-Aware Net-
work (DCRAN) for ABSA. DCRAN not only im-
plicitly allows interactive relations among the sub-
tasks of ABSA, but also explicitly considers their
relations by using contextual information. Our
main contributions are as follows: 1) We design
aspect and opinion propagation decoder so that
the model has a comprehensive understanding of
the whole context, and thus it results in better pre-
diction of the polarity. 2) We propose novel self-
supervised strategies for ABSA, which are highly
effective in dealing with multiple aspects and con-
sidering deep contextualized information with the
aspect and opinion terms. To the best of our knowl-
edge, it is the first attempt to design explicit self-
supervised methods for ABSA. 3) Experimental
results demonstrate that DCRAN significantly out-
performs previous state-of-the-art methods on three
widely used benchmarks.

2 DCRAN: Deep Contextualized
Relation-Aware Network

2.1 Task Definition

Given a sentence S = {w1, w2, ..., wn}, where n
denotes the number of tokens, we aim to solve
three subtasks: aspect term extraction (ATE), opin-
ion term extraction (OTE), and aspect-based sen-
timent classification (ASC) as sequence labeling
problems. ATE task aims to identify a sequence
of aspect terms Y a = {ya1 , ya2 , ..., yan}, where
yai ∈ {B, I,O}, and OTE task aims to identify
a sequence of opinion terms Y o = {yo1, yo2, ..., yon},
where yoi ∈ {B, I,O} of aspect and opinion terms,
respectively. Likewise, ASC task aims to assign
a sequence of polarities Y p = {yp1 , yp2 , ..., ypn},
where ypi ∈ {POS,NEU,NEG,O}. The labels
POS, NEU, and NEG denote positive, neutral, and
negative, respectively.

2.2 Task-Shared Representation Learning

Following existing works, we utilize pre-trained
language models, such as BERT (Devlin et al.,
2019) and ELECTRA (Clark et al., 2020) as the
shared encoder to construct context representa-
tion, which is shared by subtasks: ATE, OTE, and
ASC. Given a sentence S = {w1, w2, ..., wn}, pre-
trained language models take the input sequence,
Xabsa = [[CLS]w1w2 ... wn [SEP]], and output a se-

quence of the shared context representation, H =
{h[CLS], h1, h2, ..., hn, h[SEP]} ∈ Rdh×(n+2), where
dh represents a dimension of the shared encoder.
We represent the parameters of the shared encoder
as Θs. Then, we utilize a single-layer feed-forward
neural network (FFNN) as,

Za = (W1h[1:n+1] + b1)

Ŷ a = softmax(W2Z
a + b2),

(1)

where W1 ∈ Rdh×dh and W2 ∈ R3×dh are train-
able parameters. The parameters of a single-layer
FFNN are represented as Θa for aspect term ex-
traction. The objective of aspect term extraction is
minimizing the negative log-likelihood (NLL) loss:
Late(Θs,Θa) = −∑ log p(Y a|H). Likewise, Zo

and Ŷ o are obtained as in Equation 1. Then, the
NLL loss of opinion term extraction is defined as,
Lote(Θs,Θo) = −∑ log p(Y o|H).

2.3 Aspect and Opinion Propagation
We utilize the transformer-decoder (Vaswani et al.,
2017) to consider relations of aspect and opin-
ion while predicting a sequence of polarities. Our
transformer-decoder is mainly composed of a multi-
head self-attention, two multi-head cross atten-
tion, and a feed-forward layer. The multi-head self-
attention takes shared context representation H as,

Uh = LN(H + SelfAttn(H,H,H)) (2)

and Uh, Za, and Zo are fed into two steps of cross
multi-head attention as,

Ua = LN(Uh + CrossAttn(Uh, Za, Za)) (3)

Uo = LN(Ua + CrossAttn(Ua, Zo, Zo)) (4)

where LN represents layer norm (Ba et al.,
2016). Note that Equation 3 and 4 represent as-
pect and opinion propagation, respectively. Then
Uo is fed into a single-layer FFNN to ob-
tain a sequence of polarities Y p. The objec-
tive of aspect-based sentiment analysis is min-
imizing the NLL loss: Lasc(Θs,Θa,Θo,Θp) =
−∑ log p(Y p|H,Za, Zo). The architecture of the
aspect and opinion propagation is described in Fig-
ure 1-(a).

2.4 Explicit Self-Supervised Strategies
To further exploit the aspect–opinion relation with
contextualized information of a sentence, we pro-
pose explicit self-supervised strategies consisting
of two auxiliary tasks: 1) type-specific masked term
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Figure 1: Overall architecture of Deep Contextualized Relation-Aware Network (DCRAN) for ABSA.

discrimination (TSMTD) and 2) pairwise relations
discrimination (PRD). The examples of Explicit
Self-Supervised Strategies are described in Figure 1-
(b).

Type-Specific Masked Term Discrimination
In the type-specific masked term discrimination
task, we uniformly mask aspects, opinions, and
terms that do not correspond to both, using the
special token [MASK]. The input sequence of a
masked sentence is represented as, Xtsmtd =
[[CLS]w1 ... [MASK]i ... wn [SEP]], and is fed into
pre-trained language models. Then, the output rep-
resentation of [CLS] token is used to classify which
type of term is masked in a sentence as,

Ŷ m = softmax(W3h[CLS] + b3),

where W3 ∈ R3×dh represents trainable parame-
ters and Ŷ m ∈ {Aspect, Opinion,O}. The pa-
rameters of a linear projection layer are repre-
sented as Θm for the type-specific masked term
discrimination. Then, the NLL loss of the type-
specific masked term discrimination is defined
as: Ltsmtd(Θs,Θm) = −∑ log p(Y m|H). This al-
lows the model to explicitly exploit sentence in-
formation by discriminating what kind of term is
masked.

Pairwise Relations Discrimination In this task,
we uniformly replace both aspects and opinion
terms using the special token [REL]. The input se-
quence of a masked sentence is represented as,
Xprd = [[CLS]w1 ... [REL]i ... [REL]j ... wn [SEP]],
and is fed into pre-trained language models. Then,
the output representation of [CLS] token is used to

discriminate whether the replaced tokens have a
pairwise relation as,

Ŷ r = softmax(W4h[CLS] + b4),

where W4 ∈ R2×dh represents trainable parame-
ters and Ŷ r ∈ {True, False}. The parameters of a
linear projection layer are represented as Θr for the
pairwise relations discrimination. Then, the NLL
loss of the pairwise relations discrimination is de-
fined as: Lprd(Θs,Θr) = −∑ log p(Y r|H). We
describe the negative sampling method to replace
aspects and opinion terms in Appendix A.2.

2.5 Joint Learning Procedure
All these tasks are jointly trained, and the final
objective is defined as,

Labsa = Late + Lote + Lasc

Laux = Ltsmtd + Lprd

Lfinal = Labsa + αLaux

where α is a hyper-parameter determining the de-
gree of auxiliary tasks. Note that the parameters
Θs are optimized for all subtasks. Especially, the
parameters Θs are further optimized through Ltsmtd
and Lprd to explicitly exploit the relations between
aspect and opinion with context meaning.

3 Experiments

3.1 Experimental Setup
We evaluate our model on three widely used
sentiment analysis benchmarks: laptop reviews
(LAP14), restaurant reviews (REST14) from (Pon-
tiki et al., 2014), and restaurant reviews (REST15)
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LAP14 REST14 REST15
ATE-F1 OTE-F1 ASC-F1 ABSA-F1 ATE-F1 OTE-F1 ASC-F1 ABSA-F1 ATE-F1 OTE-F1 ASC-F1 ABSA-F1

MNN (Wang et al., 2018) GloVe 76.94 77.77 65.98 53.80 83.05 84.55 68.45 63.87 70.24 69.38 57.90 56.57
E2E-TBSA (Li et al., 2019) GloVe 77.34 76.62 68.24 55.88 83.92 84.97 68.38 66.60 69.40 71.43 58.81 57.38
DOER (Luo et al., 2019) GloVe 80.21 - 60.18 56.71 84.63 - 64.50 68.55 67.47 - 36.76 50.31
IMN−d (He et al., 2019) GloVe 78.46 78.14 69.62 57.66 84.01 85.64 71.90 68.32 69.80 72.11 60.65 57.91
RACL (Chen and Qian, 2020) GloVe 81.99 79.76 71.09 60.63 85.37 85.32 74.46 70.67 72.82 78.06 68.69 60.31
WHW (Peng et al., 2020) GloVe - 74.84 - 62.34 - 82.45 - 71.95 - 78.02 - 65.79
IKTN (Liang et al., 2020) BERTbase 80.89 78.90 73.42 62.34 86.13 86.62 74.35 71.75 71.63 76.79 69.85 62.33
SPAN (Hu et al., 2019) BERTlarge 82.34 - 62.50 61.25 86.71 - 71.75 73.68 74.63 - 50.28 62.29
IMN−d (He et al., 2019) BERTlarge 77.55 81.00 75.56 61.73 84.06 85.10 75.67 70.72 69.90 73.29 70.10 60.22
Dual-MRC (Mao et al., 2021) BERTlarge 82.51 - 75.97 65.94 86.60 - 82.04 75.95 75.08 - 73.59 65.08
RACL (Chen and Qian, 2020) BERTlarge 81.79 79.72 73.91 63.40 86.38 87.18 81.61 75.42 73.99 76.00 74.91 66.05

DCRAN (Ours)

BERTbase 81.76 78.84 77.02 65.18 88.21 86.36 78.67 75.77 71.61 75.86 73.30 63.19
BERTlarge 83.40 79.72 78.75 68.07 88.73 86.07 80.64 77.28 74.45 78.45 76.30 67.92
ELECTRAbase 85.69 80.19 79.36 70.22 89.64 87.30 84.12 80.00 77.41 78.80 78.55 71.67
ELECTRAlarge 85.61 79.77 80.78 71.47 89.67 87.59 84.22 80.32 79.68 79.90 77.99 73.67

Table 2: Evaluation results on the LAP14, REST14, and REST15 datasets, which are provided by Chen and Qian
(2020). All the results except ours are cited from the existing works (Chen and Qian, 2020; Peng et al., 2020; Mao
et al., 2021) and all the baselines are described in Appendix A.4. We report average results over five runs with
random initialization. The best scores are in bold, and the second-best scores are underlined depending on the
types of the pre-trained language model. ‘-’ denotes unreported results.

from (Pontiki et al., 2015). Primitive versions
of these benchmarks only provide aspect terms
and sentiment polarities, while opinion terms are
provided by Wang et al. (2016, 2017) later. Re-
cently, Fan et al. (2019) provides aspect-opinion
pairwise datasets (Section 2.4). Following He et al.
(2019), we set four evaluation metrics: ATE-F1,
OTE-F1, ASC-F1, and ABSA-F1. The ATE-F1,
OTE-F1, and ASC-F1 measure each subtask’s F-1
scores, and ABSA-F1 measures complete ABSA,
which counts only when both ATE and ASC pre-
dictions are correct.

3.2 Quantitative Results

Table 2 reports the quantitative results on the
LAP14, REST14, and REST15 datasets. Our ex-
periments utilize two pre-trained language models
such as BERT and ELECTRA, for the shared en-
coder. First, we observe that DCRAN-BERTbase

shows slightly lower ABSA-F1 scores than pre-
vious state-of-the-art methods, which is based on
BERTlarge, on the REST14 and LAP14 datasets
except for the REST15 dataset. This suggests that
our proposed methods are highly effective for
ABSA. Overall, DCRAN-BERTlarge significantly
outperforms previous state-of-the-art methods in
all metrics. Another observation is that ELECTRA
based models outperform BERT based models. As
a result, DCRAN-ELECTRAlarge achieves abso-
lute gains over previous state-of-the-art results by
5.5%, 4.4%, and 7.6% in ABSA-F1 on the LAP14,
REST14, and REST15 datasets, respectively.

3.3 Ablation Study

To study the effectiveness of the aspect propaga-
tion (AP), opinion propagation (OP), type-specific

ABSA-F1

DCRAN-ELECTRAbase 80.00†

Aspect and Opinion
Propagation

w/o AP 79.44†

w/o OP 79.58†

w/o AP & OP 79.08†

Explicit Self-Supervised
Strategies

w/o TSMTD 79.56†

w/o PRD 79.40†

w/o TSMTD & PRD 79.03†

Baseline
w/o & AP & OP

& TSMTD & PRD
78.61

Table 3: Ablation study on the REST14 dataset. We
choose DCRAN-ELECTRAbase as the baseline. † de-
notes statistical significance (p-value < 0.05).

masked term discrimination (TSMTD), and pair-
wise relations discrimination (PRD), we conduct
ablation experiments on the REST14 dataset. We
set the baseline model that did not utilize aspect and
opinion propagation and explicit self-supervised
strategies. When the AP and OP are not utilized,
a single-layer FFNN is utilized as in Equation 1
to predict a sequence of polarities Y p instead of
transformer-decoder. As shown in Table 3, we can
observe that the AP is more effective than the OP,
and scores drop significantly when not utilizing the
AP and OP. In the case of explicit self-supervised
strategies, we can observe that the PRD is more
effective than the TSMTD. As the PRD objective
is discriminating whether the replace tokens have
a pairwise aspect–opinion relations, it allows the
model to more exploit the relations between aspect
and opinion at a sentence level.

3.4 Aspect Analysis

We conduct aspect analysis by comparing sen-
tences with single- and multiple-aspect. As shown
in Table 4, Aspect and Opinion Propagation signif-
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REST14 REST15
ABSA-F1 Sent-level Acc. ABSA-F1 Sent-level Acc.

Single-
Aspect

DCRAN ELECTRAbase 78.62 74.48 66.23 67.69
w/o TSMTD & PRD 78.42 73.79 64.21 66.67
w/o TSMTD & PRD & AP & OP 77.45 73.10 62.50 64.29

Multiple-
Aspect

DCRAN ELECTRAbase 81.19 64.24 68.20 52.34
w/o TSMTD & PRD 80.22 61.70 65.16 48.60
w/o TSMTD & PRD & AP & OP 79.88 61.39 64.84 46.73

Table 4: Aspect analysis on the REST14 and REST15 datasets. Comparisons of ABSA-F1 and sentence-level
accuracy results for the case when the sentence contains single-aspect or multiple-aspect.

icantly improves performance when the sentence
contains a single-aspect, while a small increase
is observed w.r.t. the case of multiple-aspect. Al-
though considering the relations between aspect
and opinion implicitly can improve performance
w.r.t. the case of single-aspect, it is not sufficient
for inducing performance improvement for the
multiple-aspect case. It suggests that additional ex-
plicit tasks are further required to identify multiple-
aspect with corresponding opinions, which helps
the model assign polarities correctly. In the case
of multiple-aspect, Explicit Self-Supervised Strate-
gies show absolute ABSA-F1 improvements of
0.97% (80.22% → 81.19%) and 3.04% (65.16%
→ 68.20) on the REST14 and REST15 datasets,
respectively. This indicates explicit self-supervised
strategies are highly effective for correctly identi-
fying ABSA when the sentence contains multiple-
aspect. In addition, the performance gain by Ex-
plicit Self-Supervised Strategies in Table 3 is mostly
derived from the multiple-aspect cases (+0.97%),
thus our proposed model has strengths in dealing
with multiple aspects.

In ABSA, it is important to accurately predict
all aspects and corresponding sentiment polarities
in one sentence. Since ABSA-F1 is a word-level
based metric, it still has a limitation to evaluate
whether all aspects and corresponding polarities
are correct or not. Therefore, we also evaluate our
method with sentence-level accuracy; the number
of sentences that accurately predicted all aspects
and polarity in a sentence divided by total number
of sentences. Unlike ABSA-F1, the sentence-level
accuracy of multiple-aspect is lower than that of
single-aspect, which implies identifying multiple
aspects and their polarities is more challenging.
In the case of multiple-aspect, our Explicit Self-
Supervised Strategies leads significant sentence-
level accuracy improvements of 2.54% (61.70%
→ 64.24%) and 3.74% (48.60% → 52.34%) on
the REST14 and REST15 datasets, respectively.
However, we observe only small improvements

in sentence-level accuracy on both datasets when
the sentence contains single-aspect. From these
observations, we demonstrate that our proposed
method is highly effective for the case when the
sentence contains multiple aspects.

4 Conclusion

In this paper, we proposed the Deep Contextual-
ized Relation-Aware Network (DCRAN) for aspect-
based sentiment analysis. DCRAN allows interac-
tion between subtasks implicitly in a more effective
manner and two explicit self-supervised strategies
for deep context- and relation-aware learning. We
obtained the new state-of-the-art results on three
widely used benchmarks.
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A Appendix

A.1 Related Work

Existing works have studied a two-step approach
for ABSA. In a two-step approach, each model for
ATE, OTE, and ASC are separately trained and are
merged in a pipelined manner (Wang et al., 2016;
Tang et al., 2016; Wang et al., 2017; He et al., 2017;
Xu et al., 2018; Yu et al., 2018; Li et al., 2018;
Chen and Qian, 2019). However, the errors from
other tasks can be propagated to the ASC and can
degrade performance after all.

Most recently, a unified approach that comprised
of joint approach (Garcı́a-Pablos et al., 2018; Luo
et al., 2019; He et al., 2019; Luo et al., 2020) and
collapsed approach (Li and Lu, 2017; Ma et al.,
2018; Wang et al., 2018; Li et al., 2019) has been
proposed. A joint approach labels each word with
different tag sets for each task: ATE, OTE, and
ASC. On the other hand, a collapsed approach la-
bels each word as the combined one of ATE and
ASC, such as “B-POSITIVE” and “I-POSITIVE”,
where “B” and “I” represent the aspect term bound-
ary, and “POSITIVE” represents polarity. How-
ever, in a collapsed approach, the relations among
subtasks cannot be effectively exploited because
subtasks need to share all representation without
distinction of each task. Therefore, a joint training
approach allows the interactive relations between
subtasks, while a collapsed approach is not.

A.2 Negative Sampling Algorithm for
Pairwise Relations Discrimination

Algorithm 1 describes the negative sampling pro-
cedure in pairwise relations discrimination. The
get sample function takes a list of aspect-opinion
pairs in a sentence and replaces them with [REL]
tokens. Then, if the replaced tokens have pairwise
relations, set the target label as True, and set as
False if not. The get pair function randomly selects
a pairwise aspect and opinion, and the get neg pair
function selects aspects and opinions of different
pairs when there are two or more pairs in a sen-
tence.

A.3 Implementation Details

We implemented our model by using the PyTorch
(Paszke et al., 2019) deep learning library based on
the open source1 (i.e., Transformers (Wolf et al.,
2020)). For the shared encoder, we adopt four

1https://github.com/huggingface/transformers

Algorithm 1 Negative Sampling Algorithm for
Pairwise Relations Discrimination
Input: pairs: list of aspect–opinion pairs in a sen-

tence
Output: pair, target

function GET SAMPLE(pairs)
if count(pairs) == 0 then

return None, None
else if count(pairs) == 1 then

return pairs[0], True
else

random = {0<random ≤ 1}
if random ≤ 0.25 then

return get pair(pairs), True
else

return get neg pair(pairs), False

types of pre-trained language models: BERTbase,
BERTlarge, ELECTRAbase, and ELECTRAlarge.
We set the batch size to 64 for the base model, 12
for the BERTlarge and 32 for the ELECTRAlarge.
We set the initial learning rate to 5e-5 for BERTbase

and ELECTRAbase, 2e-5 for BERTlarge, and 5e-6
for ELECTRAlarge. For the transformer decoder,
we set the number of heads in multi-head attention
and hidden layers to 2 among range from 2 to 6, and
hidden dimension size to 768. In the case of α, we
obtained the best results when α is 1. The average
runtime for each approach was about 20 seconds
for BERTbase and ELECTRAbase, and 90 seconds
for BERTlarge and ELECTRAlarge. We train our
models using AdamP (Heo et al., 2021) optimizer
and conduct experiments with Tesla V100 GPU for
all the experiments.

A.4 Baselines

We compare our model with the following previous
works2.

MNN (Wang et al., 2018) is a multi-task model
for ATE and ASC using attention mechanisms to
learn the joint representation of aspect and polarity
relations.

E2E-TBSA (Li et al., 2019) is an end-to-end
model of the collapsed approach for ATE and ASC.
Additionally, it introduces the auxiliary OTE task
without explicit interaction.

2We do not compare our work with GRACE (Luo et al.,
2020) as Luo et al. (2020) contains conflict tag in polarities.
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Examples (Ground Truth) Model Aspect (Polarity) Opinion

E1
I have worked in restaurants and cook a lot,
and there is no way a maggot should be able
to get into well prepared food (neg).

RACL food (pos) well
DCRAN w/o food (pos) well prepared

DCRAN food (neg) well prepared

E2
All in all, I would return - as it was a beautiful
restaurant (pos) - but I hope the staff (neg)
pays more attention to the little details in the future.

RACL - -

DCRAN w/o
restaurant (pos)

staff (pos)
beautiful

DCRAN
restaurant (pos)

staff (neg)
beautiful

E3
I have never been so disgusted by both
food (neg) and service (neg)

RACL
food (pos)

service (pos)
disgusted

DCRAN w/o
food (pos)

service (neg)
disgusted

DCRAN
food (neg)

service (neg)
disgusted

Table 5: Case study on the REST15 dataset. Model comparison between previous state-of-the-art method
(RACL) (Chen and Qian, 2020) and our proposed method (DCRAN). DCRAN w/o denotes DCRAN without
Explicit Self-Supervised Strategies (Section 2.4). All models are built based on the BERTbase model. The polarity
labels pos, neu, and neg denote positive, neutral, and negative, respectively. ‘-’ denotes that the model failed to
extract corresponding terms.

DOER (Luo et al., 2019) is a dual cross-shared
RNN framework that jointly trains ATE and ASC.
It considers relations between aspect and polarity.

IMN (He et al., 2019) is a multi-task model for
ATE and ASC with separate labels. The OTE task
is fused into ATE by constructing five-class labels.

WHW (Peng et al., 2020) is a unified two-stage
framework to extract (aspect, opinion, polarity)
triples as a result of ATE, OTE, and ASC.

IKTN (Liang et al., 2020) is an iterative knowl-
edge transfer network for ABSA considering the
semantic correlations among the ATE, OTE, and
ASC.

SPAN (Hu et al., 2019) is a pipeline approach
to solve ATE and ASC using BERTlarge. It uses a
multi-target extractor for ATE and a polarity classi-
fier for ASC.

RACL (Chen and Qian, 2020) defines interac-
tive relations among ATE, OTE, and ASC. It pro-
poses relation propagation mechanisms through the
stacked multi-layer network.

Dual-MRC (Mao et al., 2021) leverages two
machine reading comprehension problems to solve
ATE and ASC. It jointly trains two BERT-MRC
models sharing parameters.

A.5 Case Study

In E1 and E3, while all models correctly extract
both aspect and opinion, RACL and DCRAN w/o
make inaccurate polarities predictions based on
the words having superficial meaning (i.e., well

prepared, disgusted). Especially, E3 expresses a
sarcastic opinion about aspect terms throughout the
sentence. It suggests that these models cannot un-
derstand the authentic meaning of the sentence. On
the other hand, DCRAN grasps the entire context
and predicts the correct polarity corresponding to
its aspect. In E2, the evidence for understanding
the actual meaning of the aspect term staff is not
specified in a word-level opinion and expressed
in a sentence like “I hope the staff pays more at-
tention to the little details in the future”. In this
case, RACL can not extract aspect and opinion
terms, and DCRAN w/o make inaccurate polari-
ties predictions for the aspect term staff based on
the opinion term beautiful. However, DCRAN with
Explicit Self-Supervised Strategies understands the
sentence expressing an opinion on the staff and
predicts correctly.

503



Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Short Papers), pages 504–510

August 1–6, 2021. ©2021 Association for Computational Linguistics

Towards Generative Aspect-Based Sentiment Analysis∗

Wenxuan Zhang1, Xin Li2, Yang Deng1, Lidong Bing2 and Wai Lam1

1The Chinese University of Hong Kong
2DAMO Academy, Alibaba Group

{wxzhang,ydeng,wlam}@se.cuhk.edu.hk
{xinting.lx,l.bing}@alibaba-inc.com

Abstract

Aspect-based sentiment analysis (ABSA) has
received increasing attention recently. Most
existing work tackles ABSA in a discrimina-
tive manner, designing various task-specific
classification networks for the prediction. De-
spite their effectiveness, these methods ignore
the rich label semantics in ABSA problems
and require extensive task-specific designs. In
this paper, we propose to tackle various ABSA
tasks in a unified generative framework. Two
types of paradigms, namely annotation-style
and extraction-style modeling, are designed
to enable the training process by formulating
each ABSA task as a text generation problem.
We conduct experiments on four ABSA tasks
across multiple benchmark datasets where our
proposed generative approach achieves new
state-of-the-art results in almost all cases. This
also validates the strong generality of the pro-
posed framework which can be easily adapted
to arbitrary ABSA task without additional task-
specific model design.1

1 Introduction

Aspect-based sentiment analysis (ABSA), aiming
at mining fine-grained opinion information towards
specific aspects, has attracted increasing attention
in recent years (Liu, 2012). Multiple fundamental
sentiment elements are involved in ABSA, includ-
ing the aspect term, opinion term, aspect category,
and sentiment polarity. Given a simple example
sentence “The pizza is delicious.”, the correspond-
ing elements are “pizza”, “delicious”, “food quality”
and “positive”, respectively.

∗Work done when Wenxuan Zhang was an intern at Al-
ibaba. The work described in this paper is partially supported
by a grant from the Research Grant Council of the Hong
Kong Special Administrative Region, China (Project Code:
14200719).

1The data and code can be found at https://github.
com/IsakZhang/Generative-ABSA

The main research line of ABSA focuses on the
identification of those sentiment elements such as
extracting the aspect term (Liu et al., 2015; Yin
et al., 2016; Li et al., 2018; Ma et al., 2019) or clas-
sifying the sentiment polarity for a given aspect
(Wang et al., 2016; Chen et al., 2017; Jiang et al.,
2019; Zhang and Qian, 2020). To provide more
detailed information, many recent studies propose
to jointly predict multiple elements simultaneously
(Li et al., 2019a; Wan et al., 2020; Peng et al.,
2020; Zhao et al., 2020). Taking the Unified ABSA
(UABSA, also called End-to-End ABSA) task as
an example, it tries to simultaneously predict the
mentioned aspect terms and the corresponding sen-
timent polarities (Luo et al., 2019; He et al., 2019).

In general, most ABSA tasks are formulated as
either sequence-level or token-level classification
problems (Li et al., 2019b). By designing task-
specific classification networks, the prediction is
made in a discriminative manner, using the class in-
dex as labels for training (Huang and Carley, 2018;
Wan et al., 2020). However, these methods ignore
the label semantics, i.e., the meaning of the nat-
ural language labels, during the training process.
Intuitively, knowing the meaning of “food quality”
and “restaurant ambiance”, it can be much easier
to identify that the former one is more likely to
be the correct aspect category for the concerned
aspect “pizza”. Such semantics of the label can
be more helpful for the joint extraction of multiple
sentiment elements, due to the complicated inter-
actions of those involved elements. For example,
understanding “delicious” is an adjective for de-
scribing the food such as “pizza” could better lead
to the prediction of aspect opinion pair (“pizza”,
“delicious”). Another issue is that different clas-
sification models are proposed to suit the need of
different ABSA problems, making it difficult to
adapt the model from one to another.

Motivated by recent success in formulating sev-
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eral language understanding problems such as
named entity recognition, question answering, and
text classification as generation tasks (Raffel et al.,
2020; Athiwaratkun et al., 2020), we propose to
tackle various ABSA problems in a unified gen-
erative approach in this paper. It can fully utilize
the rich label semantics by encoding the natural
language label into the target output. Moreover,
this unified generative model can be seamlessly
adapted to multiple tasks without introducing addi-
tional task-specific model designs.

In order to enable the Generative Aspect-based
Sentiment analysis (GAS), we tailor-make two
paradigms, namely annotation-style and extraction-
style modeling to transform the original task as a
generation problem. Given a sentence, the former
one adds annotations on it to include the label in-
formation when constructing the target sentence;
while the latter directly adopts the desired natural
language label of the input sentence as the target.
The original sentence and the target sentence pro-
duced by either paradigm can then be paired as a
training instance of the generation model. Further-
more, we propose a prediction normalization strat-
egy to handle the issue that the generated sentiment
element falls out of its corresponding label vocabu-
lary set. We investigate four ABSA tasks including
Aspect Opinion Pair Extraction (AOPE), Unified
ABSA (UABSA), Aspect Sentiment Triplet Extrac-
tion (ASTE), and Target Aspect Sentiment Detec-
tion (TASD) with the proposed unified GAS frame-
work to verify its effectiveness and generality.

Our main contributions are 1) We tackle various
ABSA tasks in a novel generative manner; 2) We
propose two paradigms to formulate each task as a
generation problem and a prediction normalization
strategy to refine the generated outputs; 3) We con-
duct experiments on multiple benchmark datasets
across four ABSA tasks and our approach surpasses
previous state-of-the-art in almost all cases. Specif-
ically, we obtain 7.6 and 3.7 averaged gains on the
challenging ASTE and TASD task respectively.

2 Generative ABSA (GAS)

2.1 ABSA with Generative Paradigm

In this section, we describe the investigated ABSA
tasks and the proposed two paradigms, namely,
annotation-style and extraction-style modeling.

Aspect Opinion Pair Extraction (AOPE) aims
to extract aspect terms and their corresponding

opinion terms as pairs (Zhao et al., 2020; Chen
et al., 2020). Here is an illustrative example of our
generative formulations for the AOPE task:

Input: Salads were fantastic, our server was
also very helpful.
Target (Annotation-style): [Salads
| fantastic] were fantastic here, our [server |
helpful] was also very helpful.
Target (Extraction-style): (Salads,
fantastic); (server, helpful)

In the annotation-style paradigm, to indicate the
pair relations between the aspect and opinion terms,
we append the associated opinion modifier to each
aspect term in the form of [aspect | opinion] for
constructing the target sentence, as shown in the
above example. The prediction of the coupled as-
pect and opinion term is thus achieved by including
them in the same bracket. For the extraction-style
paradigm, we treat the desired pairs as the target,
which resembles direct extraction of the expected
sentiment elements but in a generative manner.

Unified ABSA (UABSA) is the task of extract-
ing aspect terms and predicting their sentiment po-
larities at the same time (Li et al., 2019a; Chen and
Qian, 2020). We also formulate it as an (aspect,
sentiment polarity) pair extraction problem. For
the same example given above, we aim to extract
two pairs: (Salads, positive) and (server, positive).
Similarly, we replace each aspect term as [aspect |
sentiment polarity] under the annotation-style for-
mulation and treat the desired pairs as the target
output in the extraction-style paradigm to reformu-
late the UABSA task as a text generation problem.

Aspect Sentiment Triplet Extraction (ASTE)
aims to discover more complicated (aspect, opin-
ion, sentiment polarity) triplets (Peng et al., 2020):

Input: The Unibody construction is solid,
sleek and beautiful.
Target (Annotation-style): The
[Unibody construction | positive | solid, sleek,
beautiful] is solid, sleek and beautiful.
Target (Extraction-style): (Uni-
body construction, solid, positive); (Unibody
construction, sleek, positive); (Unibody
construction, beautiful, positive);

As shown above, we annotate each aspect term
with its corresponding sentiment triplet wrapped
in the bracket, i.e., [aspect|opinion|sentiment po-
larity] for the annotation-style modeling. Note that
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we will include all the opinion modifiers of the
same aspect term within the same bracket to pre-
dict the sentiment polarities more accurately. For
the extraction-style paradigm, we just concatenate
all triplets as the target output.

Target Aspect Sentiment Detection (TASD) is
the task to detect all (aspect term, aspect category,
sentiment polarity) triplets for a given sentence
(Wan et al., 2020), where the aspect category be-
longs to a pre-defined category set. For example,

Input: A big disappointment, all around. The
pizza was cold and the cheese wasn’t even fully
melted.
Target (Annotation-style): A big
disappointment, all around. The [pizza | food
quality | negative] was cold and the [cheese |
food quality | negative] wasn’t even fully melted
[null | restaurant general | negative].
Target (Extraction-style): (pizza,
food quality, negative); (cheese, food quality,
negative); (null, restaurant general, negative);

Similarly, we pack each aspect term, the aspect
category it belongs to, and its sentiment polarity
into a bracket to build the target sentence for the
annotation-style method. Note that we use a bigram
expression for the aspect category instead of the
original uppercase form “FOOD#QUALITY” to
make the annotated target sentence more natural.
As presented in the example, some triplets may not
have explicitly-mentioned aspect terms, we thus
use “null” to represent it and put such triplets at the
end of the target output. For the extraction-style
paradigm, we concatenate all the desired triplets,
including those with implicit aspect terms, as the
target sentence for sequence-to-sequence learning.

2.2 Generation Model

Given the input sentence x, we generate a target se-
quence y′, which is either based on the annotation-
style or extraction-style paradigm as described in
the last section, with a text generation model f(·).
Then the desired sentiment pairs or triplets s can be
decoded from the generated sequence y′. Specif-
ically, for the annotation-style modeling, we ex-
tract the contents included in the bracket “[]” from
y′, and separate different sentiment elements with
the vertical bar “|”. If such decoding fails, e.g.,
we cannot find any bracket in the output sentence
or the number of vertical bars is not as expected,

L14 R14 R15 R16

HAST+TOWE† 53.41 62.39 58.12 63.84
JERE-MHS† 52.34 66.02 59.64 67.65
SpanMlt (Zhao et al., 2020) 68.66 75.60 64.68 71.78
SDRN (Chen et al., 2020) 66.18 73.30 65.75 73.67

GAS-ANNOTATION-R 68.74 72.66 65.03 73.75
GAS-EXTRACTION-R 67.58 73.22 65.83 74.12
GAS-ANNOTATION 69.55 75.15 67.93 75.42
GAS-EXTRACTION 68.08 74.12 67.19 74.54

Table 1: Main results of the AOPE task. The best re-
sults are in bold, second best results are underlined. Re-
sults are the average F1 scores over 5 runs. † denotes
results are from Zhao et al. (2020).

L14 R14 R15 R16

BERT+GRU (Li et al., 2019b) 61.12 73.17 59.60 70.21
SPAN-BERT (Hu et al., 2019) 61.25 73.68 62.29 -
IMN-BERT (He et al., 2019) 61.73 70.72 60.22 -
RACL (Chen and Qian, 2020) 63.40 75.42 66.05 -
Dual-MRC (Mao et al., 2021) 65.94 75.95 65.08 -

GAS-ANNOTATION-R 67.37 75.77 65.75 71.87
GAS-EXTRACTION-R 66.71 76.30 64.00 72.39
GAS-ANNOTATION 68.64 76.58 66.78 73.21
GAS-EXTRACTION 68.06 77.13 65.96 73.64

Table 2: Main results of the UABSA task. The best
results are in bold, second best results are underlined.
Results are the average F1 scores over 5 runs.

we ignore such predictions. For the extraction-
style paradigm, we separate the generated pairs
or triplets from the sequence y′ and ignore those
invalid generations in a similar way.

We adopt the pre-trained T5 model (Raffel et al.,
2020) as the generation model f(·), which closely
follows the encoder-decoder architecture of the
original Transformer (Vaswani et al., 2017). There-
fore, by formulating these ABSA tasks as a text
generation problem, we can tackle them in a uni-
fied sequence-to-sequence framework without task-
specific model design.

2.3 Prediction Normalization

Ideally, the generated element e ∈ s after decod-
ing is supposed to exactly belong to the vocabulary
set it is meant to be. For example, the predicted
aspect term should explicitly appear in the input
sentence. However, this might not always hold
since each element is generated from the vocabu-
lary set containing all tokens instead of its specific
vocabulary set. Thus, the predictions of a genera-
tion model may exhibit morphology shift from the
ground-truths, e.g., from single to plural nouns.
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L14 R14 R15 R16

CMLA+ (Wang et al., 2017) 33.16 42.79 37.01 41.72
Li-unified-R (Li et al., 2019a) 42.34 51.00 47.82 44.31
Pipeline (Peng et al., 2020) 42.87 51.46 52.32 54.21
Jet (Xu et al., 2020) 43.34 58.14 52.50 63.21
Jet+BERT (Xu et al., 2020) 51.04 62.40 57.53 63.83

GAS-ANNOTATION-R 52.80 67.35 56.95 67.43
GAS-EXTRACTION-R 58.19 70.52 60.23 69.05
GAS-ANNOTATION 54.31 69.30 61.02 68.65
GAS-EXTRACTION 60.78 72.16 62.10 70.10

Table 3: Main results of the ASTE task. The best re-
sults are in bold, second best results are underlined. Re-
sults are the average F1 scores over 5 runs.

We propose a prediction normalization strategy
to refine the incorrect predictions resulting from
such issue. For each sentiment type c denoting the
type of the element e such as the aspect term or
sentiment polarity, we first construct its correspond-
ing vocabulary set Vc. For aspect term and opinion
term, Vc contains all words in the current input sen-
tence x; for aspect category, Vc is a collection of
all categories in the dataset; for sentiment polarity,
Vc contains all possible polarities. Then for a pre-
dicted element e of the sentiment type c, if it does
not belong to the corresponding vocabulary set Vc,
we use ē ∈ Vc, which has the smallest Levenshtein
distance (Levenshtein, 1966) with e, to replace e.

3 Experiments

3.1 Experimental Setup
Datasets We evaluate the proposed GAS frame-
work on four popular benchmark datasets including
Laptop14, Rest14, Rest15, and Rest16, origi-
nally provided by the SemEval shared challenges
(Pontiki et al., 2014, 2015, 2016). For each ABSA
task, we use the public datasets derived from them
with more sentiment annotations. Specifically, we
adopt the dataset provided by Fan et al. (2019), Li
et al. (2019a), Xu et al. (2020), Wan et al. (2020)
for the AOPE, UABSA, ASTE, TASD task respec-
tively. For a fair comparison, we use the same data
split as previous works.

Evaluation Metrics We adopt F1 scores as the
main evaluation metrics for all tasks. A prediction
is correct if and only if all its predicted sentiment
elements in the pair or triplet are correct.

Experiment Details We adopt the T5 base
model from huggingface Transformer library2 for

2https://github.com/huggingface/
transformers

Rest15 Rest16

Baseline (Brun and Nikoulina, 2018) - 38.10
TAS-LPM-CRF (Wan et al., 2020) 54.76 64.66
TAS-SW-CRF (Wan et al., 2020) 57.51 65.89
TAS-SW-TO (Wan et al., 2020) 58.09 65.44

GAS-ANNOTATION-R 59.27 66.54
GAS-EXTRACTION-R 60.63 68.31
GAS-ANNOTATION 60.06 67.70
GAS-EXTRACTION 61.47 69.42

Table 4: Main results of the TASD task. The best re-
sults are in bold, second best results are underlined. Re-
sults are the average F1 scores over 5 runs.

all experiments. T5 closely follows the original
encoder-decoder architecture of the Transformer
model, with some slight differences such as differ-
ent position embedding schemes. Therefore, the
encoder and decoder of it have similar parameter
size as the BERT-BASE model. For all tasks, we
use similar experimental settings for simplicity: we
train the model with the batch size of 16 and accu-
mulate gradients every two batches. The learning
rate is set to be 3e-4. The model is trained up to
20 epochs for the AOPE, UABSA, and ASTE task
and 30 epochs for the TASD task.

3.2 Main Results
The main results for the AOPE, UABSA, ASTE,
TASD task are reported in Tables 1, 2, 3, 4 respec-
tively. For our proposed GAS framework, we also
present the raw results without the proposed predic-
tion normalization strategy (with the suffix “-R”).
All results are the average F1 scores across 5 runs
with different random seeds.

It is noticeable that our proposed methods, based
on either annotation-style or extraction-style model-
ing, establish new state-of-the-art results in almost
all cases. The only exception is on the Rest15
dataset for the AOPE task, our method is still on
par with the previous best performance. It shows
that tackling various ABSA tasks with the proposed
unified generative method is an effective solution.
Moreover, we can see that our method performs
especially well on the ASTE and TASD tasks, the
proposed extraction-style method outperforms the
previous best models by 7.6 and 3.7 average F1
scores (across different datasets) on them respec-
tively. It implies that incorporating the label seman-
tics and appropriately modeling the interactions
among those sentiment elements are essential for
tackling complex ABSA problems.
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BEFORE AFTER LABEL

#1 Bbq rib BBQ rib BBQ rib
#2 repeat repeats repeats
#3 chicken peas chick peas chick peas
#4 bodys bodies None

#5 cafe coffee coffee
#6 vegetarian vegan vegetarian
#7 salmon not spinach
#8 flight cookie might cookie fortune cookie

Table 5: Example cases of the predictions before and
after the prediction normalization.

3.3 Discussions

Annotation-style & Extraction-style As shown
in result tables, the annotation-style method gen-
erally performs better than the extraction-style
method on the AOPE and UASA task. However,
the former one becomes inferior to the latter on the
more complex ASTE and TASD tasks. One possi-
ble reason is that, on the ASTE and TASD tasks,
the annotation-style method introduces too much
content, such as the aspect category and sentiment
polarity, into the target sentence, which increases
the difficulty of sequence-to-sequence learning.

Why Prediction Normalization Works To bet-
ter understand the effectiveness of the proposed pre-
diction normalization strategy, we randomly sam-
ple some instances from the ASTE task that have
different raw prediction and normalized prediction
(i.e., corrected by our strategy). The predicted sen-
timent elements before and after the normalization,
as well as the gold label of some example cases are
shown in Table 5. We find that the normalization
mainly helps on two occasions: The first one is
the morphology shift where two words have mi-
nor lexical differences. For example, the method
fixes “Bbq rib” to “BBQ rib” (#1) and “repeat” to
“repeats” (#2). Another case is orthographic alterna-
tives where the model might generate words with
the same etyma but different word types, e.g., it
outputs “vegetarian” rather than “vegan” (#6). Our
proposed prediction normalization, which finds the
replacement from the corresponding vocabulary set
via Levenshtein distance, is a simple yet effective
strategy to alleviate this issue.

We also observe that our prediction strategy may
fail if the raw predictions are quite lexically differ-
ent or even semantically different from the gold-
standard labels (see Case #4, #7 and #8). In these

cases, the difficulty does not come from the way of
performing prediction normalization but the gen-
eration of labels close to the ground truths, espe-
cially for the examples containing implicit aspects
or opinions (Case #4).

4 Conclusions and Future Work

We tackle various ABSA tasks in a novel genera-
tive framework in this paper. By formulating the
target sentences with our proposed annotation-style
and extraction-style paradigms, we solve multiple
sentiment pair or triplet extraction tasks with a uni-
fied generation model. Extensive experiments on
multiple benchmarks across four ABSA tasks show
the effectiveness of our proposed method.

Our work is an initial attempt on transforming
ABSA tasks, which are typically treated as classi-
fication problems, into text generation problems.
Experimental results indicate that such transfor-
mation is an effective solution to tackle various
ABSA tasks. Following this direction, designing
more effective generation paradigms and extending
such ideas to other tasks can be interesting research
problems for future work.
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Abstract

Recently, token-level adaptive training has
achieved promising improvement in machine
translation, where the cross-entropy loss func-
tion is adjusted by assigning different training
weights to different tokens, in order to alleviate
the token imbalance problem. However, previ-
ous approaches only use static word frequency
information in the target language without con-
sidering the source language, which is insuffi-
cient for bilingual tasks like machine transla-
tion. In this paper, we propose a novel bilin-
gual mutual information (BMI) based adap-
tive objective, which measures the learning
difficulty for each target token from the per-
spective of bilingualism, and assigns an adap-
tive weight accordingly to improve token-level
adaptive training. This method assigns larger
training weights to tokens with higher BMI,
so that easy tokens are updated with coarse
granularity while difficult tokens are updated
with fine granularity. Experimental results
on WMT14 English-to-German and WMT19
Chinese-to-English demonstrate the superior-
ity of our approach compared with the Trans-
former baseline and previous token-level adap-
tive training approaches. Further analyses con-
firm that our method can improve the lexical
diversity.

1 Introduction

Neural machine translation (NMT) (Cho et al.,
2014; Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017; Chen et al., 2018; Meng and
Zhang, 2019; Zhang et al., 2019; Yan et al., 2020;
Liu et al., 2021) has achieved remarkable success.
As a data-driven model, the performance of NMT
depends on training corpus. Balanced training data
is a crucial factor in building a superior model.

∗This work was done when Yangyifan Xu was interning
at Pattern Recognition Center, WeChat AI, Tencent Inc, China

† Jinan Xu is the corresponding author of the paper.

However, natural languages conform to the Zipf’s
law (Zipf, 1949), the frequencies of words exhibit
the long tail characteristics, which brings an imbal-
ance in the distribution of words in training corpora.
Some studies (Jiang et al., 2019; Gu et al., 2020)
assign different training weights to target tokens
according to their frequencies. These approaches
alleviate the token imbalance problem and indi-
cate that tokens should be treated differently during
training.

However, there are two issues in existing ap-
proaches. First, these approaches believe that low-
frequency words are not sufficiently trained and
thus amplify the weight of them. Nevertheless,
low-frequency tokens are not always difficult as the
model competence increases (Wan et al., 2020).
Second, previous studies only use monolingual
word frequency information in the target language
without considering the source language, which
is insufficient for bilingual tasks, e.g., machine
translation. The mapping between bilingualism is
a more appropriate indicator. As shown in Table
1, word frequency of pleasing and bearings are
both 847. Corresponding to Chinese, pleasing has
multiple mappings, while bearings is relatively sin-
gle. The more multivariate the mapping is, the less
confidence in predicting the target word given the
source context. He et al. (2019) also confirm this
view that words with multiple mappings contribute
more to the BLEU score.

To tackle the above issues, we propose bilingual
mutual information (BMI), which has two charac-
teristics: 1) BMI measures the learning difficulty
for each target token by considering the strength of
association between it and the source sentence; 2)
for each target token, BMI can dynamically adjust
according to the context. BMI-based adaptive train-
ing can dynamically adjust the learning granularity
on tokens. Easy tokens are updated with coarse
granularity while difficult tokens are updated with
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pleasing (847)
gāoxı̀ng (81); yúkuài (74);
xı̌yuè (63); qǔyuè (49) ...

bearings (847) zhóuchéng (671) ...

Table 1: An example from the WMT19 Chinese-
English training set. The Chinese words are presented
in pinyin style and the word frequency is shown in
brackets. The two words have the same word frequency,
while the mapping of bearings is more stable than that
of pleasing.

fine granularity.
We evaluate our approach on both WMT14

English-to-German and WMT19 Chinese-to-
English translation tasks. Experimental results
on two benchmarks demonstrate the superiority
of our approach compared with the Transformer
baseline and previous token-level adaptive train-
ing approaches. Further analyses confirm that our
method can improve the lexical diversity. The main
contributions1 of this paper can be summarized as
follows:

• We propose a training objective based on bilin-
gual mutual information (BMI), which can
reflects the learning difficulty for each target
token from the perspective of bilingualism,
and assigns an adaptive weight accordingly to
guide the adaptive training of machine trans-
lation.

• Experimental results show that our method
can improve not only the machine translation
quality, but also the lexical diversity.

2 Background

2.1 Neural Machine Translation

A NMT system is a neural network that translates a
source sentence x with n words to a target sentence
y withm words. During the training process, NMT
models are optimized by minimizing cross entropy:

L = − 1

m

m∑

j=1

logp(yj |y<j ,x), (1)

where yj is the ground-truth token at the j-th posi-
tion and y<j is the translation history known before
predicting token yj .

1Reproducible code: https://github.com/xydaytoy/BMI-
NMT

Figure 1: An example from WMT19 Chinese-to-
English training set. Words with Red and Bold fonts
have the same word frequency while different BMI.

2.2 Token-level Adaptive Training Objective
Following (Gu et al., 2020), the token-level adap-
tive training objective is

L = − 1

m

m∑

j=1

wj · logp(yj |y<j ,x), (2)

where wj is the weight assigned to the target to-
ken yj . Gu et al. (2020) used monolingual word
frequency information in the target language to cal-
culate the wj . The weight does not contain the
information of the source language, and cannot be
dynamically adjusted with the context.

3 BMI-based Adaptive Training

In this section, we start with the definition of the
bilingual mutual information (BMI). Then we ana-
lyze the relationship between BMI and translation
difficulty. Based on this, we introduce our BMI-
based token-level adaptive training objective.

3.1 Definition of BMI
Mutual information measures the strength of asso-
ciation between two random variables by compar-
ing the number of their individual and joint occur-
rences. We develop BMI, which is calculated by
summarizing the mutual information of the target
token and each token in the source sentence, to
measure the learning difficulty of the model. Token
pairs with high BMI are considered easy, since they
have high co-occurrence relative to the frequency.
Given the source sentence x and target token yj ,
we define the bilingual mutual information as2:

BMI(x, yj) =

n∑

i=1

log
f(xi, yj)

f(xi) · f(yj)/K
, (3)

2To ensure comparability of two probability distribution,
the tokens that appear multiple times in a sentence and the
token pairs that appear multiple times in a sentence pair are
not counted repeatedly.
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Figure 2: The BLEU (green solid line) and MTLD
(blue dotted line) values on the subsets of WMT14
English-German training set, divided according to the
average BMI. All target sentences of the training set
are divided into three subsets according to the average
BMI of the tokens in the sentence, which are equal in
size and denoted as LOW, MIDDLE, and HIGH, re-
spectively. BLEU indicates the learning difficulty of
the model. The measure of textual lexical diversity
(MTLD) (McCarthy and Jarvis, 2010) represents the
lexical diversity of the data set. The results show that
high BMI means relatively stable mapping, which is
easy to be learned by the model and has low lexical
diversity.

where f(xi) and f(yj) are total number of sen-
tences in the corpus containing at least one occur-
rence of xi and yj , respectively, f(xi, yj) repre-
sents total number of sentences in the corpus hav-
ing at least one occurrence of the word pair (xi,
yj), and K denotes total number of sentences in
the corpus.

3.2 What BMI Measures?
We use an example to illustrate our idea. Figure 1
shows two sentence pairs. Words with Red and
Bold fonts have the same word frequency. As
shown in Table 1, pleasing has multiple mappings,
while the mapping of bearings is relatively sin-
gle. As a result, the appearance of corresponding
English word brings different confidence of the
appearance of the Chinese word, which can be re-
flected by BMI. Further statistical results are shown
in Figure 2, high BMI means relatively stable map-
ping, which is easy to be learned by the model and
has low lexical diversity.

3.3 BMI-based Objective
We calculate the token-level weight by scaling BMI
and adjusting the lower limit as follows:

wj = S · BMI(x, yj) +B. (4)

The two hyperparameters S (scale) and B (base)
influence the magnitude of change and the lower
limit, respectively.

In training process, the loss of simple tokens will
be amplified, the model updates simple tokens with
coarse granularity, because our strategy thinks the
model can easily predict these target tokens given
the source sentence, and it needs to increase the
penalty if the prediction is wrong. For difficult
tokens, the model has a higher tolerance because
their translation errors may not be absolute. As
a result, the loss is small due to the small weight
and the difficult tokens are always updated in a
fine-grained way.

4 Experiments

We evaluate our method on the Transformer
(Vaswani et al., 2017) and conduct experiments
on two widely-studied NMT tasks, WMT14
English-to-German (En-De) and WMT19 Chinese-
to-English (Zh-En).

4.1 Data Preparation
EN-DE. The training data consists of 4.5M sen-
tence pairs from WMT14. Each word in the corpus
has been segmented into subword units using byte
pair encoding (BPE) (Sennrich et al., 2016) with
32k merge operations. The vocabulary is shared
among source and target languages. We select
newstest2013 for validation and report the BLEU
scores on newstest2014.

ZH-EN. The training data is from WMT19
which consists of 20.5M sentence pairs. The num-
ber of merge operations in byte pair encoding
(BPE) is set to 32K for both source and target lan-
guages. We use newstest2018 as our validation set
and newstest2019 as our test set, which contain 4k
and 2k sentences, respectively.

4.2 Systems
Transformer. We implement our approach with
the open source toolkit THUMT (Zhang et al.,
2017) and strictly follow the setting of Transformer-
Base in (Vaswani et al., 2017).

Exponential (Gu et al., 2020). This method
adds an additional training weights to low-
frequency target tokens:

wj = A · e−T ·Count(yj) + 1. (5)

Chi-Square (Gu et al., 2020). The weighting
function of this method is similar to the form of
chi-square distribution

wj = A · Count2(yj)e−T ·Count(yj) + 1. (6)
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B S EN-DE ZH-EN

BMI

1.0

0.05 26.87 23.52
0.10 26.89 23.61
0.15 26.93 23.49
0.20 26.98 23.39
0.25 26.91 23.24
0.30 26.85 23.50

0.9
0.15 26.93 23.31
0.20 26.88 23.31
0.25 26.96 23.41

0.8
0.15 27.01 23.40
0.20 26.81 23.25
0.25 26.93 23.50

0.7
0.15 26.92 23.44
0.20 26.90 23.35
0.25 26.89 23.34

Table 2: Performance of our methods on the validation
sets with different hyperparameters S and B.

BMI. Our system is first trained with normal
cross entropy loss (Equation 1) for 100k steps.
Then the model is further trained with BMI-based
adaptive objective (Equation 4) for 100k steps. The
same procedure was used for the competing meth-
ods. In order to eliminate the influence of noise, we
assign the weight of tokens with BMI lower than
0.4 to zero during the training process.

4.3 Hyperparameters
We introduce two hyperparameters, B and S, to
adjust the weight distribution based on BMI, as
shown in Equation 4. In our experiments, we fixed
B to narrow search space [0.7, 1]. We tuned an-
other hyperparameter S on the validation sets. The
results are shown in Table 2. Finally, we use the
best hyperparameters found on the validation set
for the final evaluation of the test set. For En-De,
B = 0.8 and S = 0.15, for Zh-En, B = 1.0 and S =
0.1.

4.4 Main Results
As shown in Table 3, compared with (Vaswani et al.,
2017), our Transformer outperforms it by 0.67
BLEU points. We use a strong baseline system in
this work in order to make the evaluation convinc-
ing. Improvement of existing methods (Gu et al.,
2020) is limited over strong baseline. Exponential
objective achieves 28.17 (+0.2) BLEU on En-De
and Chi-Square objective achieves 24.62 (+0.25)
BLEU on Zh-En. Our method yields 28.53 (+0.56)
and 25.19 (+0.82) BLEU on the En-De task and

System EN-DE ZH-EN
Existing NMT systems

Vaswani et al. (2017) 27.3 -
Chi-Square 27.51 -
Exponential 27.60 -

Our NMT systems
Transformer 27.97 24.37

+ Chi-Square 28.08(+0.11) 24.62(+0.25)
+ Exponential 28.17(+0.20) 24.33(-0.04)
+ BMI 28.53(+0.56)* 25.19(+0.82)*

Table 3: BLEU scores (%) on the WMT14 En-De
test set and the WMT19 Zh-En test set. Results of
our method marked with ‘*’ are statistically significant
(Koehn, 2004) by contrast to all other models (p<0.01).

Figure 3: BLEU scores (%) on different WMT14 En-
De test subsets which are grouped by their average
BMI. Sentences in the HIGH subset contains more to-
kens with high BMI.

Zh-En task, respectively. The significant and con-
sistent improvement on the two large-scale dataset
demonstrates the effectiveness of our method.

4.5 Results on Different BMI Intervals

We score each target sentence of newstest2014 by
calculating the average BMI of each token in the
sentence, and then divide newstest2014 into two
subsets with equal size according to the score, de-
noted as HIGH and LOW, respectively. As shown
in Figure 3, compared to Transformer, frequency-
based methods outperform on the HIGH subset but
have no obvious improvement on the LOW subset.
By contrast, our method can not only bring a stable
improvement on the HIGH subset, the improve-
ment is even more obvious on the LOW subset.
Low BMI means relatively rich mapping. We be-
lieve that the model should have a higher tolerance
for these tokens because their translation errors
may not be absolute. For example, the model out-
puts another token with similar meaning. There-
fore, our method improves more on LOW subset.
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Models MATTR HD-D MTLD
Transformer 89.41 94.05 230.36

+ Chi-Square 89.37 94.02 230.02
+ Exponential 89.41 94.08 232.98
+ BMI 89.45 94.10 236.43

Reference 90.92 94.88 259.98

Table 4: The lexical diversity of WMT14 En-De
translations measured by MATTR (%), HD-D (%) and
MTLD. A larger value means a higher diversity.

4.6 Effects on Lexical Diversity

Vanmassenhove et al. (2019) suggest that the
vanilla NMT systems exacerbate bias presented
in corpus, resulting in lower vocabulary diversity.
We use three measures of lexical diversity, namely,
moving-average type-token ratio (MATTR) (Cov-
ington and McFall, 2010), the approximation of
hypergeometric distribution (HD-D) and the mea-
sure of textual lexical diversity (MTLD) (McCarthy
and Jarvis, 2010). Results in Table 4 show that, on
improving the lexical diversity of translation, our
method is superior to existing methods (Chi-Square
and Exponential) based on word frequency.

4.7 Contrast with Label Smoothing

There are similarities between token-level adap-
tive training and label smoothing, because they
both adjust the loss function of the model by to-
ken weighting. In particular, for some smoothing
methods guided by prior or posterior knowledge of
training data (Gao et al., 2020; Pereyra et al., 2017),
different tokens are treated differently. But these
similarities are not the key points of the two meth-
ods, and they are essentially different. The first and
very important point is that the motivations of the
two methods are different. Label smoothing is a
regularization method to avoid overfitting, while
our method treats samples of different difficulty
differently for adaptive training. Second, the two
methods work in different ways. Label smooth-
ing is used when calculating the cross-entropy loss.
It emphasizes how to assign the weight of tokens
other than the golden one, and indirectly affects the
training of the golden token. While our method is
used after calculating the cross-entropy loss. It is
calculated according to the golden token at each po-
sition in the reference, which is more direct. In all
experiments, we employed uniform label smooth-
ing of value εls = 0.1, the results show that the two
methods does not conflict when used together.

5 Conclusion

We propose a novel bilingual mutual information
based adaptive training objective, which can mea-
sure the learning difficulty for each target token
from the perspective of bilingualism, and adjust
the learning granularity dynamically to improve
token-level adaptive training. Experimental results
on two translation tasks show that our method can
bring a significant improvement in translation qual-
ity, especially on sentences that are difficult to learn
by the model. Further analyses confirm that our
method can also improve the lexical diversity.
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Abstract

This ability to learn consecutive tasks without
forgetting how to perform previously trained
problems is essential for developing an online
dialogue system. This paper proposes an effec-
tive continual learning for the task-oriented di-
alogue system with iterative network pruning,
expanding and masking (TPEM), which pre-
serves performance on previously encountered
tasks while accelerating learning progress on
subsequent tasks. Specifically, TPEM (i) lever-
ages network pruning to keep the knowledge
for old tasks, (ii) adopts network expanding to
create free weights for new tasks, and (iii) in-
troduces task-specific network masking to al-
leviate the negative impact of fixed weights
of old tasks on new tasks. We conduct ex-
tensive experiments on seven different tasks
from three benchmark datasets and show em-
pirically that TPEM leads to significantly im-
proved results over the strong competitors. For
reproducibility, we submit the code and data at:
https://github.com/siat-nlp/TPEM.

1 Introduction

Building a human-like task-oriented dialogue sys-
tem is a long-term goal of AI. Great endeavors
have been made in designing end-to-end task-
oriented dialogue systems (TDSs) with sequence-
to-sequence (Seq2Seq) models (Eric and Manning,
2017; Madotto et al., 2018; Gangi Reddy et al.,
2019; Qin et al., 2020; Mi et al., 2019; He et al.,
2020; Wang et al., 2020; Qin et al., 2021), which
have taken the state-of-the-art of TDSs to a new
level. Generally, Seq2Seq models leverage an en-
coder to create a vector representation of dialogue
history and KB information, and then pass this
representation into a decoder so as to output a re-
sponse word by word. For example, GLMP (Wu

∗This work was conducted when Binzong Geng was an
intern at SIAT, Chinese Academy of Sciences.

†Min Yang is corresponding author.

et al., 2019) is a representative end-to-end TDS,
which incorporates KB information into Seq2Seq
model by using a global memory pointer to filter ir-
relevant KB knowledge and a local memory pointer
to instantiate entity slots.

Despite the remarkable progress of previous
works, the current dominant paradigm for TDS is
to learn a Seq2Seq model on a given dataset specif-
ically for a particular purpose, which is referred
to as isolated learning. Such learning paradigm is
theoretically of limited success in accumulating the
knowledge it has learned before. When a stream of
domains or functionalities are joined to be trained
sequentially, isolated learning faces catastrophic
forgetting (McCloskey and Cohen, 1989; Yuan
et al., 2020, 2021). In contrast, humans retain and
accumulate knowledge throughout their lives so
that they become more efficient and versatile fac-
ing new tasks in future learning (Thrun, 1998). If
one desires to create a human-like dialogue sys-
tem, imitating such a lifelong learning skill is quite
necessary.

This paper is motivated by the fact that a cogni-
tive AI has continual learning ability by nature to
develop a task-oriented dialogue agent that can ac-
cumulate knowledge learned in the past and use it
seamlessly in new domains or functionalities. Con-
tinual learning (Parisi et al., 2019; Wu et al., 2018;
Yuan et al., 2020, 2021) is hardly a new idea for ma-
chine learning, but remains as a non-trivial step for
building empirically successful AI systems. It is
essentially the case for creating a high-quality TDS.
On the one hand, a dialogue system is expected to
reuse previously acquired knowledge, but focus-
ing too much on stability may hinder a TDS from
quickly adapting to a new task. On the other hand,
when a TDS pays too much attention to plasticity,
it may quickly forget previously-acquired abilities
(Mallya and Lazebnik, 2018).

In this paper, we propose a continual learning
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method for task-oriented dialogue system with it-
erative network pruning, expanding and masking
(TPEM), which preserves performance on previ-
ously encountered tasks while accelerating learn-
ing progress on the future tasks. Concretely, TPEM
adopts the global-to-local memory pointer net-
works (GLMP) (Wu et al., 2019) as the base model
due to its powerful performance in literature and
easiness for implementation. We leverage itera-
tive pruning to keep old tasks weights and thereby
avoid forgetting. Meanwhile, a network expanding
strategy is devised to gradually create free weights
for new tasks. Finally, we introduce a task-specific
binary matrix to mask some old task weights that
may hinder the learning of new tasks. It is notewor-
thy that TPEM is model-agnostic since the pruning,
expanding and binary masking mechanisms merely
work on weight parameters (weight matrices) of
GLMP.

We conduct extensive experiments on seven dif-
ferent domains from three benchmark TDS datasets.
Experimental results demonstrate that our TPEM
method significantly outperforms strong baselines
for task-oriented dialogue generation in continual
learning scenario.

2 Our Methodology

2.1 Task Definition

Given the dialogue history X and KB tuples B,
TDS aims to generate the next system response Y
word by word. Suppose a lifelong TDS model that
can handle domains 1 to k has been built, denoted
asM1:k. The goal of TDS in continual learning
scenario is to train a modelM1:k+1 that can gen-
erate responses of the k + 1-th domain without
forgetting how to generate responses of previous
k domains. We use the terms “domain” and “task”
interchangeably, because each of our tasks is from
a different dialogue domain.

2.2 Overview

In this paper, we adopt the global-to-local mem-
ory pointer networks (GLMP) (Wu et al., 2019)
as base model, which has shown powerful perfor-
mance in TDS. We propose a continual learning
method for TDS with iterative pruning, expanding,
and masking. In particular, we leverage pruning
to keep the knowledge for old tasks. Then, we
adopt network expanding to create free weights for
new tasks. Finally, a task-specific binary mask is
adopted to mask part of old task weights, which

may hinder the learning of new tasks. The pro-
posed model is model-agnostic since the pruning,
expanding and binary masking mechanisms merely
work on weight parameters (weight matrices) of
the encoder-decoder framework. Next, we will in-
troduce each component of our TPEM framework
in detail.

2.3 Preliminary: The GLMP Model

GLMP contains three primary components: exter-
nal knowledge, a global memory encoder, and a
local memory decoder. Next, we will briefly intro-
duce the three components of GLMP. The readers
can refer to (Wu et al., 2019) for the implementa-
tion details.

External Knowledge To integrate external
knowledge into the Seq2Seq model, GLMP adopts
the end-to-end memory networks to encode the
word-level information for both dialogue history
(dialogue memory) and structural knowledge base
(KB memory). Bag-of-word representations are
utilized as the memory embeddings for two mem-
ory modules. Each object word is copied directly
when a memory position is pointed to.

Global Memory Encoder We convert each in-
put token of dialogue history into a fixed-size vec-
tor via an embedding layer. The embedding vectors
go through a bi-directional recurrent unit (BiGRU)
(Chung et al., 2014) to learn contextualized dia-
logue representations. The original memory rep-
resentations and the corresponding implicit repre-
sentations will be summed up, so that these con-
textualized representations can be written into the
dialogue memory. Meanwhile, the last hidden state
of dialogue representations is used to generate two
outputs (i.e., global memory pointer and memory
readout) by reading out from the external knowl-
edge. Note that an auxiliary multi-label classifi-
cation task is added to train the global memory
pointer as a multi-label classification task.

Local Memory Decoder Taking the global
memory pointer, encoded dialogue history and KB
knowledge as input, a sketch GRU is applied to
generate a sketch response Y s that includes the
sketch tags rather than slot values. If a sketch tag
is generated, the global memory pointer is then
passed to the external knowledge and the retrieved
object word will be picked up by the local memory
pointer; otherwise, the output word is generated by
the sketch GRU directly.
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To effectively transfer knowledge for subsequent
tasks and reduce the space consumption, the global
memory encoder and external knowledge in GLMP
are shared among all tasks, while a separate local
memory decoder is learned by each task.

2.4 Continual Learning for TDS

We employ an iterative network pruning, expand-
ing and masking framework for TDS in continual
learning scenario, inspired by (Mallya and Lazeb-
nik, 2018; Mallya et al., 2018).

Network Pruning To avoid “catastrophic forget-
ting” of GLMP, a feasible way is to retain the ac-
quired old-task weights and enlarge the network by
adding weights for learning new tasks. However,
as the number of tasks grows, the complexity of
model architecture increases rapidly, making the
deep model difficult to train. To avoid constructing
a huge network, we compress the model for the
current task by releasing a certain fraction of ne-
glectable weights of old tasks (Frankle and Carbin,
2019; Geng et al., 2021).

Suppose that for task k, a compact modelM1:k

that is able to deal with tasks 1 to k has been created
and available. We then free up a certain fraction
of neglectable weights (denoted as WF

k ) that have
the lowest absolute weight values by setting them
to zero. The released weights associated with task
k are extra weights which can be utilized repeat-
edly for learning newly coming tasks. However,
pruning a network suddenly changes the network
connectivity and thereby leads to performance de-
terioration. To regain its original performance after
pruning, we re-train the preserved weights for a
small number of epochs. After a period of prun-
ing and re-training, we obtain a sparse network
with minimal performance loss on the performance
of task k. This network pruning and re-training
procedures are performed iteratively for learning
multiple subsequent tasks. When inferring task k,
the released weights are masked in a binary on/off
fashion such that the network state keeps consistent
with the one learned during training.

Network Expanding The amount of preserved
weights for old tasks becomes larger with the
growth of new tasks, and there will be fewer free
weights for learning new tasks, resulting in slowing
down the learning process and making the found
solution non-optimal. An intuitive solution is to
expand the model while learning new tasks so as

to increase new capacity of the GLMP model for
subsequent tasks (Hung et al., 2019b,a).

To effectively perform network expansion while
keeping the compactness of network architecture,
we should consider two key factors: (1) the propor-
tion of free weights for new tasks (denoted as Fk)
and (2) the number of training batches (denoted
as Nk). Intuitively, it is difficult to optimize the
parameters that are newly added and randomly ini-
tialized with a small number of training data. To
this end, we define the following strategy to expand
the hidden size Hk for the k-th task from Hk−1:

Hk = Hk−1 + α ∗ (Pk−1 − Fk) ∗ log(1 +Nk/β) (1)

where α and β are two hyperparameters. Pk−1 is
the pruning ratio of task k − 1. In this way, we
are prone to expand more weights for the tasks that
have less free weights but more training data.

Network Masking The preserved weights WP
k

of old tasks are fixed so as to retain the performance
of learned tasks and avoid forgetting. However, not
all preserved weights are beneficial to learn new
tasks, especially when there is a large gap between
old and new tasks. To resolve this issue, we apply
a learnable binary mask Mk for each task k to
filter some old weights that may hinder the learning
of new tasks. We additionally maintain a matrix
M̃k of real-valued mask weights, which has the
same size as the weight matrix W. The binary
mask matrix Mk, which participates in forward
computing, is obtained by passing each element of
M̃k through a binary thresholding function:

Mk
ij =

{
1, if M̃k

ij > τ

0, ortherwise
(2)

where τ is a pre-defined threshold. The real-valued
mask M̃k will be updated in the backward pass via
gradient descent. After obtaining the binary mask
Mk for a given task, we discard M̃k and only store
Mk. The weights selected are then represented as
Mk�WP

k , which get along with free weights WF
k

to learn new tasks. Here, � denotes element-wise
product. Note that old weights WP

k are “picked”
only and keep unchanged during training. Thus,
old tasks can be recalled without forgetting. Since
a binary mask requires only one extra bit per pa-
rameter, TPEM only introduces an approximate
overhead of 1/32 of the backbone network size per
parameter, given that a typical network parameter
is often represented by a 32-bit float value.
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Task ID 1 2 3 4 5 6 7

Task Schedule Navigation Weather Restaurant Hotel Attraction CamRest Avg.

Ptr-Unk 0.00/23.33 0.36/14.17 1.26/12.62 1.20/21.21 1.66/16.14 0.84/19.16 8.40/39.45 1.96/20.87
Mem2Seq 0.66/23.32 3.87/23.37 3.21/38.90 1.37/14.17 0.95/10.25 0.19/4.80 10.10/43.07 2.91/22.55

GLMP 0.95/15.01 3.91/24.34 2.56/27.12 6.51/32.76 5.24/29.60 6.72/30.31 16.96/52.85 6.12/30.28
UCL 12.60/60.24 4.42/33.06 4.27/47.93 3.57/15.60 2.40/10.34 1.20/14.24 12.77/39.74 5.89/31.59

Re-init 16.21/64.06 9.38/42.47 11.54/50.30 8.97/34.06 6.52/33.60 3.78/18.05 16.88/48.15 10.47/41.53
Re-init-expand 15.98/64.29 9.92/40.15 11.50/54.12 9.41/30.98 6.07/31.54 5.80/17.56 16.60/46.42 10.75/40.72

TPEM 16.72/67.15 11.95/49.74 13.27/55.60 7.98/31.90 7.07/30.99 9.11/33.74 17.60/51.77 11.96/45.84
w/o Pruning 16.68/66.74 11.33/45.01 13.07/51.76 7.67/30.02 6.57/33.25 8.96/23.56 17.48/52.08 11.68/43.20

w/o Expansion 16.72/67.15 11.95/49.74 11.35/51.85 7.40/31.73 5.17/32.89 8.71/29.63 15.17/52.16 10.92/45.02
w/o Masking 16.72/67.15 11.35/48.48 11.88/54.25 7.29/31.79 6.21/32.59 8.42/30.78 16.71/51.35 11.23/45.20

Table 1: BLEU/Entity F1 results evaluated on the final model after all 7 tasks are visited. We use Avg. to represent
the average performance of all tasks for each method.

3 Experimental Setup

Datasets Since there is no authoritative dataset
for TDS in continual learning scenario, we eval-
uate TPEM on 7 tasks from three benchmark
TDS datasets: (1) In-Car Assistant (Eric and Man-
ning, 2017) that contains 2425/302/304 dialogues
for training/validation/testing, belonging to calen-
dar scheduling, weather query, and POI naviga-
tion domains, (2) Multi-WOZ 2.1 (Budzianowski
et al., 2018) that contains 1,839/117/141 dialogues
for training/validation/testing, belonging to restau-
rant, attraction, and hotel domains, and (3) Cam-
Rest (Wen et al., 2016) that contains 406/135/135
dialogues from the restaurant reservation domain
for training/validation/testing.

Implementation Details Following (Wu et al.,
2019), the word embeddings are randomly initial-
ized from normal distribution N (0, 0.1) with size
of 128. We set the size of encoder and decoder
as 128. We conduct one-shot pruning with ratio
P = 0.5. The hyperparameters α and β are set to
32 and 50, respectively. We use Adam optimizer
to train the model, with an initial learning rate of
1e−3. The batch size is set to 32 and the number
of memory hop k is set to 3. We set the maximum
re-training epochs to 5. That is, we adopt the same
re-training epochs for different tasks. We run our
model three times and report the average results.

Baseline Methods First, we compare TPEM
with three widely used TDSs: Ptr-Unk (Eric and
Manning, 2017), Mem2Seq (Madotto et al., 2018),
and GLMP (Wu et al., 2019). In addition, we also
compare TPEM with UCL (Ahn et al., 2019) which
is a popular continual learning method. Further-
more, we report results obtained by the base model
when its parameters are optionally re-initialized

after a task has been visited (denoted as Re-init).
We also report the results of Re-init with network
expansion (denoted as Re-init-expand). Different
from GLMP that keeps learning a TDS by utiliz-
ing parameters learned from past tasks as initial-
ization for the new task, both Re-init and Re-init-
expand save a separate model for each task in in-
ference without considering the continual learning
scenario.

4 Experimental Results

Main Results We evaluate TPEM and baselines
with BLEU (Papineni et al., 2002) and entity
F1 (Madotto et al., 2018). We conduct experi-
ments by following the common continual learning
setting, where experimental data from 7 domains
arrives sequentially. The results of each task are
reported after all 7 tasks have been learned. That
is, each model keeps learning a new task by using
the weights learned from past tasks as initialization.
The evaluation results are reported in Table 1. The
typical TDSs (i.e., Ptr-Unk, Mem2Seq, GLMP)
perform much worse than the continual learning
methods (UCL and TPEM). This is consistent with
our claim that conventional TDSs suffer from catas-
trophic forgetting. TPEM achieves significantly
better results than baseline methods (including Re-
init and Re-init-expand) on both new and old tasks.
The improvement mainly comes from the iterative
network pruning, expanding and masking.

Ablation Study To investigate the effectiveness
of each component in TPEM, we conduct ablation
test in terms of removing network pruning (w/o
Pruning), network expansion (w/o Expansion), and
network masking (w/o Masking). The experimen-
tal results are reported in Table 1. The performance
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Figure 1: The change of BLEU/Entity F1 scores for each task during the whole learning process (i.e., after learning
new tasks).

Figure 2: The average results of TPEM over 7 domains
with 5 different orderings randomly sampled from the
7 domains.

of TPEM drops more sharply when discarding net-
work pruning than discarding the other two com-
ponents. This is within our expectation since the
expansion and masking strategies rely on network
pruning, to some extent. Not surprisingly, combin-
ing all the components achieves the best results.
Furthermore, by comparing the results of Re-init
and Re-init-expand, we can observe that only us-
ing network expanding cannot improve the perfor-
mance of Re-init.

Case Study We provide visible analysis on the
middle states of all the models. Figure 1 shows
how the results of each task change as new tasks
are being learned subsequently. Taking the third
task as an example, we observe that the perfor-
mance of conventional TDSs and UCL starts to
decay sharply after learning new tasks, probably be-
cause the knowledge learned from these new tasks
interferes with what was learned previously. How-
ever, TPEM achieves stable results over the whole
learning process, without suffering from knowl-
edge forgetting.

Effect of Task Ordering To explore the effect of
task ordering for our TPEM model, we randomly
sample 5 different task orderings in this experiment.
The average results of TPEM over 7 domains with
5 different orderings are shown in Figure 2. We
can observe that although our method has various
behaviors with different task orderings, TPEM is
in general insensitive to orders because the results
show similar trends, especially for the last 2 tasks.

5 Conclusion

In this paper, we propose a continual learning
method for task-oriented dialogue systems with
iterative network pruning, expanding and mask-
ing. Our dialogue system preserves performance
on previously encountered tasks while accelerat-
ing learning progress on subsequent tasks. Exten-
sive experiments on 7 different tasks show that our
TPEM method performs significantly better than
compared methods. In the future, we plan to auto-
matically choose the pruning ratio and the number
of re-training epochs in the network pruning pro-
cess for each task adaptively.
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Abstract

We present TIMERS - a TIME, Rhetorical
and Syntactic-aware model for document-level
temporal relation classification. Our proposed
method leverages rhetorical discourse features
and temporal arguments from semantic role la-
bels, in addition to traditional local syntactic
features, trained through a Gated Relational-
GCN. Extensive experiments show that the
proposed model outperforms previous meth-
ods by 5-18% on the TDDiscourse, TimeBank-
Dense, and MATRES datasets due to our
discourse-level modeling.

1 Introduction

Temporal relation extraction (TempRel) is a chal-
lenging task that involves determining the temporal
order between two events in a text (Pustejovsky
et al., 2003). Understanding the temporal ordering
of events in a document plays a key role in down-
stream tasks such as timeline creation (Leeuwen-
berg and Moens, 2018), time-aware summarization
(Noh et al., 2020), temporal question-answering
(Ning et al., 2020), and temporal information ex-
traction (Leeuwenberg and Moens, 2019).

Prior work focuses on extracting temporal rela-
tions between event pairs (a.k.a., TLINKS) present
in the same sentence (Intra-sentence TLINKS)
or adjacent sentences (Inter-sentence TLINKS),
mostly ignoring document-level pairs (Cross-
document TLINKS) (Reimers et al., 2016). Past
works have used RNN (Cheng and Miyao, 2017;
Meng et al., 2017; Goyal and Durrett, 2019; Ning
et al., 2019; Han et al., 2019a,c,b, 2020b) and
Transformer networks (Ballesteros et al., 2020;
Zhao et al., 2020b) for encoding a few sentences
or a short paragraph but do not capture long-
range dependencies and multi-hop reasoning at the
document-level. This shortcoming is shown in the
TDDiscourse dataset (Naik et al., 2019), which was

designed to highlight global discourse-level chal-
lenges, e.g., multi-hop chain reasoning, future or
hypothetical events, and reasoning requiring world
knowledge.

We propose TIMERS - a TIME, Rhetorical,
and Syntactic-aware model for document-level tem-
poral relation extraction. TIMERS uses discourse
features in the form of connections from Rhetori-
cal Structure Theory (RST) parsers (Bhatia et al.,
2015) to leverage long-range inter-sentential re-
lationships. It also extends existing contextual
embeddings with structural and syntactic depen-
dency parse connections. Lastly, it uses timex-
timex relations, dct (document creation date)-timex
relations, and temporal arguments obtained via
sentence-level semantic role labeling. These rhetor-
ical, syntactic, and temporal features are learned
through a modified version of Relational Graph
Convolutional Networks (R-GCN) with a gating
mechanism (GR-GCN) (Schlichtkrull et al., 2018),
which learns highly relational data relationships in
densely-connected graph networks.

Our main contribution is a document-level
model that incorporates these three features to im-
prove temporal relationship extraction. We obtain
state-of-the-art performance across three datasets
with 5-18% relative improvement, showing im-
provement for events that require chain reasoning,
causal prerequisite links, and future events.

2 Methodology

Let document D be defined as a sequence of n to-
kens wi ∈ W = {w1, · · · , wn}. The entire docu-
ment is a list of m sentences V = [v1, · · · , vm].
Each document has a set of p events E =
{e1, · · · , ep} and q timexes T = {t1, · · · , tq},
where p, q ≤ n. The creation date of the docu-
ment is represented by timestamp tDCT. We denote
the source and target events by es and et, respec-
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DOCUMENT
<DCT> 1998-01-08 </DCT>
1. [Despite the military
conflict with Iraq,]1 [oil
prices have been
falling,]2 [because of
a worldwide glut of
oil]3 [and recession.]4
 3. [Oil prices]5 [have
come down]6 [from the
middle of October]7 
[as we see today.]8

4. [That's built up a roll
up]9 [and that it
will look to increase.]10
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Figure 1: Three graphs are created from the input doc-
ument. Time-aware Graph (GTG): DCT-Timex associa-
tions, Timex-Timex associations, and Temporal Argument
connections from semantic role labels; Syntactic-aware Graph
(GSG): structural and syntactic connections; and Rhetoric-
aware Graph (GDG): rhetorical relations between EDU’s (hi).
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Figure 2: TIMERS learns rhetorical, syntactic, and tempo-
ral features through a Gated Relational-Graph Convolutional
Networks (GR-GCN). The output of GSG forms the input
of GTG. The output corresponding to the source and target
nodes learned by GTG (OT ) and GDG (OEDU ) are concate-
nated with the output of the BERT based context encoder
(OCE), which forms the final output hG that passes through
the Softmax layer to predict the temporal relation.

tively. The task is to identify the temporal relation
y ∈ R between the source and target event in a
multi-class classification setup, where R is the set
of all possible temporal links (TLINKs).
To solve this task, our model (Fig.1) builds the
TIMERS-graph, which consists of a Syntactic
Graph (Sec.2.1), a Time Graph (Sec. 2.2), and a
Rhetorical Graph (Sec.2.3). Each graph is learned
through GR-GCN to extract the embeddings used
for temporal relation extraction (Fig.2, Sec.2.4).

2.1 Syntactic-Aware Graph
The syntactic graph captures the document struc-
ture and word dependency. Our syntactic-aware
graph (GSG) is made of separate nodes to represent
the document D, each of its inherent sentences
vi ∈ V , and all the constituent words wi ∈ W of
each sentence. The edges of the Syntactic Graph en-
code five relations: (1) Document-Sentence Affil-
iation and (2) Sentence-Word Affiliation model
the hierarchical structure of the document through
a directed edge from the document node to each
sentence node and from a sentence node to each
word in the sentence. (3) Sentence-Sentence Ad-
jacency and (4) Word-Word Adjacency to pre-
serve sequential ordering for consecutive sentence
and word nodes. (5) Word-Word Dependency

encodes the syntactical nature of the word-level re-
lationships by adding an undirected edge between
two word nodes if they share a parent-child rela-
tionship in the sentence-level dependency tree.

We use BERT to encode each wi and obtain sen-
tence embeddings v

′
i by averaging the second-to-

last hidden layer of BERT for each token. The docu-
ment vector embeddingD

′
i was calculated as the av-

erage of all sentence embedding (D
′
i =

∑m
i=0 v

′
i).

2.2 Time-Aware Graph
When events are anchored to a specific time, it
becomes easier to infer event relationships from
their associated date and time. The time-aware
graph (GTG) exploits this intuition and propagates
relational information among events, timexes, and
the Document Creation Time (DCT). The docu-
ment node D is the node corresponding to the doc-
ument creation date while the timexes ti and events
ei are characterized by their corresponding word
nodes in the Syntactic Graph. We design three
types of edge connections: (1) DCT-Timex As-
sociation: exploit the ordering of timexes with
respect to the document creation time through di-
rected weighted edges from DCT to timexes. (2)
Timex-Timex Association: capture inherent non-
local timeline ordering between timex pairs by a
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directed weighted edge. (3) Predicate-Temporal
Argument: anchor local temporal relations at the
sentence level by connecting each event verb predi-
cate to its temporal argument with a directed edge.
The connections formed between temporal entities
help navigate information from the source event to
the target event while exploring interactions with
other events, timexes, dct, and temporal arguments.

We calculate timestamps for timexes and the
DCT from the annotated TimeML format of
input documents. The weight of the DCT-
timex and timex-timex edges is determined
based on the temporal order of the entities
{After,Before, Simultaneous,None}. We added
None as a relation when one of the timestamps
cannot be anchored in time.

2.3 Rhetorical-Aware Graph
We use discourse features based on Rhetorical
Structure Theory (RST) (Mann and Thompson,
1988) to leverage long-range inter-dependencies
through a discourse tree. The rhetorical discourse
tree of a document contains nodes of phrases,
where each phrase (a.k.a, Elementary Discourse
Unit or EDU) is contiguous, adjacent and non-
overlapping. The interdependencies among EDUs
are represented by conventional rhetorical relations
(Mann, 1987), e.g. Elaboration, Span, Condition,
Attribution. Prior work showed discourse features
in the form of RST connections help leverage long-
range document-level interactions between phrase
units (Bhatia et al., 2015) and identify background-
foreground events (Aldawsari et al., 2020).

Elementary Discourse Unit (EDU), a sub-
sentence phrase unit, is the minimal selection unit
for discourse segmentation of a document. We
generate the document vector representations at
EDU-level hi ∈ H = {h1, · · · , hd} via the Self-
Attentive Span Extractor (SpanExt) from Lee et al.
(2017) over the BERT token embeddings. We use
the converted dependency version of the tree to
build the Rhetorical-aware graph (GDG) by treating
every discourse dependency from the i-th EDU to
the j-th EDU as a directed edge weighted by the
type of the rhetorical relation.

2.4 Temporal Relation Extraction
Each graph is instantiated as a gated variant of Re-
lational Graph Convolutional Networks (R-GCN)
(Schlichtkrull et al., 2018), which we term as Gated
Relational Graph Convolution Network (GR-GCN).
GR-GCN propagates messages among the nodes to

Dataset Train Validation Test Labels
TDDMan (Naik et al., 2019) 4000 650 1500 a, b, s, i, ii
TDDAuto (Naik et al., 2019) 32609 1435 4258 a, b, s, i, ii

MATRES (Ning et al., 2018a) ## 231 25 20 e,a,b,v
TimeBank-Dense (Cassidy et al., 2014) 4032 629 1427 a, b, s, i, ii, v

Table 1: Train/Val/Test data distribution for TDDMan, TD-
DAuto, MATRES, and TimeBank-Dense; a: After, b: Before,
s: Simultaneous, i: Includes, ii: Is included, v: Vague, e:
Equal. (## Ning et al. (2019) use TimeBank and Aquaint for
training, Platinum for test; 20% of train as validation)

Corpus Model F1

TB-Dense

Vashishtha et al. (2019) 56.6
EventPlus (Ma et al., 2021) 64.5
CTRL-PG (Zhou et al., 2020) 65.2
DEER (Han et al., 2020a) 66.8
TIMERS (ours) 67.8

MATRES

CogCompTime (Ning et al., 2018b) 66.6
Goyal and Durrett (2019) 68.61
BiLSTM+MAP (Han et al., 2019c) 75.5
EventPlus (Ma et al., 2021) 75.5
Wang et al. (2020) 78.8
DEER (Han et al., 2020a) 79.3
Zhao et al. (2020a) 79.6
SMTL (Ballesteros et al., 2020) 81.6
TIMERS (ours) 82.3

Table 2: Comparison of TIMERS with recent state-of-the-art
models on TimeBank-Dense and MATRES dataset. TIMERS
outperforms all recent top-performing systems.

obtain a learned node representation and is inspired
by (Zhang et al., 2020). Fig. 2 shows how the
learned representations obtained from the syntactic-
aware graph forms the input to the time-aware
graph. For the time-aware graphs, the learned rep-
resentations of nodes corresponding to the source
event es and target event et are extracted (OT ). In
the case of the rhetorical graphs, the span repre-
sentations of the EDU span nodes corresponding
to the source event (he) and target event (hs) are
extracted (OEDU ).

The output corresponding to the source and
target nodes learnt by GTG (OT ) and GDG

(OEDU ) are concatenated with output of BERT
based context encoder (OCE) (similar to BERT
encoding in (Zhao et al., 2020a)): zG =
ReLU(W [OT ;OEDU ;OCE ]+b). This is followed
by a Softmax layer to predict temporal relations.

3 Experiments

3.1 Data

We train and test our proposed model using the TD-
DMan and TDDAuto subsets of the TDDiscourse
corpus (Naik et al., 2019), which was designed
to explicitly focus on global discourse-level
temporal ordering. We also train and evaluate our
method on the MATRES and TimeBank-Dense
datasets, both of which primarily consist of local
TLINKs that occur in either the same or adjacent
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System TDDMan TDDAuto MATRES TB-Dense
P R F1 P R F1 P R F1 P R F1

B
as

el
in

es
Majority 37.8 36.3 37.1 34.2 32.3 33.2 50.7 50.7 50.7 40.5 40.5 40.5
CAEVO (Chambers et al., 2014) 32.3 10.7 16.1 61.1 32.6 42.5 - - - 49.9 46.6 48.2
SP (Ning et al., 2017) 22.7 22.7 22.7 43.2 43.2 43.2 66.0 72.3 69.0 37.7 37.8 37.7
SP+ILP (Ning et al., 2017) 23.9 23.8 23.8 46.4 45.9 46.1 71.3 82.1 76.3 58.4 58.4 58.4
BiLSTM (Cheng and Miyao, 2017) 24.9 23.8 24.3 55.7 48.3 51.8 59.5 59.5 59.5 63.9 38.9 48.4
BERT-base Transformer 36.5 37.1 37.5 62.0 61.7 62.3 65.6 78.1 77.2 59.7 60.7 62.2
RoBERTa-base 35.7 36.5 37.1 60.6 62.7 61.6 77.3 79.0 78.9 58.1 57.6 61.9

A
bl

at
io

n

TIMERS (ours) 43.7* 46.7* 45.5* 64.3* 72.7* 71.1* 81.1* 84.6* 82.3* 48.1 65.2* 67.8
TIMERS w\o Context Encoder 29.7 35.5 33.7 49.8 52.5 51.6 61.2 69.6 68.6 43.8 54.5 50.6
TIMERS w\o GDG 39.6 39.6 41.8 61.7 66.8 65.4 71.8 79.1 79.7 51.4 63.0 63.3
TIMERS w\o GSG 38.5 42.6 42.3 63.3 69.5 68.9 71.6 78.5 78.2 51.1 62.1 62.8
TIMERS w\o GTG 37.5 39.8 39.5 58.7 68.3 67.1 72.8 78.5 77.7 50.5 62.9 61.8

Table 3: Results comparing performance of TIMERS with baselines and ablative components on TDDMan, TDDAuto, MATRES
and TimeBank-Dense datasets. We adopt the BERT and RoBERTa implementation from (Ballesteros et al., 2020). * indicates
statistical significance over BERT Transformer (p ≤ 0.005) under Wilcoxon’s Signed Rank test. Darker green represents better
F1 performance on ablation studies. Bold denotes the best performing model. TIMERS improves substantially over all datasets.
The ablation shows that context, discourse (GDG), and time-aware (GTG) graph encoders prove to be most beneficial.

sentences. Table 1 reports the data statistics and
label distributions. (Naik et al., 2019) shows the
distribution of the distance between event-pairs for
all TLINKs in the TDD test set and explains that
nearly 53% TLINKs in the TDD dataset comprise
of event pairs that are more than 5 sentences apart.
Like Cheng and Miyao (2017), we report results on
non-vague labels of TimeBank-Dense. MATRES
has no standard validation set. Hence, we follow
the split used in (Ning et al., 2019).

3.2 Experimental Settings

Token Encoding:The word-level token represen-
tations are obtained by summing the correspond-
ing BERT embeddings from the last 4 layers of
pre-trained BERT-base encoder. Syntactic De-
pendency Parser: The dependency parse tree of
individual sentences is obtained via SpaCy1 to
form word-word dependency connections in the
syntactic-aware graph. Semantic Role Labeller:
We extract semantic role labels using AllenNLP’s
SRL parser2 that internally uses SRL-BERT (Shi
and Lin, 2019) to obtain the temporal arguments
corresponding to each verb event. Timex Nor-
malization: Timex phrases are treated as a sin-
gle unit for the purpose of graph construction by
average pooling their BERT tokenized representa-
tions. Microsoft Recognizers-Text3 is employed
to normalize timexes and DCT date-time values.
The normalized timex expressions are compared
through Allen’s interval algebra, where each timex
has a start and an endpoint. The comparison is then

1https://spacy.io/
2https://demo.allennlp.org/semantic-role-labeling
3https://github.com/microsoft/Recognizers-Text

made on the basis of the endpoints of the timexes,
forming an edge going from earlier to later ending
timex. RST Discourse Parser: We used the shift-
reduce discourse parser proposed by Ji and Eisen-
stein (2014) to build the discourse tree 4, which
is post-processed using discoursegraphs library5

(Neumann, 2015) to build the rhetorical dependen-
cies graph. Further implementation details can be
found in the appendix.

3.3 Results

Table 3 compares our work to the baseline methods
reported on the TDDMan, TDDAuto, MATRES,
and TimeBank-Dense datasets. We also include
results for BERT-based Transformer (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) following
Ballesteros et al. (2020). To prevent truncation or
memory errors otherwise caused by multi-sentence
spans, we concatenate only sentences containing
source and events as input to Transformer baselines.
These methods outperform the existing reported
results and provide strong benchmarks but still per-
form similarly to a majority class baseline for the
TDDMan dataset. Our model shows a significant
gain of 8.0 F1 and 8.8 F1 over the BERT baseline
on the TDDMan and TDDAuto datasets. Table
2 compares TIMERS to additional rigorous state-
of-the-art methods for TimeBank-Dense and MA-
TRES. TIMERS achieves state-of-the-art perfor-
mance on all four datasets, showing that it success-
fully handles intra-sentence, inter-sentence, and
cross-sentence TLINK pairs through the same ar-
chitecture.

4Implementation used: https://github.com/jiyfeng/DPLP
5https://pypi.org/project/discoursegraphs/
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Figure 3: Error analysis on manually annotated discourse-
level phenomena in the test set of TDDMan. SS: Single-
Sent, CR: Chain Reasoning, TI: Tense Indicator, FE: Future
Events, HN: Hypothetical/Negated, EC: Event Coreference,
CP: Causal/Prereq, WK: World Knowledge. TIMERS handles
CR and CP phenomena but struggles on EC and WK.

3.4 Ablation Study

To assess the contribution of discourse, syntactic,
and time-aware graphs, we performed an ablation
experiment with different configurations (Table
3). Removing the context encoder significantly
degrades performance, indicating that the graph
components themselves cannot replace the contex-
tual encoding. Removing any of the graph encoders
hurts the model performance, motivating the need
for all the constituent graph components. We also
analyzed the relative importance of GDG, GSG, and
GTG represented by color shading in the table. The
results show that the syntactic graph is least im-
portant for document level pairs in TDDMan and
TDDAuto, which we believe is due to the longer
range dependencies present in this dataset. How-
ever, removing the discourse graph for TimeBank-
Dense and MATRES datasets leads to the least per-
formance deterioration as inter and intra-sentence
pairs do not fully utilize document-level rhetorical
relations. TIMERS outperforms the BERT base-
line even without GTG, demonstrating its useful
in cases where document creation date or timexes
cannot be obtained easily.

3.5 Error Analysis

The error analysis results of TIMERS and its ab-
lations for TDDMan are shown in Fig. 3 (the re-
sults on TDDAuto are in Appendix Fig.1). The
results provide evidence that the syntactic-aware
graph (GSG) is most important for relations that
can be extracted from a single sentence (SE). The
time-aware graph (GTG) plays an important role in

improving relationships requiring chain reasoning
(multi-hop) and relationship determined by future
events. We also note the role of the rhetorical-
aware graph (GDG) for modeling future possibility
(FE), hypothetical events (HN) and causal condi-
tions for event occurrences (CP). This can be at-
tributed to rhetorical relational features that extract
plausible inter-dependencies such as cause, expla-
nation, contrast (Lioma et al., 2012). None of the
experimented models show improved performance
on TLINK pairs which depend on world knowledge
(WK) or event coreference (EC).

4 Conclusion

This work presents a neural architecture that uti-
lizes local syntactic features, rhetorical discourse
features, and temporal arguments in semantic
role labels through a Gated Relational-GCN for
document-level temporal relation extraction on
TDDiscourse, MATRES, and TimeBank-Dense
datasets. Experiments show that TIMERS shows
substantial improvement for events that require
chain reasoning and causal prerequisite links. Fu-
ture work will focus on exploring real-world sce-
narios in which the temporal extraction task suffers
from absent or erroneous event and timex annota-
tions. We believe our proposed methods can also
be adapted for other languages as well by over-
coming possible limitations such as dependency
parsing, semantic parsing, Timex normalization for
the non-English corpora.

Ethics Statement

This work does not collect or release any new data
resource. Moreover, all four of the datasets used
in experiments (TDDiscourse, TimeBank-Dense
and MATRES) are publicly available and free to
use, hence do not intrude user privacy. During the
course of this work, no human judgements were ex-
ploited nor any user-level data was collected, stored
or processed. Our methods do not add to any pre-
existing data biases. Potential applications of this
work include extracting event timelines from news,
contractual documents, and digitizing patient elec-
tronic health records. We acknowledge that tem-
poral information extraction finds applications in
clinical NLP (Lin et al., 2019; Tourille et al., 2017).
Hence, we would like to caution about shortcom-
ings of the proposed system in terms of misclassifi-
cations on event pairs requiring real-world common
sense reasoning and domain shift.
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J. Pustejovsky, José M. Castaño, R. Ingria, R. Saurı́,
R. Gaizauskas, A. Setzer, G. Katz, and Dragomir R.
Radev. 2003. Timeml: Robust specification of event
and temporal expressions in text. In New Directions
in Question Answering.

Nils Reimers, Nazanin Dehghani, and Iryna Gurevych.
2016. Temporal anchoring of events for the Time-
Bank corpus. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2195–
2204, Berlin, Germany. Association for Computa-
tional Linguistics.

M. Schlichtkrull, Thomas Kipf, P. Bloem, R. V. Berg,
Ivan Titov, and M. Welling. 2018. Modeling re-
lational data with graph convolutional networks.
ArXiv, abs/1703.06103.

Peng Shi and Jimmy Lin. 2019. Simple bert mod-
els for relation extraction and semantic role labeling.
ArXiv, abs/1904.05255.

Julien Tourille, Olivier Ferret, Aurélie Névéol, and
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A Experiment Settings

A.1 Node Connections
We detail the node connections present in each
graph of our proposed model along with edge at-
tributes in Table 4.

A.2 Edge Relations
Table 6 lists rhetorical relations used in Rhetoric-
aware graph GDGin the TIMERS model, along
with the definitions as provided by Mann (1987).
The weights of the Rhetoric graph GDG are de-
termined based on the RST relations described in
this table. Table 7 details the type of relations be-
tween timex-timex and DCT-timex nodes of the
Time-aware graph GTG.

A.3 Training Setup
Hyperparameter: Hyper-parameters for our
model were tuned on the respective validation set
to find the best configurations for different datasets.
We summarize the range of our model’s hyper
parameters such as: number of hidden layers in
GR-GCN {1, 2, 3}, size of hidden layers in GR-
GCN {64, 128, 256, 512}, BERT embedding size,
dropout δ ∈ {0.2, 0.3, 0.4, 0.5.0.6}, learning rate
λ ∈ {1e−5, 1e−4, 1e−3, 1e−2, 1e−1}, weight
decay ω ∈ {1e− 6, 1e− 5, 1e− 4, 1e− 3}, batch
size b ∈ {16, 32, 64} and epochs (≤ 100).
Contextual Encoder: We used BERT-base-
uncased for generating token embedding of size
1x 768. As BERT-base Transformer provides
a stronger baseline as compared to RoBERTa,
we utilized BERT Transformer for Contextual
Encoder in TIMERS architecture. We use the
default dropout rate (0.1) on BERT’s self attention
layers but do not use additional dropout at the
top linear layer The output from the Contextual
Encoder is a 1-D vector of size 768.
Loss Function and Inference: TIMERS is
trained end to end using Binary Cross Entropy loss
with Adam optimizer. Across all four datasets, we
found the best results correspond with the use of
Adam optimiser set with default values β1 = 0.9,
β2 = 0.999, ε = 1e − 8, weight-decay of 5e − 4
and an initial learning rate of 0.001. We evaluate
the performance of temporal relation extraction
systems in terms of F1, precision and recall score.
Computing Infrastructue: TIMERS is written
in PyTorch library and was trained on Nvidia
GeForce RTX 2080 GPU. Average Runtime: The
model takes a maximum of approximately 6,500

seconds to train on either of the four datasets.
Dataset Access Links to download TD-
Discourse (Naik et al., 2019) dataset:
https://github.com/aakanksha19/TDDiscourse Link
to download MATRES (Ning et al., 2018a) dataset:
https://github.com/qiangning/MATRES Link to
download TimeBank-Dense (Cassidy et al., 2014)
dataset: https://github.com/muk343/TimeBank-
dense

A.4 Reproducibility
Table 5 lists the range ad best values of the hyperpa-
rameters used in TIMERS model for different data
settings. We used grid search to choose the best set
of training configurations across each dataset. We
run 5 rounds of hyper-parameter search trials and
report average of observed results.

B Additional Results

We observe from Figure 4 a similar trend to TD-
DMan, although with a stronger support for SS,
CR, TI and and FE. This is partly due to the fact
that TDDAuto was generated automatically (Naik
et al., 2019) using weakly annotated time relations.
Moreover, 90% of samples in TDDAuto require SS.
Hence, TIMERS trained exclusively on TDDAuto
performs worse on challenging phenomenon like
HN and CP. Consistent with results on TDDMan,
TIMERS and its ablations trained on TDDAuto
struggle on EC and WK.
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Edge Graph Source Target Directed Weighted
Document-Sentence Affiliation Syntactic Doc Node Sent Nod 3 7
Sentence-Word Affiliation Syntactic Sent Nod Word Node 3 7
Sentence-Sentence Adjacency Syntactic Sent Nod Sent Nod 3 7
Word-Word Adjacency Syntactic Word Node Word Node 3 7
Word-Word Dependency Syntactic Word Node Word Node 7 7
DCT-Timex Association Time Doc Node Timex 3 3
Timex-Timex Association Time Timex Timex 3 3
Predicate-Temporal Argument Time Word Node Timex 7 7
RST Discourse Discourse EDU EDU 3 3

Table 4: List of node connections in TIMERS.

Dataset
Hyperparameters TDDMan TDDAuto MATRES TB-Dense

Dropout Ratio 0.5 0.5 0.5 0.5
Optimizer Adam Adam Adam Adam
Input Dimension (Context Encoder) (n,768) (n,768) (n,768) (n,768)
Input Dimension (Syntactic Graph) (n,768) (n,768) (n,768) (n,768)
Input Dimension (Time Graph) (n,256) (n,256) (n,64) (n,64)
Input Dimension (Rhetoric Graph) (n,768) (n,768) (n,768) (n,768)
Hidden Dimension (GR-GCN) 256 256 64 64
Number of hidden layers (GR-GCN) 1 1 1 1
Hidden Dimension of SpanExt {256, 64} {256, 64} {128, 64} {128, 64}
Epochs 20 20 20 20
Batch Size 8 8 16 16
Activation Function of Linear layers ReLU ReLU ReLU ReLU
Dimension of final FCN [(1792 x r)] [(1792 x r)] [(1024 x r)] [(1024 x r)]
Output Classes 5 5 4 5

Table 5: Hyperparameters Details: Training hyperparameters of TIMERS for TDDMan, TDDAuto, MATRES
and TB-Dense datasets. n refers to the number of input samples; r refers to the number of total relation classes
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Figure 4: Error analysis on manually annotated
discourse-level phenomenon in test set of TDDAuto.
SS: SingleSent, CR: Chain Reasoning, TI: Tense Indi-
cator, FE: Future Events, HN: Hypothetical/Negated,
EC: Event Coreference, CP: Causal/Prereq, WK:
World Knowledge. We observe a stronger support
for SS, CR, TI and and FE as compared to TDDMan.
TIMERS trained exclusively on TDDAuto performs
worse on challenging phenomenon like HN and CP.
Consistent with results on TDDMan, TIMERS and its
ablations trained on TDDAuto struggle on EC and WK.

Relation Label Definition
Temporal Relating to time
Summary Shorter restatement
Same-unit Part of the same phrasal unit
Span Extending to multiple phrasal units
Purpose Initiation in order to realize a goal
Example Specific subtypes
Elaboration Providing additional details
Reason Justification with intent to defend a stance
Sequence Subject-matter sequence
Condition Realization of dependency
Means Method or instrument to improve likelihood
Consequence Intended or unintended end goal
Topic Central idea
Attribution Contributing factor
Textual Organization Part of formal text span
Contrast Opposing phenomenon
Manner Semantic course of occurrence
Antithesis Incompatibility due to contrast
Concession Potential Incompatibility
Explanation Providing clarification to an established fact
Circumstance Framework for interpretation

Table 6: RST relations used in Rhetoric-aware graph
GDG in TIMERS, with definition as provided by Mann
(1987)

Relation Label Definition
After TIMEX1 starts after TIMEX2 has ended
Before TIMEX1 ends before TIMEX2 started
Equal TIMEX1 is numerically equal to TIMEX2 upto date resolution.
None One of the timex cannot be extracted or normalized

Table 7: Timex-Timex and DCT-Timex relations used
in the Time-aware graph GTG.
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Abstract

Arabic diacritization is a fundamental task
for Arabic language processing. Previous
studies have demonstrated that automatically
generated knowledge can be helpful to this
task. However, these studies regard the auto-
generated knowledge instances as gold refer-
ences, which limits their effectiveness since
such knowledge is not always accurate and in-
ferior instances can lead to incorrect predic-
tions. In this paper, we propose to use regular-
ized decoding and adversarial training to ap-
propriately learn from such noisy knowledge
for diacritization. Experimental results on two
benchmark datasets show that, even with quite
flawed auto-generated knowledge, our model
can still learn adequate diacritics and outper-
form all previous studies, on both datasets.1

1 Introduction

Modern standard Arabic (MSA) is generally writ-
ten without diacritics, which poses a challenge
to text processing and understanding in down-
stream applications, such as text-to-speech gener-
ation (Drago et al., 2008) and reading comprehen-
sion (Hermena et al., 2015). Restoration of such
diacritics, known as diacritization, becomes an im-
portant task for Arabic natural language process-
ing (NLP). Among different diacritization methods
(Pasha et al., 2014; Shahrour et al., 2015; Zitouni
et al., 2006; Habash and Rambow, 2007; Darwish
et al., 2017), the neural ones (Abandah et al., 2015a;
Fadel et al., 2019a,b; Zalmout and Habash, 2019,
2020; Darwish et al., 2020) achieve the best per-
formance due to their better capability in incor-
porating contextual features. To further improve
diacritization, automatically generated knowledge

*Equal contribution.
†Corresponding author.
1The code and models involved in this paper are released

at https://github.com/cuhksz-nlp/AD-RDAT.

from off-the-shelf toolkits, such as morphological
features, parts-of-speech tags, and automatic dia-
critization results, have been extensively applied to
this task (Zitouni et al., 2006; Arabiyat, 2015; Dar-
wish et al., 2017, 2020). However, current models
treat such knowledge instances as gold references
and always directly concatenate them with input
embeddings (Arabiyat, 2015; Darwish et al., 2020),
which may lead to inferior results since the knowl-
edge may be inaccurate, especially if the toolkits
were trained on data with different criteria.

Diacritization can be performed by character-
based sequence labeling (Zitouni et al., 2006; Be-
linkov and Glass, 2015; Fadel et al., 2019b). We
follow this paradigm and propose a neural approach
in this paper, using regularized decoding and adver-
sarial training to incorporate auto-generated knowl-
edge (i.e., the diacritization results generated from
off-the-shelf toolkits). Specifically, the regularized
decoder treats the auto-generated knowledge as
separate gold labels and learns to predict them in
a separate decoding process, which is then used to
update the main model. The adversarial training
is applied to the encoding process by determining
whether the diacritization for an input follows the
gold label or the auto-generated knowledge. In
doing so, our model can dynamically distinguish
between auto-generated knowledge instances in-
stead of treating them all as gold references, so as
to effectively identify what knowledge should be
leveraged for different inputs. Importantly, regu-
larized decoding and adversarial training are exclu-
sively applied to the training stage; we only need
the main tagger for inference once the model has
been trained. Experimental results and further anal-
yses illustrate the effectiveness of our approach,
where our model outperforms strong baselines and
achieves state-of-the-art results on two benchmark
datasets: Arabic Treebank (ATB) (Maamouri et al.,
2004) and Tashkeela (Zerrouki and Balla, 2017).
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2 The Proposed Approach

As shown in Figure 1, our approach for diacritiza-
tion follows the sequence labeling paradigm, where
it has two training stages for the main tagger (M).
In the first training stage (presented in the orange
box in Figure 1), M is enhanced by regularized
decoding (RD) and adversarial training (AT ) to
discriminatively learn from the auto-generated la-
bels. Specifically, given an input Arabic character
sequence X = x1 · · ·xi · · ·xn, M and RD aim
to predict two types of diacritization labels, Ŷ and
ŶK , which follow the gold and auto-generated la-
bel criteria, respectively. AT ensures that the main
tagger only learns useful information from either
gold or auto-generated labels. Therefore, the first
training stage can be conceptually formalized by

Ŷ, ŶK = f(M(HS ,X ),RD(HS ,X ),AT (HS))
(1)

where HS denotes the output vectors of the shared
encoder SE (whose input is X ) that is designed
to learn the information shared by the gold and
auto-generated labels. As a result, the goal of this
training stage is to minimize the loss defined by

L = LM + LK + LA (2)

where LM, LK and LA refer to the losses that
come fromM,RD, and AT , respectively.

Afterwards, in the second training stage (pre-
sented in the green box in Figure 1),M is further
trained alone on the gold labels Ŷ without using
auto-generated ŶK , RD and AT , to fine-tune its
parameters, where all parameters in SE obtained
through the first training stage are fixed. For infer-
ence, onlyM is used without requiring any addi-
tional input other thanX to obtain the diacritization
results. In the following sections, we first describe
M, then elaborate the details ofRD and AT .

2.1 The Main Tagger

The main tagger uses an encoder-decoder archi-
tecture, as shown in Figure 1, in which a shared
encoder SE and a private encoderPEM are applied
to model the contextual information. Particularly,
SE is proposed to facilitate the process of leverag-
ing auto-generated knowledge, which is excepted
to learn information shared by the gold labels and
the auto-generated knowledge. It takes the char-
acter embeddings of X (the embedding of xi is
denoted as ei) as input and encodes them to the

Figure 1: The architecture of our model, where the left
shows the main tagger (M) and the right shows the reg-
ularized decoding (RD) and adversarial training (AT )
modules. The diacritization labels for an example fol-
lowing different criteria are illustrated inM and RD,
with the mismatching labels marked in green and red.
E.g., for “Ð” (highlighted in yellow), its gold and auto-
generated labels are “#” (null) and “o” (sukun).2

shared hidden vectors (denoted as hS
i for xi) by

[hS
1 , · · · ,hS

n ] = SE([e1, · · · , en]) (3)

Similarly, PEM is also applied to the word em-
beddings and produces the result hM

i . Then, we
concatenate hS

i and hM
i and map the resulting vec-

tor to the output space with a fully connected layer:
oMi = WM ·(hM

i ⊕hS
i )+bM , where⊕ is concate-

nation and WM and bM are the trainable matrices
and bias vector, respectively. Finally, a softmax
decoder is applied to oMi to predict the label ŷi:

ŷi = argmax
exp(oM,t

i )
∑|T |

t=1 exp(o
M,t
i )

, (4)

where T denotes the set of all diacritization labels
and oM,t

i is the value at dimension t in oMi . There-
fore the loss forM is

LM = −
n∑

i=1

log p(y∗i |X ), (5)

where p(y∗i |X ) denotes the probability of labeling
xi by the gold label y∗i .

2.2 Regularized Decoding

When leveraging auto-generated knowledge, it is
important to note that such knowledge may be inac-
curate or follow different annotation criteria, which
is required to be appropriately addressed to pre-

2We use a set of symbols to label different diacritization
results, which are illustrated in Appendix A.
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ATB Tashkeela
w/ case ending w/o case ending

ACC
w/ case ending w/o case ending

ACCDER WER DER WER DER WER DER WER

BiLSTM 2.28 6.62 1.98 4.15 93.38 2.59 7.62 2.30 5.01 92.98
+RD 2.12 5.90 1.72 3.37 94.10 2.18 6.42 1.87 4.04 94.09
+RD+AT 1.87 5.17 1.59 3.09 94.83 2.10 6.08 1.82 3.88 94.40

Transformer 2.22 6.36 1.92 4.00 93.64 2.70 7.98 2.43 5.37 92.65
+RD 2.07 5.90 1.70 3.45 94.10 2.11 6.11 1.82 3.85 94.37
+RD+AT 1.83 5.09 1.56 3.07 94.91 2.06 5.98 1.76 3.75 94.49

(a) AraBERT

ATB Tashkeela
w/ case ending w/o case ending

ACC
w/ case ending w/o case ending

ACCDER WER DER WER DER WER DER WER

BiLSTM 2.15 6.16 1.81 3.73 93.84 2.48 7.33 2.19 4.79 93.27
+RD 1.97 5.65 1.69 3.48 94.35 2.08 6.02 1.83 3.91 94.50
+RD+AT 1.81 5.06 1.53 3.02 94.94 2.03 5.86 1.77 3.75 94.69

Transformer 2.05 5.80 1.77 3.61 94.20 2.66 7.65 2.33 4.99 92.95
+RD 1.85 5.11 1.56 3.02 94.89 1.96 5.62 1.67 3.37 94.86
+RD+AT 1.77 4.88 1.49 3.01 95.12 1.87 5.54 1.56 3.64 94.94

(b) ZEN 2.0

Table 1: Experimental results (i.e., DER and WER with and without the case ending being considered and accuracy)
of baselines and our models with RD and AT using AraBERT (a) and ZEN 2.0 (b) on the test sets of ATB and
Tashkeela, “BiLSTM” and “Transformer” denote the encoders (i.e., SE and PE) used in the models.

vent the noise in the auto-generated knowledge
from significantly hurting the model performance
(Tang et al., 2020; Nie et al., 2020; Chen et al.,
2020; Mandya et al., 2020; Tian et al., 2020a,b,
2021a,b; Chen et al., 2021). To tackle this chal-
lenge, we propose to learn from a special decoding
process, which is integrated into the main diacriti-
zation model, in order to reduce error propagation
compared to directly using the knowledge instances
or their features. As shown in Figure 1, the pro-
posed regularized decoding is an extra output pro-
cess separated from the main tagger and performed
on another sequence of labels YK∗

, which are the
auto-generated knowledge instances (diacritization
labels) annotated by an existing toolkit. Therefore,
the loss LK fromRD is computed through

LK = −
n∑

i=1

log p(yK
∗

i |X ) (6)

and in the first training stage, all trainable param-
eters in SE are updated through the information
back-propagated fromRD.

2.3 Adversarial Training

Although auto-generated knowledge can be back-
propagated throughRD, it could be overwhelmed
by the information directly learned from the gold
label. We further improve our model by balancing
the information learned from bothM andRD with

AT , which is proposed to equalize both sides and
emphasize the shared information from them.3 In
doing so, we connect a discriminator, which is a
binary classifier, to SE . The discriminator takes all
hS
i from SE , averages them by hS = 1

n

∑n
i=1 h

S
i ,

and then passes the resulting vector to a fully con-
nected layer with a softmax function to compute
its bias towards either type (i.e., the gold or auto-
generated) of diacritization labels:

[pm, pk] = softmax(WD · hS + bD) (7)

where WD and bD are the trainable matrix and
bias vector, respectively, that map hS to a two-
dimensional vector, with pm and pk representing
normalized probabilities that satisfy pm + pk = 1
and indicating the bias of SE towards gold and
auto-generated labels, respectively. Then we ap-
ply a negative log-likelihood loss function to the
discriminator, formalized as

LD = − log pm − log pk (8)

and an adversarial loss to the parameters in SE via

LS = −pm log pm − pk log pk (9)

As a result, the goal of AT is to minimize the loss

LA = LD − λLS (10)
3AT follows the idea that the SE should have no bias

towards the information learned fromM andRD.
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ATB Tashkeela
w/ case ending w/o case ending

ACC
w/ case ending w/o case ending

ACCDER WER DER WER DER WER DER WER

Fadel et al. (2019a) - - - - - 3.73 11.19 2.88 6.53 -
Abandah and Abdel-Karim (2019) 2.46 8.12 1.24 3.81 - 1.97 5.13 1.22 3.13 -
Fadel et al. (2019b) - - - - - 2.60 7.69 2.11 4.57 -
Alqahtani et al. (2019) 2.80 8.20 - - - - - - - -
Alqahtani et al. (2020) 2.54 7.51 - - - - - - - -
Zalmout and Habash (2020) - - - - 93.90 - - - - -
Farasa 19.84 68.61 20.31 68.48 31.39 22.00 58.66 24.89 53.14 45.96
Ours (AraBERT) (BiLSTM) 1.87 5.17 1.59 3.09 94.83 2.10 6.08 1.82 3.88 94.40
Ours (AraBERT) (Transformer) 1.83 5.09 1.56 3.07 94.91 2.06 5.98 1.76 3.75 94.49
Ours (ZEN 2.0) (BiLSTM) 1.81 5.06 1.53 3.02 94.94 2.03 5.86 1.77 3.75 94.69
Ours (ZEN 2.0) (Transformer) 1.77 4.88 1.49 3.01 95.12 1.87 5.54 1.56 3.64 94.94

Table 2: Comparisons of experimental results (i.e., DER, WER, and accuracy) between previous studies and our
models with AraBERT and ZEN 2.0 embeddings on the test sets of the ATB and Tashkeela.

where λ is a positive coefficient that controls the
influence of LS in the adversarial training, so that
to minimize LD and maximize LS synchronously.

3 Experiments

3.1 Settings

In our experiments, We use two benchmark
datasets, i.e., ATB (Arabic Treebank Part 1, 2, and
3) (Maamouri et al., 2004) and Tashkeela (Zer-
rouki and Balla, 2017), following the same settings
in previous studies.4 For implementation, we run
Farasa5 (Abdelali et al., 2016) on the two datasets
and collect their diacritization results for regular-
ized decoding. Since the quality of text represen-
tation normally dominates the model performance
(Pennington et al., 2014; Song et al., 2017, 2018;
Peters et al., 2018; Song and Shi, 2018; Devlin
et al., 2019), in our experiments, we test two types
of widely used and powerful encoders, i.e., BiL-
STM and Transformer (Vaswani et al., 2017), for
SE and PE . For the embeddings, we use AraBERT
(Antoun et al., 2020) and the large version of ZEN
2.0 (Song et al., 2021) with their default settings
(i.e. 12 layers of multi-head attentions with 768
dimensional hidden vectors for AraBERT and 24
layers of multi-head attentions with 1024 dimen-
sional hidden vectors for ZEN 2.0) to perform the
initialization (we use the output of the last layer).6

We train our model for 20 epochs in total, with the
first 10 for the first training stage and the rest for the
second stage. Particularly, in the second training

4We illustrate the dataset details in Appendix B.
5http://qatsdemo.cloudapp.net/farasa/
6We obtain the pre-trained official AraBERT model from

https://github.com/aub-mind/arabert and the
Arabic version of ZEN 2.0 (large) from https://github.
com/sinovation/ZEN2.

stage, we evaluate our model on the development
set for every 100 steps to locate the best performing
model. For evaluation, we follow previous studies
(Abandah et al., 2015b; Fadel et al., 2019b) to use
diacritization error rate (DER) and word error rate
(WER) with and without considering the case end-
ing.7 We also use diacritization accuracy following
Zalmout and Habash (2017, 2019, 2020).8

3.2 Overall Results

In the main experiment, we run the baselines and
our models using different configurations (i.e., us-
ing AraBERT or ZEN 2.0 embeddings and using
BiLSTM or Transformer encoders) with and with-
outRD and AT . The experimental results (DER
and WER with and without considering the case
endings, and accuracy) on the test sets of ATB and
Tashkeela are reported in Table 1.9

There are several observations. First, under dif-
ferent configurations (i.e., using AraBERT or ZEN
2.0 and with BiLSTM or Transformer encoders),
RD improves the baseline on both datasets, which
shows that RD is effective to help diacritization
with auto-generated knowledge even if they follow
different criterion. Second, further consistent im-
provement can be observed when AT is applied
on top ofRD, with only 3K (0.015‰ of the entire
model size) more trainable parameters required to
achieve this effect.10 These observations confirm
the effectiveness of forcing SE to learn from the in-
formation shared by gold and auto-generated labels
with an appropriate model design.

7We show details of DER and WER in Appendix C.
8We report the hyper-parameter settings of different mod-

els and the best combinations of them in Appendix D.
9Their dev set’s results and the mean and standard devia-

tion of test set results are reported in Appendix E and F.
10Model sizes are reported in Appendix G.
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Figure 2: An example input sentence and its diacritization results (“∼u”, “#”, “i” and “u”) from Farasa, BiLSTM,
and our approach (BiLSTM+RD+AT ) with AraBERT. All results matching gold labels are highlighted in green;
the mismatching results from Farasa and BiLSTM are in orange and red, respectively.

In addition, we also compare the results of our
best models (withRD andAT ) with previous stud-
ies (including Farasa’s results) on the test sets of
both datasets. The results are shown in Table 2,
where our model with BiLSTM encoder outper-
forms previous models and achieves state-of-the-
art performance on both datasets.

3.3 Case Study

To explore how our approach with RD and AT
leverage auto-generated knowledge, we conduct a
case study on an example sentence from the test
set of ATB. The input and its diacritization results
from Farasa, the BiLSTM baseline, and our ap-
proach with AraBERT (BiLSTM+RD+AT ) are
illustrated in Figure 2, where the correct diacritiza-
tion results are highlighted in green, and the incor-
rect ones from Farasa and BiLSTM are highlighted
in orange and red, respectively. It is clearly ob-
served that our approach leverages the necessary in-
formation learned from Farasa (i.e., the “∼u” label)
and prevents its unreliable results from affecting
the final diacritics. Specifically, for the highlighted
Arabic character “ è ”, where the Farasa output
suggests the diacritic “i” (kasra), our approach
leverages this knowledge and corrects the BiL-
STM baseline. For the other two highlighted
characters, although the Farasa output (i.e., “∼u”
(Shadda+Damma) for “Ð” and “#” (No Diacritic)

for “ 	P”) also produces diacritization results that
are different from the BiLSTM baseline and do not
match the gold standard, our approach is able to
learn from their patterns and make correct predic-
tions. Therefore, although Farasas output does not
match the gold labels in most cases (see the Farasa

results in Table 2), the proposedRD and AT can
leverage such knowledge and improve the main
tagger accordingly.

4 Conclusion

In this paper, we propose to incorporate auto-
generated knowledge (diacritization labels in an-
other criterion) for Arabic diacritization with regu-
larized decoding and adversarial training. In detail,
the regularized decoding treats the auto-generated
knowledge as separate “gold” labels and learns to
predict them in another decoding process; the ad-
versarial training is used to ensure that the shared
information from gold and auto-generated labels
are learned to help diacritization. With the regu-
larized decoding and adversarial training, the main
tagger in our approach is able to smartly leverage
auto-generated knowledge provided by an exist-
ing diacritization tagger. Experimental results on
two benchmark datasets illustrate the validity and
effectiveness of our model, where state-of-the-art
performance is obtained on both datasets.
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Appendix A. Diactritization Labels

Table 3 presents the 15 diacritization labels used in
our study, following Fadel et al. (2019b).

Table 3: Diactritization labels used in this study.

Appendix B. Datasets

In our experiments, We use two benchmark
datasets, i.e., ATB (Arabic Treebank Part 1, 2, and
3)11 (Maamouri et al., 2004) and Tashkeela12 (Zer-
rouki and Balla, 2017). For ATB, we follow the
same data split policy as Diab et al. (2013), which
is based on the 10-80-10 rule. That is, we firstly
split each part of ATB into three portions (with each
portion containing 10%, 80%, and 10% of docu-
ments, respectively). Then, we combine the first,
second, and third portion of all three parts to form
the development, training, and test set, respectively.
For Tashkeela, we use the cleaned version13 from
Fadel et al. (2019b) with the standard train/dev/test
split. The statistics of the datasets in terms of the
number of words, lines, and the average number of
characters in each word are reported in Table 4.

ATB Tashkeela
Train Dev Test Train Dev Test

Word # 503K 63K 63K 2.1M 102K 107K
Line # 15.7K 1.9K 1.9K 50K 2.5K 2.5K

C/W 4.37 4.31 4.35 3.97 3.97 3.97

Table 4: Statistics of the benchmark datasets, where the
number of words and lines, and average characters per
word (C/W) are reported.

11We download the ATB part 1, 2 and 3 are from https:
//catalog.ldc.upenn.edu/LDC2010T13, https:
//catalog.ldc.upenn.edu/LDC2011T09 and
https://catalog.ldc.upenn.edu/LDC2010T08.

12https://github.com/AliOsm/
arabic-text-diacritization/tree/master/
dataset

13We download the data from https://github.com/
AliOsm/arabic-text-diacritization/tree/
master/dataset.

Appendix C. Evaluation of DER and WER

It is worth noting that previous studies (Zitouni
et al., 2006; Arabiyat, 2015; Fadel et al., 2019a;
Abandah and Abdel-Karim, 2019; Alqahtani et al.,
2019, 2020) use different methods to compute di-
acritic error rate (DER) for ATB and Tashikeela
datasets. Therefore, we follow the schema in Zi-
touni et al. (2006); Arabiyat (2015); Abandah and
Abdel-Karim (2019) to compute DER for ATB and
follow Fadel et al. (2019a); Alqahtani et al. (2019,
2020) to compute that for Tashikeela.

Specifically, for ATB, we compute DER by: (1)
all words are counted including numbers and punc-
tuators; (2) each latter or digit in a word is a poten-
tial host for a set of diacritics; and (3) all diacritics
on a single letter are counted as a single binary
(True or False) choice. For Tashikeela, the schema
is similar to the one for ATB but all non-Arabic
letters are ignored in computing DER because they
do not hold a diacritic. For word error rate (WER),
the way to compute it is identical for both datasets,
where the diacritization result for an Arabic word
is regarded as incorrect if there is s at least one
incorrectly restored diacritic. We follow previous
studies (Abandah et al., 2015b; Fadel et al., 2019a)
to evaluate our results in terms of diacritic error
rate (DER) and word error rate (WER). We use the
implementation14 provided by Fadel et al. (2019a)
to compute DER (with two criteria) and WER of
different models on both datasets, where the DER
and WER with and without considering the case
endings are both included in our evaluation.

Appendix D. Hyper-parameter Settings

Table 5 reports the hyper-parameters tested in train-
ing our models. We test all combinations of them
for each model and use the one achieving the high-
est F1 score in our final experiments.

Hyper-parameters Values

Learning Rate 1e− 5,3e− 5, 5e− 5
Warmup Rate 0.06
Dropout Rate 0.1
Batch Size 16,32, 64

Table 5: The hyper-parameters tested in tuning our
models. The best ones used in our final experiments
are highlighted in boldface.

14https://github.com/AliOsm/
arabic-text-diacritization/blob/master/
helpers/diacritization_stat.py.
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Appendix E. Experimental Results on the
Development Set

Table 6 reports the DER and WER (with case end-
ing) of different models evaluated on the develop-
ment set of ATB and Tashkeela.

ATB Tashkeela
DER WER DER WER

BiLSTM 2.52 7.00 2.58 7.66
+RD 2.46 6.47 2.20 6.47
+RD+AT 2.14 5.65 2.12 6.30
Transformer 2.46 6.79 2.71 7.96
+RD 2.35 6.28 2.07 6.08
+RD+AT 2.09 5.50 2.05 6.03

(a) AraBERT

ATB Tashkeela
DER WER DER WER

BiLSTM 2.41 6.67 2.51 7.45
+RD 2.21 6.00 2.09 6.16
+RD+AT 2.03 5.43 2.29 6.22
Transformer 2.39 6.49 2.65 7.79
+RD 2.03 5.40 2.21 6.09
+RD+AT 1.96 5.24 2.01 5.87

(b) ZEN 2.0

Table 6: DER and WER (with case ending) of models
with different configurations (i.e., based on BiLSTM
and Transformer) evaluated on the development set of
ATB and Tashkeela.

Appendix F. Mean and Deviation of the
Results

In the experiments, we test models with different
configurations. For each model, we train it with
the best hyper-parameter setting using five different
random seeds. We report the mean (µ) and standard
deviation (σ) of DER and WER (with case ending)
on the test set of ATB and Tashkeela in Table 7.

Appendix G. Model Size and Running
Speed

Table 8 reports the number of trainable parameters
and the inference speed (lines per second) of the
baseline (i.e., BiLSTM and Transformer encoder
with and without regularized decoding (RD)) and
our models with both RD and adversarial train-
ing (AT ) on ATB and Tashkeela. All models are
performed on NVIDIA Quadro RTX 6000 GPUs.

Models
ATB Tashkeela

DER WER DER WER
µ σ µ σ µ σ µ σ

BiLSTM 2.33 0.0115 6.70 0.4082 2.61 0.0004 7.67 0.0020
+RD 2.14 0.0183 5.92 0.1669 2.30 0.0114 6.79 0.1022
+RD+AT 1.94 0.0053 5.38 0.0589 2.21 0.0080 6.40 0.0683
Transformer 2.27 0.0413 6.58 0.5590 2.84 0.0537 8.15 0.3696
+RD 2.10 0.0008 5.92 0.0122 2.14 0.0003 5.96 0.1934
+RD+AT 1.88 0.0026 5.29 0.0651 2.12 0.0024 6.20 0.0323

(a) AraBERT

Models
ATB Tashkeela

DER WER DER WER
µ σ µ σ µ σ µ σ

BiLSTM 2.19 0.0374 6.23 0.0613 2.53 0.0411 7.42 0.0736
+RD 1.99 0.0170 5.66 0.0450 2.12 0.0419 6.04 0.0510
+RD+AT 1.85 0.0327 5.15 0.0988 2.08 0.0408 5.95 0.0665
Transformer 2.08 0.0249 5.90 0.0860 2.69 0.0205 7.70 0.0411
+RD 1.87 0.0205 5.15 0.0327 2.02 0.0531 5.78 0.1307
+RD+AT 1.80 0.0249 4.96 0.0655 1.93 0.0490 5.65 0.0829

(b) ZEN 2.0

Table 7: The mean µ and standard deviation σ of DER
and WER (with case ending) of all models (i.e., based
on BiLSTM or Transformer with RD and AT ) on the
test set of ATB and Tashkeela for Arabic diacritization.

ATB Tashkeela
Para. Speed Para. Speed

BiLSTM 158,840K 55.6 158,840K 54.3
+RD 206,162K 36.4 206,162K 28.5
+RD+AT 206,165K 25.6 206,165K 22.9
Transformer 146,235K 70.7 146,235K 71.1
+RD 168,335K 37.7 168,335K 34.3
+RD+AT 168,337K 29.0 168,337K 27.2

(a) AraBERT

ATB Tashkeela
Para. Speed Para. Speed

BiLSTM 839,026K 30.2 839,026K 29.8
+RD 872,730K 20.4 872,730K 19.7
+RD+AT 872,734K 14.8 872,734K 13.3
Transformer 830,612K 39.6 830,612K 37.2
+RD 847,471K 25.8 847,471K 24.0
+RD+AT 847,473K 21.1 847,473K 19.4

(b) ZEN 2.0

Table 8: Numbers of trainable parameters (Para.) in
different models and the inference speed (sentences per
second) of these models on the test sets of both datasets.
RD andAT represent the proposed regularized decod-
ing and adversarial training, respectively.
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Abstract

Subword segmentation algorithms have been
a de facto choice when building neural ma-
chine translation systems. However, most of
them need to learn a segmentation model based
on some heuristics, which may produce sub-
optimal segmentation. This can be problematic
in some scenarios when the target language
has rich morphological changes or there is not
enough data for learning compact composition
rules. Translating at fully character level has
the potential to alleviate the issue, but empiri-
cal performances of character-based models
has not been fully explored. In this paper,
we present an in-depth comparison between
character-based and subword-based NMT sys-
tems under three settings: translating to typo-
logically diverse languages, training with low
resource, and adapting to unseen domains. Ex-
perimental results show strong competitiveness
of character-based models. Further analyses
show that compared to subword-based models,
character-based models are better at handling
morphological phenomena, generating rare and
unknown words, and more suitable for transfer-
ring to unseen domains.

1 Introduction
Neural machine translation (NMT) has achieved
great success in recent years. Modern NMT sys-
tems typically operate on subword level, using seg-
mentation algorithms such as byte pair encoding
(BPE) (Sennrich et al., 2016) or Morfessor (Creutz
and Lagus, 2002). Compared to word-level models,
subword segmentation helps overcome the out-of-
vocabulary (OOV) problem and make better use of
morphological information in the surface form.

Despite their empirical effectiveness, subword
algorithms may produce improper segmentation
due to their data-dependent nature. NMT models

∗ Equal contribution
† Corresponding author

are typically robust to such errors when trained
on large corpora or the target language is regular
in morphological changes, like French or German.
However, the problem will arise when such condi-
tions are not met, i.e. there is not enough data for
learning compact composition rules or the target
language is morphologically rich and complex.

An alternative segmentation choice is to use fully
character-level (CHAR) models (Lee et al., 2017;
Cherry et al., 2018; Gupta et al., 2019; Gao et al.,
2020; Banar et al., 2020), which has the potential
to alleviate above issues. CHAR does not need to
learn any segmentation rules and keeps all avail-
able information in the surface form, avoiding the
risk of information loss due to improper segmenta-
tion. What is more, the main pain point of CHAR
that it takes too long to train is less obvious in
above settings since there is not as much data as in
the rich resource setting. However, there has not
been a comprehensive study in these settings.

In this paper, we conduct a systematic com-
parison between CHAR and other subword algo-
rithms, e.g. BPE and Morfessor. Experiments show
strong competitiveness of CHAR under three set-
tings: translating to typologically diverse languages
(Section 2), training with low resource (Section 3),
and adapting to distant domains (Section 4). Fur-
ther analyses show that compared to subword algo-
rithms, the benefits of CHAR mainly come from
better capture of the morphological phenomena,
better generation of rare and unknown words, and
better translation of domain-specific words.

2 Translation Across Typologically
Diverse Languages

Human languages are known to exhibit diverse
morphological phenomena, which could serve as a
principle to classify languages into different mor-
phological categories, such as fusional, aggluti-
native, introflexive and isolating. While previous
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Word Char BPE Morf.

F. Fr 39.1/.580 40.1/.589 41.2/.597 39.6/.592
Ro 31.1/.487 33.9/.526 32.9/.517 30.6/.517

A. Fi 21.9/.412 23.5/.487 22.3/.472 21.7/.466
Tr 19.8/.396 22.8/.456 21.1/.440 16.9/.437

In. Hi 14.0/.262 15.6/.290 14.8/.285 14.8/.276
Ar 22.5/.451 24.7/.491 23.9/.481 23.5/.481

Is. Vi 21.6/.374 22.5/.385 22.2/.381 21.1/.373
Ml 22.9/.324 25.0/.349 24.3/.347 24.1/.356

Table 1: BLEU/chrF3 scores of systems translating from
English to languages of different morphological cate-
gories, using different segmentation algorithms. Best
score in each line is shown in bold.

works only focus on performances of character-
level models when translating to fusional and agglu-
tinative languages (Gupta et al., 2019; Libovický
and Fraser, 2020), we conduct a comprehensive
study covering all four morphological categories.

2.1 Experiment Setup

Dataset We consider the translation from English
to eight target languages representing four morpho-
logical categories, i.e. French (Fr) and Romanian
(Ro) for fusional, Finnish (Fi) and Turkish (Tr) for
agglutinative, Hebrew (He) and Arabic (Ar) for in-
troflexive, and Vietnamese (Vi) and Malaysian (Ml)
for isolating. We use OPUS-100 corpus1 (Tiede-
mann, 2012), which consists of 1M parallel sen-
tences for each language pair.

Model and Hyperparameters We use the Trans-
former architecture (Vaswani et al., 2017) through-
out all experiments. To ensure results’ reliability
, we run an exhaustive search of hyperparameters
including batch size and learning rate. Detailed
hyperparameters can be found in Appendix A.

2.2 Results

The results are listed in Table 1. We can see that
CHAR outperforms other algorithms in 7 out of 8
languages in terms of BLEU (Papineni et al., 2002)
and chrF3 (Popović, 2015), showing strong compet-
itiveness of CHAR’s ability across languages. The
only exception is the En-Fr language pair, which
are known to be quite similar and is beneficial for
BPE to learn a joint segmentation model.

It is intuitive that BPE and Morfessor cannot out-
perform CHAR on introflexive languages (Hi, Ar).
Introflexive languages follows non-concatenative
morphology (McCarthy, 1981), i.e. grammatical

1http://data.statmt.org/opus-100-corpus/v1.0/supervised/

Word Char BPE Morf.

Comp. adj. 55.6 70.8 63.0 60.0
Det. poss. 49.6 83.0 78.0 78.4
Pron. hum 60.6 67.0 66.2 66.6
Local case 36.6 61.8 50.6 47.6
Pron. gender 73.6 76.6 79.0 79.0
Verb neg 96.6 97.2 98.4 98.0
Preposition 33.8 69.2 60.2 64.2
Future tense 51.4 43.8 53.8 50.8
Past tense 83.2 91.8 87.4 90.8
Pron. plural 74.6 79.2 77.4 75.2
Noun plural 48.8 76.0 62.8 60.8
Det. definite 38.4 38.8 40.8 44.8
Named Ent. 9.2 70.4 66.4 30.2
Number 65.4 96.6 91.2 77.8

Table 2: Performance of different segmentation algo-
rithms on the MorphEval En-Fi benchmark. Each row
represents a kind of morphological phenomenon.

information is conveyed by directly modifying the
root words. This makes it hard for linear segment-
ing methods such as BPE and Morfessor to work
well. This finding is also consistent with previous
research on other tasks (Zhu et al., 2019).

For isolating languages (Vi, Ml), there are rare
morphological phenomena indicating grammatical
relations, so segmentation algorithms do not greatly
affect the performance. We can see that the two
open-vocabulary segmentation algorithms (CHAR,
BPE) show comparable performances.

Surprisingly, even for highly agglutinative lan-
guages such as Finnish and Turkish, which has very
regular morphological changes by adding affixes or
suffixes, CHAR still achieves better performance.

2.3 Analysis on MorphEval

To understand where the advantages of CHAR
model come from, we take Finnish as an example
and evaluate the morphological competence of dif-
ferent models using MorphEval test suites (Burlot
et al., 2018). MorphEval generates pairs of source
sentences that differ by one kind of morphological
phenomena, and assesses a MT system’s ability
by computing the percentage of its generated tar-
get sentences that convey as the source sentences.
Higher accuracy means the model is more sensitive
to the current morphological phenomenon.

As shown in Table 2, CHAR performs the best
in 10 out of 14 tests. Among these 10 tests, in com-
parative adjectives, possessive determiner, local
postposition case, preposition case, plural nouns,
CHAR surpasses other algorithms notably by at
least 5% accuracy. This indicates CHAR’s strong
ability to capture the fine-grained morphological
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Figure 1: BLEU and chrF3 score curves using different
amount of parallel data for training En-De (above) and
En-Fi (below) translation systems.

phenomena, which is crucial for MT models when
translating into morphologically rich languages.

Interestingly, three of four morphological phe-
nomena on which CHAR falls behind are so-called
stability features (Burlot et al., 2018), which are
expressed differently in the source language but
should be expressed identically in the target lan-
guage2. The disadvantage of CHAR in this kind of
phenomena shows CHAR-based model may be less
robust to lexical changes to source-side changes,
and the reason needs to be further researched.

3 Translation with Low Resource
Subword algorithms help alleviate the OOV prob-
lem. However, most of them are based on heuristics
and may produce wrong segmentation. While this
problem is not so evident when there is enough data
to learn robust composition rules, in low-resource
setting it could be a different story and their effec-
tiveness should be examined. While for CHAR,
pure character sequences can directly provide all
the information to the model for learning the com-
position rules. Therefore a prudent choice of seg-
mentation should be studied in this setting.

3.1 Experiment Setup

We perform evaluation on WMT14 En-De3 and
WMT17 En-Fi4 dataset. Datasets of size 50k, 100k,
200k, 500k and 1000k are subsampled from the
original training dataset and serve as training data

2For example, English uses he/she to convey the mascu-
line/feminine contrast, but Finnish uses the same pronoun hän
regardless of the gender of the antecedent.

3http://www.statmt.org/wmt14/translation-task.html
4http://statmt.org/wmt17/translation-task.html

Figure 2: Recall rates of unknown and rare words gen-
erated by systems based on different tokenizers models.
Words appearing no more than 5 times in the training
set are considered as rare words.

of different resource conditions. For validation and
test, we use the original development and test split.

Previous works (Sennrich and Zhang, 2019;
Nguyen and Chiang, 2017) show that in low re-
source settings the evaluation results can be sen-
sitive to model size (e.g. hidden dimension, layer
number) and the number of BPE merges k, so we
run an additional search of hidden dimension, layer
number and k, and report the best results in this
section. See Appendix A for details.

3.2 Results

We evaluate models with BLEU and chrF3. The
results are showed in Figure 1. In general, the
performances of CHAR and BPE are on par, and
are better than Word and Morfessor. In different
data conditions, the results varies.

medium-resource When there are plenty re-
sources, e.g. 500k and 1000k, the performance
of CHAR and BPE are comparable but different for
different language pairs. For En-Fi, CHAR is bet-
ter than BPE. It is because morphological changes
in Finnish are quite complex. More fine-grained
segmentation like CHAR is needed to learn corre-
sponding rules. Conversely, German’s morphologi-
cal changes are so regular that BPE can learn most
of merging rules, making them performing better.

low-resource When the corpus size is 50k to
200k, CHAR performs the best among four seg-
mentation methods. BPE and Morfessor usually
regard frequently occurring words as single tokens,
many of which contain rich morphological informa-
tion. This, together with the improper segmentation
problem, prevents NMT models from learning cor-
rect composition rules, damaging the model’s gen-
eralization ability on rare and unknown words. In
low resource setting this problem would be more se-
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(a) Average OOD BLEU (No Adapt). (b) Average OOD BLEU (Finetune). (c) Recall of different word types.

Figure 3: Domain robustness of translation systems based on different segmentation algorithms.

vere, since there are much more rare and unknown
words but not enough data for learning compact
composition rules.

Compared with subwords, character-based mod-
els learn combinations directly from character
sequences. Not limited to fixed char sequence
patterns in subwords, more words with different
morphological changes can be generated through
CHAR. Therefore, CHAR can learn more correct
composition rules than subword-based model, lead-
ing to better translation of rare and unknown words.

3.3 Analysis on Rare and Unknown Words

To further support the above analysis, we evaluate
the translation quality of rare and unknown words
by calculating their recall rates. The results are
showed in Figure 2. We can see that CHAR has
achieved the highest recall rates of rare and un-
known words. Although, as the resource increases,
the gap between CHAR and BPE is shrinking grad-
ually, the results can still prove that CHAR can
capture more morpheme information, performing
better at generating rare and unknown words.

4 Translation Across Distant Domains
Domain robustness (Müller et al., 2020), which
refers to models’ generalization ability on unseen
domains, is important for NMT applications. How-
ever, subword algorithms need to learn segmen-
tation rules from a given corpus, which may be
domain-specific. When applied to a new domain,
they may improperly segment target-domain spe-
cific words, hurting the domain robustness. In con-
trast, CHAR does not suffer from the issue. In this
section, we investigate how different segmentation
algorithms affect NMT models’ domain robustness.

4.1 Experiment Setup

We use the same corpora as (Koehn and Knowles,
2017), which is a De-En dataset covering subsets
of four domains: Law, Medical, IT and Koran.

Following Koehn and Knowles (2017), each time
we train a source domain model on one of four
subsets and report results on test sets of the other
three domain. We experiment in two settings: No
Adapt and Finetune. The first one involves no
target domain data, while the latter uses randomly
sampled 100k sentence pairs from target domain
data to finetune the source domain model.

4.2 Results

We report the average out-of-domain (OOD) BLEU
scores of NMT systems based on different segmen-
tation algorithms in Figure 3a and Figure 3b. As
can be seen from the figure, CHAR surpasses other
algorithms in almost all settings, except when fine-
tuning from Medical to others. This illustrates the
suitability of CHAR for domain robustness, espe-
cially when there is no enough data for adaptation.

4.3 Analysis on Different Types of Words

To understand the advantages of CHAR, we take
the setting of finetuning from IT to Medical as an
example and analyze performances on different
types of words. Specifically, we divide words in
the test set into three types: (1) Domain-specific
words occur only in the target domain training data;
(2) Common words occur in both the source and
target domain training data; (3) OOV words do not
occur in both training data.

The result can be seen in Figure 3c. CHAR
achieves better performance on OOV words, which
is consistent with findings in Section 3. While
performances of CHAR and subword-based algo-
rithms are on par on common words, CHAR out-
performs the others by a large margin on domain-
specific words. This suggests that the advantage of
CHAR mainly comes from the correct translation
of domain-specific and OOV words, which may be
segmented improperly by subword algorithms.
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Word Char BPE Morf. BPE-D

No adapting 11.03 12.46 9.02 9.74 11.11
Finetune 30.26 40.53 39.53 38.49 40.26

Table 3: Average OOD BLEU of models based on dif-
ferent subword algorithms when adapting from Law to
other domains. BPE-D: BPE-dropout (Provilkov et al.,
2020)

4.4 Comparison with Advanced Segmentation
Algorithms

Although we focus on deterministic segmenta-
tion algorithms in this paper, there are more ad-
vanced ones such as BPE-dropout (Provilkov et al.,
2020) and subword regularization (Kudo, 2018),
which produce multiple segmentation candidates
when training and show improved performance.
Therefore, we also conduct experiments compar-
ing CHAR with BPE-dropout in terms of domain
adaptation performance. We take the setting of
adapting from Law to other domains and report
results in Table 3. As can be seen, although BPE-
dropout surpasses BPE by a large margin, CHAR
still achieves the best performance, which again
shows the superiority of CHAR.

5 Related Work

Character-level neural machine translation has re-
ceived growing attention in recent years. Lee et al.
(2017) first propose a fully character-level NMT
model based on recurrent encoder-decoder archi-
tecture and convolutional layers, which shows a
promising results. Gao et al. (2020) propose to in-
corporate convolution layers in the more advanced
Transformer architecture and show their model can
learn more robust character-level alignments.

However, translating at character level may in-
cur significant computational overhead. Therefore,
later works on character-level NMT (Cherry et al.,
2018; Banar et al., 2020) mainly focus on reducing
computation cost of them. Cherry et al. (2018)
show that by employing source sequence com-
pression techniques, the quality and efficiency of
character-based models can be properly balanced.
Banar et al. (2020) share the same idea as Cherry
et al. (2018) but build their models using Trans-
former architecture. Our work differs from theirs in
that we aim to analyze the performance of existing
models instead of exploring novel architectures.

There are also several researches on compari-
son between CHAR and other subword algorithms

(Durrani et al., 2019; Gupta et al., 2019). Durrani
et al. (2019) compare character-based models and
subword-based models in terms of representation
quality, and find that representation learned by the
former are more suitable for modeling morphol-
ogy, and more robust to noisy input. Gupta et al.
(2019) investigate the performance of different seg-
mentation algorithms when using Transformer ar-
chitecture, and find that character-based models
can achieve better performance when translating
noisy text or text from a different domain. Our
finds are consistent with them, yet we conduct a
more large-scale and in-depth analysis by covering
language pairs from more language families and
explaining where the advantage of character-based
models comes from.

6 Conclusion
We conduct a comprehensive study and show ad-
vantages of CHAR over subword algorithms in
three settings: translating to typologically diverse
languages, translating with low resource, and adapt-
ing to distant domains. Note that although we have
tried our best to take as much language pairs as
possible into consideration, there are certainly a
lot of languages remaining uncovered in this pa-
per. However, we believe our experimental results
can serve as an evidence of character-based NMT
models’ strong competitiveness. We hope more
attention will be drawn to them, including explor-
ing their more benefits and reducing the possibly
higher computation cost in practice.
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A Hyperparameters
We conduct a grid search of hyperparameters
for the training of Transformer models, includ-
ing batch size (tokens per batch) and learning
rate. For batch size, the searching range is
{4096, 8192, 16384, 32768}. For learning rate, the
searching range is {5e− 5, 1e− 4, 5e− 4, 1e− 3}.

Besides, we also experiment with diffrent model
size and number of bpe merges k in the low re-
source settings(50k, 100k, 200k). The searching
range of k is {2000, 10000}. We consider four
kinds of model size, i.e. tiny, mini, small and base,
which differ in their hidden size and transformer
layers. The details can be found in Table 4.

hidden size layer

tiny 128 2
mini 256 4
small 512 4
base 512 6

Table 4: Detailed hyperparameters for different model
sizes.
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Abstract

Chinese word segmentation (CWS) is undoubt-
edly an important basic task in natural lan-
guage processing. Previous works only focus
on the textual modality, but there are often au-
dio and video utterances (such as news broad-
cast and face-to-face dialogues), where textual,
acoustic and visual modalities normally exist.
To this end, we attempt to combine the multi-
modality (mainly the converted text and ac-
tual voice information) to perform CWS. In
this paper, we annotate a new dataset for CWS
containing text and audio. Moreover, we pro-
pose a time-dependent multi-modal interactive
model based on Transformer framework to in-
tegrate multi-modal information for word se-
quence labeling. The experimental results on
three different training sets show the effective-
ness of our approach with fusing text and au-
dio.

1 Introduction

Word segmentation is a fundamental task in Nat-
ural Language Processing (NLP) for those lan-
guages without word delimiters, e.g., Chinese and
many other East Asian languages (Duan and Zhao,
2020). In this paper, we mainly take Chinese lan-
guage as investigating object, namely CWS. As we
know, CWS has been applied as an essential pre-
processing step for many other NLP tasks (Zhou
et al., 2019; Qiu et al., 2020), such as named entity
recognition, sentiment analysis, machine transla-
tion, etc.

In the literature, some popular approaches to
CWS systems report a high performance at the level
of 96%–98%, and these systems typically require
a large scale of pre-segmented textual dataset for
training. However, the collection of a specific sce-
nario on such large scale is very time-consuming
and resource-intensive, such as video monologues

∗Corresponding author: lishoushan@suda.edu.cn

 
Dual 

Channels

Voice
Spectrum

Characters

Figure 1: A multi-modal example for CWS. 必
须(must) 不(not) 忘(forget) 初(original) 心(heart) 牢
记(remember)使命(mission).

and audio broadcast. In these scenarios, there are
multiple modalities: text, audio and vision, thus if
only using the text seems not a good choice. For
example, as shown in Figure 1, if we only read
the text”必须不忘初心牢记使命” with no punc-
tuation, it is not easy to make word segmentation
immediately. However, if there is the acoustic in-
formation, we can observe the obvious stop in spec-
trum and sonic wave at the middle of “心” and
“牢”, which provides the facility for CWS.

Therefore, in this paper, we propose to perform-
ing CWS with multi-modality, namely MCWS, by
a time-dependent multi-modal interactive network.
Specifically, we first collect a new dataset from
an audio and video news broadcast platform and
annotate the word boundaries of audio transcrip-
tion text. Second, we make the text and the audio
align as the time stamp of each character, then
encode both modalities 1 by Transformer-based
framework to capture the intra-modal dynamics.
Third, we design a time-dependent multi-modal
interaction module for each character step to gener-
ate the multi-modal hybrid character representation.

1Since each video in this platform mainly describe the
specific news scene, not the face of the speaker, the visual
modality is not useful for word segmentation. Therefore, for
the sake of simplicity, we only utilize text and audio to perform
CWS.
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Finally, we leverage the CRF to perform sequence
labeling on the basis of the above character repre-
sentation.

We evaluate our approach on the newly anno-
tated small-scale dataset with different size of train-
ing sets. The experimental results demonstrate that
our approach performs significantly better than the
single-modal state-of-the-art and the multi-modal
approaches with early fused features of CWS.

2 Related Work

Xu (2003) first formalize CWS as a sequence label-
ing task, considering CWS as a supervised learning
from annotated corpus with human segmentation.
Peng et al. (2004) further adopt standard sequence
labeling tool CRFs for CWS modeling, achieving
a best performance in their same period. Then, a
large amount of approaches based on above settings
are proposed for CWS (Li and Sun, 2009; Sun and
Xu, 2011; Mansur et al., 2013; Zhang et al., 2013).

Recently, deep neural approaches have been
widely proposed to minimize the efforts in fea-
ture engineering for CWS (Zheng et al., 2013; Pei
et al., 2014; Chen et al., 2015; Cai and Zhao, 2016;
Zhou et al., 2017; Yang et al., 2017; Zhang et al.,
2017; Ma et al., 2018; Li et al., 2019; Wang et al.,
2019a; Fu et al., 2020; Ding et al., 2020; Tian et al.,
2020a; Zhao et al., 2020). Among these studies,
most of them follow the character-based paradigm
to predict segmentation labels for each character in
an input sentence. To enhance CWS with neural
models, there were studies leverage external infor-
mation, such as vocabularies from auto-segmented
external corpus and weakly labeled data (Wang and
Xu, 2017; Higashiyama et al., 2019; Gong et al.,
2020).

To our best knowledge, we are first to perform
CWS with multi-modality, which can deal with
multi-modal scenarios and offers an alternative so-
lution to robustly enhancing neural CWS models.

3 Data Collection and Annotation

We collect the multi-modal data for CWS from a
Chinese news reporting platform “Xuexi”2. We
mainly focus on the audios equipped with machine
transcription text. In total, we crawl 120 short
videos and segment them into about 2000 sentences.
To avoid the contextual influence and augment the
robust of designed computing model, we randomly

2https://www.xuexi.cn/

Items Size
Sentences 250
Avg. Length (Character) 50.56
Avg. Length (Word) 26.95
Avg. Length (Time)(s) 10.63
Max Length (Character) 382
Max Length (Word) 231
Max Length (Time)(s) 95.06
Total Characters 12640
Total Words 6736
Total Time(s) 2658.16

Table 1: The statistics summary for used data.

select 250 sentences to annotate the word bound-
aries, and the remaining data are used to perform
semi-supervised or unsupervised learning in the
future.

We annotate these Chinese audio transcriptions
following the CTB word segmentation guidelines
by Xia (2000). Two annotators are asked to anno-
tate the data. Due to the clear annotation guideline,
the annotation agreement is very high, reaching
98.3%. The disagreement instances are judged by
an expert. The statistics of our annotated data are
summarized in Table 1.

4 Time-dependent Multi-modal
Interactive Network for CWS

In this section, we introduce our proposed multi-
modal approach for CWS, namely Time-dependent
Multi-modal interactive Network (TMIN), which
can capture the interactive semantics between text
and audio for better word segmentation. This ap-
proach mainly consists of three modules: time-
dependent uni-modal interaction, time-dependent
multi-modal interaction and CRF labeling. Figure
2 shows the overall architecture of our TMIN.

4.1 Time-dependent Uni-modal Interaction

To better capture the temporal correspondences
between different modalities (Zhang et al., 2019;
Ju et al., 2020), we first align two modalities by
extracting the exact time stamp of each phoneme
and character using Montreal Forced Aligner
(McAuliffe et al., 2017).

For machines to understand human utterance,
they must be first able to understand the intra-
modal dynamics (Zadeh et al., 2018; Wang et al.,
2019b; Tsai et al., 2019) in each modality, such as
the word order and grammar in text, breathe and
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Figure 2: The overview of our proposed TMIN.

tone in audio.
Textual Modality. We use BERT (Devlin et al.,

2019) as encoder to perform intra-modal interac-
tions and obtain the contextual character representa-
tion. Then, each character of text transcripts can be
represented as: X = (x1, x2, · · · , xn) ∈ Rn×d1 .

Acoustic Modality. We use a famous audio
processing tool, i.e., OpenSMILE (Eyben et al.,
2010), to extract the MFCC, LP-coefficients, pure
FFT spectrum, etc. from dual channels (Jayram
et al., 2002; Sakran et al., 2017), and leverage
multiple Transformer layers (Vaswani et al., 2017)
to perform intra-modal interactions. Then, each
character-level audio feature can be represented as:
A = (a1, a2, · · · , an) ∈ Rn×d2 .

4.2 Time-dependent Multi-modal Interaction
To better capture the cross-modal semantic corre-
spondences (Wu et al., 2020; Zhang et al., 2020),
we design a long- and short-term hybrid memory
gating (LSTHMG) block, which is a extension of
standard LSTM.

We first obtain the current memory of each
character-level representation for both modalities.

ĥx
i , cx

i = LSTMx
i (xi, h

x
i−1, c

x
i−1) (1)

ĥa
i , c

a
i = LSTMa

i (ai, h
a
i−1, c

a
i−1) (2)

where LSTM denotes the standard LSTM (Graves
et al., 2013).

After current updating, we employ multi-
attention to control the different contributions of
each hidden state.

hi = ĥi + MA(ĥx
i , ĥa

i ) (3)

= ĥi +
L∑

l=0

(softmax(
Ql(K l)�

√
d

)V l) (4)

where MA denotes the multi-attention gating mech-
anism, which is considered to mine multiple poten-
tial dimension-aware importance for each modality
(Zadeh et al., 2018). ĥi ∈ R(d1+d2)×1 is the un-
squeezed concatenation of ĥx

i and ĥa
i . L denotes

the max times for attentions. The query Ql, key K l

and value V l at the l-th time are defined similarly
to self-attention (Vaswani et al., 2017):

Ql = ĥiW
l
q, K

l = ĥiW
l
k, V

l = ĥiW
l
v (5)

Note that hi denotes the sum of L times atten-
tional state concatenation for multi-modal represen-
tation at character-level step i, which is then used
to perform word segmentation by CRF. Besides,
we split each part for each modality as its own di-
mension: hx

i and ha
i , and input them into the next

LSTHMG step.
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Model 50 100 150
F Roov F Roov F Roov

BC(Text) 93.13 93.15 94.29 95.19 95.29 96.15
BC(Audio) 30.26 36.56 34.63 37.11 33.65 36.75
BC(Text+Audio) 34.43 37.54 32.67 36.68 33.39 37.04
WMSEG(Text) 94.26 94.25 95.24 95.47 95.39 95.13
WMSEG(Audio) 69.34 70.29 70.46 71.00 71.20 77.17
WMSEG(Text+Audio) 63.29 53.21 69.71 69.20 70.37 70.44
TMIN(Ours) 94.72 94.28 95.96 95.84 96.62 96.73

Table 2: Performance (the overall F-score and the recall of OOV) comparison of different approaches on different
training size. We perform a Friedman test on model- (row-) wise p-value< 0.05.

4.3 CRF Labeling

Since the textual and acoustic semantics of each
character have been integrated by time-dependent
uni-modal and multi-modal interactions, we allow
hi to perform conditional sequence labeling. In-
stead of decoding each label independently, we
model them jointly using a CRF to consider the
correlations between labels in neighborhoods. For-
mally,

p(y|X̂) =

∏n
i=1 Si(yi−1, yi, X̂)

∑
y′∈Y

∏n
i=1 Si(y′

i−1, y
′
i, X̂)

(6)

where Si(yi−1, yi, X̂) and Si(y
′
i−1, y

′
i, X̂) are po-

tential functions. X̂ denotes the input of CRF. Y
denotes the output label space.

We use the maximum conditional likelihood es-
timation for CRF training. The logarithm of likeli-
hood is given by:

∑
i logp(y|X̂). In the inference

phase, we predict the output sequence that obtains
the maximum score given by: argmaxy′∈Y p(y|X̂).

5 Experimentation

In this section, we provide the exploratory experi-
mental results and a case analysis.

5.1 Experimental Setting

Data Split. We evaluate our approach on the dif-
ferent size of training sets and the same validation
set and test set, i.e., 50, 100 and 150 sentences for
training, the remaining 50 and 50 sentences for val-
idation and test, respectively. For different training
sets, the Out-of-vocabulary (OOV) rate in test set
is 92.89%, 46.73% and 30.93%, respectively.

Implementation Details. The character em-
beddings of text X are initialized with the cased
BERTbase model pre-trained with dimension of

768, and fine-tuned during training. The character-
level embeddings of audio A are encoded by Trans-
former with dimension of 124. The learning rate,
the dropout rate, and the tradeoff parameter are
respectively set to 1e-4, 0.5, and 0.5, which can
achieve the best performance on the development
set of both datasets via a small grid search over the
combinations of [1e-5, 1e-4], [0.1, 0.5], and [0.1,
0.9] on two pieces of NVIDIA GTX 2080Ti GPU
with pytorch 1.7. Based on best-performed devel-
opment results, the Transformer layers for audio
encoding and the multi-attention times L in gating
is set 2 and 4, respectively. To motivate future re-
search, the dataset, aligned features and code will
be released 3.

Baselines. For a thorough comparison, we im-
plement the following approaches with F1 as met-
ric: 1) BERT and CRF framework, BC: BC(Text)
, BC(Audio), and BC(Text+Audio). 2) A repre-
sentative state-of-the-art, WMSEG (Tian et al.,
2020b): WMSEG(Text), WMSEG(Audio), and
WMSEG(Text+Audio). Note that the approaches
with (Text) take character-level text as input, the
approaches with (Audio) take character-level au-
dio as input, and the approaches with (Text+Audio)
take character-level concatenation of text and audio
as input.

5.2 Main Results

Table 2 shows the performance of different base-
lines compared with our approach, where the over-
all F-score and the recall of OOV are reported.
From this table we can see that:

1) WMSEG performs much better than the gen-
eral framework BC. This indicates that it is effec-
tive for WMSEG to incorporate wordhood infor-
mation with several popular encoder-decoder com-

3https://github.com/MANLP-suda/MCWS
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binations and it is suitable as a competitive base-
line.

2) The approach with only audio perform signif-
icantly worse than the approaches with text only,
suggesting that it is confusing of the various acous-
tic features and we should utilize audio modality
properly.

3) In most cases, the baselines with both text and
audio bring in a poor performance compared with
uni-modal approach, which suggests that simply
concatenation of time-dependent character-level
features for CWS seems a bad choice.

4) Among all approaches, our TMIN performs
best, and significantly outperforms the competi-
tive baselines (p-value< 0.05). Moreover, with
regard to Roov, we can observe that our TMIN is
able to recognize new words more accurately. This
is mainly because our approach can obtain effec-
tive multi-modal information by time-dependent
fusion against only textual, acoustic or early fused
approaches.

5.3 Case Study

Figure 3 illustrates a real instance of the predicted
boundaries by different approaches. From this fig-
ure, we can see that both WMSRG and BC give
the wrong prediction of the boundary in “史” and
“性” though they determine the correct segmenta-
tion for “历史” and “成就”. However, our TMIN
achieves all exact segmentation of this instance.
This is mainly because it is very effective for au-
dio, where there are a continuous breathing in the
character “性”, thus ”历史性” is a complete word.

6 Conclusion and Future Work

This paper proposes a new dataset for multi-modal
Chinese word segmentation (MCWS), which is
the first attempt to explore the multi-modality
for traditional CWS. Meanwhile, we propose a
time-dependent multi-modal interactive network
(TMIN) to effectively integrate textual and acous-
tic features. The preliminary experimental results
and case analysis demonstrate the reliability of our
motivation and the effectiveness of the proposed
approach.

In the future, we will annotate more samples at
the current setting, and collect new samples with
more modalities, such as visual information in so-
cial media, monologues and dialogues with con-
tinuous front face. Moreover, we will employ the
neural active learning approaches for MCWS to
reduce the annotation and achieve the best perfor-
mance.
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Abstract

Discrimination between antonyms and syn-
onyms is an important and challenging NLP
task. Antonyms and synonyms often share
the same or similar contexts and thus are hard
to make a distinction. This paper proposes
two underlying hypotheses and employs the
mixture-of-experts framework as a solution. It
works on the basis of a divide-and-conquer
strategy, where a number of localized experts
focus on their own domains (or subspaces) to
learn their specialties, and a gating mechanism
determines the space partitioning and the ex-
pert mixture. Experimental results have shown
that our method achieves the state-of-the-art
performance on the task.

1 Introduction

Antonymy-synonymy discrimination (ASD) is a
crucial problem in lexical semantics and plays a
vital role in many NLP applications such as sen-
timent analysis, textual entailment and machine
translation. Synonymy refers to semantically-
similar words (having similar meanings), while
antonymy indicates the oppositeness or contrastive-
ness of words (having opposite meanings). Al-
though telling apart antonyms and synonyms looks
simple on the surface, it actually poses a hard prob-
lem because of their interchangeable substitution.

A few research efforts have been devoted to com-
putational solutions of ASD task, which comprises
two mainstreams: pattern-based and distributional
approaches. The underlying idea of pattern-based
methods exists in that antonymous word pairs co-
occur with each other in some antonymy-indicating
lexico-syntactic patterns within a sentence (Roth
and im Walde, 2014; Nguyen et al., 2017). In spite
of their high precision, pattern-based methods suf-
fer from limited recall owing to the sparsity of
lexico-syntactic patterns and the lexical variations.

Distributional methods work on the basis of
distributional hypothesis stating that “the words
similar in meaning tend to occur in similar con-
texts” (Harris, 1954). Traditional distributional
methods are based on discrete context vectors.
Scheible et al. (2013) verified that using only the
contexts of certain classes can help discriminate
antonyms and synonyms. Santus et al. (2014)
thought that synonyms are expected to have broader
and more salient intersection of their top-K salient
contexts than antonyms, and proposed an Average-
Precision-based unsupervised measure.

With the advent of word embeddings as the con-
tinuous representations (Mikolov et al., 2013; Mnih
and Kavukcuoglu, 2013; Pennington et al., 2014),
several neural methods have been proposed to elicit
ASD-specific information from pretrained word
embeddings in a supervised manner. Etcheverry
and Wonsever (2019) used a siamese network to
ensure the symmetric, reflexive and transitive prop-
erties of synonymy and a parasiamese network to
model the antitransitivity of antonymy. Ali et al.
(2019) projected word embeddings into the syn-
onym and antonym subspaces respectively, and
then trained a classifier on the features from these
distilled subspaces, where the trans-transitivity of
antonymy was taken into consideration.

This paper follows the distributional approach
and studies the ASD problem on the basis of pre-
trained word embeddings. Two hypotheses under-
lie our method: (a) antonymous words tend to be
similar on most semantic dimensions but be dif-
ferent on only a few salient dimensions; (b) the
salient dimensions may vary significantly for differ-
ent antonymies throughout the whole distributional
semantic space. With respect to the hypothesis (b),
we find that a tailored model of mixture-of-experts
(MoE) (Jacobs et al., 1991) fits it well. The seman-
tic space is divided into a number of subspaces, and
each subspace has one specialized expert to elicit
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Figure 1: The architecture of MoE-ASD

the salient dimensions and learn a discriminator for
this subspace. As to the hypothesis (a), a similar
opinion was also expressed by Cruse (1986) that
antonymous words tend to have many common
properties, but differ saliently along one dimen-
sion of meaning. In addition, our experimental
results have shown that each expert requires only
four salient dimensions to achieve the best perfor-
mance.

Finally, we would like to point out the main
difference of our method from the existing ones.
Firstly, our MoE-ASD model adopts a divide-and-
conquer strategy, where each subspace is in the
charge of one relatively-simple localized expert
that focuses on only a few salient dimensions;
while existing methods rely on a global model
which must grasp all the salient dimensions across
all the subspaces. Secondly, our method simply
enforces the symmetric property of synonymy and
antonymy, but ignores the other algebraic proper-
ties such as the transitivity of synonymy and trans-
transitivity of antonymy, because these algebraic
properties do not always hold on the word level for
the polysemy characteristic of words.

2 Method

This paper proposes a novel ASD method based
on the mixture-of-experts framework (called MoE-
ASD)1. Its architecture is illustrated in Figure 1. It
solves the problem in a divide-and-conquer man-
ner by dividing the problem space into a number
of subspaces and each subspace is in the charge

1Our code and data are released at https://github.
com/Zengnan1997/MoE-ASD

Figure 2: A localized expert

of a specialized expert. The expert focuses on the
salient dimensions of the subspace and makes the
decision for word pairs. A gating module is trained
jointly with these experts. The details are as fol-
lows.

2.1 Localized Experts
All the experts are homogeneous, and they have
the same network architecture but with different
parameter values. Given a word pair (w1, w2)
as input, each expert Ei computes its unnormal-
ized probability ai(w1, w2) of being antonymy. As
stated in Section 1, our method adopts the hypoth-
esis that antonymous words tend to be similar on
most semantic dimensions but be different on a few
salient dimensions. Each expert has to first elicit
the salient dimensions, and then makes a decision
based on a feature vector constructed from them.
Figure 2 illustrates how an expert works.

Let w1 and w2 denote the pre-trained word em-
beddings of words w1 and w2 respectively, whose
dimensionality is de. Each expert Ei distills du
salient dimensions from them by projecting them
from Rde into Rdu :

ui
1=w1 ·Mi

u +bi
u and ui

2=w2 ·Mi
u +bi

u (1)

where Mi is a matrix of size de × du and bi is
a vector of length du. Next, a relational feature
vector r is constructed by concatenating the sum
(ui

1 + ui
2), the absolute difference |ui

1 − ui
2|, the

cosine similarity cos(ui
1,u

i
2) and the prefix feature

fw1,w2 :

r=(ui
1+ui

2)⊕|ui
1−ui

2|⊕cos(ui
1,u

i
2)⊕fw1,w2 (2)

Here, fw1,w2 is the Negation-Prefix feature that
denotes whether w1 and w2 differ only by one of
the known negation prefixes: {de, a, un, non, in, ir,
anti, il, dis, counter, im, an, sub, ab}, following Ali
et al. (2019) and Rajana et al. (2017).

It is evident that the feature vector is symmet-
ric with respect to the input word pair. This is,
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the word pairs (w1, w2) and (w2, w1) lead to the
same feature vector. It is worth noting that the ab-
solute difference is used instead of the difference,
in order to preserve the symmetric properties of
both synonymy and antonymy. We note that Roller
et al. (2014) used the difference between two word
vectors as useful features for detecting hypernymy
which is asymmetric.

The relational feature vector r goes through an
MLP to get the antonymy-score ai(w1, w2):

ai(w1, w2)=(mi
o)
> ·ReLU(r·Mi

h+bi
h)+b

i
o (3)

where the hidden layer has dh units, Mi
h is a matrix

of size (2du +2)× dh, bi
h and mi

o are two vectors
of length dh, and bio is the bias.

2.2 Gating Mechanism for Expert Mixture

Assume there are M localized experts in the
MoE-ASD model. For an input word pair
(w1, w2), we shall get M antonymy-scores a =
[ai(w1, w2)]1≤i≤M , where each ai(w1, w2) is ob-
tained from the expertEi. Now, the problem is how
to derive the final score for antonymy detection.

In our MoE-ASD model, the final score is a
weighted average of the M scores from the local-
ized experts:

s(w1, w2) = g> · a (4)

where g is located in the M -dimensional simplex,
and denotes the proportional contributions of the
experts to the final score. A gating mechanism
is used to calculate g for each specific word pair
(w1, w2), fulfilling a dynamic mixture of experts:

g = softmax
(
(w1 +w2)

> ·Mg

)
(5)

where Mg ∈ Rde×M is the parameter matrix of
the gating module. The i-th column of Mg can be
thought of as the representative vector of the i-the
expert, and the dot product between the sum of two
word embeddings and the representative vector is
the attention weight of the expert Ei. Softmax is
then applied on the attention weights to get g. It is
evident that the gating module is also symmetric
with respect to the input word pair. The symmetric
properties of both the gating module and the local
expert module endow our model with symmetry
that make it distinct from the other state-of-the-
arts such as Parasiam (Etcheverry and Wonsever,
2019) and Distiller (Ali et al., 2019).

Category Train Dev Test Total
Adjective 5562 398 1986 7946
Verb 2534 182 908 3624
Noun 2836 206 1020 4062

Table 1: Antonym/Synonym Dataset

2.3 Model Prediction and Loss Function
Given word pair (w1, w2), the probability of being
antonymy is obtained by simply applying sigmoid
function to the final score:

p(w1, w2) = σ(s(w1, w2)) (6)

Let A denote the training set of N word pairs,
A = {(w(n)

1 , w
(n)
2 )}Nn=1, t(n) denote the gold la-

bel of the n-th word pair, and p(n) the predicted
probability of being antonymy. Our model uses the
cross-entropy loss function:

L=
1

N

N∑

n=1

[
t(n)log p(n)+

(
1−t(n)

)
log
(
1−p(n)

)]
(7)

3 Evaluation

Dataset. We evaluate our method on the
dataset (Nguyen et al., 2017) that was previously
created from WordNet (Miller, 1995) and Word-
nik2. The word pairs of antonyms and synonyms
were grouped according to the word class (Adjec-
tive, Noun and Verb). The ratio of antonyms to
synonyms in each group is 1:1. The statistics of the
dataset are shown in Table 1. In order to make a fair
comparison with previous algorithms, the dataset
is splitted into training, validation and testing data
the same as previous works.

Methods for Comparison: We make a compari-
son against the following ASD methods: (1) Con-
cat - a baseline method that concatenates two word
vectors and feeds it into an MLP with two hid-
den layers (with 400 and 200 hidden units re-
spectively) and ReLU activation functions. (2)
AntSynNET (Nguyen et al., 2017) is a pattern-
based method that encodes the paths connecting
the joint occurrences of candidate pairs using a
LSTM; (3) Parasiam (Etcheverry and Wonsever,
2019) used a siamese network and a parasiamese
network to ensure the algebraic properties of syn-
onym and antonym, respectively. (4) Distiller (Ali
et al., 2019) is a two-phase method that first distills

2http://www.wordnik.com
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Method Adjective Verb Noun
P R F1 P R F1 P R F1

Concat (Baseline) 0.596 0.751 0.651 0.596 0.750 0.656 0.688 0.745 0.708
AntSynNet (Nguyen et al., 2017) 0.750 0.798 0.773 0.717 0.826 0.768 0.807 0.827 0.817

Parasiam (Etcheverry and Wonsever, 2019) 0.855 0.857 0.856 0.864 0.921 0.891 0.837 0.859 0.848
Distiller (Ali et al., 2019) 0.854 0.917 0.884 0.871 0.912 0.891 0.823 0.866 0.844
MoE-ASD (Our method) 0.878 0.907 0.892 0.895 0.920 0.908 0.841 0.900 0.869

Table 2: Performance evaluation of our model and the baseline models (with vanilla word embeddings)

Method Adjective Verb Noun
P R F1 P R F1 P R F1

AntSynNet (Nguyen et al., 2017) 0.763 0.807 0.784 0.743 0.815 0.777 0.816 0.898 0.855
Parasiam (Etcheverry and Wonsever, 2019) 0.874 0.950 0.910 0.837 0.953 0.891 0.847 0.939 0.891

Distiller (Ali et al., 2019) 0.912 0.944 0.928 0.899 0.944 0.921 0.905 0.918 0.911
MoE-ASD 0.935 0.941 0.938 0.914 0.944 0.929 0.920 0.950 0.935

Table 3: Performance evaluation with the dLCE embeddings

task-specific information and then trains a classifier
based on distilled sub-spaces.

3.1 Experimental Settings

We use the 300-dimension FastText word embed-
dings (Bojanowski et al., 2017)3. The model is op-
timized with the Adam algorithm (Kingma and Ba,
2015). We run our algorithm 10 times and record
the average Precision, Recall and F-scores. The
number of salient dimensions (du) and the num-
ber of localized experts (M ) are tuned on the val-
idation data by grid search, with M ∈ {2i}1≤i≤8
and du ∈ {2i}1≤i≤8. The best configuration is
(du = 4,M = 256) for both Noun and Verb, while
(du = 4,M = 128) for Adjective.

3.2 Comparison with SOTA methods

Table 2 compares our method with the state-of-the-
arts, which are restricted to pretrained vanilla word
embeddings. Both the Parasiam method and our
MoE-ASD method use FastText embeddings (Bo-
janowski et al., 2017), while Distiller uses Glove
embeddings (Pennington et al., 2014).

It is observed that our model consistently outper-
forms the state-of-the-arts on all the three subtasks,
which manifests the effectiveness of the mixture-
of-experts model for ASD and validates the hy-
pothesis (b) that the salient dimensions may vary
significantly throughout the whole space.

We also find that the performance on Noun class
is relatively low when compared with Verb and
Adjective classes, which coincide with the observa-
tions obtained in (Scheible et al., 2013; Ali et al.,

3https://dl.fbaipublicfiles.
com/fasttext/vectors-english/
wiki-news-300d-1M.vec.zip

F1-score Adjective Verb Noun
Our full method 0.892 0.908 0.869
–prefix feature 0.886 0.905 0.868
–cosine sim 0.883 0.905 0.856
–absolute diff 0.890 0.897 0.866
–sum 0.888 0.903 0.867

Table 4: Ablation analysis of the features

2019), possibly for the reason that polysemy phe-
nomenon is more significant among nouns.

Besides vanilla word embeddings, existing ASD
methods also used dLCE (Nguyen et al., 2016) em-
beddings, and often obtained better results. How-
ever, a large number of antonymies and synonymies
have been used in the process of learning dLCE
embeddings, which may lead to severe overfitting.
In spite of this concern, we also test our method
with dLCE embeddings on the dataset and find that
it outperforms these competitors with dLCE and
list the results in Table 3.

3.3 Ablation Analysis of Features

We also make an ablation analysis about the four
kinds of features, by removing each of them from
our model. It can be seen from Table 4 that all
the features are making their own contributions to
the ASD. Different parts of speech have different
sensitivities to different features. Specifically, verb
is most sensitive to “absolute difference”, while
both adjective and noun are most sensitive to “co-
sine”. The reason behind the observations deserves
further exploration.
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newdataset Model Adjective Verb Noun
P R F1 P R F1 P R F1

FastText Parasiam 0.694 0.866 0.769 0.642 0.824 0.719 0.740 0.759 0.748
MoE-ASD 0.808 0.810 0.809 0.830 0.693 0.753 0.846 0.722 0.776

dLCE Parasiam 0.768 0.952 0.850 0.769 0.877 0.819 0.843 0.914 0.876
MoE-ASD 0.877 0.908 0.892 0.860 0.835 0.847 0.912 0.869 0.890

Table 5: Performance of our model and the baseline models on the lexical-split datasets
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Figure 3: The effect on performance by varying the
number of salient dimensions (fixing M = 256)
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Figure 4: The effect on performance by varying the
number of experts (fixing du = 4)

3.4 Hyperparameter Analysis

The number of salient dimensions (du) and the
number of experts (M ) are two prominent hyper-
parameters in our MOE-ASD model. By varying
their values, we study their influence on the perfor-
mance.

Firstly, by fixing M = 256, we vary du from 21

to 28 and plot the F1-scores on the validation data
and the testing data in Figure 3. It is observed that
all the three subtasks (Adjective, Noun and Verb)
arrive at the best performance at du = 4 on both
validation data and testing data. It validates our
hypothesis (a) that antonymous words tend to be
different on only a few salient dimensions.

Secondly, by fixing du = 4, we vary M from 21

to 28 and plot the F1-scores in Figure 4. Overall,
the performance becomes better with the larger
number of experts. We conjecture that marginal
improvement will be obtained by increasing the
number of experts further, but we do not make such
experiments.

Category Train Dev Test Total
Adjective 4227 303 1498 6028
Verb 2034 146 712 2892
Noun 2667 191 954 3812

Table 6: The datasets after lexical split

3.5 Lexical Memorization

To eliminate the bias introduced by the lexical
memorization problem (Levy et al., 2015), we per-
form lexical splits to obtain train and test datasets
with zero lexical overlap. The statistics of the
lexical-split datasets are listed in Table 6. Table
5 shows the results of our method and Parasiam
on the lexical-split datasets by using FastText and
dLCE pretrained word embeddings. It can be seen
that our MoE-ASD model outperforms Parasiam on
all three lexical-split datasets. However, significant
decreases in the F1 scores are also observed.

4 Conclusions

This paper first presents two hypotheses for ASD
task (i.e., antonymous words tend to be different
on only a few salient dimensions that may vary sig-
nificantly for different antonymies) and then moti-
vates an ASD method based on mixture-of-experts.
Finally, experimental results have manifested its
effectiveness and validated the two underlying hy-
potheses. It is worth noting that our method is
distinct from the other state-of-the-arts in two main
aspects: (1) it works in a divide-and-conquer strat-
egy by dividing the whole space into multiple sub-
spaces and having one expert specialized for each
subspace; (2) it is inherently symmetric with respect
to the input word pair.
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Abstract

Injecting external domain-specific knowledge
(e.g., UMLS) into pretrained language models
(LMs) advances their capability to handle spe-
cialised in-domain tasks such as biomedical
entity linking (BEL). However, such abundant
expert knowledge is available only for a hand-
ful of languages (e.g., English). In this work,
by proposing a novel cross-lingual biomedical
entity linking task (XL-BEL) and establishing a
new XL-BEL benchmark spanning 10 typolog-
ically diverse languages, we first investigate
the ability of standard knowledge-agnostic as
well as knowledge-enhanced monolingual and
multilingual LMs beyond the standard mono-
lingual English BEL task. The scores indicate
large gaps to English performance. We then
address the challenge of transferring domain-
specific knowledge from resource-rich lan-
guages to resource-poor ones. To this end,
we propose and evaluate a series of cross-
lingual transfer methods for the XL-BEL task,
and demonstrate that general-domain bitext
helps propagate the available English knowl-
edge to languages with little to no in-domain
data. Remarkably, we show that our proposed
domain-specific transfer methods yield consis-
tent gains across all target languages, some-
times up to 20 Precision@1 points, without any
in-domain knowledge in the target language,
and without any in-domain parallel data.

1 Introduction

Recent work has demonstrated that it is possible to
combine the strength of 1) Transformer-based en-
coders such as BERT (Devlin et al., 2019; Liu et al.,
2019), pretrained on large general-domain data
with 2) external linguistic and world knowledge
(Zhang et al., 2019; Levine et al., 2020; Lauscher
et al., 2020). Such expert human-curated knowl-
edge is crucial for NLP applications in specialised
domains such as biomedicine. There, Liu et al.

(2021) recently proposed self-alignment pretrain-
ing (SAP), a technique to fine-tune BERT on phrase-
level synonyms extracted from the Unified Medical
Language System (UMLS; Bodenreider 2004).1

Their SAPBERT model currently holds state-of-the-
art (SotA) across all major English biomedical en-
tity linking (BEL) datasets. However, this approach
is not widely applicable to other languages: abun-
dant external resources are available only for a few
languages, hindering the development of domain-
specific NLP models in all other languages.

Simultaneously, exciting breakthroughs in cross-
lingual transfer for language understanding tasks
have been achieved (Artetxe and Schwenk, 2019;
Hu et al., 2020). However, it remains unclear
whether such transfer techniques can be used to
improve domain-specific NLP applications and mit-
igate the gap between knowledge-enhanced models
in resource-rich versus resource-poor languages. In
this paper, we thus investigate the current perfor-
mance gaps in the BEL task beyond English, and
propose several cross-lingual transfer techniques
to improve domain-specialised representations and
BEL in resource-lean languages.

In particular, we first present a novel cross-
lingual BEL (XL-BEL) task and its correspond-
ing evaluation benchmark in 10 typologically di-
verse languages, which aims to map biomedical
names/mentions in any language to the controlled
UMLS vocabulary. After empirically highlight-
ing the deficiencies of multilingual encoders (e.g,
MBERT and XLMR; Conneau et al. 2020) on XL-
BEL, we propose and evaluate a multilingual ex-
tension of the SAP technique. Our main results
suggest that expert knowledge can be transferred
from English to resource-leaner languages, yield-
ing huge gains over vanilla MBERT and XLMR,
and English-only SAPBERT. We also show that

1UMLS is a large-scale biomedical knowledge graph con-
taining more than 14M biomedical entity names.
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leveraging general-domain word and phrase trans-
lations offers substantial gains in the XL-BEL task.

Contributions. 1) We highlight the challenge of
learning (biomedical) domain-specialised cross-
lingual representations. 2) We propose a novel mul-
tilingual XL-BEL task with a comprehensive evalu-
ation benchmark in 10 languages. 3) We offer sys-
tematic evaluations of existing knowledge-agnostic
and knowledge-enhanced monolingual and multi-
lingual LMs in the XL-BEL task. 4) We present a
new SotA multilingual encoder in the biomedical
domain, which yields large gains in XL-BEL espe-
cially on resource-poor languages, and provides
strong benchmarking results to guide future work.
The code, data, and pretrained models are available
online at: github.com/cambridgeltl/sapbert.

2 Methodology

Background and Related Work. Learning
biomedical entity representations is at the core of
BioNLP, benefiting, e.g., relational knowledge dis-
covery (Wang et al., 2018) and literature search
(Lee et al., 2016). In the current era of contex-
tualised representations based on Transformer ar-
chitectures (Vaswani et al., 2017), biomedical text
encoders are pretrained via Masked Language Mod-
elling (MLM) on diverse biomedical texts such
as PubMed articles (Lee et al., 2020; Gu et al.,
2020), clinical notes (Peng et al., 2019; Alsentzer
et al., 2019), and even online health forum posts
(Basaldella et al., 2020). However, it has been
empirically verified that naively applying MLM-
pretrained models as entity encoders does not per-
form well in tasks such as biomedical entity link-
ing (Basaldella et al., 2020; Sung et al., 2020).
Recently, Liu et al. (2021) proposed SAP (Self-
Alignment Pretraning), a fine-tuning method that
leverages synonymy sets extracted from UMLS to
improve BERT’s ability to act as a biomedical entity
encoder. Their SAPBERT model currently achieves
SotA scores on all major English BEL benchmarks.

In what follows, we first outline the SAP proce-
dure, and then discuss the extension of the method
to include multilingual UMLS synonyms (§2.1),
and then introduce another SAP extension which
combines domain-specific synonyms with general-
domain translation data (§2.2).

2.1 Language-Agnostic SAP

Let (x, y) ∈ X ×Y denote the tuple of a name and
its categorical label. When learning from UMLS

synonyms, X × Y is the set of all (name, CUI2)
pairs, e.g., (vaccination, C0042196). While Liu
et al. (2021) use only English names, we here con-
sider names in other UMLS languages. During
training, the model is steered to create similar rep-
resentations for synonyms regardless of their lan-
guage.3 The learning scheme includes 1) an online
sampling procedure to select training examples and
2) a metric learning loss that encourages strings
sharing the same CUI to obtain similar representa-
tions.

Training Examples. Given a mini-batch of N
examples B = XB × YB = {(xi, yi)}Ni=1, we start
from constructing all possible triplets for all names
xi ∈ XB. Each triplet is in the form of (xa, xp, xn)
where xa is the anchor, an arbitrary name from XB;
xp is a positive match of xa (i.e., ya = yp) and xn
is a negative match of xa (i.e., ya 6= yn). Let f(·)
denote the encoder (i.e., MBERT or XLMR in this
paper). Among the constructed triplets, we select
all triplets that satisfy the following constraint:

‖f(xa)− f(xp)‖2 + λ ≥ ‖f(xa)− f(xn)‖2,
where λ is a predefined margin. In other words, we
only consider triplets with the positive sample fur-
ther to the negative sample by a margin of λ. These
‘hard’ triplets are more informative for represen-
tation learning (Liu et al., 2021). Every selected
triplet then contributes one positive pair (xa, xp)
and one negative pair (xa, xn). We collect all such
positives and negatives, and denote them as P,N .

Multi-Similarity Loss. We compute the pair-
wise cosine similarity of all the name representa-
tions and obtain a similarity matrix S ∈ R|XB|×|XB|
where each entry Sij is the cosine similarity be-
tween the i-th and j-th names in the mini-batch B.
The Multi-Similarity loss (MS, Wang et al. 2019),
is then used for learning from the triplets:

L =
1

|XB|

|XB|∑

i=1

(
1

α
log
(
1 +

∑

n∈Ni

eα(Sin−ε)
)

+
1

β
log
(
1 +

∑

p∈Pi

e−β(Sip−ε)
))

.

(1)

α, β are temperature scales; ε is an offset applied on
the similarity matrix; Pi,Ni are indices of positive
and negative samples of the i-th anchor.

2In UMLS, “CUI” means Concept Unique Identifier.
3For instance, vaccination (EN), active immunization (EN),

vacunación (ES) and予防接種 (JA) all share the same Con-
cept Unique Identifier (CUI; C0042196); thus, they should
all have similar representations.
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#↓, language→ EN ES DE FI RU TR KO ZH JA TH

sentences - 223,506 350,193 77,736 206,060 29,473 47,702 136,054 157,670 19,066
unique titles (Wiki page) 60,598 37,935 24,059 15,182 21,044 5,251 10,618 17,972 11,002 4,541
mentions 1,067,083 204,253 431,781 105,182 221,383 29,958 60,979 197,317 220,452 31,177
unique mentions 121,669 25,169 44,390 26,184 28,302 4,110 9,032 24,825 21,949 5,064
unique mentionsmention!=title 69,199 22,162 43,753 19,409 23,935 2,833 3,740 12,046 12,571 2,480

Table 1: Construction of the XL-BEL benchmark; key statistics. See the App. §A.1 for further details.

2.2 SAP with General-Domain Bitext

We also convert word and phrase translations into
the same format (§2.1), where each ‘class’ now
contains only two examples. For a translation
pair (xp, xq), we create a unique pseudo-label
yxp,xq and produce two new name-label instances
(xp, yxp,xq) and (xq, yxp,xq),

4 and proceed as in
§2.1. This allows us to easily combine domain-
specific knowledge with general translation knowl-
edge within the same SAP framework.

3 The XL-BEL Task and Evaluation Data

A general cross-lingual entity linking (EL) task
(McNamee et al., 2011; Tsai and Roth, 2016) aims
to map a mention of an entity in free text of any lan-
guage to a controlled English vocabulary, typically
obtained from a knowledge graph (KG). In this
work, we propose XL-BEL, a cross-lingual biomed-
ical EL task. Instead of grounding entity mentions
to English-specific ontologies, we use UMLS as a
language-agnostic KG: the XL-BEL task requires
a model to associate a mention in any language
to a (language-agnostic) CUI in UMLS. XL-BEL

thus serves as an ideal evaluation benchmark for
biomedical entity representations: it challenges the
capability of both 1) representing domain entities
and also 2) associating entity names in different
languages.

Evaluation Data Creation. For English, we
take the available BEL dataset WikiMed (Vashishth
et al., 2020), which links Wikipedia mentions to
UMLS CUIs. We then follow similar procedures
as WikiMed and create an XL-BEL benchmark cov-
ering 10 languages (see Table 2). For each lan-
guage, we extract all sentences from its Wikipedia

4These pseudo-labels are not related to UMLS, but are used
to format our parallel translation data into the input convenient
for the SAP procedure. In practice, for these data we gener-
ate pseudo-labels ourselves as ‘LANGUAGE CODE+index’.
For instance, ENDE2344 indicates that this word pair is our
2,344th English-German word translation. Note that the ac-
tual coding scheme does not matter as it is only used for our
algorithm to determine what terms belong to the same (in this
case - translation) category.

dump, find all hyperlinked concepts (i.e., words
and phrases), lookup their Wikipedia pages, and
retain only concepts that are linked to UMLS.5 For
each UMLS-linked mention, we add a triplet (sen-
tence, mention, CUI) to our dataset.6 Only one
example per surface form is retained to ensure di-
versity. We then filter out examples with mentions
that have the same surface form as their Wikipedia
article page.7 Finally, 1k examples are randomly
selected for each language: they serve as the final
test sets in our XL-BEL benchmark. The statistics
of the benchmark are available in Table 1.

4 Experiments and Results

UMLS Data. We rely on the UMLS (2020AA)
as our SAP fine-tuning data, leveraging synonyms
in all available languages. The full multilingual
fine-tuning data comprises ≈15M biomedical en-
tity names associated with ≈4.2M individual CUIs.
As expected, English is dominant (69.6% of all
15M names), followed by Spanish (10.7%) and
French (2.2%). The full stats are in App. §A.3.

Translation Data. We use (a) “muse” word
translations (Lample et al., 2018), and (b) the par-
allel Wikipedia article titles (phrase-level transla-
tions; referred to as “wt”). We also list results when
using “muse” and “wt” combined (“wt+ muse”).

Training and Evaluation Details. Our SAP fine-
tuning largely follows Liu et al. (2021); we refer to
the original work and the Appendix for further tech-

5For instance, given a sentence from German Wikipedia
Die [Inkubationszeit] von COVID-19 beträgt durchschnit-
tlich fünf bis sechs Tage., we extract the hyperlinked word
Inkubationszeit as an UMLS-linked entity mention. Since
Wikipedia is inherently multilingual, if Inkubationszeit is
linked to UMLS, its cross-lingual counterparts, e.g., Incu-
bation period (EN), are all transitively linked to UMLS.

6Note that though each mention is accompanied with its
context, we regard it as out-of-context mention following the
tradition in prior work (Sung et al., 2020; Liu et al., 2021;
Tutubalina et al., 2020). According to Basaldella et al. (2020),
biomedical entity representations can be easily polluted by its
context. We leave contextual modelling for future work.

7Otherwise, the problem is easily solved by comparing
surface forms of the mention and the article title.
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language→ EN ES DE FI RU TR KO ZH JA TH avg

model↓ @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5

monolingual models

{$LANG}BERT - - 41.3 42.5 16.8 18.4 4.9 5.2 1.1 1.6 19.5 21.8 1.1 1.6 2.1 3.2 2.7 2.8 0.4 0.4 10.0 10.8
+ SAPall syn - - 60.9 66.8 35.5 40.0 18.8 23.9 36.4 42.4 44.9 49.7 13.5 16.0 18.5 23.8 21.2 25.9 0.6 0.6 27.8 32.1

SAPBERT 78.7 81.6 47.3 51.4 22.7 24.7 8.2 10.2 5.8 6.0 26.4 29.7 2.0 2.4 1.9 2.2 3.0 3.2 3.1 3.4 19.9 21.6
SAPBERTall syn 78.3 80.7 55.6 61.3 30.0 34.2 11.8 14.8 9.3 11.3 35.5 39.5 2.0 2.4 6.4 8.2 6.9 8.3 3.0 3.3 23.9 26.4

multilingual models

MBERT 0.8 1.7 0.5 0.7 0.3 0.4 0.4 0.8 0.0 0.0 0.7 1.2 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.3 0.5
+ SAPen syn 75.5 79.9 50.6 55.8 26.0 29.6 8.7 10.7 10.1 12.6 31.0 34.4 2.7 3.2 4.1 5.7 4.7 5.9 3.1 3.5 21.7 24.1
+ SAPall syn 75.0 79.7 61.4 67.0 33.4 37.8 18.4 21.9 35.1 40.3 44.5 47.7 15.1 17.6 19.5 22.7 19.9 25.0 2.8 3.4 32.5 36.3

XLMR 1.0 2.0 0.3 0.7 0.0 0.1 0.1 0.2 0.1 0.2 0.4 0.5 0.0 0.3 0.1 0.2 0.2 0.4 0.0 0.1 0.2 0.5
+ SAPen syn 78.1 80.9 47.9 53.5 27.6 32.0 12.2 14.7 21.8 25.9 29.3 35.9 4.5 6.7 7.9 11.3 8.3 11.3 11.5 16.2 24.9 28.8
+ SAPall syn 78.2 81.0 56.4 62.7 31.8 37.3 18.6 22.2 35.4 41.2 42.8 48.9 16.7 21.4 18.8 23.0 24.0 28.1 20.6 27.5 34.3 39.3

Table 2: Various base models combined with SAP, using either all synonyms (all syn) or only English synonyms
(en syn) in UMLS. {$LANG} denotes the language of the corresponding column (also in Table 4). See Table 6
(App. §A.3) for the language codes. avg refers to the average performance across all target languages. Grey and

light blue rows are off-the-shelf base models and models fine-tuned with the UMLS knowledge, respectively.

language→ ES DE FI RU TR KO ZH JA TH avg

model↓ @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5

XLMR + SAPen syn 47.9 53.5 27.6 32.0 12.2 14.7 21.8 25.9 29.3 35.9 4.5 6.7 7.9 11.3 8.3 11.3 11.5 16.2 19.0 23.1
+ en-{$LANG} wt 55.0 62.2 34.6 41.4 18.6 24.4 35.0 41.5 43.3 50.6 15.9 22.3 15.9 23.0 18.7 24.4 25.1 32.4 29.1 35.8
+ en-{$LANG} muse 54.4 61.0 28.7 34.4 16.7 20.6 33.6 39.0 41.9 48.8 11.9 16.3 12.3 16.7 15.7 19.9 18.6 25.1 26.0 31.3
+ en-{$LANG} wt+muse 49.4 59.6 30.3 36.9 20.4 28.9 33.2 41.9 42.7 51.7 16.1 22.3 16.0 22.9 17.8 24.3 26.2 34.0 28.0 35.8

XLMR + SAPall syn 56.4 62.7 31.8 37.3 18.6 22.2 35.4 41.2 42.8 48.9 16.7 21.4 18.8 23.0 24.0 28.1 20.6 27.5 29.5 34.7
+ en-{$LANG} wt 57.2 63.7 35.1 42.3 20.3 27.6 35.8 43.8 48.8 55.0 22.1 27.9 20.6 27.3 24.8 31.3 30.0 37.6 32.7 39.6
+ en-{$LANG} muse 57.9 63.9 33.0 38.4 23.0 27.3 39.8 45.9 47.2 54.5 22.1 25.7 19.2 25.6 25.2 30.2 25.9 32.8 32.6 38.3
+ en-{$LANG} wt+ muse 51.4 61.2 31.3 38.9 22.8 28.4 36.4 45.2 42.2 51.6 24.4 29.2 21.1 28.2 23.2 30.4 30.9 37.9 31.5 39.0

MBERT + SAPall syn 61.4 67.0 33.4 37.8 18.4 21.9 35.1 40.3 44.5 47.7 15.1 17.6 19.5 22.7 19.9 25.0 2.8 3.4 27.8 31.5
+ en-{$LANG} wt 59.2 66.9 37.5 43.9 25.6 33.0 39.6 47.2 52.7 59.7 19.8 24.3 24.1 31.9 23.5 28.7 4.8 5.9 31.9 37.9
+ en-{$LANG} muse 59.9 66.2 34.3 38.8 21.6 27.5 36.5 41.7 51.0 56.7 18.1 21.2 22.2 26.4 22.0 25.5 3.4 3.8 29.2 34.2
+ en-{$LANG} wt+ muse 59.2 67.5 35.3 42.4 30.5 37.3 41.6 49.2 57.2 64.7 19.8 25.0 24.6 32.1 24.3 28.0 5.2 6.3 33.1 39.2

Table 3: Results when applying SAP with 1) UMLS knowledge + 2) word and/or phrase translations .

nical details. The evaluation measure is standard
Precision@1 and Precision@5. In all experiments,
SAP always denotes fine-tuning of a base LM with
UMLS data. [CLS] of the last layer’s output is
used as the final representation (Liu et al., 2021).
Without explicit mentioning, we use the BASE vari-
ants of all monolingual and multilingual LMs. At
inference, given a query representation, a nearest
neighbour search is used to rank all candidates’
representations. We restrict the target ontology to
only include CUIs that appear in WikiMed (62,531
CUIs, 399,931 entity names).

4.1 Main Results and Discussion
Multilingual UMLS Knowledge Always Helps
(Table 2). Table 2 summarises the results of
applying multilingual SAP fine-tuning based on
UMLS knowledge on a wide variety of mono-
lingual, multilingual, and in-domain pretrained
encoders. Injecting UMLS knowledge is con-
sistently beneficial to the models’ performance
on XL-BEL across all languages and across all
base encoders. Using multilingual UMLS syn-

onyms to SAP-fine-tune the biomedical PUBMED-
BERT (SAPBERTall syn) instead of English-only
synonyms (SAPBERT) improves its performance
across the board. SAP-ing monolingual BERTs for
each language also yields substantial gains across
all languages; the only exception is Thai (TH),
which is not represented in UMLS. Fine-tuning
multilingual models MBERT and XLMR leads to
even larger relative gains.

Performance across Languages (Table 2).
UMLS data is heavily biased towards Romance
and Germanic languages. As a result, for
languages more similar to these families, mono-
lingual LMs (upper half, Table 2) are on par
or outperform multilingual LMs (lower half,
Table 2). However, for other (distant) languages
(e.g., KO, ZH, JA, TH), the opposite holds. For
instance, on TH, XLMR+SAPall syn outperforms
THBERT+SAPall syn by 20% Precision@1.

General Translation Knowledge is Useful (Ta-
ble 3). Table 3 summarises the results where we

568



language→ ES DE RU KO avg

model↓ @1 @5 @1 @5 @1 @5 @1 @5 @1 @5

MBERT
+ SAPen syn 50.6 55.8 26.0 29.6 10.1 12.6 2.7 3.2 22.4 25.3
+ SAP{$LANG} syn 57.1 62.8 28.9 33.6 25.8 31.7 2.1 2.6 28.5 32.7
+ SAPen+{$LANG} syn 61.1 68.5 35.2 39.8 35.6 40.9 14.4 16.3 36.6 41.4
+ SAPall syn 61.4 67.0 33.4 37.8 35.1 40.3 15.1 17.6 36.6 40.7

XLMR
+ SAPen syn 47.9 53.5 27.6 32.0 21.8 25.9 4.5 6.7 25.5 29.5
+ SAP{$LANG} syn 52.9 55.8 25.9 30.4 28.7 34.2 2.4 2.9 24.5 30.8
+ SAPen+{$LANG} syn 55.8 62.5 27.7 32.3 36.4 42.2 15.8 19.8 33.9 39.2
+ SAPall syn 56.4 62.7 31.8 37.3 35.4 41.2 16.7 21.4 35.1 40.7

Table 4: Varying UMLS synonymy sets.

continue training on general translation data (§2.2)
after the previous UMLS-based SAP. With this vari-
ant, base multilingual LMs become powerful multi-
lingual biomedical experts. We observe additional
strong gains (cf., Table 2) with out-of-domain trans-
lation data: e.g., for MBERT the gains range from
2.4% to 12.7% on all languages except ES. For
XLMR, we report Precision@1 boosts of>10% on
RU, TR, KO, TH with XLMR+SAPen syn, and simi-
lar but smaller gains also with XLMR+SAPall syn.

We stress the case of TH, not covered in UMLS.
Precision@1 rises from 11.5% (XLMR+SAPen syn)
to 30.9%↑19.4% (XLMR+SAPall syn(+en-th wt+
muse)), achieved through the synergistic effect of
both knowledge types: 1) UMLS synonyms in
other languages push the scores to 20.6%↑9.1%;
2) translation knowledge increases it further to
30.9%↑10.3%. In general, these results suggest that
both external in-domain knowledge and general-
domain translations boost the performance in
resource-poor languages.

The More the Better (Table 4)? According
to Table 4 (lower half), it holds almost uni-
versally that all syn > en+{$LANG} syn >
en syn/{$LANG} syn on XLMR, that is, it seems
that more in-domain knowledge (even in non-
related languages) benefit cross-lingual transfer.
However, for MBERT (Table 4, upper half), the
trend is less clear, with en+{$LANG} syn some-
times outperforming the all syn variant. Despite
modest performance differences, this suggests that
the choice of source languages for knowledge trans-
fer also plays a role; this warrants further investiga-
tions in future work.

Are Large Models (Cross-Lingual) Domain Ex-
perts (Table 5)? We also investigate the LARGE

variant of XLMR, and compare it to its BASE

variant. On English, XLMRLARGE gets 73.0%
Precision@1, being in the same range as SAPBERT

data split→ EN avg

model↓ @1 @5 @1 @5

XLMR 1.0 2.0 0.2 0.5
+ SAPall syn 78.2 81.0 34.3 39.3

XLMRLARGE 73.0 75.0 12.3 13.3
+ SAPall syn 78.3 81.3 39.0 44.2

Table 5: Comparing BASE and LARGE models on XL-
BEL. Both EN results and avg across all languages are
reported. Full table available in Appendix Table 9.

(78.7%), without SAP-tuning (Table 5). The scores
without SAP fine-tuning on XLMRLARGE, although
much higher than of its BASE variant, decrease
on other (‘non-English’) languages. At the same
time, note that XLMR BASE achieves random-
level performance without SAP-tuning. After SAP

fine-tuning, on average, XLMRLARGE+SAP still
outperforms BASE models, but the gap is much
smaller: e.g., we note that the performance of the
two SAP-ed models is on par in English. This
suggests that with sufficient knowledge injection,
the underlying base model is less important (En-
glish); however, when the external data are scarce
(other languages beyond English), a heavily param-
eterised large pretrained encoder can boost knowl-
edge transfer to resource-poor languages.

5 Conclusion

We have introduced a novel cross-lingual biomed-
ical entity task (XL-BEL), establishing a wide-
coverage and reliable evaluation benchmark for
cross-lingual entity representations in the biomed-
ical domain in 10 languages, and have evaluated
current SotA biomedical entity representations on
XL-BEL. We have also presented an effective trans-
fer learning scheme that leverages general-domain
translations to improve the cross-lingual ability
of domain-specialised representation models. We
hope that our work will inspire more research on
multilingual and domain-specialised representation
learning in the future.
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A Appendix A

A.1 XL-BEL: Full Statistics
Table 1 in the main paper summarises the key
statistics of the XL-BEL benchmark. It was ex-
tracted from the 20200601 version of Wikipedia
dump. “sentences” refers to the number of sen-
tences that contain biomedical mentions in the Wiki
dump. “unique titles (Wiki page)” denotes the num-
ber of unique Wikipedia articles the biomedical
mentions link to. “mentions” denotes the num-
ber of all biomedical mentions in the Wikipedia
dump. “unique mentions” refers to the number
of mentions after filtering out examples contain-
ing duplicated mention surface forms. “unique
mentionsmention!=title” denotes the number of unique
mentions that have surface forms different from the
Wikipedia articles they link to. The 1k test sets for
each language are then randomly selected from the
examples in “unique mentionsmention!=title”.

A.2 XL-BEL: Selection of Languages
Our goal is to select a diverse and representative
sample of languages for the resource and evalua-
tion from the full set of possibly supported lan-
guages. For this reason, we exclude some Ro-
mance and Germanic languages which were too
similar to some languages already included in the
resource (e.g., since we include Spanish as a rep-
resentative of the Romance language, evaluating
on related languages such as Portuguese or Italian
would not yield additional and new insights, while
it would just imply running additional experiments).
The language list covers languages that are close
to English (Spanish, German); languages that are
very distant from English (Thai, Chinese, etc.); and
also languages that are in the middle (e.g., Turk-
ish, which is typologically different, but shares a
similar writing script with English).

The availability of biomedical texts in Wikipedia
also slightly impacted our choice of languages. The
overlapping entities of Wikipedia and UMLS are
not evenly distributed in the biomedical domain.
For example, since animal species are compre-
hensively encoded in UMLS, they become rather
dominant for certain low-resource languages. We
manually inspected the distribution of the covered
entities in each language to ensure that they are
indeed representative biomedical concepts. Lan-
guages with heavily skewed entity distributions are
filtered out. E.g., biomedical concepts in Basque
Wikipedia are heavily skewed towards plant and an-

imal species (which are valid UMLS concepts but
not representative enough). As a result, we dropped
Basque as our evaluation language. The current 10
languages all have a reasonably fair distribution
over biomedical concepts categories.

A.3 UMLS Data Preparation

All our UMLS fine-tuning data for SAP is extracted
from the MRCONSO.RRF file downloaded at
https://www.nlm.nih.gov/research/umls/

licensedcontent/umlsarchives04.html#

2020AA. The extracted data includes 147,706,62
synonyms distributed in more than 20 languages.
The detailed statistics are available in Table 6.

code language # synonyms percentage

EN English 10,277,246 69.6%
ES Spanish 1,575,109 10.7%
JA Japanese 329,333 2.2%
RU Russian 291,554 2.0%
DE German 231,098 1.6%
KO Korean 145,865 1.0%
ZH Chinese 80,602 0.5%
TR Turkish 51,328 0.3%
FI Finnish 24,767 0.2%
TH Thai 0 0.0%
FR French 428,406 2.9%
PT Portuguese 309,448 2.1%
NL Dutch 290,415 2.0%
IT Italian 242,133 1.3%
CS Czech 196,760 0.7%
NO Norwegian 63,075 0.4%
PL Polish 51,778 0.4%
ET Estonian 31,107 0.2%
SV Swedish 29,716 0.2%
HR Croatian 10,035 0.1%
EL Greek 2,281 <0.1%
LV Latvian 1,405 <0.1%

Total 147,706,62 100%

Table 6: The amount of UMLS synonyms per language.
The first 10 languages are included in our XL-BEL test
languages. However, note that Thai has no UMLS data.

A.4 Translation Data

The full statistics of the used word and phrase
translation data are listed in Table 7. The “muse”
word translations are downloaded from https://

github.com/facebookresearch/MUSE while the
Wikititle pairs (“wt”) are extracted by us, and are
made publicly available.

A.5 Pretrained Encoders

A complete listing of URLs for all used pretrained
encoders hosted on huggingface.co is provided in
Table 8. For monolingual models of each language,

572



#↓, language→ EN-ES EN-DE EN-FI EN-RU EN-TR EN-KO EN-ZH EN-JA EN-TH

muse 112,583 101,931 43,102 48,714 68,611 20,549 39,334 25,969 25,332
wt 1,079,547 1,241,104 338,284 886,760 260,392 319,492 638,900 547,923 107,398

Table 7: Statistics of muse word translations (“muse”) and Wikipedia title pairs (“wt”).

we made the best effort to select the most popular
one (based on download counts).

A.6 Full Table for Comparing with LARGE
Models

Table 9 list results across all languages for compar-
ing BASE and LARGE models.

A.7 Future Work

Investigating Other Cross-Lingual Transfer
Learning Schemes. We also explored adapting
multilingual sentence representation transfer tech-
niques like Reimers and Gurevych (2020) that
leverage parallel data. However, we observed
no improvement comparing to the main transfer
scheme reported in the paper. We plan to inves-
tigate existing techniques more comprehensively,
and benchmark more results on XL-BEL in the fu-
ture.
Comparison with in-Domain Parallel Data.
While we used general-domain bitexts to cover
more resource-poor languages, we are aware that
in-domain bitexts exist among several “mainstream”
languages (EN, ZH, ES, PT, FR, DE, Bawden et al.
2019).8 In the future, we plan to also compare
with biomedical term/sentence translations on these
languages to gain more insights on the impact of
domain-shift.

A.8 Number of Model Parameters

All BASE models have ≈110M parameters while
LARGE models have ≈340M parameters.

A.9 Hyperparameter Optimisation

Table 10 lists the hyperparameter search space.
Note that the chosen hyperparameters yield the
overall best performance, but might be suboptimal
in any single setting. We used the same random
seed across all experiments.

A.10 Software and Hardware Dependencies

All our experiments are implemented using Py-
Torch 1.7.0 with Automatic Mixed Precision

8http://www.statmt.org/wmt19/
biomedical-translation-task.html

(AMP)9 turned on. The hardware we use is listed
in Table 11. On this machine, the SAP fine-tuning
procedure generally takes 5-10 hours with UMLS
data. SAP fine-tuning with translation data takes
10 minutes to 5 hours, depending on the amount of
the data. Inference generally takes <10 minutes.

9https://pytorch.org/docs/stable/amp.
html
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model URL

monolingual models

SAPBERT https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext
ESBERT https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased
DEBERT https://huggingface.co/dbmdz/bert-base-german-uncased
FIBERT https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1
RUBERT https://huggingface.co/DeepPavlov/rubert-base-cased
TRBERT https://huggingface.co/loodos/bert-base-turkish-uncased
KRBERT https://huggingface.co/snunlp/KR-BERT-char16424
ZHBERT https://huggingface.co/bert-base-chinese
JABERT https://huggingface.co/cl-tohoku/bert-base-japanese
THBERT https://huggingface.co/monsoon-nlp/bert-base-thai

cross-lingual models

MBERT https://huggingface.co/bert-base-multilingual-uncased
XLMR https://huggingface.co/xlm-roberta-base
XLMRLARGE https://huggingface.co/xlm-roberta-large
XLMRLARGE-XNLI https://huggingface.co/joeddav/xlm-roberta-large-xnli
XLMRLARGE-SQUAD2 https://huggingface.co/deepset/xlm-roberta-large-squad2

Table 8: A listing of HuggingFace URLs of all pretrained models used in this work.

language→ EN ES DE FI RU TR KO ZH JA TH avg

model↓ @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5

SAPBERT 78.7 81.6 47.3 51.4 22.7 24.7 8.2 10.2 5.8 6.0 26.4 29.7 2.0 2.4 1.9 2.2 3.0 3.2 3.1 3.4 19.9 21.6
SAPBERTall syn 78.3 80.7 55.6 61.3 30.0 34.2 11.8 14.8 9.3 11.3 35.5 39.5 2.0 2.4 6.4 8.2 6.9 8.3 3.0 3.3 23.9 26.4
XLMR 1.0 2.0 0.3 0.7 0.0 0.1 0.1 0.2 0.1 0.2 0.4 0.5 0.0 0.3 0.1 0.2 0.2 0.4 0.0 0.1 0.2 0.5
XLMR + SAPall syn 78.2 81.0 56.4 62.7 31.8 37.3 18.6 22.2 35.4 41.2 42.8 48.9 16.7 21.4 18.8 23.0 24.0 28.1 20.6 27.5 34.3 39.3

XLMRLARGE 73.0 75.0 20.7 24.6 7.8 9.1 1.9 2.7 3.0 3.3 11.8 13.5 1.2 1.2 0.7 0.9 1.6 1.8 0.9 1.2 12.3 13.3
XLMRLARGE-XNLI 72.6 75.1 30.1 33.5 10.7 12.2 3.4 4.6 5.9 7.4 16.4 18.4 1.9 2.6 1.3 2.0 2.0 2.5 1.3 2.0 14.6 16.0
XLMRLARGE-SQUAD2 74.6 76.2 31.4 35.3 11.9 13.2 3.5 4.4 5.2 6.5 16.9 19.2 1.4 1.5 0.6 0.9 1.8 2.1 2.0 2.3 14.9 16.2
XLMRLARGE + SAPall syn 78.3 81.3 61.0 66.8 35.0 40.0 25.2 29.2 41.9 47.3 46.1 52.4 22.2 26.7 23.5 29.0 28.5 33.6 28.7 35.5 39.0 44.2

Table 9: A comparison of BASE (upper half) and LARGE (lower half) multilingual encoders on XL-BEL.

hyperparameters search space

pretraining learning rate 2e-5
pretraining batch size 512
pretraining training epochs 1
bitext fine-tuning learning rate 2e-5
bitext fine-tuning batch size {64, 128, 256∗}
bitext fine-tuning epochs {1, 2, 3, 4, 5∗, 10}
max seq length of tokeniser 25
λ in Online Mining 0.2
α in MS loss (Eq. (1)) 2
β in MS loss (Eq. (1)) 50
ε in MS loss (Eq. (1)) 1

Table 10: Hyperparameters along with their search
grid. ∗ marks the values used to obtain the reported
results. The hparams without any defied search grid
are adopted directly from Liu et al. (2021).

hardware specification

RAM 192 GB
CPU Intel Xeon W-2255 @3.70GHz, 10-core 20-threads
GPU NVIDIA GeForce RTX 2080 Ti (11 GB) × 4

Table 11: Hardware specifications of the used machine.
For LARGE model training, we use another server with
two NVIDIA GeForce RTX 3090 (24 GB).
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Abstract
The representation degeneration problem in
Contextual Word Representations (CWRs)
hurts the expressiveness of the embedding
space by forming an anisotropic cone where
even unrelated words have excessively positive
correlations. Existing techniques for tackling
this issue require a learning process to re-train
models with additional objectives and mostly
employ a global assessment to study isotropy.
Our quantitative analysis over isotropy shows
that a local assessment could be more accu-
rate due to the clustered structure of CWRs.
Based on this observation, we propose a local
cluster-based method to address the degenera-
tion issue in contextual embedding spaces. We
show that in clusters including punctuations
and stop words, local dominant directions en-
code structural information, removing which
can improve CWRs performance on semantic
tasks. Moreover, we find that tense informa-
tion in verb representations dominates sense
semantics. We show that removing dominant
directions of verb representations can trans-
form the space to better suit semantic applica-
tions. Our experiments demonstrate that the
proposed cluster-based method can mitigate
the degeneration problem on multiple tasks.1

1 Introduction

Despite their outstanding performance, CWRs are
known to suffer from the so-called representa-
tion degeneration problem that makes the embed-
ding space anisotropic (Gao et al., 2019). In an
anisotropic embedding space, word vectors are dis-
tributed in a narrow cone, in which even unrelated
words are deemed to have high cosine similarities.
This undesirable property hampers the representa-
tiveness of the embedding space and limits the di-
versity of encoded knowledge (Ethayarajh, 2019).

1The code for our experiments is available at https:
//github.com/Sara-Rajaee/clusterbased_
isotropy_enhancement/

To better understand the representation degener-
ation problem in pre-trained models, we analyzed
the embedding space of GPT-2 (Radford et al.,
2019), BERT (Devlin et al., 2019), and RoBERTa
(Liu et al., 2019). We found that, despite being
extremely anisotropic in all non-input layers from
a global sight, the embedding space is significantly
more isotropic from a local point of view (when
embeddings are clustered and each cluster is made
zero-mean). Motivated by this observation and
based on previous studies that highlight the clus-
tered structure of CWRs (Reif et al., 2019; Michael
et al., 2020), we extend the technique of Mu and
Viswanath (2018) with a further clustering step.
In our proposal, we cluster embeddings and ap-
ply PCA on individual clusters to find the corre-
sponding principal components (PCs) which in-
dicate the dominant directions for each specific
cluster. Nulling out these PCs for each cluster ren-
ders a more isotropic space. We evaluated our
cluster-based method on several tasks, including
Semantic Textual Similarity (STS) and Word-in-
Context (WiC). Experimental results indicate that
our cluster-based method is effective in enhancing
the isotropy of different CWRs, reflected by the
significant performance improvements in multiple
evaluation benchmarks.

In addition, we provide an analysis on the rea-
sons behind the effectiveness of our cluster-based
technique. The empirical results show that most
clusters contain punctuation tokens, such as peri-
ods and commas. The PCs of these clusters encode
structural information about context, such as sen-
tence style; hence, removing them can improve
CWRs performance on semantic tasks. A similar
structure exists in other clusters containing stop
words. The other important observation is about
verb distribution in the contextual embedding space.
Our experiments reveal that verb representations
are separated across the tense dimension in distinct
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sub-spaces. This brings about an unwanted pecu-
liarity in the semantic space: representations for
different senses of a verb tend to be closer to each
other in the space than the representations for the
same sense that are associated with different tenses
of the same verb. Indeed, removing such PCs im-
proves model’s ability in downstream tasks with
dominant semantic flavor.

2 Isotropy in CWRs

Isotropy is a desirable property of word embedding
spaces and arguably any other vector representation
of data in general (Huang et al., 2018; Cogswell
et al., 2016). From the geometric point of view, a
space is called isotropic if the vectors within that
space are uniformly distributed in all directions.
Lacking isotropy in the embedding space affects
not only the optimization procedure (e.g., model’s
accuracy and convergence time) but also the expres-
siveness of the embedding space; hence, improving
the isotropy of the embedding space can lead to per-
formance improvements (Wang et al., 2020; Ioffe
and Szegedy, 2015).

We measure the isotropy of embedding space
using the partition function of Arora et al. (2016):

� (D) =
#∑
8=1

4D
) F8 (1)

where D is a unit vector, F8 is the corresponding
embedding for the 8Cℎ word in the embedding ma-
trix W ∈ IRN×D, N is the number of words in the
vocabulary, and D is the embedding size. Arora
et al. (2016) showed that � (D) can be approximated
using a constant for isotropic embedding spaces.
Therefore, for the set*, which is the set of eigen-
vectors of W)W, in the following equation, I(W)
would be close to one for a perfectly isotropic space
(Mu and Viswanath, 2018).

I(W) = <8=D∈*� (D)
<0GD∈*� (D) (2)

2.1 Analyzing Isotropy in pre-trained CWRs
Using the above metric, we analyzed the represen-
tation degeneration problem globally and locally.

Global assessment. We quantified isotropy in all
layers for GPT-2, BERT, and RoBERTa on the
development set of STS-Benchmark (Cer et al.,
2017). Figure 1 shows the trend of isotropy in all
layers based on I(W). Clearly, all CWRs are ex-
tremely anisotropic in all non-input layers. While

Figure 1: Layer-wise isotropy for different CWRs on
the STS-B dev set (↑ log-isotropy: ↑ isotropy). Given
the large difference, BERT and RoBERTa are shown on
the left axis and GPT-2 on the right.

the isotropy of GPT-2 decreases consistently in up-
per layers, that for RoBERTa has a semi-convex
form in which the last layer (except for the input
layer) has the highest isotropy. Also, interestingly,
the input layer in GPT-2 is more isotropic than
those for the other two models. This observation
contradicts with what has been previously reported
by Ethayarajh (2019).

Local assessment. In the light of the clustered
structure of the embedding space in CWRs (Reif
et al., 2019), we carried out a local investigation
of isotropy. To this end, we clustered the space
using :-means and measured isotropy after making
each cluster zero-mean (Mu and Viswanath, 2018).
Table 1 shows the results for different number of
clusters (each being the average of five runs). When
the embedding space is viewed closely, the distri-
bution of CWRs is notably more isotropic. Cluster-
ing significantly enhances isotropy for BERT and
RoBERTa, making their embedding spaces almost
isotropic. However, GPT-2 is still far from being
isotropic. This contradicts with the observation of
Cai et al. (2021).

A possible explanation for these contradictions
is the different metric used by Ethayarajh (2019)
and Cai et al. (2021) for measuring isotropy: co-
sine similarity. Randomly sampled words in an
anisotropic embedding space should have high co-
sine similarities (a near-zero similarity denotes
isotropy). However, there are exceptional cases
where this might not hold (an anisotropic embed-
ding space where sampled words have near-zero
cosine similarities). In Figure 2, we illustrate GPT-
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GPT-2 BERT RoBERTa

Baseline 5.02E-174 5.05E-05 2.70E-06

: = 1 2.49E-220 0.010 0.015
: = 3 9.42E-66 0.040 0.290
: = 6 1.40E-41 0.125 0.453
: = 9 1.18E-41 0.131 0.545
: = 20 4.06E-47 0.262 0.603

Table 1: CWRs isotropy after clustering and making
each cluster zero-mean separately (results for different
number of clusters (:) on STS-B dev set).

Figure 2: GPT-2 embeddings on STS-B dev set before
(top) and after (bottom) a local zero-mean operation.

2 embedding space as an example for such an ex-
ceptional cases. Making individual clusters zero-
mean (bottom) improves isotropy over the baseline
(top). However, the embeddings are still far from
being uniformly distributed in all directions. In-
stead, they are distributed around a horizontal line.
This leads to a near-zero cosine similarity for ran-
domly sampled words while the embedding space
is anisotropic. Hence, cosine similarity might not
be a proper metric for computing isotropy.

3 Cluster-based Isotropy Enhancement

The degeneration problem in the embedding space
can be attributed to the training procedure of the
underlying models, which are often language mod-
els trained through likelihood maximization with
the weight tying trick (Gao et al., 2019). Maxi-
mizing the likelihood of a specific word embed-
ding (minimizing that for others) requires pushing
it towards the direction of the corresponding hid-
den state, which results in the accumulation of the
learnt word embeddings into a narrow cone.

Previous work has shown that nulling out domi-
nant directions of an anisotropic embedding space
can make the space isotropic and improve its ex-
pressiveness (Mu and Viswanath, 2018). We refer

to this as the global approach. This method was
proposed for static embeddings. Hence, it might
not be optimal for contextual embeddings, espe-
cially in the light that the latter tends to have a
clustered structure. For instance, recent work sug-
gests that word types (e.g., verbs, nouns, punctua-
tions), entities (e.g., personhood, nationalities, and
dates), and even word senses (Michael et al., 2020;
Loureiro et al., 2021; Reif et al., 2019) create local
distinct clustered areas in the contextual embedding
space. Moreover, our local assessment shows that
it is not necessarily the case that all clusters share
the same dominant directions. Hence, discarding
dominant directions that are computed globally is
not efficient for removing local degenerated direc-
tions. Consequently, it is more logical to have a
cluster-specific dropping of dominant directions.

Based on these observations, we propose a
cluster-based approach for isotropy enhancement.
Specifically, instead of determining dominant direc-
tions globally, we obtain them separately for differ-
ent sub-spaces and discard for each cluster only the
corresponding cluster-specific dominant directions.
To this end, we employ Principal Component Anal-
ysis (PCA) to compute local dominant directions
in clusters. Geometrically, principal components
(PCs) represent those directions in which embed-
dings have the most variance (maximum elonga-
tion). In our proposed method, we first cluster word
embeddings using a simple :-means algorithm. Af-
ter making each cluster zero-mean, the top PCs
of every cluster are removed separately. Adding a
clustering step helps us to eliminate the local dom-
inant directions of each cluster. We will show in
Section 5 that different linguistic knowledge is en-
coded in the dominant directions of various clusters.
Moreover, numerical results show that in compari-
son with the global approach, our method can make
the embedding space more isotropic, even when
the fewer number of PCs are nulled out.

4 Experiments

We carried out experiments on the following bench-
marks. As for Semantic Textual Similarity (STS),
which is the main benchmark for our experiments,
we experimented with STS 2012-2016 datasets
(Agirre et al., 2012, 2013, 2014, 2015, 2016), the
SICK-Relatedness dataset (SICK-R) (Marelli et al.,
2014), and the STS benchmark (STS-B). For the
STS task, we report results for GPT-2, BERT, and
RoBERTa. We also experimented with a number
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Model STS 2012 STS 2013 STS 2014 STS 2015 STS 2016 SICK-R STS-B

Baseline
GPT-2 26.49 30.25 35.74 41.25 46.40 45.05 24.8
BERT-base 42.87 59.21 59.75 62.85 63.74 58.69 47.4
RoBERTa-base 33.09 56.44 46.76 55.44 60.88 61.28 56.0

Global approach
GPT-2 51.42 69.71 55.91 60.35 62.12 59.22 55.7
BERT-base 54.62 70.39 60.34 63.73 69.37 63.68 65.5
RoBERTa-base 51.59 73.57 60.70 66.72 69.34 65.82 70.1

Cluster-based approach
GPT-2 52.40 72.71 59.23 62.19 64.26 59.51 62.3
BERT-base 58.34 75.65 63.55 64.37 69.63 63.75 66.0
RoBERTa-base 54.87 76.70 64.18 67.05 69.28 66.93 71.4

Table 2: Spearman correlation performance of three pre-trained models (baseline) on the Semantic Textual Simi-
larity datasets, before and after isotropy enhancement with the global and cluster-based (our) approach.

RTE CoLA SST-2 MRPC WiC BoolQ Average

Baseline 54.4 38.0 80.1 70.2 60.0 64.7 61.2
Global approach 56.2 38.8 80.2 72.1 60.7 64.9 62.1
Cluster-based approach 56.5 40.7 82.5 72.4 61.0 66.4 63.2

Table 3: Results on the classification tasks (BERT) in terms of accuracy (except for CoLA: Matthew’s correlation).

of classification tasks: Recognizing Textual En-
tailment from the GLUE benchmark (Wang et al.,
2018, RTE), the Corpus of Linguistic Acceptability
(Warstadt et al., 2019, CoLA), Stanford Sentiment
Treebank (Socher et al., 2013, SST-2), Microsoft
Research Paraphrase Corpus (Dolan and Brock-
ett, 2005, MRPC), Word-in-Context (Pilehvar and
Camacho-Collados, 2019, WiC), and BoolQ (Clark
et al., 2019). For the classification tasks, we limit
our experiments to BERT and extract features to
train an MLP. Further details on the datasets and
system configuration can be found in Appendix B.

We benchmark our cluster-based approach with
the pre-trained CWRs (baseline) and the global
method. As it was mentioned before, this method
is similar to ours in its elimination of a few top
dominant directions but with the difference that
these directions are computed globally (in contrast
to our local cluster-based computation). The best
setting for each model is selected based on perfor-
mance on the STS-B dev set. The reported results
are the average of five runs.

4.1 Results

Tables 2 and 3 report experimental results. As can
be seen, globally increasing isotropy can make a
significant improvement for all the three pre-trained
models. However, our cluster-based approach can
achieve notably higher performance compared to
the global approach. We attribute this improvement
to our cluster-specific discarding of dominant direc-
tions. Both global and cluster-based methods null

out the optimal number of top dominant directions
(tuned separately, cf. Appendix B), but the latter
identifies them based on the specific structure of a
sub-region in the embedding space (which might
not be similar to other sub-regions).

5 Discussion

In this section, we provide a brief explanation
for reasons behind the effectiveness of the cluster-
based approach through investigating the linguistic
knowledge encoded in the dominant local direc-
tions. We also show that enhancing isotropy re-
duces convergence time.

5.1 Linguistic knowledge

Punctuations and stop words. We observed that
local dominant directions for the clusters of punctu-
ations and stop words carry structural and syntactic
information about the sentences in which they ap-
pear. For example, the two sentences “A man is
crying.” and “A woman is dancing.” from STS-B
do not have much in common in terms of seman-
tics but are highly similar with respect to their style.
To quantitatively analyze the distribution of this
type of tokens in CWRs, we designed an experi-
ment based on the dataset created by Ravfogel et al.
(2020). The dataset consists of groups in which
sentences are structurally and syntactically similar
but have no semantic similarity. We picked 200 dif-
ferent structural groups in which each group has six
semantically different sentences. Then, using the
:-NN algorithm, we calculated the percentage of
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Baseline Removed PCs

Model ST-SM ST-DM DT-SM Isotropy ST-SM ST-DM DT-SM Isotropy

GPT-2 48.82 48.19 50.86 2.26E-05 9.32 9.53 9.49 0.17
BERT 13.44 14.24 14.87 2.24E-05 10.31 10.50 10.32 0.32
RoBERTa 5.89 6.31 6.86 1.22E-06 4.78 5.00 4.89 0.73

Table 4: The mean Euclidean distance of a sample occurrence of a verb to all other occurrences of the same verb
with the Same-Tense and the Same-Meaning (ST-SM), the Same-Tense but Different-Meaning (ST-DM), and a
Different-Tense but the Same-Meaning (DT-SM). Semantically, it is desirable for DT-SM to be lower than ST-DM.

Figure 3: The percentage of nearest neighbours that
share similar structural and syntactic knowledge, be-
fore (lighter, pattern-filled) and after removing domi-
nant directions in pre-trained CWRs.

nearest neighbours which are in the same group be-
fore and after removing local dominant directions.
We evaluated this for period and comma, which are
the most frequent punctuations, and “the” and “of”
as the most contextualized stop words (Ethayarajh,
2019). The reported results in Figure 3 show that
the representations for punctuations and stop words
are biased toward structural and syntactic informa-
tion of sentences; hence, removing their dominant
directions reduces the number of same-group near-
est neighbours. The improvement from our local
isotropy enhancement can be partially attributed to
attenuating this type of bias.

Verb Tense. Our experiments show that tense is
more dominant in verb representations than sense-
level semantic information. To have a precise exam-
ination of this hypothesis, we used SemCor (Miller
et al., 1993), a dataset comprising around 37K
sense-annotated sentences. We collected represen-
tations for polysemous verbs that had at least two
senses occurring a minimum of 10 times. Then, for
each individual verb, we calculated Euclidean dis-
tance to the contextual representation of the same
verb: (1) with the same tense and the same mean-
ing, (2) with the same tense but a different meaning,
and (3) with a different tense and the same mean-

Figure 4: The impact of our cluster-based isotropy en-
hancement on per-epoch performance for two tasks.

ing. The experimental results reported in Table 4
confirm the hypothesis and show the effectiveness
of the cluster-based approach in bringing together
verb representations that correspond to the same
sense, even if they have different tense.

5.2 Convergence time
In the previous experiments, we showed that the
contextual embeddings are extremely anisotropic
and highly correlated. Such embeddings can slow
down the learning process of deep neural networks.
Figure 4 shows the trend of convergence for the
BoolQ and RTE tasks (dev sets). By decreasing the
correlation between embeddings, our method can
reduce convergence time.

6 Conclusions

In this paper, we proposed a cluster-based method
to address the representation degeneration prob-
lem in CWRs. We empirically analyzed the effect
of clustering and showed that, from a local sight,
most clusters are biased toward structural infor-
mation. Moreover, we found that verb representa-
tions are distributed based on their tense in distinct
sub-spaces. We evaluated our method on different
semantic tasks, demonstrating its effectiveness in
removing local dominant directions and improving
performance. As future work, we plan to study the
effect of fine-tuning on isotropy and on the encoded
linguistic knowledge in local regions.
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Guo, Iñigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. SemEval-2015 task 2: Semantic tex-
tual similarity, English, Spanish and pilot on inter-
pretability. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 252–263, Denver, Colorado. Association for
Computational Linguistics.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. SemEval-2014 task 10: Multilingual
semantic textual similarity. In Proceedings of the
8th International Workshop on Semantic Evaluation
(SemEval 2014), pages 81–91, Dublin, Ireland. As-
sociation for Computational Linguistics.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. SemEval-2016
task 1: Semantic textual similarity, monolingual
and cross-lingual evaluation. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 497–511, San Diego,
California. Association for Computational Linguis-
tics.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 task 6: A
pilot on semantic textual similarity. In *SEM 2012:
The First Joint Conference on Lexical and Compu-
tational Semantics – Volume 1: Proceedings of the
main conference and the shared task, and Volume
2: Proceedings of the Sixth International Workshop
on Semantic Evaluation (SemEval 2012), pages 385–
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A Isotropy statistics

Table 5 shows isotropy statistics for GPT-2, BERT,
and RoBERTa. GPT-2’s embedding space is ex-
tremely anisotropic in upper layers. Hence, more
PCs are required to be eliminated to make this em-
bedding space isotropic in comparison to BERT
and RoBERTa, both in the cluster-based approach
and the global one (Mu and Viswanath, 2018).
Also, in almost all layers, BERT has higher a
isotropy than RoBERTa.

Model GPT-2 BERT RoBERTa

layer 0 1.5E-02 4.6E-04 9.1E-03

layer 1 9.9E-24 9.9E-06 2.7E-07
layer 2 2.8E-23 6.3E-05 8.7E-10
layer 3 6.1E-26 8.8E-05 4.2E-09
layer 4 1.6E-27 9.2E-06 5.4E-12
layer 5 3.0E-30 4.8E-06 2.4E-10
layer 6 1.6E-32 3.9E-06 3.1Ef-10
layer 7 1.3E-37 1.1E-07 1.3E-10
layer 8 3.4E-45 1.0E-05 1.4E-10
layer 9 6.4E-55 2.5E-05 1.3E-10
layer 10 4.1E-32 6.9E-05 6.7E-11
layer 11 1.8E-132 2.4E-07 1.4E-10
layer 12 5.0E-174 5.0E-05 2.7E-06

Table 5: Per-layer isotropy on the STS-B dev set. Num-
bers have been calculated based on I(W).

B Experimental Setup

B.1 Dataset details

STS. In the Semantic Textual Similarity task, the
provided labels are between 0 and 5 for each paired
sentence. We first calculate sentence embeddings
by averaging all word representations in each sen-
tence and then compute the cosine similarity be-
tween two sentence representations as a score of
semantic relatedness of the pair.

RTE. The Recognizing Textual Entailment
dataset is a classification task from the GLUE
benchmark (Wang et al., 2018). Paired sentences
are collected from different textual entailment
challenges and labeled as entailment and not-
entailment.

CoLA. The Corpus of Linguistic Acceptability
(Warstadt et al., 2019) is a binary classification task
in which sentences are labeled whether they are
grammatically acceptable.

SST-2. The Stanford Sentiment Treebank
(Socher et al., 2013) is a binary sentiment
classification task.

MRPC. The Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005) consists of paired
sentences, and the goal is determining whether, in
a pair, sentences share similar semantics or not.

WiC. Word-in-Context (Pilehvar and Camacho-
Collados, 2019) is a binary classification task in
which it should be determined if a target word in
two different contexts refers to the same meaning.

BoolQ. Boolean Questions (Clark et al., 2019) is
a Question Answering classification task. Every
sample includes a passage and a yes/no question
about the passage.

B.2 Configurations

For the classification tasks, we trained a simple
MLP on the features extracted from BERT. The
proposed cluster-based approach has two hyperpa-
rameters: the number of clusters and the number of
PCs to be removed. We selected both of them from
range [5, 30] and tuned them on the STS-B dev set.
In the cluster-based approach,The optimal num-
ber of clusters for GPT-2, BERT, and RoBERTa
are respectively 10, 27, and 27. For BERT and
RoBERTa, 12 top dominant directions have been
removed, while the number is 30 for GPT-2 re-
garding its extremely anisotropic embedding space.
The tuning of the number of PCs to be eliminated
in the global method has been done similarly to
the cluster-based approach (on the STS-B dev set):
30, 15, and 25 for GPT-2, BERT, and RoBERTa,
respectively.

C Isotropy on STS datasets

In Table 6, we present the isotropy of the contex-
tual embedding spaces calculated using I(W) on
the STS benchmark. The results reveal the effec-
tiveness of the proposed method in enhancing the
isotropy of the embedding space.

D Word frequency bias in CWRs

CWRs are biased towards their frequency informa-
tion, and words with similar frequency create local
regions in the embedding space (Gong et al., 2018;
Li et al., 2020). From the semantic point of view,
this is certainly undesirable given that words with
similar meanings but different frequencies could be
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Model STS 2012 STS 2013 STS 2014 STS 2015 STS 2016 SICK-R STS-B

Baseline

GPT-2 1.4E-178 1.0E-170 1.4E-172 2.9E-177 6.0E-174 9.9E-140 2.6E-105
BERT 3.1E-05 1.9E-04 2.6E-04 3.7E-07 2.8E-04 4.2E-05 1.1E-04
RoBERTa 3.1E-06 3.1E-07 3.8E-06 3.8E-06 3.5E-06 3.7E-07 2.9E-06

Global approach

GPT-2 0.57 0.40 0.05 0.12 0.60 0.57 0.51
BERT 0.48 0.41 0.55 0.72 0.65 0.63 0.58
RoBERTa 0.67 0.87 0.87 0.84 0.85 0.90 0.88

Cluster-based approach

GPT-2 0.71 0.74 0.47 0.74 0.74 0.78 0.70
BERT 0.68 0.61 0.77 0.81 0.75 0.82 0.73
RoBERTa 0.89 0.91 0.93 0.92 0.89 0.94 0.90

Table 6: Isotropy of CWRs on multiple STS datasets calculated based on I(W); a higher value indicates a more
isotropic embedding space. Our cluster-based method significantly increases the isotropy of embedding space on
all datasets.

located far from each other in the embedding space.
This phenomenon can be seen in Figure 5. The
encoded knowledge in the local dominant direc-
tions partly correspond to frequency information.
The embedding space visualization reveals that our
approach performs a decent job in removing fre-
quency bias in pre-trained models.
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(a) GPT-2 - Baseline (b) GPT-2 - Global approach (c) GPT-2 - Cluster-based approach

(d) BERT - Baseline (e) BERT - Global approach (f) BERT - Cluster-based approach

(g) RoBERTa - Baseline (h) RoBERTa - Global approach (i) RoBERTa - Cluster-based approach

Figure 5: Contextual Word Representations visualization using PCA on STS-B dev set. Colors indicate word
frequency in the Wikipedia dump (the lighter point, the more frequent).
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Abstract

Humans often refer to personal narratives, life
experiences, and events to make a conversa-
tion more engaging and rich. While persona-
grounded dialog models are able to generate
responses that follow a given persona, they of-
ten miss out on stating detailed experiences or
events related to a persona, often leaving con-
versations shallow and dull. In this work, we
equip dialog models with ‘background stories’
related to a persona by leveraging fictional nar-
ratives from existing story datasets (e.g. ROC-
Stories). Since current dialog datasets do not
contain such narratives as responses, we per-
form an unsupervised adaptation of a retrieved
story for generating a dialog response using a
gradient-based rewriting technique. Our pro-
posed method encourages the generated re-
sponse to be fluent (i.e., highly likely) with
the dialog history, minimally different from
the retrieved story to preserve event ordering
and consistent with the original persona. We
demonstrate that our method can generate re-
sponses that are more diverse, and are rated
more engaging and human-like by human eval-
uators, compared to outputs from existing dia-
log models.

1 Introduction

Humans often rely on specific incidents and experi-
ences while conversing in social contexts (Dunbar
et al., 1997). Responses from existing chitchat dia-
log agents often lack such specific details. To miti-
gate this, some prior work has looked into assign-
ing personas to dialog agents (Zhang et al., 2018;
Majumder et al., 2020). However, persona descrip-
tions are often shallow and limited in scope, and
while they lead to improvements response speci-
ficity, they still lack the level of detail with which
humans share experiences.

In this work, we propose methods to enrich dia-
log personas with relevant background events us-

Figure 1: We enrich agent personas with ‘background stories’
from an existing corpus. We propose a gradient-based tech-
nique which encourages the generated response to be fluent
with the dialog history, minimally different from the retrieved
story, and consistent with the persona. The proposed approach
leads to more specific and interesting responses.

ing fictional narratives from existing story datasets
such as ROCStories (Mostafazadeh et al., 2016).
For example, for a persona attribute ‘I have two
children and a dog,’ we are able to identify a rele-
vant narrative from a story corpus (Figure 1). How-
ever, such stories may not directly fit fluently in
the dialog context. Thus, retrieved stories should
be adapted to construct a response that is fluent
and relevant to the context. Since existing datasets
(such as PersonaChat (Zhang et al., 2018)) do not
contain responses with such background stories,
such adaptation has to be done in an unsupervised
fashion with decoders trained to generate responses
conditioned only on a dialog history and persona.

To adapt a retrieved narrative incident as a rel-
evant background story, we use a decoding proce-
dure which encourages the generated response to
(1) be fluent with the dialog history, (2) be consis-
tent with the original persona, and (3) be minimally
different from the retrieved story. While fluency
with dialog context is encouraged directly by the
likelihood as per the underlying language model
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the remaining two constraints are incorporated via
iterative updates to the decoder output distributions
at inference time. Our inference-time decoding
method is different from the only recent effort by
Su et al. (2020) that leverages non-dialog data (fo-
rum comments, book snippets) as distant labels to
train dialog systems with supervision. Our contri-
butions can be summarized as follows:

• We propose a novel approach to enrich dialog
agent personas with relevant backstories, relying
only on existing story datasets.

• We propose to use an unsupervised back-
propagation based decoding procedure1 to adapt
the relevant stories such that the resulting re-
sponse is fluent with the dialog history and
consistent with the dialog agent persona. Our
method works with a model trained just with di-
alog data i.e. without access to story corpus at
training time.

• Our experiments demonstrate that the proposed
approach results in much more engaging and spe-
cific dialog outputs in a persona-grounded dialog
setup. This fills a gap in existing dialog models
which often lack the capability to generate re-
sponses about specific events and experiences
relevant to persona attributes.

2 Unsupervised Persona Enrichment
with Background Stories

Given dialog history h and persona C consisting
of several (typically 3-5, example shown in Figure
1) attributes, our goal is to construct a dialog re-
sponse x. Our underlying model is based on the
discrete persona attribute choice model from Ma-
jumder et al. (2020). To generate a dialog utterance
x, we first sample a persona attribute c ∼ p(c|h)
conditioned on the dialog history h. x is then gen-
erated conditioned on the dialog history and the
chosen persona attribute. The underlying dialog
model’s decoder is initialized with a pretrained
GPT-2 model, and is fine-tuned on the PersonaChat
dataset (Zhang et al., 2018). However, in our cur-
rent setup, we also have to identify relevant back-
ground stories and use them to construct fluent
responses at decoding time. Therefore, we propose
a different decoding procedure.

To generate a response, we first sample a persona
attribute c ∼ p(c|h). Next we retrieve stories cor-

1Code can be found at
https://github.com/majumderb/pabst

responding to the persona attribute c (Section 2.1).
However, the underlying dialog model is trained to
generate responses conditioned only on the dialog
history and persona. To incorporate the retrieved
story in the response, we perform gradient-based
inference (Section 2.2), that only assumes a left-to-
right language model trained on dialog context and
responses, and the story is handled at decoding time
in an unsupervised fashion. We refer to the pro-
posed method as PABST (Unsupervised PersonA
enrichment with Background STories).

2.1 Retrieving Relevant Stories
For a persona attribute c, we aim to identify relevant
stories from a story corpus. Toward this goal, we
rank the stories using the F1 component of BERT-
score (Zhang et al., 2020) based retrieval using the
persona attribute c as the query and the highest
scoring story is chosen. Note that many of the
stories are written in the third person. For use as
background stories, we must first transform them to
first–person. Following prior work (Brahman and
Chaturvedi, 2020), we identify the protagonist of
such stories as the most frequently occurring char-
acter. Thereafter, we use co-reference resolution
(Lee et al., 2017) to identify all words or phrases
that refer to the protagonist. Finally, all words or
phrases so identified are replaced with suitable first
person pronouns (e.g. ‘his books’ to ‘my books’).

2.2 Gradient-based Inference
Our underlying dialog model is not trained to con-
dition on a retrieved story, and cannot be directly
used to construct a desirable response using s. To
tackle this, we consider a decoding strategy which,
in addition to fluency with history h, encourages
response x to follow two soft constraints: (1) be
minimally different from story s, and (2) be consis-
tent with persona c.

First, we generate an initial response based only
on the dialog history. Then we perform an iterative
procedure which alternates between performing a
forward pass on the language model to encourage
fluency, and a backward pass which updates the
response via back-propagation to respect the two
soft constraints. However, x is discrete, and can-
not be directly updated using gradients from back-
propagation. Instead, we maintain and update a
soft representation o of x, where oi corresponds to
the last hidden state representation for the ith token
position, i.e., p(xi) ∼ softmax(Woi/τ), where τ
is the temperature parameter, W is the embedding
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matrix, and Woi ∈ RV (V is the vocabulary size).
Our approach is inspired by recent works that use
gradient-based decoding for text generation with
soft constraints (Dathathri et al., 2020; Qin et al.,
2020). Next we describe the backward and forward
passes of the iterative procedure.

Backward Pass with Soft Constraints We de-
fine the following soft constraints on response x:
(1) Divergence from story: We want to encourage
x to be minimally different from the story s. Fol-
lowing prior work (Qin et al., 2020), we compute
a cross entropy loss (denoted by cross-entr hence-
forth) with story s = {s1, . . . , sT } tokens as labels
and Wo1, . . . ,WoT as the logits.
(2) Consistency to persona: We want x to be con-
sistent with persona attribute c. Consider a clas-
sifier qφ(o, c) which predicts the probability of x
(or rather the soft representation o of x) entailing
c. The classifier qφ(o, c) is a bag-of-words classifi-
cation head on decoder hidden states o, fine-tuned
on the Dialogue-NLI dataset (Welleck et al., 2019)
to predict whether pairs of persona attributes and
responses are entailed or not. The objective to max-
imize can be written as:

L(c, s; o) = λc log qφ(o, c)− λd cross-entr(s,Wo)

where λc and λd are hyper-parameters. We up-
date o through back-propagation by computing the
gradient∇oL(c, s; o), while keeping the model pa-
rameters constant. Let the resulting o after the
gradient-based updates be denoted by ob.

Forward Pass to Encourage Fluency Next we
perform a forward pass of the underlying dialog
model, with the goal of regularizing the hidden
states towards the unmodified language model val-
ues. On computing the forward pass at the jth

token, we mix the final hidden states ofj from the
forward pass with obj computed in the backward
pass, via weighted addition to get the resulting
oj = γ × ofj + (1 − γ) × obj , where γ ∈ (0, 1)
is a hyperparameter. The resulting oj is used for
computing the logits at the next time step j + 1.

We initialize the output response by performing
greedy decoding from the underlying dialog model,
conditioned on the dialog history and persona at-
tribute. Then we iteratively update o by alternate
backward and forward passes. We sample the final
response x ∼ softmax(Wo/τ). In practice, we
found that 5 iterations are sufficient to generate
good quality outputs.

Method Training Decoding D-1 D-2 ENTR

W/o Story Data
TRANSFERO PERSONA Nucleus 0.05 0.11 1.21
DISCCHOICE PERSONA Nucleus 0.15 0.25 1.25
DISCCHOICE CS-KB Nucleus 0.87 1.07 2.04

With Story Data
DISCCHOICE PSEUDO Nucleus 0.91 2.45 2.89
DISCCHOICE MULTITASK Nucleus 0.99 2.54 2.71
DISCCHOICE PERSONA RETRIEVAL 2.56 9.67 3.86
PABST (Ours) PERSONA Grad. Inf. 1.56 3.57 3.21

Table 1: Diversity metrics on the PersonaChat test set. D-1/2
is the % of distinct uni- and bi-grams. ENTR is the geo-
metric mean of n-gram entropy. Grad. Inf. is the unsuper-
vised gradient-based decoding as opposed to Nucleus sam-
pling (Holtzman et al., 2020).

3 Experiments

We evaluate methods in terms of their capability
to generate diverse, fluent and engaging responses.
Hyperparameters are noted in Appendix §A.

Datasets We experiment with the PersonaChat
dialog dataset (Zhang et al., 2018) consisting of
131,438 utterances for training, 15,602 for vali-
dation, and 15,024 for testing. For stories, we
use the training split of the ROCStories dataset
(Mostafazadeh et al., 2016), that consists of 78,529
stories, each typically of 4 to 5 sentences.

Baselines We consider two broad groups of mod-
els as baselines: (1) Without access to story cor-
pus: We use finetuned GPT2 (TRANSFERO) on
PersonaChat, and the discrete persona attribute
choice model (DISCCHOICE) from Majumder
et al. (2020). We also consider a version of DISC-
CHOICE which enriches personas with inferences
from a commonsense knowledge base (CS-KB).
(2) Baselines using story corpus: To allow DIS-
CCHOICE models to generate story-like responses,
we adapt an alternative training regime (PSEUDO)
from (Su et al., 2020), where we randomly replace
some of the target dialog responses with retrieved
stories—treating them as pseudo labels. Finally, we
also consider a MULTITASK training setup from
(Su et al., 2020), wherein the decoder is trained on
PersonaChat as well as with a language modeling
objective on ROCStories. We additionally consider
a RETRIEVAL baseline that uses the retrieved story
verbatim as the dialog response.

3.1 Automatic Evaluation

We hypothesize that that the proposed approach
to leverage external non-dialog data can increase
the diversity of the generated responses. Following
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PABST vs. TRANSFERO DISCCHOICE RETRIEVAL PSEUDO MULTITASK w/o DNLI Gold

Aspect win loss win loss win loss win loss win loss win loss win loss

Sensible 83.8 5.6 71.4 10.1 72.7 15.7 94.3 3.1 92.8 1.5 81.7 6.8 29.1 33.6
Engaging 96.7 1.8 82.6 6.7 87.2 5.3 94.7 2.1 94.1 2.6 70.9 14.8 70.2 15.6

Table 2: Pairwise comparison (% win/loss cases, ties not reported) between responses from PABST and from other baselines as
well as gold. All differences are significant with p < 0.05. Cohen’s Kappa (Cohen, 1960) for sensibility and engagement were
0.79 and 0.82 respectively. Complete details of the human evaluations are in Appendix §B.

Dialog History
Agent: How was your last trip?
User: It was great. I went to Utah and saw the Canyonlands.

Retrieved Story:
I went on a trip. I went to Florida. When we got there, there
was no air conditioning. I was irritated. It was too hot.

DISCCHOICE: That’s great. You must be adventurous.

RETRIEVAL: I went on a trip. I went to Florida. When we
got there, there was no air conditioning. I was irritated.
It was too hot.

PSEUDO: I have a house in Florida.

MULTITASK: I like Florida. I went to the beaches.

PABST (λd = 5): I went on a trip. I went to Florida. I have
a house there. We do not have air condition. It was hot.

PABST (λd = 1): That’s great. I frequently go to Florida.
I have a house there but it gets hot in summer.

Dialog History
Agent: I work as stunt double. What about you?
User: I’m an engineer. I just got back from work. How’s yours?

Retrieved Story:
I was a working actor. For my new role I was a stunt double. I
started working on new stunts. When I jumped off a building
yesterday I got hurt. I had to be rushed to the hospital.

DISCCHOICE: That’s great. I am looking for a job.

RETRIEVAL: I was a working actor. For my new role I was a
stunt double. I started working on new stunts. When I jumped
off a building yesterday I got hurt. I had to be rushed to the hospital.

PSEUDO: I got a new job. I am an actor.

MULTITASK: I started a new role. I got hurt.

PABST (λd = 5): I was working as a stunt double. I jumped
off a building. I got hurt. I had to be rushed to the hospital.

PABST (λd = 1): Yesterday while I was working, I jumped off
a building and I got hurt. I had to be taken to the hospital.

Table 3: Generations from different models. More examples are in Appendix §C.

prior work (Li et al., 2016), we report the percent-
age of distinct uni-grams and bi-grams (D-1 and D-
2 respectively). Note that these values do not cap-
ture the actual frequency distribution of different
word types. Therefore, we also report the geomet-
ric mean of entropy values of empirical frequency
distributions of n-grams of words (n ∈ {1, 2, 3})
(Jhamtani et al., 2018), denoted by ENTR.

We observe that methods that use story data
show much higher diversity compared to methods
that do not (Table 1). Among methods using story
data, gradient-based decoding (PABST) performs
better than DISCCHOICE trained with PSEUDO or
MULTITASK. Note that just using RETRIEVAL out-
puts as-is leads to even more diverse outputs than
PABST. However, they are much less sensible with
the context, as shown in human evaluations.

3.2 Human Evaluation
Since we do not have ground truth story-like re-
sponses in the dialog dataset, we perform human
evaluation with 150 test examples to investigate
if PABST generates responses that are 1) sensible
with the dialog history and 2) engaging. We hired
two Anglophone (Lifetime HIT acceptance % >
85) annotators for every test sample. The order of
the systems present in the interface is randomized.

A snapshot of the human evaluation interface is
provided in Appendix §C. All differences in val-
ues from human evaluations are significant with
p < 0.05 from bootstrap tests on 1000 subsets of
size 50. Cohen’s Kappa (Cohen, 1960) to mea-
sure inter-annotator agreement for sensibility and
engagement were 0.79 and 0.82 respectively.

From the results (shown in Table 3), we note
that in comparison to responses from baselines,
responses from PABST are more engaging and
more sensible with respect to the dialog his-
tory. We further make following observations.
Firstly, using the gradient-based decoding ap-
proach with retrieved stories (PABST) works signif-
icantly better than using distant supervision with
stories data (PSEUDO and MULTITASK). Sec-
ondly, background stories provide sufficient detail
for an engaging conversation compared to DIS-
CCHOICE which expands persona attributes us-
ing commonsense knowledge (Majumder et al.,
2020). Finally, we also observe that PABST per-
forms worse when we do not use the consistency
constraint (w/o DNLI).

Choice of λd We also experiment with differ-
ent values of the weight for the divergence term
(λd) in L: High (λd = 5), Moderate (λd = 1),
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and Low (λd = 0.05). We consider 100 samples
for this experiment. We attribute a high λd to re-
sponses strictly copying the story. We find that
PABST (moderate λd) wins wins 81.2% and 69.1%
cases against PABST (high λd) on ‘sensible’ and
‘engaging’ response criteria respectively. Similarly,
PABST (moderate λd) wins 93.2% and 84.7% cases
against PABST (low λd) in terms of sensibility and
engagement respectively.

Qualitative Analysis Table 3 shows responses
generated by different baselines. We observe that
PABST is able to follow the retrieved story (same
as output from RETRIEVAL) while modifying the
response to be conversation-like and sensible with
dialog history. Responses from other baselines
remain verbose or incoherent. Mirroring the human
evaluation, we observe that choosing a higher λd
makes the model to almost repeat the retrieved
story but a lower value smooths the output to make
it more sensible with the ongoing dialog.

4 Related Work

A desired impact of the proposed approach is in-
crease in diversity of the generated responses. To
tackle the issue of diversity in dialog model out-
puts, prior work has focused on decoding strategies
such as diversity-promoting sampling (Holtzman
et al., 2020); training strategies such as discourag-
ing undesirable responses via unlikelihood train-
ing (Li et al., 2020); model changes such as using
stochastic variables (Serban et al., 2017); and using
external data such as forum data (Su et al., 2020) or
external knowledge bases (Majumder et al., 2020).
In contrast to these, our proposed method generates
responses with background stories using a gradient-
based decoding approach.

One of the steps in our proposed approach is to
retrieve relevant stories from an external corpus.
Prior work has explored using retrieval of similar
dialog instances as an initial step in improving re-
sponse diversity and other human-like desiderata
in dialog (Roller et al., 2020; Weston et al., 2018).
Distant supervision by using retrieved text snip-
pets as pseudo responses has been explored in prior
work (Su et al., 2020; Roller et al., 2020). We use
an external data source to improve dialog responses,
a theme shared with some efforts in other tasks such
as machine translation (Khandelwal et al.). The
use of narrative text in dialog has been explored
in prior work, mostly as a ‘script’ or template for
conversation (Xu et al., 2020; Zhu et al., 2020).

We adapted a BERT-based retrieval method (Zhang
et al., 2020) in our case to retrieve relevant story
given dialog context and use retrieved story in the
decoding phase.

Gradient-based for text generation with soft con-
straints has been explored in prior work (Dathathri
et al., 2020; Qin et al., 2020). Song et al. (2020) fo-
cused on generating response which are consistent
to given persona. Differently, we use a gradient-
based decoding to generate a dialog response while
honoring constraints such as consistency to persona
and similarity to retrieved story.

5 Conclusion

We propose a method to enrich persona-grounded
dialog with background stories at the inference time
only using an existing corpus of non-conversational
narratives—opening up new ways to generate en-
riched and engaging responses. One of the limita-
tions of PABST is the assumption of the background
story at every turn. As future work, we can include
a decision step to decide if we need to incorporate
a background story or not, given the dialog history.
We can further explore ways to use retrieved stories
over multiple turns instead of a single turn.
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A Implementation Details

We obtain the PersonaChat dataset from ParlAI
repository2. ROCStories dataset is obtained from
the repository of original release3. We adapted
codes from original PPLM (Dathathri et al., 2020)
repository4 and modified them for our own objec-
tive function.

Network architecture For the generator net-
work, we use GPT2 (Transformer with 12 layers,
768 hidden size, 12 heads— gpt2-small5) fol-
lowing the state-of-the-art model (Wolf et al., 2019)
from Conv-AI2 competition. The decoder has total
of 124 Million parameters. We used the pre-trained
decoder model obtained from (Majumder et al.,
2020).

Hyperparameters PABST does not require any
training since we perform gradient-based decod-
ing at the inference time. For our best method, in
objective function L, we use λd as 1 and λc as 1.
We keep generation length to be 100 to encourage
longer generations. We train the consistency classi-
fier using code from PPLM repository6. The weight
γ for mixing forward and backward passes was set
to 0.45. For PSEUDO, we substitute a random 30%
of the original target responses with retrieved sto-
ries.

B Human Evaluations Setup

Figure 2 shows a sample question for the pairwise
comparison between response generated by PABST

and a baseline for sensibility and engagingness. A
similar setup was used to measure performance
between PABST variants with different λd values
(0.5, 1, 5).

C Qualitative Examples

Tables 4 and 5 show generations from PABST and
baselines for sampled text examples.

2http://parl.ai/downloads/personachat/
personachat.tgz

3https://www.cs.rochester.edu/nlp/
rocstories/

4https://github.com/uber-research/PPLM
5https://github.com/huggingface/

transfer-learning-conv-ai
6https://github.com/uber-research/

PPLM/blob/master/run_pplm_discrim_train.
py

Dialog History
Agent: I volunteer in shelters.
User: It is a noble act.

DISCCHOICE: Thank you. I like helping people.

RETRIEVAL: I was at my house bored. I couldn’t figure out
what to do. I looked on TV for answers. I saw a commercial
about homeless people. So I decided to volunteer at a
homeless shelter.

PSEUDO: Last week, I went to the local animal shelter on
the pet adaptation day.

MULTITASK: Thank you! What about you?

PABST (λd = 5.0): I was bored. I wanted to help people. I
looked on TV about homeless people. So I decided to
volunteer at a homeless shelter.

PABST (λd = 1.0): Thank you. I was inspired by a TV
commercial and I volunteered at the homeless shelter.

Table 4: Generations from different models

Dialog History
Agent: I enjoy American sports. What sports do you like?
User: I love playing volleyball. I was in the university team.

DISCCHOICE: That’s great. I like adventure sports.

RETRIEVAL: I always thought golf was for old people.
One day, my dad invited me to play golf with him.
I reluctantly accepted his invitation. On the golf range, I
saw lots of people of my age. I realized golf was a sport for
everyone to enjoy regardless of age.

PSEUDO: Last week, I went to play golf. My dad invited
me. I was reluctant.

MULTITASK: That’s great! I play volleyball during
weekend.

PABST (λd = 5.0): I like playing golf. I always thought it
is for old people. Recently I went to a golf range. But I saw
lots of people of my age. I realized golf is a
sports for everyone.

PABST (λd = 1.0): That’s great. I like playing golf. I
always thought it is for old people. Recently I went
to a golf range. But I saw lots of people of my age. I
realized golf is a sports for everyone.

Table 5: Generations from different models
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Figure 2: Human evaluation setup for pairwise comparison between PABST and another baseline
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Abstract

The famous “laurel/yanny” phenomenon refer-
ences an audio clip that elicits dramatically dif-
ferent responses from different listeners. For
the original clip, roughly half the popula-
tion hears the word “laurel,” while the other
half hears “yanny.” How common are such
“polyperceivable” audio clips? In this paper
we apply ML techniques to study the preva-
lence of polyperceivability in spoken language.
We devise a metric that correlates with polyper-
ceivability of audio clips, use it to efficiently
find new “laurel/yanny”-type examples, and
validate these results with human experiments.
Our results suggest that polyperceivable ex-
amples are surprisingly prevalent, existing for
>2% of English words.1

1 Introduction

How robust is human sensory perception, and to
what extent do perceptions differ between individu-
als? In May 2018, an audio clip of a man speaking
the word “laurel” received widespread attention
because a significant proportion of listeners confi-
dently reported hearing not the word “laurel,” but
rather the quite different sound “yanny” (Salam
and Victor, 2018). At first glance, this suggests
that the decision boundaries for speech perception
vary considerably among individuals. The reality
is more surprising: almost everyone has a decision
boundary between the sounds “laurel” and “yanny,”
without a significant “dead zone” separating these
classes. The audio clip in question lies close to
this decision boundary, so that if the clip is slightly
perturbed (e.g. by damping certain frequencies
or slowing down the playback rate), individuals
switch from confidently perceiving “laurel” to con-
fidently perceiving “yanny,” with the exact point of
switching varying slightly from person to person.

1This research was conducted under Stanford IRB Protocol
46430.

How common is this phenomenon? Specifically,
what fraction of spoken language is “polyperceiv-
able” in the sense of evoking a multimodal re-
sponse in a population of listeners? In this work,
we provide initial results suggesting a significant
density of spoken words that, like the original “lau-
rel/yanny” clip, lie close to unexpected decision
boundaries between seemingly unrelated pairs of
words or sounds, such that individual listeners can
switch between perceptual modes via a slight per-
turbation.

The clips we consider consist of audio signals
synthesized by the Amazon Polly speech synthe-
sis system with a slightly perturbed playback rate
(i.e. a slight slowing-down of the clip). Though
the resulting audio signals are not “natural” stim-
uli, in the sense that they are very different from
the result of asking a human to speak slower (see
Section 5), we find that they are easy to compute
and reliably yield compelling polyperceivable in-
stances. We encourage future work to investigate
the power of more sophisticated perturbations, as
well as to consider natural, ecologically-plausible
perturbations.

To find our polyperceivable instances, we (1) de-
vise a metric that correlates with polyperceivabil-
ity, (2) use this metric to efficiently sample can-
didate audio clips, and (3) evaluate these candi-
dates on human subjects via Amazon Mechan-
ical Turk. We present several compelling new
examples of the “laurel/yanny” effect, and we
encourage readers to listen to the examples in-
cluded in the supplementary materials (also avail-
able online at https://theory.stanford.edu/

˜valiant/polyperceivable/index.html).
Finally, we estimate that polyperceivable clips can
be made for >2% of English words.
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2 Method

To investigate polyperceivability in everyday audi-
tory input, we searched for audio clips of single
spoken words that exhibit the desired effect. Our
method consisted of two phases: (1) sample a large
number of audio clips that are likely to be polyper-
ceivable, and (2) collect human perception data
on those clips using Amazon Mechanical Turk to
identify perceptual modes and confirm polyperceiv-
ability.

2.1 Sampling clips

To sample clips that were likely candidates, we
trained a simple autoencoder for audio clips of
single words synthesized using the Amazon Polly
speech synthesis system. Treating the autoen-
coder’s low-dimensional latent space as a proxy
for perceptual space, we searched for clips that
travel through more of the space as the playback
rate is slowed from 1.0× to 0.6×. Intuitively, a
longer path through encoder space should corre-
spond to a more dramatic change in perception as
the clip is slowed down (Section 3 presents some
data supporting this).

Concretely, we computed a score S proportional
to the length of the curve swept by the encoder E in
latent space as the clip is slowed down, normalized
by the straight-line distance traveled: that is, we

define S(c) =
∫ 0.6×
r=1.0× ||dE(c,r)/dr||dr
||E(c,0.6×)−E(c,1.0×)|| . Then, with

probability proportional to e0.2·S , we importance-
sampled 200 clips from the set of audio clips of
the top 10,000 English words, each spoken by
all 16 voices offered by Amazon Polly (spanning
American, British, Indian, Australian, and Welsh
accents, and male and female voices). The distri-
butions of S in the population and our sample is
shown in Figure 2.

Autoencoder details Our autoencoder operates
on one-second audio clips sampled at 22,050 Hz,
which are converted to spectrograms with a window
size of 256 and then flattened to vectors in R90,000.
The encoder is a linear map to R512 with ReLU
activations, and the decoder is a linear map back to
R90,000 space with pointwise squaring. We used an
Adam optimizer with lr=0.01, training on a corpus
of 16,000 clips (randomly resampled to between
0.6x and 1.0x the original speed) for 70 epochs
with a batch size of 16 (≈ 8 hours on an AWS
c5.4xlarge EC2 instance).

2.2 Mechanical Turk experiments

Each Mechanical Turk worker was randomly as-
signed 25 clips from our importance-sampled set
of 200. Each clip was slowed to either 0.9x, 0.75x,
or 0.6x the original rate. Workers responded with
a perceived word and a confidence score for each
clip. We collected responses from 574 workers, all
of whom self-identified as US-based native English
speakers. This yielded 14,370 responses (≈ 72 re-
sponses per clip).

Next, we manually reviewed these responses
and selected the most promising clips for a second
round with only 11 of the 200 clips. Note that be-
cause these selections were made by manual review
(i.e. listening to clips ourselves), there is a chance
we passed over some polyperceivable clips — this
means that our computations in Section 3 are only
a conservative lower bound. For this round, we also
included clips of the 5 words identified by Guan
and Valiant (2019), 12 potentially-polyperceivable
words we had found in earlier experiments, and
“laurel” as controls. We collected an additional
3,950 responses among these 29 clips (≈ 136 re-
sponses per clip) to validate that they were indeed
polyperceivable.

Finally, we took the words associated with these
29 clips and produced a new set of clips using
each of the 16 voices, for a total of 464 clips. We
collected 4,125 responses for this last set (≈ 3 re-
sponses for each word/voice/rate combination).

3 Results

Are the words we found polyperceivable? To
identify cases where words had multiple percep-
tual “modes,” we looked for clusters in the distri-
bution of responses for each of the 29 candidate
words. Concretely, we treated responses as “bags
of phonemes” and then applied K-means. Though
this rough heuristic discards information about the
order of phonemes within a word, it works suffi-
ciently well for clustering, especially since most of
our words have very few syllables (more sophisti-
cated models of phonetic similarity exist, but they
would not change our results).

We found that the largest cluster typically con-
tained the original word and rhymes, whereas other
clusters represented significantly different percep-
tual modes. Some examples of clusters and their
relative frequency are available in Table 1, and the
relative cluster sizes as a function of playback rate
are shown in Figure 1. As the rate is perturbed,
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Perceived sound Playback rate
0.90× 0.75× 0.60×

laurel/lauren/moral/floral 0.86 0.64 0.19
manly/alley/marry/merry/mary 0.0 0.03 0.35
thrilling 0.63 0.47 0.33
flowing/throwing 0.34 0.50 0.58
settle 0.65 0.25 0.33
civil 0.32 0.64 0.48
claimed/claim/climbed 0.58 0.34 0.11
framed/flam(m)ed/friend/ find 0.33 0.52 0.43
leg 0.50 0.31 0.10
lake 0.46 0.34 0.14
growing/rowing 0.50 0.47 0.26
brewing/booing/boeing 0.19 0.23 0.26
third 0.40 0.10 0.10
food/foot 0.18 0.29 0.13
idly/ideally 0.38 0.30 0.03
natalie 0.25 0.27 0.09
fiend 0.22 0.34 0.32
themed 0.11 0.17 0.24
bologna/baloney/bellany 0.26 0.00 0.00
(good)morning 0.03 0.28 0.77
thumb 0.66 0.74 0.79
fem(me)/firm 0.06 0.10 0.12
frank/flank 0.72 0.96 0.43
strength 0.08 0.00 0.15
round 0.53 0.38 0.65
world 0.03 0.00 0.14

Table 1: Some polyperceivable words (bold) and their
alternate perceptual modes (below). Each row gives
representative elements from the mode, and the propor-
tion of workers whose response fell in that mode.

the prevalance of alternate modes among our clips
increases.

How prevalent are polyperceivable words? Of
our initial sample of 200 words, 11 ultimately
yielded compelling demonstrations. To compute
the prevalence of polyperceivable words in the pop-
ulation of the top 10k words, we have to account
for the importance sampling weights we used when
sampling in Section 2.1. After scaling each word’s
contribution by the inverse of the probability of
including that word in our nonuniform sample of
200, we conclude that polyperceivable clips exist
for at least 2% of the population: that is, of the
16 voices under consideration, at least one yields
a polyperceivable clip for >2% of the top 10k En-
glish words.

We emphasize that this is a conservative lower
bound, because it assumes that there were no other
polyperceivable words in the 200 words we sam-
pled, besides the 11 that we selected for the second
round. We did not conduct an exhaustive search
among those 200 words, instead focusing our Me-
chanical Turk resources on only the most promising
candidates.
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Figure 1: Relative cluster sizes across different play-
back rates. When the rate is slightly perturbed, the
prevalence of alternate modes increases.
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Autoencoder path length
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Figure 2: Distribution of path lengths (the S metric) in
the population (top 10k English words, all 16 voices)
and our sample of 200.

Is S a good metric? We consider the metric S
to be successful because it allowed us to efficiently
find several new polyperceivable instances. If the
200 words were sampled uniformly instead of be-
ing importance-sampled based on S, we would
only have found 4 polyperceivable words in expec-
tation (2% of 200). Thus, importance sampling
increased our procedure’s recall by almost 3×.

For a more quantitative understanding, we ana-
lyzed the relationship between “autoencoder path
length” S and “perceptual path length” T . Our
measure T of “perceptual path length” for a clip
is change in average distance between source
word and response as we slow the clip down from
0.75× to 0.6×. As with clustering above, distance
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Figure 3: Correlation between S and T across the
n = 16 voices for each of our 29 words. Nearly
all words correlate positively, though with varying
strengths (note that “laurel” correlates quite strongly).

is measured in bag-of-phonemes space. For each
word, we computed the correlation between S and
T among the 16 voices (both S and T vary signifi-
cantly across voices). For all but 5 of our 29 words
these metrics correlated positively, though with
varying strength (Figure 3). This suggests that S
indeed correlates with polyperceivability.

4 Discussion: Why study quirks of
human perception in an ACL paper?

Perceptual instability in human sensory sys-
tems offers insight into ML systems. The ques-
tion of what fraction of natural inputs lie close to
decision boundaries for trained ML systems has
received enormous attention. The surprising punch-
line that has emerged over the past decade is that
most natural examples (including points in the train-
ing set) actually lie extremely close to unexpected
decision boundaries. For most of these points, a
tiny but carefully-crafted perturbation can lead the
ML system to change the label. Such perturba-
tions are analogous to the slight perturbation in
playback speed for the polyperceivable clips we
consider. In the ML literature, these perturbations,
referred to as “adversarial examples” seem perva-
sive across complex ML systems (Szegedy et al.,
2013; Goodfellow et al., 2014; Nguyen et al., 2015;
Moosavi-Dezfooli et al., 2016; Madry et al., 2017;
Raghunathan et al., 2018; Athalye et al., 2017).

While the initial work on adversarial examples
focused on computer vision, more recent work
shows the presence of such examples across other
settings, including reinforcement learning (Huang
et al., 2017), reading comprehension (Jia and Liang,
2017), and speech recognition (Carlini and Wag-

ner, 2018; Qin et al., 2019). Studying perceptual
illusions would provide a much-needed reference
when evaluating ML systems in these domains. For
vision tasks, for example, human vision provides
the only evidence that current ML models are far
from optimal in terms of robustness to adversar-
ial examples. However, while humans are cer-
tainly not as susceptible to adversarial examples as
ML systems, we lack quantified bounds on human
robustness. More broadly, understanding which
systems (both biological and ML) have decision
boundaries that lie surprisingly close to many natu-
ral inputs may inform our sense of what settings are
amenable to adversarially robust models, and what
settings inherently lead to vulnerable classifiers.

Perceptual instability in ML systems offers in-
sight into human sensory systems. Recent re-
search on adversarial robustness of ML models has
provided a trove of new tools and perspectives for
probing classifiers and exploring the geometry of
decision boundaries. These tools cannot directly be
applied to study the decision boundaries of biologi-
cal classifiers (e.g. we cannot reasonably do “gradi-
ent descent” on human subjects). However, using
standard data-driven deep learning techniques to
model human perceptual systems can allow us to
apply these techniques by proxy.

An example can be found in the study of “trans-
ferability.” Adversarial examples crafted to fool a
specific model often also fool other models, even
those trained on disjoint training sets (Papernot
et al., 2016a; Tramèr et al., 2017; Liu et al., 2016).
This prompts the question of whether adversar-
ial examples crafted for an ML model might also
transfer to humans. Recent surprising work by El-
sayed et al. (2018) explores this question for vision.
Humans were shown adversarial examples trained
for an image classifier for ≈ 70ms, and asked to
choose between the correct label and the classifier’s
(incorrect) predicted label. Humans selected the
incorrect label more frequently when shown ad-
versarial examples than when shown unperturbed
images. Similarly, Hong et al. (2014) trained a low-
dimensional representation of “perceptual space,”
and used the decision boundaries of the model to
find images that confused human subjects.

5 Related work

An enormous body of work from cognitive sciences
communities explores the quirks of human/animal
sensory systems (Fahle et al., 2002). These works
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often have the explicit goal of exploring isolated
“illusions” that provide insights into our perceptual
systems (Davis and Johnsrude, 2007; Fritz et al.,
2005). However, there are few efforts to quantify
the extent to which “typical” instances are polyper-
ceivable or lie close to decision boundaries.

Miller (1981) studies the effect of speaking rate
on how listeners perceive phonemes. The percep-
tual shifts studied therein are between phonetically
adjacent perceptions (e.g. “pip” vs. “peep”) rather
than dramatically different perceptions (e.g. “lau-
rel” vs. “yanny”). The “perturbation” of increasing
human speaking rate is much more complex than
simply linearly scaling the playback rate of an au-
dio clip. Speaking-rate induced shifts also seem to
hold more universally across voices, as opposed to
the polyperceivable instances we examine.

6 Future work

Priming effects It is possible to use additional
stimuli to alter perceptions of the “laurel/yanny”
audio clip. For example, Bosker (2018) demon-
strates the ability to control a listener’s percep-
tion by “priming” them with a carefully crafted
recording before the polyperceivable clip is played.
Similarly, Guan and Valiant (2019) investigated
the “McGurk effect” (McGurk and MacDonald,
1976), where what one “sees” affects what one
“hears.” The work estimated the fraction of spo-
ken words that, when accompanied by a carefully
designed video of a human speaker, would be per-
ceived as significantly different words by listen-
ers. Such phenomena raise questions about how
our autoencoder-based method can be extended to
search for “priming-sensitive” polyperceivability.

Security implications Just as adversarial exam-
ples for DNNs have security implications (Papernot
et al., 2016b; Carlini and Wagner, 2017; Liu et al.,
2016), so too might adversarial examples for sen-
sory systems. For example, if a video clip of a
politician happens to be polyperceivable, an adver-
sary could lightly edit it with potentially significant
ramifications. A thorough treatment of such secu-
rity implications is left to future work.

7 Conclusion

In this paper, we leveraged ML techniques to study
polyperceivability in humans. By modeling per-
ceptual space as the latent space of an autoencoder,
we were able to discover dozens of new polyper-

ceivable instances, which were validated with Me-
chanical Turk experiments. Our results indicate
that polyperceivability is surprisingly prevalent in
spoken language. More broadly, we suggest that
the study of perceptual illusions can offer insight
into machine learning systems, and vice-versa.
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Abstract

Event language models represent plausible se-
quences of events. Most existing approaches
train autoregressive models on text, which
successfully capture event co-occurrence but
unfortunately constrain the model to follow
the discourse order in which events are pre-
sented. Other domains may employ differ-
ent discourse orders, and for many applica-
tions, we may care about different notions
of ordering (e.g., temporal) or not care about
ordering at all (e.g., when predicting related
events in a schema). We propose a simple yet
surprisingly effective strategy for improving
event language models by perturbing event se-
quences so we can relax model dependence on
text order. Despite generating completely syn-
thetic event orderings, we show that this tech-
nique improves the performance of the event
language models on both applications and out-
of-domain events data.

1 Introduction

Event-level language models (LMs) provide a
way to reason about events, and to approximate
schematic and script-like knowledge (Schank and
Abelson, 1977; Balasubramanian et al., 2013;
Nguyen et al., 2015) about them (Modi and Titov,
2014; Pichotta and Mooney, 2016; Weber et al.,
2018). These models aim to learn high-level repre-
sentations of complex events (e.g., an arrest) and
possibly their entity roles from raw text (e.g., a
suspect). However, a major limitation is their re-
liance on the discourse order of event mentions
when training the LM. Although powerful, these
event LMs capture information we don’t want in
true world knowledge. For instance, a script of
events may be weakly ordered in real life, but the
system instead learns to strongly rely on the text
order in which the events were described. Figure
1 shows an example where discourse and actual

Figure 1: Example of an event schema for which the
discourse order is different from the temporal order.

temporal order are different: a model trained on
newswire may learn the pattern on the left from
obituaries, but will fail to generalize to biograph-
ical or other narrative descriptions of someone’s
life.

In this paper, we aim to improve event-level LMs
in order to make them more suitable for general
knowledge learning. While a range of possible
modifications to the model can be imagined, such
as set transformers (Lee et al., 2019), we want to
leverage autoregressive pre-trained LMs. We in-
stead find that we can encode the necessary invari-
ances via data augmentation: namely, we apply a
set of event sequence perturbations to sequences in
the training data to relax the model’s dependence
on discourse order. By considering the next event
based on shuffled sequences of events, we encour-
age the model to treat the input more as a set of
events rather than strictly as a discourse sequence.

Surprisingly, despite our disruption of discourse
order, experiments show how perturbations can im-
prove event language modeling of text, particularly
when evaluating the model on other domains which
present events in different orders (e.g., novels or
blogs present data in more of a “narrative” fash-
ion than news datasets common in NLP (Yao and
Huang, 2018)). Our experiments evaluate accuracy
on the Inverse Narrative Cloze task on in-domain
newswire, as well as out-domain novels and blogs1.

1The code and data is available at https://github.
com/StonyBrookNLP/elm-perturbations
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Figure 2: Sequence perturbations strategies.

2 Perturbing Discourse Sequences

Event language modeling tasks are typically de-
fined over sequences of events as they appear
in text. The events can be represented either as
a sequence of words annotated with predicate-
argument structure (e.g., semantic roles (Pichotta
and Mooney, 2016), Open IE tuples (Weber et al.,
2018; Rudinger et al., 2015) or with compositional
embeddings (Modi, 2016). Generative models are
trained to predict subsequent events in a sequence
conditioning on previously observed events. Natu-
rally, these models learn the order in which events
appeared in text (Manshadi et al., 2008).

However, relying on discourse order may not
be necessary and can potentially limit generaliza-
tion of event LMs. For some event related tasks
such as schema learning (Weber et al., 2018), the
discourse order is not directly relevant. For other
tasks such as event ordering (Pustejovsky et al.,
2003; Chambers et al., 2014; Wang et al., 2018),
temporal or logical order of events is most critical –
discourse order, at best, is a noisy proxy. In fact, the
first systems for schema learning were noticeably
not language models (Mooney and DeJong, 1985;
Chambers and Jurafsky, 2009, 2011). We intro-
duce three simple perturbation techniques shown
in Figure 2 that relax the reliance on discourse se-
quences.

2.1 Event Permutation

One way to reduce reliance on discourse order is
to expose the model to random permutations of
the input sequences, as shown in Figure 2. Using
all possible permutations of a sequence is imprac-
tical, so we introduce three specific shuffles that
force the model to pay attention to long-term de-
pendencies and avoid the over-reliance on local
dependencies/order:

• Reversed order: given a set of events as
ABCD, the reverse of the sequence is created
as DCBA.

• Concatenation of events in the odd positions
followed by the even positions of the se-
quence: the permuted sequence is BDAC.

• Concatenation of event tuples in the odd posi-
tions followed by those in the even positions
of the reverse order of the original sequence.
The new sequence is: CADB

These shuffle patterns were selected to minimize
the chance of repetition across permutations.

2.2 Event Dropout

We also consider event dropout as another pertur-
bation to the original discourse sequence. For each
sequence, we remove a small random subset of
events (Event Dropout in Figure 2). We create
multiple reduced sequences for each original se-
quence. The reduced sequences are treated in the
same way as the original sequences for training the
model. This perturbation is a type of regulariza-
tion against overfitting on any specific event in a
sequence, much like standard dropout procedures.

2.3 Event Masking

When dropping events, we can provide additional
information to the model about where events were
dropped. This forces the model to capture longer-
term dependencies among events in the sequence.
We randomly select a number of event tuples and
replace their tokens with a <mask> token (Mask-
ing in Figure 2). For each sequence in the training
set, we generate its masked sequences with each
having a fixed proportion of its events masked.

3 Experimental Setup

Data We train event language models on the An-
notated NYT corpus using Open IE event tuples ex-
tracted by Ollie (Schmitz et al., 2012). The dataset
contains a total of around 1.8 million articles. After
preprocessing steps, 1,467,366 articles are used as
the training set, 6k articles as test set and 4k articles
as the dev set. Each event is a 4-tuple (v,s,o,p)
containing the verb, subject, object and preposition.
We follow the same preprocessing steps outlined
in Weber et al. (2018) to create event sequences.

The components of the events (the verb, subject,
etc.) are all individual tokens, and are treated like
normal text. For example, the events (truck packed
with explosives), (police arrested suspect), would
be given to the model as: packed truck explosives
with [TUP] arrested police suspect NULL , where

600



NULL is the null preposition token and [TUP] is
a special separator token between events.

Each document is first partitioned into segments
of four sentences each. All events extracted from
each segment are concatenated (in discourse order)
to form an event sequence. This is a simple heuris-
tic to avoid considering event sequences that can
drift or connect otherwise unrelated events. Tuples
with common verbs (is, are, be, ...) and repeating
predicates are also ignored.

The training, development, and test splits have
7.1M, 19K, and 29K event sequences respectively.
During training, depending on the perturbation
strategy used, a number of sequences are added
to the initial sets. The numbers are hyperparame-
ters, selected differently for each model. Details
are given in the following sections.

Autoregressive Models Our baseline autoregres-
sive event LM is a pretrained GPT-2 model (Rad-
ford et al., 2019) fine-tuned on the event sequences.

Once the perturbations are applied to the original
sequence, the modified sequence is used as both
the input and the output of the model. We trained
variants of GPT-2 with different sequence pertur-
bations as shown in Figure 2 in our experiments.
For the dropout and masked versions, we created
n/3 new sequences with n being the number of
events in the sequence. Each sequence has n/3 of
its events either dropped or masked.

Autoencoding Models We use HierarchicAl
Quantized Autoencoder (HAQAE) (Weber et al.,
2018) as a strong autoencoding model. HAQAE
is an LSTM-based autoencoder, which uses a hi-
erarchical latent space to model event sequences.
HAQAE uses categorical global latent variables to
represent a tree-structured hierarchy which allow
it to model different types of schemas and their
possible tracks. Different levels of this hierarchical
structure capture different levels of features of the
schemas.

For training the HAQAE model, instead of re-
constructing a perturbed sequence, we explore a
denoising style training objective, where we only
perturb the input part of the sequence keeping the
output the same as the original. Our hypothesis
is that these models learn a perturbation-invariant
latent space representation in both cases, which
will help break the dependence on discourse order.
We use the denoising variant in our experiments as
it worked better than the standard reconstruction

Type of System PPL INC
Val Test Val Test

Random Baseline - - 16.60 16.60

A
ut

o
re

gr
es

si
ve

RNNLM 91.84 90.92 25.30 26.30
GPT-2 Baseline 85.13 84.13 26.80 28.30
GPT-2 Masked 87.96 87.26 26.30 27.10
GPT-2 Dropout 83.46 82.56 26.70 27.70

GPT-2 Permuted 83.18 82.26 27.45 28.90

A
ut

o
en

co
di

ng

HAQAE-Baseline 142.22 140.89 31.80 33.85
HAQAE-Masked 148.07 147.03 33.80 36.80
HAQAE-Dropout 122.69 122.30 31.25 32.25
HAQAE-Permuted 143.39 142.07 34.75 38.55

Table 1: Perplexity and the accuracy of Inverse Narra-
tive Cloze task. Lower is better for perplexity while
higher is better for INC.

objective in our initial experiments.
For each sequence in the permutation model, we

generated permuted sequences for 10% of the orig-
inal sequences. As for the dropout and masked
models, we created n/4 new sequences with n be-
ing the number of events in the sequence. Each
sequence has n/3 of its events either dropped or
masked. Preliminary experiments showed little dif-
ference between using all the data vs a subset.

Models Hyperparameters The GPT-2 model
uses the implementation from Huggingface library
(Wolf et al., 2020) using a pre-trained gpt-2 small
model and tokenizer. Adam optimizer (Kingma
and Ba, 2014) is used with an initial learning rate
of 6.25e− 5.

The HAQAE model uses 5 discrete latent vari-
ables. Each variable can initially take on K = 512
values, with an embeddings dimension of 256. The
encoder is a bidirectional, single layer RNN with
GRU cell (Cho et al., 2014) with a hidden dimen-
sion of size 512. The embeddings size is 300 which
are initialized with pretrained GloVe (Pennington
et al., 2014) vectors. The decoder is also a single
layer RNN with GRU cells with a hidden dimen-
sion of 512 and 300 dimensional word embeddings
(initialized) as inputs. All experiments use a vocab-
ulary size of 50k. Adam optimizer with a learning
rate of 0.0005 is used.

4 Evaluation

We ran different experiments to answer the follow-
ing questions:

How do sequence perturbation techniques im-
prove event language modeling? We evaluate
perplexity as is standard in Table 1, but aside from
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System Blogs Novels News

HAQAE-baseline 24.31 25.10 32.25
HAQAE-permuted 31.95 28.45 38.75

Table 2: INC accuracy on external data

Figure 3: A legitimate sequence and its confounding.

perplexity, we want to see how well event LMs
capture schematic knowledge. We thus evaluate
on the inverse narrative cloze (INC) task (Weber
et al., 2018). Given the first event from an original
discourse sequence and a set of candidate event
sequences, the task is to identify the true event se-
quence completion. This evaluation is closer to our
ultimate goal: identifying realistic event schemas
rather than discourse-focused metrics like perplex-
ity.

The INC evaluation starts with a gold sequence
of events from a real document, and then includes
5 other event sequences pulled from confounding
documents. You insert the first gold event artifi-
cially at the start of each of these. The gold event
sequence should have high probability compared to
the confounding event sequences. Figure 3 shows a
gold sequence and one confounding sequence gen-
erated for it. The six sequences are ranked based on
the probabilities assigned by the model, and then
the accuracy is the number of predictions where the
gold sequence is ranked first. A random model will
uniformly choose one among the six sequences and
thus will have an accuracy of 16.6%.

The perplexity2 and the INC accuracy of differ-
ent variants of both autoregressive and autoencod-
ing models are shown in Table 1.

Using sequence perturbations improves the INC
accuracy on both test and validation sets for both
categories of models. Further, the sequence per-
turbations gain in terms of INC accuracy is much
higher with HAQAE.

2For autoencoders we report generative perplexity with the
KL-term, while the original paper (Weber et al., 2018) has the
lower reconstructive perplexity without the KL-term.

Figure 4: Perplexity of different GPT-2 models with
respect to the number of training sequences.

How do models trained with perturbation tech-
niques perform on out-of-domain data? The
NYT corpus used for training the models in this
study is newswire. The journalistic writing style
does not always follow the temporal ordering of
events, but represents the events in various orders
going backwards or forward in time. One might ar-
gue that the reason the sequence perturbations work
better in terms of INC accuracy is that the events
extracted from news do not necessarily follow the
temporal order and therefore the perturbations will
not create an issue. To show the effectiveness of
our approach, we evaluated the performance of
our models on the event sequences extracted from
narratives coming from different domains: novels,
blogs and news (Yao and Huang, 2018).

We used the OpenIE extraction system in a sim-
ilar fashion to extract the event tuples from the
narrative sequences. We used our best-performing
model from the previous section and with no fine-
tuning applied the models to see how our sequence
perturbations performed in terms of INC accuracy
on these narrative texts. The results of this analysis
are presented in Table 2. The numbers show that
the proposed sequence perturbations perform bet-
ter on out-of-domain data (with explicit temporal
links) compared to the baseline model.

How effective are the sequence perturbation
techniques with respect to the number of train-
ing instances? Our sequence perturbations can
be seen as data augmentation strategies which will
help models learn new aspects of data that can not
be learned from the original sequences. As the num-
ber of training samples increases, the model has
more opportunities to learn these aspects. There-
fore, the sequence perturbations will be more useful
for domains with fewer training samples.

602



seed generated events ppl(g—s) ppl(g—ps)

HAQAE-Baseline people reported fire, fire spread to forest people died in fire, fire caused fires 4.49 6.49
fire spread to forest, people reported fire person spokesman for department, firefighters taken to hospital 5.21 6.30

HAQAE-permuted people reported fire, fire spread to forest fires began today, people working in area 5.75 5.58
fire spread to forest, people reported fire fires began today, people working in area 5.58 5.75

Table 3: Generated schemas for two-event seeds. The second row for each model shows the generated schemas for
permuted seed events. ppl(g—s) and ppl(g—ps) are the perplexity of generated events given the seed events and the
perplexity of events given permuted seeds. The lower the difference the more robust the model is to permutations.

seed generated events

HAQAE-baseline fire spread to neighborhood, people reported fire people fire to floor, person spokesman for department
fire spread to forest, people reported fire firefighters fire to floor, person spokesman for department

HAQAE-permuted fire spread to neighborhood, people reported fire Fire spread through floors, fire came from floor
fire spread to forest, people reported fire fires began today, people working in area

Table 4: Generated schemas for two-event seeds. The second event is the same while the first event shows a
different branch.

We plotted the perplexity with respect to the
number of training sequences for the GPT-2 base-
line system as well as permuted and dropout mod-
els. As can be seen in Figure 4, the gap between the
perplexity scores are higher when the number of
sequences are lower. This observation suggests that
our approach will result in better language models
for domains with limited data.

How do schemas generated by different models
differ from each other? We generated schemas
for 46 two-event seeds using the HAQAE baseline
and permuted models. We wanted to see how the
generated schemas differ in two different aspects:
First, for each seed, we permuted the events and
generated schemas for both models. We expect the
permuted model to have less variation in generat-
ing events for original and permuted seeds. We
calculated the perplexity of the generated events
for both the original order of events as well as the
permuted order. Table 3 shows an example of such
scenario where the HAQAE-permuted model has
lower variation in perplexity for permuted seed
events.

Second, we want to see how dependent the gener-
ation is upon the most recent event in the sequence.
We generated schemas for two-event seeds in which
the last event is the same while the first event indi-
cates a different path. Table 4 shows an example
where the permuted model generates more diverse
events.

5 Conclusion

We proposed a set of simple sequence perturbations
to relax the model’s reliance on the discourse order
of event mentions for event language modeling.
By predicting the next event based on perturbed
sequences, the model is encouraged to treat the

input as a set of events. Our experiments show
that these perturbations can improve identifying
event schemas measured by INC accuracy both on
in-domain and out-of-domain data.
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cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Ko-
siorek, Seungjin Choi, and Yee Whye Teh. 2019.
Set transformer: A framework for attention-based
permutation-invariant neural networks. In Inter-
national Conference on Machine Learning, pages
3744–3753. PMLR.

Mehdi Manshadi, Reid Swanson, and Andrew S Gor-
don. 2008. Learning a probabilistic model of event
sequences from internet weblog stories. In FLAIRS
Conference, pages 159–164.

Ashutosh Modi. 2016. Event embeddings for seman-
tic script modeling. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 75–83.

Ashutosh Modi and Ivan Titov. 2014. Inducing neu-
ral models of script knowledge. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning, pages 49–57.

Raymond J Mooney and Gerald DeJong. 1985. Learn-
ing schemata for natural language processing. In IJ-
CAI, pages 681–687.

Kiem-Hieu Nguyen, Xavier Tannier, Olivier Ferret,
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Abstract

Information Retrieval using dense low-
dimensional representations recently became
popular and showed out-performance to
traditional sparse-representations like BM25.
However, no previous work investigated
how dense representations perform with
large index sizes. We show theoretically and
empirically that the performance for dense
representations decreases quicker than sparse
representations for increasing index sizes. In
extreme cases, this can even lead to a tipping
point where at a certain index size sparse
representations outperform dense representa-
tions. We show that this behavior is tightly
connected to the number of dimensions of
the representations: The lower the dimension,
the higher the chance for false positives, i.e.
returning irrelevant documents.

1 Introduction

Information retrieval traditionally used sparse rep-
resentations like TF-IDF or BM25 to retrieve rele-
vant documents for a given query. However, these
approaches suffer from the lexical gap problem
(Berger et al., 2000).

To overcome this issue, dense representations
have been proposed (Gillick et al., 2018): Queries
and documents are mapped to a dense vector space
and relevant documents are retrieved e.g. by using
cosine-similarity. Out-performance over sparse lex-
ical approaches has been shown for various datasets
(Gillick et al., 2018; Guo et al., 2020; Guu et al.,
2020; Gao et al., 2020).

Previous work showed the out-performance for
fixed, rather small indexes. The largest dataset
where it has been shown is the MS Marco (Bajaj
et al., 2018) passage retrieval dataset, where re-
trieval is done over an index of 8.8 million text
passages. However, in production scenarios, index
sizes quickly reach 100 millions of documents.

We show in this paper, that the performance
for dense representations can decrease quicker for
increasing index sizes than for sparse representa-
tions. For a small index of e.g. 100k documents,
a dense approach might clearly outperform sparse
approaches. However, with a larger index of sev-
eral million documents, the sparse approach can
outperform the dense approach.

We show theoretically and empirically that this
effect is closely linked to the number of dimensions
for the representations: Using fewer dimensions
increases the chances for false positives. This effect
becomes more severe with increasing index sizes.

2 Related Work

A common choice for dense retrieval is to fine-
tune a transformer network like BERT (Devlin
et al., 2018) on a given training corpus with queries
and relevant documents (Guo et al., 2020; Guu
et al., 2020; Gao et al., 2020; Karpukhin et al.,
2020; Luan et al., 2020). Recent work showed
that combining dense approaches with sparse, lexi-
cal approaches can further boost the performance
(Luan et al., 2020; Gao et al., 2020). While the ap-
proaches have been tested on various information
and question answering retrieval datasets, the per-
formance was only evaluated on fixed, rather small
indexes. Guo et al. (2020) evaluated approaches for
eight different datasets having index sizes between
3k and 454k documents.

We are not aware of previous work that compares
sparse and dense approaches for increasing index
sizes and the connection to the dimensionality. The
only work we are aware of that systematically stud-
ies the encoding size for dense approaches is (Luan
et al., 2020), but they only studied the connection
to the document length.
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3 Theory

Dense retrieval approaches map queries and doc-
uments1 to a fixed size dense vector. The most
relevant documents for a given query can then be
found using cosine-similarity.

Using as few dimensions as possible is desirable,
as it decreases the memory requirement to store
(an index) of millions of vectors and leads to faster
retrieval. However, as we show, lower-dimensional
representations can have issues with large indices.

Given a query vector q ∈ Rk, we search our
index of document vectors d1, ..., dn ∈ Rk for the
documents that maximizes:

cossim(q, di) = cos(θ) =
q · di
‖q‖ ‖di‖

Note: In the following we just show the case for
cosine similarity. The proof extends to other sim-
ilarity functions like dot-product and any p-norm
(Manhatten, Euclidean) as long as the vector space
is finite. A finite n-dimensional vector space can be
mapped to an n+1-dimensional vectors space with
vectors of unit length. In that case, dot-product in
n dimensions is equivalent to cosine-similarity in
n+1 dimensions. Similar, any p-norm in n dimen-
sions can be re-written as cosine-similarity in n+1
dimensions.

Theorem: The probability for false positives (I)
increases with the index size n and (II) with the
decreasing dimensionality k.

Proof (I): Given a query q and the relevant doc-
ument dr. For simplicity, we assume only a sin-
gle relevant document. If multiple documents are
relevant, we consider only the one with the high-
est cosine similarity. In order that no false posi-
tive is returned, cossim(q, dr) must be greater than
cossim(q, di) for all i 6= r. Assume the possible
vectors are independent. Then, the probability for
a false positive is

P (false positive) = 1−(1−P (false positivei))
n−1

for an index with n − 1 negative elements and
P (false positivei) the probability that a single el-
ement is a false positive, i.e. cossim(q, di) >
cossim(q, dr).

Proof (II): While the previous proof is straight-
forward, that the chance of false positives in-
creases with larger index sizes, the more inter-
esting aspect is the relation to the dimensional-
ity, i.e., what is the probability P (false positivei)

1We use document as a cover-term for text of any length.

= P (cossim(q, di) > cossim(q, dr)) for a random
di? We show that this probability decreases with
more dimensions.

Without loss of generality, we assume that the
vectors are of unit length. The vectors are then on
an k-dimensional sphere with radius 1. A false pos-
itive happens if cossim(q, di) > cossim(q, dr), or,
equivalent if 1−cossim(q, di) < 1−cossim(q, dr).
I.e., we intersect the sphere in k dimensions with
a hyperplane in k − 1 dimensions. The area of
the cut-off portion is defined by 1− cossim(q, dr).
All vectors within the cut-off portion (i.e. spheri-
cal cap) are false positives. The probability that a
random vector will be returned as false positive is:

P (false positivei) = Acap/Asphere

with Acap the surface area of the spherical cap
and Asphere the surface area of the sphere in k
dimensions. Define the surface area of the sphere
in k dimensions as Ak, then the surface area of
Acap is (Li, 2011):

Acap =
1

2
AkIsin2θ

(
k − 1

2
,
1

2

)

with Ix(a, b) the regularized incomplete beta
function and θ the polar angle, i.e. the angle be-
tween q and the relevant document dr. Hence:

P (false positivei) =
1

2
Isin2θ

(
k − 1

2
,
1

2

)
(1)

For constant cosine similarity between query
q and relevant document dr, Isin2θ

(
k−1
2 , 12

)
is a

monotonically decreasing function with increas-
ing dimension k. In conclusion, more dimensions
decrease the probability for false positives.

Combining (I) and (II) shows that a low dimen-
sional representation might work well for small in-
dex sizes. However, with more indexed documents,
the probability of false positives increases faster
for low dimensional representations than for higher
dimensional representations. Hence, at some in-
dex size, higher dimensional representations might
outperform the lower-dimensional representation.

4 Empirical Investigation

In the proof, we have assumed that vectors are
independent and uniformly distributed over the
space, which gives us a lower bound on the false
positive rate. However, in practice, dense repre-
sentations are neither independent nor uniformly
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distributed. As shown in (Ethayarajh, 2019; Li
et al., 2020), dense representations derived from
pre-trained Transformers like BERT map to an
anisotropic space, i.e., the vectors occupy only a
narrow cone in the vector space. This drastically
increases the chance that an irrelevant document is
closer to the query embedding than the relevant doc-
ument. Hence, we study how actual dense models
are impacted by increasing index sizes and lower-
dimensional representations.

4.1 Dataset

We conduct our experiments on the MS MARCO
passage dataset (Bajaj et al., 2018). It consists of
over 1 million unique real queries from the Bing
search engine, together with 8.8 million paragraphs
from heterogeneous web sources. Most of the
queries have only 1 passage judged as relevant,
even though more can exist. The development set
consists of 6980 queries and the performance is
evaluated using mean reciprocal rank MRR@10.

To better compare the relative performance dif-
ferences, we compute a rank-aware error rate:

Err =
1

n

n∑

i=1

(
1− 1

ranki

)

with ranki being the rank of the relevant docu-
ment for the i-th query. To be compatible with
MRR@10, we set ranki = ∞ for ranki >
10. We then define the relative error rate as
ErrDense/ErrBM25. A relative error rate of 50% in-
dicates that the dense approach makes only 50% of
the errors compared to BM25 retrieval.

4.2 Model

For sparse, lexical retrieval, we use ElasticSearch,
which is based on BM25. For dense retrieval,
we use a DistilRoBERTa-base model (Sanh et al.,
2020) as a bi-encoder: The query and the passage
are passed independently to the transformer model
and the output is averaged to create fixed-sized
representations. We train this using InfoNCE loss
(van den Oord et al., 2018):

L = − log
exp(τ · cossim(q, p+))∑
i exp(τ · cossim(q, pi))

with q the query, p+ the relevant passage. We
use in-batch negative sampling and use the other
passages in a batch as negative examples. We found
that τ = 20 performs well. We train the model in

two setups: 1) only with random (in-batch) nega-
tives, and 2) we provide for each query addition-
ally one hard-negative passage. We use the hard-
negative passages provided by the MS MARCO
dataset, which were retrieved using lexical search.
Models are trained with a batch size of 128 with
Adam optimizer and a learning rate of 2e− 5.

DistilRoBERTa produces representations with
768 dimensions. We also experiment with lower-
dimensional representations. There, we added a
linear projection layer on-top of the mean pooling
operation to down-project the representation to ei-
ther 128 or 256 dimensions. Dense retrieval is per-
formed using cosine similarity with exact search.

Models were trained using the SBERT frame-
work (Reimers and Gurevych, 2019).2

5 Experiments

First, we study the impact of increasing index sizes
with real text passages. Then, we study the perfor-
mance when random noise is added.

5.1 Increasing Index Size
In the first experiment, we start with an index that
only contains the 7433 relevant passages for the
6980 queries. Then, we add step-wise randomly
selected passages from the MS MARCO corpus to
the index until all 8.8 million passages are indexed.

Model 10k 100k 1M 8.8M
BM25 79.93 63.88 40.14 17.56
Trained without hard negatives

128 dim 87.50 68.63 39.76 15.71
256 dim 88.82 70.79 41.74 17.08
768 dim 88.99 71.06 42.24 17.34

Trained with hard negatives
128 dim 90.32 77.92 54.45 27.34
256 dim 91.10 78.90 55.51 28.16
768 dim 91.48 79.42 56.05 28.55

Table 1: Dev performance (MRR@10 ×100) on MS
MARCO passage dataset with different index sizes.
Higher score = better.

Table 1 shows the MRR@10 performance for
the different systems. Increasing the index natu-
rally decreases the performance for all systems, as
retrieving the correct passages from a larger index
is more challenging. The dense approach trained
without hard negatives clearly outperforms BM25
for an index with 10k - 1M entries, but with all 8.8
million passages it performs worse than BM25.

Table 2 shows the relative error rate in compari-
son to BM25 retrieval. For small index sizes, we

2https://www.SBERT.net
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Model 10k 100k 1M 8.8M
Trained without hard negatives

128 dim 62.3 86.8 100.6 102.2
256 dim 55.7 80.9 97.3 100.6
768 dim 54.9 80.1 96.5 100.3

Trained with hard negatives
128 dim 48.2 61.1 76.1 88.1
256 dim 44.3 58.4 74.3 87.1
768 dim 42.5 57.0 73.4 86.7

Table 2: Relative error rate (%) of dense approaches in
comparison to BM25 retrieval. Lower score = better.

observe that dense approaches drastically reduce
the error rate compared to BM25 retrieval. With
increasing index sizes, the gap closes.

5.2 Index with Random Noise
MS MARCO is sparsely labeled, i.e., there is usu-
ally only a single passage labeled as relevant even
though multiple passages would be considered as
relevant by humans (Craswell et al., 2020). To
avoid that the drop in performance is due to the
retrieval of relevant, but unlabeled passages, we
perform an experiment where we add random ir-
relevant noise to the index. Our index consists
only of the relevant passages and a large fraction
of irrelevant, randomly generated strings.3

We also evaluate the popular DPR system by
Karpukhin et al. (2020), which is a BERT-based
dense retriever trained on the Natural Questions
(NQ) dataset (Kwiatkowski et al., 2019). We chose
the NQ dev set, consisting of 1772 questions from
Google search logs. DPR encodes the passage as
Title [SEP] Paragraph. We create a ran-
dom string for the paragraph and combine it with
1) a randomly generated string as title, 2) selecting
randomly one of the over 6 Million real Wikipedia
article titles, 3) selecting randomly one of the 1772
article titles found in the NQ dev set.

We count for how many queries a random string
is ranked higher than the relevant passage. The
results are shown in Table 3. We observe that
BM25 does not rank any randomly generated pas-
sage higher than the relevant passage for the MS
MARCO dataset. The chance that a random pas-
sage contains words matching the query is small.

For the dense retrieval models, we observe for
quite a large number of queries that a random string
passage is ranked higher than the relevant passage.
As proven in Section 3, the error increases with
larger index sizes and fewer dimensions.

3Strings are generated randomly using lowercase charac-
ters a-z and space.

Model 100k 1M 10M 100M
BM25 0.00% 0.00% 0.00% 0.00%
Dense without hard negatives - MS MARCO

128 dim 2.71% 4.41% 6.69% 9.73%
256 dim 2.39% 4.03% 6.16% 9.04%
768 dim 2.13% 3.72% 5.77% 8.52%

Dense with hard negatives - MS MARCO
128 dim 2.87% 4.20% 6.00% 8.11%
256 dim 2.45% 3.72% 5.59% 7.38%
768 dim 2.12% 3.32% 5.09% 7.03%

DPR (Karpukhin et al., 2020) - Natural Questions
rnd title 0.17% 0.28% 0.34% 0.51%
all titles 2.48% 5.59% 9.31% 12.08%
dev titles 4.18% 5.36% 6.66% 8.01%

Table 3: Percentage of queries for which a random
string passage is ranked higher than the relevant pas-
sage. 100k/1M/10M/100M indicates the number of ran-
dom passages in the index.

For DPR, we observe an extreme dependency on
the title. Having 100 million entries in the index
with a real Wikipedia article title and a random
paragraph, results in the retrieval of those for about
12.08% of all questions at the top position.

The error numbers far exceed the estimation
from equation (1), confirming that the represen-
tations are not uniformly distributed over the com-
plete vector space and are concentrated in a small
space. In the appendix (Figure 1), we plot the rep-
resentations for the queries, the relevant passages,
and the random strings.

6 Conclusion

We have proven and shown empirically that the
probability for false positives in dense information
retrieval depends on the index size and on the di-
mensionality of the used representations. These
approaches can even retrieve completely irrelevant,
randomly generated passages with high probabil-
ity. It is important to understand the limitations of
dense retrieval:

1) Dense approaches work better for smaller,
clean indexes. With increasing index size the dif-
ference to sparse approaches can decreases.

2) Evaluation results with smaller indexes cannot
be transferred to larger index sizes. A system that is
state-of-the-art for an index of 1 million documents
might perform badly on larger indices.

3) The false positive rate increases with fewer
dimensions.

4) The empirically found error rates far exceeded
the mathematical lower-bound error rates, indicat-
ing that only a small fraction of the available vector
space is effectively used.
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A Plot of Random Noise Index

Figure 1 shows a two-dimensional plot of the 6980
development queries in the MS MARCO passage
dataset, together with the 7433 passages that are
marked as relevant and 7433 representations for
randomly generated strings (using lowercase char-
acters and space with a random length between 20
and 150 characters). The representation for the ran-
dom strings are concentrated, but we still observe a
significant overlap with the region for queries and
relevant documents. This explains why random
strings are retrieved for certain queries (Table 3).
We use the dense model that was trained with hard
negatives with 768 dimensions. UMAP (McInnes
et al., 2018) is used for dimensionality reduction to
2 dimensions.
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Figure 1: Plot of queries (blue), the relevant document (green) and representations from randomly generated strings
(red). Dimensionality reduction via UMAP (McInnes et al., 2018). Model with hard negatives, 768 dimensions.
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Abstract

Cross-lingual text classification aims at train-
ing a classifier on the source language and
transferring the knowledge to target languages,
which is very useful for low-resource lan-
guages. Recent multilingual pretrained lan-
guage models (mPLM) achieve impressive re-
sults in cross-lingual classification tasks, but
rarely consider factors beyond semantic sim-
ilarity, causing performance degradation be-
tween some language pairs. In this paper
we propose a simple yet effective method to
incorporate heterogeneous information within
and across languages for cross-lingual text
classification using graph convolutional net-
works (GCN). In particular, we construct a het-
erogeneous graph by treating documents and
words as nodes, and linking nodes with dif-
ferent relations, which include part-of-speech
roles, semantic similarity, and document trans-
lations. Extensive experiments show that
our graph-based method significantly outper-
forms state-of-the-art models on all tasks, and
also achieves consistent performance gain over
baselines in low-resource settings where exter-
nal tools like translators are unavailable.

1 Introduction

The success of recent deep learning based models
on text classification relies on the availability of
massive labeled data (Conneau et al., 2017; Tian
et al., 2020; Guo et al., 2020). However, labeled
data are usually unavailable for many languages,
and hence researchers have developed the setting
where a classifier is only trained using a resource-
rich language and applied to target languages with-
out annotated data (Xu et al., 2016; Chen and Qian,
2019; Fei and Li, 2020). The biggest challenge is
to bridge the semantic and syntactic gap between

∗The first two authors contribute equally to this work.
†This work is done during Xuan Liu’s internship at Ten-

cent.

languages. Most existing methods explore the se-
mantic similarity among languages, and learn a
language-agnostic representation for documents
from different languages (Chen et al., 2018; Zhang
et al., 2020a). This includes recent state-of-the-art
multilingual pretrained language models (mPLM)
(Devlin et al., 2019; Conneau and Lample, 2019),
which pretrain transformer-based neural networks
on large-scale multilingual corpora. The mPLM
methods show superior cross-lingual transfer abil-
ity in many tasks (Wu and Dredze, 2019). How-
ever, they do not explicitly consider syntactic dis-
crepancy between languages, which may lead to
degraded generalization performance on target lan-
guages (Ahmad et al., 2019; Hu et al., 2020).

On the other hand, there usually exists sufficient
unlabeled target-language documents that come
naturally with rich information about the language
and the task. However, only a handful of previous
researches have taken advantage of the unlabeled
data (Wan, 2009; Dong and de Melo, 2019).

To integrate both semantic and syntactic infor-
mation within and across languages, we propose
a graph-based framework named Cross-Lingual
Heterogeneous GCN (CLHG). Following the work
of TextGCN (Yao et al., 2019), we represent all
the documents and words as graph nodes, and add
different types of information into the graph. We
utilize mPLM to calculate the representation of all
the nodes, and connect documents nodes with se-
mantically similar ones to extract the knowledge
in mPLM. Words are connected with documents
based on the co-occurrences as in previous works.
However, we choose to separate different word-doc
edges by part-of-speech (POS) tags of words to
inject some shallow syntactic information into the
graph, as POS taggers are one of the most widely
accessible NLP tools, especially for low-resource
languages. In-domain unlabeled documents are
added to the graph if available. To further absorb
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I loved this book. The 
pacing was perfect.
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me. The author tells a
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Ich habe dieses buch geliebt. 
Das Tempo war perfekt.

habe

buch

perfekt

love perfect

book
attract

Translate subgraph

Similar subgraph

ADJ subgraph

Hidden layer FC layer

Graph Convolutional NetworkCross-Lingual Hetero-Graph

Prediction Ground-truth

Source 
Document

Target 
Document

Labeled 
Document

Source 
Word

Target 
Word

NOUN subgraphencode

loss

Similarity Edge

Translation Edge

NOUN Edge

ADJ Edge

VERB Edge

…

Figure 1: Illustration of our Cross-Lingual Heterogeneous GCN (CLHG) framework. For simplicity, only some
POS tags are plotted in this graph. We recommend to view this figure in color as we use different colors to indicate
different languages and edge types.

in-domain language alignment knowledge, we uti-
lize machine translation to create translated text
nodes. The text classification task is then formal-
ized as node classification in the graph and solved
with a heterogeneous version of Graph Convolu-
tional Networks (Kipf and Welling, 2017). Our
contributions are summarized as follows:

(1) We propose a graph-based framework to eas-
ily comprise heterogeneous information for cross-
lingual text classification, and design multiple types
of edges to integrate all these information. To the
best of our knowledge, this is the first study to
use heterogeneous graph neural networks for cross-
lingual classification tasks. (2) We conduct ex-
tensive experiments on 15 tasks from 3 different
datasets involving 6 language pairs. Results show
that our model consistently outperforms state-of-
the-art methods on all tasks without any external
tool, and achieves further improvements with the
help of part-of-speech tags and translations.

2 Related Works

Traditional methods for cross-lingual classification
usually translate the texts (Wan, 2009) or the clas-
sifier model (Xu et al., 2016) with external aligned
resources such as bilingual dictionaries (Andrade
et al., 2015; Shi et al., 2010) or parallel corpora
(Duh et al., 2011; Zhou et al., 2016; Xu and Yang,
2017). Recent works focus on learning a shared rep-
resentation for documents of different languages,
including bilingual word embeddings (Zou et al.,
2013; Ziser and Reichart, 2018; Chen et al., 2018),
common subword representations (Zhang et al.,
2020a), and multilingual pretrained language mod-
els (mPLM) (Devlin et al., 2019; Conneau and Lam-

ple, 2019; Clark et al., 2020).
In the past few years, graph neural networks

(GNN) have attracted wide attention, and become
increasingly popular in text classification (Yao
et al., 2019; Hu et al., 2019; Ding et al., 2020;
Zhang et al., 2020b). These existing work mainly
focus on monolingual text classification, except a
recent work (Li et al., 2020) using meta-learning
and graph neural network for cross-lingual senti-
ment classification, which nevertheless only uses
GNN as a tool for meta-learning.

3 Method

In this section, we will introduce our CLHG frame-
work, including how to construct the graph and
how to solve cross-lingual text classification using
heterogeneous GCN. In general, we first construct
a cross-lingual heterogeneous graph based on the
corpus and selected features, and next we encode
all the texts with multilingual pre-trained language
models, then we pass the encoded nodes to the het-
erogeneous GCN, each layer of which performs
graph convolution on different subgraphs separated
by different edge types, and aggregates the infor-
mation together. Finally, the graph neural network
outputs the predictions of doc nodes, which will
be compared with groundtruth labels during train-
ing. Figure 1 shows the overall structure of the
framework.

3.1 Graph Construction

Inspired by some previous works on GNN-based
text classification (Yao et al., 2019; Hu et al., 2019),
we construct the graph by representing both docu-
ments and words from the corpus in both languages
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as graph nodes, and augment the corpus by includ-
ing unlabeled in-domain documents from the target
language. To extract more information of language
alignments, we further use a publicly available ma-
chine translation API1 to translate the documents
in both directions. Then two categories of edges
are defined in the graph.

Doc-word Edges. Like TextGCN (Yao et al.,
2019), documents and words are connected by
their co-occurrences. To inject syntactic informa-
tion more than just co-occurrences, we add part-of-
speech (POS) tags to the edges, since different POS
roles have different importance in the classification
tasks. Adjectives and adverbs are mostly decisive
in sentiment classification, while nouns may play a
more significant role in news classification. There-
fore, we use POS taggers to tag each sentence and
create different types of edges based on the POS
roles of the words in the document, which could
help GNN to learn different propagation patterns
for each POS role.

Doc-doc Edges. To add more direct connections
between documents, we include two types of docu-
ment level edges. Firstly, we link each document
with similar ones by finding K documents with the
largest cosine similarity. The embeddings of the
documents are calculated using mPLM. Secondly,
we connect nodes created by machine translation
with their original texts.

3.2 Heterogeneous Graph Convolution
After building the heterogeneous cross-lingual
graph, we first encode all the nodes using mPLM
by directly inputting the text to the mPLM and tak-
ing the hidden states of the first token. The encoded
node features are fixed during training. Next we
apply heterogeneous graph convolutional network
(Hetero-GCN) (Hu et al., 2019) on the graph to
calculate higher-order representations of each node
with aggregated information.

Heterogeneous GCN applies traditional GCN on
different sub-graphs separated by different types
of edges and aggregates information to an implicit
common space.

H(l+1) = σ(
∑

τ∈T
Ãτ ·H(l)

τ ·W (l)
τ ) (1)

where Ãτ is a submatrix of the symmetric normal-
ized adjacency matrix that only contains edges with

1https://cloud.tencent.com/document/
api/551/15619

type τ ,H(l)
τ is the feature matrix of the neighboring

nodes with type τ of each node, and W (l)
τ is a train-

able parameter. σ(·) denotes a non-linear activation
function, which we use leaky ReLU. Initially, H(0)

τ

is the node feature calculated by mPLM.
Empirically, we use two graph convolution lay-

ers to aggregate information within second-order
neighbors. Then a linear transformation is applied
to the document nodes to get the predictions.

4 Experiments

We evaluate our framework on three different clas-
sification tasks, including Amazon Review senti-
ment classification (Prettenhofer and Stein, 2010),
news category classification from XGLUE (Liang
et al., 2020), and intent classification on a multilin-
gual spoken language understanding (SLU) dataset
(Schuster et al., 2019). More details of each dataset
is provided in the appendix. For all the tasks, we
use only the English samples for training and eval-
uate on other 6 languages, which are German (DE),
French (FR), Russian (RU), Spanish (ES), Japanese
(JA), and Thai (TH).

4.1 Experiment Setting

In all our experiments, we use two-layer GCN
with hidden size 512 and output size 768. Each
document is connected with 3 most similar doc-
uments. The model is trained using the AdamW
optimizer (Loshchilov and Hutter, 2019) with a
learning rate of 2× 10−5 and batch size 256. We
train the GCN for at most 15 epochs and evalu-
ate the model with best performance on validation
set. XLM-RoBERTa (Conneau et al., 2020) is used
to encode all the documents and words, which is
finetuned on the English training set of each task
for 2 epochs with batch size 32 and learning rate
4 × 10−5. We set the max length as 128 for in-
tent classification, and 512 for the other two tasks.
Each experiment is repeated 3 times and the aver-
age accuracy is reported. All the experiments are
conducted on an NVIDIA V100 GPU 2.

For part-of-speech tagging, we adopt different
taggers for each language 3 and map all the tags to

2Our codes are available at https://github.com/
TencentGameMate/gnn_cross_lingual.

3We choose Stanford POS Tagger (Toutanova et al., 2003)
for EN, Spacy (https://spacy.io) for DE, FR and ES,
MeCab (https://taku910.github.io/mecab/) for
JA, tltk (https://pypi.org/project/tltk/) for
TH, and nltk (https://www.nltk.org) for RU.
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Method
EN→ DE EN→ FR EN→ JA

books dvd music avg books dvd music avg books dvd music avg

CLDFA 83.95 83.14 79.02 82.04 83.37 82.56 83.31 83.08 77.36 80.52 76.46 78.11
MVEC 88.41 87.32 89.97 88.61 89.08 88.28 88.50 88.62 79.15 77.15 79.70 78.67
mBERT 84.35 82.85 93.85 83.68 84.55 85.85 83.65 84.68 73.35 74.80 76.10 74.75
XLM 86.85 84.20 85.90 85.65 88.10 86.95 86.20 87.08 80.95 79.20 78.02 79.39
XLM-R 91.65 87.60 90.97 90.07 89.33 90.07 89.15 89.52 85.26 86.77 86.95 86.33
CLHG 92.70* 88.60* 91.62* 90.97* 90.67* 91.38* 90.45* 90.83* 87.21* 87.33* 88.08* 87.54*

Table 1: Sentiment classification accuracy (%) on Amazon Review dataset. * shows the result is significantly better
than XLM-R baseline with p-value ≤ 0.05.

Method DE FR ES RU

mBERT 82.6 78.0 81.6 79.0
XLM-R 84.5 78.2 83.2 79.4
Unicoder 84.2 78.5 83.5 79.7
XLM-R (ours) 83.99 78.66 83.27 80.42
CLHG 85.00+ 79.58* 84.80* 80.91+

Table 2: Classification accuracy (%) on XGLUE News
Classification. We re-run the XLM-R model and also
report our reproduced results. * shows the result is
significantly better than XLM-R baseline with p-value
≤ 0.05, and + indicates p-value ≤ 0.1.

Method EN→ ES EN→ TH

CoSDA ML+mBERT 94.80 76.80
CoSDA ML+XLM 90.30 86.70
mBERT 74.91 42.97
XLM 62.30 31.60
XLM-R 94.38 85.17
CLHG 96.81* 89.71*

Table 3: Intent classification accuracy (%) on multilin-
gual SLU dataset. * shows the result is significantly
better than XLM-R baseline with p-value ≤ 0.05.

Universal Dependency (UD) tagset 4.

4.2 Baselines

Our method is compared with different multilingual
pretrained models finetuned for each task, which
include multilingual BERT (Devlin et al., 2019),
XLM (Conneau and Lample, 2019) and XLM-
RoBERTa (Conneau et al., 2020), and also with
published state-of-the-art results on each dataset.

Amazon Review. CLDFA (Xu and Yang, 2017)
utilizes model distillation and parallel corpus to
transform a model from source to target language.
MVEC (Fei and Li, 2020) refines the shared la-
tent space of mPLM with unsupervised machine
translation and a language discriminator.

4https://universaldependencies.org

XGLUE News Classification. Unicoder (Huang
et al., 2019) is another mPLM proposed recently,
and is used as the baseline method provided along-
side XGLUE benchmark.

Multilingual SLU. CoSDA-ML (Qin et al.,
2020) is a data augmentation framework that au-
tomatically generates code-switching documents
using a bilingual dictionary, which is used when
finetuning language models on downstream tasks.

4.3 Results and Analysis

The results are provided in table 1 2 and 3 for
each dataset. Our method significantly outperforms
state-of-the-art baselines and achieves consistent
improvements over XLM-R model. The most per-
formance gain is achieved on the multilingual SLU
dataset. Different from the other two, this dataset
consists of short texts, and thus the created graph is
much cleaner and more suitable for GCN to model.

To verify that the improvement does not come
barely from the external data, we conduct another
experiment that adds the translated data to the train-
ing set and finetunes the baseline XLM-R model on
Amazon Review dataset. The results showed very
slight improvement (0.09% on average), showing
that XLM-R cannot directly benefit from external
training data.

Ablation studies are performed on Amazon Re-
view dataset to analyze the effectiveness of differ-
ent graph structures. From the results provided in
table 4, variant 1 containing a homogeneous graph
with only word-doc edges (same as TextGCN) per-
forms the worst, while adding more information
leads to better performance in general. Comparing
variants 4-7, similarity demonstrates to be the most
important among all added information. Similar-
ity edges help the model to converge faster and
learn better as well, since they provide a “short-
cut” between documents that is highly likely to be
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XLM-R 1 2 3 4 5 6 7 full model

word-doc X X X X X X X
POS tags X X X X
translation edges X X X X X
similarity edges X X X X X X
unlabeled X X X X X X
EN→ DE 90.01 87.60 90.60 90.75 90.77 90.67 89.90 91.26 90.97
EN→ FR 89.52 90.62 89.95 90.65 90.70 90.37 89.82 90.85 90.92
EN→ JA 86.61 86.26 87.19 87.31 87.35 87.44 87.18 86.57 87.54

Table 4: Ablation study results. The left-most column shows the results of finetuned XLM-R, and others each
indicates a variant in graph construction. We conduct experiments on the Amazon Review dataset and report the
average accuracy across three domains.

in the same category. Variant 7 shows that unla-
beled corpus play an important role in EN→JA set-
ting, but less effective when transferring between
similar languages, since unlabeled data inevitably
contain some noise and do not provide much help
for linguistically-closer languages. Variant 4 also
shows that POS tags are more helpful for distant
language pairs like EN→JA, and our added exper-
iment on EN→TH shows greater impact of POS
tags (89.71→88.06 when removing POS tags). Ad-
ditionally, we test a variant without any external
tool that requires training resources in the target
language. Variant 3 does not rely on POS tag-
ger or translation service, and still outperforms
the XLM-R baseline with a large margin. This
demonstrates that our method can be adopted for
real low-resource languages without good tagger
or translator.

5 Conclusion

In this study, we propose a novel graph-based
method termed CLHG to capture various kinds of
information within and across languages for cross-
lingual text classification. Extensive experiments il-
lustrate that our framework effectively extracts and
integrates heterogeneous information among multi-
lingual corpus, and these heterogeneous relations
can enhance existing models and are instrumental
in cross-lingual tasks. There may exist some better
semantic or syntactic features and combinations
of features, which we leave as a future work to
explore. We also wish to extend our GNN-based
framework to different NLP tasks requiring knowl-
edge transfer and adaptation in the future.
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A Datasets

Here we introduce the three datasets we use in our
experiments. A summary of the statistics for three
datasets are provided in table 5.

Amazon Review 5 This is a multilingual senti-
ment classification dataset covering 4 languages
(English, German, French, Japanese) on three do-
mains (Books, DVD, and Music). The original
dataset contains ratings of 5-point scale. Follow-
ing previous works (Xu and Yang, 2017; Fei and
Li, 2020), we convert the ratings to binary labels
with threshold at 3 points. Since English is not
used for testing, we follow the previous works and
re-construct the training and validation set by com-
bining the English training and test set. The new
training set contains 3,200 randomly sampled doc-
uments. We use the training set of target languages
for validation. This dataset also provides large
amount of unlabeled data for each language, which
is used in our framework.

XGLUE News Classification 6 This is a sub-
task of a recently released cross-lingual benchmark
named XGLUE. This subtask aims at classifying
the category of a news article, which covers 10 cat-
egories in 5 languages, including English, Spanish,
French, German and Russian. This dataset does
not contain unlabeled data for target languages, so
we do not add unlabeled documents in our graph
either.

Multilingual SLU 7 This dataset contains short
task-oriented utterances in English, Spanish and
Thai across weather, alarm and reminder domains.
We evaluate our framework on the intent classifica-
tion subtask, which has 12 intent types in total. For
each target language, we use the original training
set as unlabeled data added in the graph.

B Hyperparameter Search

We perform a grid search to pick the best combi-
nation of hyperparameters. The hidden size and
output size are chosen among {384, 512, 768},
and the learning rate within {1× 10−5, 2× 10−5,
5 × 10−5, 1 × 10−4}. For the XLM-R baseline,
we also tune the learning rate within {2 × 10−5,
4× 10−5, 5× 10−5} and number of epochs from

5https://webis.de/data/webis-cls-10.
html

6https://microsoft.github.io/XGLUE/
7https://fb.me/multilingual_task_

oriented_data

2 to 5. Among all the combination of hyperparam-
eters, we pick the values with the best performance
on the German training set from Books domain of
Amazon Review dataset, and use the same set of
hyperparameters for all our experiments. The max-
imum length of XLM-R model is chosen based on
statistics of the datasets.
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dataset #category language #train #valid #test #unlabeled avg. length

Amazon Review (Books) 2

English 2,000 / 2,000 50,000 168.31
German 2,000 / 2,000 165,457 151.27
French 2,000 / 2,000 32,868 123.84
Japanese 2,000 / 2,000 169,756 155.05

Amazon Review (Dvd) 2

English 2,000 / 2,000 30,000 167.31
German 2,000 / 2,000 91,506 158.58
French 2,000 / 2,000 9,356 138.89
Japanese 2,000 / 2,000 68,324 150.87

Amazon Review (Music) 2

English 2,000 / 2,000 25,220 146.18
German 2,000 / 2,000 60,382 143.50
French 2,000 / 2,000 15,940 142.21
Japanese 2,000 / 2,000 55,887 131.62

XGLUE NC 10

English 100,000 10,000 10,000 / 553.65
German / 10,000 10,000 / 484.69
French / 10,000 10,000 / 567.86
Spanish / 10,000 10,000 / 533.09
Russian / 10,000 10,000 / 426.80

Multilingual SLU 12
English 30,521 4,181 8,621 / 8.05
Spanish 3,617 1,983 3,043 / 8.74
Thai 2,156 1,235 1,692 / 5.12

Table 5: Summary statistics of the datasets. The average length shows the average number of words in each
document.
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Abstract

Question answering (QA) in English has been
widely explored, but multilingual datasets are
relatively new, with several methods attempt-
ing to bridge the gap between high- and low-
resourced languages using data augmentation
through translation and cross-lingual transfer.
In this project, we take a step back and study
which approaches allow us to take the most
advantage of existing resources in order to pro-
duce QA systems in many languages. Specif-
ically, we perform extensive analysis to mea-
sure the efficacy of few-shot approaches aug-
mented with automatic translations and per-
mutations of context-question-answer pairs.
In addition, we make suggestions for future
dataset development efforts that make better
use of a fixed annotation budget, with a goal
of increasing the language coverage of QA
datasets and systems.1

1 Introduction

Automatic question answering (QA) systems are
showing increasing promise that they can fulfil
the information needs of everyday users, via in-
formation seeking interactions with virtual assis-
tants. The research community, having realized the
obvious needs and potential positive impact, has
produced several datasets on information seeking
QA. The effort initially focused solely on English,
with datasets like WikiQA (Yang et al., 2015),
MS MARCO (Nguyen et al., 2016), SQuAD (Ra-
jpurkar et al., 2016), QuAC (Choi et al., 2018),
CoQA (Reddy et al., 2019), and Natural Questions
(NQ) (Kwiatkowski et al., 2019), among others.
More recently, heading calls for linguistic and ty-
pological diversity in natural language processing

1Code and data for reproducing our experiments are avail-
able here: https://github.com/NavidRajabi/
EMQA.

*Equal contribution.

research (Joshi et al., 2020), larger efforts have pro-
duced datasets in multiple languages, such as TyDi
QA (Clark et al., 2020), XQuAD (Artetxe et al.,
2020), or MLQA (Lewis et al., 2020).

Despite these efforts, the linguistic and typo-
logical coverage of question answering datasets
is far behind the world’s diversity. For exam-
ple, while TyDi QA includes 11 languages –less
than 0.2% of the world’s approximately 6,500 lan-
guages (Hammarström, 2015)– from 9 language
families, its typological diversity is 0.41, evaluated
in a [0,1] range with the measure defined by Ponti
et al. (2020); MLQA provides data in 7 languages
from 4 families, for a typological diversity of 0.32.
The total population coverage of TyDi QA, based
on population estimates from Glottolog (Nordhoff
and Hammarström, 2012), is less than 20% of the
world’s population (the TyDiQA languages total
around 1.45 billion speakers).

Obviously, the ideal solution to this issue would
be to collect enough data in every language. Un-
fortunately, this ideal seems unattainable at the
moment. In this work, we perform extensive anal-
ysis to investigate the next-best solution: using the
existing resources, large multilingual pre-trained
models, data augmentation, and cross-lingual learn-
ing to improve performance with just a few or no
training examples. Specifically:

• we study how much worse a multilingual few-
shot training setting would perform compared
to training on large training datasets,

• we show how data augmentation through
translation can reduce the performance gap
for few-shot setting, and

• we study the effect of different fixed-budget
allocation for training data creation across lan-
guages, making suggestions for future dataset
creators.
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2 Problem Description and Settings

We focus on the task of simplified minimal answer
span selection over a gold passage: The inputs to
the model include the full text of an article (the pas-
sage or context) and the text of a question (query).
The goal is to return the start and end byte indices
of the minimal span that completely answers the
question.

Our models follow the current state-of-the-art
in extractive question answering, relying on large
multilingually pre-trained language models (in our
case, multilingual BERT (Devlin et al., 2019)) and
the task-tuning strategy of Alberti et al. (2019),
which outperforms approaches like Documen-
tQA (Clark and Gardner, 2018) or decomposable
attention (Parikh et al., 2016). In all cases, we treat
the official TyDi QA development set as our test
set, since the official test set is not public.2 We pro-
vide concrete details (model cards, hyperparmeters,
etc) on our model and training/finetuning regime
in Appendix A.

To simulate the scenario of data-scarce adapta-
tion of such a model to unseen languages, we will
treat the TyDi QA languages as our test, unseen
ones. We will assume that we have access to (a)
other QA datasets in more resource-rich languages
(in particular, the SQuAD dataset which provides
training data in English), and (b) translation models
between the languages of existing datasets (again,
English) and our target “unseen” languages.

In the experiments sections, we first focus on
few- and zero-shot experiments (§3) and then
study the effects of language selection and budget-
restricted decisions on training data creation (§4).

Evaluation We report F1 score on the test set of
each language, as well as a macro-average exclud-
ing English (avgL). In addition, to measure the
expected impact on actual systems’ users, we fol-
low Faisal et al. (2021) in computing a population-
weighted macro-average (avgpop) based on lan-
guage community populations provided by Eth-
nologue (Eberhard et al., 2019).

3 Is Few-Shot a Viable Solution?

We first set out to explore the effect of the amount
of available data on downstream performance.
Starting with baselines relying solely on English-
only SQuAD, we implement a few-shot setting for

2This follows the guidelines to perform analyses over the
development set to ensure the integrity of the leaderboard.

fine-tuning on the target languages of TyDi QA.3

To our knowledge, this is the first study of its type
on the TyDi QA benchmark.

The straightforward baseline simply provides
zero-shot results on TyDi QA after training only
on English. Table 1 provides our (improved) repro-
duction of the baseline experiments of Clark et al.
(2020). The skyline results (bottom of Table 1) re-
flect the presumably best possible results under our
current modeling approach, which trains jointly on
all languages using all available TyDi QA train-
ing data. We note that for most languages the gap
between the baseline and the skyline is more than
20 percentage points, with the exception of En-
glish where –unsurprisingly– there is a difference
of only 3.3 percentage points. The performance
gap is smallest for Russian (rus) at 10.9 percentage
points, and largest for Telugu (tel) at 34 points.

We first study a monolingual few-shot setting.
That is, we fine-tune the model trained on the En-
glish SQuAD dataset, with only a small amount
of data (10, 20, or 50 training instances) in the
test language. Due to space limitations, we only
present results with 50 examples per language in
Table 1, but the full experiments are available in
Appendix C. We observe that even just 50 addi-
tional training instances are enough for significant
improvements, which are consistent across all lan-
guages. For example, the improvement in Finnish
(fin) exceeds 15 percentage points and covers about
more than 60% of the performance gap between
the baseline and the skyline.

We now turn to a multilingual few-shot setting.
Exactly as before, we assume a scenario where
we only have access to a small amount of data
in each language, but now we fine-tune using that
small amount of data in all languages. For example,
10 training instances in each language result in
training with 90 training examples over the 9 test
languages. A sample of our experimental results
are presented in Table 1 under “multilingual few-
shot,” with complete results in Appendix C.

Simply adding 50 instances from each language
we obtain an F1 score of 67.9 over the zero-shot
baseline, an improvement of almost 7 percentage
points which reduces the zero-full gap by 43.4%.

3We do not report results on Korean, due to a late-
discovered issue: we found that parts of the Korean data
use a Unicode normalization scheme different than what is
expected by mBERT’s vocabulary. We suspect this is respon-
sible for our Korean results being consistently around 50%
worse than previously published results.
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Results (F1-score) avgL avgpop
Model eng ara ben fin ind swa rus tel (without eng)

Baseline: SQuAD zero-shot
(reproduction) 74.2 59.0 57.3 55.7 63.2 60.3 65.6 44.6 58.0±6.3 59.3

Monolingual Few-Shot (+50) 73.9 64.9 66.4 70.9 73.3 70.1 66.3 62.5 67.8±3.5 67.1

Multilingual Few-Shot
(+10/lang, 90 total) 73.7 64.6 62.9 66.5 67.0 63.1 65.9 59.6 64.2±2.4 64.4
(+50/lang, 450 total) 73.4 69.2 65.8 69.0 73.4 68.8 67.2 66.2 68.5±2.4 68.6
(+100/lang, 900 total) 74.2 72.5 70.9 71.9 75.5 72.3 69.3 69.3 71.7±2.0 71.9
(+500/lang, 4500 total) 76.1 76.3 74.5 78.2 81.4 79.2 73.3 73.7 76.7±2.8 76.2

Data Augmentation + Multilingual Few-Shot
+tSQuAD 74.9 65.4 58.4 66.7 65.2 69.4 60.2 44.7 61.4±7.7 61.2
+mSQuAD 75.1 65.6 68.6 71.7 70.3 66.2 75.5 49.4 66.7±7.7 67.6
+mSQuAD +500/lang 77.6 78.7 75.0 78.5 83.5 82.5 73.2 75.3 78.1±3.6 77.6
+tSQuAD +500/lang 77.9 78.8 80.0 79.5 82.8 83.6 72.5 73.5 78.7±3.9 78.6

Skyline: Full training on TyDi QA train
(reproduction) 77.5 82.4 78.9 80.1 85.4 83.8 76.5 78.3 80.8±3.0 80.9

Table 1: Data augmentation combined with multilingual few-shot learning can reach about 98% of the skyline
accuracy using only 10 times less training data on the test languages beyond English.

We note that the total 450 training instances rep-
resent less than 1% of the full TyDi QA training
set! Doubling that amount of data to 100 exam-
ples per language further increases downstream
performance to an average overall F1 score of 71.7.
Going further to the point of adding 500 training in-
stances per language (for a total of 4500 examples)
leads to even larger improvements for an average
F1 score of 76.7. That is, using less than 10% of
the available training data we can reduce the aver-
age F1 score performance gap by more than 82%.
For a few languages the gap reduction is even more
notable, e.g., more than 92% for Finnish.

Data Augmentation through Translation Gen-
erating translations of English dataset to train
systems in other languages has a long history
and has been successful in the QA context as
well (Yarowsky et al., 2001; Xue et al., 2020, inter
alia). We follow the same approach, translating all
SQuAD paragraphs, questions, and answers to all
TyDi QA languages using Google Translate.4 For
each language, we keep between 20-50% of the
question-answer pairs where the translated answer
has an exact match in the translated paragraph,

4We release the data to facilitate the reproduction of our
experiments.

which becomes the target span.5 Details of the re-
sulting dataset (which we refer to as tSQuAD) are
in Table 3 in Appendix B. A second approach trans-
lates the question of a training instance into one
language, but keeps the answer and context into the
original language. The result is a modified train-
ing set (which we name mSQuAD) that requires
better cross-lingual modeling, as the question and
contexts are in different languages.

Both approaches improve over the zero-shot
baseline with F1 score of 61.4 (+3) and 66.7 (+8).
Notably, though, they are not as effective as few-
shot training even with just 50 instances per lan-
guages. This further strengthens the discussion
of Clark et al. (2020) on the qualitative differences
between the SQuAD and TyDi QA dataset. Never-
theless, combining tSQuAD (or mSQuAD) with a
few examples from the TyDi QA dataset leads to
our best-performing methods. In particular, aug-
mentation through translation leads to an 1-2 per-
centage point improvements over the multilingual
few-shot approach (cf. 76.7 to 78.1/78.7 F1 score
in Table 1; full results in Appendix C). Now, using
only 500 new training examples per language we
are almost (98%) at similar performance levels as
the skyline.

5This approach could be enhanced using word/phrase
alignment techniques, which we leave for future work.
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Results (F1-score) Overall ∆l avg
eng ara ben fin ind swa rus tel (w/o eng) (max-min) seen unseen

Baseline: no budget for additional data (zero-shot except for eng)
74.2 59.0 57.3 55.7 63.2 60.3 65.6 44.6 58.0±6.3 29.6 74.2 58.0

Monolingual budget allocation (max 4500 per language; 7 experiments)
76.0±1.8 74.0±3.9 69.1±5.0 75.8±2.7 78.4±4.1 71.7±4.1 75.7±6.3 61.3±12.3 72.3±5.3 17.1 77.1 71.3

Tri-lingual budget allocation (1500 per language; 7 random language selection experiments)
76.7±1.2 77.2±2.8 68.6±4.8 77.9±1.6 80.9±3.3 81.5±3.3 72.7±2.3 62.9±13.3 74.5±6.3 18.6 78.9 68.5

Uniform budget allocation (500 per language)
77.9 78.8 80.0 79.5 82.8 83.6 72.5 73.5 78.7±3.9 11.1 78.6 –

Ideal Few-Shot (4500 in each language; in-language results)
78.4 81.8 77.7 79.7 83.9 84.0 75.7 78.2 79.9±3.0 8.3 79.9 -

Table 2: A more egalitarian budget allocation leads to better and more equitable performance across languages
(avg±std: higher average, lower std. deviation) reducing the gap (∆l) between best and worst performing languages.

4 How to Spend the Annotation Budget?

In the previous section we show that the combina-
tion of data augmentation techniques with a few
new annotations can reach almost 98% of the per-
formance one would obtain by training on 10x
more data. In this section we explore how one
should allocate a fixed annotation budget, in order
to achieve not only higher average but also more
equitable performance across languages.

Keeping our budget fixed to 4500 instances, we
study 3 scenarios. The first is monolingual allo-
cation, where the whole budget is consumed by
collecting training examples on a single language.
We repeat the study over all 8 languages of our test
set, randomly sampling training instances from
the TyDi QA training set. Second, we study a
tri-lingual budget allocation scheme, where we
equally split the budget across 3 languages for 1500
training instances per language. We repeat this ex-
periment 7 times, each time randomly selecting 3
languages. Last, the third and more egalitarian
scenario splits the budget equally across all 8 lan-
guages, matching our previously analyzed few-shot
scenario where we only have 500 additional train-
ing examples per language. In all experiments, we
use our best-performing approach from the previ-
ous section, also utilizing tSQuAD for pre-training.

Our findings are summarized in Table 2. For the
repeated monolingual and tri-lingual scenarios we
report average performance across our experiment
repetitions (full results in Appendix E). We can
conclusively claim that a uniform budget alloca-
tion leads to not only better average performance,
but also to more equitable performance. We report
two straightforward measures for the equitability
of the average accuracy across languages. First,

we report the standard deviation of the accuracy
across languages; the lower the standard deviation,
the more equitable the performance. We also re-
port the difference between the best and the worst
performing language for each experiment, as well
as the averages for the languages that are seen and
unseen during fine-tuning.

Having no budget for additional annotation (es-
sentially, attempting the task in zero-shot fashion)
leads to the most inequitable performance. The
monolingual scenario typically leads to the highest
accuracy when evaluating on the same language
as the new training examples (the ideal section of
Table 2) but the zero-shot performance on all other
languages is generally significantly worse, leading
to inequity. The tri-lingual scenarios follow similar
patterns, with performance close to state-of-the-
art for the four languages (three plus English) that
have been included in the fine-tuning process, but
with the rest of the languages lagging behind: the
difference between seen and unseen languages is
on average 10.4 points. In our experiments we
randomly sampled (without replacement) three of
the seven languages, but one could potentially use
heuristics or a meta-model like that of Xia et al.
(2020) to find or suggest the best subset of candi-
date languages for transfer learning; we leave such
an investigation for future work.

Encouragingly, the uniform budget allocation
scenario leads to higher average performance,
while also reducing the gap between worst and
best performing languages from around 30 percent-
age points to less than 12 points (60% reduction).
Note that a 8x larger budget (ideal scenario) with
4500 instances per language would further improve
downstream accuracy and equitability. Note that
in this case where some resources are available,
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simple multilingual fine-tuning might not be the
best approach for some languages, e.g. compared
to monolingual fine-tuning or meta-learning ap-
proaches (Wang et al., 2020; Muller et al., 2021,
inter alia). We leave an investigation of such set-
tings for future work.

5 Discussion

We show that data augmentation through transla-
tion along with few-shot fine-tuning on new lan-
guages with a uniform budget allocation leads to
a performance close to 98% of an approach using
10x more data, while producing more equitable
models than other budget-constrained alternatives.

The implications of our findings become clear
with a counter-factual exploration. The Gold Pas-
sage portion of the TyDi QA dataset includes
around 87,000 annotated examples (50k for train-
ing across 9 languages and about 37k development
and test samples). Consider the scenario where,
given this annotation budget, we maintain the same
evaluation standards collecting 4k development
and test examples per language, but we only col-
lect 500 training examples per language. In that
case, we could have created a much more diverse
resource that would include at least 19 languages!
Now consider the expectation of the downstream
accuracy in our counterfactual scenario: uniform
budget allocation on 19 languages would lead to an
average accuracy (F1 score) of around 78% (sim-
ilar to our experiments). Instead, under the (cur-
rently factual) scenario where we only have train-
ing data for 9 languages, the average accuracy for
these 9 languages is around 80%, but the zero-shot
expected average on the other 10 languages is 10
points worse – in that case, the overall average ac-
curacy would be around 74%, 4 points lower than
that of the egalitarian allocation scenario. Hence,
as long as the ideal scenario of collecting a lot
of data for a lot of languages remains infeasible,
we suggest that the community puts an additional
focus on the linguistic diversity of our evaluation
sets and use other techniques to address the lack of
training data.
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A Experimental Settings

For the experiments, we’ve used
“bert-multi-lingual-base-uncased”
(mBERT) (Hugging Face - mBERT, 2020) as
mentioned as the main baseline on TyDi QA
paper (Clark et al., 2020). It is a pre-trained
model on the top 102 languages with the largest
Wikipedia using a masked language modeling
(MLM) objective (Devlin et al., 2019). From
preliminary experiments, we realized that the
optimum trade-off between the highest F1 score
and the least computational cost is achieved by
training for 3 epochs, using batch size of 24, and
learning rate of 3e-5. Therefore, we applied these
hyperparameter settings for our experiments. The
main script we used was a module under the
Huggingface library (Wolf et al., 2020) (called
run squad), which is being used widely for
fine-tuning transformers for multi-lingual question
answering datasets.

B SQuAD Translation Details

We augmented the English SQuAD with trans-
lated SQuAD (tSQuAD) instances for each lan-
guage. Here, the contexts, questions and an-
swers from SQuAD instances are translated to
the target languages using Google Translate (with
the google-trans-new API) and only the in-
stances where an exact match of translated answer
is found in the translated context, are kept for aug-
mentation. The total number of instances per lan-
guage, we ended up with after translation is listed
in Table 3.

C Complete Few-Shot Experiments

Provided in Table 4.

D Mix-and-Match Experiments

Provided in Table 5.

E Budget Allocation Experiments

The complete results for our experiments are pre-
sented in Table 6.
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SQuAD tAr tBn tFin tInd tKo tRus tSwa tTel

no of paragraphs 18.9 16.6 13.5 12.4 16.2 11.2 11.6 15.3 16.6

no of QAs 87.6 39.1 24.1 21.4 36.1 18.1 19.2 31.2 39.7

Table 3: Number (in 1000s) of paragraphs and QA pairs present in the original SQuAD and translated SQuAD

Results (F1-score) Overall
Model eng ara ben fin ind swa rus tel (without eng)

Baseline: SQuAD zero-shot
(Clark et al., 2020) 73.4 60.3 57.3 56.2 60.8 52.9 64.4 49.3 57.3±4.7
(ours) 74.2 59.0 57.3 55.7 63.2 60.3 65.6 44.6 58.0±6.3

Monolingual Few-Shot (+10) 73.7 64.7 62.8 68.2 69.3 59.9 65.6 50.7 63.0±5.8
Monolingual Few-Shot (+20) 74.7 63.5 60.5 66.6 72.1 63.9 66.8 63.0 65.2±3.4
Monolingual Few-Shot (+50) 73.9 64.9 66.4 70.9 73.3 70.1 66.3 62.5 67.8±3.5

Multilingual Few-Shot
(+10/lang, 90 total) 73.7 64.6 62.9 66.5 67.0 63.1 65.9 59.6 64.2±2.4
(+20/lang, 180 total) 73.9 65.9 66.8 69.0 72.5 64.2 66.9 63.7 67.0±2.8
(+50/lang, 450 total) 73.4 69.2 65.8 69.0 73.4 68.8 67.2 66.2 68.5±2.4
(+100/lang, 900 total) 74.2 72.5 70.9 71.9 75.5 72.3 69.3 69.3 71.7±2.0
(+200/lang, 1800 total) 73.9 74.8 70.5 74.1 77.7 76.4 69.8 70.0 73.3±3.0
(+500/lang, 4500 total) 76.1 76.3 74.5 78.2 81.4 79.2 73.3 73.7 76.7±2.8

Data Augmentation + Multilingual Few-Shot
+tSQuAD(50/lang) 73.8 64.0 62.4 68.4 69.7 59.7 66.8 48.1 62.7±6.8
+tSQuAD(100/lang) 72.4 62.2 66.6 68.4 68.6 64.9 67.1 47.5 63.6±6.9
+tSQuAD(200/lang) 74.4 62.7 64.2 68.8 70.7 66.1 66.2 48.3 63.9±6.8
+tSQuAD(500/lang) 73.7 63.2 69.5 67.9 70.9 69.8 66.7 49.1 65.3±7.0
+tSQuAD(all) 74.9 65.4 58.4 66.7 65.2 69.4 60.2 44.7 61.4±7.7
+mSQuAD +500/lang 77.6 78.7 75.0 78.5 83.5 82.5 73.2 75.3 78.1±3.6
+tSQuAD +500/lang (mBERT) 77.9 78.8 80.0 79.5 82.8 83.6 72.5 73.5 78.7±3.9
+tSQuAD +500/lang (XLM-R)∗ 73.2 72.8 78.3 78.5 84.7 80.3 75.0 78.1 78.2±3.5

Skyline: Full training on TyDi QA train
(Clark et al., 2020) 76.8 81.7 75.4 79.4 84.8 81.9 76.2 83.3 80.4±3.3
(ours) 77.5 82.4 78.9 80.1 85.4 83.8 76.5 78.3 80.8±3.0

Table 4: Complete few-shot and data augmentation results. ∗: Results with XLM-Roberta-Large (Conneau et al.,
2020) are generally worse than using mBERT so all other experiments use mBERT.

Change language of Question only Change all; Context & answers the same

Modified
Squad

Squad +
Modified
Squad

Squad +
Modified
Squad +
500
instances

Modified
Squad

Squad +
Modified
Squad

Squad +
Modified
Squad +
500
instances

English 66.59 75.06 77.56 65.40 73.49 78.21
Arabic 62.17 65.62 78.70 60.51 65.98 77.96
Bengali 67.33 68.55 75.00 58.60 62.44 76.16
Finnish 67.42 71.67 78.55 62.98 67.58 79.51
Indonesian 66.45 70.33 83.46 61.89 66.44 84.10
Kiswahili 70.32 75.48 82.51 62.66 68.55 80.01
Russian 64.71 66.16 73.16 61.01 65.64 73.28
Telugu 48.32 49.36 75.28 43.62 51.81 74.95

Avg 63.82 66.74 78.09 58.76 64.07 78.00
SD 6.74 7.75 3.60 6.33 5.31 3.35

Table 5: Mix-and-Match scheme detailed results.
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Results (F1-score) Overall Avg
eng ara ben fin ind swa rus tel (w/o eng) seen unseen

Baseline: no budget for additional data (zero-shot excelt in eng)
74.2 59.0 57.3 55.7 63.2 60.3 65.6 44.6 60.0±8.5 74.2 58.0

Monolingual budget allocation (max 4500 per language; 7 experiments)
Arabic 78.4 81.8 62.0 77.6 79.2 72.8 68.0 50.5 70.2±10.3 80.1 68.4
Bengali 74.4 66.3 77.7 71.6 72.8 78.1 66.5 52.0 69.3±8.3 76.1 67.9
Finnish 77.9 75.5 72.6 79.7 81.0 70.6 78.5 52.2 72.9±9.1 78.8 71.7

Indonesian 76.8 76.7 67.4 77.0 83.9 70.2 77.3 52.2 72.1±9.5 80.4 70.1
Kiswahili 76.4 72.5 67.1 75.0 77.4 66.4 84.0 75.0 73.9±5.6 71.4 75.2
Russian 75.2 74.5 66.7 76.3 81.0 75.7 78.8 69.4 74.6±4.7 77.0 73.9
Telugu 73.4 70.6 70.2 73.6 73.7 68.1 77.1 78.2 73.1±3.4 75.8 72.2

76.0±1.8 74.0±3.9 69.1±5.0 75.8±2.7 78.4±4.1 71.7±4.1 75.7±6.3 61.3±12.3 72.3±5.3 77.1 71.3

Tri-lingual budget allocation (1500 per language; 7 random language selection experiments)
ben-rus-tel 75.8 72.2 79.0 75.6 74.8 77.1 74.5 76.8 75.7±2.0 76.5 74.9
tel-ind-swa 76.1 75.7 65.5 76.7 83.2 84.7 71.2 77.2 76.3±6.1 80.3 72.3
fin-rus-swa 78.5 76.4 66.3 79.6 80.3 84.8 74.9 53.4 73.7±9.8 79.5 69.1
ara-rus-tel 75.7 79.3 66.8 78.0 79.2 79.9 74.3 77.0 76.4±4.3 76.6 60.8
ara-rus-fin 76.5 80.5 68.9 79.2 80.6 77.5 74.3 53.6 73.5±9.0 77.6 70.2
swa-ind-fin 76.1 77.2 68.5 79.7 84.2 83.0 71.2 51.5 73.6±10.5 80.8 67.1
ara-ind-swa 78.3 79.5 65.4 76.8 83.9 83.5 68.9 50.6 72.7±11.1 81.3 65.4

76.7±1.2 77.2±2.8 68.6±4.8 77.9±1.6 80.9±3.3 81.5±3.3 72.7±2.3 62.9±13.3 74.5±6.3 78.9 68.5

Uniform budget allocation (500 per language)
77.9 78.8 80.0 79.5 82.8 83.6 72.5 73.5 78.7±3.9 78.6 -

Table 6: Complete budget allocation experiments.
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Abstract

We propose an effective context-sensitive neu-
ral model for the task of time to event (TTE)
prediction, which aims to predict the amount
of time to/from the occurrence of given events
in streaming content. We investigate this prob-
lem in the context of a multi-task learning
framework, which we enrich with time differ-
ence embeddings. To conduct this research,
we develop a multi-genre dataset of English
events about soccer competitions and academy
awards ceremonies, as well as their relevant
tweets obtained from Twitter. Our model is
1.4 and 3.3 hours more accurate than the cur-
rent state-of-the-art model in estimating TTE
on English and Dutch tweets respectively. We
examine different aspects of our model to illus-
trate its source of improvement.1

1 Introduction

The task of time to event (TTE) prediction aims to
determine the amount of time to/from the occur-
rence of a well-defined event. Accurate prediction
of this information is important for temporal tasks
such as timeline generation (Reimers et al., 2018),
news summarization (Born et al., 2020; Huang
et al., 2016), and disease onset prediction in medi-
cal domain (Zeliger, 2016; Langbehn et al., 2004).

Current approaches mainly focus on news arti-
cles and expect at least one temporal expressions
in each input data to predict TTE (Chambers et al.,
2014; Reimers et al., 2016, 2018; Hürriyetoǧlu
et al., 2018; Zhou et al., 2020). These approaches
cannot be readily applied to streaming content
(such as Twitter data) because such data often do
not carry any temporal expressions. Figure 1 show

∗First and second authors equally contributed to this work.
1Our code and data are available at https://github.

com/hajipoor/time2event

Looking forward to the clash 
between liverpool and arsenal 
...Must be fun to watch

Well done the Gunners 
it's always nice to start 
with a win #LIVARS

Liverpool vs Arsenal 

+8 hours -2 hours

time

2017-08-27 16:00

2017-08-27 8:00 2017-08-27 18:00

Figure 1: Examples of tweets that don’t carry any ex-
plicit time expression but indicate a future or past event
due to the implicit temporal connotation in “looking for-
ward to,” “must be fun to watch,” “well done” etc.

two examples of such tweets.2 In addition, event-
related content in data streams are heavily skewed
in time distribution as they are often posted in close
proximity of their corresponding events.

The above challenges and intuitions inspire our
work to develop a context-sensitive model to pre-
dict TTE in streaming content. Our approach is
a multi-task learning framework that uses a small
fraction of temporally-rich neighbors of each input
(tweet) and their time differences (learned through
time difference embeddings) to predict (a): if the
tweet has been posted before, at the same time or
after the event, and (b): estimate the absolute value
of TTE (in hours) with respect to the tweet. We
learn time difference embeddings through an ef-
fective character-level sequence to sequence model
that takes as input two timestamps and predicts the
temporal difference between them (in hours).

The contributions of this paper are as follows:
(a) an effective multi-task and context-sensitive
framework that uses temporally-rich context and
time difference embeddings to accurately predict
TTE in streaming content, (b) publicizing a time
to event dataset that includes different genres of

2In fact, 89% of event-related tweets in our dataset do not
carry any time expression.
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(a) TTE Model (b) diff Model

Figure 2: (a) TTE model gives the target tweet and a temporally-rich context tweet, and their time difference
embedding learned through diff model as input and learns TTE as a combination of regression (TTE value) and
classification (TTE sign) tasks. It establishes a common scale between corresponding loss values for effective
training and (b) diff model gives two times and learns time difference embeddings via sequence to sequence
model, which are used in our TTE model.

events (soccer competitions and academy awards
ceremonies), their time of occurrence, their relevant
tweets as well as TTE information for each tweet.

Our framework is 1.4 and 3.3 hours more ac-
curate than the current state-of-the-art model in
estimating TTE on large-scale English and Dutch
tweets respectively. In addition, our time difference
model achieves an accuracy of 98.3% in terms of
creating embeddings that encode temporal differ-
ences between given time pairs.

2 Context-sensitive Model

Existing models often assume input data carry ex-
plicit temporal information about target events. Al-
though informative, these information may not be
available in most textual content, especially in mi-
croblogs. We propose to utilize context information
(in the form of neighboring tweets) and the relative
temporal differences against neighbours to estimate
time to event (TTE) for given input texts.

In particular, given a tweet about an event, we
propose a multi-task learning framework to predict
the absolute value of TTE (in hours) for the tweet,
as well as a binary sign which determines if the
tweet has been posted before ‘(+),’ or at the same
time or after ‘(-)’ the event. Figure 2(a) shows our
model for predicting TTE for the target tweet ti,
given its context tweet3, e.g. a previously posted
tweet about the same event, tj , j < i, and their
time difference embeddings, which encode the time
differences between tweet creation times. Our in-
tuition for developing such embeddings is that if

3Neighboring or context tweets are randomly sampled
from the set of previously posted tweets relevant to the target
event. Our model can be extended to greater context sizes.

context tweets carry useful temporal information
about events, then knowing the time differences
among tweets could help the model to make more
accurate prediction of TTE for the target tweet.

Our model takes as input the concatenation of
attention-weighted average embeddings of the tar-
get and context tweets (a and a� in Figure 2) and
their time difference embedding (d) (see section
2.1). The resulting concatenation are then used
to predict TTE sign and TTE value for the target
input. TTE value is a regression task while TTE
sign is a binary classification task. To prevent the
loss with larger gradient magnitudes dominate the
training, we establish a common scale for the dif-
ferent loss magnitudes across the two tasks using
the approach proposed in (Kendall et al., 2018),
which simultaneously learns classification and re-
gression losses of varying quantities and combines
them using homoscedastic uncertainty.

2.1 Time Difference Embeddings

Motivated by recent research on neural numer-
acy learning (Chen et al., 2019; Wallace et al.,
2019), we learn time difference embeddings–diff
embeddings–as follows: we develop an LSTM-
based character-level sequence to sequence model
(based on the model presented in (Sutskever et al.,
2014)) that takes as input a time pair (t and t�) and
predicts the difference between them (in hours).
The final layer of the model is of size five, where
five is determined by the maximum number of dig-
its in the differences of any two timestamps within
a 2 years period (i.e., 17520 hours). The final hid-
den representations of the resulting digits are then
concatenated to obtain the diff embeddings, see
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Figure 2(b).

3 Experiments

3.1 Datasets

We develop a dataset from tweets about soccer com-
petitions of the England Premier League (EPL) fol-
lowing the same approach in (Hurriyetoglu et al.,
2014; Hürriyetoǧlu et al., 2018). We carefully cre-
ate a list of 42 distinctive hashtags for competi-
tions between seven most famous teams 4. These
matches have the advantage that users tweet about
them with distinctive hashtags by convention. We
collect tweets that are sent within 14 days of match
days between seven popular teams, and obtain the
actual time of each event from the EPL schedule.5

For the regression task, the tweet label would
be the absolute value of the actual time (in hours)
to the start of the corresponding event. For the
classification task, tweets are labeled as ‘before’ or
‘after’ depending on their time of creation against
corresponding matches. Our dataset is randomly di-
vided into 80%, 10% and 10% according to events,
which are used for training, testing and validation
respectively. To study the effect of temporally-rich
context in a controlled situation, we divide our
dataset of tweets (All set) into two disjoint subsets:
tweets that carry at least one temporal expression
(T set), and tweets that have no temporal expres-
sion (N set), where we use HeidelTime’s colloquial
temporal tagger (Strötgen and Gertz, 2012, 2013)
to extract temporal expressions. We then introduce
six new subsets of our data in X-Y format, where
X ∈ {T set, N set, All set} refers to the type of
target tweets and Y ∈{T set, N set} refers to the
type of contexts.

To investigate the generalizability of our model
on other events, we evaluate our trained model
on tweets about the 2018 Academy Awards cere-
mony. We collected 3K tweets using #oscars,
#oscar and #academyawards hashtags in the
window of 7 days before and after the date of Os-
cars 2018. We also use the Dutch dataset to com-
pare our model against the baseline model proposed
in (Hurriyetoglu et al., 2014) that developed a hy-
brid of machine learning and rule-based approach
for estimating time to events.

4Liverpool, Manchester United, Chelsea, Arsenal, Manch-
ester City, Newcastle United and Tottenham Hotspur

5https://www.premierleague.com/

3.2 Settings and Baselines

The hyperparameters of all models are optimized
on validation data using random search (Bergstra
and Bengio, 2012). We consider TenseModel
(see below), Glove, BERT, Event Time Extrac-
tion (ETE) (Reimers et al., 2018), and Hybrid-
Model (Hürriyetoǧlu et al., 2018) as baselines.
TenseModel uses the tense of the outermost verb
of a tweet to detect whether it is posted before (+)
or after the target event (-). Embedding models
are used to represent input tweets and extended to
address the time to event task in their last layer.
The GLOVE baseline is the model with GLOVE
pre-trained embeddings but without context. This
baseline has only the attention-weighted average
embedding of the target tweet. For BERT baseline,
we fine-tuned base version of BERT by adding a lin-
ear layer on top for time to event value prediction.
ETE uses sentence representation as well as event
and position embeddings with a CNN to tackle the
target task. They reported a high performance of
84.2% for event status classification on a balanced
dataset of news articles. HybridModel is a hybrid
of rule-based and data-driven methods focusing on
Dutch tweets that carry temporal expressions.

4 Results

4.1 Time to Event Prediction

We compare our context-sensitive model with con-
text size of k ∈ {0, 1, 2, 3} against baseline sys-
tems. Mean and Median are heuristic baselines and
indicate the mean and median of MAEs of TTE
values (i.e., 27.87 and 13.91 respectively). As re-
ported in Table 1, the TenseModel has considerably
low performance in distinguishing temporal status
of tweets against event times. We attribute this
result to the informal language in user-generated
content and multi-verb tweets which can challenge
the tense model. BERT embeddings slightly im-
proves the performance of other embedding mod-
els. However, BERT and ETE’s performance are
considerably lower than the performance of our
model achieved by adding context information
(k ≥ 1). This result indicates that adding neigh-
bouring tweets leads to more accurate prediction
of TTE than incorporating better word embeddings.
Our model achieves an MAE of 6.43 hours on All-T
set and 4.24 on T-T set (see Table 1). We also com-
pare our model against the Hybrid Model on the
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(a) Effect of context size on MAE
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(b) Accurately-predicted neighbours
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(c) Farther vs. closer to event instances

Figure 3: (a): Greater context size leads to better estimation of TTE. (b): More accurately-predicted neighbours
lead to more accurate estimation of TTE. (c): Context information better help farther to event target instances.

TTE sign TTE value

Model P R F1 MAE (hours)

Trained and evaluated on the EPL dataset

Mean - - - 27.87
Median - - - 13.91
TenseModel 0.23 0.37 0.28 -
GLOVE (Pennington et al., 2014) 0.73 0.66 0.69 8.43
BERT (Devlin et al., 2019) 0.68 0.79 0.73 7.71
ETE (Reimers et al., 2018) 0.88 0.59 0.70 7.86
Our model (k = 0) 0.61 0.52 0.56 9.34
Our model (k = 1) 0.73 0.77 0.74 7.31
Our model (k = 2) 0.81 0.87 0.83 6.98
Our model (k = 3) 0.92 0.83 0.87 6.43

Trained on EPL and evaluated on the Oscars dataset

BERT 0.46 0.48 0.47 14.2
Our model (k = 0) 0.38 0.49 0.43 14.76
Our model (k = 1) 0.51 0.57 0.54 13.43
Our model (k = 2) 0.55 0.60 0.57 13.37
Our model (k = 3) 0.58 0.64 0.61 13.18

Table 1: Model performance in terms of macro preci-
sion, recall and F1 for sign classification (TTE sign),
and Mean Absolute Error (MAE) for TTE prediction
(TTE value) on EPL and Oscars datasets.

Dutch dataset (see Section 3.1).6 Using the Dutch
embeddings of (Tulkens et al., 2016), our model
achieves an MAE of 4.7 hours based on leave-one-
out cross validation, while the corresponding value
for the Hybrid Model is 8 hours. Evaluation results
on Oscars dataset reveals that the model learns how
to utilize information of neighbouring tweets and
time differences. The lower performance on the
Oscar dataset is due to differences in training (EPL)
and test (Oscar) data distributions.

Can context information help? To investigate
the effect of adding context, we start with a stand-
alone base model that predicts the time to event
by just relying on its own content, i.e, k = 0. Fig-
ure 3(a) illustrates that the performance is higher

6Note only 71% of 138k tweets are returned by the Twitter
API, the rest were deleted or made private by their users.

for tweets that contain at least one time expres-
sion (T set) compared to All set. Accordingly, as
we gradually add more context tweets, the perfor-
mance consistently increases with greater improve-
ment with the T set as context. The best preforming
model is achieved by adding context of size 3 from
T set, leading to the lowest time to event estimation
error of 4.24 hours.

We also note that context tweets that do not con-
tain any temporal expression (the N set) slightly
increase the performance; see the dashed lines in
Figure 3(a). We conjecture that these tweets add
lexical clues that carry implicit temporal informa-
tion about events. In addition, Figure 3(b) shows
a strong correlation between the average error in
model prediction performance on context and target
tweets. This result shows that neighboring tweets
that are more accurately learned by the network are
better candidates to use as context for other tweets.

Does context information lead to more accurate
estimation of time expressions? To answer this
question, we compute the average time to event
for each time expression from both training tweets
and predictions for test tweets as H(TIMEXi) =
1
N

�
tj∈S,TIMEXi∈tj

TTEtj where S ∈ {train, test},
TTEtj indicates time to event for tweet tj , and N
is normalization factor; for training data we use
gold values and for test data we use predicted val-
ues. Figure 4(a) shows the baseline and estimated
values for a range of time expressions. The results
show that the value of time expressions are better
estimated by adding context. Give that the most fre-
quent time expressions often refer to points in time
close to the event (such as now) (Hurriyetoglu et al.,
2014), our model improves rare time expressions
more than the frequent ones, leading to improved
prediction of farthest tweets from events.
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(a) Estimation of time expressions
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(b) Time difference embeddings

Figure 4: (a): Estimation of some selected time expressions. (b): Time differences in the embedding space. Each
sample point shows the embedding of time difference between two randomly selected times t1 and t2. This figure
shows that if t1 − t2 ≈ t

�
1 − t

�
2, their diff embeddings are closer in the time difference space.

4.2 Time Difference Embeddings

We generate a synthetic dataset of 2m time pairs
to evaluate the time difference approach in terms
of accurate prediction of time differences between
given time pairs, where possible predictions range
between 0 to 17520 hours, which corresponds to
a maximum difference of two years. Evaluation
on 200k number of test time pairs shows that the
model achieves 98.3% accuracy. In addition, Fig-
ure 4(b) shows t-SNE representation of time dif-
ferences in the embedding space for different ran-
domly selected time pairs. Data points with the
same color shows the diff embeddings of the same
time differences. The result shows for two random
times (t1, t2) and (t

�
1, t

�
2), if t1− t2 ≈ t

�
1− t

�
2, their

diff embeddings are very close in the time differ-
ence embedding space, indicating the high quality
of the resulting space. In addition, Table 2 shows
time difference embeddings are useful for TTE es-
timation since removing them increases the MAE
of our full model by a significant amount of 0.8
hours.

4.3 Early prediction

Given that early prediction of TTE is more valuable
and challenging (due to scarcity of data at earlier
times and often imprecise temporal information in
earlier tweets), we investigate the performance of
our model on target tweets that were posted much
earlier than the occurrences of their corresponding
events. The results in Figure 3(c) shows that con-
text tweets help farther-to-event instances better
than closer ones. This result provides insights for
future research on the task of early TTE prediction.

Configuration MAE (absolute increase)

Full System 6.43
Random diff embeddings 6.64 (+0.21)
No diff embeddings 7.23 (+0.80)
No TTE sign 6.71 (+0.28)

Table 2: Ablation analysis showing changes in Mean
Absolute Error (MAE) obtained from removing individ-
ual components of the model.

5 Conclusion and Future Work

We developed a context-sensitive neural model that
used rich-neighbouring tweets as well as time dif-
ference embeddings between target tweets and their
neighbors for effective prediction of time to event.
We evaluated our and current models on events and
tweets of different genres (soccer competitions and
academy award ceremonies) and languages (En-
glish and Dutch). Future works include expansion
to temporal tasks that particularly focus on early
prediction of time to events. In addition, it’s worth
investigating if user or social network information
could be helpful for better time to event prediction.

Acknowledgments

We sincerely thank anonymous reviewers for their
insightful comments. In addition, this research
was completed during the spread of the COVID-19
virus, while the world was in quarantine fearing the
epidemic. We would like to dedicate this work to
all researchers who contributed to the discovery of
the COVID-19 vaccine.

634



Broader Impact Statement

Our research affects applications that deal with
time, and time difference can be an effective feature
for them. For example, our work enables automatic
creation of calendar of events, which helps keep-
ing individuals informed about potential relevant
events. It also help researchers to benchmark their
models using our dataset.

In addition, the process of collecting our dataset
followed the Twitter policy7. We crawled data us-
ing the Twitter API and we did not make any at-
tempt to identify any information that have not
been volunteered by our user base (e.g., gender,
race, wealth, etc.,). We also will just publish the
Tweet IDs.
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Abstract
Compositional generalization is the ability to
generalize systematically to a new data distri-
bution by combining known components. Al-
though humans seem to have a great ability
to generalize compositionally, state-of-the-art
neural models struggle to do so. In this work,
we study compositional generalization in clas-
sification tasks and present two main contribu-
tions. First, we study ways to convert a natu-
ral language sequence-to-sequence dataset to a
classification dataset that also requires compo-
sitional generalization. Second, we show that
providing structural hints (specifically, provid-
ing parse trees and entity links as attention
masks for a Transformer model) helps compo-
sitional generalization.

1 Introduction

Compositional generalization is the ability of a
system to systematically generalize to a new data
distribution by combining known components or
primitives. For example, assume a system has
learned the meaning of “jump” and that “jump
twice” means that the action “jump” has to be re-
peated two times. Upon learning the meaning of
the action “jax”, it should be able to infer what
“jax twice” means. Although modern neural archi-
tectures are pushing the state of the art in many
complex natural language tasks, these models still
struggle with compositional generalization (Hup-
kes et al., 2020).

In order to advance research in this important
direction, in this paper we present two main con-
tributions 1. First, we present a binary classifica-
tion dataset which is hard in a compositional way.
This allows for studying the compositional gener-
alization ability of a larger range of models than
sequence generation tasks, since the task only re-
quires an encoder, and not a decoder. Specifically,
1 http://goo.gle/compositional-classification

we present a methodology to convert an existing se-
mantic parsing dataset, CFQ (Keysers et al., 2019),
into a binary classification dataset that is also com-
positionally hard.

Our second and main contribution is showing
that a transformer-based model can better gener-
alize compositionally if we provide hints on the
structure of the input. Specifically, we do so by
modifying the attention mask used by the model.
This is an interesting result, as (except for two addi-
tions, which we elaborate on in Section 4) attention
masks do not “add” any attention capabilities to
the model. Instead, it seems that it is the removal
of certain attention pairs that makes the difference.
This suggests that vanilla Transformer is having a
hard time suppressing non-compositional attention.

2 Background

This section overviews existing work on composi-
tional generalization and then some background on
the Transformer models used in this paper. Please
see Section B in the appendix for detailed review.

Compositional Generalization. Composi-
tional generalization can manifest in different
ways (Hupkes et al., 2020) such as systematicity
(recombination of known parts and rules) or produc-
tivity (extrapolation to longer sequences than those
seen during training), among others. Early work
focused on showing how different deep learning
models do not generalize compositionally (Liška
et al., 2018), and datasets such as SCAN (Lake and
Baroni, 2018) or CFQ (Keysers et al., 2019) were
proposed to show these effects.

Work toward improving compositional gener-
alization has proposed ideas such as Syntactic
attention (Russin et al., 2019), increased pre-
training (Furrer et al., 2020), data augmenta-
tion (Andreas, 2019), or general purpose sequential
models such as Neural Turing Machines or Differ-

637



ential Neural Computers (Graves et al., 2016).
ETC. For our experimental evaluation we use

the ETC (Ainslie et al., 2020) Transformer model.
ETC extends the standard Transformer model in 3
key ways: (1) it uses a global-local attention mech-
anism to scale to long inputs, (2) it uses relative
attention (Shaw et al., 2018) and flexible masking
and (3) it uses a new pre-training loss based on
Contrastive Predictive Coding (CPC) (Oord et al.,
2018). The last two extensions allow it to handle
structured inputs containing, for example, hierar-
chical structure. In this work, we rely on (2) to
annotate the structure of the input.

3 The CFQ Classification Dataset

The Compositional Freebase Questions (CFQ)
dataset (Keysers et al., 2019) is an NLU dataset to
measure the compositional capability of a learner.
It is designed around the task of translating a natu-
ral language question into a SPARQL query. The
dataset has been automatically generated by a gram-
mar and contains 239,357 sentence/query pairs. An
example is shown in Figure 3a.

As shown in the original work of Keysers et al.
(2019) in order to properly measure the composi-
tional generalization ability of a model, the train
and test sets should be split with similar distribu-
tions of tokens (atoms), but different distributions
of their compositions (the compounds). In the CFQ
dataset, to ensure this, two divergences, namely
atom divergence and compound divergence, be-
tween the train and dev/test set are measured while
constructing the splits. As a result, carefully se-
lected splits called maximum compound divergence
(MCD) splits are hard for standard neural networks
(they perform well in the train set, but poorly in the
test set), while the random splits are easier.

We convert the CFQ dataset into a dataset with
a binary classification task. In this new dataset, the
input is a question and a SPARQL query, and the
task is to determine whether these two sequences
have the same meaning or not. Two considera-
tions must be made to ensure the resulting dataset
requires compositional generalization:

Negative Example Strategies: Positive in-
stances of the binary classification task can be
obtained directly from the original dataset, but to
obtain negatives, we use either of two strategies:

• Random negatives: We pair each question
with a randomly chosen query.

• Model negatives: Using baseline models
(LSTM (Hochreiter and Schmidhuber, 1997),
Transformer (Vaswani et al., 2017), and Uni-
versal Transformer (Dehghani et al., 2018))
trained on the original CFQ dataset, we get
top-k query predictions for each question. Af-
ter filtering syntactically invalid queries and
duplicates, we can get hard examples for clas-
sification from their incorrect predictions.

Model negatives are important, as otherwise, the
task becomes too easy and would likely not require
compositional generalization. See Figure 1 for ex-
amples of random/model negative instances.

Compound Distribution of Negative Examples:
To prevent data leakage (e.g., compounds from the
test set of the original CFQ dataset leaking into
the training set of the classification CFQ dataset),
we carefully choose the sampling set for random
negatives and the train and inference set for model
negatives. We generate two splits of the original
CFQ dataset. Each split contains three sets with
50% data on train, 25% on dev and 25% on test.
The first is a random split of the data, and the sec-
ond (MCD split), maximizes the compound diver-
gence between train and dev/test using the same
method as in the original CFQ work. Then, we
process the examples in each of these sets gen-
erating positive and negative examples. For ran-
dom negatives, we sample negative queries for each
questions from the set which the original example
belongs to (train/dev/test). For model negatives, to
generate negatives for the training set, we divide
it into two halves, train models in one, and gener-
ate negatives with the other half. For dev/test, we
train on dev and generate negatives on test, and
vice versa. Figure 2 illustrates this procedure, de-
signed to ensure there is no leakage of compounds
between train and dev/test.

For both strategies, we make 1 positive and 3
negatives per original CFQ example. Also, we set
aside 5% of the train set as a hold-out set to check
i.i.d. generalization.

4 Compositional Generalization via
Structure Annotation

Our hypothesis is that part of the difficulty in com-
positional generalization is to parse the structure
of the input. To test this, we evaluate the perfor-
mance of models when we provide annotations
for two structural elements of the inputs: parse
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Figure 1: Examples of the CFQ classification dataset. Each query pairs with the question to form an instance. Note
the model negative resembles the positive, while the random negative query differs considerably.

Figure 2: Negative example strategies. Different colors
indicate different compound distributions.

trees of both the natural language sentences and
SPARQL queries, and entity cross links (linking en-
tity mentions from the natural language side to the
corresponding mentions in the SPARQL query).

The parse trees of the questions are already given
in the original CFQ dataset as constituency-based
parse trees. Since the trees include intermediate
nodes indicating syntactic structures, we append to-
kens representing them at the end of each question.
We created a simple parser to generate dependency-
based parse trees for the SPARQL queries. We join
the roots of the two trees to make a single global
tree with the <CLS> token as the root.

We represent the structure of the inputs by mask-
ing attention (“hard mask”) or with relative atten-
tion (Shaw et al., 2018) labels (“soft mask”).

• Hard mask: We customize the binary attention
mask of the original Transformer to only allow
attention between tokens connected by the
edges of the parse tree.

• Soft mask: For every pair of input tokens, we
assign relative attention labels based on which
of the following edge relationships applies:
parent-to-child, child-to-parent, itself, from-
or-to-root, or entity-cross-link.

Additionally, we allow attention pairs in the

masks connecting the entities appearing both in
the question and the queries. We call these links en-
tity cross links, and they are found by simple string
match (e.g. “M0”). Notice that while relative atten-
tion labels and the additional tokens to represent the
constituency parse tree of the natural language add
capabilities to the model, the “hard mask” structure
annotations described above (which result in the
larger performance gains) do not add any atten-
tion capabilities to the model. Instead, they simply
remove non-structure attention edges. Figure 3b
shows the parse trees, and Figure 3c and 3d show
the masks for an example.

5 Results and Discussion

We used the ETC (Ainslie et al., 2020) Transformer
model implementation as it allows us to provide
the hard and soft masks described above in an easy
way. In all experiments, we report AUC in the dev
set as the evaluation metric (we did not evaluate on
the test set). Please see Section A in the appendix
for training details.

5.1 The CFQ Classification Dataset
We generate two classification datasets: “random
split & random negatives” and “MCD split &
model negatives”, and evaluate LSTM and Trans-
former models. For both datasets, we evaluate AUC
on the hold-out set (taken out of the training set as
described above) to test i.i.d. generalization, and
on the dev set to test compositional generalization.

As shown in Table 1, models easily generalize on
the hold-out set (AUC≥ 0.99). All baseline models
also achieve almost 1.0 AUC in the dev set of the
“random split & random negatives”. However, in
the “MCD split & model negatives” models cannot
generalize well on the dev set, showing composi-
tional generalization is required. Note that random
guessing achieves 0.5 AUC score.
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(a) A CFQ example

(b) Parse trees of the CFQ example (c) Hard mask (d) Soft mask

Figure 3: Structure annotations for a CFQ example. We extract the hierarchical structure of the question and
query of CFQ examples and use them to mask attention (hard mask) and/or provide relative attention labels (soft).
Different colors indicate different relative attention labels.

Model Random Split & Random Neg MCD Split & Model Neg
Train Hold-out Dev Train Hold-out Dev

LSTM 1.0000 0.9998 0.9998 1.0000 0.9972 0.8310
Transformer (2 layers) 0.9998 0.9997 0.9998 0.9988 0.9931 0.8789
Transformer (6 layers) 0.9999 1.0000 0.9999 0.9995 0.9931 0.8738

Table 1: AUC on the CFQ classification dataset generated with different methods

Model Mask
Type

Cross
link

MCD Split & Model Neg
Train Hold-out Dev

LSTM - 1.0000 0.9972 0.8310
Transformer - 0.9995 0.9931 0.8738

Transformer
w/ structure
annotations

(ETC)

No - 0.9994 0.9934 0.8868

Hard
N 0.9999 0.9978 0.9061

Y
1.0000 0.9992 0.9656

Soft 0.9995 0.9936 0.8819
Both 1.0000 0.9991 0.9721

Table 2: AUC on the CFQ classification dataset (MCD
Split & Model Neg) with various structure annotations

5.2 Structure Annotation

Table 2 compares different ablations of our struc-
ture annotation approach compared to the baseline
models. The first (no masks and no cross links)
just shows that adding tokens to the input to repre-
sent the constituency parsing and moving to ETC
only provide small gains (from 0.8738 to 0.8868
AUC). Adding a hard mask already helps the model
(0.9061 AUC), and adding cross links on top of that
achieves very significant gains (0.9656 AUC). Fi-
nally, soft masks by themselves do not seem to help,
but a combination of soft and hard masks achieves
our best result of 0.9721 AUC.

The interesting result here is that adding the hard

mask with entity cross links only removes potential
attention pairs, so it does not increase model ca-
pacity in any way. In other words, the underlying
transformer model is in principle able to generalize
compositionally to some extent but seems to strug-
gle in suppressing non-compositional attention.

6 Conclusions

The main contribution of this paper is to show that
providing structure annotations in the form of at-
tention masks significantly helps Transformer mod-
els generalize compositionally. This is interesting
for two main reasons: first, it shows that neural
network models do have the innate ability to gen-
eralize compositionally to some extent, but need
some guidance to do so (e.g., by providing attention
masks as in our work). This reinforces previous
work showing that LSTMs also can, in principle,
generalize compositionally, but they just do so with
very low probability (Liška et al., 2018). The sec-
ond reason is that structure annotations, which we
provided manually, could be generated by another
model in future work. We also presented a pro-
cedure for generating classification datasets that
require some degree of compositional generaliza-
tion starting from sequence generation datasets.
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A Full Experimental Results

In this section, we report the full results on the CFQ
classification dataset and the structure annotation
experiments. In all configurations, multiple eval-
uation metrics (accuracy, F1 score, and AUC) are
computed by averaging the results of two randomly
initialized experiments. We test each network us-
ing only the val set, not the test set, since the main
purpose of the experiment is to compare the com-
positional generalization ability, not to select best
hyper-parameter. Accuracy and F1 score are com-
puted with the threshold 0.5 of the softmax output
of label 1.

All the experiments of the CFQ classification
datasets were run using the TensorFlow (Abadi
et al., 2016) framework. As we explain in the Sec-
tion 5, we use the ETC Transformer (Ainslie et al.,
2020) code for relative position embeddings. For
the Transformer implementation, we use the code
provided in a Tensorflow tutorial. The training
is run on the n1-highmem-8 instance (52GB
RAM, 8 virtual cpus) of Google Cloud Platform,
extended with NVIDIA Tesla V100 GPUs.

Hyper-parameters used in the training of neural
networks are listed in Table 3. One thing that we
want to clarify is that training steps are required
number of steps to converge and the training did
not last longer than needed. Nevertheless, the ex-
periments with structure annotations required more
training steps than LSTM/Transformer, especially
when the network is using hard mask. We conjec-
ture that training with the hard mask of parse trees
is slow since only a small part of the attention is
not masked and hence propagating the gradient via
supervision at the <CLS> position is slow.

A.1 The CFQ classification Dataset

Table 4 shows the classification results of various
methods of generating classification datasets, in-
cluding one additional configuration (MCD Split &
Random Negatives). The dataset generated by this
new configuration has the train and the dev/test set
that have different compound distributions, because
it is based on the MCD split. However, because of
the method used in generating negative instances
(random negatives), the binary classification of cor-
respondence can be easily generalizable to the dev
set.

Figure 4: Block attention mask for the CFQ classifi-
cation example of Figure 3. The dots at top-right and
bottom-left are from entity cross links.

A.2 Structure Annotation

One possible annotation of the input structure is a
mask to allow tokens of the question and SPARQL
queries to only attend within their segment. We
call this mask as block attention and test it as an
alternative to the hierarchical attention structures
(parse trees). This mask is denser than the attention
mask from parse trees and sparser than “no mask”.
Figure 4 shows the block attention for the examples
shown in the Figure 3.

Table 5 reports the full results of experiments on
structure annotations. In all cases, entity cross links
improve compositional generalization on the dev
set, but provide a significant gain only when com-
bined with the parse tree attention and the attention
is guided by the “hard mask”. As we can see in
the “hard mask” experiments, block attention does
not improve compositional generalization, which
suggests a need for more detailed attention mask
of input structure.

B Related Works on Compositional
Generalization

In this section, we review prior works on improving
compositional generalization in more detail.

Russin et al. (2019) proposed to split the atten-
tion mechanism into two separate parts, syntax and
semantics. The semantic part encodes each token
independent of the context (this is a pure embed-
ding look-up table), and the syntactic part encodes
each token by looking only at its context (without
looking at the token itself). In this way, the syntac-
tic part tries to capture the syntactic role a token
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LSTM Transformer ETC
Hidden layers 2 {2,6} 6
Last dense layers 2 1 1
Hidden Size 512 128 128
Filter size - 2048 512
Number of heads - 16 16
Dropout 0.4 0.1 0.1
Batch size 1024 512 112
Training steps

Random & Random 20k 10k -
MCD & Random 20k 10k -
MCD & Model 30k 20k 200k

Optimizer Adam (0.85, 0.997) Adam (0.9, 0.997) Adam (0.9, 0.997)
Learning rate schedule Constant Inverse sqrt Inverse sqrt
Base learning rate 0.001 0.001 0.001
Warmup steps - 1000 1000
Weight decay 0.0 0.0 0.0

Table 3: Hyper-parameters used in training deep neural networks on the CFQ classification datasets

might play in a sequence. They show improved
compositional generalization on the SCAN dataset
using LSTMs, with respect to using standard atten-
tion. Compared to Russin et al. (2019) that uses
LSTMs for the syntactic part, we use Transformer
architecture to handle the hierarchical structure of
the input.

In their follow up work on the CFQ dataset, Fur-
rer et al. (2020) showed that an increased amount
of pre-training helped Transformer models better
generalize compositionally.

Another idea that has been proposed is to aug-
ment the training data, adding synthetic training
examples to give the model a compositional learn-
ing bias (Andreas, 2019) .

Finally, work also exists on using general-
purpose models like Neural Turing Machines or
Differential Neural Computers (Graves et al., 2016)
that are often trained via reinforcement learning to
solve compositional generalization tasks. These
models learn an “algorithm” that can solve the
task at hand, rather than trying to learn a direct
input/output mapping as the Transformer models
used in most other works do.

C Examples of the CFQ classification
dataset

In Figure 5, we present more examples of the CFQ
classification datasets. In all cases, the random neg-
ative queries substantially differ from the positive
queries, implying that a learner can easily perform

the task. On the other hand, the model negative
queries only differ by a token or a phrase, which
demands a learner’s higher ability.
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Dataset 1: Random Split & Random Negatives

Model Train Train (hold-out) Dev
Acc F1 AUC Acc F1 AUC Acc F1 AUC

LSTM 0.9999 0.9998 1.0000 0.9984 0.9967 0.9998 0.9982 0.9964 0.9998
Transformer (2 layers) 0.9988 0.9976 0.9998 0.9982 0.9964 0.9997 0.9988 0.9975 0.9998
Transformer (6 layers) 0.9992 0.9988 0.9999 0.9989 0.9978 0.9999 0.9990 0.9979 0.9999

Dataset 2: MCD Split & Random Negatives

Model Train Train (hold-out) Dev
Acc F1 AUC Acc F1 AUC Acc F1 AUC

LSTM 0.9999 0.9998 1.0000 0.9982 0.9965 0.9999 0.9546 0.9025 0.9923
Transformer (2 layers) 0.9982 0.9965 1.0000 0.9974 0.9948 0.9999 0.9942 0.9883 0.9996
Transformer (6 layers) 0.9986 0.9972 0.9999 0.9979 0.9958 0.9997 0.9889 0.9775 0.9991

Dataset 3: MCD Split & Model Negatives

Model Train Train (hold-out) Dev
Acc F1 AUC Acc F1 AUC Acc F1 AUC

LSTM 0.9990 0.9979 1.0000 0.9796 0.9604 0.9972 0.8226 0.5199 0.8310
Transformer (2 layers) 0.9817 0.9639 0.9988 0.9592 0.9202 0.9931 0.8359 0.5835 0.8789
Transformer (6 layers) 0.9886 0.9776 0.9995 0.9582 0.9189 0.9931 0.8414 0.6191 0.8738

Table 4: Results of the CFQ classification dataset generated with different CFQ splits and negative example strate-
gies

Model Mask
Type

Parse
Tree

Block
Attn

Cross
link

Train Train (hold-out) Dev
Acc F1 AUC Acc F1 AUC Acc F1 AUC

LSTM - 0.9990 0.9979 1.0000 0.9796 0.9604 0.9972 0.8226 0.5199 0.8310
Transformer - 0.9886 0.9776 0.9995 0.9582 0.9189 0.9931 0.8414 0.6191 0.8738

Transformer
w/ structure
annotations

(ETC)

No - 0.9874 0.9751 0.9994 0.9591 0.9199 0.9934 0.8434 0.6202 0.8868

Hard

Y N N 0.9955 0.9911 0.9999 0.9766 0.9543 0.9978 0.8628 0.6744 0.9061
Y N Y 0.9978 0.9956 1.0000 0.9866 0.9738 0.9992 0.9170 0.8269 0.9656
N Y N 0.9828 0.9659 0.9989 0.9567 0.9152 0.9928 0.8324 0.5874 0.8771
N Y Y 0.9871 0.9746 0.9993 0.9573 0.9171 0.9930 0.8386 0.6048 0.8881

Soft
Y N N 0.9863 0.9728 0.9993 0.9588 0.9197 0.9933 0.8426 0.6017 0.8729
Y N Y 0.9891 0.9784 0.9995 0.9603 0.9226 0.9936 0.8482 0.6385 0.8819

Hard Y N N 0.9940 0.9882 0.9999 0.9743 0.9500 0.9973 0.8615 0.6697 0.9056
+Soft Y N Y 0.9975 0.9949 1.0000 0.9867 0.9739 0.9991 0.9249 0.8473 0.9721

Table 5: Results of the CFQ classification dataset (MCD split & model negatives) with different types of structure
annotations
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(a)

(b)

(c)

(d)

Figure 5: Examples of the CFQ classification dataset. Each query pairs with the question to form an instance. Note
the model negative resembles the positive, while the random negative query differs considerably. In the model
negative queries, the differences from the positive query are marked in bold.
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Abstract

Pre-trained text-to-text transformers such as
BART have achieved impressive performance
across a range of NLP tasks. Recent study fur-
ther shows that they can learn to generalize to
novel tasks, by including task descriptions as
part of the source sequence and training the
model with (source, target) examples. At test
time, these fine-tuned models can make infer-
ences on new tasks using the new task descrip-
tions as part of the input. However, this ap-
proach has potential limitations, as the model
learns to solve individual (source, target) ex-
amples (i.e., at the instance level), instead of
learning to solve tasks by taking all examples
within a task as a whole (i.e., at the task level).
To this end, we introduce HYPTER, a frame-
work that improves text-to-text transformer’s
generalization ability to unseen tasks by train-
ing a hypernetwork to generate task-specific,
light-weight adapters from task descriptions.
Experiments on ZEST dataset and a synthetic
SQuAD dataset demonstrate that HYPTER im-
proves upon fine-tuning baselines. Notably,
when using BART-Large as the main network,
HYPTER brings 11.3% comparative improve-
ment on ZEST dataset.1

1 Introduction

Pre-trained text-to-text models (Raffel et al., 2020;
Lewis et al., 2020) provide a unified formulation
and off-the-shelf weights for a variety of NLP tasks,
such as question answering (Khashabi et al., 2020)
and commonsense reasoning (Bosselut et al., 2019).
In addition to their strong performance, text-to-
text models naturally support generalizing to novel
tasks, by incorporating task description as part of
the source sequence and fine-tuning the model with
(source, target) examples (Weller et al., 2020). At
inference time, the model is required to perform

1Code and data can be found at https://github.com/
INK-USC/hypter.

Description: 

What accessibility services does 

this national park offer?

S: Mammoth Cave 

National Park is pleased 

to offer sign interpreter 

services ...

T: sign 

interpreter 

services

N

M

Description: 
when does

S: squad question: When 

does most of Egypts rain 

fall? squad context: Most 

of Egypt's rain falls in the 

winter months....

T: winter 

months

N

M

Task Task

(a) Zero-shot Learning from Task Description, 

ZEST dataset (Weller et al., 2020)

(b) Synthetic Version of SQuAD, 

(Rajpurkar et al., 2016)

Figure 1: Instead of learning from (source, target) ex-
amples, in this paper we study the problem of learn-
ing from task descriptions (Weller et al., 2020). The
train set contains M tasks, and the i-th task contains
Ni examples of (s, t) pairs in text format. During test
time, the learned model is required to directly make in-
ferences on a new task given a task description.

unseen tasks with the source sequence containing
new task descriptions.

While this initial attempt shows positive results,
there are two potential limitations for the direct fine-
tuning approach. (1) Predictions can be sensitive to
the task descriptions (or “prompts”) that are heuris-
tically designed (Jiang et al., 2020). Paraphrasing
the task description may lead to performance down-
grade. (2) The model still learns from individual
(source, target) examples, instead of learning to
solve tasks at a higher level, by explicitly taking
multiple examples within a task as a whole (see
Fig. 1). Meanwhile, applying existing zero-shot
learning methods that supports task-level learning
to text-to-text transformers is non-trivial. Methods
designed specifically for classification problems,
such as prototypical networks (Snell et al., 2017),
cannot be directly applied to text-to-text models.
Moreover, given the large size of text-to-text mod-
els, generating parameters for a whole model from
the task description (Jin et al., 2020) is infeasible.

In this work, we follow the settings in (Weller
et al., 2020) and aim to improve a model’s gener-
alization ability to unseen tasks by better incorpo-
rating task descriptions and using a task-level train-
ing procedure. We introduce HYPTER, a frame-
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Figure 2: Illustration of HYPTER Framework. Left: A hypernetwork generates parameter φi for
task-specific adapter i that is plugged to transformer layer i in the text-to-text model. Right: The adapted main
network is evaluated on a task (d, D). The final cross entropy loss is back-propagated to update the hypernetwork.

work that employs a hypernetwork (Ha et al., 2017)
to dynamically generate task-specific parameters
(i.e., adapters) from task descriptions. Adapters
(Houlsby et al., 2019) are light-weight modules
that can be inserted into transformer layers for
parameter-efficient adaptation. Such formulation
also effectively enables learning at the task level,
by learning to generate appropriate parameters for
a task, and examine the model’s competence on
each task using multiple examples within that task.
This is in contrast to learning at the instance level,
by learning to generate the correct output for one
specific input sequence.

We apply HYPTER to two datasets: ZEST
(Weller et al., 2020) and a synthetic version of
SQuAD (Rajpurkar et al., 2016). We demonstrate
that HYPTER improves upon direct fine-tuning
baselines. Notably, training with HYPTER achieves
0.45% absolute improvement (11.3% comparative
improvement) in Competence@90 metric on ZEST,
when BART-Large is used as the main network.

2 Problem Definition
We study the problem of learning from task de-
scription (Weller et al., 2020), and aim to improve
models’ competence on unseen tasks at the infer-
ence time. Formally, a task is denoted as a tuple of
(d, D), where d is the natural language description
of the task, and D = {(s1, t1), ..., (sn, tn)} con-
tains (source, target) examples of this task (See Fig.
1). In our text-to-text formulation, both si and ti
are text sequences. At train time, both d and D are
available, while at test time, an unseen description
d is given, and the model is expected to predict the

correct t given input s without further training.
For instance, in the ZEST dataset (Weller et al.,

2020), a train task description can be “Are moun-
tain bikes allowed at this national park?”, while D
contains twenty paragraphs for different national
parks and twenty corresponding answers. During
test time, a novel task may be “Are there fish in this
national park that live in caves?”, and the model is
asked to directly make inferences.

3 Background: Adapters

Our work is built on adapters (Houlsby et al., 2019),
light-weight modules that can be placed into trans-
former layers for parameter-efficient transfer learn-
ing. In the original paper, the main model is frozen
during training, while only layer norm and adapter
parameters are learnable. In this paper, we adopt
a simplified design compared to the original pa-
per (see Fig. 2 (Left)) – In each transformer layer,
exactly one adapter module will be added after
the multi-headed attention. One adapter module
contains two linear layers separated by an non-
linearity activation layer. We use (Wid,bid) to de-
note the down-projection parameters for the adapter
in transformer layer i, and (Wiu,biu) for the up-
projection parameters.

4 Method

Overview. Fig. 2 provides an illustration of our
HYPTER framework. HYPTER has two major parts:
(1) A main network, which is a pre-trained text-to-
text model. We instantiate the main network with
BART-Base/Large (Lewis et al., 2020). (2) A hyper-
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network, which generates adapters to be plugged
into the main network. Fig. 2 (Left) contains a
detailed illustration of how adapter parameters are
generated and how adapter layers are incorporated
into one transformer layer.

Hypernetwork. The hypernetwork consists of
an encoder and multiple decoders. The encoder
maps the task description d to a latent represen-
tation h0, while the decoders use h0 to generate
adapter parameters φ. In our work we instanti-
ated the encoder with a RoBERTa-Base model (Liu
et al., 2019), i.e., h0 = RoBERTa(d). For a text-
to-text model with n transformer layers, the hyper-
network contains n decoders. Decoder i uses h0 as
input, and outputs adapter parameters φi for trans-
former layer i, i.e., hi,1 = ReLU(Wi,1h0 + bi,1),
φi = Wi,2hi,1 + bi,2. Here Wi,1,bi,1,Wi,2,bi,2

are trainable parameters. The generated parameters
φi are sliced and reshaped to become parameters
[Wid,bid,Wiu,biu] used in the adapter i.

Model Training. We adopt a training schedule
where we first train the main network, then train
the hypernetwork while the main network is frozen.
Conceptually, the first stage ensures that the main
network captures the general ability across different
tasks; the second stage allows the hypernetwork
to learn to adapt the main network to a specific
task. During the first stage the text-to-text model
is fine-tuned with all (Concat(d, s), t) examples
in the training set. Here Concat(d, s) means the
concatenation of task description d and input s. The
learned main network from this stage also serves
as the baseline method.

During the second stage, we sample a task (d, D)
from the training set and sample a mini-batch of
(s, t) examples from D. Given a description d, the
hypernetwork generates adapter parameters φi. We
insert the resulting adapter layers into the main
network, and compute the cross entropy loss L of
generating t given input Concat(d, s). The loss is
end-to-end differentiable and is back-propagated to
update the hypernetwork, while the main network
is frozen. See Fig. 2 (Right) for illustration. This
second stage of training effectively enables learn-
ing at the task level. The loss L characterizes the
model’s competence in the task (d, D). Therefore,
by optimizing L, the model is trained to solve tasks.

Model Inference. At test time the model is given
an unseen task description d. The hypernetwork
generates description-dependent adapter parame-

ters, similar to the procedure during training. In
this way, we obtain a model that is capable of mak-
ing inferences for this new task.

5 Experiments

5.1 Experiment Setup

Datasets. We use two datasets that fit our setup.
The first one is Zero-shot Learning from Task De-
scriptions dataset (ZEST, Weller et al. 2020), which
formulates task descriptions as generalized ques-
tions, and provides multiple source-target exam-
ples for each question. The performance is evalu-
ated with a novel metric: “Competence@K”, along
with mean F1 score. Competence@K is the per-
centage of all tasks for which the model achieves
mean F1 score higher than K. For example, Com-
petence@90=5 suggests that 5% of all tasks can be
solved with mean F1 better than 90%. We report
dev set performance, and hidden test set perfor-
mance obtained from ZEST’s official leaderboard.

We construct the second dataset from SQuAD
v1 (Rajpurkar et al., 2016) to simulate the problem
setting in this paper. We refer to this dataset as
Synthetic SQuAD. Specifically, we construct tasks
from the original SQuAD train set according to
“question type”, the bi-gram containing the central
question word (e.g., what, when). For example,
“when does” questions are considered as a task, and
“what country” questions are considered as another
task. These bi-grams are used as “task descrip-
tions”. We select the 100 most frequent question
types in SQuAD train set, and randomly subsam-
ple 64 examples from each type to formulate our
dataset. We then randomly split the 100 types into
80/10/10 for train/dev/test. In addition, we select
examples that fall into the 10 test question types
from Natural Questions (Kwiatkowski et al., 2019)
and NewsQA (Trischler et al., 2017), and use these
as out-of-domain test examples. Performance is
evaluated with mean F1. We include the list of
question types and more details about this dataset
in Appendix A.

Baseline. To demonstrate the efficacy of the
HYPTER framework, we compare it to just its first
half – the main text-to-text transformer model that
we obtain after the first stage of training. This
is identical to the fine-tuning baseline method in
(Weller et al., 2020), and there are no other appli-
cable baselines to the best of our knowledge.
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Model Mean-F1 C@75 C@90

Bart-Base 28.44 (±1.58) 5.76 (±2.10) 0.74 (±0.00)
+ HYPTER 28.96 (±1.15) 6.32 (±2.02)* 1.08 (±0.62)

Bart-Large (reported) 40 13 8
Bart-Large 41.17 (±1.16) 15.74 (±2.16) 7.17 (±1.66)
+ HYPTER 41.65 (±1.34) 16.41 (±2.15)* 7.62 (±1.66)*

Table 1: Performance on ZEST Dev Set. “C@75/90”
refers to Competence@75/90 metric. We report mean
and standard deviation over 7 runs. ∗ indicates statisti-
cal significance in a two-tailed paired t-test (p < 0.05).

Model Mean-F1 C@75 C@90

Bart-Base 31.97 7.03 2.23
+ HYPTER 32.32 6.72 2.53

Bart-Large (reported) 37.93 11.19 3.96
Bart-Large 40.13 10.91 3.98

+ HYPTER 40.41 11.35 4.43

Table 2: Performance on ZEST Test Set. Perfor-
mance obtained from ZEST official leaderboard2.

Training Details. For each method, we train the
model 7 times using different random seeds, and we
report average and standard deviation. We discuss
other training details, including hyperparameters,
in Appendix B. Notably, we ensure all baseline
models will not benefit from additional training,
by tuning the number of epochs and using early
stopping based on dev performance. This ensures
the improvement brought by HYPTER is not due to
additional training.

5.2 Results

Main Results. We present the results for ZEST
in Table 1-2 and results for Synthetic SQuAD in
Table 3. On ZEST test set, we observe that the
Competence@90 metric is improved from 3.98 to
4.43 when using BART-Large, yielding an 11.3%
relative improvement. When BART-Base is used,
C@90 is improved from 2.23 to 2.53. This demon-
strates that by learning to solve tasks with HYPTER,
the model’s generalization ability to unseen tasks
is improved. On Synthetic SQuAD dataset, we
observe 0.74% improvement with BART-Base and
0.41% improvement with BART-Large. Addition-
ally, models trained with HYPTER achieves com-
parable or better performance on out-of-domain
test sets, suggesting the learned task-solving ability
is generalizable to new test distribution.3 It is a
known issue that evaluating zero-shot performance
can be tricky. We tried our best to reduce the ran-

2https://leaderboard.allenai.org/zest/submissions/public
3Unexpectedly, in Table 3 we observe that performance of

BART-Large on NewsQA is worse than that of BART-Base.
We suspect that BART-Large may have overfit the SQuAD
train set during the first stage of fine-tuning.

Model SQuAD NQ NewsQA

Bart-Base 74.79 (±0.91) 49.78 (±0.95) 56.37 (±0.90)
+ HYPTER 75.53 (±0.68)* 50.39 (±1.01)* 56.41 (±0.85)

Bart-Large 79.32 (±0.34) 59.21 (±0.89) 55.41 (±0.54)
+ HYPTER 79.73 (±0.50) 59.58 (±0.57) 55.60 (±0.90)

Table 3: Performance on Synthetic SQuAD dataset.
We report mean and standard deviation over 7 runs. NQ
and NewsQA serve as out-of-domain test data.
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Figure 3: Competence@75 Performance on ZEST Dev
when less training data is used.

domness and instability by using different random
seeds. In Table 1 and Table 3, we demonstrate that
performance improvement is significant (p<0.05)
in multiple settings, e.g., on ZEST dev set when
C@75 metric is used.

Model Behavior Analysis on ZEST. ZEST
dataset provides a comprehensive analysis protocol
by splitting tasks into different generalization types
(base, paraphrase, composition, semantic flips, and
output structure) and defining four error types (re-
call, precision, partial, and other). Compared to
the BART-Large fine-tuning baseline, our model
achieves better performance in “base” and “para-
phrase” categories in the ZEST official test set. We
also manually inspected dev set predictions pro-
duced by the baseline and our model. We found the
predictions corrected by our method span across
the four error types. In particular, the proposed
method flipped two “n/a” predictions into the cor-
rect answers in the task “Which royalty was this
dog breed popular with?” (“base” category), reduc-
ing the recall errors and improving the competence
metric. We do not observe more granular model
behavioral patterns beyond this point.

Study of Data Efficiency. We study whether
HYPTER is effective when trained with (1) fewer
tasks, while the number of examples per task is
unchanged; (2) fewer examples per task, while the
number of total tasks is kept constant. We experi-
ment with ZEST and BART-Large, and show the
performance in Fig. 3. We observe that HYPTER is
effective when trained with 75%/100% tasks, but
does not improve performance with fewer tasks.
This is reasonable since HYPTER learns at the task
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level (taking one task as an “example”), and 50% of
the tasks may be insufficient. We also observe per-
formance improvement with 75%/100% examples
per task, but not with fewer examples. This sug-
gests sufficient number of examples per task is nec-
essary for HYPTER to generate effective adapters.

6 Related Work

Zero-shot Learning with Transformers. Zero-
shot learning (ZSL) has been explored for various
NLP tasks, including text classification (Yin et al.,
2019), entity linking (Logeswaran et al., 2019) and
entity typing (Obeidat et al., 2019). Several works
study cross-task transfer by unifying the input-
output format, e.g., relation extraction as machine
reading comprehension (Levy et al., 2017), named
entity recognition as machine reading comprehen-
sion (Li et al., 2020). Such formulation allows
generalization to unseen relation or named entity
types at test time. Learning from task descriptions
(Weller et al., 2020) and instructions (Mishra et al.,
2021) can be considered as a sub-category in zero-
shot learning, with the goal of generalizing to un-
seen tasks during inference.

Adapters for Transformers. Houlsby et al.
(2019) proposed adapter layers for parameter-
efficient transfer learning in NLP. Adapter layers,
which adopt a bottleneck architecture with two lin-
ear layers, are added after each multi-headed at-
tention layer and each feed-foward layer in a pre-
trained transformer. Adapters have been recently
applied to multi-lingual settings, with successes in
NER, QA and commonsense reasoning (Pfeiffer
et al., 2020; Philip et al., 2020; Artetxe et al., 2020).

Hypernetworks and Contextual Parameter
Generators. Hypernetwork (Ha et al., 2017) is
a broad concept of “using one network to gener-
ate the weights for another network”. This con-
cept has been broadly applied to visual reasoning
(Perez et al., 2018), zero-shot image classification
(Jin et al., 2020), etc. Closely related to our work,
UDapter (Üstün et al., 2020) studies multilingual
dependency parsing by generating adapter param-
eters. Our work is more generalizable as we do
not restrict task format (dependency parsing v.s.
general text-to-text tasks) or relations between sub-
tasks (cross-lingual tasks v.s. tasks with text-form
descriptions).

7 Conclusion

In this paper, we introduced HYPTER, a framework
to improve text-to-text transformer’s generalization
ability to unseen tasks. HYPTER enhances task-
specific abilities by inserting adapters generated
with a hypernetwork, meanwhile it maintains the
model’s general task-solving ability by freezing
main model parameters. We demonstrated the ef-
fectiveness of HYPTER on two datasets. Future
work may explore teaching models with compo-
sitional instructions using HYPTER, or propose
robust fine-tuning methods that help the model
generalize to unseen data. It is also necessary to
construct a large dataset of diverse NLP tasks to
facilitate future research in this direction.
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A Dataset Details

ZEST. ZEST dataset is released at https:
//ai2-datasets.s3-us-west-2.amazonaws.com/zest/
zest.zip. ZEST leaderboard is hosted at https:
//leaderboard.allenai.org/zest/submissions/public.

Synthetic SQuAD. We build our synthetic
dataset from the processed version of SQuAD, Nat-
ural Questions and NewsQA in MRQA Shared
Task 2019 (Fisch et al., 2019) (https://mrqa.github.
io/2019/). We provide the script to reconstruct the
data we use in our released code. We list the bi-
grams we use to formulate synthetic tasks and their
train/dev/test partition in Listing 1.

Listing 1: Train/Dev/Test Partition in Synthetic
SQuAD dataset.

1 "train": ["why were", "what years", "who said", "
what percent", "when did", "where do", "who is"
, "how are", "what decade", "how does", "how
long", "where was", "what has", "which two", "
who was", "who were", "where are", "where does"
, "what did", "how far", "what organization", "
what does", "what group", "what would", "how
did", "who has", "who created", "how many", "
what name", "what types", "what two", "which
city", "who are", "how is", "what event", "what
are", "what century", "what area", "whom did",
"why was", "who wrote", "why are", "where is",
"how old", "when is", "what caused", "who did"

, "where did", "what happened", "what state", "
what kind", "what time", "what famous", "what’s
the", "what day", "what is", "what company", "

what were", "why do", "what new", "what date",
"what do", "what color", "which group", "what
country", "how can", "what have", "where can",
"what period", "which year", "when was", "what
other", "what happens", "was the", "what was",
"which of", "when were", "what sort", "what
city", "what year"],

2 "dev": ["what month", "why is", "what part", "what
term", "how was", "how were", "how do", "who
led", "which country", "when does"],

3 "test": ["where were", "what political", "what
religion", "why did", "what type", "what
language", "who had", "what percentage", "what
can", "how much"]

B Training Details

We use transformers (Wolf et al., 2020) for all our
experiments. All experiments are done with one
single GPU. We use NVIDIA Quadro RTX 8000,
NVIDIA Quadro RTX 6000, or NVIDIA GeForce
RTX 2080 Ti, depending on availability.

For text-to-text model fine-tuning, we select
learning rate from {1e-5, 3e-5, 5e-5}, and select
the total number of epochs from {5, 10, 15, 20, 30}
for ZEST and {10, 20, 30, 50, 100} for synthetic
SQuAD. We use a fixed batch size of 32.

For hypernetwork training, we train up to 100
epochs (one epoch here refers to an iteration over
all tasks). We update the hypernetwork every b
tasks, and we call b as task batch size. When
learning from one task, we sample b′ examples

within this task, and we call b′ as the example batch
size. We greedily and sequentially select adapter
width d from {4,8,16,32}, learning rate α from {3e-
6, 1e-5, 3e-5, 1e-4}, b from {4,8,16,32}, b′ from
{4,8,16,32}, based on dev set performance.

C Additional Baseline

Another reasonable baseline is to fine-tune a text-
to-text model together with randomly initialized
adapters plugged in it. We experiment with this
method using BART-Large and list the performance
in Table 4. We do not observe significant dif-
ferences between the two methods (p=0.8840 for
C@75, p=0.8118 for C@90 in two-tailed paired
t-test).

Model Mean-F1 C@75 C@90

Bart-Large 41.17 (±1.16) 15.74 (±2.16) 7.17 (±1.66)
Bart-Large with Adapters 39.76 (±1.26) 15.61 (±1.14) 6.96 (±1.15)

Table 4: Performance comparison when adapters are
plugged / not plugged during fine-tuning.

D Dev Set Performance of Models
Submitted to ZEST Leaderboard

In Table 5 we present the dev performance of mod-
els submitted to the leaderboard. The submitted
models are the “first-runs” in the 7-run series, as
we add the 7-run experiments and significance test
later on, following a reviewer’s suggestion.

Model Mean-F1 C@75 C@90

Bart-Base 29.72 7.87 4.05
+ HYPTER 29.81 8.67 4.05

Bart-Large (reported) 40 13 8
Bart-Large 42.10 16.72 8.85
+ HYPTER 43.50 17.46 9.64

Table 5: Dev set performance of models submitted to
ZEST leaderboard.

E Discussion

It is worth noting that the efficacy of HYPTER is at
the cost of introducing new parameters in the hy-
pernetwork. To generate adapter parameters, more
parameters are introduced and trained in the hyper-
network. One may achieve better generalization
ability to unseen tasks with larger pre-trained mod-
els with billions of parameters. In this case, we
consider HYPTER as an alternative by augmenting
a medium-sized pre-trained model with a hypernet-
work. Meanwhile, we highlight our contribution to
be the concept of generating task-specific adapters
from descriptions and HYPTER’s task-level training
procedure.
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Abstract
Slot-filling is an essential component for build-
ing task-oriented dialog systems. In this work,
we focus on the zero-shot slot-filling problem,
where the model needs to predict slots and
their values, given utterances from new do-
mains without training on the target domain.
Prior methods directly encode slot descrip-
tions to generalize to unseen slot types. How-
ever, raw slot descriptions are often ambigu-
ous and do not encode enough semantic in-
formation, limiting the models’ zero-shot ca-
pability. To address this problem, we intro-
duce QA-driven slot filling (QASF), which ex-
tracts slot-filler spans from utterances with a
span-based QA model. We use a linguistically
motivated questioning strategy to turn descrip-
tions into questions, allowing the model to gen-
eralize to unseen slot types. Moreover, our
QASF model can benefit from weak supervi-
sion signals from QA pairs synthetically gen-
erated from unlabeled conversations. Our full
system substantially outperforms baselines by
over 5% on the SNIPS benchmark.

1 Introduction

Automatic slot filling, which extracts task-specific
slot fillers (e.g. flight date, cuisine) from user
utterances, is an essential component to spoken
language understanding (Bapna et al., 2017). As
shown in Figure 1, the model predicts the slot filler
“Joe A. Pass” for the slot type “artist” given an
input utterance. However, fully supervised slot fill-
ing models (Young, 2002; Goo et al., 2018) require
labeled training data for each type of slot (Shah
et al., 2019). It is even more of a problem for data-
intensive models (Mesnil et al., 2014). This makes
the development of new domains in these systems
a challenging and resource-intensive task.

This has motivated studies in cross-domain zero-
shot learning for the slot-filling task (ZSSF), where

∗Work done during internship at Google Research.

play a sound track by Joe A. Pass on iTunes

O O O O O B I I O O

artist to play

artist to play

Question Generator

“Who is the artist to play?”

BIO Tagger

Utterance

BERT-based 
QA Model

Slot description

play a sound track by Joe A. Pass on iTunes

Start End

Slot description

Utterance

Figure 1: Comparison between two slot-filling frame-
works: BIO tagging based model (upper) and our QA-
based model (below).

the goal is to achieve good slot-filling performance
on new domains without requiring additional train-
ing data. Previous work (Bapna et al. (2017); Shah
et al. (2019)) often uses a sequence tagging ap-
proach (similar to the upper image in Figure 1 in
a high-level way). To achieve zero-shot domain
transfer, they directly encode raw slot descriptions
or names, such as “playlist”, “music item”, to en-
able models to generalize to slot types unseen at
training time. However, slot descriptions are of-
ten ambiguous and typically do not encode enough
semantic information by themselves.

Instead of directly encoding slot descriptions
and examples, we introduce a QA-driven slot fill-
ing framework (QASF) (Figure 1). Inspired by the
recent success of QA-driven approaches (McCann
et al., 2018; Logeswaran et al., 2019; Gao et al.,
2019; Li et al., 2020; Namazifar et al., 2020), we
tackle the slot-filling problem as a reading compre-
hension task, where each slot type (e.g. “artist”)
is associated with a natural language question (e.g.
“Who is the artist to play?”). A span-based read-
ing comprehension model is then used to extract
a slot filler span from the utterance by answering
the question.1 In this work, we use a linguisti-

1It can been seen as an extension of the QA-driven meaning
representations (He et al., 2015; Michael et al., 2017), where
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cally motivated question generation strategy for
converting slot descriptions and example values
into natural questions, followed by a BERT-based
QA model for extracting slot fillers by answering
questions. As shown in our experiments, this QA-
driven method is better at exploiting the semantic
information encoded in the questions, therefore it
generalizes better to new domains without any ad-
ditional fine-tuning, as long as the questions are
meaningful enough. To the best of our knowledge,
we are the first to leverage weakly supervised syn-
thetic QA pairs extracted from unlabeled conversa-
tions for a second-stage pretraining. Drawing in-
sights from Mintz et al. (2009), we create a weakly
supervised QA dataset from unlabeled conversa-
tions and an associated ontology. The synthetic QA
pairs are constructed by matching unlabeled utter-
ances against possible slot values in the ontology.
This provides a general and cost-effective way to
improve QA-based slot filling performance with
easily obtainable data.

Experimental results show that (1) our QASF
model significantly outperforms previous zero-
shot systems on SNIPS (Coucke et al., 2018) and
TOP (Gupta et al., 2018); (2) encoding natural ques-
tions help models better leverage weakly super-
vised signals in the pretraining phase, compared to
encoding raw descriptions.

2 Task Definition

Given an input utterance u, a slot filling model
extracts a set of (slot type, span) pairs (si, ai), i =
1, . . . , k where si comes from a fixed set of slot
types S, and each ai = (j, k), 1 ≤ j < k ≤
|u| is a span in u. Each slot type is accompanied
with a short textual description that describes its
semantic meaning (Table 1). We also assume that
a small amount of example slot values are given,
following Shah et al. (2019).

Our goal is to build a slot filling model that
performs well on a new target domain with un-
seen slot types. Our training data consists of ut-
terances from N source domains D1,D2, ...,DN .
Each domain Di is associated with a set of pre-
defined slot types Si. At test time, utterances
are drawn from a new domain DN+1. The
new domain contains both seen and unseen slot
types from the source domain. For example,
in the SNIPS dataset (Coucke et al., 2018), do-
mains “GetWeather” and “BookRestaurant” both

predicate-argument structures are represented as QA pairs.

have a slot type called “city”, while “condi-
tion_temperature” only appears in the “GetWeather”
domain.

3 Methodology

In this section, we describe our framework for
Question Answer-driven Slot Filling (QASF). The
framework consists of (1) a question generation
strategy that turns slot descriptions into natural lan-
guage questions based on linguistic rules; (2) a
generic span-extraction-based question answering
model; (3) an intermediate pretraining stage with
generated synthetic QA pairs from unlabeled con-
versations, which is before task-specific training.

3.1 Question Generation Strategy

To benefit from both language model pretraining
and QA supervision, we design a question gener-
ation strategy to turn slot descriptions into natu-
ral questions. During this process, a considerable
amount of knowledge and semantic information
is encoded (Heilman, 2011). A generated ques-
tion consists of a WH word and a normalized slot
description following the template below:

WH_word is slot_description ?

Generating WH_word We draw insights from
the literature on automatic question generation.
Heilman and Smith (2010) propose to use lin-
guistically motivated rules. In their more general
case of question generation from the sentence, an-
swer phrases can be noun phrases (NP), preposi-
tional phrases (PP), or subordinate clauses (SBAR).
Complicated rules are designed with help from su-
perTagger (Ciaramita and Altun, 2006).

For our spoken language understanding (SLU)
tasks, slot fillers are mostly noun phrases2. There-
fore, we design a simpler set of conditions based
on named entity types and part-of-speech (POS)
tags. For each slot type, we sample 10 (utterance,
slot value) examples from the validation set. Then
we run a NER and a POS tagging model 3 to obtain
entity types and POS tags for each of the sampled
answer spans. Finally, we select WH_word based
on a set of rules described in Table 6 in Appendix.

Generating slot_description Instead of
directly adding a raw description phrase in the ques-
tion template, we normalize the phrase with the

2around 90% cases in the SNIPS dataset.
3Provided by spaCy: https://spacy.io/
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Unlabeled Conversation Example:

USER: I am looking for a place to stay 
in the north of the city. I would prefer a 
4-star hotel please.

SYS: There are several guesthouses 
available. Do you have a price 
reference?

USER: The restaurant should be in the 
moderate price range.
...

Pre-given Ontologies:
Attribute Possible Values

hotel-price_range
expensive, cheap,   
moderate

hotel-star_rating
0-star, 1 star, 2 star, 
3 star, 4 star, 5 star

…

restaurant-cuisine
African, Polish, Indian, 
Chinese, …

String matching

USER: I am looking for a place 
to stay in the north of the city. I 
would prefer a 4 star [star_rating] 
hotel please.

SYS: There are several 
guesthouses available. Do you 
have a price reference?

USER: The restaurant price 
should be in the moderate 
[price_range].
…

Questioning

Synthetic QA pairs
… I would prefer a 4 star hotel 
please.
Q: how many stars does the hotel 
have ? 
A: 4 star 

The restaurant price should be in 
the moderate.
Q: How is the price? 
A: moderate

Figure 2: Obtaining weakly supervised synthetic QA pairs for pretraining. Given an ontology and unlabeled utter-
ances, we generate synthetic QA pairs with weak supervision by matching values of slots against the utterances.

Slot Raw Description Our Question

playlist_owner owner who’s the owner?

object_select object select which object to select?

best_rating points in total how many points in total?

num_book_people number of people
for booking

how many people
for booking?

Table 1: Examples of generated questions.

following simple rule: If the description is of the
format “A of B”, where both A and B are noun
phrases (NP), we only keep B in the phrase if the
WH_word is “How long” or “How many”. Ex-
amples of generated questions for corresponding
slots are presented in Table 1. Compared to slot
descriptions, our questions are more precise and
can encode more semantic information.

3.2 Question Answering Model
We use BERT (Devlin et al., 2019) as our base
model for jointly encoding the question and utter-
ance. Input sequences for the model share a stan-
dard BERT-style format: [CLS] <question> [SEP]
<utterance> [SEP], where [CLS] is BERT’s special
classification token and [SEP] is the special token
to denote separation. Let e1:M be the token-level
output representation from the BERT encoder,

e1, e2, ..., eM = BERT(x1, x2, ..., xM ) (1)

where x1:M are the input tokens.
Then the model predicts answer spans with two

binary classifiers on top of the BERT outputs e1:M .
The two classifiers are trained to predict whether
each token is the start or the end of an answer span,

respectively,

Ps(i | i ∈ 1 . . .M) = softmax(eiWs)

Pe(i | i ∈ 1 . . .M) = softmax(eiWe)

For negative examples, where a question has no
answer spans in the utterance, we map the start
and end token both to the [CLS] token. During
training, we minimize the negative log-likelihood
loss. All parameters are updated. During inference,
predicting slot filler spans is more complex because
there could be several or no spans to be extracted
for each slot type. We first enumerate all possible
spans and only keeping spans/answers satisfying
certain constraints (Appendix Section B) as fillers.

3.3 Pretraining with Weak Supervision
Pretrained masked language models do not have
the capability of question answering before being
fine-tuned on task-specific data. We hypothesize
that adding a pretraining step with synthetic QA
pairs before fine-tuning can contribute to models’
understanding of interactions between question and
utterance. For example, improvements have been
reported by QAMR (He et al., 2020) on SRL and
textual entailment (TE). Previous researches (Wu
et al., 2020; Gao et al., 2020) have used crowd-
sourced QA pairs, but typically the improvement
margin is not significant (Wu et al., 2020) when the
task-specific data is in a different domain (SQuAD
v.s. newswire). Therefore we introduce a method
of collecting relevant and distantly supervised QA
pairs and investigate their influences in pretrain-
ing. More specifically, we draw insights from
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Mintz et al. (2009) for creating a weakly supervised
dataset. Figure 2 illustrates the process. Given an
ontology or database of slot types and all possi-
ble values for each slot type, we find all utterances
containing those value strings in a large set of unla-
beled conversations. For example, in Figure 2, for
the “hotel_price_range” slot, there are three pos-
sible values “expensive”, “cheap” and “moderate”
in the ontology. We then form question-answer-
utterance triples using the question generation strat-
egy proposed in Section 3.1.

To obtain the pre-defined ontology and unla-
beled conversations, we use MultiWOZ 2.2 (Zang
et al., 2020), which is an improved version of Mul-
tiWOZ (Budzianowski et al., 2018). We do not
use annotations in the dataset such as the (changes
of) states in the conversations and we treat each
utterance independently. We remove slot types
that exist in the task-specific training/test data (i.e.,
SNIPS and TOP) from the ontology and end up
with 67,370 QA examples for pretraining.

4 Experiments

4.1 Datasets and Baselines

SNIPS (Coucke et al., 2018) is an SLU dataset
consisting of crowdsourced user utterances with 39
slots across 7 domains – “AddToPlaylist” (ATP),
“BookRestaurant” (BR), “GetWeather” (GW),
“PlayMusic” (PM), “RateBook” (RB), “SearchCre-
ativeWork” (SCW), “FindScreeningEvent” (FSE).
It has around 2000 training instances per domain.
The slot types of each domain do not overlap with
each other. Following previous work (Shah et al.,
2019; Liu et al., 2020), we use this dataset to evalu-
ate zero-shot cross-domain transfer learning – train
on all training instances from domains other than
Di, and test exclusively on Di, for i = 1, . . . , 7.
TOP (Gupta et al., 2018) is a task-oriented utter-
ance parsing dataset. It is based on a hierarchi-
cal annotation scheme for annotating utterances
with nested intents and slots. Each slot type also
comes with a description. In our setup, we train
on all seven domains of SNIPS as well as varying
amounts of training data from the TOP training set
(0, 20, and 50 examples), and use the TOP test set
as an out-of-distribution domain for evaluation. We
report span-level F1 (micro-average).

We compare our method against a number of rep-
resentative baselines. Concept Tagger (CT) (Bapna
et al., 2017) is a slot-filling framework that di-
rectly uses original slot descriptions to general-

ize to unseen slot types. Robust Zero-shot Tag-
ger (RZT) (Shah et al., 2019) is an extension of
CT, which incorporates example values of slots to
improve the robustness of the model’s zero-shot
capability. Coach (Liu et al., 2020) is a coarse-to-
fine model for slot-filling. It also encodes raw slot
descriptions. We also include a Zero-Shot BERT
Tagger (ZSBT) based on BERT (Devlin et al., 2019)
as an additional baseline. ZSBT directly encodes
raw slot descriptions and utterances and predicts a
tag (B, I, or O) for each token in the utterance.

4.2 Results and Analysis

We report F-1 of the baselines and our model
on each target domain test set of SNIPS as well
as average F-1 across domains. All models are
trained on the other six domains for each target
domain. As shown in Table 2, our QA-driven
slot filling framework (QASF) significantly out-
performs all baselines in five of the seven domains,
with slightly lower performance on BookRestau-
rant than ZSBT, and lower performance on Find-
ScreeningEvent than Coach. The average F-1 of
QASF is around 7% higher than the prior published
state-of-the-art Coach model, and about 2% higher
than the Zero-shot BERT Tagger baseline. Adding
the intermediate pre-training stage on weakly su-
pervised data further improves performance on top
of QASF in six of the seven domains except for
AddToPlaylist. On average, adding pre-training
improves over QASF by 2.9% F-1. The zero-shot
performance of all models are relatively worse on
PlayMusic, RateBook and FindScreeningEvent. A
more detailed discussion is in Appendix Section C.

Table 3 summarizes TOP test results: (1) In
both the zero-shot and few-shot settings, our QASF
outperforms ZSBT, with a bigger improvement on
the zero-shot setting. (2) Pretraining on the weakly
supervised QA pairs helps more in the zero-shot
setting than in the few-shot setting, with a 20% rel-
ative improvement. This shows that QASF (w/ pre-
training) is more robust to the domain shift when
there is no target domain training data.

Impact of QG strategy and pretraining To un-
derstand the influence of question generation and
impact of pretraining with synthetic QA pairs, we
perform ablation studies of both components on
the SNIPS dataset. The table below shows ablation
results (F-1). “w/o QG” refers to a model trained
with raw slot descriptions and utterances.

Firstly, the question generation strategy consis-
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ATP BR GW PM RB SCW FSE Average F-1

CT (Bapna et al., 2017) 38.82 27.54 46.45 32.86 14.54 39.79 13.83 30.55
RZT (Shah et al., 2019) 42.77 30.68 50.28 33.12 16.43 44.45 12.25 32.85
Coach (Liu et al., 2020) 50.90 34.01 50.47 32.01 22.06 46.65 25.63 37.39
ZSBTBERT (our baseline) 55.78 49.34 56.58 28.35 27.09 57.61 20.50 42.18

QASFBERT (ours) 59.29 43.13 59.02 33.62 33.34 59.90 22.83 44.45
w/ pre-training on WS 57.57 48.75 61.27∗ 38.54∗ 36.51∗∗ 60.82 27.72∗∗ 47.31

Table 2: Experimental results (F-1) on SNIPS dataset. ∗ indicates statistical significance (p < 0.05), ∗∗: p < 0.01.

Zero-shot Few-shot (20) Few-shot (50)

Random NE 1.34 - -
ZSBT 8.82 37.60 42.73
QASF (ours) 10.27 36.86 46.49
w/ pre-training on WS 12.35 39.78 47.91

Table 3: Evaluation results on TOP test. Models trained
on SNIPS, and varying amount of utterances of TOP
train – zero-shot, 20-shot (1%), 50-shot (2.5%).

w/o pretraining w/ pretraining

QASF w/o QG ∆ (F1) QASF w/o QG ∆ (F1)
44.45 41.97 +5.91% 47.31 43.09 +9.79%

Table 4: Ablation Study

tently helps, with a 2.48% F-1 gain in “w/o pre-
training” and a 4.22% F-1 gain in “w/ pretraining”.
Secondly, the pretrained representations from ad-
ditional weakly supervised data improve F-1 by
2.86% in “w/ QG” and 1.12% in “w/o QG”. More
interestingly, the gain from the questioning strategy
is larger when combined with the pretraining (9.8%
as compared to 5.9%). This demonstrates that syn-
thetic QA pairs are also helping with getting better
QA-aware representations before fine-tuning on the
task-specific data for slot-filling.

4.3 Error Analysis

We further conduct manual error analysis on the
models’ predictions on SNIPS. We find that there
are several sources where the errors are from:

The variance between the source and target do-
mains. Sometimes even slot types of the same
name refer to different kinds of objects in differ-
ent domains. For example, slot type “object_type”
in the “RateBook” domain refers to object types
like textbook, essay and novel; while in the “Find-
ScreeningEvent”, it refers to event types like movie
times/schedules. In the two domains, they have
the same raw descriptions. In the table below, we
show the performance of models on utterances with
“object_type” and “object_name” spans (accord-
ing to gold annotations). We can see that the per-
formances on these special slots are significantly

ZSBT QASF QASF (w/ pretraining)

Averaged F-1 17.43 22.26 24.29

lower than the general average on all the examples
(40–50%). But still, the questioning strategy helps
improve the transferring of semantic information.

Plus, the variance in semantic meaning between
slot types in SNIPS and TOPS is even larger. For
slots like “location_modifier”, “road_condition”,
there are no semantic similar slots in SNIPS or pre-
training dataset, which results in low performance.
Having more specific/detailed slot descriptions and
use them in the question generation would help
further (Brown et al., 2020; Du and Cardie, 2020).

Annotation artifacts of SNIPS dataset and spar-
sity of vocabulary for certain slot types. Our
QASF framework does not perform well on the tar-
get domain “BookRestaurant”, thus we take a close
look at it. We find that there are only 25 possible
values in total for slot restaurant_type, over 51%
of them are of a single token “restaurant” (Table
below). A very simple approach (assigning type
“restaurant_type” to all tokens “restaurant” can ob-
tain decent performance). This does not happen for

Slot Value “restaurant” “bar” “pub” “brasserie”

Proportion 51.81% 7.26% 6.60% 6.23%

other slot types in BookRestaurant (e.g., cuisine,
restaurant_name). The possible values are more
diverse and the distribution is more balanced.

5 Conclusion

We propose a QA-driven method with weakly su-
pervised pretraining for zero-shot slot filling. Our
experimental results and analyses demonstrate the
benefits of QA-formulation, especially in the set-
ting with synthetic QA pairs pretraining.
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A Details of Question Generation

The part-of-speech tagset is based on the Univer-
sal Dependencies scheme 4. The named entity la-
bels are based on OntoNotes 5.0 (Weischedel et al.,
2013). In Table 6, we describe the set of rules for
the selection of WH_word.

B Inference Constraints

At inference time, predicting the slot filler spans
is more complex – for each slot type, as there can
be several or no spans to be extracted. After the
output layer, we have the probability of each token
xi being the start (Ps(i)) and end (Pe(i)) of the
span.

We harvest all the valid candidate spans for each
slot type with the following heuristics:

1. Enumerate all possible combinations of start
offset (start) and end offset (end) of the spans
(M(M−1)

2 candidates in total);

2. Eliminate the spans not satisfying the con-
straints: (1) start and end token must be within
the utterance; (2) the length of the span should
be shorter than a maximum length constraint;
(3) spans should have a larger probability than
the probability of “no answer” (which is rep-
resented with [CLS] token), namely,

Ps(start) > Ps([CLS]), Pe(end) > Pe([CLS])

C Further Analysis and Discussions

We conduct further analysis to understand how and
why the models are effective.

C.1 Impact of question generation strategy
and pretraining

Table 7 shows full ablation results.

C.2 Analysis on Seen versus Unseen Slots

To understand the transferring capability of our
models, we further split the SNIPS test for each
target domain into “seen” and “unseen” slots. An
example is categorized into “unseen” as long as
there is an unseen slot (i.e., the slot does not exist
in the remaining six source domains in its gold
annotation.) Otherwise, it counts as “seen”. A full
list of unseen slots for each target domain can be
found in the Appendix.

4universaldependencies.org/u/pos/

As is shown in Table 5, we can see that (1) both
ZSBT baseline and our models perform better on
the “seen” slots than the “unseen” ones – the num-
bers substantially drop on the “unseen” slots. This
proves that transferring from the source domains
to the unseen slots in the target domain is a hard
problem. (2) On the portion of examples with
“seen” slots, our best model outperforms ZSBT
with around a 2% margin. (3) On the “unseen” por-
tion of examples, the margin is larger – our QASF
and pretraining step help improve the performance
more (over 4%). The second and third observation
together demonstrates that the questioning strategy
help improve the model’s capability of transferring
between related but not exactly same slot types
(e.g., “object_name” and “entity_name”).

Seen Unseen

ZSBT 54.75 37.41
QASF 56.79 39.99

w/ pretraining 56.23 41.73

Table 5: Averaged F-1 scores over all target domains of
SNIPS dataset (for “unseen” and seen “slots”).

D Hyper-parameters and Training
Details

We use the uncased version of the BERT-base (De-
vlin et al., 2019) model for QA finetuning and
pretraining. The model is fine-tuned for 5 epochs
with a starting learning rate of 3e-5 on the SNIPS
dataset. The model is pretrained for 5 epochs with
a starting learning rate of 5e-7 on the synthetic
QA dataset. Our implementations are based on
https://github.com/google-research/bert/

blob/master/run_squad.py
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WH_word Conditions Answer Examples

How long
The answer phrase is modified by a cardinal number (CARDINAL)
or quantifier phrase (QUANTITY) whose object is a temporal unit,
as is defined in (Pan et al., 2011), i.e., second/minute/hour/day/week/month/year/decade/century.

2 nights

How many The answer phrase is modified by a cardinal number (CARDINAL)
or quantifier phrase (QUANTITY) and the object is not a temporal unit. 2 stars, 3 tickets

How adjective ADJ moderate, expensive

When The answer phrase’s head word is tagged DATE or TIME 1:30 PM, 1999

Who The answer phrase’s head word is tagged PERSON or
is a personal pronoun PRON (I, he, herself, them, etc.) mother, Dr. Williams

Where The answer phrase is a prepositional phrase whose object is tagged
GPE or LOC, whose preposition is one of the following: on, in, at, over, to

amc theaters,
fort point san francisco,
east, west, ...

Which The answer phrase is a determiner DT (this, that) or an ordinal ORDINAL this, first,
current, last

What all other cases

Table 6: Strategy for Generating the WH_word (question phrase).

ATP BR GW PM RB SCW FSE Average F1

w/o pretraining
QASF 59.29 43.13 59.02 33.62 33.34 59.90 22.83 44.45

w/o question 55.30 46.71 53.06 35.79 25.28 59.77 17.85 41.97

w/ pretraining
QASF 57.57 48.75 61.27 38.54 36.51 60.82 27.72 47.31

w/o question 56.11 42.42 55.70 33.07 33.13 60.03 21.20 43.09

Table 7: Full ablation analysis on SNIPS dataset.
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E Schema of SNIPS dataset

Domain All Slots Unseen Slots

AddToPlaylist (ATP)

entity_name
playlist_owner
playlist
artist
music_item

entity_name
playlist_owner

BookRestaurant (BR)

restaurant_type
served_dish
restaurant_name
party_size_description
cuisine
party_size_number
timerange
facility
poi
state
city
country
sort
spatial_relation

restaurant_type
served_dish
restaurant_name
party_size_description
cuisine
party_size_number
timerange
facility
poi

GetWeather (GW)

timerange
current_location
condition_description
geographic_poi
condition_temperature
country
state
city
spatial_relation

timerange
current_location
condition_description
geographic_poi
condition_temperature

PlayMusic (PM)

year
genre
service
album
track
sort
music_item
artist
playlist

year
genre
service
album
track

RateBook (RB)

object_select
rating_value
best_rating
rating_unit
object_part_of_series_type
object_type
object_name

object_select
rating_value
best_rating
rating_unit
object_part_of_series_type

SearchCreativeWork (SCW) object_type
object_name -

FindScreeningEvent (FSE)

object_location_type
movie_name
movie_type
timerange
location_name
object_type
spatial_relation

object_location_type
movie_name
movie_type
timerange
location_name

Table 8: Schema of SNIPS dataset
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F Question Templates for SNIPS

Domain Slot Slot Name Natural Question

AddToPlaylist music_item music item what’s the music item?
AddToPlaylist playlist_owner owner who’s the owner?
AddToPlaylist entity_name entity name what’s the entity name?
AddToPlaylist playlist playlist what’s the playlist?
AddToPlaylist artist artist who’s the artist?
BookRestaurant city city what’s the city?
BookRestaurant facility facility what’s the facility?
BookRestaurant timeRange time range when’s the time range?
BookRestaurant restaurant_name restaurant name what’s the name?
BookRestaurant country country what’s the country?
BookRestaurant cuisine cuisine what’s the cuisine?
BookRestaurant restaurant_type restaurant type what’s the restaurant type?
BookRestaurant served_dish served dish what’s the served dish?
BookRestaurant party_size_number number how many people?
BookRestaurant poi position where’s the location?
BookRestaurant sort type what’s the type?
BookRestaurant spatial_relation spatial relation what’s the spatial relation?
BookRestaurant state location what’s the state?
BookRestaurant party_size_description person who are the persons?
GetWeather city city what’s the city?
GetWeather state location what’s the state?
GetWeather timeRange time range when’s the time range?
GetWeather current_location current location what’s the current location?
GetWeather country country what’s the country?
GetWeather spatial_relation spatial relation what’s the spatial relation?
GetWeather geographic_poi geographic position where’s the location?
GetWeather condition_temperature temperature how is the temperature?
GetWeather condition_description weather how is the weather?
PlayMusic genre genre what’s the genre?
PlayMusic music_item music item what’s the music item?
PlayMusic service service what’s the service
PlayMusic year year when’s the year?
PlayMusic playlist playlist what’s the playlist?
PlayMusic album album what’s the album?
PlayMusic sort type what’s the type?
PlayMusic track track what’s the track?
PlayMusic artist artist who’s the artist?
RateBook object_part_of_series_type series what’s the series?
RateBook object_select this current which to select?
RateBook rating_value rating value how many rating value?
RateBook object_name object name what’s the object name?
RateBook object_type object type what’s the object type?
RateBook rating_unit rating unit what’s the rating unit?
RateBook best_rating best rating how many rating points in total?
SearchCreativeWork object_name object name what’s the object name?
SearchCreativeWork object_type object type what’s the object type?
SearchScreeningEvent timeRange time range when’s the time range?
SearchScreeningEvent movie_type movie type what’s the movie type?
SearchScreeningEvent object_location_type location type what’s the location type?
SearchScreeningEvent object_type object type what’s the object type?
SearchScreeningEvent location_name location name where’s the location name?
SearchScreeningEvent spatial_relation spatial relation what’s the spatial relation?
SearchScreeningEvent movie_name movie name what’s the movie name?

Table 9: Question Templates for SNIPS
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Abstract

Language models like BERT and SpanBERT
pretrained on open-domain data have obtained
impressive gains on various NLP tasks. In this
paper, we probe the effectiveness of domain-
adaptive pretraining objectives on downstream
tasks. In particular, three objectives, includ-
ing a novel objective focusing on modeling
predicate-argument relations, are evaluated on
two challenging dialogue understanding tasks.
Experimental results demonstrate that domain-
adaptive pretraining with proper objectives can
significantly improve the performance of a
strong baseline on these tasks, achieving the
new state-of-the-art performances.

1 Introduction

Recent advances in pretraining methods (Devlin
et al., 2019; Joshi et al., 2020; Yang et al., 2019)
have achieved promising results on various natural
language processing (NLP) tasks, including natural
language understanding, text generation and ques-
tion anwsering (Liu et al., 2019; Song et al., 2019;
Reddy et al., 2019). In order to acquire general lin-
guistic and semantic knowledge, these pretraining
methods are usually performed on open-domain
corpus, like Wikipedia and BooksCorpus. In light
of the success from open-domain pretraining, a
further question is naturally raised: whether down-
stream tasks can also benefit from domain-adaptive
pretraining?

To answer this question, later work (Baevski
et al., 2019; Gururangan et al., 2020) has demon-
strated that continued pretraining on the unlabeled
data in the target domain can further contribute
to the corresponding downstream task. However,
these studies are dependent on additional data that
can be unavailable in certain scenarios, and they
only evaluated on easy downstream tasks. For in-
stance, Gururangan et al. (2020) perform contin-
ued pretraining with masked language modeling

loss on several relevant domains, and they obtain
improvements on eight well-studied classification
tasks, which are too simple to exhibit the strength
of continued domain-adaptive pretraining. Besides,
it is still unclear which pretraining objective is the
most effective for each downstream task.

In this work, we give a deeper analysis on how
various domain-adaptive pretraining methods can
help downstream tasks. Specifically, we continu-
ously pretrain a BERT model (Devlin et al., 2019)
with three different kinds of unsupervised pretrain-
ing objectives on the domain-specific training set
of each target task. Two of them are Masked Lan-
guage Model (MLM) (Gururangan et al., 2020)
and Span Boundary Objective (SBO) (Joshi et al.,
2020), both objectives have been explored in previ-
ous work. In addition, a novel pretraining objective,
namely Perturbation Masking Objective (PMO), is
proposed to better learn the correlation between
arguments and predicates. After domain-adaptive
pretraining, the adapted BERT is then tested on
dialogue understanding tasks to probe the effective-
ness of different pretraining objectives.

We evaluate on two challenging tasks that fo-
cus on dialogue understanding, i.e. Conversa-
tional Semantic Role labeling (CSRL) and Spo-
ken Language Understanding (SLU). CSRL (Xu
et al., 2020, 2021) was recently proposed by extend-
ing standard semantic role labeling (SRL) (Palmer
et al., 2010) with cross-utterance relations, which
otherwise require coreference and anaphora resolu-
tion for being recognized. We follow previous work
to consider this task as sequence labeling. On the
other hand, SLU includes intent detection and slot
filling. To facilitate domain-adaptive pretraining,
we only use the training set of each downstream
task. In this way, the usefulness of each pretraining
objective can be more accurately examined, as no
additional data is used.

Experimental results show that domain-adaptive
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pretraining significantly helps both tasks. Besides,
our novel objective achieves better performances
than the existing ones, shedding more lights for
future work on pretraining.

2 Tasks

Conversational Semantic Role Labeling. Xu
et al. (2021) first proposed the CSRL task, which
extends standard SRL by explicitly annotating
other cross-turn predicate-argument structures in-
side a conversation. Compared with newswire doc-
uments, human conversations tend to have more
ellipsis and anaphora situations, causing more prob-
lems for standard NLU methods. Their motivation
is that most dropped or referred components in the
latest dialogue turn can actually be found in the
dialogue history. As the result, CSRL allows argu-
ments to be in different utterances as the predicate,
while SRL can only work on each single utterance.
Comparing with standard SRL, CSRL can be more
challenging due to the long-range dependencies.
Similar to SRL, we view CSRL as a sequence la-
beling problem, where the goal is to label each
token with a semantic role.

Spoken Language Understanding. Proposed
by Zhu et al. (2020), the SLU task consists of two
key components, i.e., intent detection and slot fill-
ing. Given a dialogue utterance, the goal is to
predict its intents and to detect pre-defined slots,
respectively. We treat them as sentence-level clas-
sification and sequence labeling, respectively.

3 Domain-Adaptive Pretraining
Objectives

While previous works have shown the benefit of
continued pretraining on domain-specific unlabeled
data (e.g., Lee et al. (2020); Gururangan et al.
(2020)), these methods only adopt the Masked Lan-
guage Model (MLM) objective to train an adaptive
language model on a single domain. It is not clear
how the benefit of continued pretraining may vary
with factors like the objective function.

In this paper, we use the dialogue understanding
task as a testbed to investigate the impact of three
pre-training objectives to the overall performance.
In particular, we explore the MLM (Devlin et al.,
2019) and Span Boundary Objective (SBO) (Joshi
et al., 2020) , and introduce a new objective, namely
Perturbation Masking Objective (PMO), which is
more fit for the dialogue NLU task.

3.1 Masked Language Model Objective
Masked Language Model (MLM) is the task of
predicting missing tokens in a sequence from their
placeholders. Specifically, given a sequence of
tokens X = (x1, x2, .., xn), a subset of tokens
Y ⊆ X is sampled and substituted with a differ-
ent set of tokens. In BERT’s implementation, Y
accounts for 15% of the tokens in X; of those, 80%
are replaced with [MASK], 10% are replaced with a
random token (according to the unigram distribu-
tion), and 10% are kept unchanged. Formally, the
contextual vector of input tokens X is denoted as
H = (h1,h2, ...,hn). The task is to predict the
original tokens in Y from the modified input and
the objective function is:

LMLM = − 1

|Y |

|Y |∑

t=1

log p(xt|ht;θ)

where |Y | is the number of masked tokens, and θ
represents the model parameters.

3.2 Span Boundary Objective
In many NLP tasks such as the dialogue under-
standing, it usually involves reasoning about rela-
tionships between two or more spans of text. Pre-
vious works (Joshi et al., 2020) have shown that
SpanBERT is superior to BERT in learning span
representations, which significantly improves the
performance on those tasks. Conceptually, the dif-
ferences between these two models are two folds.

Firstly, different with BERT that independently
selects the masked token in Y , SpanBERT define
Y by randomly selecting contiguous spans. In
particular, SpanBERT first selects a subset Y ⊆ X
by iteratively sampling spans until masking 15%
tokens1. Then, it randomly (uniformly) selects the
starting point for the span to be masked.

Secondly, SpanBERT additionally introduces a
span boundary objective that involves predicting
each token of a masked span using only the repre-
sentations of the observed tokens at the boundaries.
For a masked span of tokens (xs, ..., xe) ∈ Y ,
where (s, e) are the start and end positions of the
span, it represents each token in the span using the
boundary vectors and the position embedding:

yi = f(hs−1,he+1,pi−s+1)

where pi marks relative positions of span token
xi with respect to the left boundary token xs−1,

1The length of each span is sampled from the geometric
distribution l ∼ Geo(p), with p = 0.2.
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and f(·) is a 2-layer MLP with GeLU activations
and layer normalization. SpanBERT sums the loss
from both the regular MLM and the span boundary
objectives for each token in the masked span:

LSBO = − 1

|Y |

|Y |∑

t=1

log p(xt|yt;θ)

3.3 Perturbation Masking Objective
In dialogue understanding tasks like CSRL, the ma-
jor goal is to capture the semantic information such
as the correlation between arguments and predicate.
However, for the sake of generalization, existing
pretraining models do not consider the semantic in-
formation of a word and also not assess the impact
of predicate has on the prediction of arguments in
their objectives. To address this, we propose to
use the perturbation masking technique (Wu et al.,
2020) to explicitly measure the correlation between
arguments and predicate and further introduce that
into our objective.

The perturbation masking is originally proposed
to assess the impact one word has on the predic-
tion of another in MLM. In particular, given a list
of tokens X , we first use a pretrained language
model M to map each xi into a contextualized
representation H(X)i. Then, we use a two-stage
approach to capture the impact word xj has on
the prediction of another word xi. First, we re-
place xi with the [MASK] token and feed the new
sequence X\{xi} into M. We use H(X\{xi})i
to denote the representation of xi. To calculate
the impact xj ∈ x\{xi} has on H(X)i, we fur-
ther mask out xj to obtain the second corrupted
sequence X\{xi, xj}. Similarly, H(X\{xi, xj})i
denotes the new representation of token xi. We
define the the impact function as: f(xi, xj) =
d(H(X\{xi})i, H(X\{xi, xj})i), where d is the
distance metric that captures the difference between
two vectors. In experiments, we use the Euclidean
distance as the distance metric.

Since our goal is to better learn the correlation
between arguments and predicate, we introduce a
perturbation masking objective that maximizes the
impact of predicate on the prediction of argument
span:

LPMO = − 1

|Y |

|Y |∑

t=1

−f(xt, {xp0 , ..., xpm−1})i

where p0,... pm−1 are m predicates that occur in
the sentence. In practice, we first follow the Span-
BERT to sample a subset of contiguous span texts

and perform masking (i.e., span masking) on them.
Then, we select verbs from X as predicates and
perform perturbation masking on those predicates.

4 Experiments

We evaluate pretraining objectives on three datasets,
DuConv, NewsDialog2 and CrossWOZ. The former
two datasets are annotated by Xu et al. (2021) for
the CSRL task and the last one is provided by Zhu
et al. (2020) for the SLU task.

Duconv is a Chinese knowledge-driven dialogue
dataset, focusing on the domain of movies and
stars. NewsDialog is a dataset collected in a way
that follows the setting for constructing general
open-domain dialogues: two participants engage in
chitchat, and during the conversation, the topic is
allowed to change naturally. Xu et al. (2021) anno-
tates 3K dialogue sessions of DuConv to train their
CSRL parser, and directly test on 200 annotated
dialogue sessions of NewsDialog. CrossWOZ is
a Chinese Wizard-of-Oz task-oriented dataset, in-
cluding 6K dialogue sessions and 102K utterances
on five domains.

Since the state-of-the-art models on these tasks
are all developed based on BERT, we use the same
model architectures but just replace the BERT base
with our domain-adaptive pretrained BERT. Notice
that, we also experiment with other pretrained lan-
guage models such as RoBERTa and XLNet. We
observed similar results but here we only report the
results based on BERT due to the space limitation.

In particular, we perform the domain-adaptive
pretraining on CSRL task using all dialogue ses-
sions of training set in DuConv (Wu et al., 2019)
and NewsDialog (Wang et al., 2021), which in-
cludes 26K and 20K sessions, respectively; on the
SLU task, we use the whole CrossWOZ training
dataset.

The hyper-parameters used in our model are
listed as follows. The network parameters of our
model are initialized using the pretrained language
model. The batch size is set to 128. We use Adam
(Kingma and Ba, 2015) with learning rate 5e-5 to
update parameters.

Results and Discussion. On the CSRL task, we
follow Xu et al. (2021) to use the micro-averaged
F1 over the (predicate, argument, label) tuples.
Specifically, we calculate F1 over all arguments

2We obtain the CSRL annotations on DuConv and News-
Dialog directly from the author of Xu et al. (2021).
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Pretraining Strategy
DuConv NewsDialog CrossWOZ

F1all F1cross F1intra F1all F1cross F1intra F1intent F1slot F1all

No Pretraining 88.16 83.74 88.71 76.81 53.61 79.97 95.67 95.13 95.34
MLM 88.56 84.37 88.97 76.93 53.43 80.15 95.85 95.47 95.62
MLM + SBO 88.73 84.49 89.23 78.10 56.21 80.85 96.17 95.54 95.78
MLM + PMO 89.10 85.26 89.52 79.68 56.19 81.79 96.40 95.79 96.17
MLM + SBO + PMO 89.21 85.98 89.79 80.01 56.20 82.78 96.48 96.03 96.21

w/ NP Sampling (α = 50) 89.34 86.12 89.99 81.32 56.67 83.14 96.81 96.52 96.70
w/ NP Sampling (α = 80) 89.97 86.68 90.31 81.90 56.56 84.56 96.97 96.87 96.93

Table 1: Evaluation on the DuConv, NewsDialog and CrossWOZ. α is the ratio of sampling from noun phrases.

(referred as F1all) and those in the same and differ-
ent dialogue turns as predicates (referred as F1intra
and F1cross). On the SLU task, we report results
on F1intent, F1slot and F1all. Table 1 summarizes
the results. The first row shows the performance
of existing state-of-the-art models without domain-
adaptive pretraining on each dataset. We can see
that on two tasks, existing models could benefit
from the domain-adaptive pretraining, achieving
new state-of-the-art performance on these datasets.

Let us first look at the CSRL task. Pretraining
with MLM objective could slightly improve the
performance by 0.4 and 0.12 in terms of F1all on
DuConv and NewsDialog, respectively. By addi-
tionally considering the span boundary objective,
the overall performance especially F1cross could
be further improved by at least 0.75 and 2.6, respec-
tively. These results are expected since arguments
in the CSRL task are usually spans and SBO is
better than MLM in learning the span representa-
tion. We can also see that our proposed perturba-
tion masking objective boosts the performance by
a larger margin than SBO, indicating that learning
correlations between arguments and predicates is
more crucial to the NLU task. By summing three
objectives, the CSRL model could achieve the best
performance, significantly improving the baseline
that without domain-adaptive pretraining by 1.05
and 3.2 F1all score, respectively.

From Table 1, we can see that similar findings
are also observed on the SLU task. First of all,
domain-adaptive pretraining on CrossWOZ could
also improve the performance. Secondly, adding
either SBO or PMO, the F1 scores on intent and
slot could be further improved. Thirdly, the best
performance is achieved when all three objectives
are considered. However, we do not observe similar
substantial gains on the SLU task as on the CSRL
task. We think this is because the state-of-the-art
performance on CrossWOZ is relatively high, but

it is still impressive to achieve absolute 0.81, 0.90
and 0.87 points improvement in terms of F1intent,
F1slot and F1all.

We also investigate the impact of span masking
scheme to the overall performance. Recall that, in
the span masking, we randomly sample the span
length and a start position of the span. Joshi et al.
(2020) showed that no significant performance
gains are observed by using more linguistically-
informed span masking strategies such as masking
Named Entities or Noun Phrases. Specifically, they
use the spaCy’s3 named entity recognizer and con-
stituency parser to extract named entities and noun
phrases, respectively. In this paper, we revisit these
span masking scheme. Since there is no available
constituency parser designed for the dialogue, we
use an unsupervised grammar induction method
(Jin and Schuler, 2020) to extract grammars from
the training data. Noun phrases from Viterbi parse
trees from different grammars are tallied without
labels, resulting in a posterior distributions of the
spans, which are used in our span sampling. As
shown in Table 1, we find the best choice is to com-
bine random sampling and noun phrases sampling,
i.e., sampling from the noun phrases at α% of the
time and from a geometric distribution for the other
(1 - α%). The performance on all three datasets
coherently increases when more noun phrases are
used in the span sampling.

5 Conclusion

In this paper, we probe the effectiveness of domain-
adaptive pretraining on dialogue understanding
tasks. Specifically, we study three domain-adaptive
pretraining objectives, including a novel objec-
tive: perturbation masking objective on three NLU
datasets. Experimental results show that domain-
adaptive pretraining with proper objectives is a sim-

3https://spacy.io/
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ple yet effective way to boost the dialogue under-
standing performance.
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Abstract
It has become a common pattern in our field:
One group introduces a language task, exem-
plified by a dataset, which they argue is chal-
lenging enough to serve as a benchmark. They
also provide a baseline model for it, which then
soon is improved upon by other groups. Often,
research efforts then move on, and the pattern
repeats itself. What is typically left implicit
is the argumentation for why this constitutes
progress, and progress towards what. In this
paper, I try to step back for a moment from this
pattern and work out possible argumentations
and their parts.

1 Introduction

The goal of any field of research is to make progress
towards answering its foundational questions. To
do so, a methodology is required that guides at-
tempts at providing or improving answer proposals.
In natural language processing, the object of study
is human language, and any methodology for doing
research in this field will need to have some con-
tact with examples of this object. This contact has
become more and more direct in the past decades,
with samples of language becoming more directly
the material from which proposals (in the form
of statistical models) are derived. Recent years
have seen an increase in the collection of samples
specifically for the purpose of creating benchmarks,
against which progress in devising models can be
measured. It is this function of benchmarking, and
its role in a progress-oriented methodology, that
this paper aims to investigate.

Figure 1 illustrates the basic structure of a bench-
marking methodology: A language task is devised
that is a) restricted enough to be managable with
current methods, and b) deemed challenging for the
capabilities that it involves.1 For this task, a dataset

1This figure is from (Schlangen, 2019), of which this is a
shorter version developed in a somewhat different direction.
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Figure 1: Relations between Research Objects in a
Benchmark-Driven Methodology

is collected, often via crowd sourcing, on which in
turn models are trained and compared, using evalu-
ation metrics defined together with the task. What
can we learn by following such a methodology?
Let’s look at the components first and then at ways
in which this methodology is, might, and perhaps
should be used.

2 What is a Language Benchmark?
2.1 What is a Benchmark?
In computing, a benchmark is “a problem that has
been designed to evaluate the performance of a
system [which] is subjected to a known workload
and the performance of the system against this
workload is measured. Typically the purpose is to
compare the measured performance with that of
other systems that have been subject to the same
benchmark test.” (Butterfield et al., 2016).

The use of this term in NLP is related: here,
benchmark tasks are also specifically designed for
evaluation; however, an important difference is that
what is being evaluated is not a full system that has
a separate main purpose, but rather an algorithm
that is instantiated on the benchmark itself. I will
discuss the consequences of this below.

This kind of evaluation of learning algorithm
has a long tradition in the field of machine learn-
ing research.2 In this field, a new algorithm would

2For example, the UCI Machine Learning Repository has
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normally be tested on a large collection of datasets,
possibly ranging from classifications of flowers to
classification of credit records, with no assumption
of any internal connection between the datasets.
Again, NLP is different here, as all datasets rep-
resent facets of the same underlying phenomenon,
language use.

I will argue that these two differences (life out-
side of benchmarking, and internal connection be-
tween tasks) are important, but understudied. But
first we look at the notion of a language task in
some more detail.

2.2 What is a Language Task?
A language task is a mapping between an input
space and an output or action space, at least one
of which contains natural language expressions.
The mapping has to conform to a task description,
which is typically given only informally, making
reference to theoretical or pre-theoretical constructs
external to the definition, such as “translation” or
“is true of”. I call this an intensional description.
Typically, a task will also be specified extension-
ally through the provision of a dataset of examples
of the mapping (that is, pairs of state and action).
To collect such a dataset, the task description (e.g.,
“classification of entailment relations between sen-
tence pairs”) must be operationalised into a collec-
tion instruction (“please mark whether the situation
that is well described by sentence A could normally
also be described by sentence B”).

3 How Can It be Evaluated?

3.1 Relation Task / Dataset
Given a task and a dataset, the first question to ask
is how well the latter exemplifies the former. In-
vestigating this is relatively straightforward. First,
the dataset should be verified, which is to check
whether the provided input/output pairs can indeed
be judged correct relative to the task (in its inten-
sional description). If the examples are collected
specifically for the purpose of exemplifying the
task, this is the process of controlling annotation,
and standard methodologies exist (Artstein and
Poesio, 2008; Pustejovsky and Stubbs, 2013). Care
needs to be taken that the task is actually well-
defined enough to pose an unambiguous challenge
to capable language users.3

been collecting and providing datasets for more than 20 years
now (Dua and Graff, 2019).

3Pavlick and Kwiatkowski (2019), for example, show that
the task of annotation textual entailments can lead to faultless

Validating a dataset is a less formalised process.
It comprises arguing that the dataset indeed exem-
plifies the task intension well. For example, pairs
only of images of giraffes and sentences describing
them would arguably not exemplify the general task
of image description very well (even if the descrip-
tions are accurate), while perhaps exemplifying the
task of giraffe image description.

Another way to evaluate a dataset is by trying
to model it. If a model can “solve” the dataset
even when deprived of information that for theoret-
ical or pre-theoretical reasons is seen to be crucial,
the dataset can be considered an unsatisfactory ex-
emplification of the task. E.g., in a visual (polar)
question answering setting (Antol et al., 2015), if
in a dataset all and only the expressions that men-
tion giraffes are true, a model could seize on this
fact and perform well without needing the images,
which would be evidence that the dataset is defi-
cient relative to the task description.4

3.2 Relation Cognitive Capability / Task

While the dataset forms the visible surface of the
task, it is the task itself that needs to provide value.
We can categorise tasks by how they are embed-
ded in further uses: a product task task is one that
can be argued to have direct value to consumers
(such as translation, or search); an annotation task
is one where the task description is theoretically
motivated and the output a linguistically motivated
object (which may be consumed in a pipeline that it-
self is motivated as a product task); finally, a bench-
mark task – which is the type that concerns us here
–is one which gets its value from how well it tests a
particular ability (and nothing else) and how well
it discriminates learners based on this ability.5

For a language benchmark task, the argument
roughly goes as follows (even if typically only
made implicitly): To be good at task T , an agent

annotator disagreements.
4The task of visual question answering provides an in-

teresting example case of such a development. After Antol
et al. (2015) introduced the first large scale dataset for this
task, it quickly became clear that this dataset could be handled
competitively by models that were deprived of visual input
(“language bias”, as noted e.g. by Jabri et al., 2016). This
problem was then addressed by Goyal et al. (2017) with the
construction of a less biased (and hence more valid) corpus
for the same task.

5Martinez-Plumed and Hernandez-Orallo (2018),
analysing AI benchmarks in general, distinguish between
difficulty (which determines the ability level which must
be reached to perform better than chance on a task) and
discrimination (the slope of the graph plotting ability level vs.
probability of correct response).
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must possess a set CT of capabilities (of represen-
tational or computational nature). If the c ∈ CT

are capabilities that competent language users can
be shown or argued to possess and make use of
in using language—let’s call the set of these capa-
bilities of a competent language user CL, so that
CT ⊆ CL— then being able to model these capa-
bilities (via modelling the task) results in progress
towards the ultimate goal, which is to model com-
petent language use. And hence, any task T that
comes with an interesting set CT is a good task.6

Under what conditions does this argument work?
First of all, the assumed connection to the set of
capabilities must indeed be there. We have al-
ready seen a way to challenge a claimed connection,
through providing a model that can “solve” a given
task (via a dataset) while not having access to in-
formation that, given our analysis of the task and
interest in CT , should be involved in the capabil-
ity.7 (Although this challenge in the first instance
only targets the dataset and not the task itself.)

Secondly, following usual scientific methodol-
ogy (Popper, 1934), we can rank the value of an
instantiation of this argument by how precisely the
capability is specified, from the trivially correct
“task T involves the capability to do task T” to a
statement that could be wrong, e.g. “task T involves
the capability to compute the syntactic structure of
a natural language sentence”. Such a statement
must make reference to theoretical constructs be-
longing to the analysis of cognitive capabilities.

Furthermore, we can rank the motivation given
for a task by how explicit it is in delineating the
set of capabilities it involves. For a given c ∈ CT ,
is “c as required by T ” fully separable from any

6To give some examples of informal versions of this argu-
ment, and choosing papers more or less randomly, here are
some quotes:

From the paper that introduced the visual question answer-
ing task (Antol et al., 2015): “What makes for a compelling
AI-complete task? [. . . ] Open-ended questions require a po-
tentially vast set of AI capabilities to answer – fine-grained
recognition [. . . ], object detection [. . . ], activity recognition
[. . . ], knowledge based reasoning [. . . ], and commonsense
reasoning [. . . ].”

Williams et al. (2018), on computing entailments: “The
task of natural language inference (NLI) is well positioned
to serve as a benchmark task for research on NLU. [. . . ] In
particular, a model must handle phenomena like lexical entail-
ment, quantification, coreference, tense, belief, modality, and
lexical and syntactic ambiguity.”

7Such an attack challenges the claim of there being a neces-
sary connection between handling T and possessing capability
c. It might still very well be that humans can only perform
this task if they possess capability c (and all the knowledge
involved in it), because they wouldn’t be able to pick up the
statistical correlations that could be exploited.

other tasks involving c? Or is “c as required by T ”
perhaps all that there is to know about c, that is, is
c exhaustively represented by T ?

Finally, underlying the benchmarking methodol-
ogy — where the benchmark is not just a measur-
ing tool, but also a modelling target — there has
to be the assumption that some sort of transferable
knowledge is generated by modelling T , so that
what the model (and not just the modeller!) has
learned about (a sufficiently generally specified) c
can be used in other tasks that involve c. (Let’s
call this transferability; which strictly speaking is
a property of models, not of tasks.) More on this
below.

To sum up, a benchmark task must point beyond
itself and get its value from its connection to a par-
ticular facet of language, a particular capability of
language users; this in turn seems to be difficult to
specify without access to terms from theories of
the domain, which allow us to name these capabili-
ties.8,9

4 How are Language Benchmarks Used?

In the way that these tasks are set up, as single-step
tasks that humans can quickly do (“describe this
image”, “is the elephant [in this image] sleeping?”,
“does sentence A follow from sentence B?”), it is
tempting to see a similarity to tasks used in (human)
intelligence testing (see e.g. Borsboom (2005) for
an introduction). There is a crucial difference, how-
ever: Where intelligence testing works more in
the way standard computing benchmarking works
(subjecting the otherwise functioning learner to a
standardised workload), in NLP, benchmarks are
both the testing instrument as well as the training
material.10 The question then cannot be “to what
extent does system Σ possess capability c”, it has
to be “to what extent can algorithm A learn c from
dataset D?” — and what does that tell us?

4.1 Single-Task Models
Let’s assume we have defined a task T that we
are sufficiently convinced is well represented by

8And one will indeed find that papers introducing such
tasks make mention of terms like syntax, semantics, composi-
tionality, quantifiers, etc.

9We can also note that with this focus on benchmarking
normally comes a certain top-down approach, where the col-
lected data is not investigated for how exactly the human
participants went about solving their task. (But see (van Mil-
tenburg, 2019) for a detailed study along those lines, for the
task of image description.)

10For a recent paper also discussing the relation between
AI benchmarking and intelligence testing, see (Chollet, 2019).
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dataset D. We have trained a model M that per-
forms well on this dataset. What have we learned?
We have learned that a learning algorithm of the
type of M can model D. Further, we have learned
that the information to do task T (as exemplified in
D), is contained in D, and M can pick it up.

Under what conditions can we now say that we
have modelled T , rather than just D? If we have
convinced ourselves that D represents T faithfully,
then we might be willing to make this leap, and
with it, claim that we have modelled CT . We can
get further support by collecting more data D′ that
also exemplifies T , but perhaps operationalises it
differently. The prediction should be at least that
the learning algorithm can also learn to model D′;
but more significantly, we’d also want the modelM
learned from D to perform well on D′. Similarly,
if we have another task T ′ of which we think that
it involves similar capabilities, we should expect it
to be amenable to being modelled with a learning
algorithm of similar type to M .

What do we learn from a model M ′ (introduc-
ing architectural innovation κ over M ) performing
better on T (via D)? We can take this as indication
that κ may be what is responsible for increasing
performance, and hence what is leading to a more
adequate model of CT .

4.2 Multi-Task Models

With the advent of pre-training in NLP (Peters et al.,
2018; Devlin et al., 2018), where a model is trained
on (a typically large amount of) data under a spe-
cific task-regime (typically language modelling, i.e.
the task of predicting the next word in a running
text) and then becomes part of the model for a
target task, it has become common to test on a col-
lection of tasks (Wang et al., 2019b,a). What do
we learn from such a setup? In our Figure 1, if
we find a task on which we can pre-train a model
MP that becomes a part of models M and M ′,
and which makes them more powerful than models
that do not have access to the pre-trained model,
then we can infer that whatever MP models is a
shared part of M and M ′ as well (and hence in-
volves the hypothesised joint capability C ′). This
then provides an instrument to study the tasks: if
the pre-trained model works well on some but not
all, there must be something that those groups have
in common. To make this intelligible, however,
recourse to theoretical terms must again be taken.
(E.g., assuming that these tasks involve the use of

certain types of representation, or certain actions
over representations.)

5 But Are We Making Progress?
Within the logic of this methodology, we are clearly
making enormous progress at two links in the chain
illustrated in Figure 1: For many of the established
tasks, models have been and continue to be pro-
posed that perform better, according to the metrics
defined for the tasks. In addition, for many of the
tasks, better datasets have been collected, avoiding
exploitable biases. Where there is less activity is in
systematically studying the implications of success
at one task for success at others. The presenta-
tion above was largely idealised (or normative): In
reality, there is very little explicitness about the
assumed connection between tasks and capabilities,
and no theory of how (or whether) language com-
petence decomposes into capabilities that could be
learned separately and then be assembled into a
whole, and there is very little explicit knowledge
about the vertical links in the Figure, from one task
/ model to the next.11

6 Conclusions

In this short paper, I have discussed the methodol-
ogy of using language tasks to drive research on
models of language competence. I have argued
that the success of this approach hinges on how
well progress on one task can be translated into
progress on other tasks. While some steps have
been taken in this direction, current work still ap-
pears to mostly focus on isolated tasks (or groups
of tasks). Overcoming this, in my opinion, will re-
quire more explicit considerations about how tasks
and capabilities are connected, and how the set of
capabilities is structured—to ensure movement is
not only uphill, but rather up the right hill (Bender
and Koller, 2020), and it indeed is a single hill. For
this, a (re-)connection with the fields that study the
composition of language competence—linguistics
and cognitive and developemental psychology—
seems advisable (if only to disagree explicitly). As
a positive proposal, I suggest that a focus should be
put on assembling a curriculum of tasks, organised
in a complexity and inclusion hierarchy, and that
the benchmarking target should be the developmen-
tal trajectory on this. Working this out in detail I
must leave for future work.

11In the neighbouring field of Computer Vision, there re-
cently have been attempts to “disentangle task transfer learn-
ing” (Zamir et al., 2018).
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Abstract

In this work, we introduce X-FACT: the lar-
gest publicly available multilingual dataset for
factual verification of naturally existing real-
world claims. The dataset contains short sta-
tements in 25 languages and is labeled for ve-
racity by expert fact-checkers. The dataset
includes a multilingual evaluation benchmark
that measures both out-of-domain generaliza-
tion, and zero-shot capabilities of the multi-
lingual models. Using state-of-the-art multi-
lingual transformer-based models, we develop
several automated fact-checking models that,
along with textual claims, make use of additi-
onal metadata and evidence from news stories
retrieved using a search engine. Empirically,
our best model attains an F-score of around
40%, suggesting that our dataset is a challen-
ging benchmark for evaluation of multilingual
fact-checking models.

1 Introduction

Curbing the spread of fake news and misinforma-
tion on the web has become an important societal
challenge. Several fact-checking initiatives, such as
PolitiFact,1 expend a significant amount of manual
labor to investigate and determine the truthfulness
of viral statements made by public figures, organi-
zations, and social media users. Of course, since
this process is time-consuming, often, a large num-
ber of falsified statements go unchecked.

With the aim of assisting fact-checkers, resear-
chers in NLP have sought to develop computatio-
nal approaches to fact-checking (Vlachos and Rie-
del, 2014; Wang, 2017; Pérez-Rosas et al., 2018).
Many such works use the FEVER dataset, which
contains claims extracted from Wikipedia docu-
ments (Thorne et al., 2018). Using real-world
claims, Wang (2017) introduced LIAR, a dataset

1https://www.politifact.com/

with 12,836 claims from PolitiFact. Recently, Au-
genstein et al. (2019) introduced MultiFC, an even
larger corpus of 34,918 claims collected from 26
fact-checking websites.

Although misinformation transcends countries
and languages (Bradshaw and Howard, 2019; Is-
lam et al., 2020), much of the recent work focuses
on claims and statements made in English. Deve-
loping Automated Fact Checking (AFC) systems
in other languages is much more challenging, the
primary reason being the absence of a manually
annotated benchmark dataset for those languages.
Moreover, there are fewer fact-checkers in these
languages, and as a result, a non-English mono-
lingual dataset will inevitably be small and less
effective in developing fact-checking systems. As
recent research points out, a possible solution in de-
aling with data scarcity is to train multilingual mo-
dels (Aharoni et al., 2019; Wu and Dredze, 2019;
Hu et al., 2020). Indeed, this finding motivates us
to construct a large multilingual resource that the
research community can use to further the develop-
ment of fact-checking systems in languages other
than English.

Recent efforts in the construction of a mul-
tilingual dataset are limited, both in scope and
in size (Shahi and Nandini, 2020; Patwa et al.,
2020). For instance, FakeCovid, a dataset intro-
duced by Shahi and Nandini (2020) contains 3066
non-English claims about COVID-19. In compa-
rison, X-FACT contains 31,189 general domain
non-English claims from 25 languages. Moreover,
FakeCovid contains only two labels, namely, False,
and Others. We argue that this is undesirable, as
fact checking is a fine-grained classification task.
Due to subtle differences in language, most claims
are neither entirely true nor entirely false (Rash-
kin et al., 2017). In contrast, our dataset contains
seven labels—we make distinctions between true,
mostly true, half-true etc. Table 1 shows two such
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Claim Muslimische Gebete sind Pflichtpro-
gramm an katholischer Schule.
Muslim prayers are compulsory in
Catholic schools.

Label Mostly-False (Grösstenteils Falsch)
Claimant Freie Welt
Language German
Source de.correctiv.org
Claim Date March 16, 2018
Review Date March 23, 2018

Claim Temos, hoje, a despesa de Pre-
vidência Social representando 57%
do orçamento.
Today, we have Social Security ex-
penses representing 57% of the bud-
get.

Label Partly-True (Exagerado)
Claimant Henrique Meirelles
Language Portuguese (Brazilian)
Source pt.piaui.folha.uol.com.br
Claim Date None
Review Date May 2, 2018

Table 1: Examples from X-FACT. Original labels are
shown in parenthesis along with the manually mapped
labels. For reference, translations are also shown.

examples from German and Brazilian Portuguese.
In summary, our contributions are:

1. We release a multilingual fact-checking ben-
chmark X-FACT, which includes 31,189 short
statements labeled for factual correctness and
covers 25 typologically diverse languages
across 11 language families. X-FACT is an
order of magnitude larger than any other mul-
tilingual dataset available for fact checking.

2. Apart from the standard test set, we create two
additional challenge sets to evaluate fact chec-
king systems’ generalization abilities across
different domains and languages.

3. We report results for several modeling approa-
ches and find that these models underperform
on all three test sets in our benchmark, sug-
gesting the need for more sophisticated and
robust modeling methods.

The X-FACT dataset, and the code for our expe-
riments, can be obtained at https://github.com/
utahnlp/x-fact.

2 The X-FACT Dataset

X-FACT is constructed from several fact-checking
sources. We briefly outline this process here.

Sources of Claims. We relied on a list of non-
partisan fact-checkers compiled by International
Fact-Checking Network (IFCN)2, and Duke Re-
porter’s Lab3. We removed all the websites that
conduct fact-checks in English and are covered
by previous work(Wang, 2017; Augenstein et al.,
2019). As a starting point, we first queried Go-
ogle’s Fact Check Explorer (GFCE)4 for all the
fact-checks done by a particular website. Then we
crawled the linked article on the website and ad-
ditional metadata such as claimant, URL, date of
the claim. For websites not linked through GFCE,
we directly crawled all the available fact-checking
articles from the fact-checker’s website. We left
out some fact-checkers because either the claims
on their websites were not well specified or the fact-
checker did not use any rating scale. We performed
semi-automated text processing to remove dupli-
cate claims and examples where the label appeared
in the claim itself. This resulted in data from a total
of 85 fact checkers for further processing. Refer to
the appendix for more details on the this process.

Filtering the Dataset. There are two major chal-
lenges in using the crawled data directly: a) the
labels are in different languages, and b) each fact
checker uses a different rating scale for categoriza-
tion. To deal with these issues, first, we manually
translated all ratings to English, followed by semi-
automatic merging of labels if they were found to
be synonyms. Second, in consultation with Fac-
tly,5 an IFCN signatory, we created a rating scale
compatible with most fact-checkers. Our label set
contains five labels with a decreasing level of truth-
fulness: True, Mostly-True, Partly-True, Mostly-
False, and False. To encompass several other cases
where assigning a label is difficult due to lack of
evidence or subjective interpretations, we introdu-
ced Unverifiable as another label. A final label
Other was used to denote cases that do not fall un-
der the above-specified categories. Following the
process described, we reviewed each fact-checker’s
rating system along with some examples and ma-
nually mapped these labels to our newly designed
label scheme. See table 1 for examples. In our sub-
sequent discussions, we refer to each fact-checking
website as a source.

2https://www.poynter.org/ifcn/
3https://reporterslab.org/

fact-checking/
4https://toolbox.google.com/factcheck/

explorer
5https://factly.in
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Data split # claims # languages

Train 19079 13
Development 2535 12
In-domain (α1) 3826 12
Out-of-domain (α2) 2368 4
Zero-Shot (α3) 3381 12

Table 2: Dataset details. X-FACT contains three
challenge sets, namely, In-domain Test (α1), Out-of-
domain Test (α2), Zero-Shot Test (α3).

We found that the data from several sources was
dominated by a single label (> 80%). Since it is
difficult to train machine learning models on highly
imbalanced datasets, we removed 54 such websites.
We additionally removed fact-checking websites
that contained fewer than 60 examples. In total, our
dataset contains 31,189 fact-checks.

A Single Test Set is Not Sufficient. Recent ad-
vances in NLP have shown that multilingual mo-
dels are effective for cross-lingual transfer (Kon-
dratyuk and Straka, 2019; Wu and Dredze, 2019;
Hu et al., 2020). A multilingual fact-checking sys-
tem of similar transfer capabilities will certainly
be an asset, especially in languages with no or few
fact-checkers. From this perspective, we seek to
provide a robust evaluation benchmark that can
help us understand the generalization abilities of
our fact-checking systems.

With this objective, we construct three test sets,
namely α1, α2, and α3.6 The first test set (α1) is
distributionally similar to the training set. The α1

set contains fact-checks from the same languages
and sources as the training set.

Second, the out-of-domain test set (α2), contains
claims from the same languages as the training
set but are from a different source. A model that
performs well on both α1 and α2 can be presumed
to generalize across different source distributions.

Third test set is the zero-shot set (α3), which se-
eks to measure the cross-lingual transfer abilities of
fact-checking systems. The α3 set contains claims
from languages not contained in the training set.
Models that overfit language-specific artifacts will
underperform on α3.

Languages. For training and development, we
choose the top twelve languages based on the num-

6The names for our test sets, and the idea of having multi-
ple test sets without corresponding training sets, is inspired by
Gupta et al. (2020).

ber of labeled examples. The average number of
examples per language is 1784, with Serbian being
the smallest (835). We split the data into training
(75%), development (10%), and α1 test set (15%).
This leaves us with 13 languages for our zero-shot
test set (α3). The remaining set of sources form
our out-of-domain test set (α2). See table 2 for the
number of claims and langauges in each of these
splits.

In total, X-FACT covers the following 25 lan-
guages (shown with their ISO 639-1 code for bre-
vity): ar, az, bn, de, es, fa, fr, gu, hi, id, it, ka, mr,
no, nl, pa, pl, pt, ro, ru, si, sr, sq, ta, tr. Please refer
to the appendix for more details.

3 Experiments and Results

3.1 Experimental Setting
The goal of our experiments is to study how dif-
ferent modeling choices address the task of mul-
tilingual fact-checking. All our experiments use
mBERT, the multilingual variant of BERT (Devlin
et al., 2019) and use macro F1 score as the eva-
luation metric.7 We report average F1 scores and
standard deviations on four runs with different ran-
dom seeds.

We implement the following multilingual mo-
dels as baselines for future work:

1. Claim Only Model (Claim-Only): We pro-
vide textual claim as the only input to the mo-
del, in effect treating the problem as a simple
sentence classification problem.

2. Attention-based Evidence Aggregator
(Attn-EA): Typically, to determine the
veracity of a claim, fact-checkers first gather
relevant evidence by performing a web search
and then aggregate this evidence to reach their
final decision. We emulate this procedure
by developing an attention-based evidence
aggregation model that operates on evidence
documents retrieved after performing web
search with the claim using Google. For each
claim, we obtain the top five results and use
them as evidence. Using full text from web
pages is not feasible, as the mBERT model
has a restricted input sequence length of 512.
Following previous work (Augenstein et al.,
2019), we use snippets from search results as
our evidence.

7Although it is possible to develop partial scoring metrics,
which we leave for future work to explore.
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For a given claim and a collection of n evi-
dence documents, we first encode the claim
and evidences separately using mBERT by
extracting the output of the CLS token, deno-
ted as: c, [e1, e2, ..., en]. We first apply dot-
product attention (Luong et al., 2015) to ob-
tain the attention weights [α1, α2, ..., αn], and
then compute a linear combination using these
attention coefficients: e =

∑
i αiei. This re-

presentation is then concatenated with c and
fed to the classification layer. In all our expe-
riments, we fix the number of evidence docu-
ments to five.

3. Augmenting metadata (+Meta): We con-
catenate additional key-value metadata with
the claim text by representing it as a se-
quence of the form: Key : Value (Chen
et al., 2019). This metadata includes the
language, website-name, claimant,
claim-date, and review-date. If a cer-
tain field is not available for a claim, we repre-
sent the value by none.

All the models are trained in a multilingual set-
ting, i.e., a single model is trained for all languages.
We could not use monolingual models as the trai-
ned monolingual models were unstable due to the
small size of data for each language.

Model α1 α2 α3

Majority 6.9(–) 10.6(–) 7.6(–)

Claim-Only 38.2(0.9) 16.2(0.9) 14.7(0.6)

Claim-Only + Meta 39.4(0.9) 15.4(0.8) 16.7(1.1)

Attn-EA (Random) 37.5(0.8) 16.3(0.5) 14.9(1.2)

Attn-EA 38.9(0.2) 15.7(0.1) 16.5(0.7)

Attn-EA + Meta 41.9(1.2) 15.4(1.5) 16.0(0.3)

Table 3: Average F1 scores (and standard deviations) of
the models studied in this work. Models in top rows are
claim-only models while those in bottom are evidence-
based. Attn-EA (Random) denotes the results of the
evidence-based model when it is trained with random
search snippets. (+ Meta) models denote those augmen-
ted with additional metadata.

3.2 Results
The results are shown in table 3. We will discuss
results by answering a series of research questions.
As an indicator of label distribution, we include a
majority baseline with the most frequent label of
the distribution (i.e. false).

Does the dataset exhibit claim-only bias? Be-
fore moving to more sophisticated systems, let us
first examine if the model can predict a statement’s
veracity by only using the textual claim. Note that
this setting is similar to that of hypothesis only
models for the task of Natural Language Inference
(NLI) (Poliak et al., 2018). From table 3, we see
that a claim-only model outperforms a majority
baseline by a large margin. We can draw two infe-
rences: a) A significant number of examples in α1

can be labeled by just relying on the textual claim,
and b) the claim-only model has learned spurious
correlations from the dataset.

Do search snippets improve fact-checking?
First, results from table 3 show that augmenting
models with metadata is helpful. Second, using
search snippets as evidence with an attention-based
model along with metadata improves performance
by 2.5 percentage points on the in-domain test set
(α1). To further validate that snippets indeed help
the evidence-based model, we perform another ex-
periment in which we pair each claim with random
search snippets of the same language. Since there
is no relevant evidence, the performance is indeed
similar to the claim-only model. This again con-
firms our finding that the dataset exhibits some
claim-only bias.

While the Attn-EA model provides some per-
formance improvement on the in-domain test set,
surprisingly, the claim-only model outperforms the
evidence-based model by a small margin on α3.
This might be due to the evidence-based over-fitting
the in-domain data.

How informative are the search snippets?
Note that we used snippets to summarize the retrie-
ved search results. To gauge the relevance of these
snippets, we manually examine 100 examples from
α1 test set for Hindi. Our preliminary analysis re-
veals that only 45% of snippets provide sufficient
information to classify the claim, indicating why
the performance increase with the evidence-based
model is small. Our same analysis suggests that
for 83% of the examples, using full text of the web
pages provides sufficient evidence to determine ve-
racity of the claim. Hypothetically, this means,
were the models able to ingest large documents
(web pages), their performance increase could have
been much more significant.

Do the models generalize across sources and
languages? We observe that performance on α2
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and α3 is worse than on α1, not only highligh-
ting the difficulty of these challenge sets, but also
showing that models overfit both source-specific
patterns (α2) and language-specific patterns (α3).

Importantly, these results underscore the utility
of our challenge sets in assessing model generali-
zability as well as diagnosing overfitting.

Model α1 α2 α3

X-FACT

Claim-Only + Meta 39.4(0.9) 15.4(0.8) 16.7(1.1)

Attn-EA + Meta 41.9(1.2) 15.4(1.5) 16.0(0.3)

X-FACT + English
Claim-Only + Meta 37.1(2.7) 14.5(0.5) 14.4(0.3)

Attn-EA + Meta 38.0(4.5) 14.7(2.6) 14.3(1.9)

Table 4: Performance comparison when augmenting
the dataset with 12,311 English claims from PolitiFact.
Average F1 scores (and standard deviations) of the mo-
dels are reported over four random runs.

Can we improve performance by augmenting
training data with English claims? Since X-
FACT does not contain any examples from En-
glish, we answer this question by augmenting the
training set with 12,311 claims from the PolitiFact
subset of the MultiFC (Augenstein et al., 2019).
Results are shown in table 4. Interestingly, we see
that augmenting the models with English data hurts
model performance. A possible cause is that the
augmented data mostly contains political claims,
while our dataset contains general claims.

4 Conclusion

We presented X-FACT, the currently largest multi-
lingual dataset for fact-checking. Compared to the
prior work, X-FACT is an order of magnitude lar-
ger, enabling the exploration of large transformer-
based multilingual approaches to fact-checking.
We presented results for several multilingual mo-
deling methods and showed that the models find
this new dataset challenging. We envision our da-
taset as an important benchmark in development
and evaluation of multilingual approaches to fact-
checking.
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A Details on Dataset Construction

1. As mentioned in the paper, we omit several
fact-checking websites from our data. A large
number of these websites are not amenable to
crawling and scraping the data. For instance,
AFP9 is a prominent fact-checker for many
Indo-European Romance languages, but the
template on its website does not lend itself to
automatic data extraction tools. We can try
to access this websites using GFCE, but case
many times, the ratings assigned are sentences
instead of a single label.

2. Another common reason is that on a number
of these websites, the claim statements are
not well-specified. Take for example Fakto-
graf10, a website performing fact-checking in
Croatian. On this website , we can neither
properly extract the claim statements nor do
they clearly mention the rating assigned to the
articles.

3. For a small percentage of the claim statements,
Google search did not yield any results. We
omitted all of these claims from our training,
development, and test sets. These are only a
very small percentage of claims, so we remove
them from all models.

Because of these reasons, a large number of
websites in a number of languages could not be
crawled.

There are two ways we obtain our claims, la-
bels, and other metadata. One is the Google’s Fact
Check Explorer (GFCE)11, and the other is by cra-
wling from the respective fact-checking website. In
case, the links are available on GFCE, we down-
load other metadata by visiting the website. Also,
we will release the label mapping we created along
with the dataset. Appendix A provides more details
on the dataset we collected.

B Reproducibility

In this section, we provide details on our hyper-
parameter settings along with some comments on
reproducibility.

9https://factuel.afp.com/
10https://faktograf.hr/ocjena-tocnosti/
11https://toolbox.google.com/factcheck/

explorer

Dataset Model RunTime

X-FACT Claim 1.5 hr
X-FACT Claim+Meta 1.5 hr
X-FACT Attn-EA 2.3 hr
X-FACT Attn-EA + Meta 2.3 hr
X-FACT + Eng Claim+Meta 2.5 Hr
X-FACT + Eng Attn-EA + Meta 4.1 Hr

Table 5: Average Training time of the models trained

B.1 Models and Code
As described in the main paper, we used multilin-
gual BERT for performing our experiments. We
implemented all our models in PyTorch using the
transformers library (Wolf et al., 2019).

B.2 Computing Infrastructure Used
All of our experiments required access to GPU
accelerators. We ran our experiments on three ma-
chines: Nvidia Tesla V100 (16 GB VRAM), Nvidia
Tesla P100 (16 GB VRAM), Tesla A100 (40 GB
VRAM). Our experiments for the claim-only model
were run on V100, and P100 GPUs and evidence-
based models required larger VRAM, so they were
run on A100 GPUs.

B.3 Hyperparameters and Fine-tuning
Details

1. We used the mBERT-base model for all of
our experiments. This model has 12 layers
each with hiddem size of 768 and number of
attention heads equal to 12. Total number
of parameters in this model is 125 million.
We set all the hyper-parameters as suggested
by Devlin et al. (2019), except the batch size
which is fixed to 8.

2. All our models were run with four random
seeds (seed = [1, 2, 3, 4]) and the numbers re-
ported in paper are the means of these four
runs. We fine-tuned all models for ten epochs
and the model performing the best on deve-
lopment set across all epochs was chosen as
the final model.

3. Due to constraints on the VRAM of the GPUs,
we restricted the number of evidence docu-
ments to five.

Average Run times Average training times are
presented in table 5.
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Language
ISO
639-1
code

FactChecker Language Family Train Dev α1 α2 α3

Arabic ar misbar.com Afro-Asiatic
Bengali bn dailyo.in IE: Indo-Aryan
Spanish es chequeado.com IE: Romance
Persian fa factnameh.com IE: Iranian
Indonesian id cekfakta.com Austronesian
Indonesian id cekfakta.tempo.co Austronesian
Italian it pagellapolitica.it IE: Romance
Italian it agi.it IE: Romance
Hindi hi aajtak.in IE: Indo-Aryan
Hindi hi hindi.newschecker.in IE: Indo-Aryan
Gujarati gu gujarati.newschecker.in IE: Indo-Aryan
Georgian ka factcheck.ge Kartvelian
Marathi mr marathi.newschecker.in IE: Indo-Aryan
Punjabi pa punjabi.newschecker.in.txt IE: Indo-Aryan
Polish pl demagog.org.pl IE: Slavic
Portuguese pt piaui.folha.uol.com.br IE: Romance
Portuguese pt poligrafo.sapo.pt IE: Romance
Romanian ro factual.ro IE: Romance
Norwegian no faktisk.no IE: Germanic
Sinhala si srilanka.factcrescendo.com IE
Serbian sr istinomer.rs IE: Slavic
Tamil ta youturn.in Dravidian
Albanian sq kallxo.com IE: Albanian
Albanian sq faktoje.al IE: Albanian
Russian ru factcheck.kz IE: Slavic
Turkish tr dogrulukpayi.com Turkic
Turkish tr teyit.org Turkic
Azerbaijani az faktyoxla.info Turkic
Portuguese pt aosfatos.org IE: Romance
German de correctiv.org IE: Germanic
Dutch nl nieuwscheckers.nl IE: Germanic
French fr fr.africacheck.org IE: Romance

Table 6: Details of the X-FACT dataset. Our dataset belongs to 25 typologically diverse languages across 11
language families. The table shows the composition of training, development, and three challenge sets. IE: denotes
Indo-Aryan
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Abstract

Recently, mT5 - a massively multilingual ver-
sion of T5 - leveraged a unified text-to-text for-
mat to attain state-of-the-art results on a wide
variety of multilingual NLP tasks. In this pa-
per, we investigate the impact of incorporating
parallel data into mT5 pre-training. We find
that multi-tasking language modeling with ob-
jectives such as machine translation during pre-
training is a straightforward way to improve
performance on downstream multilingual and
cross-lingual tasks. However, the gains start to
diminish as the model capacity increases, sug-
gesting that parallel data might not be as essen-
tial for larger models. At the same time, even
at larger model sizes, we find that pre-training
with parallel data still provides benefits in the
limited labelled data regime.

1 Introduction

Recent works have shown that cross-lingual trans-
fer learning in pre-trained multilingual models such
as mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020) could be improved further by us-
ing parallel data (Conneau and Lample, 2019; Hu
et al., 2020a; Ouyang et al., 2020; Luo et al., 2020).
In this paper, we continue this line of work by im-
proving the recent mT5 model (Xue et al., 2020) by
leveraging parallel corpora. We experiment with
several text-to-text objectives that incorporate par-
allel data (spanning 198 language pairs) into mT5
pre-training. Our key findings are summarized be-
low:

• In the regime of very small fine-tuning
datasets, objectives with parallel data improve
results significantly.

• The gain from using parallel data decreases as
we scale up the size of the pre-trained model.

∗Equal Contribution. Please direct correspondence to {
mihirkale, adisid } @google.com

• Simple objectives based on neural machine
translation (NMT) perform better than the
traditionally employed “translation language
modeling” (TLM) objective.

2 Method

We focus on the mT5-Large model, which is a 24
layer encoder-decoder transformer model and has
shown strong performance on a variety of cross-
lingual benchmarks (Xue et al., 2020). Instead
of training a new model from scratch, we start
from the publicly available mT5-Large checkpoint
- which has been trained for over 1 trillion tokens
- and do a second stage pre-training with a mix of
monolingual and parallel data.

2.1 Objectives
The mT5 - multilingual version of T5 (Raffel et al.,
2020) - series of models were pre-trained on a mul-
tilingual version of the C4 corpus with a masked
language modeling “span-corruption” objective
(Raffel et al., 2020), where the encoder is fed a
chunk of text with random spans replaced with a
mask token, and the decoder must reconstruct the
masked-out tokens. One of their primary distinc-
tions is the use of a unified “text-to-text” format for
all text-based NLP problems.

In keeping with the text-to-text format, we exper-
iment with the following objectives to incorporate
parallel data into pre-training:

• TLM - A text-to-text version of translation
language modeling, proposed by Conneau and
Lample (2019) and subsequently used in sev-
eral prior works for encoder only pre-training.
We trivially extend it to the encoder-decoder
setting.

• NMT - Standard machine translation. The
input is the source text and the target is its
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Figure 1: Example source and targets for different text-to-text style pre-training objectives incorporating parallel
data. All objectives except TLM specify target language in the source sentence.

translation. A language code is prefixed to
the input to inform the model of the target
language (Johnson et al., 2017).

• Denoised-NMT - Similar to NMT, but we
additionally mask spans in the source sen-
tence. The model must now learn to implic-
itly perform language modeling of the source
language while translating into the target lan-
guage.

• Denoised-NMT+LM - Similar to Denoised-
NMT, but instead of implicit language mod-
eling, the model must explicitly predict the
source text in addition to the translation. The
target is a concatenation of the translation and
source sentence, while the input is the masked
source sentence.

We refer to the model trained with the standard
NMT objective as nmT5.

3 Experiment Setup

Pre-training datasets For pre-training we use
monolingual data from mC4 (Xue et al., 2020) and
parallel data from OPUS-100 (Zhang et al., 2020).
OPUS-100 is a dataset of 55M translations cover-
ing 100 languages (198 language pairs, either into
or from English). The mC4 corpus consists of un-
labeled web text covering 101 languages, of which
81 overlap with the OPUS-100 languages.

Fine-tuning datasets For downstream evalua-
tion, we use the following four tasks:

• TyDi QA (Clark et al., 2020) - The GoldP
subtask, which corresponds to extractive ques-
tion answering. The input is a passage and a
question, with the answer being a span from
the passage.

• MTOP (Li et al., 2020) - Multilingual Task-
Oriented Parsing. The task is one of structured

Dataset Langs Train size Setting

TyDi QA 9 3.7K zero-shot
MTOP 6 22K zero-shot
WikiAnn NER 40 20K zero-shot
WikiLingua 18 660K multilingual

Table 1: Statistics of datasets used in the paper.

prediction, where user queries must be parsed
into a tree, capturing the domain, intent and
slots.

• WikiAnn NER (Pan et al., 2019) - Named
entity recognition task covering 40 languages
featured in the XTREME benchmark (Hu
et al., 2020b). There are 4 categories of enti-
ties - location, person, organization and mis-
cellaneous.

• WikiLingua (Ladhak et al., 2020) - A re-
cently introduced cross-lingual summariza-
tion dataset, where a document from an arbi-
trary language must be summarized in English.
Since the dataset does not come with training
and evaluation splits, we randomly create val-
idation and test sets of 1000 examples each,
and the rest of the data is used for training.

Table 1 lists further details of each dataset. Fol-
lowing Xue et al. (2020), all tasks are cast into
the text-to-text format. The evaluation for TyDi
QA, MTOP and NER is done in the zero-shot set-
ting, where the model is trained on the English data
and evaluated on all languages. Since zero-shot
cross-lingual language generation is much harder,
for WikiLingua we train the model in a multilin-
gual setting, using available training data for all
languages.

Hyperparameters Pre-training is done with a
batch size of 1M tokens and fine-tuning with
131,072 tokens, with a constant learning rate of
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Model TyDi QA MTOP NER WikiLingua Avg.
(Metric) (F1/EM) (EM) (F1) (ROUGE-L)

mT5 66.3 / 49.8 43.7 58.4 25.2 46.3
+MLM (additional 100K steps) 71.3 / 55.6 48.6 59.9 26.1 49.5
+MLM+TLM 71.1 / 54.6 48.6 61.4 26.1 49.7
+MLM+NMT 75.1 / 60.1 57.7 61.4 27.4 53.5
+MLM+denoised NMT 75.3 / 60.2 56.5 61.5 27.4 53.3
+MLM+denoised NMT-LM 75.0 / 59.4 56.0 62.4 26.9 53.1

Table 2: Results are averaged across all the languages in each dataset. We report F1/EM for QA, exact match
accuracy (EM) for structured prediction, ROUGE-L (Lin, 2004) for summarization and F1 for NER. Each score is
the median over five runs. The final columns lists the average of all the scores. Refer to Appendix A for scores on
individual languages.

0.001. Starting from publicly available mT5-Large
checkpoints, we further pre-train for 100K steps
with a mix of monolingual and parallel objectives.
The parallel data is mixed into monolingual data
at a 10% ratio, which amounts to roughly 4 passes
over the OPUS-100 corpus. Examples from each
language pair are sampled using the same language
sampling distribution as Xue et al. (2020), with
alpha=0.3. For downstream tasks, we fine-tune
for 10K steps for TyDiQA, MTOP, NER and 25K
for WikiLingua, since it is a much larger dataset.
Checkpoint selection is done based on the valida-
tion set.

Baselines Our first baseline is the publicly avail-
able mT5-Large model (1.3 billion parameters).
For a fair comparison, we also experiment with
an mT5 model further pre-trained for 100k steps
with only monolingual data from mC4 (see row 2:
mT5+MLM in Table 2). This lets us assess whether
improvements stem from using parallel data or just
pre-training for longer.

4 Results

We report results in table 2. Overall, adding parallel
data through neural machine translation objectives
improves scores for all 4 tasks, with the NMT ob-
jective performing the best.

Simply pre-training mT5 for longer with just
monolingual data (MLM) leads to improved scores
for all tasks. The TLM objective is not be able to ef-
fectively leverage the parallel data and performs on
par with MLM. On the other hand, our three NMT-
based objectives show gains over MLM across all
tasks. Among these, NMT and Denoised-NMT
are the best and perform similarly, while Denoised-
NMT+LM fares slightly worse. Averaged across
all tasks, NMT and Denoised-NMT outperform

MLM by 4 points.

4.1 Model size

Xue et al. (2020) find that cross-lingual perfor-
mance of language models increases monotonically
with model size. To study the impact of model
capacity, we also experiment with larger model
sizes. Even at the XL size (3.7B params, 3× larger
than mT5-Large), we observe gains for all tasks
with nmT5 (Table 3). However, the magnitude of
the gains is largely diminished, hinting that the
need for parallel data reduces as model capacity
increases. This finding is particularly promising
for low-resource languages, where it is difficult to
obtain high-quality parallel data.

At the same time, nmT5-Large substantially re-
duces the performance gap between mT5-Large
and mT5-XL, covering 70% of the headroom.
Since bigger models are expensive to train and
even more expensive to deploy, this opens up av-
enues for effectively using parallel data to improve
performance of smaller language models. Turc
et al. (2019) found that pre-training student models
before model distillation is helpful, and using par-
allel data to improve student pre-training is another
interesting avenue of future work.

Model TyDi QA MTOP NER WikiLingua Avg.

mT5-Large 66.3 / 49.8 43.7 58.4 25.2 46.3
nmT5-Large 75.1 / 60.1 57.7 61.4 27.4 53.5
∆ 8.8 / 10.3 14.0 3.0 2.2 7.2

mT5-XL 77.8 / 61.8 63.4 65.5 27.9 56.7
nmT5-XL 78.4 / 63.3 64.9 66.2 28.4 57.6
∆ 0.6 / 1.5 1.5 0.7 0.5 0.9

Table 3: Impact of model size on nmT5’s performance.
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Model Few-Shot (100) Low (3.7K) High (80K)

mT5-Large 33.1 / 23.6 66.3 / 49.8 78.1 / 64.8
nmT5-Large 48.8 / 37.1 75.1 / 60.1 78.2 / 65.5
∆ 15.7 / 13.5 8.8 / 10.3 0.1 / 0.7

mT5-XL 45.0 / 31.7 77.8 / 61.8 78.7 / 65.8
nmT5-XL 57.2 / 44.4 78.4 / 63.3 79.7 / 67.0
∆ 12.2 / 12.7 0.6 / 1.5 1.0 / 1.2

Table 4: Performance on the TyDi QA eval set when
fine-tuned in the few-shot (100 examples from TyDi
QA English), low (full TyDi QA English with 3.7K ex-
amples) and high data regime (SQuAD English with
80K examples).

4.2 Limited labeled data

The TyDi QA dataset has only 3.7K English train-
ing examples. To study the impact of the size of
fine-tuning data, we run experiments in two addi-
tional settings: a few-shot regime and a high data
regime. Few-shot uses just 100 randomly sam-
pled training examples, while for the latter we use
the much larger SQuAD corpus (Rajpurkar et al.,
2016), which consists of 80k examples.

When fine-tuned with SQuAD, nmT5 performs
slightly better than mT5 for both Large and XL
model sizes. However, in the few-shot setting,
nmT5-Large improves over mT5-Large by 15
points. Even at the XL size, nmT5 is over 10 points
higher than mT5. nmT5-Large even outperforms
the much larger mT5-XL. Our experiments suggest
that pre-training with parallel data is particularly
useful in the limited labelled data setting.

4.3 Mixing ratio

So far, we have mixed parallel data into mono-
lingual data at a 10% ratio. To assess how the
mixing ratio impacts performance, we compare re-
sults with a 50% mix. With the 50% mix, average
performance is slightly lower, validating our initial
choice.

Mix TyDi QA MTOP NER WikiLingua Avg.

10% 75.1 / 60.1 57.7 61.4 27.4 53.5
50% 76.5 / 60.1 53.9 62.0 26.5 52.7

Table 5: Impact of mixing ratio on nmT5.

4.4 Performance on unseen languages

We also test downstream performance on languages
previously unseen by the models. We randomly
pick 30 languages from the WikiAnn NER dataset

that are not covered in either mC4 1 or OPUS, and
hence none of our models have seen them during
pre-training. Table 6 shows nmT5 outperforms
mT5 on this subset of languages as well, indicating
that the representations of the nmT5 model are
better suited for cross-lingual transfer.

Model ckb hsb xmf “Avg.”

mT5-Large 66.5 64.8 58.4 54.9
nmT5-Large 72.2 69.8 62.2 57.4
∆ 5.7 5.0 3.8 2.5

Table 6: Performance on three randomly picked unseen
languages. “Avg.” is calculated by averaging perfor-
mance across 30 unseen languages.

5 Related Work

Pre-trained multilingual models such as mBERT
and XLM-R have shown to be effective at cross-
lingual transfer learning (Devlin et al., 2019; Con-
neau et al., 2020). Subsequently, many attempts
have leveraged parallel data to improve cross-
lingual capability of these models. Conneau and
Lample (2019) proposed translation language mod-
eling (TLM), to encourage the model to align repre-
sentations across languages. Alternating language
modeling (Yang et al., 2020) and back-translation
masked language modeling (Ouyang et al., 2020)
used code-switched sentences and back-translation
respectively to utilize parallel data. Other works
using parallel data in this line of work include FIL-
TER (Fang et al., 2020), AMBER (Hu et al., 2020a)
and, MMTE (Siddhant et al., 2020). A key factor
that differentiates this paper from these works is
that our pre-trained models use a text-to-text ar-
chitecture, having both an encoder and a decoder,
while the aforementioned models only have the
encoder. Other pretrained multilingual encoder-
decoder models such as mT5 (Xue et al., 2020),
mBART (Liu et al., 2020) and MASS (Song et al.,
2019) do not make use of parallel data during pre-
training.

6 Conclusion

In this work we attempted to improve mT5 pre-
training by incorporating parallel data. We exper-
imented with various text-to-text objectives and
found that multi-tasking with the standard neural
machine translation objective during pre-training

1Subject to precision of language ID models used for mC4.
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leads to improved cross-lingual transfer. The im-
provements from parallel data are most pronounced
in the limited labeled data scenario. Our experi-
ments also indicate that smaller models, with the
help of parallel data, can approach the performance
of larger ones, while also suggesting that the need
for parallel data is lesser as the model capacity
increases.
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A Per-Language Results on All Tasks

en ar bn fi id

mt5 75.0 / 63.0 68.9 / 51.4 54.5 / 37.2 70.4 / 54.6 74.3 / 57.0
+MLM 78.5 / 68.2 76.1 / 59.9 59.0 / 40.7 73.5 / 61.0 76.7 / 60.0
+MLM+TLM 77.3 / 67.0 75.7 / 57.2 61.7 / 39.8 73.3 / 59.0 77.0 / 60.0
+MLM+NMT 78.4 / 69.3 78.9 / 63.1 74.0 / 54.9 77.0 / 64.8 79.9 / 64.8
+MLM+denoised NMT 78.7 / 68.6 79.8 / 64.7 72.6 / 53.1 77.2 / 64.2 79.8 / 67.6
+MLM+denoised NMT-LM 78.2 / 68.2 78.8 / 62.3 69.1 / 49.6 78.2 / 65.7 79.6 / 64.8

ko ru sw te avg

mt5 57.4 / 47.5 61.5 / 37.1 69.7 / 52.5 65.5 / 48.0 66.3 / 49.8
+MLM 64.4 / 55.4 68.6 / 48.9 74.2 / 57.7 71.1 / 48.6 71.3 / 55.6
+MLM+TLM 66.5 / 55.8 67.8 / 48.0 73.9 / 57.1 66.5 / 47.5 71.1 / 54.6
+MLM+NMT 64.9 / 56.2 72.1 / 51.8 77.2 / 63.1 73.3 / 53.1 75.1 / 60.1
+MLM+denoised NMT 67.9 / 58.7 71.9 / 51.5 75.7 / 59.7 74.3 / 53.5 75.3 / 60.2
+MLM+denoised NMT-LM 67.8 / 59.4 72.7 / 51.1 76.0 / 59.9 74.4 / 54.0 75.0 / 59.4

Table 7: TyDi QA GoldP results (F1/EM) for each language.

en de es fr hi th avg

mt5 83.5 41.2 45.4 43.3 21.3 27.5 43.7
+MLM 83.3 44.5 46.3 51.8 31.9 34.0 48.6
+MLM+TLM 85.0 42.4 47.5 49.6 31.8 35.2 48.6
+MLM+NMT 86.1 55.1 59.0 61.7 42.2 42.1 57.7
+MLM+denoised NMT 85.8 51.6 55.2 59.5 42.7 43.9 56.5
+MLM+denoised NMT-LM 85.9 51.9 55.0 57.0 44.1 41.9 56.0

Table 8: MTOP results (EM) for each language.
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en af ar bg bn de el es et eu fa fi fr he

mt5 80.5 64.5 47.7 57.2 66.5 67.0 63.9 62.0 59.0 45.5 41.4 56.9 76.7 45.1
+MLM 81.4 65.1 50.2 55.2 69.3 68.6 66.9 70.5 62.8 46.6 44.9 58.9 76.6 46.4
+MLM+TLM 82.4 65.6 48.8 67.2 72.2 70.1 70.8 72.6 61.2 47.5 47.1 61.4 78.7 48.0
+MLM+NMT 82.2 64.2 56.7 61.0 69.1 70.5 64.6 66.3 66.2 49.3 48.9 60.6 78.4 46.2
+MLM+denoised NMT 82.5 65.7 50.3 63.6 69.6 70.7 68.6 73.7 64.9 48.6 44.3 63.3 77.7 45.5
+MLM+denoised NMT-LM 82.9 66.1 49.5 67.7 74.5 71.1 71.3 74.2 67.1 49.9 44.8 63.2 80.2 49.6

hi hu id it ja jv ka kk ko ml mr ms my nl

mt5 66.8 57.7 44.9 75.4 36.0 46.0 53.0 22.5 29.5 44.8 38.6 65.5 27.0 77.3
+MLM 66.5 61.4 46.2 76.4 35.8 49.0 53.6 23.7 31.4 46.0 39.3 67.4 33.0 78.5
+MLM+TLM 69.6 61.9 47.2 76.7 37.3 51.0 59.4 29.3 30.7 48.2 42.1 70.2 29.0 80.4
+MLM+NMT 69.8 61.7 46.1 77.3 34.5 53.0 55.2 27.0 31.4 43.0 46.7 69.0 27.0 78.9
+MLM+denoised NMT 65.8 63.0 46.6 77.6 37.0 54.0 58.3 26.4 29.8 44.8 42.1 64.3 30.0 80.2
+MLM+denoised NMT-LM 67.7 64.4 48.1 77.9 39.2 49.0 59.4 30.0 31.4 47.4 36.4 71.0 34.0 80.2

pt ru sw ta te th tl tr ur vi yo zh avg

mt5 73.1 48.4 66.8 39.9 37.9 8.5 77.8 57.6 45.1 76.4 58.0 41.8 58.4
+MLM 75.5 47.3 64.5 40.5 38.0 9.2 76.9 56.5 51.7 76.9 59.0 41.8 59.9
+MLM+TLM 76.3 58.8 66.3 40.2 41.2 8.8 76.9 62.0 43.0 79.6 56.0 43.5 61.4
+MLM+NMT 75.5 56.0 65.8 40.3 41.6 8.0 78.7 60.3 57.0 79.8 63.0 41.0 61.4
+MLM+denoised NMT 75.5 58.9 66.2 40.4 40.4 7.9 78.7 60.5 50.0 80.3 64.0 41.4 61.5
+MLM+denoised NMT-LM 78.6 60.9 65.6 40.6 40.9 9.1 77.0 63.1 53.5 79.8 60.0 45.5 62.4

Table 9: WikiAnn NER results (F1) for each language.

en ar cs de es fr hi id it ja

mt5 29.2 23.2 22.4 25.0 25.3 24.6 25.2 25.3 24.1 26.2
+MLM 30.0 24.0 22.9 26.0 26.6 25.5 26.1 25.8 24.9 27.8
+MLM+TLM 30.0 24.4 23.1 25.6 26.3 25.6 26.4 25.8 25.1 27.6
+MLM+NMT 31.5 25.7 24.0 27.0 27.5 26.4 27.7 27.0 25.8 29.5
+MLM+denoised NMT 31.3 25.7 24.7 27.3 27.5 26.8 27.8 27.2 25.8 29.2
+MLM+denoised NMT-LM 30.8 25.0 23.7 26.5 27.1 26.3 27.3 26.7 25.6 28.7

ko nl pt ru th tr vi zh avg

mt5 23.8 25.7 24.6 23.9 25.3 30.9 22.9 25.8 25.2
+MLM 25.2 26.5 25.3 24.6 27.1 31.1 23.2 27.1 26.1
+MLM+TLM 24.7 26.6 25.2 24.4 26.5 31.3 23.3 27.0 26.1
+MLM+NMT 26.7 27.7 26.3 25.9 28.6 34.1 23.9 28.1 27.4
+MLM+denoised NMT 26.6 28.0 25.9 25.8 28.3 33.4 24.3 28.4 27.4
+MLM+denoised NMT-LM 25.9 27.4 25.6 24.9 27.3 33.1 23.8 27.8 26.9

Table 10: Wikilingua results (Rouge-L) for each language.
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ace arz ast ba ce ckb csb eml fur gan gn

mt5-Large 44.8 50.8 83.3 38.1 21.7 66.5 56.7 39.8 64.2 42.1 48.2
nmt5-Large 46.7 53.6 84.8 43.7 28.3 72.2 58.1 41.9 65.6 41.2 51.0

hsb ia jbo lij lmo min nap nov pdc pms pnb

mt5-Large 64.8 63.2 42.1 46.3 69.8 39.1 62.2 62.1 48.1 81.5 61.1
nmt5-Large 69.8 62.4 43.6 43.0 72.0 45.5 61.7 66.7 51.2 83.5 55.4

rm sa tl qu vec vep vls xmf avg

mt5-Large 64.1 17.4 78.6 27.5 66.9 63.6 74.4 58.4 54.9
nmt5-Large 67.6 23.0 79.4 35.6 66.7 68.0 77.5 62.2 57.4

Table 11: WikiAnn NER results on unseen languages. Refer to section 4.4
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Abstract

Intelligent and adaptive online education sys-
tems aim to make high-quality education avail-
able for a diverse range of students. However,
existing systems usually depend on a pool
of hand-made questions, limiting how fine-
grained and open-ended they can be in adapt-
ing to individual students. We explore targeted
question generation as a controllable sequence
generation task. We first show how to fine-tune
pre-trained language models for deep knowl-
edge tracing (LM-KT). This model accurately
predicts the probability of a student answering
a question correctly, and generalizes to ques-
tions not seen in training. We then use LM-KT
to specify the objective and data for training
a model to generate questions conditioned on
the student and target difficulty. Our results
show we succeed at generating novel, well-
calibrated language translation questions for
second language learners from a real online ed-
ucation platform.

1 Introduction

Online education platforms can increase the acces-
sibility of educational resources around the world.
However, achieving equitable outcomes across di-
verse learning needs benefits from systems that
are adaptive and individualized to each student
(Doroudi and Brunskill, 2019). Traditionally, adap-
tive education methods involve planning over a
pool of pre-made questions (Atkinson, 1972; Hun-
ziker et al., 2018). These are naturally limited by
the diversity and coverage of the pool, as well as the
scaling capacity of curriculum planning algorithms.
Recent approaches, such as procedural generation
for personalized programming games (Valls-Vargas
et al., 2017), are limited to well-specified small do-
mains. We address these limitations by leveraging
recent success in deep generative models, in partic-
ular language models (LMs).

Many educational activities involve sequential
data, such as language translation, reading compre-

Target 
Difficulty <G>

<Q> Question #1 
Text <A>

<Y> 
or  

<N>
<Q> Question #2 

Text

generated next  
question text 

<A>
<Y>

<N>
<Q> the man <A> <Y> <Q> she eats <A> 

.86

.14

0.80 <G> the man eats

OUTPUTINPUT

INPUT OUTPUT

student 
state

LM-KT Student Model

Ques6on Generator

Example Reverse Transla6on Ques6on

Question 
Text

the woman

Student 
Answer

la mujer 

Translation 
Correct

<Y>

Figure 1: Example input and outputs for our LM-based
knowledge tracing model (middle) and question gen-
eration model (bottom) for an online reverse language
translation task (top). A question in this task consists
of a target phrase for the student, in this case a Spanish
learner, to translate (e.g. “the woman”).

hension, algebra, and deductive logic. Meanwhile,
pre-trained LMs can effectively handle sequences
from a wide range of modalities (Madani et al.,
2020; Polu and Sutskever, 2020). In this work,
we focus on natural language sequences, where
recent progress in language modeling has shown
great success at capturing abstract properties of lan-
guage (Hewitt and Manning, 2019; Liu et al., 2019).
Specifically, we show how pre-trained LMs can be
easily leveraged to adaptively generate questions
for a given student and target difficulty in a reverse
translation task, using difficulty at answering ques-
tions as a proxy for more complex future learning
objectives.

We introduce an LM-based knowledge tracing
model (LM-KT) to predict students’ difficulty on
novel questions (e.g. target phrases to translate).
We show that LM-KT is well-calibrated, allowing
us to pose the learning problem for the question
generator: given a student state, generate a ques-
tion that will achieve a target difficulty, according
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to LM-KT. We evaluate both LM-KT and ques-
tion generation models on real users and responses
from Duolingo1, a popular online second-language
learning platform.

2 Background & Related Works

There exists a rich body of work on precisely mod-
eling student “ability” and learning. For example,
Item Response Theory (IRT) seeks to model in-
dividual student ability based on their responses
to different questions, creating a strong factoriza-
tion between students and test items (Lord, 1980;
Hambelton and Jodoin, 2003). Meanwhile, Com-
puter Adaptive Testing (CAT) techniques are used
to determine a fixed student ability as quickly as
possible by selecting test items based on informa-
tion utility (Weiss and Kingsbury, 1984; Thissen
and Mislevy, 2000; Settles et al., 2020). However,
these methods, which have been used to develop
efficient standardized tests, do not necessarily op-
timize a student’s learning experience (Mu et al.,
2018). We instead focus on tracking each student’s
evolving knowledge, choosing questions to target
difficulty.

Knowledge Tracing (KT) seeks to model a stu-
dent’s knowledge state from their answer history in
order to help individualize exercise sequences (Cor-
bett and Anderson, 1995). This draws inspiration
from traditional education curriculum practices,
such as distributed spacing of vocabulary (Bloom
and Shuell, 1981) and mixed review in mathemat-
ics (Rohrer, 2009). To address simplifying assump-
tions in earlier KT approaches, such as discrete
knowledge representations, Piech et al. (2015) in-
troduced Deep Knowledge Tracing (DKT), which
uses RNNs to enable more complex knowledge rep-
resentations for students. Recently, SAINT+ (Shin
et al., 2020) showed state-of-the-art performance
on the popular EdNet KT task using a Transformer
model to capture temporal information across ac-
tivities, motivating our use of Transformer LMs.

Controllable Text Generation aims to steer
LMs towards desired attributes. Examples include
using reinforcement learning to control quality
metrics (Ranzato et al., 2016), adjusting sampling
weights to control for poetry style (Ghazvininejad
et al., 2017), and learning to condition on valence
or domain-specific codes (Keskar et al., 2019; Peng
et al., 2018). To the best of our knowledge, we are

1http://duolingo.com

the first to use controllable generation in an educa-
tion context with real student interaction data.

3 Method

Given any autoregressive language model (e.g.
GPT-2 (Radford et al., 2019), we can fine-tune a
LM-KT model (pθKT

) to predict whether an indi-
vidual student will correctly answer the next ques-
tion. If this model has well-calibrated uncertainty,
we can use its predicted probability of a correct
answer as a proxy for the difficulty of a question
to a student. We then train a question generation
model (pθQG

) to generate a new question condi-
tioned on a student and desired target difficulty.

Question Representation Unlike standard DKT,
which treats questions as IDs or simple hand-
crafted features, we represent questions fully in
text (e.g. “she eats” in Figure 1). This is a key
contribution of our work, required by our eventual
goal of generating questions in text, and allows the
model to leverage similarity across linguistic fea-
tures. We thus represent a question q as a sequence
of words, with prefix and suffix tokens:

qi = <Q> wi1 wi2 wi3 ... win <A>

Student State We represent a student as a
temporally-evolving sequence of questions and
their responses. As in much previous KT work,
we represent the student response as simply cor-
rect/incorrect, with special tokens <Y> and <N>.
A student’s current state is thus represented as a
sequence of all past question and response pairs:

sj = qj1 a
j
1 q

j
2 a

j
2 ... q

j
m ajm , ai ∈ {<Y>,<N>}

LM-KT Given the sequential nature of student
learning over time, we can easily frame knowledge
tracing as an autoregressive language modeling
task. Given a dataset D of students s1, s2, ..., s|D|,
we employ the standard training objective of find-
ing the parameters θKT that minimizes

LKT = −
|D|∑

i=1

|x(i)|∑

t=1

logpθKT
(x

(i)
t |x

(i)
<t) (1)

where x(j) = (x
(j)
1 , ...., x

(j)
|x| ) is the entire sequence

tokens corresponding to student sj , consisting of all
their past questions and answers. Using the softmax
output of the LM-KT model (pθKT

), we estimate a
student’s (inverse) difficulty in answering a specific
question as dqs = pθKT

(<Y>|s, q). We find that
pθKT

is well-calibrated (Section 4.2), yielding a
good proxy for the true question difficulty.
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Question Generation We frame question gener-
ation as finetuning a new autoregressive LM. Given
random samples of students and questions from a
held-out set not used to train LM-KT, we can con-
struct a new dataset D′ consisting of si di<G> qi
sequences, where <G> is a special generation token
and di = pθKT

(<Y>|si, qi) is the continuous diffi-
culty value assigned by LM-KT. We learn a linear
layer to map the continuous input difficulty into a
difficulty control vector cd of dimension matching
the LM word-embeddings, which we append to the
token embeddings. Unlike LM-KT, we train our
question generation model pθQG

to minimize the
loss only on the question text, which only appears
after the<G> token. If tg is the token index of <G>,
then our modified loss is:

LQG = −
|D′|∑

i=1

|x(i)|∑

t=tg+1

logpθQG
(x

(i)
t |x

(i)
<t) (2)

where sequence x(j) contains the full sj dj<G>qj
sequence. At test time, we generate tokens w1...wn
conditioned on the sj dj <G> prefix.

4 Experiments

Our method generalizes to any education activity
that can be represented with text sequences. Due
to the availability of real student learning data, we
focus on a reverse language translation task, where
a student translates phrases from their native lan-
guage (e.g. English, “she eats”) to the second lan-
guage they are learning (e.g. Spanish, “ella come”).

4.1 Experimental Details

We use the 2018 Duolingo Shared Task on Sec-
ond Language Acquisition Modeling (Settles et al.,
2018) dataset, which contains questions and re-
sponses for Duolingo users over the first 30 days
of learning a second language. While the original
task’s goal was to identify token-level mistakes,
we collapse these errors into binary (correct / in-
correct) per-question labels. We use the provided
train/dev/test splits for users learning Spanish and
French. We create separate held-out sets from the
test set to evaluate the LM-KT and question genera-
tion models. For both models, we finetune separate
GPT-2 (Radford et al., 2019) models. While we
sample from a held-out set of student states and
questions to train the question generation model, in
principle questions can come from any source text

Model (Spanish) AUC (seen) AUC (unseen)
LM-KT 0.75 ±.0001 0.76 ±.001
Standard DKT 0.72 ±.0001 0.70 ±.001
Question Only 0.67 ±.0001 0.58 ±.002
Model (French) AUC (seen) AUC (unseen)
LM-KT 0.73 ±.0002 0.71 ±.002
Standard DKT 0.70 ±.0001 0.65 ±.002
Question Only 0.65 ±.0002 0.62 ±.001

Table 1: LM-KT improves AUC for both questions in
the Duolingo test set that were seen during training
(for other students) and novel questions, over Standard
DKT with Question IDs and question-only baselines.
Errors are 95% CIs.
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Figure 2: Both LM-KT models are well calibrated, but
the French model is slightly more overconfident. Filled
area shows bootstrap (n=1000) standard deviation.

domain. Further experiment details are in the Ap-
pendix, and source code can be found at: https://
github.com/meghabyte/acl2021-education.

4.2 Results: Student Modeling

We evaluate LM-KT two ways: first, its ability to
predict if an individual student will answer a novel
question correctly on a held-out test set of real
Duolingo student responses. Second, how well-
calibrated these predictions are, which is crucial to
our later use of LM-KT for question generation.

Table 1 compares AUC-ROC on a held-out test
set for our LM-KT model with standard DKT,
which uses question IDs instead of text, and a
baseline that ignores the student state, only us-
ing the question text representation. This question
only baseline would perform well if the Duolingo
dataset largely consisted of universally “easy” and
“difficult” questions, independent of individual stu-
dent. Our results show that incorporating the
student state is crucial for accurately predicting
Duolingo user responses, and including question
text also leads to a significant improvement. LM-
KT outperforms Standard DKT especially on novel
questions—a necessary generalization ability for
generation.

Finally, we measure the calibration of our LM-
KT models for both Spanish and French (from En-
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glish) learners, which is the crucial property for
our downstream generation task. We bin our test
data by predicted question difficulty, and plot the
fraction of true correct answers in each bin. Figure
2 shows that LM-KT is well-calibrated, for both
Spanish and French, meaning the predicted diffi-
culty matches the empirically observed proportion
of correct answers.

4.3 Results: Question Generation
We evaluate four different aspects of our question
generation model: (i) successful control for diffi-
culty, (ii) novelty, (iii) fluency, and (iv) latency.

Difficulty Control To explore whether our ques-
tion generation model indeed depends on target
difficulty and the individual student, we first mea-
sure the model’s perplexity on a held-out test set
of Duolingo questions, compared to permutation
baselines. Table 2 (top) shows that perplexity is
lower for true student / target difficulty inputs than
when either or both of these are permuted. The
target difficulty values in this analysis were defined
by the LM-DKT model. We can remove this de-
pendence by using the actual student responses
from Duolingo: we set the target difficulty to 1 if
the student was correct and 0 otherwise. Table 2
(bottom) shows our model prefers questions paired
with these “true correctness” targets than paired
with random ones.

To evaluate how well our generation model
achieves target difficulties, we take 15 unseen stu-
dents and generate 30 questions for each of 9 input
difficulties (0.1-0.9). We then use LM-KT (a well-
calibrated proxy for true difficulty) to measure the
difficulty of these generated questions for each stu-
dent. Figure 3 shows that we are able to achieve
fine-grained control over target difficulty for both
Spanish and French students, with an average Root-
Mean Squared Error (RMSE) of .052 across all
students and target difficulties. Adding a sampling
penalty (Keskar et al., 2019) increases the variance
in difficulty (RMSE .062) in exchange for more
novel and diverse questions, as discussed next.

Novelty and Fluency By leveraging a pre-
trained language model’s ability to manipulate
structure, we can generate novel questions not
present in the entire Duolingo question set (See
Table 3). Across 4,050 questions generated for
Spanish learners, we found that with a repetition
penalty (Keskar et al., 2019), around 43% of all
questions, and 66% of high difficulty (d = 0.1)
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Figure 3: For a random selection of 15 students, our
question generator successfully controls for difficulty
across a range of 9 target values, evaluated by the LM-
KT model. Error bars show standard deviation.

questions, were novel 2. For French learners, 48%
of all and 55% of high difficulty (d = 0.1) ques-
tions were novel. However, around 3% of gener-
ated sentences were judged to be non-fluent 3, al-
though most were still able to be translated (e.g.“if i
eat some baguettes it breaks.”). Without a sampling
penalty, the proportion of novel questions drops to
about 11 % of questions for French learners (6 %
for Spanish learners), yet with far fewer non-fluent
examples. Further details and examples of novel
and non-fluent generated questions for both Span-
ish and French learners, are in the Appendix.

Ablation Type ppl Spanish ppl French
LM-DKT Likelihood (0 - 1)

Ground Truth 4.33 ±0.20 3.86 ±0.09
Permute Student 6.73 ±0.24 5.11 ±0.41
Permute Difficulty 12.5 ±1.01 7.66 ±0.33
Permute Both 13.1 ±0.43 7.87 ±0.26

Real Student Answers (0 or 1)
Ground Truth 17.7 ±1.3 9.49 ±.20
Permute Student 19.75 ±0.43 10.56 ±.60
Permute Difficulty 30.6 ±2.17 13.5 ±0.60
Permute Both 31.3 ±1.49 13.8 ±0.43

Table 2: Perplexity of the question generation model
over a held-out evaluation set with ablations.

Latency Positive student experience in online ed-
ucation requires low latency. In about four seconds,
our model can generate 30 questions close to a tar-
get difficulty. An alternative to question generation
is to rank questions from a preexisting pool, accord-
ing to a target difficulty objective. We compare the
quality (RMSE in achieving target difficulty) of
the top 30 questions in a pool against the run-time

2The CTRL penalty discounts the scores of previously
generated tokens, with the HuggingFace Transformers library
(Wolf et al., 2020) implementation including tokens provided
as part of the prompt. In our setting, this effectively penalizes
for generating questions already seen by the student.

3We use the language-check Python tool to verify grammar
https://pypi.org/project/language-check/.
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Difficulty: 0.1 (very hard) 0.9 (very easy)
you write letters. spoon or tea
i know about that book. socks
she reads your letters. good morning!
those ducks drink water. a horse
he mixes coffee with water. oil against salt
Difficulty: 0.3 (hard) 0.7 (easy)
you drink juice or water what dream?
you drink water saturday and sunday
accordingly he does it until tomorrow
can we as a band? yes, it is possible!
during the night me too

Table 3: Example questions generated by our model for
a Spanish learner. Italic questions are novel, and do not
exist in the Duolingo dataset.

required to rank all questions in the pool, varying
its size (Figure 4). On one NVIDIA Titan XP GPU,
we find that, averaged across all target difficulties,
our question generation model takes half the time
to achieve the same quality as pool selection. The
gap increases when trying to sample harder ques-
tions ( d <0.5) – even a pool size of 1000 does
not have sufficient difficult questions, likely due to
a skew in the Duolingo question set. Additional
controls, such as for style or topic, can easily be
combined with our generation method, but would
make pool selection exponentially more complex.
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Figure 4: Pool selection (for one student) suffers worse
question quality vs. latency trade-off than question gen-
eration, especially for sampling difficult questions.

5 Conclusion

Our work is a first step toward showing that
sequence-based models combined with domain
knowledge, such as pre-trained LMs, can be lever-
aged for adaptive learning tasks. We show how
to use modern LMs to generate novel reverse-
translation questions that achieve a target difficulty,
allowing adaptive education methods to expand
beyond limited question pools.

Limitations of our approach include the compute
constraints of large LMs and training data availabil-
ity. More detailed student data will be crucial to

future model development. For instance, while
most publicly available education datasets do not
include the full student responses (e.g. full transla-
tion response in Duolingo), such information could
significantly improve the performance of our LM-
KT model. Other future directions include explor-
ing non-language domains, such as math or logic
exercises, and controlling for auxiliary objectives
such as question topic.

Finally, designing appropriate user studies to
evaluate our method is a complex yet critical next
step to determine its suitability in a real-world
education setting. Our techniques allows control
for individual student difficulty, but it leaves open
the question of optimal curriculum design using
difficulty-directed question generation.

6 Broader Impact

Online education platforms can increase the acces-
sibility of high quality educational resources for
students around the world. Adaptive techniques
that allow for more individualized learning strate-
gies can help such technologies be more inclusive
for students who make less-common mistakes or
have different prior backgrounds (Lee and Brun-
skill, 2012). However, our method is subject to
biases found in the training data, and careful con-
sideration of using safe and appropriate data is
crucial in an education context. Moreover, our
specific use of pre-trained LMs relies on the signif-
icant progress of NLP tools for English language
– further research and development of these tools
for other languages can help ensure our method
benefits a larger population of students.
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A APPENDIX

A.1 Dataset Details
The 2018 Duolingo Shared Task on Second Language Acquisition Modeling (Settles et al., 2018) dataset
contains questions and responses for Duolingo users over the first 30 days of learning a second language.
The dataset contains three different question types: reverse translate (free response translation of a given
prompt in the language they are learning), reverse tap (a selection-based equivalent of reverse translate),
and listen, where students listen to a vocal utterance. We focus on the reverse translate question type for
English-speaking students learning French and Spanish. The dataset size for French learners (1.2k users)
is roughly half the size of that for Spanish learners (2.6k users).

Because the original dataset was intended for per-token error prediction, each question has per-token
information that includes whether the student translated the token correctly, as well as Universal Depen-
dencies tags such as part of speech and morphology labels. We use the full question text, rather than
individual tokens, for our task, and combine the labels such that if a Duolingo user incorrectly translated
one or more tokens in a question, the entire question is marked incorrect. We do not use any additional
features.

We use the publicly provided train/dev/test splits from the Shared Task, which are temporally ordered
in sequence. We therefore construct student states by tracking user IDs throughout the datasets and
appending each new question and response to the current student state. When evaluating our LM-KT
model, we use the true responses of preceding questions in the test set to form the student state for a given
question. Overall, we find that the dataset is severely imbalanced (as in the original task) - about 30% of
questions are answered incorrectly across students studying both French and Spanish.

Finally, we create a held-out set of Duolingo questions for both French and Spanish learners to create
the training data for our question generation model. From a set of random student states, we select
questions from this set and use a trained LM-KT model to assign the difficulty score. In practice, this
held-out set can come from any source, not just Duolingo data.

A.2 Model Training Details
To train both our LM-KT knowledge tracing model and our question generation model, we use the
pre-trained OpenAI GPT-2 model from the HuggingFace Transformers library (Wolf et al., 2020). For
question generation, we modify the library to add a linear layer and the modified loss function for question
generation from Section 3.

We use 1 NVIDIA TitanXP GPU with 12GB of memory available. Because the maximum input
sequence length of the GPT-2 model we use is 1024 tokens, we resize all inputs to the last 1024 tokens
before training. We report results for an LM-KT model trained for 13k steps with the default batch size of
2 and learning rate of 5e-5, and a Question Generation model trained for 25k steps with the same batch
size and learning rate. The total compute time to train both models was 2.5 hours for each language
learning task.

A.3 Question Generation Details
For both French and Spanish question generation models, we select 15 students unseen during training
and generate 30 questions across 9 difficulties from 0.1 to 0.9, using nucleus sampling (Holtzman et al.,
2020) (p = 0.99) with a maximum output length of 20 tokens. We also vary a repetition penalty (Keskar
et al., 2019) that penalizes for previous tokens (including those in the student state). Lastly, we resize
all prompts (student state and target difficulty) to fit into the GPT-2 Model by taking the most recent
1024 tokens, as in training. This is a limitation of our work, as the full student history is not able to be
considered for students who have answered a large set of questions.
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A.4 Additional Question Generation Outputs
Our question generation model demonstrates the ability to generate novel questions that do not exist in
the entire Duolingo question dataset, especially when a sampling penalty is applied to encourage more
diverse outputs. However, this comes at a cost to fluency. Below we include a set of outputs generated by
our model for 1 Spanish student and 1 French student from the Duolingo dataset, with a target difficulty
of d = 0.1, and both with and without a repetition penalty. We observe that while applying a penalty
results in a far more novel questions generated, several of these are also non-fluent, using a combination
of manual judgement and the Python language-check package (https://pypi.org/project/language-check/).

Table 4: Random selection of generated questions for one Spanish learner with for a a target difficulty of d = 0.1.
Italic questions are novel, bold questions are judged to be non-fluent.

Spanish (w/ Penalty) Spanish (No Penalty)

accordingly he does it. he mixes coffee with milk.

clean your room or close! the cuts are not big.

clean your room! the gallery is enormous.

he mixes coffee with water. the horses are not natural.

how many elephants eat cheese or fish? the men drink a beer.

i know about that book. they probably do not think me.

october finds him maximum distance from here today! we can desk a book.

please clean your room! from september to december

please open your bottle or newspaper? according to you, it is yellow.

she blames us! clean the mirror.

she reads us lunchtime newspapers. i do not know it.

she reads your letters. i read the newspaper.

those ducks drink water. i want a sandwich without cheese.

we can abandon him. june starts tomorrow.

what book have they Chosen me so far? she reads the calendar.

you can control her water. the plates are not big.

you can establish two properties. we are following the clue.

your house is very put- pretty! we drink quickly.

previously on television we eat strawberries.

you can create the menu. you can control the water.

you write letters. you can create the menu.

your hat is gray you can establish a restaurant.
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Table 5: Random selection of generated questions for one French learner with for a a target difficulty of d = 0.1.
Italic questions are novel, bold questions are judged to be non-fluent.

French (w/ Penalty) French (No Penalty)

do these children have beans? do you have three daughters?

do they come here often? do you like this?

do we come here often or frequently? do you speak french?

do we have chocolate or water? where do the children read?

do we have coffee here or elsewhere? do you come here often?

do we have coffee together or onsocks do you want to dance with me?

do we like to walk distance from one-to two? some apples, which ones?

do we like to walk together or apart? corridor or window?

do we speak soon or after tomorrow? neither do we!

is he chinese or Russian? you are important.

is he chinese or french? you are important.

is he sleeping or going out time? are we going to your place or mine?

map ofis suggests an area. corridor or window?

otherwise if i want to eat vegetables or fish they regionally cheese, it’s meat. do you have a boyfriend?

some apples of your apple. do you like to walk?

where do we live today? neither do we!

where does he go after that jacket? otherwise, i want a child!

where does she go? the men are calm and rich.

which ones do not fall victim to be sold? the parties are in august.

beans and bread we are reading your letters.

corridor or window? where do we live?

neither do we! you eat pork and bread
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Abstract

This paper presents a simple recipe to train
state-of-the-art multilingual Grammatical Er-
ror Correction (GEC) models. We achieve this
by first proposing a language-agnostic method
to generate a large number of synthetic exam-
ples. The second ingredient is to use large-
scale multilingual language models (up to 11B
parameters). Once fine-tuned on language-
specific supervised sets we surpass the pre-
vious state-of-the-art results on GEC bench-
marks in four languages: English, Czech, Ger-
man and Russian. Having established a new
set of baselines for GEC, we make our results
easily reproducible and accessible by releas-
ing a CLANG-8 dataset.1 It is produced by
using our best model, which we call gT5, to
clean the targets of a widely used yet noisy
LANG-8 dataset. CLANG-8 greatly simpli-
fies typical GEC training pipelines composed
of multiple fine-tuning stages – we demon-
strate that performing a single fine-tuning step
on CLANG-8 with the off-the-shelf language
models yields further accuracy improvements
over an already top-performing gT5 model for
English.

1 Introduction

Grammatical Error Correction (GEC) is the task of
correcting grammatical and other related errors in
text. It has been the subject of several modeling
efforts in recent years due to its ability to improve
grammaticality and readability of user generated
texts. This is of particular importance to non-native
speakers, children, and individuals with language
impairments, who may be more prone to producing
texts with grammatical errors.

Modern approaches often view the GEC task
as monolingual text-to-text rewriting (Náplava
and Straka, 2019; Katsumata and Komachi, 2020;

1CLANG-8 can be found at https://github.com/
google-research-datasets/clang8

Grundkiewicz et al., 2019) and employ encoder-
decoder neural architectures (Sutskever et al., 2014;
Bahdanau et al., 2015). These methods typically
require large training sets to work well (Malmi
et al., 2019) which are scarce especially for lan-
guages other than English. One of the largest and
most widely used datasets for GEC is the LANG-8
Learner Corpus, which covers 80 languages and
has been created by language learners correcting
each other’s texts.2 However, the distribution of lan-
guages is very skewed, with Japanese and English
being the most prevalent languages with over a
million ungrammatical-grammatical sentence pairs
each, while only ten languages have more than
10,000 sentence pairs each. Additionally, given the
uncontrolled nature of the data collection, many
of the examples contain unnecessary paraphrasing
and erroneous or incomplete corrections.

Limited amounts of suitable training data has
led to multiple approaches that propose to generate
synthetic training data for GEC (Madnani et al.,
2012; Grundkiewicz and Junczys-Dowmunt, 2014;
Grundkiewicz et al., 2019; Lichtarge et al., 2019;
Awasthi et al., 2019). Although using synthetic
data as the first fine-tuning step has been shown
to improve model accuracy, it introduces practi-
cal challenges that make the development and fair
comparison of GEC models challenging: (i) the
synthetic methods often require language-specific
tuning (e.g. language-specific hyperparameters and
spelling dictionaries (Náplava and Straka, 2019)),
and; (ii) due to the inability of synthetic data to
capture the complete error distribution of the target
eval sets, the final model is obtained by following
a multi-stage fine-tuning process (Lichtarge et al.,
2019, 2020; Omelianchuk et al., 2020). Because of
this, carefully picking the learning rates and num-
ber of training steps for each of the fine-tuning

2Corpus collected from https://lang-8.com/
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stages is required, making it difficult to replicate
and build on top of previous best reported models.

The ideas of leveraging self-supervised pre-
training and increasing the model size have yielded
significant improvements on numerous seq2seq
tasks in recent years (Raffel et al., 2019; Xue
et al., 2020; Lewis et al., 2020; Song et al., 2019;
Chan et al., 2019; Rothe et al., 2020), but these
approaches have been applied to GEC to only a
limited extent.

In this paper we adopt the mT5 (Xue et al., 2020)
as our base model which has already been pre-
trained on a corpus covering 101 languages. To
adapt the model to the GEC task, we design a fully
unsupervised language-agnostic pre-training objec-
tive that mimics corrections typically contained in
labeled data. We generate synthetic training data
by automatically corrupting grammatical sentences,
but in contrast to the previous state-of-the-art by
Náplava and Straka (2019) for low-resources lan-
guages, we use our synthetic pre-training to train a
single model on all 101 languages, employing no
language-specific priors to remain fully language-
agnostic. After pre-training we further fine-tune
our model on supervised GEC data for available
languages (with data conditions ranging from mil-
lions to tens of thousands). Additionally, we ex-
plore the effect of scaling up the model size from
60M to 11B parameters. We surpass the previous
state-of-the-art results on four evaluated languages:
English, Czech, German and Russian.

Fine-tuning and running inference with our
largest and most accurate models require multi-
GPU/TPU infrastructure. To make the results
of our research widely accessible we release a
CLANG-8 dataset obtained by using our largest
gT5 model to clean up the targets of the frequently
used yet noisy LANG-8 dataset. We show that off-
the-shelf variants of T5 (Raffel et al., 2019) when
fine-tuned only on CLANG-8, outperform those
models trained on the original LANG-8 data with
and w/o additional fine-tuning data, thus simpli-
fying the complex multi-stage process of training
GEC models. Thus CLANG-8 not only allows oth-
ers to easily train highly competitive GEC models,
but it also greatly simplifies GEC training pipeline,
basically reducing a multi-step fine-tuning processs
to a single fine-tuning step.

Our contributions in this paper are three-fold:
(1) We show that a simple language-agnostic pre-
training objective can achieve state-of-the-art GEC

results when models are scaled up in size; (2) We
show the effect model size has on GEC, and; (3) We
release a large multilingual GEC dataset based on
Lang-8, which allows for state-of-the-art results
without additional fine-tuning steps, thus signifi-
cantly simplifying the training setup.

2 Model

Our model builds on top of mT5 (Xue et al., 2020)
a multilingual version of T5 (Raffel et al., 2019) –
a Transformer encoder-decoder model which has
been shown to achieve state-of-the-art results on a
wide range of NLG tasks. mT5 comes in different
sizes, however for this work we use base (600M
parameters) and xxl (13B parameters).

2.1 mT5 Pre-training

mT5 has been pre-trained on mC4 corpus, a subset
of Common Crawl, covering 101 languages and
composed of about 50 billion documents. For
details on mC4, we refer the reader to the original
paper (Xue et al., 2020). The pre-training objective
is based on a span-prediction task, an adaptation
of masked-language objective for autoregressive
seq2seq models. An example of span prediction:

Input: A Simple [x] Multilingual
Grammatical Error [y]

Target: [x] Recipe for [y] Correction

All mT5 models were trained for 1M steps on
batches of 1024 input sequences with a maximum
sequence length of 1024, corresponding to roughly
1T seen tokens. For all of our experiments we
use the publicly available mT5 and T5 checkpoints
(Section 4 only).

2.2 GEC Pre-training

The span-prediction objective of mT5 does not
enable the model to perform GEC without further
fine-tuning, as the span-prediction task uses
special tokens to indicate where text should be
inserted. Another limiting constraint is that mT5
has been trained on paragraphs, not sentences.
We therefore split all paragraphs in mC4 corpus
into sentences. We corrupt each sentence using a
combination of the following operations: a) drop
spans of tokens b) swap tokens c) drop spans of
characters d) swap characters e) insert characters3

f) lower-case a word g) upper-case the first
3We insert characters from the same passage, thus avoiding

to insert character from a different alphabet.
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character of a word. An example pair of an original
sentence and its corrupted version looks as follows:

Input: Simple recipe for Multingual
Grammatical Correction Error

Target: A Simple Recipe for
Multilingual Grammatical Error
Correction

We leave about 2% of examples uncorrupted, so the
model learns that inputs can also be grammatical.
We refrain from using more sophisticated text cor-
ruption methods, as these methods would be hard to
apply to all 101 languages. For example, Náplava
and Straka (2019) perform word substitutions with
the entries from ASpell4 which in turn makes the
generation of synthetic data language-specific. Pre-
training with this unsupervised objective is done
on all languages in the mC4 corpus and not limited
to the languages evaluated in this paper.

3 gT5: Large Multilingual GEC Model

Fine-tuning datasets. For English, we fine-tune
our pre-trained models on the FCE (Yannakoudakis
et al., 2011) and W&I (Bryant et al., 2019a) cor-
pora. For Czech, German, and Russian, we use the
AKCES-GEC (Náplava and Straka, 2019), Falko-
MERLIN (Boyd, 2018), and RULEC-GEC (Ro-
zovskaya and Roth, 2019) datasets, respectively.
Table 1 reports statistics of datasets available for
different languages.

lang Corpus Train Dev Test

EN FCE, W&I 59,941
EN CoNLL-13/-14 1,379 1,312
EN BEA 4,477
CS AKCES-GEC 42,210 2,485 2,676
DE Falko-MERLIN 19,237 2,503 2,337
RU RULEC-GEC 4,980 2,500 5,000

Table 1: The size of the datasets used to fine-tune gT5.

Training Regime. We experimented with sev-
eral training setups. All of them build on the mT5
pre-trained models (Section 2.1). We experimented
with a) mixing GEC pre-training data (Section 2.2)
with fine-tuning data (Section 3), b) mixing pre-
training and finetuning examples but annotating
them with different prefixes, and c) first using GEC
pre-training until convergence and then fine-tuning.
While c) is the most computationally expensive
approach, it also gave us the best results. GEC
pre-training as well as finetuning uses a constant

4http://aspell.net

Models Co
N

LL
-1

4

BE
A

te
st

Cz
ec

h

G
er

m
an

Ru
ss

ia
n

Omelianchuk et al.∗ 66.5 73.6 - - -
Lichtarge et al.∗ 66.8 73.0 - - -
Náplava and Straka 63.40 69.00 80.17 73.71 50.20
Katsumata and Komachi∗ 63.00 66.10 73.52 68.86 44.36

gT5 base 54.10 60.2 71.88 69.21 26.24
gT5 xxl 65.65 69.83 83.15 75.96 51.62

Table 2: F0.5 Scores. Models denoted with ∗ are en-
semble models. We used the M2 scorer for CoNLL-14,
Russian, Czech and German, and the ERRANT scorer
(Bryant et al., 2019b) for BEA test.

learning rate of 0.001. Pre-training is done until
convergence and fine-tuning until exact match ac-
curacy on the development set degrades, which
happens after 200 steps or 800k seen examples or
7 epochs.

Results. For English, we evaluate on standard
benchmarks from CoNLL-14 and the BEA test
(Bryant et al., 2019a), while we use CoNLL-13 as
the development set (Table 1). For other languages
we use the test and development sets associated
with their training data. Table 2 shows the results
for all languages. We first see that the base model
size is inferior to the current state-of-the-art mod-
els. This is expected as the model capacity is not
enough to cover all 101 languages. We therefore
use a larger xxl (11B) model, which produces new
state-of-the-art results on all languages except for
English. When looking at the development set per-
formance for English, we observed that it had a
high variance and the training was over-fitting very
quickly. This suggests that train and dev/test set
domains are not well aligned for English. In the
following Section 4 we further refine our approach,
also achieving state-of-the-art results for English.

4 CLANG-8: Cleaned LANG-8 Corpus

To be able to distill the knowledge learned by gT5
xxl into smaller, more practical models, we cre-
ate and release CLANG-8, a cleaned version of
the popular LANG-8 corpus. As discussed earlier,
LANG-8 is a large corpus of texts written by lan-
guage learners and user-annotated corrections to
these texts. However, corrected texts frequently
contain unnecessary paraphrasing and erroneous
or incomplete corrections – phenomena that hurt
the performance of a GEC model trained on this
data. For instance, the following source–target pair
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LR WER Sub Del Ins

LANG-8 98% 15.46 8.85 2.41 4.19
CLANG-8 98% 10.11 5.85 1.35 2.92
CLANG-8-S 99% 01.22 0.64 0.00 0.58

Table 3: Dataset statistics of English LANG-8 and
CLANG-8, including sequence Length Ratio between
the source and the target, Word Error Rate, which is
comprised of Substitutions, Deletions, and Insertions.

is taken from LANG-8: “It is cloudy or rainy re-
cently .” → “It is It ’s been cloudy or and rainy
recently .”

We experiment with two approaches for clean-
ing the data. First, to create CLANG-8, we gen-
erate new targets for LANG-8, disregarding the
original targets. We tried using both the unsuper-
vised model, which was trained using the GEC pre-
training objective (Section 2.2) and the supervised
model (gT5 xxl) (Section 3), but the former did
not yield comparable results, so all reported num-
bers use the supervised model. Second, to create
CLANG-8-S, we used the unsupervised and the su-
pervised models to score the original targets, disre-
garding the lowest scoring 20%, 50%, 70%, or 90%
targets. Disregarding 50% was the best performing
setup and there was not a significant difference be-
tween the supervised and unsupervised model. We
therefore report numbers using the unsupervised
model disregarding the worst 50% of the targets.
Table 3 shows that CLANG-8 moderately reduces
the Word Error Rate (WER) between the source and
target, with deletions receiving the largest relative
reduction, which may suggest that less information
from the source sentence is removed. In contrast
CLANG-8-S has a significantly lower WER, indi-
cating that the unsupervised model has only kept
corrections which are close to the source sentence.

Experiments. To evaluate the effect cleaning
LANG-8 has for English, we train two distinct
models on this data: T5 (Raffel et al., 2019), a
monolingual sequence-to-sequence model, and FE-
LIX (Mallinson et al., 2020), a non-auto-regressive
text-editing model.5 We also tried fine-tuning these
models on BEA (i.e. FCE and W&I) after fine-
tuning them on CLANG-8, but this did not further
improve the scores but slightly decreased them, e.g.
0.43 absolute decrease for BEA test when using
T5 base. This can be explained by the fact that

5The FELIXINSERT variant which we use does not employ
re-ordering.
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SOTA 66.8 73.6
gT5 xxl 65.65 69.83

FELIX 220M LANG-8 41.63 30.54
FELIX 220M LANG-8 + BEA 48.75 48.80
FELIX 220M CLANG-8 58.21 59.05

T5 base 220M LANG-8 52.77 59.14
T5 base 220M LANG-8 + BEA 60.61 67.12
T5 base 220M CLANG-8 65.13 69.38
T5 base 220M CLANG-8-S 58.70 59.95

T5 small 60M CLANG-8 60.70 65.01
T5 base 220M CLANG-8 65.13 69.38
T5 large 770M CLANG-8 66.10 72.06
T5 xl 3B CLANG-8 67.75 73.92
T5 xxl 11B CLANG-8 68.87 75.88

Table 4: F0.5 scores on CoNLL-14 and BEA test. Block
two and three compare different training data. The last
block compares different model sizes for T5.

LANG-8 CLANG-8
base xxl base xxl

PUNCT 68.27 78.75 75.51 76.31
DET 63.84 77.31 79.04 83.88
PREP 57.09 72.54 74.67 79.79
ORTH 72.77 76.86 69.23 71.39
SPELL 74.38 84.64 85.83 88.29

Table 5: BEA test scores for the top five error types.
Bold scores represent the best score for each error type.

the model used to clean the target texts has already
been trained on BEA. This suggests that the typ-
ical GEC training pipeline where a model is first
fine-tuned on LANG-8 and then on BEA can be
both simplified and made more accurate by only
fine-tuning on CLANG-8.

Finally, we train mT5 models on the German
and Russian portions of the CLANG-8 dataset and
evaluate these models on the test sets from Table 1.

Results & Analysis. The results for CoNLL-14
and BEA test benchmarks can be seen in Table 4.
For both models and both test datasets, CLANG-8
improves the F0.5 score compared to using the orig-
inal LANG-8 corpus. While CLANG-8-S performs
significantly worse than CLANG-8, it still improves
over LANG-8. In terms of model size, larger mod-
els are consistently better then their smaller sib-
lings. This is even true when comparing xl and xxl,
suggesting that there might still be headroom by
using models larger than xxl.

In Table 5 we compare error types made on BEA
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SOTA 73.71 50.20
gT5 xxl 75.96 51.62

mT5 small 300M CLANG-8 61.78 17.80
mT5 base 580M CLANG-8 67.19 25.20
mT5 large 1.2B CLANG-8 70.14 27.55
mT5 xl 3.7B CLANG-8 72.59 39.44
mT5 xxl 13B CLANG-8 74.83 43.52

Table 6: F0.5 scores on German and Russian.

test for T5 base and T5 xxl, trained on either LANG-
8 or CLANG-8. We see that for both data conditions
increasing the model size leads to an increase in
performance. Comparing CLANG-8 and LANG-8,
shows that CLANG-8 improves on all error types
apart from orthographic (ORTH) and punctuation
(PUNCT).

In Table 6, we evaluate mT5 trained on the Ger-
man and Russian portions of the CLANG-8 dataset,
which contain 114K and 45K training examples,
respectively. We see that for both languages perfor-
mance increases with the model size, with no indi-
cation of slowing, suggesting further headroom for
improvement. For German, the xxl model achieves
a better score than the previous state-of-the-art,
however, it is worse than gT5 xxl. Whereas for
Russian, mT5 trained on CLANG-8 does not match
state-of-the-art performance. We believe this is
in part due to the small size of CLANG-8 in Rus-
sian. Additionally, the training data for Russian and
German comes from the same dataset as the test
data which is not the case for English, making the
training data of significantly greater relevance. For
German and Russian GEC tasks, where in-domain
training data is unavailable, CLANG-8 could have
a greater impact.

We release the re-labeled CLANG-8 dataset,
which contains 2.4M training examples for English,
114k examples for German, and 45k examples for
Russian. The Czech portion of Lang-8 would have
resulted in only 2k examples, and as such is ex-
cluded.

5 Conclusion

In this paper we report new state-of-the-art results
on GEC benchmarks in four languages we stud-
ied. Our simple setup relies on a language-agnostic
approach to pretrain large multi-lingual language
models. To enable the distillation of our largest

model into smaller, more efficient models, we re-
leased a cleaned version of the LANG-8 dataset,
enabling easier and even more accurate training of
GEC models.
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Abstract

Pathology imaging is broadly used for identi-
fying the causes and effects of diseases or in-
juries. Given a pathology image, being able
to answer questions about the clinical find-
ings contained in the image is very impor-
tant for medical decision making. In this
paper, we aim to develop a pathological vi-
sual question answering framework to ana-
lyze pathology images and answer medical
questions related to these images. To build
such a framework, we create PathVQA, a
pathology VQA dataset with 32,795 questions
asked from 4,998 pathology images. We
also propose a three-level optimization frame-
work which performs self-supervised pretrain-
ing and VQA finetuning end-to-end to learn
powerful visual and textual representations
jointly and automatically identifies and ex-
cludes noisy self-supervised examples from
pretraining. We perform experiments on
our created PathVQA dataset and the results
demonstrate the effectiveness of our proposed
methods. The datasets and code are available
at https://github.com/UCSD-AI4H/PathVQA

1 Introduction

Pathology (Levison et al., 2012) studies the causes
and effects of diseases or injuries. It underpins
every aspect of patient care, such as diagnostic
testing, providing treatment advice, preventing dis-
eases using cutting-edge genetic technologies, to
name a few. Given a pathology image, being able
to answer questions about the clinical findings con-
tained in the image is very important for medical
decision-makings.

In this paper, we aim to develop a pathologi-
cal visual question answering framework to ana-
lyze pathology images and answer medical ques-
tions related to these images. We first need to col-

∗Equal Contribution

lect a dataset containing questions about pathol-
ogy imaging. One possible way to create a pathol-
ogy VQA dataset is crowdsourcing, which is used
successfully for creating general domain VQA
datasets (Malinowski and Fritz, 2014; Antol et al.,
2015; Ren et al., 2015a; Johnson et al., 2017; Goyal
et al., 2017). However, it is much more challenging
to build medical VQA datasets than general do-
main VQA datasets via crowdsourcing. First, med-
ical images such as pathology images are highly
domain-specific, which can only be interpreted by
well-educated medical professionals. It is rather
difficult and expensive to hire medical profession-
als to help create medical VQA datasets. Second, to
create a VQA dataset, one first needs to collect an
image dataset. While images in the general domain
are pervasive, medical images are very difficult to
obtain due to privacy concerns.

To address these challenges, we resort to pathol-
ogy textbooks, especially those that are freely ac-
cessible online, as well as online digital libraries.
We extract images and captions from the textbooks
and online digital libraries. Given these images,
question-answer pairs are created based on image
captions. These QA pairs are verified by medi-
cal professionals to ensure clinical meaningfulness
and correctness. In the end, we created a pathol-
ogy VQA dataset called PathVQA, which contains
32,795 questions asked from 4,998 pathology im-
ages. To our best knowledge, this is the first dataset
for pathology VQA.

Given the pathology VQA dataset, the next step
is to develop a pathology VQA system, which is
also very challenging, due to the following reason.
The medical concepts involved in PathVQA are
very diverse while the number of question-answer
pairs available for training is limited. Learning
effective representations of these diverse medical
concepts using limited data is technically diffi-
cult. Poorly learned representations lead to infe-
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Q1: What are dilated and congested? 
Q2: Are the sinuses dilated and congested? 
Q3: Is there increased fibrosis in the  
red pulp, capsule and the trabeculae? 
Q4: Where is increased fibrosis?  
Q5: Is gamna-gandy body also seen? 
 

Q1: What is slightly depressed on 
 the surface? 
Q2: Where is the wedge-shaped  
infarct slightly depressed? 
Q3: Is the wedge-shaped infarct  
slightly depressed on the surface? 
Q4: What is on the surface? 
Q5: What is pale while the margin  
is haemorrhagic? 
 

Figure 1: Two exemplar images with generated ques-
tions. Both images have three types of questions:
“what”, “where”, and “yes/no”.

rior VQA performance. To address this challenge,
we propose a three-level optimization framework
which performs cross-modal self-supervised pre-
training (Tan and Bansal, 2019) and VQA fine-
tuning of a pathology image encoder and a ques-
tion encoder end-to-end to learn powerful visual
and textual representations jointly and automati-
cally identifies and excludes noisy self-supervised
examples from pretraining. Experiments on our
developed PathVQA dataset demonstrates the ef-
fectiveness of our proposed methods.

The major contributions of this paper are as fol-
lows:

• We create a pathology visual question answer-
ing dataset – PathVQA, to foster the research
of medical VQA. To our best knowledge, this
is the first dataset for pathology VQA.

• We propose a three-level optimization frame-
work which performs cross-modal self-
supervised pretraining and VQA finetuning
of a pathology image encoder and a question
encoder end-to-end to learn powerful visual
and textual representations jointly and auto-
matically identifies and excludes noisy self-
supervised examples from pretraining.

• On our PathVQA dataset, we demonstrate the
effectiveness of our proposed method.

2 Related Work

2.1 Medical VQA Datasets
To our best knowledge, there are two existing
datasets for medical visual question answering.
The VQA-Med (Abacha et al., 2019) dataset is

created on 4,200 radiology images and has 15,292
question-answer pairs. Most of the questions are in
multiple-choice (MC) style and can be answered
by multi-way classifiers. This makes the difficulty
of this dataset significantly lower. VQA-RAD (Lau
et al., 2018) is a manually-crafted dataset where
questions and answers are given by clinicians on
radiology images. It has 3515 questions of 11 types.
Our dataset differs from VQA-Med and VQA-RAD
in two-fold. First, ours is about pathology while
VQA-Med and VQA-RAD (Lau et al., 2018) are
both about radiology. Second, our dataset is a
truly challenging QA dataset where most of the
questions are open-ended while in VQA-Med and
VQA-RAD the majority of questions have a fixed
number of candidate answers and can be answered
by multi-way classification. Besides, the number
of questions in our dataset is much larger than that
in VQA-Med and VQA-RAD.

2.2 Cross-modal Self-supervised Learning

Cross-modal self-supervised learning learns repre-
sentations for data with multiple modalities by solv-
ing cross-modal auxiliary tasks. VisualBERT (Li
et al., 2019) learns representations for images and
texts by implicitly aligning elements of a text and
regions in an associated image with self-attention.
CVLP (Shi et al., 2020) proposes an unbiased
contrastive visual-linguistic pretraining approach,
which constructs a self-supervised loss based on
contrastive learning. ViLBERT (Lu et al., 2019)
proposes to pretrain a vision-and-language BERT
model through masked multi-modal modeling and
alignment tasks, and then transfer the model to
visual question answering tasks.

2.3 Data Selection and Data Reweighting

A number of approaches have been proposed for
data selection. Ren et al. (2018) proposes a meta
learning method to learn the weights of training
examples by performing a meta gradient descent
step on the weights of the current mini-batch of
examples. Shu et al. (2019) propose a method
which can adaptively learn an explicit weighting
function directly from data.

3 The PathVQA Dataset

The PathVQA dataset consists of 32,795 question-
answer pairs generated from 1,670 pathology im-
ages collected from two pathology textbooks:
“Textbook of Pathology” (Muir et al., 1941) and
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Table 1: Frequency of questions in different categories

Question type
Total number
and percentage

Yes/No 16,329 (49.8%)
What 13,401 (40.9%)
Where 2,157 (6.6%)
How 595 (1.8%)
How much/many 139 (0.4%)
Why 114 (0.3%)
When 51 (0.2%)
Whose 9 (0.1%)

“Basic Pathology” (Robbins et al., 1981), and 3,328
pathology images collected from the PEIR1 digital
library. The question-answer pairs are generated us-
ing a semi-automated pipeline with linguistic rules.
Figure 1 shows some examples.

On average, each image has 6.6 questions. The
maximum and minimum number of questions for a
single image is 14 and 1 respectively. The average
number of words per question and per answer is
9.5 and 2.5 respectively. There are eight different
categories of questions: what, where, when, whose,
how, why, how much/how many, and yes/no. Ta-
ble 1 shows the number of questions and percent-
age in each category. The questions in the first
7 categories are open-ended: 16,466 in total and
accounting for 50.2% of all questions. The rest
are close-ended “yes/no” questions. The questions
cover various aspects of visual contents, including
color, location, appearance, shape, etc. Such clini-
cal diversity poses great challenges for AI models
to solve this pathology VQA problem.

4 Method

We propose a three-level optimization based frame-
work to perform VQA on PathVQA. In our frame-
work, there are three learning stages, which are
performed end-to-end jointly. In the first stage,
self-supervised learning (He et al., 2019; Tan and
Bansal, 2019) is performed to pretrain the image
encoder and text encoder. In the second stage, we
finetune the image encoder and text encoder on the
PathVQA dataset. In the third stage, the trained
model is validated on the validation set. In the
first stage, we perform cross-modal self-supervised
learning (Tan and Bansal, 2019) of an image en-

1http://peir.path.uab.edu/library/
index.php?/category/2

coder W and a text encoder T . The image encoder
is used to extract visual features of pathology im-
ages. The text encoder is used to extract semantic
features of questions and answers. Self-supervised
learning (He et al., 2019) is an unsupervised rep-
resentation learning approach where pretext tasks
are defined solely based on the input data, and rep-
resentations are learned by solving these pretext
tasks.

There are many ways to construct pretext tasks.
In our work, following (Tan and Bansal, 2019), we
define a simple yet effective pretext task: in the
PathVQA dataset, given a pathology image and a
question, judge whether this question is about this
image. From the PathVAQ training setD, we create
another dataset D′ = {(xi, yi, ti)}Mi=1 to perform
the SSL task. There are M tuples, each contain-
ing a pathology image x from D and a question
y from D. ti is a binary variable where ti = 1 if
x and y are from the same training example in D
and ti = 0 if otherwise. Given D′, we develop a
model to map (xi, yi) to ti. In this model, an im-
age encoder is used to encode xi and a text encoder
is used to encode yi; the concatenation of these
two encodings is fed into a linear layer to predict
whether the image matches with the question.

In self-supervised learning (He et al., 2019), the
labels are typically constructed automatically with-
out human supervision. As a result, they contain a
lot of noises. For example, in D′, t is determined
simply based on whether x and y are from the
training example in D. It is totally possible that a
question y asked about an image x′ is appropriate
to be a question for another image x as well if x
and x′ are pathologically similar. In this case, the
correct label t for (x, y) should be 1. However,
it is set to 0 in D′. Training the encoders using
these noisy and incorrect labels may confuse the
encoders and result in poor-quality representations.

To address this problem, we aim to develop a
method to automatically identify incorrectly auto-
labeled examples in the training data of the SSL
task. For each example (x, y, t) inD′, we associate
a selection variable a ∈ [0, 1] with it. If a is close
to 1, it means this example is correctly labeled;
if a is close to 0, it means this example is incor-
rectly labeled. Let l(f(x, y;W,T ), t) denote the
SSL loss defined on (x, y, t), where f(x, y;W,T )
is the predicted probability that t = 1 and l(·)
is the cross-entropy loss. We multiply a with
l(f(x, y;W,T ), t) so that if (x, y, t) is incorrectly
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labeled, its loss will be down-weighted to 0 and
effectively (x, y, t) is excluded from the SSL pre-
training process. In the end, only correctly-labeled
examples are used for pretraining the encoders. To
this end, in the first stage, we solve the following
optimization problem:

W ∗(A), T ∗(A) =
argmin
W,T

∑M
i=1 ail(f(xi, yi;W,T ), ti).

In this problem, the selection variables A =
{ai}Mi=1 are fixed (we will discuss how to learn
A later on). {ai}Mi=1 are used to weigh the losses of
individual examples in D. W and T are trained by
minimizing the sum of weighted losses. Note that
the optimal solutions W ∗(A) and T ∗(A) are func-
tions of A since W ∗(A) and T ∗(A) are functions
of the loss function, which is a function of A.

In the second stage, we finetune the image en-
coder and text encoder in the VQA task defined on
the PathVQA dataset D. Let V , U , R denote the
network weights of the image encoder, text encoder,
and QA network respectively. We train V , U , R by
minimizing the VQA loss:

∑N(tr)

i=1 L(d
(tr)
i , V, U,R)

where d(tr)i is a training example in D, consisting
of an input pathology image, an input question,
and an output answer. When training V and U ,
we encourage them to be close to the optimally
trained network weights W ∗(A) and T ∗(A) of the
image and text encoder in the first stage, to transfer
the representations learned in the SSL task to the
VQA task. The second stage amounts to solving
the following optimization problem:

V ∗(W ∗(A)), U∗(T ∗(A)), R∗ =

argmin
V,U,R

∑N(tr)

i=1 L(d
(tr)
i , V, U,R)+

γ1 ‖V −W ∗(A)‖22 + γ2 ‖U − T ∗(A)‖22 .
(1)

where the L2 losses encourage V and U to be
close to W ∗(A) and T ∗(A). γ1 and γ2 are trade-
off parameters. Note that V ∗(W ∗(A)) is a func-
tion of W ∗(A) since V ∗(W ∗(A)) is a function of
‖V − W ∗(A)‖22 which is a function of W ∗(A).
Similarly, U∗(T ∗(A)) is a function of T ∗(A).

In the third stage, we apply the optimally trained
VQA model including V ∗(W ∗(A)), U∗(T ∗(A)),
and R∗ to make predictions on the valida-
tion dataset. Then we learn the selection
variables A by minimizing the validation loss∑N(val)

i=1 L(d
(val)
i , V ∗(W ∗(A)), U∗(T ∗(A)), R∗).

Putting all these pieces together, we have the
following three-level optimization framework:

minA

∑N(val)

i=1 L(d
(val)
i , V ∗(W∗(A)), U∗(T∗(A)), R∗)

s.t. V ∗(W∗(A)), U∗(T∗(A)), R∗ =

argminV,U,R

∑N(tr)

i=1 L(d
(tr)
i , V, U,R)

+γ1 ‖V −W∗(A)‖22 + γ2 ‖U − T∗(A)‖22
W∗(A), T∗(A) = argminW,T

M∑
i=1

ail(f(xi, yi;W,T ), ti)

4.1 VQA Models

Our proposed method can be applied to any VQA
method. In this work, we choose two well-
established and state-of-the-art VQA methods to
perform the study while noting that other VQA
methods are applicable as well.

• Method 1: In (Tan and Bansal, 2019), a
large-scale Transformer (Vaswani et al., 2017)
model is built that consists of three encoders:
an object relationship encoder, a language en-
coder, and a cross-modal encoder. The three
encoders are built mostly based on two kinds
of attention layers — self-attention layers and
cross-attention layers. The object relationship
encoder and the language encoder are both
single-modality encoders. A cross-modal en-
coder is proposed to learn the connections
between vision and language.

• Method 2: The method proposed in (Kim
et al., 2018) uses a Gated Recurrent Unit
(GRU) (Cho et al., 2014) recurrent network
and a Faster R-CNN (Ren et al., 2015b) net-
work to embed the question and the image.
It extends the idea of co-attention to bilinear
attention which considers every pair of multi-
modal channels.

5 Experiment

5.1 Experimental Settings

Data split We partition the images in the
PathVQA dataset along with the associated ques-
tions into a training set, validation set, and testing
set with a ratio of about 3:1:1. In the PathVQA
dataset, the frequencies of question categories are
imbalanced. Because of this, during the partition
process, we perform sampling to ensure the fre-
quencies of these categories in each set to be consis-
tent. In the end, there are 19,755 question-answer
pairs in the training set, 6,279 in the validation set,
and 6,761 in the testing set.
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Table 2: Accuracy (%), BLEU-n (%), and F1 (%) achieved by different methods. We denote cross-modal SSL on
image-question pairs and image-answer pairs as CMSSL-IQ and CMSSL-IA.

Method Accuracy BLEU-1 BLEU-2 BLEU-3 F1
Method 1 without image 49.2 50.2 2.8 1.2 9.5
Method 1 57.6 57.4 3.1 1.3 9.9
Method 1 with CMSSL-IQ 58.7 59.0 3.5 2.1 11.0
Method 1 with CMSSL-IQ + three-level optimization framework 63.4 63.7 4.1 2.5 12.2
Method 1 with CMSSL-IA 58.6 58.9 3.4 2.0 10.3
Method 1 with CMSSL-IA + three-level optimization framework 62.4 62.2 3.6 2.3 12.0
Method 2 without image 46.2 46.5 1.0 0.0 0.8
Method 2 55.1 56.2 3.2 1.2 8.4
Method 2 with CMSSL-IQ 55.9 57.1 3.4 1.4 9.2
Method 2 with CMSSL-IQ + three-level optimization framework 58.9 59.1 3.8 1.6 9.2
Method 2 with CMSSL-IA 55.9 57.1 3.5 1.5 9.2
Method 2 with CMSSL-IA + three-level optimization framework 58.8 59.1 4.0 1.6 9.4

Evaluation metrics We perform evaluation us-
ing three metrics: 1) accuracy (Malinowski and
Fritz, 2014) which measures the percentage of in-
ferred answers that match exactly with the ground-
truth using string matching; only exact matches
are considered as correct; 2) macro-averaged
F1 (Goutte and Gaussier, 2005), which measures
the average overlap between the predicted answers
and ground-truth, where the answers are treated
as bag of tokens; 3) BLEU (Papineni et al., 2002),
which measures the similarity of predicted answers
and ground-truth by matching n-grams.

5.2 Results

Table 2 shows the VQA performance achieved by
different methods. From this table, we make the
following observations. First, for both Method 1
and Method 2, applying our three-level optimiza-
tion based framework improves the performance.
Our framework learns to identify and remove noisy
and erroneous SSL training examples, which can
avoid the model to be distorted by such bad-quality
examples. Second, for both Method 1 and 2, apply-
ing cross-modal SSL (CMSSL) methods including
CMSSL-IQ and CMSSL-IA improves the perfor-
mance, which demonstrates the effectiveness of
CMSSL. CMSSL uses auxiliary tasks, including
judging whether an image matches with a question
and judging whether an image matches with an an-
swer, to learn semantic correspondence between
image regions and words in questions/answers,
which can improve the effectiveness of visual and
textual representations for accurate VQA. It also
learns image and text encoders by encourages the
image and text encoders to solve auxiliary tasks,
which reduces the risk of overfitting to the data-
deficient VQA task on the small-sized training data.

One may suspect how much information in im-
ages is used during the inference of the answers?
Could it be possible that the models simply learn
the correlations between questions and answers
and ignore the images? In light of these concerns,
we perform studies where the images are not fed
into VQA models and only questions are used as
inputs for inferring answers. Table 2 shows the
results of not using images (“Method 1/2 without
image”). As can be seen, for both Method 1 and
2, ignoring images leads to substantial degradation
of performance. This shows that images in our
dataset provide valuable information for VQA and
PathVQA is a meaningful VQA dataset. The mod-
els trained on our datasets are not degenerated to
simply capturing the correlation between questions
and answers.

6 Conclusion
In this paper, we build a pathology VQA dataset –
PathVQA – that contains 32,795 question-answer
pairs of 8 categories, generated from 4,998 images.
Majority of questions in our dataset are open-ended,
posing great challenges for the medical VQA re-
search. Our dataset is publicly available. To ad-
dress the challenges that the self-supervised train-
ing data may contain errors and the effective repre-
sentations of pathology images and questions are
difficult to learn on limited data, we propose a three-
level optimization framework to automatically iden-
tify and remove problematic SSL training examples
and learn sample-efficient visual and textual repre-
sentations. Experiments on the PathVQA dataset
demonstrate the effectiveness of our method.
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Table 3: Statistics of the data split.

Training set Validation set Test set
# images 3,021 987 990
# QA pairs 19,755 6,279 6,761

Appendix

A Experimental setup

Table 3 shows dataset split statistics. We implement
the methods using PyTorch and perform training
on four GTX 1080Ti GPUs.

We basically follow the original model configu-
rations used in (Tan and Bansal, 2019), (Kim et al.,
2018), and (Yang et al., 2016). Data augmentation
is applied to images, including shifting, scaling,
and shearing. From questions and answers in the
PathVQA dataset, we create a vocabulary of 4,631
words that have the highest frequencies.

In Method 1, we use the default hyperparam-
eter settings in (Tan and Bansal, 2019). For the
text encoder, the hidden size was set to 768. The
image features were extracted from the outputs
of the Faster-RCNN network, which is pretrained
on BCCD2 – a medical dataset containing blood
cells photos, as well as on Visual Genome (Kr-
ishna et al., 2017). The initial learning rate was set
to 5e-5 with the Adam (Kingma and Ba, 2014a)
optimizer used. The batch size was set to 256.
The model was trained for 200 epochs. In the
SSL pretraining task on Method 1, we train a lin-
ear classifier with a dimension of 1,280 to judge
whether an image matches with a question. In
Method 2, words in questions and answers are rep-
resented using GloVe (Pennington et al., 2014) vec-
tors pretrained on general-domain corpora such as
Wikipedia, Twitter, etc. The image features are
extracted from the outputs of the Faster-RCNN
network pretrained on BCCD and Visual Genome.
Given an image and a question, the model outputs
an answer from a predefined set of answers. The
dropout (Srivastava et al., 2014) rate for the linear
mapping was set to 0.2 while for the classifier it
was set to 0.5. The initial learning rate was set
to 0.005 with the Adamax optimizer (Kingma and
Ba, 2014b) used. The batch size was set to 512.
The model was trained for 200 epochs. In the SSL
pretraining task on Method 2, similar to that on
Method 1, we train a linear classifier with a dimen-
sion of 1,280 to predict whether an image matches

2https://public.roboflow.ai/object-detection/bccd

with a question. We optimize the selection vari-
ables using the Adam optimizer, with an initial
learning rate of 0.01. We set γ1 and γ2 to 0.3 and
0.7 respectively.

B Dataset Creation

We develop a semi-automated pipeline to generate
a pathology VQA dataset from pathology textbooks
and online digital libraries. We manually check the
automatically-generated question-answer pairs to
fix grammar errors. The automated pipeline con-
sists of two steps: (1) extracting pathology images
and their captions from electronic pathology text-
books and the Pathology Education Informational
Resource (PEIR) Digital Library3 website; (2) gen-
erating questions-answer pairs from captions.

B.1 Extracting Pathology Images and
Captions

Given a pathology textbook that is in the PDF
format and available online publicly, we use
two third-party tools PyPDF24 and PDFMiner5

to extract images and the associated captions
therefrom. PyPDF2 provides APIs to access
the “Resources” object in each PDF page where
the “XObject” gives information about images.
PDFMiner allows one to obtain text along with
its exact location in a page. To extract image
captions from text in each page, we use regular
expressions to search for snippets with prefixes
of “Fig.” or “Figure” followed by figure numbers
and caption texts. For a page containing multiple
images, we order them based on their locations;
the same for the captions. Images and locations
are matched based on their order. Given an online
pathology digital library such as PEIR, we use
two third-party tools Requests6 and Beautiful
Soup7 to crawl images and the associated captions.
Requests is an HTTP library built using Python
and provides APIs to send HTTP/1.1 requests.
Beautiful Soup generates the ‘http.parser’ and
can access the urls and tags of the images on
the website pages. Given a set of urls, we use
Requests to read website pages and use Beautiful
Soup to find images under the targeted HTML tags
including the Content Division element 〈div〉, the
unordered list element 〈ul〉, and the 〈li〉 element.

3http://peir.path.uab.edu/library/index.php?/category/2
4https://github.com/mstamy2/PyPDF2
5https://github.com/pdfminer/pdfminer.six
6https://requests.readthedocs.io/en/master/
7https://www.crummy.com/software/BeautifulSoup/
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Table 4: Number of questions in different categories in each set

Dataset
Question types

What Where How How much/many Why Yes/No
Training set 8083 1316 366 62 71 9804

Validation set 2565 409 108 21 21 3135
Testing set 2753 432 121 18 22 3390

Preprocessing

Post-processing

Source
Captions

Simple
Sentences

Simplification Question
Transducer

QA-pairs

Questions

Answer Phrases

Figure 2: The framework of generating questions from captions

Then we can download images with Requests and
write their captions directly to local files. Given
the extracted image-caption pairs, we perform
post-processing including (1) removing images
that are not pathology images, such as flow charts
and portraits; (2) correcting erroneous matching
between images and captions.

B.2 Question Generation

In this section, we discuss how to semi-
automatically generate questions from captions.
Figure 2 shows the overall framework. We per-
form natural language processing of the captions
using the Stanford CoreNLP (Klein and Manning,
2003) toolkit, including sentence split, tokeniza-
tion, part-of-speech (POS) tagging, named entity
recognition (NER), constituent parsing, and depen-
dency parsing. Many sentences are long, with com-
plicated syntactic structures. We perform sentence
simplification to break a long sentence into sev-
eral short ones. Given the subjects, verbs, clauses,
etc. labeled by POS tagging and syntactic pars-
ing, we rearrange them using the rules proposed
in (Toutanova et al., 2007; Dorr et al., 2003) to
achieve simplification. Figure 3 shows an example.

Given the POS tags and named entities of the
simplified sentences, we generate questions for
them: including “when”-type of questions for date
and time entities and phrases such as “in/during ...
stage/period”, “before ...”, and “after ...”; “how
much/how many”-type of questions for words
tagged as numbers; “whose” questions for pos-
sessive pronouns (e.g., “its”, “their”); “where”
questions for location entities and prepositional

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
      

 
Simple  
short  
sentences 
 

 
Microscopy shows coagulative necrosis of the affected 
bowel wall and thrombosed vessels while the junction 
with normal intestine is indistinct and shows an 
inflammatory infiltrate. 
 

Microscopy shows coagulative necrosis of the affected 
bowel wall and thrombosed vessels. 

Long  
complex    
sentence 

The junction with normal intestine is indistinct. 

The junction shows an indistinct inflammatory infiltrate. 

Rearrange subjects, verbs, clauses 
 

Figure 3: Sentence simplification

phrases starting with “inner”, “within”, “on the
right/left of”; “how” questions for adjective words
and phrases starting with “using”, “via”, “with”,
and “through”, and “what” questions for the re-
maining noun phrases. Table 5 shows an example
for each type of questions.

We use Tregex from Stanford CoreNLP tools
(Manning et al., 2014), a tree query language in-
cluding various relational operators based on the
primitive relations of immediate dominance and im-
mediate precedence, to implement the rules (Heil-
man and Smith, 2009) for transforming declarative
sentences (captions) into questions.

To reduce grammatical errors, we avoid generat-
ing questions on sentences with adverbial clauses
such as “chronic inflammation in the lung, showing
all three characteristic histologic features”. The
question transducer mainly contains three steps.
First, we perform the main verb decomposition
based on the tense of the verb. For instance, we
decompose “shows” to “does show”. It is worth
noting that for passive sentences with a structure of
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Type Original sentence Question

What
The end of the long bone is expanded What is expanded

in the region of epiphysis. in the region of epiphysis?

Where
The left ventricle is on the lower right Where is the left ventricle

in this apical four-chamber view of the heart. in this apical four-chamber view of the heart?
When After 1 year of abstinence, most scars are gone. When are most scars gone?

How much/How many Two multi-faceted gallstones are present in the lumen. How many multi-faceted gallstones are present in the lumen?

Whose
The tumor cells and their nuclei are fairly uniform, The tumor cells and whose nuclei are fairly uniform,

giving a monotonous appearance. giving a monotonous appearance?

How
The trabecular bone forming the marrow space shows trabeculae How does the trabecular bone

with osteoclastic activity at the margins. forming the marrow space show trabeculae?

Table 5: Examples of generated questions for different types

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Microscopy shows coagulative necrosis of the affected bowel wall and 
thrombosed vessels.    Answer phrases 
                  Subject-auxiliary inversion 

 Does microscopy show coagulative necrosis of the affected bowel wall and 
thrombosed vessels.      Answer phrases 

Insert question phrases 

What does microscopy show of the affected bowel wall and thrombosed vessels. 
Question phrases 

Figure 4: Syntactic transformation

“be+shown/presented/demonstrated”, we keep their
original forms rather than performing the verb de-
composition. Second, we perform subject-auxiliary
inversion. We invert the subject and the auxiliary
verb in the declarative sentences to form the inter-
rogative sentence. After the inversion, the binary
“yes/no” questions are generated. For instance, as
shown in Figure 4, the sentence “microscopy shows
coagulative necrosis of the affected bowel wall
and thrombosed vessels” is inverted to “does mi-
croscopy show coagulative necrosis of the affected
bowel wall and thrombosed vessels?”. To generate
questions whose answers are “no”, we randomly se-
lect a phrase with the same POS tagging from other
captions to replace the head words in the original
question. For example, we replace “coagulative
necrosis” in the sentence “does microscopy show
coagulative necrosis of the affected bowel wall
and thrombosed vessels” with other noun phrases.
Third, we remove the target answer phrases and
insert the question phrase obtained previously to
generate open-ended questions belonging to types
of “what”, “where”, “when”, “whose”, “how”, and
“how much/how many” as shown in Table 5. For
instance, we transduce “microscopy shows coagula-
tive necrosis of the affected bowel wall and throm-
bosed vessels” to “what of the affected bowel wall
and thrombosed vessels does microscopy show?”
as shown in Figure 4. Given the automatically gen-
erated questions which may contain syntactic and
semantic errors, we perform post-processing to fix
those issues. We manually proofread all questions

to correct misspellings, syntactic errors, and se-
mantic inconsistencies. The questions and answers
are further cleaned by removing extra spaces and
irrelevant symbols. Questions that are too short
or vague are removed. Articles appearing at the
beginning of answers are stripped.

C Additional Related Works

C.1 VQA datasets
A number of visual question answering datasets
have been developed in the general domain.
DAQUAR (Malinowski and Fritz, 2014) is built
on top of the NYU-Depth V2 dataset (Silberman
et al., 2012) which contains RGBD images of in-
door scenes. DAQUAR consists of (1) synthetic
question-answer pairs that are automatically gen-
erated based on textual templates and (2) human-
created question-answer pairs produced by five an-
notators. The VQA dataset (Antol et al., 2015)
is developed on real images in MS COCO (Lin
et al., 2014) and abstract scene images in (An-
tol et al., 2014; Zitnick and Parikh, 2013). The
question-answer pairs are created by human anno-
tators who are encouraged to ask “interesting” and
“diverse” questions. VQA v2 (Goyal et al., 2017) is
extended from the VQA (Antol et al., 2015) dataset
to achieve more balance between visual and tex-
tual information, by collecting complementary im-
ages in a way that each question is associated with
a pair of similar images with different answers.
In the COCO-QA (Ren et al., 2015a) dataset, the
question-answer pairs are automatically generated
from image captions based on syntactic parsing
and linguistic rules. CLEVR (Johnson et al., 2017;
Kembhavi et al., 2017) is a dataset developed on
rendered images of spatially related objects (in-
cluding cube, sphere, and cylinder) with different
sizes, materials, and colors. The locations and at-
tributes of objects are annotated for each image.
The questions are automatically generated from the
annotations.
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Table 6: Comparison of VQA datasets

Domain # images # QA pairs Answer type
DAQUAR General 1,449 12,468 Open

VQA General 204K 614K Open/MC
VQA v2 General 204K 1.1M Open/MC

COCO-QA General 123K 118K Open/MC
CLEVR General 100K 999K Open

VQA-Med Medical 4,200 15,292 Open/MC
VQA-RAD Medical 315 3,515 Open/MC

Ours Medical 4,998 32,795 Open

The comparison of existing VQA datasets is
shown in Table 6. The first five datasets are in the
general domain while the last three are in the med-
ical domain. Not surprisingly, the size of general-
domain datasets (including the number of images
and question-answer pairs) is much larger than that
of medical datasets since general-domain images
are much more available publicly and there are
many qualified human annotators to generate QA
pairs on general images. Our dataset is larger than
the two medical datasets: VQA-Med and VQA-
RAD, and majority of questions in our dataset are
open-ended while majority of questions in VQA-
Med and VQA-RAD are in multiple-choices style.

C.2 Automatic Construction of
Question-Answer Pairs

Existing datasets have used automated methods for
constructing question-answer pairs. In DAQUAR,
questions are generated with templates, such as
“How many {object} are in {image id}?”. These
templates are instantiated with ground-truth facts
from the database. In COCO-QA, the authors
develop a question generation algorithm based
on the Stanford syntactic parser (Klein and Man-
ning, 2003), and they form four types of ques-
tions—“object”, “number”, “color”, and “location”
using hand-crafted rules. In CLEVR, the locations
and attributes of objects in each image are fully an-
notated, based on which the questions are generated
by an automated algorithm. Their algorithm cannot
be applied to natural images where detailed anno-
tation of objects and scenes are very difficult to ob-
tain. In (Fan et al., 2018), the authors develop a con-
ditional auto-encoder (Kingma and Welling, 2013)
model to automatically generate questions from im-
ages. To train such a model, image-question pairs
are needed, which incurs a chicken-and-egg prob-
lem: the goal is to generate questions, but realizing
this goal needs generated questions. In VQA-Med,
the authors collect medical images along with asso-

ciated side information (e.g., captions, modalities)
from the MedPix8 database and generate question-
answer pairs based on manually-defined patterns
in (Lau et al., 2018).

D Number of questions in different
categories for training, validation, and
test set

For our data split, the number of questions in dif-
ferent categories in each set is shown in Table 4.

8https://medpix.nlm.nih.gov
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Abstract

Text-based games (TBGs) have emerged as
useful benchmarks for evaluating progress at
the intersection of grounded language under-
standing and reinforcement learning (RL). Re-
cent work has proposed the use of external
knowledge to improve the efficiency of RL
agents for TBGs. In this paper, we posit that to
act efficiently in TBGs, an agent must be able
to track the state of the game while retrieving
and using relevant commonsense knowledge.
Thus, we propose an agent for TBGs that in-
duces a graph representation of the game state
and jointly grounds it with a graph of com-
monsense knowledge from ConceptNet. This
combination is achieved through bidirectional
knowledge graph attention between the two
symbolic representations. We show that agents
that incorporate commonsense into the game
state graph outperform baseline agents.

1 Introduction

Text-based games (TBGs) are simulation environ-
ments in which an agent interacts with the world
purely in the modality of text. TBGs have emerged
as key benchmarks for studying how reinforce-
ment learning agents can tackle the challenges of
language understanding, partial observability, and
action generation in combinatorially large action
spaces. One particular text-based gaming environ-
ment, TextWorld (Côté et al., 2018), has received
significant attention in recent years.

Recent work has shown the need for additional
knowledge to tackle the challenges in TBGs. Am-
manabrolu and Riedl (2019) proposed handcrafted
rules to represent the current state of the game us-
ing a state knowledge graph (much like a map of
the game). Our own prior work (Murugesan et al.,
2021) proposed an extension of TextWorld, called
TextWorld Commonsense (TWC), to test agents’
ability to use commonsense knowledge while inter-
acting with the world. The hypothesis behind TWC

Observation: You’ve entered a kitchen. You see a dishwasher and
a fridge. Here’s a dining table. You see a red apple and a dirty
plate on the table.

State graph 
construction

Commonsense 
Knowledge Retrieval

Goal: Clean up the kitchen

1. Take the apple
2. Put the apple
in the fridge
3. Take the dirty 
plate
4. Put the plate
in the dishwasher

Best action trajectoryState Graph Commonsense graph

Bidirectional Knowledge graph attEntion (BiKE)

Apple Fridge

Plate Dishwasher

Table
Kitchen

on
on in

in
in

Apple Fridge

Plate Dishwasher

AtLocation

AtLocation

Fruit
IsA

Dish
IsA

Washing
dishes

UsedFor

Figure 1: An illustration of a TBG that requires both
the state representation of the game as well as the exter-
nal commonsense knowledge for efficient exploration
and learning the best action trajectory. The observation
text feeds into the state and commonsense graphs; and
the best action trajectory is computed based on infor-
mation from both graphs.

is that commonsense knowledge allows the agent to
understand how current actions might affect future
world states; and enable look-ahead planning (Juba,
2016), thus leading to sample-efficient selection of
actions at each step and driving the agent closer to
optimal performance.

In this paper, we posit that to efficiently
act in such text-based gaming environments,
an agent must be able to effectively track the
state of the game, and use that to jointly re-
trieve and leverage the relevant commonsense
knowledge. For example, commonsense knowl-
edge such as apple should be placed in the

refrigerator would help the agent to act closer
to the optimal behavior; whereas state informa-
tion like apple is on the table would help the
agent plan more efficiently. Thus, we propose a
technique to: (a) track the state of the game in
the form of a symbolic graph that represents the
agent’s current belief of the state of the world (Am-
manabrolu and Hausknecht, 2020a; Adhikari et al.,
2020); (b) retrieve the relevant commonsense
knowledge from ConceptNet (Speer et al., 2017),
and (c) jointly leverage the state graph and the
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retrieved commonsense graph. This combined in-
formation is then used to select the optimal action.
Finally, we demonstrate the performance of our
agent against state of the art baseline agents on the
TWC Environment.

2 Related Work

Text-based reinforcement learning Text-based
games have recently emerged as a promising frame-
work to drive advances in RL research. Prior work
has explored text-based RL to learn strategies based
on an external text corpus (Branavan et al., 2012)
or from textual observations (Narasimhan et al.,
2015). In both cases, the text is analyzed and con-
trol strategies are learned jointly using feedback
from the gaming environment. Zahavy et al. (2018)
proposed the Action-Elimination Deep Q-Network
(AE-DQN), which learns to classify invalid actions
to reduce the action space. The use of the common-
sense and state graph in our work has the same
goal of down-weighting implausible actions by
jointly reasoning over the state of the game and
prior knowledge. Recently, Côté et al. (2018) intro-
duced TextWorld and Murugesan et al. (2021)
proposed TextWorld Commonsense (TWC), a text-
based gaming environment which requires agents
to leverage prior knowledge in order to solve the
games. In this work, we build on the agents of
Murugesan et al. (2021) and show that prior knowl-
edge and state information are complementary and
should be learned jointly.

KG-based state representations A recent line
of work in TBGs aims at enhancing generaliza-
tion performance by using symbolic representa-
tions of the agent’s belief. Notably, Ammanabrolu
and Riedl (2019) proposed KG-DQN and Am-
manabrolu and Hausknecht (2020b) proposed KG-
A2C. The idea behind both approaches is to rep-
resent the game state as a belief graph. Recently,
Adhikari et al. (2020) proposed the graph-aided
transformer agent (GATA), an approach to construct
and update a latent belief graph during planning.
Our work integrates these graph-based state rep-
resentations with a prior commonsense graph that
allows the agent to better model the state of the
game using prior knowledge.

Sample-efficient reinforcement learning A
key challenge for current RL research is low
sample efficiency (Kaelbling et al., 1998). To
address this problem, there have been few attempts
on adding prior or external knowledge to RL

approaches. Notably, Murugesan et al. (2020)
proposed to use prior knowledge extracted from
ConceptNet. Garnelo et al. (2016) proposed Deep
Symbolic RL, which relies on techniques from
symbolic AI as a way to introduce commonsense
priors. There has also been work on policy
transfer (Bianchi et al., 2015) which aims at
reusing knowledge gained in different environ-
ments. Moreover, Experience replay (Wang et al.,
2016; Lin, 1992, 1993) provides a framework
for how previous experiences can be stored and
later reused. In this paper, following Murugesan
et al. (2020), we use external KGs as a source of
prior knowledge and we combine this knowledge
representation with graph-based state modeling in
order to allow the agents to act more efficiently.

3 Model & Architecture

TBGs can be framed as partially observable
Markov decision processes (POMDPs) (Spaan,
2012) denoted 〈S,A,O,T,E,r〉, where: S denotes
the set of states, A denotes the action space, O de-
notes the observation space, T denotes the state
transition probabilities, E denotes the conditional
observation emission probabilities, and r : S×A→
R is the reward function. The observation ot at time
step t depends on the current state. Both observa-
tions and actions are rendered in text. The agent
receives a reward at every time step t: rt = r(ot ,at),
and the agent’s goal is to maximize the expected
discounted sum of rewards: E[∑t γ trt ], where γ ∈
[0,1] is a discount factor.

The high-level architecture of our model con-
tains three major components: (a) the input en-
coder; (b) a graph-based knowledge extractor; and
(c) the action prediction module. The input encod-
ing layers are used to encode the observation ot
at time step t and the list of admissible actions us-
ing GRUs (Ammanabrolu and Hausknecht, 2020a).
The graph-based knowledge extractor collects rele-
vant knowledge from complementary knowledge
sources: the game state, and external common-
sense knowledge. We allow information from each
knowledge source to guide and direct better repre-
sentation learning for the other.

Recent efforts have demonstrated the use of pri-
marily two different types of knowledge sources for
TextWorld RL Agents. A State Graph (SG) cap-
tures state information (Ammanabrolu and Riedl,
2019) about the environment represented via a
language-based semantic graph. The example in
Figure 2 shows that information such as Apple→
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Figure 2: Visualization of our overall approach with BiKE

on → Table is extracted from the textual obser-
vations from the environment. Specifically, Am-
manabrolu and Riedl (2019) create such knowl-
edge graphs by extracting information using Ope-
nIE (Angeli et al., 2015) and some manual heuris-
tics. A Commonsense Graph (CG) captures ex-
ternal commonsense knowledge (Murugesan et al.,
2021) between entities (from commonsense knowl-
edge sources such as ConceptNet). We posit that
RL agents can make use of information from both
these graphs during different sub-tasks, enabling
efficient learning. The SG provides the agent with a
symbolic way of representing its current perception
of the game state, including its understanding of the
surroundings. On the other hand, the CG provides
the agent with complementary human-like knowl-
edge about what actions make sense in a given state,
thus enabling more efficient exploration of the very
large natural language based action space.

We combine the state information with common-
sense knowledge using a Bidirectional Knowledge-
graph attEntion (BiKE) mechanism, which re-
contextualizes the state and commonsense graphs
based on each other for optimal action trajectories.
Figure 2 provides a compact visualization.

4 Knowledge Integration using BiKE

The aforementioned graph-based knowledge ex-
tractor produces M entities (c1

t ,c
2
t , · · · ,cM

t ) for
the commonsense graph (CG); and N entities
(s1

t ,s
2
t , · · · ,sN

t ) for the state graph (SG). Note that
the entities extracted for the CG are based on the

vocabulary used in ConceptNet, and may not nec-
essarily have the same set of entities as the SG
(Figure 1). We embed the extracted entities in both
graphs using Numberbatch (Liu and Singh, 2004).
We then encode these graph representations us-
ing a Graph Attention Network (GAT) (Veličković
et al., 2018). GAT allows the node entities st and ct
within the graphs GS

t and GC
t respectively to share

information among each other by message passing.

We then integrate sub-graphs extracted from
the previous steps to improve the agent’s explo-
ration strategy. Inspired from bidirectional atten-
tion mechanism in QA (Seo et al., 2016), we use
BiKE attention mechanism between GS

t and GC
t to

fuse the knowledge from these two graphs. The in-
formation flow across the graphs allows the model
to learn commonsense-aware state graph represen-
tations, and state-aware commonsense knowledge
graph representations.

To implement this, we compute a graph similar-
ity matrix S ∈ RN×M across the graph entities to
learn a state-to-commonsense graph attention func-
tion and a commonsense-to-state graph attention
function. Si j = f (si

t ,c
j
t ) captures how each node si

t

in the graph GS
t is linked to a node c j

t in the other
graph GC

t , and vice versa. Here f is a learnable
function that maps si

t and c j
t to a similarity score.

This allows us to measure the similarity between
(for instance) Apple observed in the state graph
and Apple observed in the commonsense graph.
We compute the state-to-commonsense graph atten-
tion values A by taking a softmax along the rows
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Figure 3: Performance evaluation (showing mean and standard deviation averaged over 3 runs) for the three diffi-
culty levels: Easy (left), Medium (middle), Hard (right) using normalized score and the number of steps taken.

of S: this signifies the attention bestowed by each
state graph node on the nodes of the commonsense
graph. Similarly, we compute the commonsense-to-
state graph attention values Ā by taking a softmax
along the columns of S. We capture the relevant
knowledge in the commonsense graph Gt

C by up-
dating the state representations s̄i

t . We compute the
updated state representation as: si

t+1 = g(si
t , s̃

i
t , s̄

i
t);

where s̃i
t = ∑ j Ai jc j

t , s̄i
t = ∑ j Ai j ∑i′ Ā ji′si′

t , and g is
a learnable function that maps the concatenated si

t ,
s̃i

t , and s̄i
t to an updated state representation. Fi-

nally, we use the general attention between the ot
and the state graph entities st+1 to get the state
graph representation gS

t+1 (Luong et al., 2015). We
perform a similar process for the commonsense-to-
state graph attention and obtain the commonsense
graph representation: gC

t+1. We select the relevant
action by computing an attention over the actions:
h(ot ,ai

t ,gS
t+1,g

C
t+1); where h is a learnable function

that projects the concatenation 〈 ot ,ai
t ,gS

t+1,g
C
t+1 〉

to the attention score for the ith action.

5 Experiments

We generate a set of games with 3 difficulty levels
using the TWC (Murugesan et al., 2021) frame-
work: (i) easy level, which has 1 room containing
1 to 3 objects; (ii) medium level, which has 1 or 2
rooms with 4 or 5 objects; and (iii) hard level, a
mix of games with a high number of objects (6 or
7 objects in 1 or 2 rooms) or high number of rooms
(3 or 4 rooms containing 4 or 5 objects).

We compare 5 text-based RL agents: (a) a text-
only agent (Text), which selects the best action

based only on the encoding of the history of obser-
vations; (b) DRRN (He et al., 2016; Narasimhan
et al., 2015), which relies on the relevance between
the observation and action spaces; (c) an agent en-
hanced with access to an external commonsense
knowledge graph (+Commonsense) (Murugesan
et al., 2021); (d) an agent that, following Am-
manabrolu and Hausknecht (2020a), models the
state of the world as a symbolic graph (+State);
and (e) the agent (BiKE) described in Section 3,
which relies on both state and commonsense graph
representations. The agents are trained over 100
episodes with a 50-step maximum. All policies are
learned using Actor-Critic (Mnih et al., 2016).

5.1 Improving Performance with State and
Commonsense Knowledge

Figure 3 shows the learning curves for the text-only
agent and the agents equipped with state and/or
commonsense graph representations at training
time. For reference, we also report the performance
of an agent that selects a random action at each time
step (Random). We notice that, overall, agents
equipped with either state or commonsense graph
representations perform better than their text-only
counterparts, both in terms of the number of steps
taken and the normalized score. In particular, the
BiKE agent outperforms all other agents in all diffi-
culty levels, showing that symbolic state represen-
tations and prior commonsense knowledge can be
jointly used for better sample efficiency and results.
Table 1 shows the performance of the agents on
the test set. Following Murugesan et al. (2021), we
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(a) Average relevance of the main action templates to the
state and commonsense graphs across the hard games.
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Easy Medium Hard
#Steps Norm. Score #Steps Norm. Score #Steps Norm. Score

IN

Text 23.83 ± 2.16 0.88 ± 0.04 45.90 ± 0.22 0.60 ± 0.02 49.84 ± 0.38 0.30 ± 0.02
DRRN 22.08 ± 4.17 0.82 ± 0.06 45.18 ± 1.19 0.59 ± 0.02 49.82 ± 0.61 0.29 ± 0.01
+Commonsense (TWC) 20.59 ± 5.01 0.89 ± 0.06 44.89 ± 1.52 0.62 ± 0.03 48.45 ± 1.13 0.32 ± 0.04
+State (KG-A2C) 22.10 ± 2.91 0.86 ± 0.06 43.05 ± 2.52 0.62 ± 0.03 48.00 ± 0.61 0.32 ± 0.00
+State + Commonsense (BiGAF) 18.27 ± 1.13 0.94 ± 0.02 41.01 ± 1.61 0.64 ± 0.02 47.19 ± 0.64 0.34 ± 0.02

O
U

T

Text 29.90 ± 2.92 0.78 ± 0.02 44.08 ± 0.93 0.55 ± 0.01 50.00 ± 0.00 0.20 ± 0.02
DRRN 29.71 ± 1.81 0.76 ± 0.05 44.04 ± 1.64 0.56 ± 0.02 50.00 ± 0.00 0.21 ± 0.02
+Commonsense (TWC) 27.74 ± 4.46 0.78 ± 0.07 42.61 ± 0.65 0.58 ± 0.01 50.00 ± 0.00 0.19 ± 0.03
+State (KG-A2C) 28.34 ± 3.63 0.80 ± 0.07 41.61 ± 0.37 0.59 ± 0.01 50.00 ± 0.00 0.21 ± 0.00
+State + Commonsense (BiGAF) 25.59 ± 1.92 0.83 ± 0.01 39.34 ± 0.72 0.61 ± 0.01 50.00 ± 0.00 0.23 ± 0.02

Table 1: Test-set performance results for within distribution (IN) and out-of-distribution (OUT) games.

(a) Average relevance of the main action templates to the
state and commonsense graphs across the hard games

Timestep t t +1 t +2

Room Living Room Living Room Bedroom

Action Taken take checkered
jumper go west

insert checkered
jumper into wardrobe

Most relevant graph State graph State graph Commonsense graph

Most relevant nodes checkered jumper checkered jumper,
exit to west wardrobe

(b) Example of most relevant graphs and nodes by action taken in an
excerpt of a game in the hard difficulty level

Figure 4: Analysis of the relevance given to the state and commonsense graphs (a) and to their nodes (b) by action taken

4.1 Improving RL Performance with State
and Commonsense Knowledge

Figure 3 shows the learning curves for the text-only
agent and the agents equipped with state and/or
commonsense graph representations at training
time. For reference, we also report the performance
of an agent that selects a random action at each time
step (Random). We notice that, overall, agents
equipped with either state or commonsense graph
representations perform better than their text-only
counterparts, both in terms of the number of steps
taken and the normalized score. In particular, the
BiGAF agent (defined in Section 2) outperforms
all other agents in all difficulty levels, showing
that symbolic state representations and prior com-
monsense knowledge can be jointly used for better
sample efficiency and results.

4.2 Qualitative Analysis
Table 1 shows the performance of the agents on
the test set. Following Murugesan et al. (2021), we
compared our agents on two test sets: (IN) uses
the same entities as the training set, and (OUT)
uses entities that were not included in the training
set. From Figure 3 and Table 1, we notice that
the +Commonsense agent performs better on the
easy level, whereas the +State agent performs bet-
ter on the medium and hard levels. This suggests
that the state representation can be leveraged to
drive exploration and interaction with objects in
environments with multiple rooms; whereas prior
commonsense knowledge allows the agent to act
more efficiently by selecting the appropriate com-
monsensical locations of different objects. In order
to investigate this hypothesis, we computed the av-

erage importance given by the agent to the state
graph and the commonsense graph when selecting
the different action templates shown in Figure 4a.
For each action template, the figure shows the nor-
malized attention weight given to the two graphs,
averaged across 5 runs of all games in the hard
difficulty level. We notice that actions requiring in-
formation about the goal of the game, like the put
and insert actions, benefit more from attending
to the commonsense graph; whereas actions aimed
at exploring the environment and collecting objects,
like the go and take actions, benefit more from
the state representation.

As a further qualitative analysis, we report in
Figure 4b an example of the most attended nodes
and graphs in an excerpt of a game belonging to
the medium difficulty level. As noted above, the
take and go actions rely more on the state graph,
whereas the insert action relies on the common-
sense graph. Among the nodes in these graphs, the
entities mentioned in the action receive the highest
attention score.

5 Conclusion

We hypothesize that in order to be sample-efficient
in text-based games, agents must be able to jointly
track the state of the game and retrieve the rel-
evant commonsense knowledge. We proposed a
technique that models both forms of knowledge as
graphs and combines them using a novel graph co-
attention mechanism. We show that the resulting
agent is more sample-efficient than approaches that
consider neither or only one of these graphs.

(b) Example of most relevant graphs and nodes (by action taken) for
one example game excerpted from the hard difficulty level.

Figure 4: Relevance given to the: (a) state and commonsense graphs; and to (b) their nodes (by action taken).

Easy Medium Hard
#Steps Norm. Score #Steps Norm. Score #Steps Norm. Score

IN

Text 23.83 ± 2.16 0.88 ± 0.04 44.08 ± 0.93 0.60 ± 0.02 49.84 ± 0.38 0.30 ± 0.02
DRRN 22.08 ± 4.17 0.82 ± 0.06 44.04 ± 1.64 0.59 ± 0.02 49.82 ± 0.61 0.29 ± 0.01
+Commonsense (TWC) 20.59 ± 5.01 0.89 ± 0.06 42.61 ± 0.65 0.62 ± 0.03 48.45 ± 1.13 0.32 ± 0.04
+State (KG-A2C) 22.10 ± 2.91 0.86 ± 0.06 41.61 ± 0.37 0.62 ± 0.03 48.00 ± 0.61 0.32 ± 0.00
+State + Commonsense (BiKE) 18.27 ± 1.13 0.94 ± 0.02 39.34 ± 0.72 0.64 ± 0.02 47.19 ± 0.64 0.34 ± 0.02

O
U

T

Text 29.90 ± 2.92 0.78 ± 0.02 45.90 ± 0.22 0.55 ± 0.01 50.00 ± 0.00 0.20 ± 0.02
DRRN 29.71 ± 1.81 0.76 ± 0.05 45.18 ± 1.19 0.56 ± 0.02 50.00 ± 0.00 0.21 ± 0.02
+Commonsense (TWC) 27.74 ± 4.46 0.78 ± 0.07 44.89 ± 1.52 0.58 ± 0.01 50.00 ± 0.00 0.19 ± 0.03
+State (KG-A2C) 28.34 ± 3.63 0.80 ± 0.07 43.05 ± 2.52 0.59 ± 0.01 50.00 ± 0.00 0.21 ± 0.00
+State + Commonsense (BiKE) 25.59 ± 1.92 0.83 ± 0.01 41.01 ± 1.61 0.61 ± 0.01 50.00 ± 0.00 0.23 ± 0.02

Table 1: Test-set performance results for within distribution (IN) and out-of-distribution (OUT) games.

compared our agents on two test sets: (IN) uses the
same entities as the training set, and (OUT) uses
entities that were not included in the training set.
The experimental results show that the BiKE agent
generalizes better than all the baselines across the
3 difficulty levels.

5.2 Qualitative Analysis

From Figure 3 and Table 1, we notice that the
+Commonsense agent performs better on the easy
level, whereas the +State agent performs better on
the medium and hard levels. This suggests that the
state representation can be leveraged to drive explo-
ration and interaction with objects in environments
with multiple rooms; whereas prior commonsense
knowledge allows the agent to act more efficiently
by selecting the appropriate commonsensical loca-
tions of different objects. In order to investigate
this hypothesis, we computed the average impor-
tance given by the agent to the state graph and the
commonsense graph when selecting the different
action templates shown in Figure 4a. For each
action template, the figure shows the normalized
attention weight given to the two graphs, averaged
across 5 runs of all games in the hard difficulty
level. Actions requiring information about the goal
of the game, like put and insert, benefit more
from attending to the commonsense graph; whereas
actions aimed at exploring the environment and

collecting objects, like go and take, benefit more
from the state representation.

As further qualitative analysis, we report an ex-
ample of the most attended nodes and graphs from
an excerpt of a game belonging to the hard dif-
ficulty level in Figure 4b. As noted above, the
take and go actions rely more on the state graph,
whereas the insert action relies on the common-
sense graph. Among the nodes in these graphs,
the entities that are finally mentioned in the action
receive the highest attention score. This shows
how our agent is able to transfer the bidirectional
attention over graphs into specific game instances.

6 Conclusion

In this paper, we showed that in order to be sample-
efficient in TBGs, agents must be able to jointly
track the state of the game and relevant common-
sense knowledge. We proposed a technique that
models both forms of knowledge as graphs, and
combines them using Bidirectional Knowledge-
graph attEntion (BiKE). The resulting agent was
found to be more sample-efficient than approaches
that considered neither or only one of these graphs.
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Broader Impact and Discussion of Ethics

While our model is not tuned for any specific real-
world application, our method could be used in sen-
sitive contexts such as legal or health-care settings;
and it is essential that any work that builds on our
approach undertake extensive quality-assurance
and robustness testing before using it in their set-
ting. The dataset used in our work does not contain
sensitive information to the best of our knowledge.
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Abstract
We introduce MTVR, a large-scale multilin-
gual video moment retrieval dataset, contain-
ing 218K English and Chinese queries from
21.8K TV show video clips. The dataset is col-
lected by extending the popular TVR dataset
(in English) with paired Chinese queries and
subtitles. Compared to existing moment re-
trieval datasets, MTVR is multilingual, larger,
and comes with diverse annotations. We fur-
ther propose mXML, a multilingual moment
retrieval model that learns and operates on
data from both languages, via encoder param-
eter sharing and language neighborhood con-
straints. We demonstrate the effectiveness of
mXML on the newly collected MTVR dataset,
where mXML outperforms strong monolin-
gual baselines while using fewer parameters.
In addition, we also provide detailed dataset
analyses and model ablations. Data and code
are publicly available at https://github.

com/jayleicn/mTVRetrieval

1 Introduction

The number of videos available online is growing
at an unprecedented speed. Recent work (Escorcia
et al., 2019; Lei et al., 2020) introduced the Video
Corpus Moment Retrieval (VCMR) task: given a
natural language query, a system needs to retrieve
a short moment from a large video corpus. Figure 1
shows a VCMR example. Compared to the stan-
dard text-to-video retrieval task (Xu et al., 2016; Yu
et al., 2018), it allows more fine-grained moment-
level retrieval, as it requires the system to not only
retrieve the most relevant videos, but also localize
the most relevant moments inside these videos. Var-
ious datasets (Krishna et al., 2017; Hendricks et al.,
2017; Gao et al., 2017; Lei et al., 2020) have been
proposed or adapted for the task. However, they are
all created for a single language (English), though
the application could be useful for users speaking
other languages as well. Besides, it is also unclear

00:00,327 → 00:04,320
Whitney: This is my fiancé…
惠特尼：这是我的未婚夫…

00:32,192 → 00:34,626
House: Nine months later, a miracle…
豪斯：9个⽉之后，⼀个奇迹…

……

00:03,897 → 00:07,731
Ross: Somebody seems to be…
罗斯：有⼈在…

00:36,497 → 00:38,761
Rachel: Call me when you get this.
瑞秋： 听到留⾔请回电。

…

00:07,786 → 00:13,156
Monica: Who wasn't invited… 
莫妮卡：还没有被邀请到…

00:44,223 → 00:52,929
Rachel: Daddy, I can't marry him…
瑞秋：爸爸, 我不能嫁给他…

… …

…

Video Corpus:

Query:  
Rachel explains to her dad on the phone why she can't marry her fiancé.
瑞秋在电话里向她父亲解释了她不能和其未婚夫结婚的原因。

Query Type: video + subtitle

Figure 1: A MTVR example in the Video Corpus Mo-
ment Retrieval (VCMR) task. Ground truth moment is
shown in green box. Colors in the query text indicate
whether the words are more related to video (orchid)
or subtitle (salmon) or both (orange). The query and
the subtitle text are presented in both English and Chi-
nese. The video corpus typically contains thousands of
videos, for brevity, we only show 3 videos here.

whether the progress and findings in one language
generalizes to another language (Bender, 2009).
While there are multiple existing multilingual im-
age datasets (Gao et al., 2015; Elliott et al., 2016;
Shimizu et al., 2018; Pappas et al., 2016; Lan et al.,
2017; Li et al., 2019), the availability of multilin-
gual video datasets (Wang et al., 2019a; Chen and
Dolan, 2011) is still limited.

Therefore, we introduce MTVR, a large-scale,
multilingual moment retrieval dataset, with 218K
human-annotated natural language queries in two
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languages, English and Chinese. MTVR extends
the TVR (Lei et al., 2020) dataset by collecting
paired Chinese queries and Chinese subtitle text
(see Figure 1). We choose TVR over other moment
retrieval datasets (Krishna et al., 2017; Hendricks
et al., 2017; Gao et al., 2017) because TVR is the
largest moment retrieval dataset, and also has the
advantage of having dialogues (in the form of sub-
title text) as additional context for retrieval, in con-
trast to pure video context in the other datasets. We
further propose mXML, a compact, multilingual
model that learns jointly from both English and
Chinese data for moment retrieval. Specifically,
on top of the state-of-the-art monolingual moment
retrieval model XML (Lei et al., 2020), we enforce
encoder parameter sharing (Sachan and Neubig,
2018; Dong et al., 2015) where the queries and
subtitles from the two languages are encoded using
shared encoders. We also incorporate a language
neighborhood constraint (Wang et al., 2018; Kim
et al., 2020) to the output query and subtitle embed-
dings. It encourages sentences of the same mean-
ing in different languages to lie close to each other
in the embedding space. Compared to separately
trained monolingual models, mXML substantially
reduces the total model size while improving re-
trieval performance (over monolingual models) as
we show in Section 4. Detailed dataset analyses
and model ablations are provided.

2 Dataset

The TVR (Lei et al., 2020) dataset contains 108,965
high-quality English queries from 21,793 videos
from 6 long-running TV shows (provided by
TVQA (Lei et al., 2018)). The videos are associ-
ated with English dialogues in the form of subtitle
text. MTVR extends this dataset with translated
dialogues and queries in Chinese to support multi-
lingual multimodal research.

2.1 Data Collection

Dialogue Subtitles. We crawl fan translated Chi-
nese subtitles from subtitle sites.1 All subtitles are
manually checked by the authors to ensure they are
of good quality and are aligned with the videos.
The original English subtitles come with speaker
names from transcripts that we map to the Chinese
subtitles, to ensure that the Chinese subtitles have
the same amount of information as the English ver-
sion.

1https://subhd.tv, http://zimuku.la

QType (%) Query Examples (in English and Chinese)

video-only Howard places his plate onto the coffee table.
(74.2) 霍华德将盘子放在咖啡桌子上。

sub-only Alexis and Castle talk about the timeline of the murder.
(9.1) 亚历克西斯和卡塞尔谈论谋杀的时间顺序。

video+sub Joey waives his hand when he asks for his food.
(16.6) 乔伊催餐时摆了摆手。

Table 1: MTVR English and Chinese query examples
in different query types. The percentage of the queries
in each query type is shown in brackets.

Query. To obtain Chinese queries, we hire hu-
man translators from Amazon Mechanical Turk
(AMT). Each AMT worker is asked to write a Chi-
nese translation of a given English query. Lan-
guages are ambiguous, hence we also present the
original videos to the workers at the time of trans-
lation to help clarify query meaning via spatio-
temporal visual grounding. The Chinese transla-
tions are required to have the exact same meaning
as the original English queries and the translation
should be made based on the aligned video content.
To facilitate the translation process, we provide
machine translated Chinese queries from Google
Cloud Translation2 as references, similar to (Wang
et al., 2019b). To find qualified bilingual work-
ers in AMT, we created a qualification test with
5 multiple-choice questions designed to evaluate
workers’ Chinese language proficiency and their
ability to perform our translation task. We only al-
low workers that correctly answer all 5 questions to
participate our annotation task. In total, 99 workers
finished the test and 44 passed, earning our qualifi-
cation. To further ensure data quality, we also man-
ually inspect the submitted results during the an-
notation process and disqualify workers with poor
annotations. We pay workers $0.24 every three
sentences, this results in an average hourly pay of
$8.70. The whole annotation process took about 3
months and cost approximately $12,000.00.

2.2 Data Analysis

In Table 2, we compare the average sentence
lengths and the number of unique words under
different part-of-speech (POS) tags, between the
two languages, English and Chinese, and between
query and subtitle text. For both languages, dia-
logue subtitles are linguistically more diverse than
queries, i.e., they have more unique words in all

2https://cloud.google.com/translate
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Data Avg #unique words by POS tags

Len all verb noun adj. adv.

English
Q 13.45 15,201 3,015 7,143 2,290 763
Sub 10.78 49,325 6,441 19,223 7,504 1,740
Q+Sub 11.27 52,545 7,151 20,689 8,021 1,976

Chinese
Q 12.55 34,752 12,773 18,706 1,415 1,669
Sub 9.04 101,018 36,810 53736 4,958 5,568
Q+Sub 9.67 117,448 42,284 62,611 5,505 6,185

Table 2: Comparison of English and Chinese data
in MTVR. We show average sentence length, and num-
ber of unique tokens by POS tags, for Query (Q) and or
Subtitle (Sub).

categories. This is potentially because the lan-
guage used in subtitles are unconstrained human
dialogues while the queries are collected as declar-
ative sentences referring to specific moments in
videos (Lei et al., 2020). Comparing the two lan-
guages, the Chinese data is typically more diverse
than the English data.3 In Table 1, we show English
and their translated Chinese query examples in Ta-
ble 1, by query type. In the appendix, we compare
MTVR with existing video and language datasets.

3 Method

Our multilingual moment retrieval model mXML is
built on top of the Cross-model Moment Local-
ization (XML) (Lei et al., 2020) model, which
performs efficient video-level retrieval at its shal-
low layers and accurate moment-level retrieval at
its deep layers. To adapt the monolingual XML
model into the multilingual setting in MTVR and
improve its efficiency and effectiveness, we ap-
ply encoder parameter sharing and neighborhood
constraints (Wang et al., 2018; Kim et al., 2020)
which encourages the model to better utilize mul-
tilingual data to improve monolingual task perfor-
mance while maintaining smaller model size.

Query and Context Representations. We rep-
resent videos using ResNet-152 (He et al., 2016)
and I3D (Carreira and Zisserman, 2017) features
extracted every 1.5 seconds. We extract language
features using pre-trained, then finetuned (on our
queries and subtitles) RoBERTa-base (Liu et al.,
2019), for English (Liu et al., 2019) and Chi-
nese (Cui et al., 2020), respectively. For queries,
we use token-level features. For subtitles, we max-

3 The differences might be due to the different morphemes
in the languages. E.g., the Chinese word长发 (‘long hair’)
is labeled as a single noun, but as an adjective (‘long’) and a
noun (‘hair’) in English (Wang et al., 2019b).

Query (EN)

Video

Query (ZH)

Video Encoder

Query Encoder

Sub (EN)

Sub (ZH)
Subtitle Encoder

neighborhood constraint

Figure 2: Illustration of mXML’s encoding process.
Compared to monolingual models, mXML learns from
the two languages simultaneously, and allows them to
benefit each other via encoder parameter sharing and
neighborhood constraints. We show the detailed encod-
ing process of the model in the appendix (Figure 3).

pool the token-level features every 1.5 seconds to
align with the video features. We then project the
extracted features into a low-dimensional space via
a linear layer, and add learned positional encod-
ing (Devlin et al., 2018) after the projection. We
denote the resulting video features as Ev ∈ Rl×d,
subtitle features as Es

en ∈ Rl×d, Es
zh ∈ Rl×d, and

query features as Eq
en ∈ Rlq×d, Eq

zh ∈ Rlq×d. l is
video length, lq is query length, and d is hidden
size. The subscripts en and zh denote English and
Chinese text features, respectively.

Encoders and Parameter Sharing. We fol-
low Lei et al. (2020) to use Self-Encoder as our
main component for query and context encoding. A
Self-Encoder consists of a self-attention (Vaswani
et al., 2017) layer, a linear layer, and a residual (He
et al., 2016) connection followed by layer normal-
ization (Ba et al., 2016). We use a Self-Encoder
followed by a modular attention (Lei et al., 2020)
to encode each query into two modularized query
vectors qvlang, q

s
lang ∈ Rd (lang ∈ {en, zh})

for video and subtitle retrieval, respectively. For
videos, we apply two Self-Encoders instead of a
Self-Encoder and a Cross-Encoder as in XML, be-
cause we found this modification simplifies the
implementation while maintains the performance.
We use the outputs from the first and the second
Self-Encoder Hv

vr,lang, H
v
mr,lang ∈ Rl×d for video

retrieval and moment retrieval. Similarly, we have
Hs

vr,lang, H
s
mr,lang ∈ Rl×d for subtitles. All the

Self-Encoders are shared across languages, e.g.,
we use the same Self-Encoder to encode both En-
glish and Chinese queries, as illustrated in Figure 2.
This parameter sharing strategy greatly reduces the
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model size while maintaining or even improving
model performance, as we show in Section 4.

Language Neighborhood Constraint. To facil-
itate stronger multilingual learning, we add neigh-
borhood constraints (Wang et al., 2018; Kim et al.,
2020; Burns et al., 2020) to the model. This en-
courages sentences that express the same or similar
meanings to lie close to each other in the embed-
ding space, via a triplet loss. Given paired sentence
embeddings eien ∈ Rd and eizh ∈ Rd, we sample
negative sentence embeddings ejen ∈ Rd and ekzh ∈
Rd from the same mini-batch, where i 6= j, i 6= k.
We use cosine similarity function S to measure
the similarity between embeddings. Our language
neighborhood constraint can be formulated as:

Lnc=
1

n

∑

i

[max(0,S(eien, e
k
zh)− S(eien, e

i
zh) + ∆)

+ max(0,S(ejen, e
i
zh)− S(eien, e

i
zh) + ∆)], (1)

where ∆=0.2 is the margin. We apply this con-
straint on both query and subtitle embeddings,
across the two languages, as illustrated in Figure 2.
For queries, we directly apply it on the query vec-
tors qvlang, q

s
lang. For the subtitle embeddings, we

apply it on the embeddings Hs
vr,lang, H

s
mr,lang, af-

ter max-pooling them in the temporal dimension.

Training and Inference. During training, we op-
timize video retrieval scores with a triplet loss, and
moment scores with a cross-entropy loss. At infer-
ence, these two scores are aggregated together as
the final score for video corpus moment retrieval.
See appendix for details.

4 Experiments and Results

We evaluate our proposed mXML model on the
newly collected MTVR dataset, and compare it
with several existing monolingual baselines. We
also provide ablation studies evaluating our model
design and the importance of each input modality
(videos and subtitles).
Data Splits and Evaluation Metrics. We follow
TVR (Lei et al., 2020) to split the data into 80%
train, 10% val, 5% test-public and 5% test-private.
We report average recall (R@1) on the Video Cor-
pus Moment Retrieval (VCMR) task. A predicted
moment is correct if it has high Intersection-over-
Union (IoU) with the ground-truth.
Baseline Comparison. In Table 3, we compare
mXML with multiple baseline approaches. Given

Method #param English R@1 Chinese R@1

IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

Chance - 0.00 0.00 0.00 0.00
Proposal based
MCN 6.4M 0.02 0.00 0.13 0.02
CAL 6.4M 0.09 0.04 0.11 0.04
Retrieval + Re-ranking
MEE+MCN 10.4M 0.92 0.42 1.43 0.64
MEE+CAL 10.4M 0.97 0.39 1.51 0.62
MEE+ExCL 10.0M 0.92 0.33 1.43 0.72
XML 6.4M 7.25 3.25 5.91 2.57

mXML 4.5M 8.30 3.82 6.76 3.20

Table 3: Baseline comparison on MTVR test-public
split. mXML achieves better retrieval performance on
both languages while using fewer parameters.

a natural language query, the goal of video cor-
pus moment retrieval is to retrieve relevant mo-
ments from a large video corpus. The meth-
ods for this task can be grouped into two cate-
gories, (i) proposal based approaches (MCN (Hen-
dricks et al., 2017) and CAL (Escorcia et al.,
2019)), where they perform video retrieval on
the pre-segmented moments from the videos; (ii)
retrieval+re-ranking methods (MEE (Miech et al.,
2018)+MCN, MEE+CAL, MEE+ExCL (Ghosh
et al., 2019) and XML (Lei et al., 2020)), where
one approach is first used to retrieve a set of videos,
then another approach is used to re-rank the mo-
ments inside these retrieved videos to get the final
moments. Our method mXML also belongs to the
retrieval+re-ranking category. Across all metrics
and both languages, we notice retrieval+re-ranking
approaches achieve better performance than pro-
posal based approaches, indicating that retrieval+re-
ranking is potentially better suited for the VCMR
task. Meanwhile, our mXML outperforms the
strong baseline XML significantly4 while using few
parameters. XML is a monolingual model, where a
separate model is trained for each language. In con-
trast, mXML is multilingual, trained on both lan-
guages simultaneously, with parameter sharing and
language neighborhood constraints to encourage
multilingual learning. mXML prediction examples
are provided in the appendix.

Ablations on Model Design. In Table 4, we
present our ablation study on mXML. We use
‘Baseline’ to denote the mXML model without pa-
rameter sharing and neighborhood constraint. Shar-

4Statistically significant with p<0.01. We use bootstrap
test (Efron and Tibshirani, 1994; Noreen, 1989).
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Method #param English R@1 Chinese R@1

IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

Baseline 6.4M 5.77 2.63 4.7 2.38
+ Share Enc. 4.5M 6.09 2.85 4.72 2.25

+ NC (mXML) 4.5M 6.22 2.96 5.17 2.41

Table 4: mXML ablation study on MTVR val split.
Share Enc. = encoder parameter sharing, NC = Neigh-
borhood Constraint. Each row adds an extra compo-
nent to the row above it.

Model Type English R@1 Chinese R@1

IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

Query type: video
Baseline 5.46 2.53 4.78 2.47
mXML 5.77 2.67 5.14 2.32

Query type: subtitle
Baseline 4.15 1.97 3.11 1.14
mXML 6.12 3.32 4.05 1.87

Query type: video+subtitle
baseline 8.02 3.38 5.18 2.62
mXML 8.29 4.09 5.89 3.11

Table 5: Comparison of mXML and the baseline on
MTVR val set, with breakdown on query types. Both
models are trained with video and subtitle as inputs.

.

ing encoder parameter across languages greatly
reduces #parameters while maintaining (Chinese)
or even improving (English) model performance.
Adding neighborhood constraint does not introduce
any new parameters but brings a notable (p<0.06)
performance gain to both languages. We hypoth-
esize that this is because the learned information
in the embeddings of the two languages are com-
plementary (though the sentences in the two lan-
guages express the same meaning, their language
encoders (Liu et al., 2019; Cui et al., 2020)) are
pre-trained differently, which may lead to different
meanings at the embedding level. In Table 5, we
show a detailed comparison between mXML and
its baseline version, by query types. Overall, we
notice the mXML perform similarly with Baseline
in ‘video’ queries, but shows a significant perfor-
mance gain in ‘subtitle’ queries, suggesting the
parameter sharing and neighborhood constraint are
more useful for queries that need more language
understanding.

Ablations on Input Modalities. In Table 6, we
compare mXML variants with different context
inputs, i.e., video or subtitle or both. We report their
performance under the three annotated query types,

QType (percentage) English R@1 Chinese R@1

IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

Model input: video
video (74.32%) 4.12 1.89 3.73 1.86
sub (8.85%) 1.97 1.24 1.35 1.04
video+sub (16.83%) 2.67 1.2 2.45 1.15

Model input: subtitle
video 1.35 0.62 1.11 0.51
sub 6.33 2.9 4.15 1.97
video+sub 6.22 2.62 4.2 2.13

Model input: video+subtitle
video 5.77 2.67 5.14 2.32
sub 6.12 3.32 4.05 1.87
video+sub 8.29 4.09 5.89 3.11

Table 6: mXML performance breakdown on
MTVR val set by query types, with different inputs.

video, sub and video+sub. Overall, the model with
both video and subtitle as inputs perform the best.
The video model performs much better on the video
queries than on the sub queries, while the subtitle
model achieves higher scores on the sub queries
than the video queries.

In the appendix, we also present results on ‘gen-
eralization to unseen TV shows’ setup.

5 Conclusion

In this work, we collect MTVR, a new large-scale,
multilingual moment retrieval dataset. It contains
218K queries in English and in Chinese from 21.8K
video clips from 6 TV shows. We also propose a
multilingual moment retrieval model mXML as a
strong baseline for the MTVR dataset. We show in
experiments that mXML outperforms monolingual
models while using fewer parameters.
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A Appendix

Data Analysis. In Table 8 we show a comparison
of MTVR with existing moment retrieval datasets
and related video and language datasets. Compared
to other moment retrieval datasets, MTVR is sig-
nificantly larger in scale, and comes with query
type annotations that allows in-depth analyses for
the models trained on it. Besides, it is also the
only moment retrieval dataset with multilingual an-
notations, which is vital in studying the moment
retrieval problem under the multilingual context.
Compared to the existing multilingual video and
language datasets, MTVR is unique as it has a
more diverse set of context and annotations, i.e.,
dialogue, query type, and timestamps.

Training and Inference Details. In Figure 3 we
show an overview of the mXML model. We com-
pute video retrieval score as:

svr =
1

2

∑

m∈{v,s}
max(

Hm
vr

‖Hm
vr‖

qm

‖qm‖). (2)

English R@1 Chinese R@1

Setting IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

unseen 1.68 0.79 1 0.54
seen 4.82 2.79 4.18 2.32

Table 7: mXML performance on the MTVR val split
Friends examples, in both unseen and seen settings.

The subscript lang ∈ {en, zh} is omitted for sim-
plicity. It is optimized using a triplet loss similar
to main text Equation (1). For moment retrieval,
we first compute the query-clip similarity scores
Sq,c ∈ Rl as:

Sq,c =
1

2
(Hs

mrq
s +Hv

mrq
v). (3)

Next, we apply Convolutional Start-End Detector
(ConvSE module) (Lei et al., 2020) to obtain start,
end probabilities Pst, Ped ∈ Rl. These scores are
optimized using a cross-entropy loss. The single
video moment retrieval score for moment [tst, ted]
is computed as:

smr(tst, ted) = Pst(tst)Ped(ted), tst ≤ ted. (4)

Given a query qi, the retrieval score for moment
[tst:ted] in video vj is computed following the ag-
gregation function as in (Lei et al., 2020):

svcmr(vj , tst, ted|qi) =

smr(tst, ted)exp(αsvr(vj |qi)), (5)

where α=20 is used to assign higher weight to
the video retrieval scores. The overall loss is a
simple summation of video and moment retrieval
loss across the two languages, and the language
neighborhood constraint loss.

Implementation Details. mXML is imple-
mented in PyTorch (Paszke et al., 2017). We use
Adam (Kingma and Ba, 2014) with initial learning
rate 1e-4, β1=0.9, β2=0.999, L2 weight decay
0.01, learning rate warm-up over the first 5 epochs.
We train mXML for at most 100 epochs at batch
size 128, with early stop based on the sum of R@1
(IoU=0.7) scores for English and Chinese. The
experiments are conducted on a NVIDIA RTX
2080Ti GPU. Each run takes around 7 hours.

Generalization to Unseen TV shows. To inves-
tigate whether the learned model can be transferred
to other TV shows, we conduct an experiment by
using the TV show ‘Friends’ as an ‘unseen’ TV
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Figure 3: mXML overview. For brevity, we only show the modeling process for a single language (Chinese). The
cross-language modifications, i.e., parameter sharing and neighborhood constraint are illustrated in Figure 2. This
figure is edited from the Figure 4 in (Lei et al., 2020).

Dataset Domain #Q/#videos Multilingual Dialogue QType Timestamp

QA datasets with temporal annotation
TVQA (Lei et al., 2018) TV show 152.5K/21.8K - X - X
How2QA (Li et al., 2020) Instructional 44K/22K - X - X
Multilingual video description datasets
MSVD (Chen and Dolan, 2011) Open 70K/2K X - - -
VATEX (Wang et al., 2019b) Activity 826K/41.3K X - - -
Moment retrieval datasets
TACoS (Regneri et al., 2013) Cooking 16.2K/0.1K - - - X
DiDeMo (Hendricks et al., 2017) Flickr 41.2K/10.6K - - - X
ActivityNet Captions (Krishna et al., 2017) Activity 72K/15K - - - X
CharadesSTA (Gao et al., 2017) Activity 16.1K/6.7K - - - X
How2R (Li et al., 2020) Instructional 51K/24K - X - X
TVR (Lei et al., 2020) TV show 109K/21.8K - X X X
MTVR TV show 218K/21.8K X X X X

Table 8: Comparison of MTVR with related video and language datasets.

show for testing, and train the model on all the
other 5 TV shows. For comparison, we also in-
clude a model trained on ‘seen’ setting, where we
use all the 6 TV shows including Friends for train-
ing. To ensure the models on these two settings
are trained on the same number of examples, we
downsample the examples in the seen setting to
match the unseen setting. The results are shown in
Table 7. We notice our mXML achieves a reason-
able performance even though it does see a single
example from the TV show Friends. Meanwhile,
the gap between unseen and seen settings are still
large, we encourage future work to further explore
this direction.

Prediction Examples We show mXML predic-
tion examples in Figure 4. We show both Chinese
(top) and English (bottom) prediction examples,
and correct (left) and incorrect (right) examples.
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00:02,098 → 00:05,518
豪斯：看, 这就是面对面…

00:14,944 → 00:16,529
卡迪：让他出去。

… …

卡迪从豪斯前面的桌子上拿起一些文件。

00:54,309 → 00:58,143
卡迪：如果你不想坐牢…

01:24,806 → 00:86,899
卡梅隆：那得看菌株

… …

00:21,079 → 00:22,063
卡迪：你剪坏了我那…

00:22,681 → 00:25,081
豪斯：那张罕见的银版照片

… …

00:54,309 → 00:58,143
瑞秋：钱德勒！好，够了…

00:48,033 → 00:52,265
钱德勒：帮帮我啦…

… …

瑞秋从门上取下一把钥匙，以帮助钱德勒摆脱手铐。

00:54,309 → 00:58,143
瑞秋：钱德勒！好，够了…

00:48,033 → 00:52,265
钱德勒：帮帮我啦…

… …

00:11,103 → 00:13,844
你不想和任何人谈…

00:08,737 → 00:10,790
瑞秋：你是什么意思…

… …

00:00,382 → 00:01,800
Barney: See those pinstripes?

00:01,925 → 00:02,925
Barney: Diamonds.…

00:40,058 → 00:42,986
Marshall: If you guys…

00:53,680 → 00:55,801
Jerry: You were probably too young.… …

…

Jerry shows Barney a picture at the dining room table.

00:40,058 → 00:42,986
Marshall: If you guys…

00:53,680 → 00:55,801
Jerry: You were probably too young.

… …

00:15,317 → 00:17,046
Ross: I got a message from you…

00:20,055 → 00:21,989
Rachel: Give me the phone!… …

Rachael runs to Ross, jumps on his back and takes the phone away from him.

00:36,230 → 00:41,133
Okay, well, I can maybe grab …

00:56,184 → 00:58,448
Ross: No, Rach!

… …

00:15,317 → 00:17,046
Ross: I got a message from you…

00:20,055 → 00:21,989
Rachel: Give me the phone!… …

Figure 4: Qualitative examples of mXML. Top: examples in Chinese. Bottom: examples in English. Left: correct
predictions. Right: incorrect predictions. We show top-3 retrieved moments for each query. salmon bar shows the
predictions, green box indicates the ground truth.
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Abstract

Named entity recognition (NER) is well stud-
ied for the general domain, and recent sys-
tems have achieved human-level performance
for identifying common entity types. However,
the NER performance is still moderate for spe-
cialized domains that tend to feature compli-
cated contexts and jargonistic entity types. To
address these challenges, we propose explic-
itly connecting entity mentions based on both
global coreference relations and local depen-
dency relations for building better entity men-
tion representations. In our experiments, we
incorporate entity mention relations by Graph
Neural Networks and show that our system
noticeably improves the NER performance on
two datasets from different domains. We fur-
ther show that the proposed lightweight sys-
tem can effectively elevate the NER perfor-
mance to a higher level even when only a tiny
amount of labeled data is available, which is
desirable for domain-specific NER.1

1 Introduction

Named entity recognition (NER) has been well
studied for the general domain, and recent systems
have achieved close to human-level performance
for identifying a small number of common NER
types, such as Person and Organization, mainly
benefiting from the use of Neural Network mod-
els (Ma and Hovy, 2016; Yang and Zhang, 2018)
and pretrained Language Models (LMs) (Akbik
et al., 2018; Devlin et al., 2019). However, the
performance is still moderate for specialized do-
mains that tend to feature diverse and complicated
contexts as well as a richer set of semantically re-
lated entity types (e.g., Cell, Tissue, Organ etc. for
the biomedical domain). With these challenges
in view, we hypothesize that being aware of the

1The code for the system is available here: https://
github.com/brickee/EnRel-G

re-occurrences of the same entity as well as se-
mantically related entities will lead to better NER
performance for specific domains.

Therefore, we propose to explicitly connect en-
tity mentions in a document that are coreferential
or in a tight semantic relation to better learn en-
tity mention representations. Precisely, as shown
in Figure 1, we first connect repeated mentions of
the same entity even if they are sentences away.
For example, the named entity “tumor vasculature”
appears both in the Title and sentence S6 but in
quite different contexts. Connecting the repeated
mentions in a document enables the integration of
contextual cues as well as enables consistent pre-
dictions of their entity types.

Second, we also connect entity mentions based
on sentence-level dependency relations to effec-
tively identify semantically related entities. For
example, the two entities in sentence S3, “bone
marrow” of the type Multi-tissue Structure and “en-
dothelial progenitors” of the type Cell, are the sub-
ject and object of the predicate “contains” respec-
tively in the dependency tree. If the system can
reliably predict the type of one entity, we can infer
the type of the other entity more easily, knowing
that they are closely related on the dependency tree.

We incorporate both relations by using Graph
Neural Networks (GNNs), specifically, we use
the Graph Attention Networks (GATs) (Velickovic
et al., 2018) that have been shown effective for
a range of tasks (Sui et al., 2019; Linmei et al.,
2019). Empirical results show that our lightweight
method can learn better word representations for
sequence tagging models and further improve the
NER performance over strong LMs-based base-
lines on two datasets, the AnatEM (Pyysalo and
Ananiadou, 2014) dataset from the biomedical do-
main and the Mars (Wagstaff et al., 2018) dataset
from the planetary science domain. In addition,
considering the lack of annotations challenge for
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Exact Match
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Figure 1: An example of NER with both discourse-level and sentence-level entity relations.

domain-specific NER, we plot learning curves and
show that leveraging relations between entity men-
tions can effectively and consistently improve the
NER performance when limited annotations are
available.

2 Related Work

NER research has a long history and recent ap-
proaches (Yang and Zhang, 2018; Jiang et al., 2019;
Jie and Lu, 2019; Li et al., 2020) using Neural Net-
work models like BiLSTM-CNN-CRF (Ma and
Hovy, 2016) and contextual embeddings such as
BERT (Devlin et al., 2019) and FLAIR (Akbik
et al., 2018) have improved the NER performance
in the general domain to the human-level. However,
the NER performance for specific domains is still
moderate due to the challenges of limited annota-
tions and dealing with complicated domain-specific
contexts.

We aim to further improve NER performance
by considering coreference relations and seman-
tic relations between entity mentions. This is in
contrast to the usual way of thinking about NER
as an up-stream task conducted before coreference
resolution or entity relation extraction. The idea
aligns with recent works that conduct joint infer-
ences among multiple information extraction tasks
(Miwa and Bansal, 2016; Li et al., 2017; Bekoulis
et al., 2018; Luan et al., 2019; Sui et al., 2020;
Yuan et al., 2020), including NER, coreference
resolution and relation extraction, by mining de-
pendencies among the extractions. However, joint
inference approaches require annotations for all the
target tasks and aim to improve performance for all
the tasks as well, while our lightweight approach
aims to improve the performance of the basic NER

task requiring no additional annotations (usually
unavailable for specific domains).

Our approach is also related to several recent neu-
ral approaches for NER that encourage label depen-
dencies among entity mentions. The Pooled FLAIR
model (Akbik et al., 2019) proposed a global pool-
ing mechanism to learn word representations. Dai
et al. (2019) used a coreference layer with a regu-
larizer to harmonize word representations. Closely
related to our work, Qian et al. (2019) used graph
neural nets to capture repetitions of the same word
as well, but in a denser graph that includes edges
between adjacent words and is meant to completely
overlay the lower encoding layers. Memory net-
works (Gui et al., 2020; Luo et al., 2020) were
also used to store and refine predictions of a base
model by considering repetitions or co-occurrences
of words. In addition, dependency relations have
been commonly used to connect entities for rela-
tion extraction (Zhang et al., 2018; Bunescu and
Mooney, 2005), but we aim to better infer the type
of an entity by associating it with other closely
related entities in a sentence.

3 Model Architecture

Our system with Entity Relation Graphs (EnRel-
G) mainly contains 5 layers as in Figure 2: an
embedding layer, an encoding layer, a GNNs layer,
a fusion layer, and a decoding layer.

3.1 Embedding Layer

We choose the BERT-base LM as our embed-
ding layer. For domain-specific datasets, we use
BioBERT (Lee et al., 2020) for the biomedical do-
main and SciBERT (Beltagy et al., 2019) for the
planetary science domain. Specifically, for an input
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Figure 2: Overall Architecture of the EnRel-G system

document D = [w1, w2, ..., wn] with n words, the
BERT model will output a contextual word embed-
dings matrix E = [w1,w2, ...,wn] ∈ Rn×d1 with
a d1 dimension vector for each word.

3.2 Encoding Layer

To capture the sequential context information, we
use a BiLSTM layer to encode the word embed-
dings from the BERT model. We concatenate the
forward and backward LSTM hidden states as the
encoded representations and then obtain embed-
ding matrix Elstm = BiLSTM(E) ∈ Rn×d2

with a d2 dimension vector for each word.

3.3 Graph Neural Networks Layer

For the GNNs layer, we first introduce how to build
Entity Relation Graphs using global coreference
relations (coreference graph, C-graph) and local
dependency relations (dependency graph, D-graph)
between entities, and then describe how the GNNs
model incorporates them into the word representa-
tions.

Coreference Relation Graph For each docu-
ment, we build a graph GC = (V,AC) based on
coreference relations, in which V is a set of nodes
denoting all the words in a document and AC is
the adjacency matrix. Specifically, we approximate
the entity coreference relations using 3 syntactic
coreference clues as in Figure 1: (1) Exact Match,
two nouns are connected if they are the same, e.g.,
“tumor vasculature” in both the Title and S6; (2)
Lemma Match, two nouns are linked together if
they have the same lemma, e.g., “progenitors” and
“progenitor” in the S3 and S6; (3) Acronym Match,
the acronym word is connected to all full expres-
sion words, e.g., “VEGF” and “vascular endothelial
growth factor” in the S6. For each connected node

pair (i, j), we set AC
i,j = 1. We also add a self-

connection to each node (AC
i,i = 1) to maintain the

words’ original semantic information.
Dependency Relation Graph We build a De-

pendency Relation Graphs GD = (V,AD) for
each document based on sentence-level depen-
dency relations. We first parse each sentence using
the scispaCy2 tool and then connect the following
word pairs in the dependency tree: (1) subject head
word & object head word & their predicate, we
connect them to enhance the interactions between
the entities from the subject and object. e.g., “mar-
row” and “progenitors” with the predicate “con-
tains” in the S3; (2) compound & head word, we
connect the compounds with their head words be-
cause they often both exist in an entity. e.g., the
“bone” and “marrow” in the S3. Same as before,
We set AD

i,j = 1 for each connect pair (i, j), and
also add self-connection (AD

i,i = 1) for each node.
Then we update the encoded word embeddings

with the entity relations graphs based on GNNs,
particularly the GATs. Since nodes represent the
words in a document, we initialize the node repre-
sentations in the graphs from the encoding layer
as Elstm = [wlstm

1 ,wlstm
2 , ...,wlstm

n ]. The graph
attention mechanism updates the initial represen-
tation of node wlstm

i to wgnn
i by aggregating its

neighbors’ representations with their correspond-
ing normalized attention scores.

wgnn
i =

K

‖
k=1

σ


∑

j∈Ni

αk
ijW

kwlstm
j


 (1)

As in equation (1), and we have K attention
heads and concatenate (‖) them as the final repre-
sentation. For head k, we weighted all the adjacent
nodes (Ni, obtained from the adjacent matrixA) by
W k and and then aggregate them with the attention
score αk

ij . σ is the activation function LeakyReLU.
The attention score αk

ij is obtained as followed (aT

is a weight vector):

αk
ij =

exp
(
σ
(
aT
(
W kwlstm

i ‖W kwlstm
j

)))
∑

z∈N i exp
(
σ
(
aT
(
W kwlstm

i ‖W kwlstm
z

)))

(2)

For each of the two relation graphs, we use an
independent graph attention layer. The output word
representations from the two GATs are denoted as:
GC = [w

gnn(C)
1 ,w

gnn(C)
2 , ...,w

gnn(C)
n ] ∈ Rn×d3

and GD = [w
gnn(D)
1 ,w

gnn(D)
2 , ...,w

gnn(D)
n ] ∈

Rn×d3 , with d3 dimension for each word.

2https://allenai.github.io/scispacy/
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Methods Datasets

AnatEM Mars

Wagstaff et al. (2018) – 94.5 / 77.7 / 85.3
NCRF++ 83.40±0.34 / 76.96±0.46 / 80.05±0.12 91.28±1.08 / 80.57±0.55 / 85.59±0.23
FLAIR 81.07±0.29 / 75.28±0.57 / 78.06±0.39 90.67±1.02 / 81.45±1.41 / 85.81±0.62
Pooled FLAIR 82.11±0.50 / 77.55±0.40 / 79.76±0.34 87.79±1.31 / 86.57±1.10 / 87.17±0.17
Tuning Bio/SciBERT 83.94±0.40 / 83.12±0.30 / 83.53±0.32 90.93±0.66 / 88.99±1.61 / 89.95±0.64

EnRel-G (C) 84.65±0.67 / 83.69±0.31 / 84.17±0.41 91.21±1.05 / 89.35±1.76 / 90.27±0.45
EnRel-G (D) 84.98±0.83 / 83.50±0.45 / 84.23±0.54 92.66±1.16 / 88.03±1.46 / 90.29±0.53
EnRel-G (CD) 84.86±0.50 / 83.96±0.32 / 84.41±0.24 92.57±1.00 / 88.65±1.50 / 90.57±0.47

Table 1: Test results of baselines and our system (Average Precision/Recall/F1 Scores±standard deviation,%)3

3.4 Fusion Layer
Similar to Sui et al. (2019), we also use a fusion
layer to blend the encoded word embeddings and
the GNNs updated word embeddings. We first
project these embeddings into the same hidden
space using liner transformation and then add them,
as in F =WNElstm +WCG

C +WDG
D, where

WN ,WC ,WD are trainable weights. Then we will
have a feature matrix F ∈ Rn×d4 for the n words
blended with both the sequential context informa-
tion and global entity relations.

3.5 Decoding Layer
Finally, a Conditional Random Field (CRF) (Laf-
ferty et al., 2001) layer is used to decode the en-
riched embeddings F = [f1,f2, ...,fn] into a se-
quence of labels y = {y1, y2, ..., yn}. In the train-
ing phrase, we optimize the whole model by mini-
mizing the negative log-likelihood loss with respect
to gold labels.

4 Experiments4

We test our model on two domain-specific datasets:
the AnatEM (Pyysalo and Ananiadou, 2014) from
the biomedical domain and the Mars (Wagstaff
et al., 2018) from the planetary science domain.
The AnatEM has annotated 12 types of entities in
1,212 documents with 13,701 entity mentions; the
Mars has 117 longer documents with 4,458 entity
mentions containing 3 types.

4.1 Baselines
NCRF++ (Yang and Zhang, 2018) is an open-
source Neural Sequence Labelling Toolkit. We use

3Previous systems on the AnatEM dataset either evaluate
the NER performance by head match or only evaluate the
performance on span identification; therefore, so we do not
include their results here.

4More details about the datasets, data preprocessing, and
model settings can be found in the appendices.

the BiLSTM-CNN-CRF structrue as a baseline.
FLAIR (Akbik et al., 2018) is a character-level
pretrained LM based on BiLSTM, which has been
used in many NER systems (Jiang et al., 2019;
Wang et al., 2019). We use the embeddings from it
with a BiLSTM-CRF architecture as a baseline.
Pooled FLAIR (Akbik et al., 2019) is an extended
version of the FLAIR model with global memory
and pooling mechanism for the same word, which
helps consistent predictions of coreferential entity
mentions. We also use the embeddings from it with
a BiLSTM-CRF architecture as a baseline.
Tuning Bio/SciBERT We also use Bio/SciBERT
with a BiLSTM-CRF architecture as baselines for
the AnatEM/Mars datasets, which do not have the
GNNs layer or Fusion layer as compared with our
system.

4.2 Results

To alleviate random turbulence, we train all the
systems five times using different random seeds
and evaluate their average performance on the test
sets using the same script5, as in the Table 1.

We can see that our system with both the global
entity coreference and local dependency relations
performs the best among all the systems. It
improves the average F1 score by 0.88 points
(84.41% vs. 83.53%) compared to BioBERT on
the AnatEM, and 0.62 points (90.57% vs. 89.95%)
compared to SciBERT on the Mars. Further, both
the coreference and dependency relations help to
improve the NER performance. Specifically, our
model with either the coreference or dependency
relation graph improves the F1 scores by 0.64 point
or 0.7 point on the AnatEM dataset, and by 0.32
point or 0.34 point on the Mars dataset.

5https://github.com/sighsmile/
conlleval

738



Methods Datasets

AnatEM Mars

Tuning Bio/SciBERT 83.94±0.40 / 83.12±0.30 / 83.53±0.32 90.93±0.66 / 88.99±1.61 / 89.95±0.64

EnRel-G (D) (Key Edges Only) 83.79±0.70 / 83.39±0.39 / 83.59±0.40 91.71±0.63 / 88.30±0.86 / 89.97±0.33
EnRel-G (D) (Compound + Key Edges) 84.98±0.83 / 83.50±0.45 / 84.23±0.54 92.66±1.16 / 88.03±1.46 / 90.29±0.53
EnRel-G (D) (All Modifiers + Key Edges) 84.38±0.72 / 83.83±0.31 / 84.10±0.40 91.06±1.94 / 89.19±1.07 / 90.11±0.55
EnRel-G (D) (All Dependency Edges) 84.32±0.36 / 83.52±0.44 / 83.92±0.30 90.71±2.85 / 89.62±1.87 / 90.16±1.23

Table 2: Edge Selection in the Dependency Graph (Average Precision/Recall/F1 Scores±standard deviation,%)

4.3 Learning Curves
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Figure 3: Learning Curves, each point shows the aver-
age performance of 5 system runs.

One main limitation of domain-specific NER
systems is the lack of annotations, therefore, it
is vital to make the best use of labeled data. The
learning curves (Figure 3) shows that leveraging the
relations between entity mentions can effectively
elevate the NER performance to a higher level even
when only a tiny amount of labeled data (a quarter
of training data) is available, and this is true on
both the AnatEM dataset and the Mars dataset.

4.4 Analysis of Computation Cost
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Figure 4: Comparison of Training Time

Although fine-tuning pretrained LMs has im-

proved the performance of many NLP tasks, one
limitation is the increase of training time. There-
fore, it is important to build computing efficient
models based on pretrained LMs. As shown in
Figure 4, our model with the GNNs layer does not
increase the time cost for fine-tuning the BERT
models. The training time of methods with or with-
out the GNNs layer is similar.

4.5 Edge selection in the Dependency Graph
To build the sentence-level dependency graph, we
selected only two types of dependency relations:
between the subject, object and their predicate (Key
Edges) and between a compound modifier and its
head word. As shown in the Table 2, we also tried
to connect all the modifiers with their head word
and found that this yields slightly worse perfor-
mance, and the reason may be that many modifiers
other than compounds are not entities themselves.
In addition, including all the dependency edges
also yields worse performance than using the two
selected types of dependency relations, probably
for the same reason that many of the nodes in a
dependency tree are not parts of entity mentions
and many dependency relations do not directly con-
tribute to capturing relations between entities.

5 Conclusion

In this work, we explicitly capture the global coref-
erence and local dependency relations between en-
tity mentions, and use graph neural nets to incorpo-
rate the relations to improve domain-specific NER
tasks. Experimental results on two datasets show
the effectiveness of this lightweight approach. We
also find that the selection of entity relations is im-
portant to the system performance. Future work
may consider about using GNNs to incorporate
external knowledge for performance improvement.
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2018. Graph attention networks. In 6th Inter-
national Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May

3, 2018, Conference Track Proceedings. OpenRe-
view.net.

Kiri Wagstaff, Raymond Francis, Thamme Gowda,
You Lu, Ellen Riloff, Karanjeet Singh, and Nina
Lanza. 2018. Mars target encyclopedia: Rock and
soil composition extracted from the literature. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 32.

Zihan Wang, Jingbo Shang, Liyuan Liu, Lihao Lu, Ji-
acheng Liu, and Jiawei Han. 2019. CrossWeigh:
Training named entity tagger from imperfect anno-
tations. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5154–5163, Hong Kong, China. Association for
Computational Linguistics.

Jie Yang and Yue Zhang. 2018. Ncrf++: An open-
source neural sequence labeling toolkit. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics.

Yue Yuan, Xiaofei Zhou, Shirui Pan, Qiannan Zhu,
Zeliang Song, and Li Guo. 2020. A relation-specific
attention network for joint entity and relation extrac-
tion. In International Joint Conference on Artificial
Intelligence 2020, pages 4054–4060. Association for
the Advancement of Artificial Intelligence (AAAI).

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018. Graph convolution over pruned dependency
trees improves relation extraction. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2205–2215, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Appendices

Appendix A: Dataset Details

The AnatEM (Pyysalo and Ananiadou, 2014)
dataset is an extended Anatomical Entity Mention
corpus combining both the Anatomical Entity Men-
tion (AnEM) (Ohta et al., 2012) dataset and Multi-
level Event Extraction (MLEE) (Pyysalo et al.,
2012) corpus. All the documents are selected from
PubMed6 abstracts or full-text papers. AnatEM is
manually annotated by biological experts and it has
12 types of entities annotated, namely Anatomical
System, Cancer, Cell, Cellular Component, Devel-
oping Anatomical Structure, Immaterial Anatom-
ical Entity, Multi-tissue Structure, Organ, Organ-
ism Subdivision, Organism Substance, Pathologi-
cal Formation, Tissue. In total, this dataset consists
of 1,212 documents and 13,701 entities annotated.

6https://pubmed.ncbi.nlm.nih.gov/

741



Datasets #Doc #Words #Entities #Words/Doc

AnatEM

Train 606 153,823 6,946 254
Dev 202 58,785 2,139 291
Test 404 99,976 4,616 247

Total 1,212 312,584 13,701 258

Mars

Train 62 99,952 2,431 1,612
Dev 20 33,743 906 1,687
Test 35 58,392 1,121 1,668

Total 117 192,087 4,458 1,642

Table 3: Statistics of the AnatEM and Mars datasets.7

Mars is from the scientific literature domain, and
it is about planetary science. All documents come
from the Lunar and Planetary Science Conference
(LPSC)8, and the entity mentions are annotated
manually. It has 3 types of entities: Element, Min-
eral, Target. The corpus consists of 117 documents.
62 of them are from LPSC 2015 and they are for
training and 55 of them are from LPSC 2016 for
evaluation. Same as previous work, we divide the
2016 documents into a validation set with 20 docu-
ments and a testing set with 35 documents.

Appendix B: Data Preprocessing

We want our model to take advantage of the
document-level information, but some of the docu-
ments are extremely too long. Moreover, the BERT
model also has a limitation of 512 subtokens for
input texts. So we need to split the long documents.
Besides, the BERT language model needs a big
enough batch size (e.g., 16 or 32) to be well fine-
tuned, which is also a burden for the GPU memory
consumption. In consideration of these restrictions,
we limit the max subtoken count of a split docu-
ment to 128 in the data preprocessing. Future work
with more computing resources may try longer in-
put documents.

Moreover, we also add the POS and Dependency
Tree information into the data using scispaCy for
constructing the Coreference Graph and the Depen-
dency Graph in our model.

Appendix C: Model Settings

For the NCRF++ baseline, we use one layer of
BiLSTM for word sequence representation with
300-dim Glove (Pennington et al., 2014) embed-
dings, four layers of CNN for character sequence

7We remove the redundantly annotated entities in the Mars.
8https://www.hou.usra.edu/meetings/

Methods Optimizer
Learning
Rate

Batch
Size

NCRF++ SGD 1e-2 10
(pooled) FLAIR Adam 2e-3 8
Tuning Bio/SciBERT Adam 5e-5 32

EnRel-G Adam 5e-5 32

Table 4: Model Settings

representation with 50-dim random initialized char-
acter embeddings, and a CRF layer for inference.

For the FLAIR and Pooled FLAIR baselines,
we use the PubMed version (pretrained on the
biomedical corpus) for the AnatEM dataset and the
general English version (pretrained on the English
news articles) for the Mars dataset. Particularly, for
the Pooled FLAIR model, we set the mean pooling
mechanism to calculate the average of embeddings
for multiple occurrences of a word, and then use it
as the representation for the word.

For the Tuning BERT baselines, we use
BioBERT-Base v1.1 for the AnatEM dataset and
SciBERT-scivocab-uncased for the Mars dataset.

For our EnRel-G system, we keep the embed-
dings layer the same as the Tuning BERT baselines.
As for the GNNs layer, we use one layer of the
graph attention mechanism with 4 heads, and each
head has a hidden dimension of 128.

For the optimization related parameters, as in
the Table 4, we mainly use the recommended set-
tings for the baseline models. For our EnRel-G
system, we keep the same parameters as in the
Tuning BERT baseline for fair comparison.

We train all the systems on a single Nvidia
GEFORCE GTX 2080Ti GPU. We set the max-
imum epoch as 100 and use the best-performed
model on the development set to evaluate the test
data.
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Abstract

Accurate terminology translation is crucial for
ensuring the practicality and reliability of neu-
ral machine translation (NMT) systems. To
address this, lexically constrained NMT ex-
plores various methods to ensure pre-specified
words and phrases appear in the translation
output. However, in many cases, those meth-
ods are studied on general domain corpora,
where the terms are mostly uni- and bi-grams
(>98%). In this paper, we instead tackle a
more challenging setup consisting of domain-
specific corpora with much longer n-gram and
highly specialized terms. Inspired by the re-
cent success of masked span prediction mod-
els, we propose a simple and effective train-
ing strategy that achieves consistent improve-
ments on both terminology and sentence-level
translation for three domain-specific corpora
in two language pairs.

1 Introduction

Despite its recent success in neural machine transla-
tion (NMT) (Wu et al., 2016; Johnson et al., 2017;
Barrault et al., 2020), delivering correct terms in
the translation output is still a vital component for
high-quality translation. This concern becomes
more salient in domain-specific scenarios, such as
in legal documents, where generating correct and
consistent terminology is key to ensuring the prac-
ticality and reliability of machine translation (MT)
systems (Chu and Wang, 2018; Exel et al., 2020).

To address this, lexically constrained NMT
works have proposed various methods to preserve
terminology in translations as lexical constraints
with or without the help of a term dictionary at test
time. In most lexically constrained NMT setups,
datasets and terms used for training and evaluating
the methods are extracted from WMT news cor-
pora (Dinu et al., 2019; Susanto et al., 2020; Chen

* equal contributions

Figure 1: The frequency of terms sorted by n-gram be-
tween Dinu et al. (2019)’s and our test splits. While the
terms in WMT De-En are mostly uni- or bi-grams, our
setup contains heavy-tailed n-gram distributions with
more quantity and diversity in terminology.

et al., 2020). Since the terms, regardless of their
source, can only be utilized as long as they exist
in the corpus, the term coverage solely depends
on the choice of the corpus. By analyzing the pre-
vious setups carefully, we discover that the terms
found in WMT are mostly uni- or bi-grams (see
Figure 1) and highly colloquial (see Table 1 for
the top 10 most frequent terms). These leave the
question of whether the previous methods are effec-
tive in domain-specific scenarios where accurate
terminology translation is truly vital.

In this paper, inspired by the recent masked span
prediction models, which have demonstrated im-
proved representation learning capability of con-
tiguous words (Song et al., 2019b; Joshi et al.,
2019; Lewis et al., 2020; Raffel et al., 2020), we
propose a simple yet effective training scheme to
improve terminology translation in highly special-
ized domains. We specifically select two highly
specialized domains (i.e., law and medicine) which
contain domain-specific terminologies to address
more challenging and realistic setups, in addition to
applying it to both typologically similar and dissim-
ilar pairs of languages (German-English (De→En)
and Korean-English (Ko→En)). Thanks to its sim-
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plicity, the proposed method is compatible with any
autoregressive Transformer-based model, including
ones capable of utilizing term dictionaries at train-
ing or test time. In domain-specific setups where
longer n-gram terms are pervasive, our method
demonstrates improved performance over the stan-
dard maximum likelihood estimation (MLE) ap-
proach in terms of terminology and sentence-level
translation quality. Our code and datasets are avail-
able at https://github.com/wns823/NMT_SSP.

2 Background

Lexically constrained NMT We could group
lexically constrained NMT methods into two
streams: hard and soft. The hard approaches aim
to force all terminology constraints to appear in
the generated output. The methods include replac-
ing constraints (Crego et al., 2016), constrained
decoding (Hokamp and Liu, 2017; Chatterjee et al.,
2017; Post and Vilar, 2018; Hasler et al., 2018), and
additional attention heads for external supervision
(Song et al., 2020). Although those approaches are
reliable and widely used in practice, they typically
require a pre-specified term dictionary and an extra
candidate selection module if there are multiple
matching candidates for a single term (see caption
in Table 2).

Several soft methods address this problem with-
out the help of a term dictionary, one of which is
training on both constraint pseudo-labeled (with
statistical MT) and unlabeled data (Song et al.,
2019a). More recently, Susanto et al. (2020) and
Chen et al. (2020) proposed methods that do not
assume any word alignment or dictionary supervi-
sion at training time to handle unseen terms at test
time. For their flexibility, we choose them as our
baselines. As discussed in Section 1, most previ-
ous methods are trained and evaluated on general
domain corpora. In this work, we instead tackle
highly specialized domain-specific corpora such as
law and medicine, where the terms are much longer
and often rare.

Domain-specific NMT Another line of research
related to our problem is domain-specific NMT,
where difficulties arise from both a limited amount
of parallel data and specialized lexicons. Similar to
the hard approaches in lexically constrained NMT,
several works rely on domain-specific dictionaries
(Zhang and Zong, 2016a; Hu et al., 2019; Thomp-
son et al., 2019; Peng et al., 2020) when generating
translations, but they are also prone to the same is-

Dinu et al. (2019)’s dataset

Iate-414 gold(15), CDU(13), bridge(12), China(11), Syria(11), night(11),

campaign(11), generation(9), month(7), Iraq(7)

Iate-581 gold(26), doping(23), CDU(19), sport(17), US(15), bridge(14),

Syria(13), campaign(13), China(11), night(11)

Wikt-727 percent(61), police(50), Thursday(41), Putin(19), five(17),

September(14), Venus(13), later(12), Tuesday(11), less(11)

Wikt-975 percent(61), police(59), Thursday(44), Putin(24), old(21),

September(21), five(16), swimmer(14), later(13), Venus(13)

Our dataset

Law (De-En) Council(706), Regulation(521), Commission(481), Union(478),

Treaty(345), Official Journal(319), Member State(283), proposal(239),

on a proposal from the Commission(229), market(181)

Medical (De-En) injection(469), water(275), water for injection(270), patient(269),

infusion(258), solution for infusion(226), sodium(159),

distribution(127), volume of distribution(125), treatment(120)

Law (Ko-En) si(451), official(445), public official(436), member(436), term of

office(367), gu(265), education(209), period(180), term(180),

management(156)

Table 1: Top 10 most frequent terms in Dinu et al.
(2019)’s and our test splits. Numbers in parenthesis
indicate the frequency of terms in each data. As shown
in the two tables, all top 10 terms in the WMT cor-
pus are unigrams, while there are longer terms (up to
6-grams) in the domain-specific corpora. Furthermore,
compared to WMT, the terms in the domain-specific
corpora are more specialized for their corresponding
domains.

sues. Other domain-specific NMT methods include
unsupervised lexicon adaptation (Hu et al., 2019),
synthetic parallel data generation with monolingual
data (Sennrich et al., 2016a), and multi-task learn-
ing that combines language modeling and transla-
tion objectives (Gulcehre et al., 2015; Zhang and
Zong, 2016b; Domhan and Hieber, 2017). Our
method is a form of multi-task learning by utiliz-
ing both the source and target language text for an
additional task, while the previous works mostly
use only the target language text.

Span-based Masking Span-based masking is to
predict the spans of masked tokens, as opposed
to individual token predictions in BERT (Devlin
et al., 2019). With this training objective, the model
showed improved performance on span-level tasks
including question answering and coreference res-
olution (Joshi et al., 2019). Concurrently, autore-
gressive sequence-to-sequence pre-trained models
also utilized span-based masking as their objec-
tives and demonstrated its effectiveness in many
downstream tasks (Song et al., 2019b; Lewis et al.,
2020; Raffel et al., 2020). Similar to theirs, our
training scheme takes advantage of autoregressive
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span-based prediction but we condition on both
the source language and the previous non-masked
target language tokens.

3 Approach

3.1 Source-Conditioned Masked Span
Prediction

We posit that adopting auxiliary span-level supervi-
sion in generation can benefit both short and long
terminology and sentence-level translation. We,
therefore, propose an extra span-level prediction
task in translation—namely, source-conditioned
masked span prediction (SSP). Different from the
recent sequence-to-sequence pre-trained models
(Song et al., 2019b; Lewis et al., 2020; Raffel et al.,
2020), our approach applies span masking only
on the target side. By conditioning on the full
context of the source language and the previous
non-masked target language tokens (due to autore-
gressive decoding), the model is forced to predict
the spans of missing tokens given fully referenced
information in the encoder and partially in the de-
coder.

Span masking We follow the masking procedure
proposed in SpanBERT (Joshi et al., 2019), where
we first sample the length of spans from a clamped
geometric distribution (p=0.2, max=10) and then
corrupt 80% of masked tokens with [MASK], 10%
with random tokens, and 10% unchanged. We set
the corruption ratio to 50%.

Multi-task Learning As our training scheme
consists of two objectives (i.e. translation and
masked span prediction), we define the total train-
ing objective as follows. Let θ be the model pa-
rameter and C be the term-matched corpus where
each sentence contains at least one or more terms.
The first objective, translation, is to maximize the
likelihood of the conditional probability of y:

pθ(y|x) =

T+1∏

t=1

pθ(yt|y0:t−1, x), (1)

where y = (y1, . . . , yT ) is the target ground-truth
(GT) sentence with length T and x = (x1, . . . , xS)
is the source sentence with length S. For the SSP
objective, we first corrupt random spans of y until
the corruption ratio, resulting in ỹ. Then we au-
toregressively predict the masked tokens ȳ while

# Sent. Avg. words
per sent. # Terms Avg. terms

per sent.
# Unique

terms

Law
(De→En)

SRC 447,410
(441K/3K/3K)

27.46
1,677,852 2.33

25,460

TRG 30.77 27,755

Medical
(De→En)

SRC 494,316
(488K/3K/3K)

19.01
1,494,269 1.34

8,633

TRG 20.25 8,990

Law
(Ko→En)

SRC 93,240
(87K/3K/3K)

16.52
353,894 3.52

2,354

TRG 34.56 2,733

Table 2: Statistics of the filtered corpus and matched
terms. Note that # unique terms in the source (SRC)
and target (TRG) languages are not the same. For
instance, “Arzneimittel” can translate into multiple
forms—“pharmaceutical products”, “drug”, “medici-
nal product”, etc.— depending on the context.

conditioned on both ỹ and x:

pθ(ȳ|ỹ, x) =
T+1∏

t=1

mtpθ(yt|ỹ0:t−1, x), (2)

where mt = 1 means yt is masked.
Finally, we simultaneously optimize the joint

loss:

Ltotal = − 1

|C|
∑

(x,y)∼C,
ỹ∼C(y)

log pθ(y|x)

+γ log pθ(ȳ|ỹ, x),

(3)

where C is a span-level corrupter and γ is a task
coefficient that weights the relative contribution of
SSP.

4 Experiments

4.1 Setup
Data We use De-En legal and medical domain cor-
pora from OPUS1 (Tiedemann, 2012) and the De-
En bilingual term dictionary from IATE2. Terms in
different languages are aligned via term IDs. For
the typologically distant pair of languages, we use
the Ko-En legal domain corpus available on AI
Hub3, and the manually processed bilingual term
dictionary downloaded from the Korea Legislation
Research Institute (KLRI) website4. In cases where

1http://opus.nlpl.eu/
2https://iate.europa.eu
3https://www.aihub.or.kr/aidata/87
4https://www.moleg.go.kr/board.es?

mid=a10504000000&bid=0010&act=view&list_
no=43927&nPage=2
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Model

Law (De→En) Law (Ko→En)

BLEU
Term% (↑) LSM-3 (↑)

BLEU
Term% (↑) LSM-3 (↑)

1-gram 2-gram 2>micro 2>macro 2>micro 2>macro 1-gram 2-gram 2>mirco 2>marco 2>micro 2>macro

GU19 70.64 94.36 92.33 73.31 45.25 86.22 74.92 51.31 81.47 76.51 58.15 38.51 69.41 62.52

VASWANI17 75.24 95.80 93.87 80.29 55.31 89.71 79.77 53.01 84.97 81.29 65.79 54.55 74.29 70.56

+SSP 75.44 96.01 94.08 81.52 58.79 90.81 82.50 53.80 85.84 83.94 66.84 58.15 75.71 69.82

CHEN20 74.19 95.55 94.08 80.63 54.73 89.80 80.89 53.08 85.49 83.25 65.51 52.49 74.53 67.81

+SSP 75.24 95.92 94.50 81.31 56.33 90.40 81.91 53.32 85.63 82.10 66.19 56.50 76.02 72.27

Table 3: (Without dictionary) Results on legal domain corpora (De→En and Ko→En) without terminology guid-
ance at test time. VASWANI17 combined with our training objective (Eq.(3)) outperforms other methods in most
cases. Note that GU19 is a non-autoregressive model, therefore not applicable to our proposed method. Higher
Term% and LSM-3 mean better performance.

Model

Law (De→En) Law (Ko→En)

BLEU
Term% (↑) LSM-3 (↑)

BLEU
Term% (↑) LSM-3 (↑)

1-gram 2-gram 2>micro 2>macro 2>micro 2>macro 1-gram 2-gram 2>mirco 2>marco 2>micro 2>macro

SUSANTO20 62.20 94.38 92.95 82.06 64.06 94.93 92.14 50.56 81.67 76.74 58.47 38.66 69.63 62.60

CHEN20 73.05 96.64 93.29 78.73 51.47 90.00 80.29 52.60 84.74 83.94 67.33 59.53 75.59 74.54

+SSP 74.72 97.15 95.95 84.67 57.48 93.94 83.62 53.38 95.86 94.92 88.58 79.34 94.17 91.48

Table 4: (With dictionary) Results on legal domain corpora when the GT terms are provided at test time. +SSP
consistently shows improvements over its MLE counterparts. Contrary to the previous findings (Susanto et al.,
2020; Chen et al., 2020), the models do not show improved BLEU scores compared to those in Table 3. We argue
that providing terms at test time is indeed helpful for terminology generation, but it can often hinder the generation
of fluent text. This becomes more apparent in our non-autoregressive setup.

one term translates into multiple terms, we consider
all possible pairs to maximize the number of sen-
tence and term matches.

To avoid trivial matches between the parallel
sentences and terms, we filtered out terms that are
less than four characters long and longer than 20
grams. Sentences that do not contain any term
are also removed. The statistics of the datasets
are reported in Table 2. More details about the
preprocessing steps are in Appendix A.1.

For data splitting, we developed a new data split-
ting algorithm that considers the same distribution
of n-grams across each data split. We use 3,000 sen-
tences for valid and test sets in case of high redun-
dancy in certain corpora, while previous works that
utilize OPUS use only 2,000 (Koehn and Knowles,
2017; Müller et al., 2020). It is important to note
that all the sentences in our data splits are matched
with domain-specific terms (i.e. at least one or
more terms exist in each sentence) following the
style of Dinu et al. (2019). The pseudo-code for
the terminology-aware data split algorithm is in
Appendix B.

Baselines We compare our method on two re-
cent lexically constrained NMT models of differ-
ent natures: autoregressive (Chen et al., 2020) and

non-autoregressive (Susanto et al., 2020), but both
can operate with or without a term dictionary at
test time. We refer to them as CHEN20 and SU-
SANTO20, respectively. +SSP indicates models
trained with our proposed training scheme, while
no indication is the standard MLE method. A base
Transformer (Vaswani et al., 2017), denoted as
VASWANI17, and a Levenshtein Transformer (Gu
et al., 2019), denoted as GU19, are also reported to
compare the relative performance between models.
SUSANTO20 without a dictionary is equivalent to
GU19.

Evaluation We use SacreBLEU5 (Post, 2018)
for measuring translation quality. For terminology
translation, we use term usage rate for both short
(≤2-grams) and long (>2-grams) terms. Term us-
age rate (Term%) is the number of generated terms
divided by the total number of terms (Dinu et al.,
2019; Susanto et al., 2020). Specifically for eval-
uating long terms, we report both the macro and
micro averages due to the heavy-tailed nature of n-
grams. In addition, although exact term translation
is the primary objective for terminology transla-
tion, due to its harshness, evaluating models only
with Term% may not fully describe the models’

5https://github.com/mjpost/sacrebleu
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Model

Medical (De→En)

BLEU
Term% (↑) LSM-3 (↑)

1-gram 2-gram 2>micro 2>macro 2>micro 2>macro

Without dictionary

GU19 70.85 93.83 91.24 77.46 53.66 86.15 75.21

VASWANI17 76.31 94.22 90.80 79.82 61.03 87.11 80.48

+SSP 76.87 94.36 91.31 80.63 53.68 88.01 74.76

CHEN20 74.84 94.29 90.61 79.42 68.37 87.13 84.64

+SSP 76.72 94.61 90.42 80.41 68.03 88.08 83.04

With dictionary

SUSANTO20 62.20 91.01 92.64 88.09 67.22 95.46 94.27

CHEN20 72.84 94.40 93.58 83.77 67.98 89.95 86.70

+SSP 75.50 95.86 94.92 88.58 79.34 94.17 91.48

Table 5: Results on the medical domain dataset
(De→En).

behavior. Therefore, we also evaluate each model
in terms of partial n-gram matches, which is ex-
plained in the next paragraph. All evaluations are
conducted with a beam size of 5.

Partial N-gram Match Inspired by the longest
common substring problem (Gusfield, 1997), we
devised a partial n-gram match score for evaluat-
ing long terminology—longest sub n-gram match
(LSM) score. Formally, let the generated target sen-
tence be ŷ = (ŷ1, ..., ŷT ) and the matched terms
for the target ground truth (GT) sentence y be
y′ =

⋃N
i=1(y

′
i1, ..., y

′
il), where N is the number

of GT terms in y and l is an arbitrary n-gram length
for i-th term. Then, LSM is defined as the ratio of
the longest n-gram overlap divided by l. As too
many overlaps can occur at the uni and bi-gram lev-
els, we only calculate LSM for long terminology,
which means the least overlap has to be greater than
or equal to 3 grams, all else being zero, therefore
denoted as LSM-3.

4.2 Results and Analysis

For the legal domain, where many terms are excep-
tionally long compared to most other domains, our
training scheme shows consistent improvements
over the standard MLE counterparts, as shown in
Table 3 and Table 4. Even with the extreme setting
of law Ko→En, low-resourced and typologically di-
vergent, our method is still effective in most metrics
we use. Compared to the autoregressive models,
GU19 and SUSANTO20 did not achieve competi-
tive BLEU scores in our domain-specific setup. We
suspect that this is due to both its complex decod-
ing nature and the small amount of training data
(originally WMT). Sampled translation results are
reported in Table 9.

For the medical domain, the behaviors of two

baselines, VASWANI17 and CHEN20, are not
clearly shown compared to the legal domain. How-
ever, our training scheme shows consistent im-
provements in BLEU and Term% at 2>micro
which reflects the global performance of long ter-
minology generation. Similar to the legal De→En
results, SUSANTO20 shows better performance on
several metrics on long terminology translation,
but the BLEU score is decreased by about 8 points,
compared to no dictionary use.

5 Conclusion

We propose a simple and effective training scheme
for improving lexically constrained NMT by in-
troducing the masked span prediction task on the
decoder side. Our method shows its effectiveness
in terms of terminology and sentence-level trans-
lation over the standard MLE training in highly
specialized domains in two language pairs. As we
publicly release our code and datasets, we hope that
more people can join this area of research without
much burden. In the future, we plan to further inves-
tigate applying our method to non-autoregressive
methods.
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Constantin, and Evan Herbst. 2007. Moses: Open

748



source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceed-
ings of the First Workshop on Neural Machine Trans-
lation, pages 28–39, Vancouver. Association for
Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Mathias Müller, Annette Rios, and Rico Sennrich.
2020. Domain robustness in neural machine trans-
lation. In Proceedings of the 14th Conference of the
Association for Machine Translation in the Americas
(Volume 1: Research Track), pages 151–164, Virtual.
Association for Machine Translation in the Ameri-
cas.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Eunjeong L Park and Sungzoon Cho. 2014. Konlpy:
Korean natural language processing in python. In
Annual Conference on Human and Language Tech-
nology, pages 133–136. Human and Language Tech-
nology.

Wei Peng, Chongxuan Huang, Tianhao Li, Yun Chen,
and Qun Liu. 2020. Dictionary-based data augmen-
tation for cross-domain neural machine translation.
arXiv preprint arXiv:2004.02577.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Matt Post and David Vilar. 2018. Fast lexically con-
strained decoding with dynamic beam allocation for
neural machine translation. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1314–1324, New Orleans, Louisiana.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Kai Song, Kun Wang, Heng Yu, Yue Zhang,
Zhongqiang Huang, Weihua Luo, Xiangyu Duan,
and Min Zhang. 2020. Alignment-enhanced trans-
former for constraining nmt with pre-specified trans-
lations. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 8886–8893.

Kai Song, Yue Zhang, Heng Yu, Weihua Luo, Kun
Wang, and Min Zhang. 2019a. Code-switching for
enhancing NMT with pre-specified translation. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 449–459,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019b. Mass: Masked sequence to se-
quence pre-training for language generation. In In-
ternational Conference on Machine Learning, pages
5926–5936. PMLR.

Raymond Hendy Susanto, Shamil Chollampatt, and
Liling Tan. 2020. Lexically constrained neural ma-
chine translation with Levenshtein transformer. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3536–
3543, Online. Association for Computational Lin-
guistics.

Brian Thompson, Rebecca Knowles, Xuan Zhang,
Huda Khayrallah, Kevin Duh, and Philipp Koehn.
2019. HABLex: Human annotated bilingual lex-
icons for experiments in machine translation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1382–
1387, Hong Kong, China. Association for Computa-
tional Linguistics.

749



Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 2214–2218, Istanbul,
Turkey. European Language Resources Association
(ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144.

Jiajun Zhang and Chengqing Zong. 2016a. Bridging
neural machine translation and bilingual dictionaries.
arXiv preprint arXiv:1610.07272.

Jiajun Zhang and Chengqing Zong. 2016b. Exploit-
ing source-side monolingual data in neural machine
translation. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1535–1545, Austin, Texas. Association
for Computational Linguistics.

750



A Preprocessing and Training

A.1 Preprocessing
For De→En, we applied Moses tokenization
(Koehn et al., 2007) and joint source-target byte
pair encoding (BPE) (Sennrich et al., 2016b) with
20,000 split operations. For En→Ko, English
was tokenized using spaCy6 and Korean using
KoNLPy’s MeCab-ko7 (Park and Cho, 2014), fol-
lowed by BPE with 20,000 operations. We apply
sentence filtering up to 80 tokens.

A.2 Training
Model We follow the base Transformer architec-
ture and fix the same hyperparameter configura-
tions for all baselines. For the exact implementa-
tion of each baseline, we followed the authors’ offi-
cial code on github (CHEN208 and SUSANTO209).
We implemented our code using FAIRSEQ10 (Ott
et al., 2019), trained on Nvidia GeForce RTX 3090
and RTX 2080 Ti GPUs.

Hyperparameter Detailed hyperparameter set-
tings of baselines are reported below. Span mask-
ing and task coefficient only apply to our proposed
training scheme.

Transformer
Embedding dim. 512

Transformer FFN dim. 2048
Enc/Decoder layers 6

Attention heads 8
Share all embedding True

Dropout 0.3
Label smoothing 0.1

Optimizer Adam
Learning rate 0.0005

Warmup updates 4000
Maximum token per batch 4096
Maximum token lengths 80

Span Masking
Span length Geometric (p=0.2)

Maximum span length 10
Minimum span length 1

Corruption ratio 0.5
Task Coefficient

Task coefficient (γ) 0.5

Table 6: Hyperparameter settings

6https://spacy.io/
7https://konlpy.org/en/latest/
8https://github.com/ghchen18/leca
9https://github.com/raymondhs/

constrained-levt
10https://github.com/pytorch/fairseq

B Terminology-Aware Data Split
Algorithm

Algorithm 1: Terminology-Aware Data
Split Algorithm

Data: Dictionary D, Corpus C, Held-out Size R
Result: Sent=(Senttrain, Sentvalid, Senttest)

Term=(Termtrain, Termvalid, Termtest)
1: Sort D in a descending order
2: N = dict()
3: T’ = dict()
4: S = ( |C| − 2 * R, R, R )
5: Senttrain = [], Sentvalid = [], Senttest = []
6: Termtrain = [], Termvalid = [], Termtest = []
7: for i in {1,2, ..., |C|} do
8: x, y = C[i]
9: ngramlist = []

10: T” = []
11: for (x’, y’) in D do
12: if y’ in y and x’ in x then
13: ngramlist.append(ngram(y’))
14: y = y.replace(y’, “”, 1)
15: x = x.replace(x’, “”, 1)
16: T”.append((x’, y’))
17: end if
18: end for
19: n = Max(ngramlist)
20: if n is not in N.keys() then
21: N[n] = []
22: end if
23: N[n].append(i)
24: T’[i] = T”
25: end for
26: K = Sort the keys in N in a descending order.
27: for k in K do
28: idk , iuk = DuplicateCheck(N [k])
29: (Sent, Term) += Distributor Dup(idk, N [k], T ′, S)
30: (Sent, Term) += Distributor Uni(iuk, N [k], T ′, S)
31: end for

Line 1 : Sort D w.r.t. target language terms.

Line 2 : Initialize a dictionary for storing paired sentences.

The keys are the longest n-gram lengths for each sentence

w.r.t. the target language.

Line 3 : Initialize a dictionary for storing matched terms. The

keys are the indices of a corresponding sentence.

Line 13 : ngram() returns the token length of a term. In our

case, it is used for calculating the length of a target language

token y’.

Line 14 : Replace y’ with “” in y to avoid unwanted substring

duplication (e.g., In case of having “public officer” and

“officer” in a sentence, we would like to first match “public

officer” instead of “office” when we have “public officer” in

the dictionary. See Line 1).

Line 19 : Calculate the maximum length of n-grams in y.

Line 23 : Store the sentence index w.r.t. its longest length of

n-grams.

Line 24 : Store the list of terms w.r.t. its sentence index.

Line 28 : DuplicateCheck() checks for duplication in the

corpus and returns duplicate and non-duplicate indices. Note
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that idk is a list of duplicate sentence indices, and Suk is a list

of unique sentence indices.

Line 29 : Distributor Dup() first calculates the number of

sentences and phrases to be distributed across train, valid,

and test sets following the ratio in S, and then distributes

sentences accordingly.

Line 30 : Distributor Uni() distributes unique sentences and

phrases alternatively between train, valid, and test sets.

C Removing duplicates

As the OPUS datasets contain duplicate sentences
(Aharoni and Goldberg, 2020), we further evaluate
each model with unseen, unique test samples only.
Similar to Tables 7 and 8, our training scheme
outperforms its MLE counterparts. The Ko-En law
corpus does not contain any duplicate sentence,
and therefore the results are equivalent to those in
Tables 3 and 4.

Model

Law (De→En)

BLEU
Term% (↑) LSM-3 (↑)

1-gram 2-gram 2>micro 2>macro 2>micro 2>macro

Without dictionary

GU19 68.14 93.71 91.87 72.32 46.24 85.05 74.22

VASWANI17 72.86 95.30 93.36 78.68 54.99 88.40 78.69

+SSP 73.15 95.57 93.54 79.98 59.18 89.64 81.53

CHEN20 71.89 95.04 93.54 78.83 54.55 88.43 79.63

+SSP 72.93 95.46 94.14 79.74 56.63 89.19 80.88

With dictionary

SUSANTO20 59.23 94.10 92.89 82.86 68.22 95.28 93.36

CHEN20 70.90 96.36 94.01 77.26 51.97 89.12 80.06

+SSP 72.70 96.85 95.68 83.65 58.33 93.30 83.40

Table 7: Results on the law domain dataset with no
duplication in data (De→En).

Model

Medical (De→En)

BLEU
Term% (↑) LSM-3 (↑)

1-gram 2-gram 2>micro 2>macro 2>micro 2>macro

Without dictionary

GU19 54.27 89.93 84.35 67.83 50.44 78.18 70.33

VASWANI17 58.29 90.09 84.51 70.98 57.82 79.18 76.45

+SSP 59.19 90.43 85.50 71.51 49.20 80.38 70.10

CHEN20 58.27 90.30 84.02 70.38 64.02 79.28 80.14

+SSP 59.49 90.57 83.53 71.25 64.36 80.29 78.70

With dictionary

SUSANTO20 45.60 88.77 89.95 86.86 68.22 94.83 93.86

CHEN20 58.30 90.81 89.79 79.83 67.62 86.59 85.05

+SSP 60.30 93.10 91.10 85.19 79.26 91.34 90.51

Table 8: Results on the medical domain dataset with no
duplication in data (De→En).

D Examples

Table 9 shows translation results of the baselines
and our method.
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Source dieses Vorbringen wurde zurückgewiesen , da die einschlägigen Bestimmungen der Grundverordnung sehr wohl mit dem WTO-Übereinkommen zur Durchführung

des Artikels VI des Allgemeinen Zoll- und Handelsabkommens 1994 und dem Übereinkommen über Subventionen und Ausgleichsmaßnahmen vereinbar sind .

VASWANI17 this claim was rejected because the relevant provisions of the basic Regulation are very compatible with the 1994 WTO Agreement on

Implementation of Article VI of the General Agreement on Tariffs and Trade and the 1994 Agreement on Subsidies and Countervailing Measures .

+SSP this claim was rejected as the relevant provisions of the basic Regulation are indeed consistent with the WTO Agreement on

Implementation of Article VI of the General Agreement on Tariffs and Trade 1994 and the Agreement on Subsidies and Countervailing Measures .

CHEN20 this claim was rejected as the relevant provisions of the basic Regulation are , however , in any event , compatible with the WTO Agreement on

the implementation of Article VI of the General Agreement on Tariffs and Trade 1994 and with the Agreement on Subsidies and Countervailing Measures .

+SSP this claim was rejected because it is true that the relevant provisions of the basic Regulation are consistent with the Agreement on

Implementation of Article VI of the General Agreement on Tariffs and Trade 1994 and the Agreement on Subsidies and Countervailing Measures .

Reference this claim was rejected on the grounds that the anti-circumvention provisions of the basic Regulation are not incompatible with the Agreement

on Implementation of Article VI of the General Agreement on Tariffs and Trade 1994 and the Agreement on Subsidies and Countervailing Measures .

Terminology
{Übereinkommen zur Durchführung des Artikels VI des Allgemeinen Zoll- und Handelsabkommens 1994→Agreement on Implementation of Article VI of the General
Agreement on Tariffs and Trade 1994, Übereinkommen über Subventionen und Ausgleichsmaßnahmen→Agreement on Subsidies and Countervailing Measures}

Source
( 3 ) Das Angebot zur vorzugsweisen Zeichnung sowie die Frist , innerhalb deren dieses Recht ausgeuebt werden muß, sind Gegenstand einer Bekanntmachung
in dem gemäß der Richtlinie 68 / 151 / EWG bestimmten einzelstaatlichen Amtsblatt .

VASWANI17
3 . the tender for subscription and the time limit within which that right must be exercised shall be published in the national gazette determined in accordance
with Directive 68 / 151 / EEC .

+SSP
3 . the tender for a preference call and the time limit within which that right must be exercised shall be the subject of a notice in the national gazette designated
in accordance with Directive 68 / 151 / EEC .

CHEN20
3 . the tender for preferred subscription and the time limit within which it must be exercised shall be the subject of a notice published in the national publication
designated pursuant to Directive 68 / 151 / EEC .

+SSP
3 . tenders for preference drawing together with the time limit within which that right must be exercised shall be the subject of a notice in the national gazette
designated in accordance with Directive 68 / 151 / EEC .

Reference
any offer of subscription on a pre-emptive basis and the period within which this right must be exercised shall be published in the national gazette appointed
in accordance with Directive 68 / 151 / EEC .

Terminology {Angebot zur vorzugsweisen Zeichnung→offer of subscription on a pre-emptive basis, Amtsblatt→national gazette}

Source
( 19 ) Nach der Rechtsprechung des Gerichtshofs sind einzelstaatliche Vorschriften betreffend die Fristen für die Rechtsverfolgung zulässig , sofern sie für
derartige Klagen nicht ungünstiger sind als für gleichartige Klagen , die das innerstaatliche Recht betreffen , und sofern sie die Ausübung der durch
das Gemeinschaftsrecht gewährten Rechte nicht praktisch unmöglich machen .

VASWANI17
( 19 ) According to the case law of the Court of Justice , national rules concerning time limits for bringing actions may be allowed ,
provided that such actions are not less favourable than those relating to the like actions under national law and
do not make it impossible in practice to exercise the rights conferred by Community law .

+SSP
( 19 ) According to the case law of the Court of Justice , national rules concerning the time limits for prosecution are admissible ,
provided that they are not less favourable to such actions than those for similar actions under national law if they do not make it impossible
to exercise the rights conferred by Community law in practice .

CHEN20
( 19 ) According to the case law of the Court of Justice , national rules on the time limits for the exercise of jurisdiction may be allowed ,
provided that they are not less favourable for such actions than for the same actions covered by national law and
do not make it impossible in practice to exercise the rights conferred by Community law .

+SSP
( 19 ) The Court of Justice has case-law that national provisions relating to time limits for bringing actions may be accepted ,
provided that they are no less favourable in such actions than those relating to similar actions brought under national law ,
provided that they do not practically make it impossible for the exercise of rights conferred by Community law .

Reference
( 19 ) According to the case-law of the Court of Justice , national rules relating to time limits for bringing actions are admissible provided that they are not less
favourable than time limits for similar actions of a domestic nature and that they do not render the exercise of rights conferred by the Community law impossible in practice .

Terminology {Gerichtshof→Court of Justice, Gemeinschaftsrecht→Community law, zulässig→admissible, Rechtsprechung→case-law}

Table 9: Translation outputs of the models trained with or without our method.
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Abstract

To help individuals express themselves better,
quotation recommendation is receiving grow-
ing attention. Nevertheless, most prior efforts
focus on modeling quotations and queries sep-
arately and ignore the relationship between the
quotations and the queries. In this work, we
introduce a transformation matrix that directly
maps the query representations to quotation
representations. To better learn the mapping
relationship, we employ a mapping loss that
minimizes the distance of two semantic spaces
(one for quotation and another for mapped-
query). Furthermore, we explore using the
words in history queries to interpret the figura-
tive language of quotations, where quotation-
aware attention is applied on top of history
queries to highlight the indicator words. Ex-
periments on two datasets in English and Chi-
nese show that our model outperforms previ-
ous state-of-the-art models.

1 Introduction

Quotations are essential for successful persuasion
and explanation in interpersonal communication.
However, it is a daunting task for many individu-
als to write down a suitable quotation in a short
time. This results in a pressing need to develop
a quotation recommendation tool to meet such a
demand.

To that end, extensive efforts have been made to
quotation recommendation, which aims to rec-
ommend an ongoing conversation with a quota-
tion whose sense continues with the existing con-
text (Wang et al., 2020). As quotations are concise
phrases or sentences to spread wisdom, which are
always in figurative language and difficult to un-
derstand, they are assumed written in a different
pseudo-language (Liu et al., 2019a). Intuitively, we

The code is available at https://github.com/
Lingzhi-WANG/Quotation-Recommendation

[t1]: Save your money. Scuf is the biggest ripoff in gam-
ing.
[t2]: What would you suggest instead?
[t3]: Just use a normal controller.
[t4]: Ooooooh, I get it now...you’re just dumb.
[t5]: The dumb ones are the people spending over $100
for a controller. [A fool and his money are soon parted.]
[h1]: Anyone that

:::::
spends that

::::
much

:::::
money just to get

different writing on a box..... [A fool ... parted.]
[h2]: And that’s probably why you’ll

::::
never have a

:::::
billion

:::::
dollars. [A fool ... parted.]
[h3]: Seriously. Why do people not do

:::::
market

::::::
research

:::::
before

:::::
buying something!?! [A fool ... parted.]

Figure 1: A Reddit conversation snippet (upper part)
with three history queries (lower part). Quotations to be
recommended are in square brackets. Indicative words
are on wavy-underline.

can infer the meanings of quotations by their neigh-
borhood contexts, especially by the query turn (the
last turn of conversation that needs recommenda-
tion).

To illustrate our motivation, Figure 1 shows a
Reddit conversation with some history queries as-
sociated with quotation Q, “A fool and his money
are soon parted”. From the queries (t5 and h1 to
h3), we can infer the meaning of quotation Q is “A
foolish person spends money carelessly and won’t
have a lot of money.” based on the contexts. From
h3, we can also know the implication behind the
words, which is “Do a marketing research before
buying”. Humans can establish such a relationship
between quotations and queries and then decide
what to quote in their writings, so can machines
(neural network). Therefore, we introduce a trans-
formation matrix, in which machines can learn the
direct mapping from queries to quotations. The ma-
trix is worked on the outputs of two encoders, con-
versation encoder and quotation encoder, encoding
conversation context and quotations respectively.

Furthermore, we can use the words in the queries
to interpret quotations. h1 to h3 in Figure 1 are
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denoted as history queries, and the words on wavy-
underline are denoted as indicators to quotations.
It can be seen that we can interpret quotations by
highlighting the words in the queries. Therefore,
we compute quotation-aware attention over all the
history queries (after the same transformation as
we mentioned before) and then display indicators
we learned, which also reflects the effectiveness of
the transformation.

In summary, we introduce a transformation be-
tween the query semantic space and quotation se-
mantic space. To minimize the distance of their
semantic space after transformation mapping, an
auxiliary mapping loss is employed. Besides, we
propose a way to interpret quotations with indica-
tive words in the corresponding queries.

The remainder of this paper is organized as fol-
lows. The related work is surveyed in Section 2.
Section 3 presents the proposed approach. And
Section 4 and 5 present the experimental setup and
results respectively. Finally, conclusions are drawn
in Section 6.

2 Related Work

Quotation Recommendation. In previous works
on quotation recommendation, some efforts are
made for online conversations (Wang et al., 2020;
Lee et al., 2016) and some for normal writing (Liu
et al., 2019a; Tan et al., 2015, 2016). Our work fo-
cuses on the former. For methodology, the methods
they applied can be divided into generation-based
framework (Wang et al., 2020; Liu et al., 2019a)
and ranking framework (Lee et al., 2016; Tan et al.,
2015, 2016). Different from previous works which
mainly focus on separate modeling of quotation
and query and pay little attention to the relation-
ship between them, our model directly learns the
relationship between quotations and query turns
based on a mapping mechanism. The relationship
mapping is jointly trained with the quotation recom-
mendation task, which improves the performance
of our model.

3 Our model

This section describes our quotation recommenda-
tion model, whose overall structure is shown in
Figure 2. The input of the model mainly contains
the observed conversation c and the quotation list
q. The conversation c is formalized as a sequence
of turns (e.g., posts or comments) {t1, t2, ..., tnc}
where nc represents the length of the conversation

𝑞!!"# 𝑞!!𝑞$𝑞%𝑞&𝑞#𝑡# 𝑡& 𝑡!""#

… … …

𝑡!"
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…
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𝑦
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Figure 2: Our model for quotation recommendation.

(number of turns) and tnc is the query turn. ti repre-
sents the i-th turn of the conversation and contains
words wi. The quotation list q is {q1, q2, ..., qnq},
where nq is the number of quotations and qk is
the k-th quotation in list q, containing words w′k.
Our model will output a label y ∈ {1, 2, ..., nq}, to
indicate which quotation to recommend.

3.1 Conversation Modeling
Our model encodes the observed conversation c
with a hierarchical structure, which is divided into
three parts. The first part is an embedding layer
mapping the words wi in each turn ti into vectors.
We then apply transformer (Vaswani et al., 2017)
to learn the representation for each turn. Similar
to BERT (Devlin et al., 2018), we only use the
encoder of transformer, which is stacked of several
self-attention and feed-forward layers. We add a
token [CLS] at the beginning of each turn. The
hidden representation of [CLS] after transformer
encoder is defined as the turn representation rti of
turn ti. The procedures for the first two parts are
summarized as follows:

hT
i = FFN(Self Attention(Embed([w0;wi])))

(1)
where w0 represents the [CLS] token, and [; ] indi-
cates concatenation. Therefore rti = hT

i,0.
Next, we use a Bi-GRU (Cho et al., 2014) layer

to model the whole conversation structure. With
the turn representations {rt1, rt2, ..., rtnc

} (rtnc
is the

representation for the query turn) of conversation c
derived from previous procedure, the hidden states
are updated as follows:

−→
hG

i =
−−−→
GRU(

−→
hG

i−1, r
t
i),
←−
hG

i =
←−−−
GRU(

−→
hG

i+1, r
t
i)

(2)
Finally, we define the conversation representa-

tion as the concatenation of the final hidden states
from two directions: hc = [

−→
hG

nc
;
←−
hG

1 ].
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3.2 Quotation Modeling

For each quotation qk in list q, we extract quotation
representation rqk with similar operation as turn
representations (see Eq. 1). As Liu et al. (2019b)
points out, the language used in quotations is usu-
ally different from our daily conversations, which
results in two different semantic spaces. Therefore,
we do not share the parameters of the embedding
layer and transformer layers for quotations and
conversation turns. We concatenate all the quota-
tion representations and get a combined quotation
matrix Q, which includes nq rows and each row
represents one quotation.

3.3 Recommendation Based on
Transformation

To perform a reasonable recommendation, we con-
sider the observed conversation c, the query turn
tnc as well as the quotation list q. Since they are
in different semantic spaces (Section 3.2), we first
map the query turns into the space of quotations
with a transformation matrix M . We assume with
such transformation, the space gap can be resolved.
Thus, we can calculate the distance between queries
and quotations. We use zc to represents the dis-
tances between rnc and the quotations, and it is
defined with the following equation:

zc = Q× (Mrnc) (3)

Finally, the output layer is defined as:

y = W [zc;hc;Mrnc ] + b (4)

where W and b are learnable parameters. We rec-
ommend the quotations with the top n highest prob-
abilities, which are derived with a softmax function:

p(q̂ = i) =
exp(yi)∑nq

k=1 exp(yk)
(5)

3.4 Training Procedure

We define our training objective as two parts. The
first part is called recommendation loss, which is
the cross entropy over the whole training corpus C:

Lrec = −
∑

c∈C
log p(q̂ = qc|c, q) (6)

where qc is the ground-truth quotation for conversa-
tion c in training corpus. The second part is to help
on the learning of transformation matrix M , where
we minimize the distance between the transformed

query turn representation and the corresponding
ground-truth quotation:

Lmap =
∑

c∈C
||Mrnc − rqqc ||22 (7)

To train our model, the final objective is to mini-
mize L, the combination of the two losses:

L = Lrec + λ · Lmap (8)

where λ are the coefficient determining the contri-
bution of the latter loss.

4 Experimental Setup

Datasets. We conduct experiments based on
datasets from two different platforms, Weibo and
Reddit, released by Wang et al. (2020). To make
our experimental results comparable to Wang et al.
(2020), we utilize their preprocessed data directly.

Parameter Setting. We first initialize the embed-
ding layer with 200-dimensional Glove embedding
(Pennington et al., 2014) for Reddit and Chinese
words embedding (Song et al., 2018) for Weibo.
For transformer layers, we choose the number of
layers and heads as (2, 3) for Reddit and (4, 4) for
Weibo. For the hidden dimension of transformer
layers and BiGRU layers (each direction), we set
it to 200. We employ Adam optimizer (Kingma
and Ba, 2015) with initial learning rate with 1e-4
and early stop adoption (Caruana et al., 2001) in
training. The batch size is set to 32. Dropout strat-
egy (Srivastava et al., 2014) and L2 regularization
are used to alleviate overfitting. And the tradeoff
parameter λ is chosen from {1e-4, 1e-3}. All the
hyper-parameters above are tuned on the validation
set by grid search.

Evaluation and Comparisons. Our model re-
turns a quotation list arranged in descending order
of likelihood of recommendation for each conver-
sation. Therefore, we adopt MAP (Mean Aver-
age Precision), P@1 (Precison@1), P@3 (Preci-
son@3), and nDCG@5 (normalized Discounted
Cumulative Gain@5) for evaluation.

For comparison, we compare with previous
works that focus on quotation recommendation. Be-
low shows the details:
1) LTR (Learning to Rank). We first collect fea-
tures (e.g., frequency, Word2Vec, etc.) mentioned
in Tan et al. (2015) and then use the learning to
rank tool RankLib 1 to do the recommendation.

1https://github.com/danyaljj/rankLibl
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Models Weibo Reddit
MAP P@1 P@3 NG@5 MAP P@1 P@3 NG@5

Baselines
LTR 9.3 3.6 8.5 8.1 7.1 1.7 6.4 6.2
CNN-LSTM 11.3 7.3 11.0 10.8 5.2 4.1 7.0 6.9
NCIR 26.5 22.6 27.8 26.7 12.2 7.3 12.3 11.4
CTIQ 30.3 27.2 33.2 31.6 21.9 17.5 25.8 23.8
BERT 31.4 27.9 34.0 32.3 26.4 18.0 30.2 28.5
OUR MODEL 34.9 30.3 36.1 34.9 31.8 23.3 35.0 32.1

Table 1: Main comparison results on Weibo and Reddit
datasets (in %). NG@5 refers to NDCG@5. The best
results in each column are in bold. Our model yields
significantly better scores than all other comparisons
for all metrics (p < 0.01, paired t-test).

2) CNN-LSTM. We implement the model pro-
posed in Lee et al. (2016), which adopts CNN to
learn the semantic representation of each turn and
then uses LSTM to encode the conversation.
3) NCIR. It formulates quotation recommendation
as a context-to-quote machine translation problem
by using the encoder–decoder framework with at-
tention mechanism (Liu et al., 2019b).
4) CTIQ. The SOTA model (Wang et al., 2020),
which employs an encoder-decoder framework en-
hanced by Neural Topic Model to continue the con-
text with a quotation via language generation.
5) BERT. We encode the conversation by BiLSTM
on the BERT representations for the turns, followed
by a prediction layer.

5 Experimental Results

5.1 Quotation Recommendation

Table 1 displays the recommendation results com-
paring our model with the baselines on Weibo and
Reddit datasets. Our model achieves the best per-
formance, exceeding the baselines by a large mar-
gin, especially on Reddit dataset. The fact that bet-
ter performance comes from BERT and our model
indicates the importance of learning efficient con-
tent representations. Our model further considers
the mapping between different semantic spaces,
resulting in the best performance.

Ablation Study. We conduct an ablation study
to examine the contributions of different modules
in our model. We replace the transformer layers
with Bi-GRU (W/O Transformer) to examine the
effects of different turn encoders. We also compare
the models by removing transformation matrix M
(W/OM ) or mapping loss Lmap (W/O Lmap). The
results are shown in Table 2. As can be seen, each
module in our model plays a role in improving per-

Models Weibo Reddit
MAP P@1 NDCG@5 MAP P@1 NDCG@5

W/O Transformer 29.9 25.9 29.8 25.8 17.4 25.7
W/O M 31.7 27.4 31.8 29.5 21.6 29.5
W/O Lmap 32.6 28.4 32.4 30.4 22.6 30.6
Full Model 34.9 30.3 34.9 31.8 23.3 32.1

Table 2: Comparison results of different variants of our
model on Weibo and Reddit datasets (in %).

[h1] : Anyone that spends that much money just

to get different writing on a box .....

[h2] : And that ’s probably why you ’ll never

have a billion dollars .

[h3] : Seriously . Why do people not do market

research before buying something !?!

idiots money buy pay say fool alone gamble ...

Figure 3: Upper part: example queries associated with
the quotation “A fool and his money are soon parted.”.
Lower part: top 8 indicative words with the highest
weighted summed self-attention scores. Darker colors
represent higher weights.

formance. The largest improvement comes from
applying transformers as our encoders. The perfor-
mance drop due to removing transformation and
mapping loss justifies our assumption of different
semantic spaces between quotations and queries.

5.2 Quotation Interpretation
We also explore how to interpret the figurative
language of quotations with our model. We first
extract the queries that are related to one cer-
tain quotation as history queries, then compute
quotation-aware attention over all history queries.
Specifically, for quotation qk, with its relative
history queries {h1, h2, ..., hmk

} from the corpus
(mk is the history number), we can compute their
quotation-aware attention (query-level) with their
representations derived from our model :

ak,i =
exp(rq

k · rhi)∑mk
j=1 exp(r

q
k · rhj )

(9)

On the other hand, we can extract the scores
for the words in each history query with their self-
attention weights (word-level) in transformer. Fi-
nally, the indicative words of one quotation are
those with the highest scores after the multiplica-
tion of query-level and word-level attention scores.

Figure 3 shows an interpretation example. We
display three example queries mentioned in Figure
1, with both their query-level attention (green) and
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word-level attention (red). We can find that words
like “spends”, “money” and “dollars” are assigned
higher scores since they are more related to the quo-
tation topics . We also present the most indicative
words derived from all history queries (the lower
part of Figure 3). We can easily infer the meaning
of the quotation with the help of indicative words
like “idiots” and “buy”.

6 Conclusion

In this paper, we propose a transformation from
queries to quotations to enhance a quotation recom-
mendation model for conversations. Experiments
on Weibo and Reddit datasets show the effective-
ness of our model with transformation. We further
explore using indicative words in history queries
to interpret quotations, which shows rationality of
our method.
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Abstract

Topic models extract groups of words from
documents, whose interpretation as a topic
hopefully allows for a better understanding of
the data. However, the resulting word groups
are often not coherent, making them harder
to interpret. Recently, neural topic models
have shown improvements in overall coher-
ence. Concurrently, contextual embeddings
have advanced the state of the art of neural
models in general. In this paper, we com-
bine contextualized representations with neu-
ral topic models. We find that our approach
produces more meaningful and coherent top-
ics than traditional bag-of-words topic models
and recent neural models. Our results indicate
that future improvements in language models
will translate into better topic models.

1 Introduction
One of the crucial issues with topic models is the
quality of the topics they discover. Coherent top-
ics are easier to interpret and are considered more
meaningful. E.g., a topic represented by the words
“apple, pear, lemon, banana, kiwi” would be con-
sidered a meaningful topic on FRUIT and is more
coherent than one defined by “apple, knife, lemon,
banana, spoon.” Coherence can be measured in
numerous ways, from human evaluation via intru-
sion tests (Chang et al., 2009) to approximated
scores (Lau et al., 2014; Röder et al., 2015).

However, most topic models still use Bag-of-
Words (BoW) document representations as input.
These representations, though, disregard the syn-
tactic and semantic relationships among the words
in a document, the two main linguistic avenues to
coherent text. I.e., BoW models represent the input
in an inherently incoherent manner.

Meanwhile, pre-trained language models are
becoming ubiquitous in Natural Language Pro-
cessing (NLP), precisely for their ability to cap-

ture and maintain sentential coherence. Bidirec-
tional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2019), the most promi-
nent architecture in this category, allows us to ex-
tract pre-trained word and sentence representations.
Their use as input has advanced state-of-the-art per-
formance across many tasks. Consequently, BERT
representations are used in a diverse set of NLP ap-
plications (Rogers et al., 2020; Nozza et al., 2020).

Various extensions of topic models incorporate
several types of information (Xun et al., 2017;
Zhao et al., 2017; Terragni et al., 2020a), use
word relationships derived from external knowl-
edge bases (Chen et al., 2013; Yang et al., 2015;
Terragni et al., 2020b), or pre-trained word em-
beddings (Das et al., 2015; Dieng et al., 2020;
Nguyen et al., 2015; Zhao et al., 2017). Even for
neural topic models, there exists work on incor-
porating external knowledge, e.g., via word em-
beddings (Gupta et al., 2019, 2020; Dieng et al.,
2020).

In this paper, we show that adding contextual
information to neural topic models provides a sig-
nificant increase in topic coherence. This effect is
even more remarkable given that we cannot embed
long documents due to the sentence length limit in
recent pre-trained language models architectures.

Concretely, we extend Neural ProdLDA
(Product-of-Experts LDA) (Srivastava and Sutton,
2017), a state-of-the-art topic model that imple-
ments black-box variational inference (Ranganath
et al., 2014), to include contextualized representa-
tions. Our approach leads to consistent and signifi-
cant improvements in two standard metrics on topic
coherence and produces competitive topic diversity
results.

Contributions We propose a straightforward and
easily implementable method that allows neural
topic models to create coherent topics. We show
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that the use of contextualized document embed-
dings in neural topic models produces significantly
more coherent topics. Our results suggest that topic
models benefit from latent contextual information,
which is missing in BoW representations. The re-
sulting model addresses one of the most central
issues in topic modeling. We release our imple-
mentation as a Python library, available at the fol-
lowing link: https://github.com/MilaNLProc/
contextualized-topic-models.

2 Neural Topic Models with Language
Model Pre-training

We introduce a Combined Topic Model (Com-
binedTM) to investigate the incorporation of con-
textualized representations in topic models. Our
model is built around two main components: (i)
the neural topic model ProdLDA (Srivastava and
Sutton, 2017) and (ii) the SBERT embedded rep-
resentations (Reimers and Gurevych, 2019). Let
us notice that our method is indeed agnostic about
the choice of the topic model and the pre-trained
representations, as long as the topic model extends
an autoencoder and the pre-trained representations
embed the documents.

ProdLDA is a neural topic modeling approach
based on the Variational AutoEncoder (VAE). The
neural variational framework trains a neural infer-
ence network to directly map the BoW document
representation into a continuous latent represen-
tation. Then, a decoder network reconstructs the
BoW by generating its words from the latent doc-
ument representation1. The framework explicitly
approximates the Dirichlet prior using Gaussian
distributions, instead of using a Gaussian prior like
Neural Variational Document Models (Miao et al.,
2016). Moreover, ProdLDA replaces the multi-
nomial distribution over individual words in LDA
with a product of experts (Hinton, 2002).

We extend this model with contextualized doc-
ument embeddings from SBERT (Reimers and
Gurevych, 2019),2 a recent extension of BERT
that allows the quick generation of sentence em-
beddings. This approach has one limitation. If a
document is longer than SBERT’s sentence-length
limit, the rest of the document will be lost. The
document representations are projected through a
hidden layer with the same dimensionality as the
vocabulary size, concatenated with the BoW repre-

1For more details see (Srivastava and Sutton, 2017).
2https://github.com/UKPLab/

sentence-transformers

sentation. Figure 1 briefly sketches the architecture
of our model. The hidden layer size could be tuned,
but an extensive evaluation of different architec-
tures is out of the scope of this paper.

Figure 1: High-level sketch of CombinedTM. Refer
to (Srivastava and Sutton, 2017) for more details on the
architecture we extend.

Dataset Docs Vocabulary

20Newsgroups 18,173 2,000
Wiki20K 20,000 2,000
StackOverflow 16,408 2,303
Tweets2011 2,471 5,098
Google News 11,108 8,110

Table 1: Statistics of the datasets used.

3 Experimental Setting
We provide detailed explanations of the experi-
ments (e.g., runtimes) in the supplementary materi-
als. To reach full replicability, we use open-source
implementations of the algorithms.

3.1 Datasets

We evaluate the models on five datasets: 20News-
Groups3, Wiki20K (a collection of 20,000 English
Wikipedia abstracts from Bianchi et al. (2021)),
Tweets20114, Google News (Qiang et al., 2019),
and the StackOverflow dataset (Qiang et al., 2019).
The latter three are already pre-processed. We use
a similar pipeline for 20NewsGroups and Wiki20K:
removing digits, punctuation, stopwords, and infre-
quent words. We derive SBERT document repre-
sentations from unpreprocessed text for Wiki20k

3http://qwone.com/˜jason/20Newsgroups/
4https://trec.nist.gov/data/tweets/
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Model Avg τ Avg α Avg ρ

Results for the Wiki20K Dataset:

Ours 0.1823 0.1980 0.9950
PLDA 0.1397 0.1799 0.9901
MLDA 0.1443 0.2110 0.9843
NVDM -0.2938 0.0797 0.9604
ETM 0.0740 0.1948 0.8632
LDA -0.0481 0.1333 0.9931

Results for the StackOverflow Dataset:

Ours 0.0280 0.1563 0.9805
PLDA -0.0394 0.1370 0.9914
MLDA 0.0136 0.1450 0.9822
NVDM -0.4836 0.0985 0.8903
ETM -0.4132 0.1598 0.4788
LDA -0.3207 0.1063 0.8947

Results for the GoogleNews Dataset:

Ours 0.1207 0.1325 0.9965
PLDA 0.0110 0.1218 0.9902
MLDA 0.0849 0.1219 0.9959
NVDM -0.3767 0.1067 0.9648
ETM -0.2770 0.1175 0.4700
LDA -0.3250 0.0969 0.9774

Results for the Tweets2011 Dataset:

Ours 0.1008 0.1493 0.9901
PLDA 0.0612 0.1327 0.9847
MLDA 0.0122 0.1272 0.9956
NVDM -0.5105 0.0797 0.9751
ETM -0.3613 0.1166 0.4335
LDA -0.3227 0.1025 0.8169

Results for the 20NewsGroups Dataset:

Ours 0.1025 0.1715 0.9917
PLDA 0.0632 0.1554 0.9931
MLDA 0.1300 0.2210 0.9808
NVDM -0.1720 0.0839 0.9805
ETM 0.0766 0.2539 0.8642
LDA 0.0173 0.1627 0.9897

Table 2: Averaged results over 5 numbers of topics.
Best results are marked in bold.

and 20NewsGroups. For the others, we use the
pre-processed text;5 See Table 1 for dataset statis-
tics. The sentence encoding model used is the pre-
trained RoBERTa model fine-tuned on SNLI (Bow-
man et al., 2015), MNLI (Williams et al., 2018),

5This can be sub-optimal, but many datasets in the litera-
ture are already pre-processed.

and the STSb (Cer et al., 2017) dataset.6

3.2 Metrics

We evaluate each model on three different metrics:
two for topic coherence (normalized pointwise mu-
tual information and a word-embedding based mea-
sure) and one metric to quantify the diversity of the
topic solutions.

Normalized Pointwise Mutual Information (τ )
(Lau et al., 2014) measures how related the top-10
words of a topic are to each other, considering the
words’ empirical frequency in the original corpus.
τ is a symbolic metric and relies on co-occurrence.
As Ding et al. (2018) pointed out, though, topic
coherence computed on the original data is inher-
ently limited. Coherence computed on an external
corpus, on the other hand, correlates much more
to human judgment, but it may be expensive to
estimate.

External word embeddings topic coherence (α)
provides an additional measure of how similar the
words in a topic are. We follow Ding et al. (2018)
and first compute the average pairwise cosine simi-
larity of the word embeddings of the top-10 words
in a topic, using Mikolov et al. (2013) embeddings.
Then, we compute the overall average of those
values for all the topics. We can consider this mea-
sure as an external topic coherence, but it is more
efficient to compute than Normalized Pointwise
Mutual Information on an external corpus.

Inversed Rank-Biased Overlap (ρ) evaluates
how diverse the topics generated by a single model
are. We define ρ as the reciprocal of the standard
RBO (Webber et al., 2010; Terragni et al., 2021b).
RBO compares the 10-top words of two topics. It
allows disjointedness between the lists of topics
(i.e., two topics can have different words in them)
and uses weighted ranking. I.e., two lists that share
some of the same words, albeit at different rank-
ings, are penalized less than two lists that share the
same words at the highest ranks. ρ is 0 for identical
topics and 1 for completely different topics.

3.3 Models

Our main objective is to show that contextual in-
formation increases coherence. To show this, we
compare our approach to ProdLDA (Srivastava
and Sutton, 2017, the model we extend)7, and the

6stsb-roberta-large
7We use the implementation of Carrow (2018).
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following models: (ii) Neural Variational Docu-
ment Model (NVDM) (Miao et al., 2016); (iii) the
very recent ETM (Dieng et al., 2020), MetaLDA
(MLDA) (Zhao et al., 2017) and (iv) LDA (Blei
et al., 2003).

3.4 Configurations

To maximize comparability, we train all mod-
els with similar hyper-parameter configurations.
The inference network for both our method and
ProdLDA consists of one hidden layer and 100-
dimension of softplus units, which converts the
input into embeddings. This final representation
is again passed through a hidden layer before the
variational inference process. We follow (Srivas-
tava and Sutton, 2017) for the choice of the pa-
rameters. The priors over the topic and document
distributions are learnable parameters. For LDA,
the Dirichlet priors are estimated via Expectation-
Maximization. See the Supplementary Materials
for additional details on the configurations.

4 Results
We divide our results into two parts: we first de-
scribe the results for our quantitative evaluation,
and we then explore the effect on the performance
when we use two different contextualized represen-
tations.

4.1 Quantitative Evaluation

We compute all the metrics for 25, 50, 75, 100, and
150 topics. We average results for each metric over
30 runs of each model (see Table 2).

As a general remark, our model provides the
most coherent topics across all corpora and topic
settings, even maintaining a competitive diversity
of the topics. This result suggests that the incor-
poration of contextualized representations can im-
prove a topic model’s performance.

LDA and NVDM obtain low coherence. This re-
sult has also also been confirmed by Srivastava and
Sutton (2017). ETM shows good external coher-
ence (α), especially in 20NewsGroups and Stack-
Overflow. However, it fails at obtaining a good τ
coherence for short texts. Moreover, ρ shows that
the topics are very similar to one another. A man-
ual inspection of the topics confirmed this problem.
MetaLDA is the most competitive of the models
we used for comparison. This may be due to the
incorporation of pre-trained word embeddings into
MetaLDA. Our model provides very competitive re-
sults, and the second strongest model appears to be

Wiki20K 25 50 75 100 150

Ours 0.17♣ 0.19♣ 0.18♣ 0.19♣ 0.17♣

MLDA 0.15 0.15 0.14 0.14 0.13

SO

Ours 0.05 0.03♣ 0.02♣ 0.02♣ 0.02♣

MLDA 0.05♣ 0.02 0.00 -0.02 0.00

GNEWS

Ours -0.03♣ 0.10♣ 0.15♣ 0.18♣ 0.19♣

MLDA -0.06 0.07 0.13 0.16 0.14

Tweets

Ours 0.05♣ 0.10♣ 0.11♣ 0.12♣ 0.12♣

MLDA 0.00 0.05 0.06 0.04 -0.07

20NG

Ours 0.12 0.11 0.10 0.09 0.09
MLDA 0.13♣ 0.13♣ 0.13♣ 0.13♣ 0.12♣

Table 3: Comparison of τ between CombinedTM
(ours) and MetaLDA over various choices of topics.
Each result averaged over 30 runs. ♣ indicates statis-
tical significance of the results (t-test, p-value < 0.05).

MetaLDA. For this reason, we provide a detailed
comparison of τ in Table 3, where we show the
average coherence for each number of topics; we
show that on 4 datasets over 5 our model provides
the best results, but still keeping a very competitive
score on 20NG, where MetaLDA is best.

Readers can see examples of the top words for
each model in the Supplementary Materials. These
descriptors illustrate the increased coherence of
topics obtained with SBERT embeddings.

4.2 Using Different Contextualized
Representations

Contextualized representations can be generated
from different models and some representations
might be better than others. Indeed, one question
left to answer is the impact of the specific contextu-
alized model on the topic modeling task. To answer
to this question we rerun all the experiments with
CombinedTM but we used different contextualized
sentence embedding methods as input to the model.

We compare the performance of CombinedTM
using two different models for embedding the con-
textualized representations found in the SBERT
repository:8 stsb-roberta-large (Ours-R), as em-
ployed in the previous experimental setting, and
using bert-base-nli-means (Ours-B). The latter is
derived from a BERT model fine-tuned on NLI

8https://github.com/UKPLab/
sentence-transformers
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Wiki20K SO GN Tweets 20NG

Ours-R 0.18 0.03 0.12 0.10 0.10
Ours-B 0.18 0.02 0.08 0.06 0.07

Table 4: τ performance of CombinedTM using differ-
ent contextualized encoders.

data. Table 4 shows the coherence of the two ap-
proaches on all the datasets (we averaged all re-
sults). In these experiments, RoBERTa fine-tuned
on the STSb dataset has a strong impact on the
increase of the coherence. This result suggests that
including novel and better contextualized embed-
dings can further improve a topic model’s perfor-
mance.

5 Related Work
In recent years, neural topic models have gained
increasing success and interest (Zhao et al., 2021;
Terragni et al., 2021a), due to their flexibility and
scalability. Several topic models use neural net-
works (Larochelle and Lauly, 2012; Salakhutdinov
and Hinton, 2009; Gupta et al., 2020) or neural
variational inference (Miao et al., 2016; Mnih and
Gregor, 2014; Srivastava and Sutton, 2017; Miao
et al., 2017; Ding et al., 2018). Miao et al. (2016)
propose NVDM, an unsupervised generative model
based on VAEs, assuming a Gaussian distribution
over topics. Building upon NVDM, Dieng et al.
(2020) represent words and topics in the same em-
bedding space. Srivastava and Sutton (2017) pro-
pose a neural variational framework that explicitly
approximates the Dirichlet prior using a Gaussian
distribution. Our approach builds on this work but
includes a crucial component, i.e., the representa-
tions from a pre-trained transformer that can benefit
from both general language knowledge and corpus-
dependent information. Similarly, Bianchi et al.
(2021) replace the BOW document representation
with pre-trained contextualized representations to
tackle a problem of cross-lingual zero-shot topic
modeling. This approach was extended by Mueller
and Dredze (2021) that also considered fine-tuning
the representations. A very recent approach (Hoyle
et al., 2020) which follows a similar direction uses
knowledge distillation (Hinton et al., 2015) to com-
bine neural topic models and pre-trained transform-
ers.

6 Conclusions
We propose a straightforward and simple method to
incorporate contextualized embeddings into topic

models. The proposed model significantly im-
proves the quality of the discovered topics. Our
results show that context information is a signifi-
cant element to consider also for topic modeling.

Ethical Statement
In this research work, we used datasets from the
recent literature, and we do not use or infer any
sensible information. The risk of possible abuse of
our models is low.
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A Datasets
We pre-processed 20NewsGroup and Wiki20K. We
removed punctuation, digits, and nltk’s English
stop-words. Following other researchers, we se-
lected 2,000 as the maximum number of words for
the BoW, and thus we kept only the 2,000 most fre-
quent words in the documents. The other datasets
come already pre-processed (reference links are in
the paper) and thus we take them as is.

B Models and Baselines

B.1 ProdLDA

We use the implementation made available by Car-
row (2018) since it is the most recent and with
the most updated packages (e.g., one of the latest
versions of PyTorch). We run 100 epochs of the
model. We use ADAM optimizer. The inference
network is composed of a single hidden layer and
100-dimension of softplus units. The priors over
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the topic and document distributions are learnable
parameters. Momentum is set to 0.99, the learning
rate is set to 0.002, and we apply 20% of drop-out
to the hidden document representation. The batch
size is equal to 200. More details related to the
architecture can be found in the original work (Sri-
vastava and Sutton, 2017).

B.2 Combined TM

The model and the hyper-parameters are the same
used for ProdLDA with the difference that we also
use SBERT features in combination with the BoW:
we take the SBERT English embeddings, apply a
(learnable) function/dense layerR1024 → R

∣V ∣ and
concatenate the representation to the BoW. We run
100 epochs of the model. We use ADAM optimizer.

B.3 LDA

We use Gensim’s9 implementation of this model.
The hyper-parameters α and β, controlling the
document-topic and word-topic distribution respec-
tively, are estimated from the data during training.

B.4 ETM

We use the implementation available at https:

//github.com/adjidieng/ETM with default hy-
perparameters.

B.5 Meta-LDA

We use the authors’ implementation available
at https://github.com/ethanhezhao/MetaLDA.
As suggested, we use the Glove embeddings to ini-
tialize the models. We used the 50-dimensional
embeddings from https://nlp.stanford.edu/

projects/glove/. The parameters α and β have
been set to 0.1 and 0.01 respectively.

B.6 Neural Variational Document Model
(NVDM)

We use the implementation available at https:

//github.com/ysmiao/nvdm with default hyper-
parameters, but using two alternating epochs for
encoder and decoder.

C Computing Infrastructure
We ran the experiments on two common laptops,
equipped with a GeForce GTX 1050: models can
be easily run with basic infrastructure (having a
GPU is better than just using CPU, but the experi-
ment can also be replicated with CPU). Both lap-

9https://radimrehurek.com/gensim/
models/ldamodel.html

tops have 16GB of RAM. CUDA version for the
experiments was 10.0.

C.1 Runtime

What influences the computational time the most
is the number of words in the vocabulary. Table 5
shows the runtime for one epoch of both our Com-
bined TM (CTM) and ProdLDA (PDLDA) for 25
and 50 topics on Google News and 20Newsgroups
datasets with the GeForce GTX 1050. ProdLDA
is faster than our Combined TM. This is due to
the added representation. However, we believe
that these numbers are quite similar and make our
model easy to use, even with common hardware.

GNEWS 20NG

50 topics 100 topics 50 topics 100 topics

CTM 2.1s 2.2s 1.2s 1.2s
PLDA 1.5s 1.5s 0.8s 0.9s

Table 5: Time to complete one epoch on Google News
and 20Newsgroups datasets with 25 and 50 topics.
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Abstract

Neural semantic parsers have obtained accept-
able results in the context of parsing DRSs
(Discourse Representation Structures). In par-
ticular models with character sequences as in-
put showed remarkable performance for En-
glish. But how does this approach perform on
languages with a different writing system, like
Chinese, a language with a large vocabulary
of characters? Does rule-based tokenisation of
the input help, and which granularity is pre-
ferred: characters, or words? The results are
promising. Even with DRSs based on English,
good results for Chinese are obtained. Tokeni-
sation offers a small advantage for English, but
not for Chinese. Overall, characters are pre-
ferred as input, both for English and Chinese.

1 Introduction

Recently, sequence-to-sequence models have
achieved remarkable performance in various natu-
ral language processing tasks, including semantic
parsing (Dong and Lapata, 2016; Jia and Liang,
2016; Konstas et al., 2017; Dong and Lapata, 2018),
the task of mapping natural language to formal
meaning representations (Figure 1). In this short
paper we focus on parsing Discourse Representa-
tion Structures (DRSs): the meaning representa-
tions proposed in Discourse Representation The-
ory (DRT, Kamp and Reyle, 1993), covering a
large variety of linguistic phenomena including co-
reference, thematic roles, presuppositions, scope,
quantification, tense, and discourse relations.

Several data-driven methods based on neural net-
works have been proposed for DRS parsing (van
Noord et al., 2018b, 2019; Liu et al., 2019a; Evang,
2019; Fancellu et al., 2019; Fu et al., 2020; van No-
ord et al., 2020). These approaches frame semantic
parsing as a sequence transformation problem and
map the target meaning representation to string
format. These models learn the meaning of a se-
ries of semantic phenomena by taking sentences

Figure 1: Example DRS for Chinese in both clause and
box representation.

as input and directly outputting the correspond-
ing DRSs, without the aid of any extra linguistic
information (such as part-of-speech or syntactic
structure). These previous studies have achieved
good results, but have mostly focused on English
or other languages that use the Latin alphabet.

Our objective is to investigate whether the same
method is applicable to Mandarin Chinese, an ex-
tremely analytic language which makes deep pars-
ing challenging (Levy and Manning, 2003; Yu et al.,
2011; Tse and Curran, 2012; Min et al., 2019). But
Chinese is not only different on the level of syntax;
its writing system also shows large differences with
English, as there are no explicit word separators in
written Chinese, and there is no distinction between
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lower- and upper case characters. Unlike English,
Chinese words comprise few characters, but the
number of different characters is about two orders
of magnitude higher than that of English.

These orthographic differences are interesting in
the context of previous work, as van Noord et al.
(2018b) use character-level input and word-level
input to compare the impact of different input rep-
resentations on DRSs parsing for English, finding
that the character-level representation obtained bet-
ter performance. In this paper we want to investi-
gate how Chinese fits in this picture. To the best of
our knowledge, we are the first to explore methods
for Chinese DRS parsing. We aim to answer the
following questions:

1. Can existing DRS parsing models achieve
good results for Chinese? (RQ1)

2. Given the different writing systems used for
English and Chinese, which input granularity
is best for either language? (RQ2)

3. Is rule-based word segmentation (tokeniza-
tion) beneficial for Chinese DRS parsing?
(RQ3)

This paper is organised as follows. First we provide
a short background on the formal meaning repre-
sentations that we use, the difference between the
writing systems of English and Chinese, and the
issues that arise around characters and words. Then
we will introduce our approach, the data set that
we use, and how we conduct our experiments. In
the final section we show that we can achieve good
results for Chinese DRS parsing, with characters
as the preferred representation.

2 Background

Representing Meaning DRT proposes DRSs to
represent the meaning of sentences and short texts.
An impressive repertoire of semantic phenomena is
covered by DRT, including quantification, negation,
reference resolution, comparatives, discourse rela-
tions, and presupposition. We use the DRS version
as employed in the Parallel Meaning Bank (Abzian-
idze et al., 2017), where concepts (triggered by
nouns, verbs, adjectives and adverbs) are repre-
sented by WordNet synsets (Fellbaum, 1998), and
semantic relations by Verbnet roles (Kipper et al.,
2008). DRSs can be represented in box format or
clause format (see Figure 1), where x, e, s, and t are
discourse referents denoting individuals, events,

states, and time, respectively, and b is used for
variables denoting DRSs. Named entities are pre-
served from the original language used in the input,
so names in Chinese are literally transferred in the
DRS interpretation (see Figure 1). This means that
the only difference between English and Chinese
DRSs is the way names are represented: English
orthography is used for proper names in English
DRSs; Chinese characters are used for names in
the corresponding Chinese DRSs.

The box format has become a common represen-
tation of DRSs because of its convenient reading
and intuitive understanding. The clause format is
a flat version of the standard box notation, which
represents DRSs as a set of clauses. Due to its sim-
ple and flat structure it is more suitable for machine
learning purposes. At the same time, however, the
structure of DRSs poses a challenge to sequence-to-
sequence models, because they need to be able to
generate the well-formed recursive semantic struc-
tures.

Chinese Word Segmentation Differently from
English, Chinese words are not separated by white
spaces, as shown in Table 1. The first step of a typ-
ical Chinese NLP task is usually to use separators
to mark boundaries at appropriate positions to iden-
tify words in a sentence. These words define the
basic semantic units of Chinese. This process, i.e.,
Chinese word segmentation (Lafferty et al., 2001;
Xue, 2003; Zheng et al., 2013; Cai and Zhao, 2016;
Min et al., 2019), is a fundamental step for many
Chinese NLP applications, which directly affects
downstream performance (Foo and Li, 2004; Xu
et al., 2004). Despite the large body of existing
research, the quality of Chinese word segmentation
remains far from perfect, because many characters
are highly ambiguous.

Input Formats for Neural Methods Character-
level representations have proved useful for neu-
ral network models in many NLP tasks such as
POS-tagging (Santos and Zadrozny, 2014; Plank
et al., 2016), dependency parsing (Ballesteros et al.,
2015) and neural machine translation (Chung et al.,
2016). However, only a few studies have used
character-level representations as input represen-
tations for Chinese NLP tasks (Yu et al., 2017; Li
et al., 2018, 2019; Min et al., 2019). For Chinese se-
mantic parsing, previous studies mostly used word-
based representations as well (Che et al., 2016;
Wang et al., 2018). For English DRS parsing, how-
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Type English input representation Chinese input representation

Char (raw) ˆ b r a d | ˆ p i t t | i s | a n | a c t o r .
布 拉 德 · 皮 特 是 个 演 员 。

Char (continuous) ˆ b r a d ˆ p i t t i s a n a c t o r .
Char (tokenized) ˆ b r a d | ˆ p i t t | i s | a n | a c t o r | . 布 拉 德 | · | 皮 特 | 是 |个|演 员 |。
Word brad pitt is an actor . 布拉德 · 皮特 是 个 演员 。
BPE (5k) ˆ b@ ra@ d ˆ p@ it@ t is an ac@ tor@ . 布 拉 德 · 皮 特 是个 演 员。

Table 1: Input representations for the English sentence Brad Pitt is an actor and its Chinese translation (布拉德.皮
特是个演员). Note that raw and continuous character representations are identical in Chinese. Char (tokenized)
adds explicit word boundaries after tokenizing the text. The symbol | represents a word boundary, while the
symbol ˆ represents a shift to uppercase.

ever, van Noord et al. (2018b) showed that a bi-
LSTM sequence-to-sequence model with character-
level representations outperformed word-based rep-
resentations, as well as a combination of words and
characters. This will be the starting point of our
exploration of Chinese DRS parsing.

3 Methodology

Annotated Data We use data from the Paral-
lel Meaning Bank (PMB 3.0.0, Abzianidze et al.,
2017). The documents in this PMB release are
sourced from seven different corpora from a wide
range of genres. For one of these corpora, Tatoeba,
Chinese translations already exist, and we added
them to the PMB data. For the remaining texts that
had no Chinese translation, we translated the En-
glish documents into Chinese using the Baidu API,
manually verified the results and, when needed,
corrected the translations. Only a few translations
needed major corrections. About a hundred trans-
lated sentences lacked past or future tense or used
uncommon Chinese expressions. Special care was
given to the translation of named entities, ambigu-
ous words, and proverbs, and required about a thou-
sand changes. For economical reasons the silver
part of the data was only checked on grammatical
fluency. Table 2 shows the difference in word- and
character-level vocabulary size between English
and Chinese. The full translated data set is publicly
available.1

Language Chars Tokens Words Tokens

English 139 5,149,912 32,447 1,088,252
Chinese 3,832 1,514,181 39,705 950,310

Table 2: Vocabulary sizes and number of tokens. The
number of tokens is calculated after tokenizing the text
with either Moses or Jieba.

1https://github.com/wangchunliu/
Chinese-DRS-data

Chinese Meaning Representations We start
from the English–Chinese sentence pairs with the
DRSs originally annotated for English. Interest-
ingly, the DRSs in the PMB can be conceived as
language-neutral. Even though the English Word-
Net synsets present in the DRS are reminiscent of
English, they really represent concepts, not words.
Similarly, the VerbNet roles have English names,
but are universal thematic roles. An exception is
formed by named entities, that are grounded by the
orthography used in the source language. In sum,
we assume that the translations are, by and large,
meaning preserving, and project English to Chinese
DRSs by changing all English named entities to
Chinese ones as they appeared in the Chinese input
(see Figure 1). This semantic annotation projection
method bears strong similarities and is inspired by
Damonte et al. (2017) and Min et al. (2019).

Input Representation Types We consider five
types of input representations, outlined in Table 1:
(i) raw characters, (ii) continuous characters (i.e.,
without spaces), (iii) tokenised characters, (iv)
tokenised words, and (v) byte-pair encoded text
(BPE, Sennrich et al., 2016). Note that for Chinese,
the first two options amount to the same kind of
input. For BPE, we experiment with the number of
merges (1k, 5k and 10k) and found in preliminary
experiments that it was preferable to not add the
indicator “@” for Chinese. For English character
input we use an explicit “shift” symbol (ˆ) to indi-
cate uppercased characters, to keep the vocabulary
size low. Moreover, the | symbol represents an
explicit word boundary. For tokenisation we use
the Moses tokenizer (Koehn et al., 2007) for En-
glish, while we use the default mode of the Jieba
tokenizer2 to segment the Chinese sentences. To
fairly compare these different input representations,
we do not employ pretrained embeddings.

2https://github.com/fxsjy/jieba
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Output Representation Appendix B shows how
DRSs are represented for the purpose of training
neural models, following van Noord et al. (2018b).
Variables are replaced by indices, and the DRSs are
coded in either a linearised character-level or word-
level clause format. For Chinese, we experimented
with both representations and found that the output
representation had little effect on parsing perfor-
mance. To follow previous work (van Noord et al.,
2018b) and to allow a fair comparison between
the languages, we therefore use the character-level
DRS representation for both languages.

Data Splits We distinguish between gold (manu-
ally corrected meaning representations) and silver
(automatically generated and partially corrected
meaning representations) data. There are a total of
8,403 English–Chinese documents with gold data,
of which 885 are used as development set and 898
as test set. The silver data (97,597 documents) is
only used to augment the training data, following
van Noord et al. (2018b). We use a fine-tuning
approach to effectively use high-quality data in our
experiments: first training the system with silver
and gold data, then restarting the training to fine-
tune on only the gold data.

Neural Architecture We use a recurrent
sequence-to-sequence neural network with two
bi-directional LSTM layers (Hochreiter and
Schmidhuber, 1997) as implemented by Marian
(Junczys-Dowmunt et al., 2018), similar to van
Noord et al. (2019).3 Specific hyper-parameters
are shown in Appendix A. We also experimented
with the Transformer model (Vaswani et al.,
2017), as implemented in the same framework.
However, similar to van Noord et al. (2020), none
of our experiments reached the performance of
the bi-LSTM model. We will therefore only show
results of the bi-LSTM model in this paper.

Evaluation DRS output is evaluated by using
Counter (van Noord et al., 2018a), a tool that cal-
culates the micro precision and recall of matching
DRS clauses. Counter has been widely used in
the evaluation of DRS parsers (Abzianidze et al.,
2019). The generated DRSs have to be syntactically
as well as semantically well-formed, as checked by
the Referee tool (van Noord et al., 2018b), and are
otherwise penalised with an F-score of 0.4

3Code to reproduce our experiments is avail-
able at: https://github.com/wangchunliu/
Chinese-DRS-parsing

4For all our models, this only happened <1% of the time.

English Chinese

Input type Dev Test Dev Test

Char (raw) 87.9 87.6 } 78.8 76.2
Char (continuous) 86.1 86.9
Char (tokenised) 88.0 88.1 79.5 76.2

BPE (1k) 86.8 87.0 78.5 76.2
BPE (5k) 87.4 87.1 75.1 71.8
BPE (10k) 82.5 82.3 68.5 65.2

Word 84.5 83.2 74.7 71.6

Table 3: F-scores for DRS parsing with different in-
put representations, averaged over 5 training runs. For
BPE, the number of merges is given.

4 Results and Discussion

Table 3 shows the average of five runs for each
input representation type. Generally, performance
on English is significantly better than on Chinese,
which is not surprising as the DRSs are based on
English input using English WordNet synsets as
concepts (see Figure 1). Given the situation, it is
remarkable that Chinese reaches high scores given
the differences between the languages in how they
convey meaning (Levy and Manning, 2003).

In general, F-scores start to decrease when sen-
tences get longer (Figure 2), though there is no
clear difference between the character and word-
level models. This is in line with the findings of
van Noord et al. (2018b). For English, the input
types based on characters outperform those based
on words. BPE approaches character-level per-
formance for small amounts of merges (1k), but
never surpasses it. This too is in line with van
Noord et al. (2018b), but also with previous work
on NMT for Chinese (Li et al., 2019). There is a
small benefit (0.5) for tokenizing the input text be-
fore converting the input to character-level format,
though the continuous character representation also
works surprisingly well. For Chinese, character-
based input shows the best performance too, though
for a very small amount of merges BPE obtains a
similar score. As opposed to English, tokenizing
the Chinese input is not beneficial when using a
character-level representation, though it also does
not hurt performance. In general, character-level
models seem the most promising for Chinese DRS
parsing. Similar results were obtained by Min et al.
(2019) for Chinese SQL parsing.
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Figure 3: F-scores per clause type (DRS operators,
VerbNet roles and WordNet concepts) and concept type
(nouns, verbs, adjectives, adverbs and events) as intro-
duced by van Noord et al. (2018b). Reported scores
are on the Chinese and English dev set for the raw
character-level models, averaged over 5 runs.

Figure 3 shows detailed scores for the character-
based (raw) model on the Chinese and English dev
set, categorizing operators (e.g., negation, presup-
position or modalities), VerbNet roles (e.g., Agent,
Theme), predicates, and senses. Modifiers, es-
pecially adverbs, get a systematic lower score in
Chinese compared to English. This is interesting,
and examination of the data reveals that English
adverbs are regularly translated as Chinese noun
phrases (e.g., slightly→ a little). This will lower
the F-score even though the meaning is preserved,
only expressed in a semantically different way.

5 Conclusion and Future Work

DRS parsing for Chinese based on projecting mean-
ing representations from English translations gives
remarkable performance (RQ1), though Chinese
adverbs remain challenging. English results out-
perform those of Chinese, but it is likely that this
is due to the general bias of the meaning represen-
tations towards English. Similar as for English,
we find that characters are the preferred input rep-
resentation for Chinese (RQ2). Surprisingly, for
English, good results are even obtained by using
characters without spaces as input. Tokenisation
(segmenting the text into words) of the input offers
a small advantage for English, but not for Chinese
(RQ3), though it will be interesting to experiment
with higher quality word segmentation systems (Hi-
gashiyama et al., 2019; Tian et al., 2020).

There are many research directions one could
take next. One is to include pre-trained models.
For instance, we could use recently proposed pre-
trained models such as BART (Lewis et al., 2020)
or mBART (Liu et al., 2020) to improve parsing
performance. Another interesting idea is, rather
than assuming the English WordNet as a back-
ground ontology for concepts in the DRS, using
concepts based on Chinese WordNet or multilin-
gual wordnets (Wang and Bond, 2013; Bond and
Foster, 2013). Both possibilities will likely further
improve performance of semantic parsing for Chi-
nese and inspire research for developing semantic
parsing models for languages other than English.
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A Hyperparameters

Table 4 gives an overview of the hyperparameters we experimented with in the tuning stage. The
hyperparameters of the bi-LSTM model are mostly taken from van Noord et al. (2018b), but tuned on the
Chinese development set. The hyperparameters of the Transformer model were randomly selected, and
then also tuned on the Chinese development set. We also experimented with the hyperparameter selection
of Liu et al. (2019b) for the Transformer model, but did not get the desired results.

Fine-tuning We first train the models on gold + silver data for 15 epochs, then we restart the training
process from that checkpoint to fine-tune on only the gold data for 30 epochs.

bi-LSTM

Parameter value Parameter value Parameter value

dim-emb 300 dim-rnn 300 enc-cell lstm
dec-cell lstm enc-depth 2 dec-depth 2
mini-batch 32 lr-decay 0.5 lr-decay-strategy epoch
normalize 0.9 beam-size 10 learn-rate 0.002
dropout-rnn 0.2 cost-type ce-mean label-smoothing 0.1
optim adam early-stop 3 valid-metric cross-entropy

Transformer

enc-depth 2 dec-depth 2 transformer-aan-depth 2
lr-decay 0.8 optim adam transformer-ffn-depth 2
dropout 0.1 dim-emb 300 transformer-dim-ffn 256
num-heads 4 normalize 0.6 transformer-dim-aan 256
label-smoothing 0.1 beam-size 10 learn-rate 0.0002
mini-batch 32 lr-decay-strategy epoch valid-metric cross-entropy

Table 4: Hyperparameters setting for the Marian bi-LSTM model and Transformer model.

B Output representation

Figure 4 shows two possible DRS representations for the output of our models, which were introduced
by van Noord et al. (2018b). Here, we show an example of a Chinese input sentence and corresponding
Chinese DRS representations. In this paper, we use the character-level representation.

Figure 4: The result of preprocessing a DRS to a character-level and word-level representation, respectively.
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Abstract

Training datasets for semantic parsing are typi-
cally small due to the higher expertise required
for annotation than most other NLP tasks. As a
result, models for this application usually need
additional prior knowledge to be built into the
architecture or algorithm. The increased de-
pendency on human experts hinders automa-
tion and raises the development and mainte-
nance costs in practice. This work investigates
whether a generic transformer-based seq2seq
model can achieve competitive performance
with minimal code-generation-specific induc-
tive bias design. By exploiting a relatively size-
able monolingual corpus of the target program-
ming language, which is cheap to mine from
the web, we achieved 81.03% exact match ac-
curacy on Django and 32.57 BLEU score on
CoNaLa. Both are SOTA to the best of our
knowledge. This positive evidence highlights
a potentially easier path toward building accu-
rate semantic parsers in practice. †

1 Introduction
For a machine to act upon users’ natural language
inputs, a model needs to convert the natural lan-
guage utterances to machine-understandable mean-
ing representation, i.e. semantic parsing (SP). The
output meaning representation is beyond shallow
identification of topic, intention, entity or relation,
but complex structured objects expressed as logi-
cal forms, query language or general-purpose pro-
grams. Therefore, annotating parallel corpus for
semantic parsing requires more costly expertise.

SP shares some resemblance with machine trans-
lation (MT). However, SP datasets are typically
smaller, with only a few thousand to at most tens of
thousands of examples, even smaller than most low
resource MT problems. Simultaneously, because

*Work done during internship at BorealisAI
†Code at https://github.com/BorealisAI/code-gen-TAE

Figure 1: TAE: the monolingual corpus is used both as
source and target. The encoder is frozen in the compu-
tation branch on the monolingual data.

the predicted outputs generally need to be exactly
correct to execute and produce the right answer,
the accuracy requirement is generally higher than
MT. As a result, inductive bias design in architec-
ture and algorithm has been prevalent in the SP
literature (Dong and Lapata, 2016; Yin and Neubig,
2017, 2018; Dong and Lapata, 2018; Guo et al.,
2019; Wang et al., 2019; Yin and Neubig, 2019).

While their progress is remarkable, excessive
task-specific expert design makes the models com-
plicated, hard to transfer to new domains, and chal-
lenging to deploy in real-world applications. In this
work, we look at the opposite end of the spectrum
and try to answer the following question: with lit-
tle inductive bias in the model, and no additional
labelled data, is it still possible to achieve compet-
itive performance? This is an important question,
as the answer could point to a much shorter road to
practical SP without breaking the bank.

This paper shows that the answer is encourag-
ingly affirmative. By exploiting a relatively large
monolingual corpus of the programming language,
a transformer-based Seq2Seq model (Vaswani et al.,
2017) with little SP specific prior could potentially
attain results superior to or competitive with the
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state-of-the-art models specially designed for se-
mantic parsing. Our contributions are three-fold:

• We provide evidence that transformer-based
seq2seq models can reach a competitive or
superior performance with models specifically
designed for semantic parsing. This suggests
an alternative route for future progress other
than inductive bias design;

• We do empirical analysis over previously pro-
posed approaches for incorporating monolin-
gual data and show the effectiveness of our
modified technique on a range of datasets;

• We set the new state-of-the-art on Django
(Oda et al., 2015) reaching 81.03% exact
match accuracy and on CoNaLa (Yin et al.,
2018) with a BLEU score of 32.57.

2 Previous Work on Semantic Parsing

Different sources of prior knowledge about the SP
problem structure could be exploited.
Input structure: Wang et al. (2019) adapts the
transformer relative position encoding (Shaw et al.,
2018) to express relations among the database
schema elements as well as with the input text
spans. Herzig and Berant (2020) proposed a span-
based neural parser with compositional inductive
bias built-in. Herzig and Berant (2020) also lever-
ages a CKY-style (Cocke, 1969; Kasami, 1966;
Younger, 1967) inference to link input features to
output codes.
Output structure: The implicit tree or graph-like
structures in the programs can also be exploited.
Dong and Lapata (2016) proposed parent-feeding
LSTM following the tree structure. Dong and Lap-
ata (2018) proposed a coarse-to-fine decoding ap-
proach. Guo et al. (2019) crafted an intermediate
meaning representation to bridge the large gap be-
tween input utterance and the output SQL queries.
Yin and Neubig (2017, 2018) proposed TranX, a
more general-purpose transition-based system, to
ensure grammaticality of predictions. Using TranX,
the neural model predicts the linear sequence of
AST-tree constructing actions instead of the pro-
gram tokens. However, a human expert needs to
craft the grammar, and the design quality impacts
the learning and generalization for the neural nets.

Sequential models with less SP specific priors
have been investigated (Dong and Lapata, 2016;
Ling et al., 2016b; Zeng et al., 2020), However,

they generally fell short in accuracy comparing to
the best of structure-exploiting ones listed above.

The most closely related to ours is the work by
Xu et al. (2020) for incorporating external knowl-
edge from extra datasets, which used a noisy paral-
lel dataset from Stackoverflow to pre-train the SP
and fine-tuned it on the primary dataset. Their ap-
proach’s main limitation is still the need for (noisy)
parallel data, albeit cheaper than the primary la-
belled set. Nonetheless, as we shall see in the ex-
periment section later, our approach achieves better
results when using the same amount of data mined
from the same source despite ignoring the source
sentence.

3 Background and Methodology

BERT (Devlin et al., 2018) class of pre-trained
models can make up for the lack of inductive bias
on the input side to some degree. On the output
side, we hope to learn the necessary prior knowl-
edge about the target meaning representation from
unlabelled monolingual data.

Using monolingual data to improve seq2seq
models is not new and has been extensively stud-
ied in MT before. Notable methods include fusion
(Gulcehre et al., 2015; Ramachandran et al., 2016;
Sriram et al., 2018; Stahlberg et al., 2018), back-
translation (BT) (Sennrich et al., 2015; Edunov
et al., 2018; Hoang et al., 2018), (Currey et al.,
2017; Burlot and Yvon, 2018, 2019), and BT with
copied monolingual data (Currey et al., 2017; Bur-
lot and Yvon, 2019). However, due to more struc-
tured outputs, less training data, and different eval-
uation metrics of exact match correctness instead
of BLEU, it is unclear if these lessons transfer from
MT to SP. So SP-specific investigation is needed.

3.1 Target Autoencoding with Frozen Encoder

We assume a parallel corpus of natural language
utterances and their corresponding programs, B =
{xxxi, yyyi}. The goal is to train a translator model
(TM) to maximize the conditional log probabil-
ity of yyyi given xxxi, Tθθθ(yyyi|xxxi), over the training set:
Lsup =

∑
BTθθθ(yyyi | xxxi) where θθθ is the vector of

TM model parameters. LetM = {yyy′i} denote the
monolingual dataset in the target language.

Currey et al. (2017); Burlot and Yvon (2019)
demonstrated that in low resource MT, auto-
encoding the monolingual data besides the main
supervised training is helpful. Following the same
path, we add an auto-encoding objective term on
monolingual data: Lfull = Lsup +

∑
MTθθθ(yyy

′
i | yyy′i).
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Figure 2: Model overview during training: we use a standard transformer-based encoder-decoder model where
the positional and word embeddings are shared between encoder and decoder. The modules related to the encoder
are represented in blue and the decoder ones are in yellow. Standard teacher forcing and transformer masking is
applied during training.

The target yyy′i’s are reconstructed using the shared
encoder-decoder model.

We conjecture that monolingual data auto-
encoding mainly helps the decoder, so we propose
to freeze the encoder parameters for monolingual
data. Writing the encoder and decoder parameters
separately with θθθ = [θθθe, θθθd], then θθθe is updated
using the gradient of the supervised objective Lsup,
whereas the decoder gradient comes from Lfull. We
verify this hypothesis in section 4.1.

In terms of model architecture, our TM is a stan-
dard transformer-based seq2seq model with copy
attention (Gu et al., 2016) (illustrated in Fig. 2 of
C). We fine-tune BERT as the encoder and use
a 4-layer transformer decoder. There is little SP-
specific inductive bias in the architecture. The only
special structure is the copy attention, which is not
a strong inductive bias designed for SP as copy
attention is widely used in other tasks as well.

We refer to the method of using copied mono-
lingual data and freezing the encoder over them as
target autoencoding (TAE). Unless otherwise spec-
ified in the ablation studies, the encoder is always
frozen.

4 Experiments
For our primary experiments we considered two
python datasets namely Django and CoNaLa. The
former is based on Django web framework and the
latter is annotated code snippets from stackover-
flow answers. Additionally, we experiment on the
SQL version of GeoQuery and ATIS from Finegan-
Dollak et al. (2018) (with query split), WikiSQL
(Zhong et al., 2017), and Magic (Java) (Ling et al.,

2016b).
Python Monolingual Corpora: CoNaLa

comes with 600K mined questions from Stack-
overflow. We ignored the noisy source intents/sen-
tences and just use the python snippets. To be
comparable with Xu et al. (2020), we also select
a corresponding 100K subset version for compari-
son. See Appendix A for details on the SQL and
Java monolingual corpora.

Experimental Setup: In all experiments, we
use label smoothing with a parameter of 0.1 and
Polyak averaging (Polyak and Juditsky, 1992) of
parameters with a momentum of 0.999 except for
GeoQuery which we use 0.995. We use Adam
(Kingma and Ba, 2014) and early stopping based
on the dataset specific evaluation metric on dev
set. The learning rate for the encoder is 1× 10−5

over all datasets. We used the learning rate of
7.5 × 10−5 on all datasets except GeoQuery and
ATIS which we use 1 × 10 − 4. The architecture
overview is shows in Fig. 2. At the inference time
we use beam search with beam size of 10 and a
length normalization based on (Wu et al., 2016).
We run each experiment with 5 different random
seeds and report the average and standard deviation.
WordPiece tokenization is used for both natural
language utterances and programming code.

4.1 Empirical Analysis
First, we considered a scenario where the monolin-
gual corpus comes from the same distribution as
the bitext. We simulate this setup by using 10% of
Django training data as labeled data while using
all the python examples from Django as the mono-
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Source: call the function lazy with 2 arguments : string concat and
six.text type , substitute the result for string concat .

Gold & TAE: string_concat = lazy(_string_concat, six.
text_type)

Baseline: string_concat = lazy (_concat_concat , six.
text_type )

Note: copy mistake: wrong variable resulting from failed copy

Source: define the function timesince with d , now defaulting to none,
reversed defaulting to false as arguments .

Gold & TAE: def timesince(d, now=none, reversed=false):
pass

Baseline: def timesince (d = none, reversed ( d = false ):
pass

Note: unbalanced paranthesis and multiple semantic mistakes.

Table 1: Example mistakes by the baseline that are fixed by TAE. More examples in Appendix E.

Figure 3: Analysis using only 10% Django train bitext.

lingual dataset of 10 times bigger. Results with
“Authentic Dataset” in Fig. 3 shows the effective-
ness of TAE vs other approaches.

Next, we used the monolingual dataset prepared
for python (StackOverflow Corpus) which is from a
different distribution. Fig. 3 shows even more con-
siderable improvement, thanks to the larger mono-
lingual set. We considered noisy intents provided
in CoNaLa monolingual corpus and dummy source
sentences where each monolingual sample is paired
along with a random length array containing ze-
ros. We also compared against other well-known
approaches like fusion and back-translation, see ex-
periments details in Appendix D. TAE outperforms
all those approaches by a large margin.

Now one important question is, what part of
the model benefits from monolingual data most?
In Sec. 3.1, we conjectured that auto-encoding of
monolingual data should mostly help the decoder,
not the encoder. To verify this, we perform an
ablation by comparing freezing encoder parame-
ters versus not freezing over the monolingual set.
Fig. 3 shows that without freezing the encoder,
performance drops slightly for TAE on authentic
Django while dropping significantly when copying
on Stackoverflow data. This confirms that the per-
formance gain is due to its effect on the decoder,
while the copied monolingual data might even hurts
the encoder.

4.2 Main Results on Full Data

Table 2-3 showcase our SOTA results on Django
and CoNaLa. While our simple base seq2seq
model does not outperform previous works, with
TAE on the monolingual data, our performance
improves and outperforms all the previous works.

The most direct comparison is with Xu et al.
(2020) that also leverage the same extra data mined
from StackOverflow (EK in Table 3). As mentioned
in Sec. 2, they used the noisy parallel corpus for
pre-training, whereas we only leverage the mono-
lingual set. However, we obtain both larger rela-
tive improvements over our baseline (32.29 from
30.98) compared to Xu et al. (2020) (28.14 from
27.20), as well as better absolute results in the best
case. In fact, with only the 100K StackOverflow
monolingual data, our result is on par with the best
one from Xu et al. (2020) that uses the additional
python API bitext data. Finally, note that part of
our superior performance is due to using BERT as
an encoder.

Finally, TAE also yields improvements on other
programming languages, as shown for GeoQuery
(SQL), ATIS (SQL) and Magic (Java) in Table 4.
We observe no improvement on WikiSQL. But it
is not surprising given its large dataset size and the
simplicity of its targets. As observed by previous
works (Finegan-Dollak et al., 2018), more than half
of queries follow simple pattern of “SELECT col
FROM table WHERE col = value”.

The main results in terms of improvement over
previous best methods are statistically significant
in Table 2-3. On Django, our result is better than
Reranker (Yin and Neubig, 2019) (best previous
method in Table 2) with a P-value < 0.05, un-
der one-tailed two-sample t-test for mean equality.
Since the previous state of the art on CoNaLa (EK
+ 100k + API in Table 3) did not provide the stan-
dard deviation, we cannot conduct a two-sample
t-test against it. Instead, we performed a one-tailed
two-sample t-test against the TranX+BERT base-
line and observed that our improvement is statisti-
cally significant with P-value < 0.05. In Table 4,
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Model Django
YN17 (Yin and Neubig, 2017) 71.6
TRANX (Yin and Neubig, 2018) 73.7
Coarse2Fine (Dong and Lapata, 2018) 74.1
TRANX2 (Yin and Neubig, 2019) 77.3± 0.4
TRANX2 + BERT 79.7± 0.42
Reranker (Yin and Neubig, 2019)∗ 80.2± 0.4
Our baseline 77.05± 0.6
Our baseline + TAE 81.03 ± 0.14

Table 2: Exact match accuracy for Django test set. Yin
and Neubig (2019)∗ trained a separate model on top of
SP to rank beam search outputs.

Model CoNaLa
Reranker (Yin and Neubig, 2019)∗ 30.11
TRANX (Yin and Neubig, 2019) + BERT 30.47± 0.7
EK (baseline) (Xu et al., 2020) 27.20
EK + 100k (Xu et al., 2020) 28.14
EK + 100k + API (Xu et al., 2020)∗† 32.26
Our baseline 30.98± 0.1
Our baseline + TAE on 100k 32.29± 0.4
Our baseline + TAE on 600k 32.57 ± 0.3

Table 3: CoNaLa test BLEU. Methods with ∗ trained a
separate model on top of SP to rerank beam search out-
puts. Xu et al. (2020)† used an additional bitext corpus
mined from python API documentation.

Dataset Baseline (%) Baseline + TAE (%)
GeoQuery 47.69± 0.05 51.87± 0.02

ATIS 38.04± 0.77 40.56± 0.57
Magic 41.61± 2.07 42.34± 0.52

WikiSQL 85.36± 0.06 85.30± 0.07

Table 4: Additional dataset results: test set exact match
accuracy on all dataset.

improvements on GeoQuery and ATIS are statis-
tically significant with P-value < 0.05, while it is
not the case for Magic and WikiSQL.

4.3 Discussion

Thus far, we have verified that the decoder benefits
from TAE and the encoder does not. For a
better understanding of what TAE improves in
the decoder, we propose two metrics namely
copy accuracy and generation accuracy. Copy
accuracy only considers tokens appearing in
the source sentence. If the model produces all
of the tokens that need to be copied from the
source sentence, and in the right order, then
the score is one otherwise zero for the example.
Generation-accuracy ignores tokens appearing in
the source intent and computes the exact match
accuracy of the prediction. We show how to
compute these metrics for the following example:
Question: define the function timesince with d,
now defaulting to none, reversed defaulting to false
as arguments.

Ground Truth:
“def timesince(d, now=none, re-
versed=false): pass”

We iterate over the ground truth script tokens
one by one and remove those that can be copied
from the source, leading to this code:
Generation Ground Truth:
“def (=none=):pass”, and the removed to-
kens will be considered for copy ground truth.
Copy Ground Truth: “timesince d , now
, reversed false”.

We would then use the copy and generation
ground truth strings to compute each metric. Note
that the order of tokens are still important and exact
equality is required.

As shown in Table 5 both metrics are improved.
Table 1 illustrates one example from each type and
with more samples in the Appendix E. Copy accu-
racy is important for producing the right variable
names mentioned, and it is improved as expected.
It is also encouraging to see quantitatively and qual-
itatively that grammar mistakes are reduced, mean-
ing that the lack of prior knowledge of target lan-
guage structure is compensated by learning from
monolingual data.

Model Copy Generation
10% basline 34.18 55.73
10% baseline + TAE 58.89 66.31
Full baseline 80.11 81.27
Full baseline + TAE 84.59 82.65

Table 5: Copy and generation accuracies on Django test set

5 Conclusion
This work has shown the possibility to achieve a
competitive or even SOTA performance on seman-
tic parsing with little or no inductive bias design.
Besides the usual large-scale pre-trained encoders,
the key is to exploit relatively large monolingual
corpora of the meaning representation. The mod-
ified copied monolingual data approach from ma-
chine translation literature works well in this ex-
tremely low-resource setting. Our results point to a
promising alternative direction for future progress.
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mann, Tomáš Kočiskỳ, Andrew Senior, Fumin
Wang, and Phil Blunsom. 2016b. Latent predic-
tor networks for code generation. arXiv preprint
arXiv:1603.06744.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig,
Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. 2015. Learning to generate
pseudo-code from source code using statistical ma-
chine translation. In Proceedings of the 2015 30th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), ASE ’15, pages 574–
584, Lincoln, Nebraska, USA. IEEE Computer So-
ciety.

Boris T Polyak and Anatoli B Juditsky. 1992. Ac-
celeration of stochastic approximation by averag-
ing. SIAM journal on control and optimization,
30(4):838–855.

Prajit Ramachandran, Peter J Liu, and Quoc V Le.
2016. Unsupervised pretraining for sequence to se-
quence learning. arXiv preprint arXiv:1611.02683.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464–468.

781



Anuroop Sriram, Heewoo Jun, S. Satheesh, and
A. Coates. 2018. Cold fusion: Training seq2seq
models together with language models. ArXiv,
abs/1708.06426.

Felix Stahlberg, J. Cross, and Veselin Stoyanov. 2018.
Simple fusion: Return of the language model. ArXiv,
abs/1809.00125.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Bailin Wang, Richard Shin, Xiaodong Liu, Olek-
sandr Polozov, and Matthew Richardson. 2019.
Rat-sql: Relation-aware schema encoding and
linking for text-to-sql parsers. arXiv preprint
arXiv:1911.04942.

Y. Wu, Mike Schuster, Z. Chen, Quoc V. Le, Mo-
hammad Norouzi, Wolfgang Macherey, M. Krikun,
Yuan Cao, Q. Gao, Klaus Macherey, Jeff Klingner,
Apurva Shah, M. Johnson, X. Liu, L. Kaiser,
S. Gouws, Y. Kato, Taku Kudo, H. Kazawa,
K. Stevens, G. Kurian, Nishant Patil, W. Wang,
C. Young, J. Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, G. S. Corrado, Macduff Hughes, and
J. Dean. 2016. Google’s neural machine translation
system: Bridging the gap between human and ma-
chine translation. ArXiv, abs/1609.08144.

Frank F Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan
Vasilescu, and Graham Neubig. 2020. Incorporat-
ing external knowledge through pre-training for nat-
ural language to code generation. arXiv preprint
arXiv:2004.09015.

Ziyu Yao, Daniel S Weld, Wei-Peng Chen, and Huan
Sun. 2018. Staqc: A systematically mined question-
code dataset from stack overflow. In Proceedings
of the 2018 World Wide Web Conference on World
Wide Web, pages 1693–1703. International World
Wide Web Conferences Steering Committee.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In International Conference on Min-
ing Software Repositories, MSR, pages 476–486.
ACM.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
arXiv preprint arXiv:1704.01696.

Pengcheng Yin and Graham Neubig. 2018. Tranx: A
transition-based neural abstract syntax parser for se-
mantic parsing and code generation. arXiv preprint
arXiv:1810.02720.

Pengcheng Yin and Graham Neubig. 2019. Reranking
for neural semantic parsing. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4553–4559.

Daniel H Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
control, 10(2):189–208.

Jichuan Zeng, Xi Victoria Lin, S. Hoi, R. Socher, Caim-
ing Xiong, Michael R. Lyu, and Irwin King. 2020.
Photon: A robust cross-domain text-to-sql system.
ArXiv, abs/2007.15280.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103.

782



A Datasets

We used 6 datasets in total. Django includes programs from Django web framework and CoNaLa contains
diverse set of intents annotated on python snippets gathered from Stackoverflow. WikiSQL, GeoQuery,
and ATIS include natural language questions and their corresponding SQL queries. WikiSQL includes
single table queries while GeogQuery and ATIS requires queries on more than one table. Finally, Magic
has Java class implementation of game cards with different methods used during the game. Table 6
summarises all the parallel datasets. For GoeQuery we used query split provided by (Finegan-Dollak
et al., 2018).

Monolingual Corpus: CoNaLa comes with 600K mined questions from Stackoverflow. We ignored
the noisy source intents/sentences and just use the python snippets. To be comparable with Xu et al.
(2020), we also select a corresponding 100K subset version for comparison. For SQL, Yao et al. (2018)
automatically parsed StackOverflow questions related to SQL and provided a set containing 120K SQL
examples. We automatically parsed the SQL codes and removed samples with grammatical mistakes. We
also filtered samples not starting with SELECT special token. Allamanis and Sutton (2013) downloaded
full repositories of individual projects that were forked at least once; duplicate projects were removed. We
randomly sampled 100K Java examples from more than 14K projects and use that as monolingual set.
Table 7 summarises all the monolingual datasets.

Parallel Corpus Language Train Dev Test
Django (Oda et al., 2015) (link) Python 16000 1000 1805
CoNaLa (Yin et al., 2018) (link) Python 2, 179 200 500

WikiSQL (Zhong et al., 2017) (link) SQL 56, 355 8421 15878
ATIS (Finegan-Dollak et al., 2018) (link) SQL 4812 121 347

GeoQuery (Finegan-Dollak et al., 2018) (link) SQL 536 159 182
Magic (Ling et al., 2016a) (link) Java 8, 457 446 483

Table 6: Parallel dataset sizes. We filtered out Magic data with java code longer than 350 tokens in order to fit in
GPU memory.

Monolingual Corpus Source Size
Python (Yin et al., 2018) (link) Stackoverflow 100K
SQL (Yao et al., 2018) (link) Stackoverflow 52K

Java (Allamanis and Sutton, 2013) (link) Github 100k

Table 7: Monolingual dataset sizes.

B Dev Set Results

Dataset Baseline (%) Baseline + TAE (%)
CoNaLa 32.43± 0.21 34.81± 0.36

ATIS 5.79± 0.29 7.23± 0.45
GeoQuery 53.33± 1.47 52.58± 0.70

Django 75.52± 0.21 78.56± 0.39
Magic 42.26± 1.42 44.17± 0.99

WikiSQL 85.92± 0.09 85.83± 0.07

Table 8: Dev set exact match accuracy on all datasets except CoNaLa which uses BLEU. We followed (Yin and
Neubig, 2018) implementation of BLEU score which can be found here.
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C Architecture and Experiment Details

We selected the decoder learning rate based on linear search over [1 × 10−3 − 2.5 × 10−5]. Number
of decoder layers has been decided based on search over {2, 3, 4, 5, 6} layers and 4 layer decoder
shows superior performance (we used a single run for hyperparameter selection). Each model has 150M
parameters optimized using a single GTX 1080 Ti GPU. With batch size of 16 each step takes 1.7s on
GeoQuery dataset (other datasets have very similar runtime). On Django and CoNaLa, we followed (Yin
and Neubig, 2018; Xu et al., 2020) on replacing quoted values with a “str#” where # is a unique id. On
Magic dataset, we replaced all newline “\n” tokens with “#”; following (Ling et al., 2016a), we splitted
Camel-Case words (e.g., class TirionFordring→ class Tirion Fordring) and all punctuation characters.
We filtered out Magic data with java code longer than 350 tokens in order to fit in GPU memory.

D Back-Translation and Fusion details

For fusion we follow equation 1 where TM stands for translation model and LM stands for language
model. τ limits the confidence of the language model and λ controls the balance between TM and LM.
figure 4 shows the performance of a base TM trained on 10% of Django training data with test exact match
accuracy of 31.80 over different values of λ and τ . The LM is trained over full Django training set.

log p(yti) = log pTM (yti) + λ log pLM (yti) = log pTM (yti) + λ log
el

t
i/τ∑
i e
lti/τ

(1)

Figure 4: Test exact match accuracy of TM leverage fusion with different parameters

For back-translation we first trained the model using the same architecture explained above in the
backward direction. We used BLEU score as a evaluation metric and use early stopping based on that.
Using greedy search we generate the corresponding source intent for each code snippet. In the end, the
synthetic data is merged with the bitext and trained a forward model.
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E Additional Qualitative Examples

Source: call the function lazy with 2 arguments

: _string_concat and six.text_type [ six

. text_type ] , substitute the result for

string_concat .

Gold: string_concat = lazy(_string_concat, six.text_type
)

Baseline: string_concat = lazy (_concat_concat , six.
text_type )

TAE: string_concat = lazy ( _string_concat , six.
text_type )

Note: wrong var

Source: get translation_function attribute of the object

t , call the result with an argument eol_message ,

substitute the result for result .

Gold: result = getattr(t, translation_function)(
eol_message)

Baseline: result = getattr ( t , translation_message ) (
eol_message )

TAE: result = getattr ( t , translation_function ) (
eol_message )

Note: wrong var

Source: convert whitespace character to unicode and

substitute the result for space .

Gold: space = unicode(' ')

Baseline: space = unicode ( character )

TAE: space = unicode ( ' ' )

Note: wrongly copied variable name

Source: assign integer 2 to parts if third element of

version equals to zero , otherwise assign it

integer 3 .

Gold: parts = 2 if version[2] == 0 else 3

Baseline: parts [ 2 ] = 2

TAE: parts = 2 if version [ 2 ] == 0 else 3

Note: baseline failed to copy a few source tokens, and instead formed a grammati-

cally correct but semantically incorrect output

Copy mistake examples

Source: define the function timesince with d , now

defaulting to none , reversed defaulting to false

as arguments .

Gold: def timesince(d, now=none, reversed=false):
pass

Baseline: def timesince ( d = none, reversed ( d = false ) :
pass

TAE: def timesince ( d, now = none, reversed = false )
:

pass

Note: unbalanced paranthesis and multiple semantic mistakes.

Source: define the function exec with 3 arguments :

_code_ , _globs_ set to none and _locs_ set to

none .

Gold: def exec_(_code_, _globs_=none, _locs_=none):
pass

Baseline: def exec ( _code_ , _globs= none , _locs_ set (
) ) :

pass

TAE: def exec ( _code_ , _globs_ = none , _locs_ = none
) :

pass

Note: wrong variable name and grammar mistake

Source: return an instance of escapebytes , created with

an argument , reuslt of the call to the function

bytes with an argument s .

Gold: return escapebytes(bytes(s))

Baseline: return escapebytes ( bytes ( s ) . re ( s )

TAE: return escapebytes ( bytes ( s ) )

Note: extra semantically incorrect predictions and unbalanced paratheses

Source: call the function blankout with 2 arguments : p

and str0 , write the result to out .

Gold: out.write(blankout(p, 'str0'))

Baseline: out .write ( blankout ( p , 'str0' )

TAE: out .write ( blankout ( p , 'str0' ) )

Note: unbalanced paratheses

Grammar or semantic mistake examples

Table 9: Mistake examples
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Abstract

The general format of natural language infer-
ence (NLI) makes it tempting to be used for
zero-shot text classification by casting any tar-
get label into a sentence of hypothesis and
verifying whether or not it could be entailed
by the input, aiming at generic classification
applicable on any specified label space. In
this opinion piece, we point out a few over-
looked issues that are yet to be discussed in
this line of work. We observe huge variance
across different classification datasets amongst
standard BERT-based NLI models and surpris-
ingly find that pre-trained BERT without any
fine-tuning can yield competitive performance
against BERT fine-tuned for NLI. With the
concern that these models heavily rely on spu-
rious lexical patterns for prediction, we also
experiment with preliminary approaches for
more robust NLI, but the results are in gen-
eral negative. Our observations reveal im-
plicit but challenging difficulties in entailment-
based zero-shot text classification.

1 Introduction

Natural language inference (NLI, Bowman et al.,
2015), also known as recognizing textual entail-
ment (RTE, Condoravdi et al., 2003; Dagan et al.,
2005), is normally formatted as the task of deter-
mining whether or not a premise sentence semanti-
cally entails a hypothesis sentence. The generality
of the task format has aroused some recent studies
to apply NLI models for various downstream ap-
plications (Poliak et al., 2018), and more recently
text classification (Yin et al., 2019, 2020), making
them generally-applicable solutions along with all
those similar attempts to build a universal frame-
work for various NLP tasks (Kumar et al., 2016;
Raffel et al., 2020, inter alia). Text classification
is then reduced to textual entailment by setting

∗Work during internship at Microsoft Research Asia.

the input sentence as the premise and simultane-
ously casting the candidate label into a hypothe-
sis sentence using pre-defined templates or lexical
definitions from WordNet. Once we have any pre-
trained NLI models at hand, zero-shot text classi-
fication under any specified label space is enabled
for free without the need to collect annotated data.
With contextualized representation based on pre-
trained language models such as BERT (Devlin
et al., 2019), NLI performance has been drastically
improved. Promising empirical results have been
shown on various text classification benchmarks
that vary across topic classification, emotion classi-
fication, and situation classification, outperforming
earlier standard approaches (Chang et al., 2008) or
simple scoring schemes derived from distributional
similarity (Mikolov et al., 2013).

However, such generality is conceptually contra-
dictory with the specificity of text classification in
many practical scenarios. In this opinion piece, we
conduct extended analysis on the recent attempts
(Yin et al., 2019) and point out some implicit issues
under entailment-based zero-shot text classification
that are overlooked in this line of work. We exper-
iment with additional classification datasets and
observe huge variance across them amongst stan-
dard BERT-based NLI models. More surprisingly,
we find that raw BERT models without fine-tuning
can sometimes yield more competitive results. We
also experiment with preliminary approaches for
improving the robustness of NLI models, but only
to find negative results in general. Our observations
reveal implicit but massive difficulties in building a
successful general-purpose zero-shot text classifier
based on text entailment models.

2 Our Investigation and Implied Issues

We attempt at re-examining the earlier study (Yin
et al., 2019) with extended analysis to help estab-
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lish a better understanding of zero-shot text classifi-
cation based on textual entailment. Our focus is to
check how well the models pre-trained for NLI
could generalize to the prediction of unseen cat-
egories, which is the major target of zero-shot clas-
sification. We did not study the setting that test
set also include labels seen in training, commonly
phrased as generalized zero-shot learning (Xian
et al., 2018) and referred to as the label-partially-
unseen setting by Yin et al. (2019). That setting
strongly assumes that a bunch of in-domain data
for a number of classes are available already. 1

2.1 Basic setup

2.1.1 Text classification datasets

As an attempt to study zero-shot text classification
in conceptually different and diverse aspects, Yin
et al. (2019) experimented with three instances:

Topic classification : The Yahoo! Answers
dataset from Zhang et al. (2015) with 10 categories.

Emotion classification : The Unify Emotion
dataset (Bostan and Klinger, 2018) with 9 emo-
tion types and a none label if no emotion applies.

Situation classification : The Situation Typing
dataset (Mayhew et al., 2019) with 11 situation
types and instances and an extra type none.

Additionally, we extend our experiments with
the test sets from the following datasets:

Snips : A popular dataset2 for intent detection
collected from the Snips personal voice assis-
tant (Coucke et al., 2018), with seven intent labels.

AG’s news : To further study the models on
topic classification in a different genre, we addi-
tionally use the English news data from (Zhang
et al., 2015) that consists of four types of articles:
World, Sports, Business, Sci/Tech.

SST-2 : The Stanford Sentiment Treebank
dataset3 processed by Socher et al. (2013) for sen-
timent polarity classification with binary labels
(positive and negative).

1Another reason for not studying on this setting is that
the split of development set and test set in (Yin et al., 2019)
contain the same label space, which is flawed to be used for
any claim on the performance of “unseen labels”.

2https://github.com/snipsco/snips-nlu
3For SST-2 we follow Zhang et al. (2021) and Gao et al.

(2021) to use the development set from GLUE for testing.

2.1.2 Experimented systems
To study entailment-based approaches, we use
the models released by Yin et al. (2019) which
are bert-base-uncasedmodels pretrained on
GLUE RTE (Dagan et al., 2005; Wang et al.,
2019b), MNLI (Williams et al., 2018), and
FEVER (Thorne et al., 2018), respectively. We
reuse the same scheme for mapping labels into hy-
potheses using templates and WordNet definition
for all datasets4, as well as the same mechanism
for producing final predictions. We leave more
implementation details to the Appendix.

We keep reporting results from these baselines
following Yin et al. (2019) for reference:

• Majority: Output the most frequent label.

• Word2Vec: Using the average word embed-
dings to vectorize input and labels, output la-
bel with maximum cosine similarity.

• ESA: Representing the text and label in the
Wikipedia concept vector space. Using the
implementation5 from Chang et al. (2008).

Moreover, due to the obvious variance in perfor-
mance for models trained on different NLI datasets,
we are also tempted to check how much the perfor-
mance might degrade when given no NLI data at all
for fine-tuning. This corresponds to naively using
a raw BERT model which has been pre-trained for
next sentence prediction (NSP). For consistency,
we use the same premises and hypotheses as the
delegate for label names and templates to formulate
the sentence pair classification. Since NSP is not
predicting for a directional semantic entailment, we
also try a variant with all pairs reversed, i.e., setting
all hypothesis sentences ahead of premises as input,
denoted as NSP(Reverse).

2.2 Results and further analysis

The results from all systems on different datasets
are displayed in Table 1, including an additional
group for MNLI results as we found an even better
run overall in our experiments. There are some
interesting observations emerge from our extended
experiments and analysis.

4For newly introduced datasets we follow the similar strat-
egy to prepare for the hypothesis templates.

5https://github.com/CogComp/
cogcomp-nlp/tree/master/
dataless-classifier
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Topic (Yahoo) Emotion Situation AG’s News SST-2 Snips

Majority 10.0 5.9 11.0 25.0 50.9 17.7
ESA 28.6 8.0 26.0 73.3 55.5 63.4
Word2Vec 35.7 6.9 15.6 44.1 53.7 63.6
RTE (Yin et al., 2019) 43.8 12.6 37.2 56.7 52.5 56.4
FEVER (Yin et al., 2019) 40.1 24.7 21.0 78.3 71.7 69.4
MNLI (Yin et al., 2019) 37.9 22.3 15.4 72.4 67.5 77.6
MNLI (our best overall run) 49.1 19.9 14.5 77.7 67.5 77.6
NSP (Reverse) 53.1 16.1 19.9 78.3 79.7 81.3
NSP 50.6 16.5 25.8 72.1 73.9 73.4

Table 1: Text classification results. We report label-wise weighted F1 for emotion and situtation datasets, and
accuracy for the others. Reported results from (Yin et al., 2019) have been reproduced from their released models.

2.2.1 How much have NLI data contributed?
The big difference from various NLI datasets drives
us to try a raw BERT without fine-tuning on any
NLI data, i.e., merely relying on NSP pre-training
for sentence pair classification. The results are
shown at the bottom two rows in Table 1, which
turn out to be surprisingly strong, especially on
topic classification, intent classification, and binary
sentiment classification.

We conjecture that the raw BERT model has
already acquired certain ability of topic distinc-
tion and sentiment polarity due to the construc-
tion of positive and negative sentence pairs in NSP
pre-training to detect pairwise coherence. In this
way, NSP could serve as a non-trivial, strong al-
ternative baseline for zero-shot text classification
scenarios where the target labels are semantically
more concrete (e.g., topics) or more frequently ap-
peared (e.g., words expressing sentiment). In such
scenarios, fine-tuning on limited NLI data could
weaken the semantic coherence acquired from the
raw BERT pre-trained on generic-domain corpora,
especially now that fine-tuned models have utilized
many spurious lexical cooccurrence features as
shown in many similar sentence pair classification
models (Feng et al., 2019; Niven and Kao, 2019),
possibly due to the inherent lexical bias from the
current NLI datasets collected from crowd workers.
6 Readers who are curious about more details on
this problem can refer to our qualitative analysis in
the Appendix which could hopefully help establish

6Some readers might guess that other NLI datasets col-
lected via a more careful process (Jiang and de Marneffe,
2019; Eisenschlos et al., 2021) might partially mitigate the
bias appearing from crowdsourced annotation, but this does
not mean that such better intended datasets can be free from
statistically biased lexical distributions with coincidental cooc-
currences that could be utilized by our strong data-fitting mod-
els during fine-tuning (Geirhos et al., 2020; Du et al., 2021).
Our additional results described in the Appendix do not seem
to be promising on this direction towards better NLI data.

a slightly better sense on the behavioral difference
introduced by NLI fine-tuning.

On the other hand, fine-tuning on NLI data might
seem to be marginally helpful for more abstract
cases such as emotion and situation typing, but
the performance metrics are in fact pathetically
disappointing across all systems.

2.2.2 How stable are these NLI models?

Apart from the obvious difference caused by dif-
ferent training data, there underlies a more serious
concern: the discrepancy between the training task
(NLI) and the target usage (classification). The gap
in task formatting (and henceforth data distribution)
naturally raises a question: do NLI models with sim-
ilar in-domain performance generalize similarly
for text classification?

We train NLI models on the largest MNLI
dataset with varied hyperparameter settings and
random seeds, and keep models achieving simi-
larly strong in-domain generalization performance
as measured by the early-stopping dev set perfor-
mance. Results are listed in Table 2, where the
absolute differences between the worst and the
best are large, especially on classifying topic or
intent. We observe even worse trends on other
smaller NLI datasets (see Appendix). These re-
sults are consistent with recent studies within the
scope of NLI reporting that BERT instances which
achieve similar performance metrics on standard
NLI datasets could have huge variance in out-of-
distribution generalization or linguistic stress test-
ing (McCoy et al., 2020; Zhou et al., 2020; Geiger
et al., 2020), while providing another instance of
the underspecification problem in modern machine
learning (D’Amour et al., 2020).

As a verification, we also try to tune the mod-
els for different development sets that better char-
acterize the generalization behavior for zero-shot

788



Dataset Average Std Min Max

MNLI dev set 90.5 0.3 90.0 90.8
Yahoo 39.0 10.5 26.9 50.2
Emotion 18.1 2.0 15.7 20.5
Situation 16.2 1.5 14.5 18.7
AGNews 63.7 11.0 50.0 77.7
SST-2 68.6 2.0 66.1 70.9
Snips 74.1 3.9 68.4 77.6

Table 2: Results of five runs of BERT fine-tuned on
MNLI and tested on classification datasets

classification. We reorganize the splitted develop-
ment set and the test set of the topic classification
datasets (Yahoo and AG’s News) to make sure they
do not have overlapped classes.7 The new results
are shown in Table 3, where we can clearly see
more stable generalization performance. This ob-
servation necessitates that a certain amount of anno-
tated data for targeted classification already existed,
making NLI models difficult to apply in practice.
Results in this part reveals that text classification
via NLI is asking for out-of-distribution general-
ization, a property that current NLI models rarely
have, henceforth susceptible to huge instability.

Dataset Average Std Min Max

Yahoo-dev 52.7 2.6 49.1 56.2
Yahoo-test 48.1 2.7 44.2 51.7
AGNews-dev 79.0 6.9 72.1 89.1
AGNews-test 73.8 3.8 69.6 77.4

Table 3: Results of five runs for training BERT on
MNLI with model selection via target domain dev set

2.2.3 Is more robust NLI helpful?
Previous studies have raised concerns on that the
current NLI models heavily rely on spurious lex-
ical overlap patterns (Sanchez et al., 2018; Naik
et al., 2018; McCoy et al., 2019, inter alia). For
analytical purposes, we randomly permute the to-
kens of each input instance to see how much the
predictions might change. Results shown in Ta-
ble 4 suggest that shuffling the input tokens does
not affect the model performance by much, which
is consistent with similar recent findings (Gupta
et al., 2021; Sinha et al., 2021). This reveals a con-
cern that all these models might just predict with
shallow lexical patterns that may not be robust for
more semantically abstractive input instances.

There have been a few recent attempts trying
to remove the shallow overlap bias for NLI model

7Details are described in the Appendix.

Model Yahoo AGNews SST-2

NSP(Reverse) -5.1 / 67.2 +0.4 / 82.7 -13.5 / 75.9
RTE -2.0 / 77.5 +0.3 / 90.0 +0.6 / 94.5
FEVER -7.2 / 64.6 +0.5 / 90.6 -9.5 / 82.3
MNLI +1.6 / 54.8 +2.7 / 84.9 -6.4 / 84.4
Random - / 10.0 - / 25.0 - / 50.0

Table 4: Results of shuffling perturbation. In each cell:
the change of accuracy after input shuffling, followed
by the percentage of examples where the predictions do
not change. All these results are reported as the average
score of five different random shuffles.

training. We experiment with three schemes on the
MNLI data to see whether they could lead to better
generalization of zero-shot classification: (1) Data
augmentation with syntactic transformations (Min
et al., 2020)8, denoted as DA, (2) Instance reweight-
ing following Clark et al. (2019) that reweights
each example with one minus the probability a
bias-only model assigns the correct label, denoted
as RW, and (3) The bias product method (Clark
et al., 2019) that ensembles a bias-only model via
a product of experts, denoted as BP, which is es-
sentially the same as its concurrent work via fitting
the residual of the biased models (He et al., 2019).
There exist additional solutions with richer details
such as multi-task learning (Tu et al., 2020) where
proper auxiliary tasks could be identified to im-
prove robustness. We plan to explore more in this
line in our more extensive future study.

The results are shown in Table 5 . All the three
debiasing methods improve the NLI performance
on the HANS dataset (McCoy et al., 2019) for ro-
bustness testing, indicating that the debiased mod-
els overcome the word overlap heuristics to some
extend. In general, we do not observe any real
improvement other than the neglectable gains on
emotion and situation datasets where the original
performance is pathetically low.

HANS Yahoo Emo. Situ. AG SST Snips

MNLI 53.0 49.1 19.9 14.5 77.7 67.5 77.6
w/ DA 67.3 47.3 18.0 16.3 74.3 73.1 76.6
w/ RW 64.5 43.4 21.8 23.5 71.7 68.6 71.6
w/ BP 65.4 48.5 23.0 22.3 75.6 69.8 72.7

Table 5: Results of NLI debiasing based on MNLI

8We directly use the data released at
https://github.com/Aatlantise/
syntactic-augmentation-nli
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3 Conclusion and Discussion

We investigate entailment-based zero-shot text clas-
sification further with extended analysis, uncover-
ing the following overlooked issues:

• Raw BERT models trained for next sentence
prediction are surprisingly strong baselines
and NLI fine-tuning does not bring perfor-
mance gain on many classification datasets.

• Large variance on different classification sce-
narios and instability to different runs, still re-
quiring annotated data (at least used for valida-
tion) to stablize generalization performance.

• NLI models usually rely heavily on shallow
lexical patterns, which hampers generalization
as required by text classification, and currently
more robust NLI methods might not help.

Our observations reveal implicit but massive dif-
ficulties in building a usable zero-shot text classi-
fier based on text entailment models. Given the
difficulty of NLI data collection that aims at out-of-
domain generalization or transfer learning (Bow-
man et al., 2020), we question the feasibility of this
setup in the current progress of language technol-
ogy. Before significant progress in language under-
standing and reasoning, it seems more promising
to consider alternative schemes built on explicit
external knowledge (Zellers and Choi, 2017; Rios
and Kavuluru, 2018; Zhang et al., 2019) or more
crafted usage of pre-trained models that hopefully
have captured more comprehensive semantic cover-
age and better compositionality from large corpora
or grounded texts (Meng et al., 2020; Brown et al.,
2020; Radford et al., 2021).

This study also implies the huge difficulty for
benchmarking zero-shot text classification without
any further restriction on the task setting. The
three datasets used by Yin et al. (2019) were origi-
nally intended for diverse coverage but are not suf-
ficient to draw consistent conclusions as we have
shown. We suggest future studies on zero-shot text
classification either conduct experiments over even
more diverse classification scenarios to verify any
claimed generality, or directly focus on more spe-
cific task settings and verify claims within a smaller
but clearer scope such as zero-shot intent classifica-
tion or zero-shot situation typing for more reliable
results with less instability, and perhaps based on
more carefully curated data (Rogers, 2021).
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A Appendix

A.1 Additional Experimental Details

Templates for generating hypothesis For Ya-
hoo, Emotion, and Situation datasets, we fol-
lowed Yin et al. (2019) and just explored the label
names and WordNet definition accompanied with
a template10 to convert labels to hypotheses for
entailment-based models. When applying NSP, we
only used label names to generate hypotheses as we
did not observe real improvement from using Word-
Net definitions in our preliminary experiments. For
AGNews, SST-2, and Snips, we simply used the
label names to fill the templates. The templates we
used are given in Table A.1.

Other implementation details For all experi-
ments, we train BERT models by using bert-base-
uncased version and code from the HuggingFace
library (Wolf et al., 2019). We used the same pre-
diction strategy as Yin et al. (2019): we pick the
label with the maximal probability in single-label
scenarios while choosing all the labels with “next
sentence” decision in multi-label cases for both
NSP and NSP(Reverse) baselines.

Label spaces of classification The labels of each
dataset we used are listed in Table A.2.

10https://github.com/yinwenpeng/
BenchmarkingZeroShot
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Dataset Template Label to words mapping

Yahoo It is related with [LABEL] . [Sports]: sports, [Society & Culture]: society or culture, etc.
Emotion This person feels [LABEL] . [sadness]: sad, [anger]: angry, [guilt]: guilty, etc.
Situation The people there need [LABLE] . [shelter]: shelter, [utilities]: utilities, etc.
AGNews It is related with [LABEL] . [Sci/Tec]: technology, [Business]: business, etc.
SST-2 The movie is [LABEL] . [positive]: great , [negative]: terrible
Snips I want to [LABEL] . [RateBook] : rate a book, [SearchCreativeWork]: search creative work, etc.

Table A.1: Templates used for each dataset. For Topic Emotion and Situation dataset, we also use the WordNet
definitions following Yin et al. (2019)

Dataset Labels

Yahoo Society & Culture, Science & Mathematics,
Health, Education & Reference, Comput-
ers & Internet, Sports, Business & Finance,
Entertainment & Music, Family & Relation-
ships, Politics & Government

Emotion sadness, joy, anger, disgust, fear, surprise,
shame, guilt, love, none

Situation search, evacuate, infrastructure, utilities,
water, shelter, medical assistance, food,
crimeviolence, terrorism, regime change,
none

AGNews World, Sports, Business, Sci/Tech.
SST-2 Positive, Negative
Snips RateBook, SearchScreeningEvent, PlayMu-

sic, GetWeather, SearchCreativeWork, Ad-
dToPlaylist, BookRestaurant,

Table A.2: The label names of the evaluation datasets.

Additional results on CommitmentBank We
finetune BERT on the CommitmentBank dataset
(de Marneffe et al., 2019; Wang et al., 2019a) con-
verted into the NLI format (Jiang and de Marn-
effe, 2019), denoted as CB. Following Wang et al.
(2019a), we also try to pretrain BERT on MNLI
dataset before finetuning on CommitmentBank,
called MNLI+CB. In our experiments, we found
both two models trained on CB did not show a
better performance compared to model trained on
other NLI datasets, especially on Yahoo and AG-
News (19.9% accuracy on Yahoo for CB and 17.8%
accuracy on Yahoo for MNLI+CB). This indicates
that the finetuned BERT models may still focus on
features that are beneficial for NLI performance,
while losing the topic discriminability.

A.2 Qualitative Analysis

Table 1 shows that NSP(reverse) achieves better
performance than NSP on several datasets. This
could be related to the templates we used for gener-
ating previous or next sentences. For example, for
the input “play the god that failed on vimeo” with
label “PlayMusic”, NSP(Reverse) predicts “Play-
Music” while NSP predicts “AddToPlaylist”. It is a

more natural expression for “I want to play music.
play the god that failed on vimeo” than “play the
god that failed on vimeo. I want to play music”.
Among the entailment models, We find the RTE-
based model performs best on situation dataset.
The main class of situation dataset is the “none”
label. As shown in Figure A.1, we find RTE-based
model performs best on “none” label. Actually,
if we calculate the average number of prediction
labels each instance, we find NSP, NSP(Reverse),
and FEVER’s average prediction label number per
instance is about 6.2 to 8.3, while RTE and MNLI’s
average number is about 1, which is closer to the
average number of gold labels per instance. The
implies NSP is not good at identifying the “none”
label since the condition of predicting “entailment”
(a premise entails its hypothesis) is more strict than
predicting a “next sentence” label. For SST-2, we
observe that all three entailment models tend to
mislabel sentences with “negative” label as “pos-
itive”. This may be attributed to the label word
distribution in NLI datasets. We find the keyword
“great” for positive label is much more frequently
occurred than the keyword “terrible” for negative
label in all the three NLI datasets.
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Figure A.1: F1 score of each label in Situation dataset

Case study To get a better understanding of NLI
models’ behavior, we carry out a case study on
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SNIPS. We use Integrated Gradient (Sundarara-
jan et al., 2017) method to attribute the entailment
class’s output score of BERT model to per input
token 11. Several examples are shown in Table A.3.

We found the NLI models sometimes rely on
spurious patterns to do prediction. In the first exam-
ple, the model finetuned on FEVER assigns a high
negative attribution score to the word “zero” and
makes a wrong prediction. However, if we replace
“zero” with other numbers, the model changes its
prediction and can correctly predicts the “Rate-
Book” label. These examples reflect model trained
on FEVER dataset learns the spurious correlations
between “not entailment” label and the occurrence
of word “zero”12. These superficial patterns may
not be the models’ main behaviour for prediction,
it still leaks the model’s fragility and could be an
important factor to the model’s failure in zero-shot
scenario.

The other two groups of cases show another
problem: current NLI models only predict “en-
tailment” label when the premise entails its hy-
pothesis, this problem definition is just different
from the zero-shot test tasks. For example, in the
last group, model trained on MNLI outputs a low
probability for entailment since “restaurant” can
not be directly inferred from premise sentence. If
we change “restaurant” into “place”, the model
confidently predicts “entailment” .

Error cases We also show some additional exam-
ples in Table A.4, from which we might naturally
conjecture that the entailment models could rely on
spurious lexical features for prediction.

Impact of template choice How to properly
choose templates is another issue when utlizing
NLI for zero-shot classification. As shown in Table
A.5, different templates that seem meaningful to
human might have large performance variance on
SST-2.

A.3 Details for Stability Experiments

Details for training settings For MNLI dataset,
we merge the neutral and contradiction labels into
not-entailment label following Yin et al. (2019).
We choose hyperparameters randomly for different

11we use inputs which replace all tokens with pad token
except for [SEP] and [CLS] as baseline of the attribution
method.

12There are 407 premise and hypothesis pairs which contain
word “zero” with a REFUTES label, while 122 pairs with a
SUPPORTS label.

runs: we choose learning rate from {2e−5, 3e−5,
5e−5}, training epochs from {3, 4, 5} and ran-
domly set the random seed.

Results for training on RTE As shown in Table
A.6, the performance of different runs has large
variance on both RTE dev and text classification
datasets due to its small size.

Reorganize dev and test sets for Yahoo and AG-
News We reorganize the Yahoo development set
provided by Yin et al. (2019) and divide test set as
follows: For the dev set, the instances with label in
set {“Society & Culture”, “Health”, “Computers &
Internet”, “Business & Finance”, “Family & Rela-
tionships”} are preserved, we call this new dev set
as Yahoo-dev . For the original test set, we only
select instances with the label which doesn’t appear
in the dev set as our new test set, denoted as Yahoo-
test. During the NLI model training, we select
the checkpoint by the performance on Yahoo-dev,
and we report the variance of five different runs
trained on MNLI. We also conduct experiments
on AGNews in the same way. We use {“World”,
“Sports”} as seen labels and select 1800 instances
per seen label randomly in train data as our new
development set. In the same way, we get dev set :
AGNews-dev and our test set AGNews-test.

A.4 Details of Robust NLI models
Details for training settings For all the models,
we use the same set of hyperparameters: We train
all the models with batch size of 64, the Adam op-
timizer with the initial learning rate of 2e−5 and
finetune the BERT model for 3 epochs. The maxi-
mum sequence length is limited to 128.

For DA (data augmentation) method, we use the
most effective strategy which is called inversion
with a transformed hypothesis in Min et al. (2020) .
For the bias model used in Reweight and BiasProd-
uct, we use the feature based word overlap bias
model13 in Clark et al. (2019).

Detailed results on HANS Table A.7 shows de-
tailed results for the base BERT model and each
robust strategy on the HANS dataset (McCoy et al.,
2019) that diagnose each of the three heuristics
(the Lexical Overlap Heuristic, the Subsequence
Heuristic, and the Constituent Heuristic).

13https://github.com/chrisc36/debias
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Model Input text with label as hypothesis Predicted Gold-Std.

FEVER

Original : [CLS] rate current essay a zero [SEP] i want to rate a book . [SEP] (0.140) SearchScreeningEvent
(0.203)

RateBookVariation: [CLS] rate current essay a one [SEP] i want to rate a book . [SEP] (0.627) RateBook
(0.627)

Variation: [CLS] rate current essay a five [SEP] i want to rate a book . [SEP] (0.758) RateBook
(0.758)

RTE

Original : [CLS] for the current saga i rate 2 of 6 stars [SEP] i want to rate a book .
[SEP] (0.001)

AddToPlaylist
(0.001)

RateBookVariation: [CLS] for the current novel i rate 2 of 6 stars [SEP] i want to rate a book .
[SEP] (0.925)

RateBook
(0.925)

Variation: [CLS] for the current essay i rate 2 of 6 stars [SEP] i want to rate a book .
[SEP] (0.029)

SearchCreativeWork
(0.043)

MNLI

Original : [CLS] make me a reservation in tn somewhere nearby for a party of 4 [SEP] i
want to book a restaurant . [SEP] (0.012)

AddToPlaylist
(0.017)

BookRestaurantVariation: [CLS] make me a reservation in tn somewhere nearby for a party of 4 [SEP] i
want to book a place . [SEP] (0.918)

-

Variation: [CLS] make me a reservation in tn somewhere nearby for eating [SEP] i want
to book a restaurant . [SEP] (0.797)

BookRestaurant
(0.797)

Table A.3: Examples for visualization of attribution score. Each example is followed by the model’s prediction
probability for entailment class. “Predict” column shows the model’s predicted class with its entailment probability
for the input premise text and “Gold-Std.” column displays the true labels. The red color represents negative
attribution score and the blue color represents positive score for entailment class. Better viewed in color.

Text with Gold-standard and Predicted labels

• Gold-standard: Computers&Internet
• Prediction: Entertainment&Music (MNLI, RTE),
Computers&Internet (FEVER)
Is it possible to rip the music from PS2 games ? No i
dont think thats possible because your computer cant
understand the data format your ps2 games . Ive also
never heard of that being done so id have to say no .

• Gold-standard: Education&Reference
• Prediction:Family&Relationships(RTE,FEVER,MNLI)
Who or which company would do the best family history
and genealogy research for me in Utah ? I know if you
go to the Mormon Church , they can provide tons of
answers about your genealogy , and probably suggest a
company or person who would do the work for you .

• Gold-standard: BookRestaurant
• Prediction: RateBook (RTE,FEVER,MNLI)
book a bakery for lebanese on january 11th 2032

• Gold-standard: BookRestaurant
• Prediction: RateBook(RTE,FEVER,MNLI)
book a highly rated place in in in seven years at a pub

• Gold-standard: Negative
• Prediction: Positive (RTE,FEVER,MNLI)
outer-space buffs might love this film , but others will
find its pleasures intermittent .

Table A.4: Error cases of the entailment models which
may rely on spurious lexical features to make predic-
tion. Bolded tokens indicate those cue words that may
mislead the NLI models.

Template NSP RTE MNLI FEVER

The movie is great/terrible. 79.7 52.5 67.5 71.7
The movie is good/bad. 78.9 52.6 75.8 78.3
The person feels good/bad. 69.3 63.5 78.3 82.9

Table A.5: Accuracy on SST-2 dev set using different
templates

Dataset Average Std Min Max

RTE Dev set 69.0 2.2 66.1 70.8

Yahoo 20.6 7.4 11.2 28.6
Emotion 3.8 0.4 3.5 4.4
Situation 23.0 4.5 16.9 28.3
AGNews 31.1 15.5 9.1 46.4
SST-2 67.0 3.9 63.9 72.0
Snips 67.5 2.5 64.3 71.3

Table A.6: Results of five runs of BERT fine-tuned on
RTE and tested on classification datasets

Entailment Non-entailment

Overall L S C L S C

MNLI 53.0 99.5 99.8 97.2 2.7 1.6 17.2
w/ DA 67.3 81.2 94.6 96.6 86.8 23.7 20.7
w/ RW 64.5 69.8 80.6 78.5 53.1 40.2 65.0
w/ BP 65.4 71.4 77.4 84.6 61.0 40.7 57.2

Table A.7: HANS accuracy of BERT pretrained on
MNLI and different debiasing methods, broken down
by the heuristic that the example is diagnostic of and by
its gold label. L represents for Lexical Overlap Heuris-
tic, S represents for Subsequence Heuristic, and C rep-
resents for the Constituent Heuristic.
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Abstract

Commonsense reasoning aims to incorporate
sets of commonsense facts, retrieved from
Commonsense Knowledge Graphs (CKG), to
draw conclusion about ordinary situations.
The dynamic nature of commonsense knowl-
edge postulates models capable of perform-
ing multi-hop reasoning over new situations.
This feature also results in having large-scale
sparse Knowledge Graphs, where such rea-
soning process is needed to predict relations
between new events. However, existing ap-
proaches in this area are limited by considering
CKGs as a limited set of facts, thus rendering
them unfit for reasoning over new unseen sit-
uations and events. In this paper, we present
a neural-symbolic reasoner, which is capable
of reasoning over large-scale dynamic CKGs.
The logic rules for reasoning over CKGs are
learned during training by our model. In addi-
tion to providing interpretable explanation, the
learned logic rules help to generalise predic-
tion to newly introduced events. Experimental
results on the task of link prediction on CKGs
prove the effectiveness of our model by outper-
forming the state-of-the-art models.

1 Introduction

Commonsense reasoning refers to the ability of
capitalising on commonly used knowledge by most
people, and making decisions accordingly (Sap
et al., 2020). This process usually involves com-
bining multiple commonsense facts and beliefs to
draw a conclusion or judgement (Lin et al., 2019).
While human trivially performs such reasoning,
current Artificial Intelligence models fail, mostly
due to challenges of acquiring relevant knowledge
and forming logical connections between them.

Recent attempts in empowering machines with
the capability of commonsense reasoning are
mostly centred around large-scale Commonsense
Knowledge Graphs (CKG), such as ATOMIC and

ConceptNet (Sap et al., 2019; Speer et al., 2017).
Unlike conventional Knowledge Graphs (KG),
CKGs usually contain facts about arbitrary phrases.
For instance, “PersonX thanks PersonY" is con-
nected to “ To express gratitude" via the link “
because X wanted". This non-canonicalised free-
form text representation has resulted in having con-
ceptually related nodes with different representa-
tion, which forms large sparse CKGs (Malaviya
et al., 2020). Therefore, established reasoning
models on conventional KGs perform poorly on
CGKs (Yang et al., 2014; Sun et al., 2018; Dettmers
et al., 2018; Minervini et al., 2020). In addi-
tion, the nature of commonsense reasoning encour-
ages dynamic CKGs, where new sets of facts and
phrases are introduced frequently. Most existing
models in this realm are based on a static set of
facts and phrases, which results in poor generali-
sation (Malaviya et al., 2020; Shang et al., 2019).
Nevertheless, the inference process in existing ap-
proaches is like a black box, where internal be-
haviour of the model is hardly interpretable.

To overcome these limitations, we propose
a neural-symbolic reasoning model based on
backward-chaining. While traditional theorem
proving algorithms (Bratko, 2001) work based on a
set of predefined rules and unification over discrete
symbols, we leverage a continuous relaxation of
weak unification and a rule learner module. The
weak unification over continuous embedding repre-
sentation helps to address the challenges of unseen
sparsity of CKGs. The rule learner module, in ad-
dition to providing interpretability, is used to gen-
eralise prediction to unseen data points to mitigate
the problem of large-scale dynamic CKGs. The
experiments on the task of link prediction confirm
the superiority of our model, by a margin of up to
22 points, over the state-of-the-art models.
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Figure 1: A visual representation of rules and new relations estimated by our model for a sample query, xIn-
tent(Alex thanks Jesse, ?). Based on the subject of the query, a subgraph of ATOMIC is retrieved for the reasoning
process (middle). Sets of rules estimated from relation of the query is generated using our proposed rule creation
module (left). Based on our reasoning model, the answers to query are predicted by unification module (right).

2 Related Works

Recent approaches in knowledge base completion
task have mostly relied on a graph and entity-
relation embedding methods (Yang et al., 2014;
Dettmers et al., 2018). In these approaches, entities
and relations are embedded in a complex space,
and using a scoring function plausibility of a triple
is estimated (Bordes et al., 2013; Trouillon et al.,
2016; Sun et al., 2018). In addition to node em-
bedding, graph embedding methods have also been
used to capture the structural complexity of knowl-
edge bases (Schlichtkrull et al., 2018; Shang et al.,
2019). Language generative models also have been
applied on knowledge bases in order to use the rich
information of pre-trained models to address CKG
completion task (Bosselut et al., 2019; Moghimifar
et al., 2020). Malaviya et al. (2020) proposed a
method based on using language models and graph
networks to solve the problem of the sparsity of
CKGs, by taking structural and contextual char-
acteristics of CKGs into account. However, the
aforementioned models are highly dependant on
training on a set of static entities, and fail to per-
form when new triples are presented.

3 Our Approach

A CKG G = (N,E), where N is the set of nodes
and E is the set of edges in G, consists of triples in
form of r(h, t), where h, t ∈ N are referred to as
the head and the tail of the triple, and r ∈ E denotes
their relation. The goal of the CKG completion task
is to estimate probable t given a query q = r(h, ?).
As the target node may not pose a direct link to h
via r, this task requires a model capable of multi-
step reasoning.

Given a query rq(hq, ?), we try to identify an

implication rule and apply it to prove rq(hq, t) for
a target entity or event t. A rule R takes the form
of rq(X,Z) :− r0(X,Y0), ..., rk(Yk−1, Z), where
capitalised letters denote variables, rq(X,Z) is
the rule head, and the rule body is a conjunction
of atoms. We apply such a rule by unifying
atoms with triples in the given CKG to obtain
rq(hq, tk) :− r0(h0, t0), r1(t0, t1), ..., rk(tk−1, tk),
which entails rq(hq, tk). Since semantically equiv-
alent/similar events or entities in a CKG often
have different surface forms, we consider weak
unification of an atom with a triple instead of only
considering exact match of two atoms, a weak
unification operator (Sessa, 2002) unifies two
different symbols by measuring the similarity of
their representations.

Given a query, we do not know the target rule
in advance. As shown in the example in Fig. 1,
we successively create a new rule by appending
the body of the previous rule with an atom in the
form of r(tk−1, X). Whenever such a new atom is
added, we query the CKG to find triples as candi-
dates of unification. This step enables reasoning on
large scale KBs. In contrast, the prior works (Min-
ervini et al., 2020; Ren and Leskovec, 2020) require
comparison with each node in a CKG. After apply-
ing the weak unification operator to each of the
triples, we find topk most similar nodes and use
each of the entity/event in the place of X to create
a new atom for a new rule. The process is repeated
until the maximal rule length is reached.

The above mentioned reasoning process is deliv-
ered by a a neural-symbolic reasoner. It consists of
a query module, a weak unification operator, and a
rule creation module.
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Dataset #Nodes #Edges Avg. In-degree Density Unseen Nodes Unseen Edges #Relations
ATOMIC 382823 785952 2.25 1.6e-5 38.36% 27.91% 9

ConceptNet-100k 80994 102400 1.25 9.0e-6 11% 8% 34

Table 1: Statistics on ATOMIC and ConceptNet-100k. Unseen Nodes is the ratio of the nodes in test set that are
not in train set to all of the nodes in test set. Unseen edges is the ratio of edges where either the head or tail nodes
are not in train set to the number of all edges in test set.

Query Given a rule with a rightmost atom
rk−1(tk−1, X) in the rule body, we send the rep-
resentation of tk−1 as query to the given CKG to
retrieve unification candidates. A node in a CKG is
a word sequence. To support comparison of nodes
w.r.t. their semantic similarities, we encode queries
and nodes in a CKG with a pre-trained BERT (De-
vlin et al., 2019) into embeddings. To this end, a
node is converted into [CLS]+node+[SEP ], and
fed into the model, and we use the representation
of [CLS] token from the last layer of BERT as rep-
resentation of node node. We apply FAISS1 (John-
son et al., 2019) to index embeddings of an CKG,
because it supports fast retrieval of k nearest neigh-
bours of a dense vector. For each node v in the
topk list, we collect a set of triples C(v), which are
all triples having v as the head in the CKG. As a
result, we have k such sets and form a candidate
set C by taking the union of them.

Weak Unification From a candidate set C

we identify topk most relevant triples to unify
rk−1(tk−1, X). First, we formulate a set of hy-
potheses H by replacing X with possible tails. In
practice, we use all tails of the triples in C. Fur-
thermore, we construct a bipartite graph between
C and H, in which an edge denotes the unification
between a triple from C and another from H. We
measure unification scores by using cosine similar-
ity and obtain an similarity matrix U ∈ R|C|×|H|.
The final unification score of candidate triple i is
computed by maxj Uij . We keep only topk high-
est scored candidate triples.

Rule creation Given the topk highest scored can-
didate triples and a rule Rk with a rightmost atom
rk−1(tk−1, X), we create a new rule based on Rk

for each triple k by substituting it for r(tk−1, X)
and append another atom rk(tk, X). The relation
rk is estimated by a relation predictor fθ(rk−1, k),
where both rk−1 and the current step k are mapped
to the corresponding embeddings.

Pθf (rk|rk−1, k) = σ(fθ([rk−1; k]).W + b) (1)

1https://github.com/facebookresearch/faiss

where θf := {W, b} contains the Rule creation
module’s parameters, and σ is the sigmoid function.
The relation predictor aims to generalise relation
co-occurrence patterns in rules. We implement it by
using a neural networks with two blocks of hidden
layers, followed by a softmax layer. Each block is
composed of a linear layer and a ReLU layer.

Given a query rq(hq, ?), we initialise the first
rule as rq(hq, X). After reaching the pre-defined
maximal rule length, we consider the score of a
rule after unification as the lowest unification score
associated with the rule, following (Sessa, 2002).
We rank all rules by their scores and select the tails
in the rule heads of the topk highest scored rules as
the results.

Another benefit of our reasoner is that humans
can easily collect evidences to interpret reasoning
results. The model can yield the rules and unified
triples in a human-friendly format, which are gener-
ated at each step. In contrast, prior work (Malaviya
et al., 2020) on commonsense reasoners produces
only hard-to-understand distributed representations
in intermediate steps.

Training We convert all the triples
in G into a set of queries (Q =
{r1(h1, ?), r2(h2, ?), . . . , rn(hn, ?), }), where
each query of ri(hi, ?)(i < n) is associated with
a set of gold answers Ti = {qi1 , qi2 , . . . , qim}.
The goal of training our model is to learn the
embedding representations by minimising a
cross-entropy loss function (Lθ) on final scores
associated with each estimated predictions and the
set of gold answer:

Lθ = −
∑

qpk∈T
log(Pr(qpk |G;θ)) (2)

−
∑

qpk 6∈T
log(1− Pr(Pr(qpk |G;θ)))

where θ denote all the parameters of our model.
The relation predication module of our model is
also trained by minimising loss in equation 2,
where the relation embeddings are decoded by
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ConceptNet-100k ATOMIC
Model MRR HITS@1 HITS@3 HITS@10 MRR HITS@1 HITS@3 HITS@10
DistMult 8.68 5.38 9.33 15.23 11.49 9.16 11.83 16.3
ComplEx 10.33 6.51 11.24 17.31 12.96 10.65 13.9 17.08
ConvE 16.55 10.19 18.79 28.08 9.04 7.05 9.42 12.74
RotatE 19.89 14.45 25.32 37.56 10.61 8.56 10.76 14.98
Malaviya et al. 43.60 39.33 49.41 66.58 23.43 20.54 24.1 27.43
Ours 65.72 57.49 61.7 71.46 46.41 43.31 45.94 47.24

Table 2: Results on CKG completion task, on ConceptNet-100K and ATOMIC.

alignment of the associated embedding and nearest
predicate representation.

4 Experiments

To evaluate the performance of our model 2 in the
task of CKG completion, in this section, we report
the results of our model in comparison with the
baselines.
Evaluation Metrics: Following previous works
on Knowledge Base completion (Dettmers et al.,
2018; Malaviya et al., 2020), we report the results
of HITS and Mean Reciprocal Rank. Similar to
Dettmers et al. (2018), when computing the scores
for a gold target entity, we filter out all remaining
valid entities. Furthermore, for each triple (h, r, t),
the score is the average of scores measured from
(h, r, ?) and (t, r−1, ?).
Baselines For comparison, we report the perfor-
mance of state-of-the-art models in CKG and
KB completion. We compare our model to Dist-
Mult (Yang et al., 2014), ComplEx (Trouillon et al.,
2016), ConvE (Dettmers et al., 2018), RotatE (Sun
et al., 2018), and Malaviya (Malaviya et al., 2020).
The first four models are high performance models
in conventional KB completion, whereas the latter
is proposed for CKG completion.

4.1 Datasets
ATOMIC 3 is a CKG consisting of commonsense
facts in form of triples, based on if-then rela-
tions (Sap et al., 2019). This dataset consists of
more 877K facts, and more than 300K entities.
ConceptNet-100K 4 is a subset of ConceptNet
5 (Speer et al., 2017), containing Open Mind Com-
mon Sense (OMCS) entries, introduced by (Li et al.,
2016). This dataset contains general commonsense
facts in form of triples.

2Code available at https://github.com/
farhadmfar/commonsense_reasoner

3https://homes.cs.washington.edu/ msap/atomic/
4https://ttic.uchicago.edu/ kgimpel/commonsense.html

In order to evaluate the performance of the mod-
els in dynamic CKG completion, we choose a sub-
set of the test set of ATOMIC and ConceptNet-
100K, where for any (h, r, t) either h or t is not
seen by the model in the train set. Statistics on
ATOMIC and ConceptNet-100k are provided in
table 1. To train our model, each triple in form
r(h, t) in train set was also converted to r−1(t, h),
to account for reverse relations as well. We have
used the embedding size of 1024 for both node
and relation embedding layer. To embed the
nodes in CKGs, we have fine-tuned uncased BERT-
Large (Devlin et al., 2019) for the objective of
masked language model. For this purpose, a node
is converted into [CLS] + ni + [SEP ] and fed
into BERT. The representation of the token [CLS]
from the last layer of BERT is then used as node
ni embedded representation. We used the maxi-
mum sequence of 128, and batch size of 64. Our
relation predication module consists of two Linear
layer. For all non-linearities in our model we have
used ReLU. For optimisation purpose, SGD has
been used, with staring learning rate of 10e − 4,
and decay rate of 0.9, if the loss of development
set does not decrease after each epoch. We set
the maximum depth of three for reasoning process.
We have trained the model for 200 epochs. Fol-
lowed by Malaviya et al. (2020), we have trained
all the baselines for 200 epochs. During training
the models were evaluated on development set, ev-
ery 10 and 30 epochs, for ConceptNet-100K and
ATOMIC, respectively. The checkpoint with the
highest MRR was then selected for testing.

4.2 Results

Table 2 summarises the results of the conducted
experiment on ConceptNet-100K and ATOMIC.
On ConceptNet-100K our proposed model outper-
forms the baselines by up to 22 points on MRR. The
gap between our model and the second best model
decrease as we move from HITS@1 to HITS@10.
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ATOMIC
xIntent(X,Y):-xIntent(X,Z),xIntent(Z,Y)

xNeed(X,Y):-xReact(Y,X)
xIntent(X,Y):-oWant(Y,X)

ConceptNet-100K
causes(X,Y):-causes(X,Z),causes(Z,Y)

isa(X,Y):-partof(X,Z),isa(Z,Y)
relatedto(X,Y):-relatedto(X,Z),relatedto(Z,Y)

Table 3: Examples of rules learned by our proposed
relation prediction module.

This suggested that on contrary to the baselines our
model performs better in estimating the probabil-
ity of query with higher accuracy. On ATOMIC
our model achieves a MRR of 46.41, which is 23
points higher than the second best model. As it
can be seen from table 2, comparison of perfor-
mance of different models on ConceptNet-100K
and ATOMIC shows a noticeable drop in perfor-
mance for models which rely on structural infor-
mation of CKGs. This observation suggests that
larger and sparser (lowest density) CKG are more
challenging to reason over.

Table 3 provides examples of generated rules
by our model on ATOMIC and ConceptNet-100k.
On ATOMIC, the first rule is based on transition,
and the second and third rules are inverse rules.
Similarly, on ConceptNet-100K the first and third
rules are transitive, and the second rule is a com-
positional rule. All provided rules are diverse and
meaningful, and can be used for explaining the
inference process of our model. For instance, con-
sider a query of xIntent(Alex drives Jesse there, ?).
Based on first rule from Table 3, X is unified by
Alex drives Jesse there, and Z is unified by Alex
helps Jesse (from triples of ATOMIC). Then, the
query is updated to xIntent(Alex helps Jesse, ?) and
Y is unified by to be of assistance (from triples of
ATOMIC), hence the answer to query. The path
generated by this example is Alex drives Jesse there
xIntent−−−−→ Alex helps Jesse xIntent−−−−→ to be of assistance.

Therefore, two nodes are connected via a new link:
Alex drives Jesse there xIntent−−→ to be of assistance.

Consider the following query from ConceptNet-
100K, HasProperty(novel, ?). Based on the re-
lation of the query, our rule creator module can
estimate the following rule: According to this rule,

HasProperty(X,Y):-IsA(X,Z),HasProperty(Z,Y)

X is unified by novel, and Z is unified by book (from
triples of ConceptNet-100K). Then, the query is
updated to HasProperty(book, ?) and Y is unified

by expensive (from triples of ConceptNet-100K),
resulting the answer to the query, by generating the

following path: novel IsA−−→ book
HasProperty−−−−−−→ expen-

sive, hence novel
HasProperty−−−−→ expensive.

5 Conclusion

In this work, we propose a neural-symbolic rea-
soning model over Commonsense Knowledge
Graphs (CKGs). Our proposed model leverages
a relation prediction module, which provides capa-
bility of multi-step reasoning. This ability, along-
side weak unification, helps generalising our model
to large-scale unseen data. We showed that our
model yields state-of-the-art results when applied
to large-scale sparse CKGs, and the inference step
is interpretable.
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Abstract
According to the self-determination theory, the
levels of satisfaction of three basic needs (com-
petence, autonomy and relatedness) have im-
plications on people’s everyday life and career.
We benchmark the novel task of automatically
detecting those needs on short posts in English,
by modelling it as a ternary classification task,
and as three binary classification tasks. A de-
tailed manual analysis shows that the latter has
advantages in the real-world scenario, and that
our best models achieve similar performances
as a trained human annotator.

1 Introduction

Motivation is one of the most crucial aspects
of human behaviour with implications ranging
from daily life to career and educational contexts.
Self-determination theory (SDT) provides a meta-
framework for understanding the broad, as well as
specific, nutriments of the function and application
of the concept of motivation (Deci and Ryan, 2000;
Ryan and Deci, 2017a).

SDT differs from the other motivational theories
from the psychology literature in two substantial
aspects (Ryan and Deci, 2000; Rigby and Ryan,
2018): (1) Unlike the drive theories that explain
motivation as a function of its deficit (e.g. people
are motivated by success to compensate its deficit),
SDT focuses on growth and constructivism (e.g.
people are naturally and universally motivated by
success), thus giving the theory a more realistic
understanding of the human behaviour, and making
it applicable to wider contexts; and (2) Due to the
applicability advantage, SDT is based on strong
behavioural evidence and is thus not only a well-
validated model but also sustainable and actionable.

The SDT framework is supported by a body of
cross-cultural studies strengthening the universality
of the theory. Studies conducted in diverse coun-
tries showed that the basic needs are essentially

represented across cultures (Chen et al., 2015; Jang
et al., 2009). Although universal, the SDT frame-
work is also able to point out the impact of so-
ciocultural environment on the variations of basic
needs in different cultures. For example, a study
conducted in 11 countries showed that the need
for competence was more linked to school perfor-
mance in Eastern cultures than in the West (Nalipay
et al., 2019).

One of the central pillars of SDT are three basic
psychological needs that drive the initiation of a
behaviour and the maintenance of motivation:

• Autonomy: the basic need to be the owner
and controller of one’s decisions and be-
haviours.

• Competence: the basic need to feel compe-
tent, effective and master-like.

• Relatedness: the basic need to belong, bond
and connect with others.

According to SDT, those three needs are univer-
sal and their importance does not change across
individuals and situations. However, different con-
texts and time periods would require different sup-
port and resources for the maintenance of the mo-
tivations. For instance, cultivating autonomy need
in students creates more engagement and willing-
ness, thus leading to higher academic performance,
lower dropouts, and more self-esteem in the long
run (Ryan and Deci, 2020). Similarly, the SDT
framework is used to increase levels of employee
satisfaction and engagement, supportive leader-
ship and parenting skills, healthier relationships,
satisfactory consumer experience and better de-
signed digital media and well-being tools (Slemp
et al., 2018; Rigby and Ryan, 2018; Ryan and Deci,
2017b; Knee et al., 2002; Gilal et al., 2019; Peters
et al., 2020; Peng et al., 2012).
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Need Post

Autonomy Just treated myself to a Roland TB-3. Should arrive this evening. #excited
Autonomy One thing’s for sure, I will not let you ruin my dreams, HIV. #determined
Competence What an achievement. Finally getting some credit. #Fury #SPOTY
Competence I fell asleep with socks on... I disgust myself.
Relatedness I’m so lucky to have my best friend and boyfriend rolled into one! #soppy #proud
Relatedness You know what I feels like to be #ALONE in this cold world?

Table 1: Annotated examples from the dataset (either satisfied or unsatisfied need).

Traditionally, basic motivations are assessed
via questionnaires which provide intensity-based
scores for each dimension. The scores represent
the degree to which that particular dimension is
satisfied (Deci and Ryan, 2000). Although these
questionnaires were developed and validated via
laboratory and field studies which provide a strong
empirical basis, they could suffer from biases com-
monly observed in questionnaire respondents such
as social desirability bias (Krumpal, 2011) and the
reference-group effect (Heine et al., 2002). The ba-
sic motivations can also be revealed in a more im-
plicit way, by collecting subjects’ narratives while
showing them pictures and images (Murray, 1943;
McClelland, 1979). Although being more expen-
sive and time-consuming, as it requires the inclu-
sion of trained assessors, this method shows that
implicit motivations can be assessed from texts.
A few studies attempted at automatic detection of
basic motivations on the basis of their linguistic
aspects from such naratives (Pennebaker and King,
1999; Johannssen and Biemann, 2019).

To the best of our knowledge, our study is the
first that attempts to automatically detect the three
basic needs from short posts. In this study, we:

• Benchmark the task of automatic detection of
basic needs from English Twitter data using
several architectures on an already existing
manually annotated dataset.

• Provide a manual analysis which shed light
on the complexity of the task and its usability.

• Discuss the limitations of the existing dataset,
and suggest better annotation strategies.

2 Dataset

For our experiments, we used the first two layers
of the Basic Psychological Needs Corpus (Alharthi
et al., 2017), which is publicly available.1 The

1We obtained the original dataset directly from the authors.

corpus contains Twitter posts annotated with five
layers of annotation as the intention was to pro-
vide freely available multilayered annotated corpus
for a wide range of applications (Alharthi et al.,
2017). The manual annotation was performed
by three annotators in three stages, encompass-
ing thorough training sessions and detailed annota-
tion guidelines, one round of collectively labelling
tweets, one round of independently labelling the
same posts for calculating inter-annotator agree-
ment (IAA), and the final round of independently
labelling the rest of the posts. The average pairwise
agreement and the Fleiss Kappa (κ) were 90% and
0.815 for whether or not the post contains enough
content for assigning one of the three basic needs
(autonomy, relatedness, or competence), and 89%
and 0.819, respectively, for the assigned label (Al-
harthi et al., 2017).

The final dataset with manual annotations of
basic needs was already pre-filtered for non-
emotional posts and those that do not contain
enough signal (Alharthi et al., 2017). It contains
6334 posts with the following distribution of the
labels: 1229 posts labelled with competence, 1771
with autonomy, and 3334 with relatedness label.
In our experiments, we used this dataset and only
the labels of the second layer of annotation (ba-
sic needs). Several examples are given in Table 1.
Here is important to note that the original dataset
also contains, in the third layer, the annotation for
the satisfaction level (satisfied, dissatisfied, neu-
tral) of the assigned basic need. We acknowledge
that the combination of the basic needs and their
level of satisfaction are often used together, e.g. as
indicators of person’s well-being (Deci and Ryan,
2011), violence and conflict possibility (Christie,
1997), stress and coping (Ntoumanis et al., 2008;
Weinstein and Ryan, 2011). However, we opted
for discarding these additional labels for three rea-
sons: (1) because the inter-annotator agreement
was significantly lower for this annotation layer
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(the average pairwise agreement was 75% and the
κ was 0.640); (2) so that we do not increase the
total number of classes (to nine instead of three)
and therefore significantly lower the number of in-
stances in each class; (3) because this task appears
similar to the task of assigning the sentiment polar-
ity of the post (Alharthi et al., 2017), and therefore
might be modelled with various other datasets.

3 Experimental Setup

3.1 Preprocessing

The instances were already cleaned in the original
dataset by removing all usernames (@username)
and URLs, while preserving emoticons, punctu-
ation marks, social acronyms and abbreviations,
which might contain psycholinguistic signals (Al-
harthi et al., 2017). Furthermore, the dataset does
not contain any duplicated instances, tweets with
less than three words, or tweets with more than
three hashtags (Alharthi et al., 2017). We noticed
that for this particular task, the hashtags may help
the models, e.g. #proud usually signalizes com-
petence, #relationship signalizes relatedness. To
better assess how well the models would perform
on a different type of texts, we experimented with
two versions of the dataset: WITHOUT HASHTAGS

and WITH HASHTAGS.

3.2 Data Splits

We randomly choose 15% of the instances for test-
ing, and then 15% from the rest of the data for
development, while maintaining the class ratio (Ta-
ble 2). During our experiments, we found that
applying upsampling on the minority classes (com-
petence and autonomy) slightly improved the per-
formances of some models, and had no change on
others. Thus, we only report the results obtained
by using upsampling.

3.3 Task Definition

We approached the problem of detecting basic
needs with two different scenarios: (1) as a ternary
classification problem (assigning one of the three
possible basic needs to each post), and (2) as three
binary classification tasks (for each basic need, as-
signing either yes or no label). The ternary classi-
fication is a more natural choice for this particular
dataset, as all instances were annotated with only
one of the three basic needs. However, according
to the SDT, each person have at all times the all
three needs just with different intensities and sat-

Need
ORIGINAL REPORTED

TRAIN DEV TEST TRAIN DEV TEST

Autonomy 1248 228 290 2416 404 290
Competence 868 168 204 2416 404 204
Relatedness 2416 404 508 2416 404 508

Table 2: Dataset splits.

isfaction levels (Section 1). It is thus reasonable
to assume that some posts will also contain sig-
nals of multiple basic needs. Therefore, we also
performed three binary tasks which would allow
us to model each basic need separately. By using
three binary classifiers instead of one ternary, posts
could be automatically labelled with none of, or
any combination of, basic needs.

3.4 Evaluation Metrics
For both types of classification tasks (binary and
ternary), we used the per-class precision, recall,
and F1-score, and the macro-averaged F1-score for
evaluating the performances of the models.

3.5 Architectures
In order to assess the importance of both lexical
and semantic aspects of texts, we tested various
approaches that use different text representations:

• BOW: word unigrams and bigrams model
with the TF-IDF weighting scheme (Salton
and Buckley, 1988) using a Support Vector
Machines (Chang and Lin, 2011) classifier
with a linear kernel.2,3

• Char-CNN: a Convolutional Neural Net-
works (CNN) architecture similar to the one
proposed in (Zhang et al., 2015) but using a
trainable character embedding layer as input.

• BiLSTM: a bidirectional Long Short-Term
Memory (BiLSTM) (Hochreiter and Schmid-
huber, 1997) neural network that uses Fast-
Text word embeddings (Bojanowski et al.,
2017) to represent texts. The BiLSTM hid-
den states are fed to an attention layer (Yang
et al., 2016), and then the attention output is
processed with a fully connected layer. As an
output, a softmax layer is used to obtain the
final classification.

2We also explored logistic regression, random forest,
Naive Bayes, and support vector machines, with different
kernels, during the prototyping phase.

3Character n-grams were also tested but as they did not
lead to better performances, we do not report their results.
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Model
WITHOUT HASHTAGS WITH HASHTAGS

Autonomy Competence Relatedness F1 Autonomy Competence Relatedness F1

P R F1 P R F1 P R F1 (macro) P R F1 P R F1 P R F1 (macro)

BiLSTM .54 .54 .54 .48 .45 .47 .74 .76 .75 .59 .65 .47 .55 .47 .63 .54 .80 .82 .81 .63
Char-CNN .50 .64 .56 .58 .24 .34 .73 .79 .76 .55 .61 .61 .61 .54 .54 .54 .82 .81 .82 .66
BOW .61 .49 .54 .49 .54 .52 .76 .82 .79 .62 .67 .57 .62 .57 .54 .55 .79 .87 .83 .67
BERT .62 .54 .58 .55 .61 .58 .84 .87 .86 .67 .70 .69 .69 .73 .52 .61 .83 .93 .88 .72
BERT+BiLSTM .62 .60 .61 .56 .66 .60 .87 .82 .85 .69 .71 .61 .66 .69 .62 .65 .83 .93 .88 .73

Trained human .78 .70 .74 .69 .88 .77 .88 .72 .79 .77 .78 .70 .74 .69 .88 .77 .88 .72 .79 .77
BERT+BiLSTM .78 .70 .74 .79 .65 .71 .73 .93 .81 .75 .73 .75 .74 .81 .62 .70 .77 .93 .84 .76

Table 3: Results of the ternary classification task. The last two rows present the results on a subset of the test set
that was annotated by a trained human annotator and contains 40 instances of each class.

• BERT: the neural language model, well-
known for providing text representations that
show leading performances on several natu-
ral language processing benchmarks (Devlin
et al., 2019). We fine-tune BERT and use its
hidden representation of the special [CLS] to-
ken to represent the full input text and feed it
to a softmax output layer.

• BERT+BiLSTM: this model combines the
previous two approaches. Instead of FastText
word representation, the fine-tuned BERT em-
beddings are post-processed by the BiLSTM
architecture defined above. We observed that
such architectures help BERT to adapt to the
target task and obtain better classification re-
sults in scenarios with small training datasets.

4 Results and Discussion

4.1 Ternary Classification

All models performed noticeably better on the orig-
inal than on the cleaned dataset, thus supporting
our hypothesis that the presence of the hashtags
leads to better model performances (Table 3). As
expected, the models that are based on transfer
learning (BERT and BERT+BiLSTM) performed
best. Interestingly, the non-neural model (BOW)
outperformed the BiLSTM and Char-CNN models
on the competence class using the cleaned dataset
(F1-score of 0.52 against 0.47 and 0.34, respec-
tively).

In all models, most misclassifications were ob-
served between the competence and autonomy
classes. A possible reason for this might lie in
the SDT theory, as autonomy and competence are
self-originated needs, whereas relatedness includes
both self and others (Vansteenkiste et al., 2020).

This might lead to theme/topic overlaps between
autonomy and competence due to the self-focus,
while relatedness might be easier to distinguish due
to including self and the others.

4.2 Human Performance and Error Analysis
To assess the expected performance ceiling, we
hired a psychologist, well-versioned in SDT, pro-
vided the annotation guidelines with several ex-
amples, and asked to annotate randomly selected
150 instances from the cleaned test set (50 from
each class). The annotator was allowed to assign
as many classes as needed to each post.

Our guidelines were based on a thorough review
of psychology research by Ryan and Deci (2020,
2017a,b, 2000) who studied observable behavioural
outcomes. We selected the following cues for each
basic need:

• Autonomy: focus of initiative, ownership of
self-actions, feelings of restriction by any type
of external control.

• Competence: focus on behaviours associ-
ated with mastery, achievements, success, and
growth (both positive and negative), search
for personal or contextual challenges, well-
structured environments, and positive feed-
back.

• Relatedness: focus on spending and appreci-
ating time with significant others, search for
community and connection, sense of nurturing
and caring for others.

The annotator assigned two classes in 14 cases
(9.3%). Some of those were the cases in which
our best system (BERT+BiLSTM) made ‘wrong’
prediction, which turned out to be the same as one
of the classes assigned by the human annotator
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Gold Predicted Post

Relatedness Autonomy Wishing I was home this Christmas, maybe next year #homesick #holidays
Relatedness Competence I work with an amazing team. They work so hard and are so dedicated. Truly a top

comms team #proud

Table 4: Examples of penalized predictions which actually caught the secondary signal. For those examples, the
human annotator assigned both classes (the gold and the predicted one).

Task
Yes No F1

P R F1 P R F1 (macro)

Autonomy .74 .48 .58 .81 .93 .87 .73
Competence .69 .63 .66 .91 .93 .92 .79
Relatedness .85 .92 .88 .91 .83 .87 .87

Table 5: Results of the binary classification tasks on the
datasets WITH HASHTAGS.

Task
Yes No F1

P R F1 P R F1 (macro)

Autonomy .61 .49 .54 .81 .87 .84 .69
Competence .55 .64 .59 .90 .87 .88 .74
Relatedness .83 .86 .85 .85 .82 .84 .84

Table 6: Results of the binary classification tasks on the
datasets WITHOUT HASHTAGS.

(Table 4). Therefore, we took 120 instances for
which the human annotator assigned only one class,
and additionally ran our best model on that portion
of the test set, to fairly compare its performance
with the human performance (the last two rows in
Table 3).

4.3 Binary Classifications

The results of the best performing architecture
(BERT+BiLSTM) on the binary tasks using the
datasets WITH HASHTAGS and WITHOUT HASH-
TAGS are presented in Tables 5 and 6.

To assess the performance of those systems in
the real-world scenario, we took 100 random new
tweets and ran all three models on them. At the
same time, we asked the psychologist to annotate
each post (without showing the obtained automatic
predictions) by assigning one of the three labels
(no, low, high) for each basic need. For exam-
ple, “@matchbox sized Wait, you’ve seen it al-
ready? Thought it aired on Sunday nights?” was
annotated as low for relatedness, high for auton-
omy, and no for competence. For the same example,
the three best binary models assigned the following
probabilities to each of the corresponding classes:

p(autonomy) = 0.88, p(relatedness) = 0.70,
and p(competence) = 0.30.

We further investigated whether or not the class
probabilities obtained by the binary models were
related to the labels assigned by the annotator. On
those 100 examples, we found that the manually
assigned label no corresponds to the p(yes) ∈
[0, 0.5) (obtained by the models) in 90% of the
cases, the manually assigned label low to the
p(yes) ∈ [0.5, 0.75) (obtained by the models) in
100% of the cases, and manually assigned label
high to the p(yes) ∈ [0.75, 1] (obtained by the
models) in 98% of the cases. These findings in-
dicate that it might be possible to use the binary
models in a more general setup, i.e. on the posts
which are not pre-filtered for containing emotions
or needs signals, and on posts that reflect more than
one need. Furthermore, it seems that those models
could capture the intensity of the signals.

5 Conclusions

In this study, we benchmarked the automatic detec-
tion of basic motivations on short (Twitter) posts
in English, framing the problem as a ternary clas-
sification task, as well as three binary classifica-
tion tasks. On the ternary classification task, our
BERT+BiLSTM model performed almost equally
well as a trained human annotator.

We showed that modelling this problem as three
binary classification tasks, instead of modelling it
as one ternary classification task, allows for better
applicability of the models. The proposed setup
with three binary models assigns none of the basic
motivations to those posts without any signal (all
three models assign a no class), and multiple basic
motivations to those posts with signals from multi-
ple motivations (more than one model assigns a yes
class), achieving a high agreement with the human
annotator. We also found a high association be-
tween the class probabilities of the binary models
and the human-perceived motivation intensities.
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6 Ethics/Impact Statement

6.1 Intended Use
The goal of our experiments was to investigate if
there is a possibility to automatically detect basic
needs from short posts, and to benchmark this novel
NLP task. As we do not have any demographic
information in the dataset used, and we did not
thoroughly investigate performances of our models
on different text types, demographic groups, and in
different contexts, we do not encourage the use of
these particular models in real-world applications.
Instead, the contribution of our study lies in setting
the ground for future models of automatic detection
of basic needs from short texts, by benchmarking
the task with various machine learning architec-
tures on a specific dataset, experimenting with both
ternary and binary setups, providing performance
ceiling estimation via human annotations, and dis-
cussing the usability of presented approaches. Our
study thus provides the foundations for future mod-
els which, if trained on carefully sampled data (rep-
resentative data with strict bias control), have the
potential to speed up and provide additional qual-
ity checks for traditional questionnaire-based basic
needs estimation procedures, which are already
widely used for: (1) providing supportive informa-
tion about the user in organizational contexts such
as leadership style and team building processes
(Rigby and Ryan, 2018); and (2) prompting learner
perspectives in educational contexts such as design-
ing motivation-supportive settings and activities
(Schneider et al., 2018).

6.2 Failure Modes
To try to estimate how the model would perform
if trained on different type of data, i.e. non-Twitter
data, we evaluated models trained on posts with
hashtags and models trained on the same posts but
after removing all hashtags. However, it is not
certain how would the reported models perform
on different types of data, neither whether training
models with different data sources would lead to
similar results or not. On the used Twitter datasets,
we found most misclassifications between auton-
omy and competence classes.

6.3 Biases
Given that we do not have any demographic in-
formation about the authors of the posts in the
used dataset, and that the dataset was prefiltered for
emotional and needs signals (Alharthi et al., 2017),

the presented models might suffer from various
algorithmic biases. Furthermore, it is known that
certain age groups or socio-economic groups are
more present in Twitter than others (Tufekci, 2014;
Morstatter et al., 2014), and that certain personality
types are more active on particular media platforms
(Goby, 2006).

6.4 Misuse Potential

Using automatic detection of basic needs in
decision-making processes during hiring and place-
ment could lead to a potential misuse and unfair
decisions due to: (1) algorithmic biases and im-
perfections of the models; (2) giving too much
weight to the estimation of basic needs instead of
taking it only as one of many aspects of the em-
ployee (e.g. personality, educational background)
and team work.

Basic needs could be used in combination with
other psychological variables (e.g. personality) for
marketing and consumer targeting purposes. Tailor-
ing marketing materials for different personalities
can be beneficial for consumers by leading them to
spend their money on personality-matching items
(Matz et al., 2016). However, it can also be misused
by leading people to act against their best interests,
e.g. by persuading them to gamble (Matz et al.,
2016).

6.5 Potential Harm to Vulnerable
Populations

As any other psychological modelling, when com-
bined with demographic characteristics (e.g. age,
gender, socio-economic background), machine
learning models could potentially harm vulnerable
groups such as immigrants or people with mental
health issues. The models could potentially detect
people who suffer from psychological and emo-
tional instability, as it is highly likely that those
people may be unsatisfied about their basic needs.
To avoid such unintended harms, special attention
should be given to carefully collecting a represen-
tative sample for any intended use (Williams et al.,
2018).
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Abstract

Recent studies on semantic frame induction
show that relatively high performance has
been achieved by using clustering-based meth-
ods with contextualized word embeddings.
However, there are two potential drawbacks to
these methods: one is that they focus too much
on the superficial information of the frame-
evoking verb and the other is that they tend to
divide the instances of the same verb into too
many different frame clusters. To overcome
these drawbacks, we propose a semantic frame
induction method using masked word embed-
dings and two-step clustering. Through ex-
periments on the English FrameNet data, we
demonstrate that using the masked word em-
beddings is effective for avoiding too much
reliance on the surface information of frame-
evoking verbs and that two-step clustering can
improve the number of resulting frame clusters
for the instances of the same verb.

1 Introduction

Semantic frame induction is a task of mapping
frame-evoking words, typically verbs, into seman-
tic frames they evoke (and the collection of in-
stances of words to be mapped into the same se-
mantic frame forms a cluster). For example, in the
case of example sentences from FrameNet (Baker
et al., 1998) shown in (1) to (4) in Table 1, the
goal is to group the examples into three clusters ac-
cording to the frame that each verb evokes; namely,
{(1)}, {(2)}, and {(3), (4)}. Unsupervised seman-
tic frame induction methods help to automatically
build high-coverage frame-semantic resources.

Recent studies have shown the usefulness of con-
textualized word embeddings such as ELMo (Pe-
ters et al., 2018) and BERT (Devlin et al., 2019)
for semantic frame induction. For example, the
top three methods (Arefyev et al., 2019; Anwar
et al., 2019; Ribeiro et al., 2019) in Subtask-A of
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(1) We'll not get there before the rain comes.
(2) The problem continued to get worse.
(3) You may get more money from the basic pension.
(4) We have acquired more than 100 works.

(ARRIVING)
(TRANSITION_TO_STATE)

(GETTING)
(GETTING)

Table 1: Example sentences of verbs “get” and “acquire” and
frames that each verb evokes in FrameNet. (FRAME)
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(1)

(2)

(3)

(4)

Figure 1: 2D projections of BERT embeddings of verbs (left)
and masked verbs (right). Numbers in the figure correspond
to numbers in Table 1, � and + are verbs “get” and “acquire”,
respectively, and each color indicates ARRIVING, TRANSI-
TION TO STATE, and GETTING frame.

SemEval-2019 Task 2 (QasemiZadeh et al., 2019)
perform clustering of contextualized word embed-
dings of frame-evoking verbs. However, these
methods have two potential drawbacks.

First, the contextualized word embeddings of
the frame-evoking verbs strongly reflect the su-
perficial information of the verbs. The left side
of Figure 1 shows a 2D projection of contextual-
ized embeddings of instances of the verbs “get”
and “acquire” extracted from example sentences
in FrameNet. Specifically, we extracted instances
of “get” and “acquire” from FrameNet, obtained
their embeddings by using a pre-trained BERT, and
projected them into two dimensions by using t-
distributed stochastic neighbor embedding (t-SNE)
(Maaten and Hinton, 2008). As shown in the fig-
ure, among instances of “get”, those that evoke
the GETTING frame tend to be located close to in-
stances of “acquire” that evokes the same GETTING

frame. However, we can see that the difference be-
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tween verbs is larger than the difference between
the frames that each verb evokes.

To remedy this drawback, we propose a method
that uses a masked word embedding, a contextual-
ized embedding of a masked word. The right side
of Figure 1 shows a 2D projection of masked word
embeddings for instances of the verbs “get” and
“acquire”. The use of masks can hide the superficial
information of the verbs, and consequently we can
confirm that instances of verbs that evoke the same
frame are located close to each other.

The second drawback is that these methods per-
form clustering instances across all verbs simul-
taneously. Such clustering may divide instances
of the same verb into too many different frame
clusters. For example, if there are outlier vectors
that are not typical for a particular verb, they tend
to form individual clusters with instances of other
frames in most cases. To solve this problem, we
propose a two-step clustering, which first performs
clustering instances of the same verb according to
their meaning and then performs further clustering
across all verbs.

2 Proposed Method

The proposed semantic frame induction method
uses masked word embeddings and two-step clus-
tering. We explain these details below.

2.1 Masked Word Embedding
A masked word embedding is a contextualized
embedding of a word in a text where the word
is replaced with a special token indicating that it
has been masked, i.e., “[MASK]” in BERT. Our
method leverages masked word embeddings of
frame-evoking verbs in addition to standard contex-
tualized word embeddings of frame-evoking verbs.
In this paper, we consider the following three types
of contextualized word embeddings.

vWORD: Standard contextualized embedding of a
frame-evoking verb.

vMASK: Contextualized embedding of a frame-
evoking verb that is masked.

vW+M: The weighted average of the above two,
which is defined as:

vW+M = (1− α) · vWORD + α · vMASK. (1)

Here, vW+M is the weighted average of contextu-
alized word embeddings with and without masking
the frame-evoking verb. By properly setting the
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First step Second step

Figure 2: Flow of the two-step clustering. � and + denote
the embeddings of “get” and “acquire”, respectively.

weight α using a development set, we expect to ob-
tain embeddings that properly adjust the weight of
superficial information of the target verb and infor-
mation obtained from its context. vW+M is identical
to vWORD when α is set to 0 and identical to vMASK

when α is set to 1.

2.2 Two-Step Clustering

In the two-step clustering, we first perform clus-
tering instances of the same verb according to the
semantic meaning and then perform further cluster-
ing across verbs. Finally, each generated cluster is
regarded as an induced frame. Figure 2 shows the
flow of the two-step clustering using the instances
of “get” and “acquire” from FrameNet. As a re-
sult of the clustering in the first step, the instances
of “get” are grouped into three clusters and the in-
stances of “acquire” into one cluster. In the second
step, one of the clusters of “get” and the cluster of
“acquire” are merged. Consequently, three clusters
are generated as the final clustering result. The
details of each clustering are as follows.

Clustering Instances of the Same Verb The
clustering in the first step aims to cluster instances
of the same verb according to their semantic mean-
ing. Since all the targets of the clustering are the
same verbs, there should be no difference in the
results between the cases using vWORD and vMASK as
embeddings. Therefore, we use only vMASK for this
process. We adopt X-means (Pelleg and Moore,
2000) or group average clustering based on a Eu-
clidean distance as the clustering algorithm.

While X-means automatically determine the
number of clusters, group average clustering re-
quires a clustering termination threshold. In the
group average clustering, the distance between two
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clusters is defined as the average distances of all
instance pairs between clusters, and the cluster
pairs with the smallest distance between clusters
are merged in order. The clustering is terminated
when there are no more cluster pairs for which
the distance between two clusters is less than or
equal to a threshold θ. In this study, θ is shared
across verbs, not determined for each verb. Note
that when θ is set to a sufficiently large value, the
number of clusters is one for all verbs. To set θ to
an appropriate value, we gradually decrease θ from
a sufficiently large value and fix it to a value where
the number of the generated frame clusters is equal
to the actual number of frames in the development
set.

In the theory of Frame Semantics (Fillmore,
2006) on which FrameNet is based, the associa-
tion between a word and a semantic frame is called
a lexical unit (LU). Since each cluster generated as
the result of clustering in the first step is a set of
instances of the same verb used in the same mean-
ing, it can be considered to correspond to an LU.
Therefore, we refer to it as pseudo-LU (pLU).

Clustering across Verbs The clustering in the
second step aims to cluster the pLUs generated as
the result of the first-step clustering across verbs
according to their meaning. This step calculates av-
erage contextualized embeddings of each pLU and
then clusters the pLUs by using the calculated em-
beddings across verbs. We adopt Ward clustering
or group average clustering based on a Euclidean
distance as the clustering algorithm.

We need a termination criterion for both cluster-
ing algorithms. A straightforward approach is to
use the ratio of the number of frames to the number
of verbs. However, this approach does not work
well in this case since there is an upper limit to the
number of frame types and the number of frames
to be generated does not increase linearly with the
number of verbs. Therefore, in this study, we use
the ratio of pLU pairs belonging to the same cluster
as the termination criterion. Specifically, the clus-
tering is terminated when the ratio of pLU pairs
belonging to the same cluster pF1=F2 is greater than
or equal to the ratio of LU pairs belonging to the
same frame in the development set pC1=C2 . Here,
pF1=F2 is calculated as:

pF1=F2 =
# of pLU pairs in the same cluster

# of all pLU pairs
. (2)

While the number of all pLU pairs is constant
regardless of clustering process, the number of

#Verbs #LUs #Frames #Examples
Dev. 255 300 169 12,718
Test 1,017 1,188 393 47,499
All 1,272 1,488 434 60,217

Table 2: Statistics of the dataset from FrameNet.

pLU pairs belonging to the same cluster monotoni-
cally increases as the clustering process progresses.
pC1=C2 can be calculated as well as pF1=F2 and
pC1=C2 reaches 1 when the number of the entire
cluster becomes one cluster. Therefore, pC1=C2 is
guaranteed to be greater than or equal to pF1=F2

during the clustering process. Since the probability
that randomly selected LU pairs belong to the same
frame is not affected by the data size, the criterion
is considered valid regardless of the data size.

3 Experiment

We conducted an experiment of semantic frame
induction to confirm the efficacy of our method. In
this experiment, the objective is to group the given
frame-evoking verbs with their context according
to the frames they evoke.

3.1 Setting

Dataset From Berkeley FrameNet data release
1.71 in English, we extracted verbal LUs with at
least 20 example sentences and used their example
sentences. That is, all target verbs in the dataset
have at least 20 example sentences for each frame
they evoke. We limited the maximum number of
sentence examples for each LU to 100 and if there
were more examples, we randomly selected 100.
Note that we did not use the SemEval-2019 Task 2
dataset because the dataset is no longer available
as described on the official web page.2

The extracted dataset contained 1,272 different
verbs as frame-evoking words. We used the exam-
ples for 255 verbs (20%) as the development set
and those for the remaining 1,017 verbs (80%) as
the test set. Thus, there are no overlapping frame-
evoking verbs or LUs between the development
and test sets, but there is an overlap in the frames
evoked. We divided the development and test sets
so that the proportion of verbs that evoke more
than one frames would be the same. The develop-
ment set was used to determine the alpha of vW+M

1https://framenet.icsi.berkeley.edu/
2https://competitions.codalab.

org/competitions/19159#learn_the_
details-datasets
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Model Clustering α #pLU #C PU / IPU / PIF BCP / BCR / BCF
1-cluster-per-head 1cpv – – 1017 88.9 / 39.7 / 54.9 86.6 / 33.9 / 48.7
Arefyev et al. (2019) GA (Cosine) – – 995 69.9 / 55.1 / 61.6 62.8 / 44.0 / 51.7
Anwar et al. (2019) GA (Manhattan) – – 891 71.5 / 52.0 / 60.2 65.1 / 41.0 / 50.3
Ribeiro et al. (2019) Chinese Whispers – – 542 50.9 / 66.3 / 57.5 39.4 / 56.7 / 46.5
One-step Ward 0.0 – 393 64.3 / 49.5 / 56.0 55.2 / 38.9 / 45.6
clustering GA 0.0 – 393 38.7 / 64.9 / 48.5 26.1 / 52.5 / 34.9

first-step second-step
1cpv’ Ward 0.8 1017 164 54.8 / 73.1 / 62.7 43.1 / 64.3 / 51.6

Two-step 1cpv’ GA 0.9 1017 412 69.0 / 71.3 / 70.1 60.5 / 62.3 / 61.4

clustering GA Ward 0.9 1196 291 49.3 / 72.9 / 58.8 37.3 / 64.6 / 47.3
GA GA 0.6 1196 479 63.0 / 76.3 / 69.0 52.8 / 68.0 / 59.4

X-means Ward 0.8 1043 167 54.0 / 72.2 / 61.8 42.6 / 63.6 / 51.1
X-means GA 0.7 1043 410 71.9 / 74.1 / 73.0 63.2 / 65.5 / 64.4

Table 3: Experimental results. #pLU denotes the number of pLUs and #C denotes the number of frame clusters. Note that the
actual numbers of LUs and frames are 1,188 and 393, respectively. GA means group average clustering.

and the termination criterion for the clustering in
each step and layers to be used as contextualized
word embeddings. Table 2 lists the statistics of the
dataset.

Models We compared four models, all combina-
tions of group average clustering or X-means in
the first step and Ward clustering or group average
clustering in the second step. We also compared a
model that treats all instances of one verb as one
cluster (1-cluster-per-verb; 1cpv) and models that
treat all instances of one verb as one cluster (1cpv’)
in the first step and then perform the clustering in
the second step.

In addition, we compared our models with the
top three models in Subtask-A of SemEval-2019
Task 2. Arefyev et al. (2019) first perform group av-
erage clustering using BERT embeddings of frame-
evoking verbs. Then, they perform clustering to
split each cluster into two by using TF-IDF features
with paraphrased words. Anwar et al. (2019) use
the concatenation of the embedding of a frame-
evoking verb and the average word embedding
of all words in a sentence obtained by skip-gram
(Mikolov et al., 2013). They perform group av-
erage clustering based on Manhattan distance by
using the embedding. Ribeiro et al. (2019) per-
form graph clustering based on Chinese whispers
(Biemann, 2006) by using ELMo embeddings of
frame-evoking verbs.

To confirm the usefulness of the two-step cluster-
ing, we also compared our models with models that
perform a one-step clustering. For the model, we
used Ward clustering or group average clustering as
the clustering method and vW+M as the contextual-
ized word embedding. We gave the oracle number
of clusters to these models, i.e., we stopped cluster-

ing when the number of human-annotated frames
and the number of cluster matched.

Metrics and Embeddings We used six evalu-
ation metrics: B-CUBED PRECISION (BCP), B-
CUBED RECALL (BCR), and their harmonic mean,
F-SCORE (BCF) (Bagga and Baldwin, 1998), and
PURITY (PU), INVERSE PURITY (IPU), and their
harmonic mean, F-SCORE (PIF) (Karypis et al.,
2000). We used BERT (bert-base-uncased) in Hug-
ging Face3 as the contextualized word embedding.

3.2 Results

Table 3 shows the experimental results.4 When
focusing on BCF, which was used to rank the sys-
tems in Subtask-A of SemEval-2019 Task 2, our
model using X-means as the first step and group
average clustering as the second step achieved the
highest score of 64.4. It also got the highest PIF
score of 73.0. The number of human-annotated
frames was 393, while the number of generated
clusters was 410. These results demonstrate that
the termination criterion of the two-step clustering
works effectively.

In all two-step clustering methods, α was tuned
between 0.0 and 1.0, which shows that both vWORD

and vMASK should be considered. In addition, α was
close to 1.0 for these methods, which indicates that
vMASK is more useful for clustering instances across
verbs. In contrast, vW+M in the one-step clustering
methods was equivalent to vWORD with α = 0.0.
This indicates that there is no effect of using vMASK

3https://huggingface.co/transformers/
4The performance of the top three models in Subtask-A

of SemEval-2019 Task 2 is lower than reported in the task
because the dataset used in this study has a high proportion of
verbs that evoke multiple frames and is, therefore, a challeng-
ing dataset.
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for the one-step clustering-based methods.
The two-step clustering-based models that use

group average clustering as the second clustering
algorithm tended to achieve high scores. This indi-
cates that the two-step clustering-based approach,
which first cluster instances of the same verb and
then cluster across verbs, is effective. However, as
to the first clustering, 1cpv’ strategy, which treats
all the instances of the same verb as one cluster,
achieved a higher accuracy than the clustering of
the group average method, and achieved an accu-
racy close to the clustering of X-means, and thus
we can say that 1cpv’ strategy is effective enough
for this dataset. We think this is due to the fact that
the dataset used in this study is quite biased towards
verbs that evoke only one frame, and we believe
that the effectiveness of the 1cpv’ may be limited
in a more practical setting. Further investigation of
this is one of our future works.

4 Conclusion

We proposed a method that uses masked word
embeddings and two-step clustering for semantic
frame induction. The results of experiments using
FrameNet data showed that masked word embed-
dings and two-step clustering are quite effective for
this frame induction task. We will conduct experi-
ments in a setting where nouns and adjectives are
also accounted for as frame-evoking words. The
future goal of this research is to build a frame-
semantic resource, which requires not only the in-
duction of semantic frames but also the determina-
tion of the arguments required by each frame and
the induction of semantic roles of the arguments.
A possible extension of our approach is to utilize
contextualized word embeddings of arguments of
verbs to see if it is possible to generalize our ap-
proach for achieving this goal.
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Ana Lúcia Santos, and Luı́sa Coheur. 2019.
L2F/INESC-ID at SemEval-2019 task 2: Unsu-
pervised lexical semantic frame induction using
contextualized word representations. In Proceed-
ings of the 13th International Workshop on Semantic
Evaluation (SemEval 2019), pages 130–136.

816



Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Short Papers), pages 817–824

August 1–6, 2021. ©2021 Association for Computational Linguistics

Lightweight Adapter Tuning for Multilingual Speech Translation

Hang Le1 Juan Pino2 Changhan Wang2

Jiatao Gu2 Didier Schwab1 Laurent Besacier1,3

1Univ. Grenoble Alpes, CNRS, LIG 2Facebook AI 3Naver Labs Europe
{hang.le, didier.schwab, laurent.besacier}@univ-grenoble-alpes.fr

{juancarabina, changhan, jgu}@fb.com

Abstract

Adapter modules were recently introduced
as an efficient alternative to fine-tuning in
NLP. Adapter tuning consists in freezing pre-
trained parameters of a model and injecting
lightweight modules between layers, resulting
in the addition of only a small number of task-
specific trainable parameters. While adapter
tuning was investigated for multilingual neu-
ral machine translation, this paper proposes a
comprehensive analysis of adapters for multi-
lingual speech translation (ST). Starting from
different pre-trained models (a multilingual ST
trained on parallel data or a multilingual BART
(mBART) trained on non-parallel multilingual
data), we show that adapters can be used to: (a)
efficiently specialize ST to specific language
pairs with a low extra cost in terms of parame-
ters, and (b) transfer from an automatic speech
recognition (ASR) task and an mBART pre-
trained model to a multilingual ST task. Ex-
periments show that adapter tuning offer com-
petitive results to full fine-tuning, while being
much more parameter-efficient.

1 Introduction

The question of versatility versus specialization
is often raised in the design of any multilingual
translation system: is it possible to have a single
model that can translate from any source language
to any target one, or does it have to be multiple
models each of which is in charge of one language
pair? The former is referred to as a multilingual
model, while the latter are bilingual ones. These
two paradigms have their own strengths and limita-
tions. From a practical point of view, a multilingual
model seems to be highly desirable due to its sim-
plicity in training and deployment, in terms of both
time and space complexities. However, in terms
of accuracy, a multilingual model could be outper-
formed by its bilingual counterparts, especially on
high-resource language pairs.

N×

M×

Speech embeddings

Attention

FFN

Adapter

Outputs (shifted)

Attention

Attention

FFN

Adapter

(a) Transformer with adapters.

LayerNorm

Linear

ReLU

Linear

(b) An adapter cell.

Figure 1: (a) Transformer with adapters at its FFN sub-
layers. For simplicity, layer normalization (Ba et al.,
2016) is omitted. During fine-tuning, only the adapters
are trained. (b) A typical adapter architecture.

In practice, a certain trade-off between the afore-
mentioned factors (and thus more generally be-
tween versatility and specialization) has often to be
made, and depending on the application, one can
be favored more than the other. One way to move
along the spectrum between multilingual and bilin-
gual models is to use adapter tuning which consists
in freezing pre-trained parameters of a multilingual
model and injecting lightweight modules between
layers resulting in the addition of a small number
of language-specific trainable parameters. While
adapter tuning was investigated for multilingual
neural machine translation (NMT) (Bapna and Fi-
rat, 2019), to our knowledge, this paper proposes
the first comprehensive analysis of adapters for
multilingual speech translation.

Our contributions are the following: (1) we
show that both versatility and specialization can be
achieved by tuning language-specific adapter mod-
ules on top of a multilingual system. Bilingual mod-
els with higher accuracy than the original multilin-
gual model are obtained, yet keeping a low mainte-
nance complexity; (2) starting from a different ini-
tialization point, we show that adapters can also be
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used as a glue to connect off-the-shelf systems (an
automatic speech recognition (ASR) model and a
multilingual denoising auto-encoder mBART (Liu
et al., 2020; Tang et al., 2020)) to perform the mul-
tilingual ST task. Extensive experiments on the
MuST-C dataset (Di Gangi et al., 2019) show that
adapter-based fine-tuning can achieve very compet-
itive results to full fine-tuning—while being much
more parameter-efficient—in both standard and
low-resource settings. Our code based on FAIRSEQ

S2T (Wang et al., 2020) is publicly available.1

2 Related Work

Adapter layers (or adapters for short) were first
proposed in computer vision (Rebuffi et al., 2017),
then explored for text classification tasks in
NLP (Houlsby et al., 2019). Adapters are generally
inserted between the layers of a pre-trained network
and finetuned on the adaptation corpus. Bapna
and Firat (2019) studied adapters in the context of
NMT and evaluated them on two tasks: domain
adaptation and massively multilingual NMT. Philip
et al. (2020) later introduced monolingual adapters
for zero-shot NMT. Other research groups made
contributions on the use of adapters in NLP (Pfeif-
fer et al., 2020b, 2021) and a framework built on
top of HuggingFace Transformers library (Wolf
et al., 2020) was also released to facilitate the down-
loading, sharing, and adapting state-of-the-art pre-
trained models with adapter modules (Pfeiffer et al.,
2020a). Also very relevant to our paper is the work
of Stickland et al. (2021) where adapters are used
to adapt pre-trained BART (Lewis et al., 2020) and
mBART25 (multilingual BART pre-trained on 25
languages) (Liu et al., 2020) to machine translation.

As far as speech processing is concerned,
adapters were mostly used in ASR (Kannan et al.,
2019; Lee et al., 2020; Winata et al., 2020; Zhu
et al., 2020). Recently, they have also been ex-
plored for ST as well but in a limited scope. Es-
colano et al. (2020) addressed a very specific set-
ting (zero-shot ST), while Li et al. (2020) used only
a single adapter after a Transformer encoder.

3 Adapters for Speech Translation

In this section, we describe the integration of
adapters into a given backbone model for speech
translation. As the Transformer (Vaswani et al.,
2017) has become increasingly common in speech

1https://github.com/formiel/fairseq/tree/master/
examples/speech to text/docs/adapters.md

processing,2 it will be used as our backbone. Our
method, however, can be easily applied to any other
architectures, e.g., dual-decoder Transformer (Le
et al., 2020).

Adapter modules can be introduced into a Trans-
former in a serial or parallel fashion. Consider a
layer represented by a function f that produces an
output y from an input x, i.e., y = f(x). This can
be an entire encoder or decoder layer, or just one of
their sub-layers (e.g., the self-attention or the final
feed-forward network (FFN) component). Suppose
that our adapter layer is represented by a function
g. The new “adapted” output is then given by:

yserial = g(f(x)), yparallel = f(x) + g(x).

Intuitively, a serial adapter modifies the output di-
rectly, while a parallel one performs the operations
in parallel before merging its output to the layer. In
Figure 1a, we show an example of serial adapters
being integrated to the Transformer, or more pre-
cisely to its FFN sub-layers. A common adapter
module (Bapna and Firat, 2019) is presented in
Figure 1b. Here g is a small FFN with a resid-
ual connection. The first linear layer is typically
a down projection to a bottleneck dimension, and
the second one projects the output back to the ini-
tial dimension. Bottleneck allows us to limit the
number of parameters. Other adapter architectures
also exist, e.g., Stickland and Murray (2019) ex-
plored parallel adapters consisting of a multi-head
attention (MHA) layer in a multi-task setup.

For multilingual ST, we adopt the following gen-
eral recipe for adapter-based fine-tuning. Starting
from a pre-trained backbone, an adapter is added
for each language pair and then finetuned on the
corresponding bilingual data (while the rest of the
backbone is frozen). The pre-trained backbone
plays a crucial role in this recipe. We explore
two common scenarios to obtain this pre-trained
model, namely refinement and transfer learning.
We present them in details, together with extensive
experimental results, in Section 5 and 6. In the next
section, we present our experimental setup.

4 Experimental Setup

4.1 Dataset
MuST-C We evaluate our recipes on MuST-
C (Di Gangi et al., 2019), a large-scale one-to-many

2For speech applications (Inaguma et al., 2020; Wang et al.,
2020), the embedding layer of the encoder is often a small
convolutional neural network (Fukushima and Miyake, 1982;
LeCun et al., 1989).
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Adapter Finetune # params (M)
Dict D d ENC DEC ENC DEC trainable/total de es fr it nl pt ro ru avg

Training data (hours) 408 504 492 465 442 385 432 489

1 mono

25
6

- - - - - 8×31.1/8×31.1 22.16 30.42 27.92 22.92 24.10 27.19 21.51 14.36 23.82
2 multi - - - - - 32.1/32.1 22.37 30.40 27.49 22.79 24.42 27.32 20.78 14.54 23.76

3 multi 64 - X - - 8×0.2/33.7 22.32 30.50 27.55 22.91 24.51 27.36 21.09 14.74 23.87
4 multi 64 X X - - 8×0.6/36.9 22.75 31.07 28.03 23.04 24.75 28.06 21.20 14.75 24.21

5 multi 128 - X - - 8×0.4/35.3 22.45 30.85 27.71 23.06 24.57 27.52 20.93 14.57 23.96
6 multi 128 X X - - 8×1.2/41.7 22.84∗ 31.25∗ 28.29∗ 23.27∗ 24.98∗ 28.16∗ 21.36∗ 14.71 24.36

7 multi - - - - X 8×14.6/8×32.1 23.49 31.29 28.40 23.63 25.51 28.71 21.73 15.22 24.75
8 multi - - - X X 8×32.1/8×32.1 23.13∗ 31.39∗ 28.67∗ 23.80∗ 25.52∗ 29.03∗ 22.25∗ 15.44∗ 24.90

9 mono

51
2

- - - - - 8×74.3/8×74.3 21.93 30.46 27.90 22.64 23.98 25.98 20.50 14.01 23.42
10 multi - - - - - 76.3/76.3 23.98 32.47 29.24 24.97 26.20 29.81 22.74 15.30 25.59

11 multi 64 - X - - 8×0.4/79.5 24.24 32.52 29.47 24.74 26.13 29.72 22.53 15.25 25.57
12 multi 64 X X - - 8×1.2/85.9 24.13 32.80 29.55 24.90 26.04 30.25 22.73 15.31 25.72

13 multi 128 - X - - 8×0.8/82.7 24.34 32.86 29.51 24.73 26.15 30.01 22.58 15.07 25.66
14 multi 128 X X - - 8×2.4/95.5 24.30 32.61 29.72∗ 25.07 26.29 30.46∗ 22.99 15.47 25.86

15 multi 256 - X - - 8×1.6/89.1 24.38 32.78 29.69 24.72 26.25 29.93 22.63 15.40 25.72
16 multi 256 X X - - 8×4.8/114.7 24.61 32.94 29.67 25.12 26.16 30.53 22.66 15.31 25.88

17 multi - - - - X 8×35.5/8×36.3 24.67 33.12 30.11 25.05 26.33 29.85 23.04 15.61 25.97
18 multi - - - X X 8×76.3/8×76.3 24.54∗ 32.95∗ 29.96∗ 25.01 26.31 30.04 22.66 15.54∗ 25.88

Table 1: BLEU on MuST-C dev set for refinement. In the Dict column, mono and multi mean, respectively,
monolingual and multilingual dictionary. D is the Transformer hidden dimension. In the Adapter group, d is the
adapter bottleneck dimension, ENC and DEC mean adding adapters to encoder and decoder, respectively; and
idem for the Finetune group. Rows 1–2 and rows 9–10 represent our bilingual and multilingual baselines for each
D. Values lower than the multilingual baselines are colored in blue. The highest values in each group of D are
underlined, while the highest values of each column are in bold face. Furthermore, we select the top configurations
(6, 8, 14, 18) and perform statistical significance test using bootstrap re-sampling (Koehn, 2004). Results passing
the test (compared to the corresponding multilingual baselines, with p-value < 0.05) are marked with a star.

ST dataset from English to eight target languages
including Dutch (nl), French (fr), German (de),
Italian (it), Portuguese (pt), Romanian (ro), Rus-
sian (ru), and Spanish (es). Each direction includes
a triplet of speech, transcription, and translation.
Sizes range from 385 hours (pt) to 504 hours (es).

MuST-C-Imbalanced We built a low-resource
version of MuST-C, called MuST-C-Imbalanced, in
which we randomly keep only X% of the original
training data, where X = 100 for es, fr; X = 50
for ru, it; X = 20 for nl, ro; and X = 10 for
de, pt (same order of the languages in the original
MuST-C if we sort them in decreasing amount of
data). The amount of speech data ranges from 41
hours (de) to 504 hours (es) in this version, better
reflecting real-world data imbalance scenarios.

4.2 Implementation details

Our implementation is based on the FAIRSEQ S2T
toolkit (Wang et al., 2020). We experiment with
two architectures: a small Transformer model with
dimension D = 256 and a medium one where
D = 512. All experiments use the same encoder
with 12 layers. The decoder has 6 layers, except for
the transfer learning scenario where we used the
mBART decoder for initialization. We used 8k and

10k unigram vocabulary (Kudo and Richardson,
2018) for bilingual and multilingual models, re-
spectively. The speech features are 80-dimensional
log mel filter-bank. Utterances having more than
3000 frames are removed for GPU efficiency. We
used SpecAugment (Park et al., 2019) with Lib-
riSpeech basic (LB) policy for data augmentation.

We used the Adam optimizer (Kingma and Ba,
2015) with learning rate linearly increased for the
first 10K steps to a value ηmax, then decreased
proportionally to the inverse square root of the step
counter. For all adapter experiments, ηmax is set to
2e−3. For the others, however, we perform a grid
search over three values {2e−3, 2e−4, 2e−5} and
select the best one on the dev set, as they are more
sensitive to the learning rate.

5 Refinement

In this section, a fully trained multilingual ST back-
bone is further refined on each language pair to
boost the performance and close potential gaps
with bilingual models. We compare adapter tun-
ing with other fine-tuning approaches as well as
the bilingual and multilingual baselines (the lat-
ter being the starting point for all fine-tuning ap-
proaches) (Bapna and Firat, 2019). Starting from
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Adapter Finetune # params (M)
D d ENC DEC ENC DEC trainable/total de es fr it nl pt ro ru avg

Training data (hours) 41 504 492 232 89 38 86 245

1

25
6

- - - - - 32.1/32.1 15.99 30.51 28.17 21.80 20.27 22.47 17.38 13.18 21.22
2 128 X X - - 8×1.2/41.7 17.02 30.71 28.42 22.37 21.01 23.74 18.55 13.52 21.92
3 - - - X X 8×32.1/8×32.1 16.93 30.86 28.34 22.42 20.86 23.44 18.49 13.63 21.87

4

51
2

- - - - - 76.3/76.3 17.05 31.92 29.06 22.91 21.64 24.15 19.18 14.09 22.50
5 256 X X - - 8×4.8/114.7 17.46 31.94 29.09 23.11 21.76 24.96 19.50 14.10 22.74
6 - - - X X 8×76.3/8×76.3 17.49 31.67 29.27 22.97 21.80 24.80 19.43 14.17 22.70

Table 2: BLEU on MuST-C dev set for refinement in the low-resource scenario where the models were trained on
MuST-C-Imbalanced dataset. We refer to Table 1 for other notation.

Method # params (M)
trainable/total de es fr it nl pt ro ru avg

O
ur

s Baseline 76.3/76.3 24.18 28.28 34.98 24.62 28.80 31.13 23.22 15.88 26.39
Best adapting 8 × 4.8/76.3 24.63 28.73 34.75 24.96 28.80 30.96 23.70 16.36 26.61
Best fine-tuning 8 ×35.5/8 × 76.3 24.50 28.67 34.89 24.82 28.38 30.73 23.78 16.23 26.50

L
ie

ta
l. LNA-D 53.5/76.3 24.16 28.30 34.52 24.46 28.35 30.51 23.29 15.84 26.18

LNA-E 48.1/76.3 24.34 28.25 34.42 24.24 28.46 30.53 23.32 15.89 26.18
LNA-E,D 25.3/76.3 24.27 28.40 34.61 24.44 28.25 30.53 23.27 15.92 26.21

Table 3: BLEU on MuST-C test set. Our method compares favorably with (Li et al., 2020).

these backbones, we either add language-specific
adapters and train them only, or we finetune the
backbone on each language pair, either fully or par-
tially. All these trainings are performed on MuST-
C. The results are shown in Table 1. There are two
main blocks corresponding to two architectures:
D = 256 (small) and D = 512 (medium). Rows 1
and 9 provide the bilingual baselines, while rows 2
and 10 serve as the multilingual baselines for each
block. In addition, we compare adapter-tuning with
full fine-tuning and multilingual-training (baseline)
on MuST-C-Imbalanced. Table 2 displays the re-
sults for this set of experiments.

Bilingual vs. Multilingual For the small archi-
tecture (D = 256), the bilingual models slightly
outperform their multilingual counterpart (rows 1,
2). Looking further into the performance of each
language pair, the multilingual model is able to
improve the results for 4 out of 8 pairs (de, nl, pt,
ru), mainly those in the lower-resource direction,
but the joint multilingual training slightly hurts the
performance of higher-resource pairs such as es,
fr, it, and ro. Finally, we observe that the medium
model (D = 512) performs better in the multilin-
gual setting than the bilingual one (rows 9, 10).

Adapter tuning vs. Fine-tuning Both recipes
yield improvements over the multilingual baseline
and recover the lost performance of higher-resource
directions compared to the bilingual baseline for
the small model (D = 256). For the medium
one (D = 512), one adapter tuning (row 14) can

slightly improve the scores in all directions and
even approach the results of the best fine-tuning
experiment (row 17) while maintaining much lower
model sizes (95.5M vs. 8× 36.3M parameters).

Low-resource scenario The obtained results on
small models show that adapter-tuning achieved the
best performance, producing clear improvements
over the baseline, especially for the low-resource
languages: +1.1 BLEU on average on nl, ro, de,
pt; +0.3 BLEU on average on es, fr, ru, it; which
is competitive to full fine-tuning (+0.9 and +0.4
BLEU, respectively) while being more parameter-
efficient as well as simpler for training and deploy-
ment (one model with adapters versus eight sep-
arate models). For larger models, however, the
improvement is smaller: +0.4 BLEU on average
on the lower-resource pairs and +0.1 on the higher-
resource ones; while those of full fine-tuning are
+0.4 and roughly no improvement, respectively.

Results on test set We select the best-performing
fine-tuning recipes on the dev set (rows 16 and 17
in Table 1) for evaluation on the test set. For refer-
ence, we also include the multilingual baseline (row
10). Moreover, to go beyond conventional fine-
tuning approaches, we also compare our recipes
with a contemporary work in which only several
components of the network are finetuned (Li et al.,
2020). For a fair comparison, we did not use large
pre-trained components such as wav2vec (Baevski
et al., 2020) or mBART (Tang et al., 2020) but
instead considered the same pre-trained compo-
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Adapter Finetune # params (M)
d ENC DEC xattn trainable/total de es fr it nl pt ro ru avg

1 - - - - 8×31.1/8×31.1 22.16 30.42 27.92 22.92 24.10 27.19 21.51 14.36 23.82

2 - - - X 38 / 486 18.41 25.42 23.46 18.44 20.87 20.55 17.19 11.79 19.52
3 512 - X - 101 / 587 0.94 0.65 0.93 0.76 0.95 0.89 0.52 0.93 0.82
4 512 - X X 139 / 587 21.98 29.47 27.05 22.89 24.06 26.34 21.0 14.35 23.39
5 512 X X - 152 / 638 11.04 18.62 16.10 12.37 13.18 14.29 10.62 6.95 12.90
6 512 X X X 190 / 638 22.62 30.85 28.23 23.09 24.43 26.56 22.13 14.92 24.10

Table 4: BLEU on MuST-C dev set for transfer learning from pre-trained ASR and mBART models. We compare
the results with the bilingual baselines (trained from scratch), shown in row 1 (which is identical to row 1 in Table 1).
The column “Finetune xattn” means updating the cross-attention parameters. We refer to Table 1 for other notation.

nents used in our previous experiments. Follow-
ing (Li et al., 2020), we considered six variants:
fine-tuning LayerNorm + Attention in the encoder
(LNA-E), or the decoder (LNA-D), or both (LNA-

E,D); each with or without the length adapter. We
found that adding the length adapter did not help in
our experiments. Table 3 shows that our approach
compares favorably with (Li et al., 2020) in terms
of both performance and parameter-efficiency.

Other comments For small models, the encoder
adapters boost the performance (0.3–0.4 BLEU on
average) in all directions (rows 3 and 4, 5 and 6,
Table 1), indicating that language-specific adapters
can tweak the encoder representations to make
them better suited for the decoder. In larger mod-
els, however, the impact of the encoder adapters
is varied depending on languages and bottleneck
dimensions. We also notice that increasing the bot-
tleneck dimension slightly improves performance
while remaining parameter-efficient. Fine-tuning
remains the best option to optimize the models in
most cases but leads to much larger model sizes.
The adapter-tuning approach is competitive to fine-
tuning while being much more parameter-efficient.

6 Transfer Learning

In this section, we show that adapters can be used
to combine available pre-trained models to perform
a multilingual ST task. In particular, we initialize
the encoder using a pre-trained ASR encoder (on
MuST-C)3 provided by Wang et al. (2020) and the
decoder using mBART50, a multilingual denoising
auto-encoder pre-trained on 50 languages (Tang
et al., 2020). We tune language independent cross-
attention and language-specific adapters on top of
these backbone models (using MuST-C as well).
The results presented in Table 4 highlight that fine-

3Pre-training on ASR data and then transferring to ST is
not new but rather standard. See, e.g., Bansal et al. (2019).

tuning cross-attention is crucial to transfer to multi-
lingual ST (rows 3 and 5 show poor results without
doing so). Adding adapters to the backbone de-
coder (row 4) or to both encoder and decoder (row
6) further boosts performance, demonstrating the
ability of adapters to connect off-the-shelf models
in a modular fashion. The best-performing model
in this recipe (row 6) also outperforms bilingual
systems (row 1) despite having fewer trainable pa-
rameters (190M vs. 248M). It is also important
to mention that while we experiment on 8 target
languages of MuST-C corpus, the multilingual ST
model of row 2 should be practically able to decode
into 50 different target languages. Investigating
such a zero-shot ST scenario is left for future work.

7 Conclusion

We have presented a study of adapters for multilin-
gual ST and shown that language-specific adapters
can enable a fully trained multilingual ST model to
be further specialized in each language pair. With
these adapter modules, one can efficiently obtain
a single multilingual ST system that outperforms
the original multilingual model as well as multiple
bilingual systems while maintaining a low storage
cost and simplicity in deployment. In addition,
adapter modules can also be used to connect avail-
able pre-trained models such as an ASR model and
a multilingual denoising auto-encoder to perform
the multilingual speech-to-text translation task.
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A Parallel Adapters

In this section, we present our preliminary exper-
iments in which we explore different positions of
the parallel adapters: in parallel with either Trans-
former layers or their sub-layers. We perform ex-
periments where the adapters are added to the de-
coder. The results are shown in Table 5.

Adapter # params (M)
d h type trainable/total en-de

1 - - - 32.1/32.1 22.37
2 128 - ser 0.4/32.5 22.45
3 128 4 par-TL 0.8/32.9 21.67
4 128 4 par-SA 0.8/32.9 19.55
5 128 4 par-XA 0.8/32.9 19.22

Table 5: BLEU on dev set for parallel vs. serial
adapters. In the “Adapter” block, d is the adapter’s di-
mension, h is the number of heads, ser stands for serial
adapters, and par stands for parallel ones. The suffixes
denote the position of the parallel adapters: in parallel
with the Transformer layer (TL), or with self-attention
sub-layer (SA), or with cross-attention sub-layer (XA).

Among the parallel variants, the one that per-
forms operations in parallel with a full layer pro-
duces the best result. However, its performance
still could not surpass the serial adapter (row 2) as
well as the starting point (row 1).

B Specializing

In addition to the refinement recipe where language-
specific adapters tailor the frozen multilingual ST
model to translate in the corresponding direction,
we also propose a recipe to facilitate the specializa-
tion in individual language pairs: by replacing the
multilingual vocabulary by the monolingual ones
corresponding to each target language. This recipe
allows us to transfer from multilingual models to
monolingual ones. A practical benefit is that one
can easily leverage pre-trained multilingual models
for new languages.
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Adapter Finetune # params (M)
Dict D d ENC DEC ENC DEC trainable/total de es fr it nl pt ro ru avg

1 mono

25
6

- - - - - 8×31.1/8×31.1 22.16 30.42 27.92 22.92 24.10 27.19 21.51 14.36 23.82
2 multi - - - - - 32.1/32.1 22.37 30.40 27.49 22.79 24.42 27.32 20.78 14.54 23.76

3 mono 64 - X - - 8×4.3/8×31.3 23.28 30.95 28.31 23.25 24.76 27.84 21.55 14.60 24.32
4 mono 64 X X - - 8×4.7/8×31.7 23.53 31.16 28.83 23.29 24.43 28.18 21.38 14.66 24.44

5 mono 128 - X - - 8×4.5/8×31.5 23.33 31.05 28.67 23.43 24.83 28.10 21.44 14.58 24.43
6 mono 128 X X - - 8×5.3/8×32.3 22.09 30.09 27.63 22.53 24.24 27.09 20.36 14.19 23.53

7 mono - - - - X 8×13.6/8×31.1 24.03 31.79 29.64 24.16 25.55 28.92 22.11 15.00 25.15
8 mono - - - X X 8×31.1/8×31.1 23.89 31.72 29.23 23.65 25.14 28.23 21.83 14.80 24.81

9 mono

51
2

- - - - - 8×74.3/8×74.3 21.93 30.46 27.90 22.64 23.98 25.98 20.5 14.01 23.42
10 multi - - - - - 76.3/76.3 23.98 32.47 29.24 24.97 26.20 29.81 22.74 15.30 25.59

11 mono 64 - X - - 8×8.6/8×74.7 23.85 31.79 29.63 24.26 25.77 28.97 22.18 15.02 25.18
12 mono 64 X X - - 8×9.4/8×75.5 23.74 31.62 29.44 24.02 25.56 29.23 22.25 15.39 25.16

13 mono 128 - X - - 8×9.0/8×75.1 23.91 32.05 29.47 24.08 25.86 29.28 22.30 15.28 25.28
14 mono 128 X X - - 8×10.6/8×76.7 23.98 32.28 29.40 24.46 25.46 29.28 21.90 15.15 25.24

15 mono 256 - X - - 8×9.8/8×75.9 23.91 32.12 29.45 24.17 25.67 29.01 22.31 15.37 25.25
16 mono 256 X X - - 8×13/8×79.1 24.39 32.33 29.46 24.07 25.72 29.84 22.07 15.25 25.39

17 mono - - - - X 8×33.4/8×74.3 24.95 32.85 30.33 25.02 26.08 29.97 23.01 15.69 25.99
18 mono - - - X X 8×74.3/8×74.3 24.77 32.35 30.14 24.79 25.79 29.85 22.71 15.77 25.77

Table 6: BLEU on MuST-C dev set for specialization. We refer to Table 1 for all notation.

Table 6 displays the results of the specializing
recipe. Starting from a trained multilingual ST
model, one can obtain an improvement of 1.3–1.4
BLEU on average (row 8 vs. row 1 and 2) compared
to the bilingual and multilingual baselines trained
from scratch for the small architecture where D =
256. However, for a larger network (D = 512), the
gain is more modest (0.4 BLEU on average).
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Abstract
The importance of parameter selection in su-
pervised learning is well known. However,
due to the many parameter combinations, an
incomplete or an insufficient procedure is of-
ten applied. This situation may cause mislead-
ing or confusing conclusions. In this opinion
paper, through an intriguing example we point
out that the seriousness goes beyond what is
generally recognized. In the topic of multi-
label classification for medical code predic-
tion, one influential paper conducted a proper
parameter selection on a set, but when mov-
ing to a subset of frequently occurring labels,
the authors used the same parameters without
a separate tuning. The set of frequent labels
became a popular benchmark in subsequent
studies, which kept pushing the state of the
art. However, we discovered that most of the
results in these studies cannot surpass the ap-
proach in the original paper if a parameter tun-
ing had been conducted at the time. Thus it is
unclear how much progress the subsequent de-
velopments have actually brought. The lesson
clearly indicates that without enough attention
on parameter selection, the research progress
in our field can be uncertain or even illusive.

1 Introduction

The importance of parameter selection in super-
vised learning is well known. While parameter
tuning has been a common practice in machine
learning and natural language processing applica-
tions, the process remains challenging due to the
huge number of parameter combinations. The re-
cent trend of applying complicated neural networks
makes the situation more acute. In many situations,
an incomplete or an insufficient procedure for pa-
rameter selection is applied, so misleading or con-
fusing conclusions sometimes occur. In this opin-
ion paper, we present a very intriguing example
showing that, without enough attention on parame-
ter selection, the research progress in our field can
be uncertain or even illusive.

In the topic of multi-label classification for med-
ical code prediction, Mullenbach et al. (2018) is an
early work applying deep learning. The evaluation
was conducted on MIMIC-III and MIMIC-II (John-
son et al., 2016), which may be the most widely
used open medical records. For MIMIC-III, be-
sides using all 8,922 labels, they follow Shi et al.
(2017) to check the 50 most frequently occurring
labels. We refer to these two sets respectively as

MIMIC-III-full and MIMIC-III-50.

We will specifically investigate MIMIC-III-50.
Based on Mullenbach et al. (2018), many subse-
quent works made improvements to push the state
of the art. Examples include (Wang et al., 2018;
Sadoughi et al., 2018; Xie et al., 2019; Tsai et al.,
2019; Cao et al., 2020a,b; Ji et al., 2020; Teng
et al., 2020; Chen, 2020; Vu et al., 2020; Dong
et al., 2021).

For the data set MIMIC-III-full, Mullenbach
et al. (2018) tuned parameters to find the model that
achieves the best validation performance. However,
when moving to check the set MIMIC-III-50, they
applied the same parameters without a separate
tuning. We will show that this decision had a pro-
found effect. Many works directly copied values
from Mullenbach et al. (2018) for comparison and
presented superior results. However, as demon-
strated in this paper, if parameters for MIMIC-III-
50 had been separately tuned, the approach in Mul-
lenbach et al. (2018) easily surpasses most subse-
quent developments. The results fully indicate that
parameter selection is more important than what is
generally recognized.

This paper is organized as follows. In Section
2, we analyze past results. The main investigation
is in Section 3, while Section 4 provides some
discussion. Some implementation details are in
the appendix. Code and supplementary materials
can be found at http://www.csie.ntu.edu.tw/
˜cjlin/papers/parameter_selection.
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Table 1: Experimental results from Mullenbach et al.
(2018). Macro-F1 and Micro-F1 are Macro-averaged
and Micro-averaged F1 values, respectively. P@n is
the precision at n, the fraction of the n highest-scored
labels that are truly associated with the test instance.

(a) MIMIC-III-full: 8,922 labels

Macro-F1 Micro-F1 P@8
CNN 0.042 0.419 0.581
CAML 0.088 0.539 0.709

(b) MIMIC-III-50: 50 labels.

Macro-F1 Micro-F1 P@5
CNN 0.576 0.625 0.620
CAML 0.532 0.614 0.609

2 Analysis of Works that Compared with
Mullenbach et al. (2018)

The task considered in Mullenbach et al. (2018) is
to predict the associated ICD (International Clas-
sification of Diseases) codes of each medical doc-
ument. Here an ICD code is referred to as a label.
The neural network considered is

document→ word embeddings

→convolution→ attention→ linear layer,
(1)

where the convolutional operation was based on
Kim (2014). A focus in Mullenbach et al. (2018)
was on the use of attention, so they detailedly com-
pared the two settings1

CNN: (1) without attention,
CAML: (1).

For the data set MIMIC-III-full, CAML, which
includes an attention layer, was shown to be signifi-
cantly better than CNN on all criteria; see Table 1a.
However, for MIMIC-III-50, the subset of the 50
most frequent labels, the authors reported in Table
1b that CAML is not better than CNN.

The paper (Mullenbach et al., 2018) has been
highly influential. By exactly using their training,
validation, and test sets for experiments, many sub-
sequent studies have proposed new and better ap-
proaches; see references listed in Section 1. Most
of them copied the CNN and CAML results from
(Mullenbach et al., 2018) as the baseline for com-
parison. Table 2 summarizes their superior results
on MIMIC-III-50.2

1After convolution, each word is still associated with a
short vector and attention is a way to obtain a single vector
for the whole document. For CNN where attention is not used,
Mullenbach et al. (2018) followed Kim (2014) to select the

While using the same MIMIC-III-50 set, these
subsequent studies differ from Mullenbach et al.
(2018) in various ways. They proposed sophisti-
cated networks and may incorporate additional in-
formation (e.g., label description, knowledge graph
of words, etc.). Further, they may change settings
not considered as parameters for tuning in Mullen-
bach et al. (2018). For example, Mullenbach et al.
(2018) truncated each document to have at most
2,500 tokens, but Vu et al. (2020) used 4,000.

3 Investigation

We investigate the performance of the CNN and
CAML approaches in Mullenbach et al. (2018) for
the set MIMIC-III-50. Some implementation de-
tails are left in supplementary materials.

3.1 Parameter Selection in Mullenbach et al.
(2018)

Mullenbach et al. (2018) conducted parameter tun-
ing on a validation set of MIMIC-III-full. By con-
sidering parameter ranges shown in Table 3, they
applied Bayesian optimization (Snoek et al., 2012)
to choose parameters achieving the highest pre-
cision@8 on the validation set; see the selected
values in Table 3 and the definition of precision in
Table 1. However, the following settings are fixed
instead of being treated as parameters for tuning.
• Each document is truncated to have at most

2,500 tokens. Word embeddings are from the
CBOW method (Mikolov et al., 2013) with the
embedding size 100.
• The stochastic gradient method Adam imple-

mented in PyTorch is used with its default set-
ting. However, the batch size is fixed to be 16
and the learning rate is considered as a parame-
ter. Binary cross-entropy loss is considered.
• The Adam method is terminated if the preci-

sion@8 does not improve for 10 epochs. The
model achieving the highest validation prei-
sion@8 is used to predict the test set for ob-
taining results in Table 1a.
Interestingly, for the 50-label subset of MIMIC-

III, Mullenbach et al. (2018) did not conduct a
parameter-selection procedure. Instead, a decision
was to use the same parameters selected for the

maximal value across all words.
2 We exclude papers that used the same MIMIC-III-50

set but did not list values in Mullenbach et al. (2018) for
comparison. Anyway, results in these papers are not better
than what we obtained in Section 3.
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Table 2: MIMIC-III-50 results from past works that have directly listed values in Mullenbach et al. (2018) for
comparison. For Macro-F1, please see a note on its definition in the appendix.

Macro-F1 Micro-F1 P@5 Code Notes
Baseline considered
CNN (Mullenbach et al., 2018) 0.576 0.625 0.620 Y
CAML (Mullenbach et al., 2018) 0.532 0.614 0.609 Y
New network architectures
MVC-LDA (Sadoughi et al., 2018) 0.597 0.668 0.644 N multi-view convolutional

layers
DACNM (Cao et al., 2020b) 0.579 0.641 0.616 N dilated convolution
BERT-Large (Chen, 2020) 0.531 0.605 - N BERT model
MultiResCNN (Li and Yu, 2020) 0.606 0.670 0.641 Y multi-filter convolution and

residual convolution
DCAN (Ji et al., 2020) 0.615 0.671 0.642 Y dilated convolution, resid-

ual connections
G-Coder without additional informa-
tion (Teng et al., 2020)

- 0.670 0.637 N multiple convolutional lay-
ers

LAAT (Vu et al., 2020) 0.666 0.715 0.675 Y LSTM before attention
New network architectures + additional information (e.g., label description, label co-occurrence, label
embeddings, knowledge graph, adversarial learning, etc.)
LEAM (Wang et al., 2018) 0.540 0.619 0.612 Y label embeddings used
MVC-RLDA (Sadoughi et al., 2018) 0.615 0.674 0.641 N label description used
MSATT-KG (Xie et al., 2019) 0.638 0.684 0.644 N knowledge graph
HyperCore (Cao et al., 2020a) 0.609 0.663 0.632 N label co-occurrence and hi-

erarchy used
G-Coder with additional information
(Teng et al., 2020)

- 0.692 0.653 N knowledge graph, adversar-
ial learning

Results of our investigation in Section 3 are listed below for comparison (values averaged from Table 4)
CNN 0.606 0.659 0.634 Y

parameter selection applied
CAML 0.635 0.684 0.651 Y

Table 3: Parameter ranges considered in Mullenbach
et al. (2018) and the values used.

Parameter Range
Values used
CNN CAML

dc: # filters 50-500 500 50
k: filter size 2-10 4 10
q: dropout prob. 0.2-0.8 0.2 0.2
η: learning rate 0.0003, 0.0001,

0.003, 0.001
0.003 0.0001

full-label set. Further they switch to present preci-
sion@5 instead of precision@8 because on average
each instance is now associated with fewer labels.

The decision of not separately tuning parame-
ters for MIMIC-III-50, as we will see, has a pro-
found effect. In fact, because in Table 1b CAML is
slightly worse than CNN, Mullenbach et al. (2018)
have suspected that a parameter tuning may be

needed. They stated that “we hypothesize that this3

is because the relatively large value of k = 10 for
CAML leads to a larger network that is more suited
to larger datasets; tuning CAML’s hyperparameters
on this dataset would be expected to improve per-
formance on all metrics.” However, it seems no
subsequent works tried to tune parameters of CNN
or CAML on MIMIC-III-50.

3.2 Reproducing Results in Mullenbach et al.
To ensure the correctness of our implementation,
first we reproduce the results in Mullenbach et al.
(2018) by considering the following two programs.
• The public code by Mullenbach et al. (2018) at
github.com/jamesmullenbach/caml-mimic.
• Our implementation of CNN/CAML by fol-

lowing the description in Mullenbach et al.
(2018). The code is part of our development
3Here “this” means that CAML is not better than CNN.
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Table 4: MIMIC-III-50 results after parameter selection. We consider three random seeds, where 1,337 was used
in Mullenbach et al. (2018). Under each seed, we select the five models achieving the best validation precision@5,
use them to predict the test set, and report mean/variance.

Seed Macro-F1 Micro-F1 P@5
1337 0.608 ± 0.006 0.659 ± 0.005 0.634 ± 0.002

CNN 1331 0.601 ± 0.013 0.660 ± 0.007 0.634 ± 0.003
42 0.608 ± 0.007 0.658 ± 0.006 0.633 ± 0.003

1337 0.640 ± 0.004 0.686 ± 0.004 0.650 ± 0.002
CAML 1331 0.631 ± 0.004 0.682 ± 0.003 0.651 ± 0.001

42 0.634 ± 0.009 0.684 ± 0.004 0.651 ± 0.002

on a general multi-label text classification pack-
age LibMultiLabel.4

Parameters and the random seed used in Mullen-
bach et al. (2018) are considered; see Table 3.

After some tweaks, on one GPU machine both
programs give exactly the same results in the fol-
lowing table

Macro-F1 Micro-F1 P@5
CNN 0.585 0.626 0.617
CAML 0.532 0.610 0.609

Values are very close to those in Table 1b. The
small difference might be due to that our GPUs or
PyTorch versions are not the same as theirs.

We conclude that results in Mullenbach et al.
(2018) are reproducible.

3.3 Parameter Selection for MIMIC-III-50

We apply the parameter-selection procedure in Mul-
lenbach et al. (2018) for MIMIC-III-full to MIMIC-
III-50; see details in Section 3.1. A difference is
that, because training MIMIC-III-50 is faster than
MIMIC-III-full, instead of using Bayesian opti-
mization, we directly check a grid of parameters
that are roughly within the ranges given in Table 3.
Specifically, we consider

dc = 50, 150, 250, 350, 450, 550

k = 2, 4, 6, 8, 10

q = 0.2, 0.4, 0.6, 0.8

Because Mullenbach et al. (2018) switched to re-
port test precision@5 for MIMIC-III-50, for vali-
dation we also use precision@5.

To see the effect of random seeds, besides the
one used in Mullenbach et al. (2018), we checked
two other seeds 1,331 and 42, selected solely be-
cause they are the lucky numbers of an author.

4https://github.com/ASUS-AICS/
LibMultiLabel

3.4 Results and Analysis

Table 4 shows CNN/CAML results after parameter
selection and we have the following observations.
• Both CNN and CAML achieve better results

than those reported in Table 1b by Mullenbach
et al. (2018). The improvement of CAML is so
significant that it becomes better than CNN.
• From details in supplementary materials, for

some parameters (e.g., dc and q for CAML),
the selected values are very different from those
used by Mullenbach et al. (2018). Thus param-
eters selected for MIMIC-III-full are not trans-
ferable to MIMIC-III-50 and a separate tuning
is essential.
• Results are not sensitive to the random seeds.5

• A comparison with Table 2 shows that most
subsequent developments cannot surpass our
CAML results. Some are even inferior to CNN,
which is the baseline of all these studies.
• We checked if subsequent developments con-

ducted parameter selection. A summary is in the
supplementary materials.

Based on our results, how much progress past
works have made is therefore unclear.

4 Discussion and Conclusions

The intention of this paper is to provide construc-
tive critiques of past works rather than place blame
on their authors. For the many parameter com-
binations, it is extremely difficult to check them.
However, what our investigation showed is that
if resources or time are available, more attention
should be paid to the parameter selection. For Mul-
lenbach et al. (2018), as they have done a com-
prehensive selection on a super-set MIMIC-III-full,
the same procedure on the simpler MIMIC-III-50 is

5CNN is slight more sensitive to seeds than CAML. More
investigation is needed.
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entirely feasible. The decision of not doing so leads
to a weak baseline in the subsequent developments.

In conclusion, besides proposing new techniques
such as sophisticated networks, more attention
should be placed on the parameter selection. In
the future this helps to ensure that strong baselines
are utilized to check the progress.
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A Additional Implementation and
Experimental Details

Before a stochastic gradient step on a batch of data,
Mullenbach et al. (2018) pad sequences with zeros
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so that all documents in this batch have the same
number of tokens. Thus results of the forward oper-
ation depend on the batch size. This setting causes
issues in validation because a result independent
of the batch size is needed. Further, for many ap-
plications one instance appears at a time in the
prediction stage. Thus we follow Mullenbach et al.
(2018) to use

batch size = 1

in validation and prediction.
After the convolutional layer, Mullenbach et al.

(2018) consider the tanh activation function. For
both convolutional and linear layers, a bias term is
included.

Before the training process, Mullenbach et al.
(2018) sort the data according to their lengths.
In the stochastic gradient procedure, data are not
reshuffled. Therefore, instances considered in each
batch are the same across epochs. While this set-
ting is less used in other works, we follow suit to
ensure the reproducibility of their results.

In the stochastic gradient procedure, we follow
(Mullenbach et al., 2018) to set 200 as the maximal
number of epochs. This setting is different from the
default 100 epochs in the software LibMultiLabel
employed for our experiments. In most situations,
the program does not reach the maximal number of
epochs. Instead, it terminates after the validation
P@5 does not improve in 10 epochs. This criterion
also follows from Mullenbach et al. (2018).

All models were trained on one NVIDIA Tesla
P40 GPU compatible with the CUDA 10.2 platform
and cuDNN 7.6. Note that results may slightly vary
if experiments are run on different architectures.

B A Note on Macro-F1

Mullenbach et al. (2018) report macro-F1 defined
as

F1 value of macro-precision and macro-recall,

where macro-precision and macro-recall are respec-
tively the mean of precision and recall over all
classes. This definition is different from the macro-
F1 used in most other works. Specifically, F1 val-
ues are obtained for each class first and their mean
is considered as Macro-F1; see the discussion of
the Macro-F1 definitions in Opitz and Burst (2021).
Because works mentioned in Table 2 may not in-
dicate if they use the same Macro-F1 formula as
Mullenbach et al. (2018), readers should exercise
caution in interpreting Macro-F1 results in Table 2.

However, based on Micro-F1 and P@5 results the
main point of this paper still stands.
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Abstract

Few-shot text classification aims to classify
inputs whose label has only a few examples.
Previous studies overlooked the semantic rel-
evance between label representations. There-
fore, they are easily confused by labels that are
semantically relevant. To address this problem,
we propose a method that generates distinct
label representations that embed information
specific to each label. Our method is widely
applicable to conventional few-shot classifica-
tion models. Experimental results show that
our method significantly improved the perfor-
mance of few-shot text classification across
models and datasets.

1 Introduction

Few-shot text classification (Ye and Ling, 2019;
Sun et al., 2019; Gao et al., 2019; Bao et al., 2020)
has been actively studied aiming to classify texts
whose labels have only a few examples. Such in-
frequent labels are pervasive in datasets in practice,
which are headaches for text classifiers because of
the lack of training examples. Snell et al. (2017)
showed that the conventional text classifiers are
annoyed by the over-fitting problem when the dis-
tribution of labels is skewed in a dataset.

Few-shot classification has two approaches:
metric-based and meta-learning based methods.
The metric-based methods conduct classification
based on distances estimated by a certain met-
ric, e.g., cosine similarity (Vinyals et al., 2016),
euclidean distance (Snell et al., 2017), convolu-
tional neural networks (Sung et al., 2018), and
graph neural networks (Satorras and Estrach, 2018).
Metric-based methods in natural language process-
ing focus on representation generation that are suit-
able for few-shot classification using the attention
mechanism with various granularity (Sun et al.,
2019), local and global matching of representa-
tions (Ye and Ling, 2019), and word co-occurrence

TECH
Apple confirms it slows down old iPhones as
their batteries age
Self-driving cars may be coming sooner than
you thought

BIZ
Apple apologizes for slowed iPhones, drops
price of battery replacements
Wall Street isn’t too worried about first self-
driving Tesla death

Table 1: Examples from Huffpost (BIZ: BUSINESS)

patterns in attention mechanisms (Bao et al., 2020).
In contrast, meta-larning based methods learn to
learn for achieving higher accuracy by learning
parameter generation (Finn et al., 2017), learning
rates and parameter updates (Li et al., 2017; An-
toniou et al., 2019), and parameter updates using
gradients (Andrychowicz et al., 2016; Ravi and
Larochelle, 2017; Li and Malik, 2017).

All of these previous studies overlooked the ef-
fects of the semantic relevance between label repre-
sentations, which confuses few-shot classifiers. As
a result, the classifiers tend to fail distinguishing
examples with semantically relevant labels. Table 1
shows examples with labels sampled from Huff-
post (Misra, 2018). The label pair of TECH and
BUSINESS is semantically relevant, for which the
classifiers are easily confused.

To address this problem, we propose a mecha-
nism that compares label representations to derive
distinctive representations. It learns semantic differ-
ences between labels and generates representations
that embed information specific to each label. Our
method can be easily applied to existing few-shot
classification models.

We evaluated our method using the standard
benchmarks of Huffpost and FewRel (Han et al.,
2018). Experimental results showed that our
method significantly improved the performance of
previous few-shot classifiers across models and
datasets, and achieved the state-of-the-art accuracy.
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2 Few-Shot Text Classification

This section describes the problem definition and a
general form of conventional few-shot classifiers.

2.1 Problem Definition

In few-shot text classification, sets of supports and
queries are given as input. A support set S con-
sists of pairs of text x and corresponding label
y: S = {(xi, yi)|i ∈ {1, 2, · · · , NK}}. N is
the number of label types in the support set and
K is the number of samples per label type. A
query set Q consists of M texts to be classified:
Q = {qj |j ∈ {1, 2, · · · ,M}}. Note that S and Q
have the same set of label types. A few-shot text
classifier aims to predict a label for each qj .

In few-shot classification, training and evalua-
tion are performed on a subset of a dataset called as
episode (Vinyals et al., 2016). A setting of N = n
and K = k is called as n-way k-shot classification.
A training episode is created by sampling k +m
examples with n types of labels from a training
set, and then by dividing them into support and
query sets, where m = M

n . An evaluation episode
is created in the same manner using an evaluation
set. Note that labels in the training and evaluation
episodes are exclusive, i.e., the classifier is required
to predict labels that it has not been exposed during
training. The performance of a model is measured
using the macro-averaged accuracy of all episodes.

2.2 General Form of Few-shot Text
Classification Models

A classification model first converts texts in the
support and query sets into vector representations.
We denote a subset Sl ⊂ S as Sl = {(xpl , y

p
l )|y

p
l =

l, p ∈ {1, 2, · · · ,K}} in which all texts have the
same label l. An encoder E(·) converts xpl and a
query qj to vectors, xpi ∈ Rd and qj ∈ Rd (d is the
dimension of representations), respectively:

xpl = E
(
xpl
)
, qj = E(qj). (1)

E(·) can be any text encoder, such as recurrent
neural networks (Yang et al., 2016), convolutional
neural networks (Kim, 2014), and pre-trained lan-
guage models like BERT (Devlin et al., 2019).

Second, the classification model generates a la-
bel representation for l. Let C(·) be the function
that generates the label representation l ∈ Rd:

l = C
(
x1
l ,x

2
l , · · · ,xKl

)
. (2)

C(·) is typically a pooling function, such as aver-
age pooling and max pooling.

Finally, the model calculates the similarity be-
tween qj and each label representation li (i ∈
{1, 2, · · · , N}) using a function R(·), and predicts
a label whose representation is most similar to that
of the query. The probability distribution of the
i-th label is computed as:

p(i|l1, · · · , lN , qj) =
eR(li,qj)

∑
i e
R(li,qj)

. (3)

R(·) can be any metrics for estimating similarity.
In natural language processing, cosine similarity is
a standard choice.

As a loss function Lc, negative log-likelihood is
commonly used:

Lc = −
1

M

M∑

i=1

log p(yj), (4)

where yj is the gold-standard label of qj .

3 Proposed Method

Figure 1 shows the overview of our method. It adds
a mechanism for learning to generate distinctive
label representations into conventional few-shot
classification models by converting its training into
multi-task learning. Our method adds a difference
extractor (Section 3.1) and a loss function based
on mutual information (Section 3.2) to an arbitrary
few-shot classification model.

3.1 Difference Extractor
The difference extractor compares a set of N label
representations li obtained by Equation (2) with
each other and generates representations that re-
tains only the information specific to each label.
For doing so, a label representation should depend
on a query qj as classification is conducted based
on similarity between the query and labels as shown
in Equation (3) (Ye and Ling, 2019). Hence, we
model both the label and query representations si-
multaneously. Specifically, the label representa-
tions l1, · · · , lN and the query representation qj
are transformed as:

H = MultiHeadAttention(l1, · · · , lN , qj), (5)

l̂i = GELU(W1Hli + b1)W2 + b2, (6)

q̂j = GELU(W1Hqj + b1)W2 + b2, (7)

where MultiHeadAttention(·) is a self-attention
mechanism (Vaswani et al., 2017) that outputs
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Figure 1: Outline of our method: Components of red boxes are applied to conventional few-shot classifiers.

H ∈ Rd×(N+1) hidden representations. Hli ∈ Rd
is an output of the self-attention corresponds to
li, and similarly, Hqj ∈ Rd is that of qj . These
hidden representations are further transformed by
fully-connected layers with the activation function
of GELU(·) (Hendrycks et al., 2020).

3.2 Design of Loss Function
We assume that an ideal representation l̂i retaining
only information specific to an i-th label satisfies
that I(l̂i; l̂r) = 0 for all l̂r (i 6= r), where I(·)
computes mutual information (MI). That is, each
label representation is independent. Hence, we pro-
pose an MI-based loss function L̂, which constrains
such that a label representation l̂i contains only in-
formation specific to the i-th label by minimizing:

L̂ =
∑

1≤i,r≤N,i6=r
I(l̂i, l̂r). (8)

Because the exact value of Equation (8) is diffi-
cult to calculate in practice, we minimize its upper-
bound following Cheng et al. (2020):

Î(l̂i; l̂r) =

|Q|∑

j=1

Rj , (9)

Rj =


log pθ(l̂ji |l̂jr)−

1

|Q|

|Q|∑

j′=1

log pθ(l̂
j
i |l̂j

′
r )


 ,

where pθ(·) is a neural network which approxi-
mates the conditional probability p(l̂ji |l̂

j
r).

Finally, the overall loss function is:

L = Lc + αL̂, (10)

where α(> 0) balances the effect of L̂.

4 Experiment

We evaluated our method on different few-shot clas-
sification models using the standard benchmarks.

4.1 Benchmark Datasets

Following previous studies (Bao et al., 2020; Gao
et al., 2019; Ye and Ling, 2019; Sun et al., 2019),
we use Huffpost and FewRel as benchmarks.1 Fol-
lowing these previous studies, we evaluated the
performance of each model using 1, 000 episodes.
Because episode generation involves random sam-
pling from a dataset, we repeated this process for
10 times and computed the macro-averaged accu-
racy as the final score. The statistic significance
was measured using a bootstrap significance test.

Huffpost This dataset consists of titles extracted
from HuffPost2 articles. The task is a prediction of
a category of an article from its title. The training,
validation, and test sets contain 20, 5, and 16 types
of labels, respectively. The number of examples
per label is 900.

FewRel The task is a prediction of a relation be-
tween entities. The training, validation, and test
sets contain 65, 5, and 10 types of labels, respec-
tively. The number of examples per label is 700.

4.2 Compared Models and Training Settings

We applied our method on three few-shot clas-
sifiers to investigate its effects on different mod-
els. As the de-facto standard of metric-based and

1Downloaded from https://github.com/
YujiaBao/Distributional-Signatures

2https://www.huffpost.com/
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Huffpost FewRel

5-Way 10-Way 5-Way 10-Way

1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

ProtoNet 51.03 68.36 37.42 55.81 78.61 88.92 65.97 80.38
ProtoNet + DE 51.76 69.07 38.08 56.85 77.35 88.85 64.96 80.44

ProtoNet + DE + L̂ 52.34* 69.66* 38.83* 57.26* 79.52* 89.28* 68.08* 82.51*

MAML 51.10 65.23 37.37 51.74 68.94 76.49 58.07 65.01
MAML + DE 51.80 67.28 38.36 53.54 75.45 85.06 62.33 72.31

MAML + DE + L̂ 51.71 67.38 38.11 53.75* 75.99* 84.07 63.13* 70.99

MLMAN 47.07 57.80 33.86 43.79 73.61 82.75 60.28 71.48
MLMAN + DE 49.73 60.94 36.37 47.25 74.38 83.67 61.14 72.70

MLMAN + DE + L̂ 48.98 60.75 35.60 46.73 78.21* 86.43* 65.44* 76.43*

Bao et al. (2020) 42.12 62.97 - - 70.08 88.07 - -

Table 2: Experimental results (bold and * indicate significantly higher accuracies compared to each baseline model
and baseline + DE, respectively.)

meta-learning based models, we employed Pro-
toNet (Snell et al., 2017) and MAML (Finn et al.,
2017), respectively. Besides, we employed ML-
MAN (Ye and Ling, 2019), which is the state-of-
the-art few-shot classification model on FewRel.
We also compared to Bao et al. (2020), which
achieved the sate-of-the-art on HuffPost.

As the Encoder E(·) and pooling function C(·)
for each model, we used the BERT-base, uncased3

and average pooling, respectively, which showed
strong performance in various text classification
tasks (Devlin et al., 2019). We used PyTorch and
Huggingface Transformers (Wolf et al., 2020) for
implementation.4

We applied our difference extractor and MI-loss
function (denoted as “+ DE + L̂”) to ProtoNet,
MAML, and MLMAN. For the difference extractor,
we used 1-layer self-attention mechanism with 8-
heads. As an ablation study, we also compared our
method that only applies the difference extractor
(denoted as “+ DE”), which is trained only with
the classification loss (Equation (4)).

We trained all models with 5-way 1-shot setting.
We then tested the models on different ways and
shots. As an optimizer, we used Adam (Kingma
and Ba, 2015). A learning rate and α in Equa-
tion (10) were searched in ranges of [1e− 5, 3e−
5, 5e−5] and [1e−6, 1e−4, 1e−2, 1], respectively,
to maximise accuracy on the validation set.

3https://github.com/google-research/
bert

4Our code is available at https://github.com/
21335732529sky/difference_extractor

4.3 Overall Results

As Table 2 shows, our method significantly im-
proved all of the baseline models across datasets.5

For MAML and MLMAN, our difference extractor
always improved the performance of the original
models. By combination with the MI-loss, the per-
formance improved by from 0.61 up to 7.68 points.
In contrast, applying only the difference extractor
to ProtoNet, i.e., ProtoNet + DE, deteriorated its
original performance on FewRel dataset. These
results confirm that both the difference extractor
and MI-loss are crucial for ProtoNet. By using
both, ProtoNet + DE + L̂ consistently improved the
baseline by from 0.39 up to 2.13 points.

4.4 Impact of DE and MI-loss on Baselines

The experimental results confirmed that the com-
bination of our difference extractor and MI-loss
function consistently improved the few-shot clas-
sification models. In particular, MI loss is more
effective for a simpler model, i.e., ProtoNet. ML-
MAN has an internal mechanism for comparing
supports and queries, and MAML has a mechanism
for updating the model parameters to accurately
classify supports. These internal mechanisms allow
to learn label representations that boost classifica-
tion accuracy. Hence, the functionality of MI loss is
partly achieved by these internal mechanisms. On
the other hand, ProtoNet has the simplest architec-

5Note that the performance of ProtoNet was higher than
that in (Ye and Ling, 2019) and (Bao et al., 2020). This is
because we tuned the learning rate using the development set.
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Huffpost FewRel

ProtoNet + DE + L̂ 1e− 4 1e− 4

MLMAN + DE + L̂ 1e− 4 1e− 2

MAML + DE + L̂ 1e− 6 1e− 4

Table 3: Weight of MI loss determined to maximise the
performance on the development set

ture as described in Section 2.2 without additional
mechanisms. Hence, both of the difference extrac-
tor and our loss function are crucial for ProtoNet.

Another factor affecting the performance of MI
loss is the number of labels in a datset. When the
number of labels is large, semantically relevant
labels more likely exist, where MI loss plays a
role. This assumption was empirically confirmed
by the fact that FewRel, where MI loss (DE + L̂)
outperformed DE for most cases, has 80 labels. On
the other hand, Huffpost has about half the number
of labels (i.e., 41 labels).

4.5 Impact of Hyperparameters

Table 3 shows the settings of α tuned on the devel-
opment set. Overall, the values of α on FewRel are
larger than those on Huffpost. Larger α values in-
crease the influence of MI loss on models, which is
effective on datasets with a large number of labels
like FewRel.

Figure 2 shows the accuracy measured on the
development set when varying α. The performance
tends to decrease when α is set too large. We sus-
pect that too large α forces models to extract differ-
ences irrelevant to the classification task. For exam-
ple, the second examples in Table 1 are about self-
driving cars, where only the BIZ example contains
named entities of Wall Street and Tesla. It
is a noticeable difference; however, unlikely be use-
ful for the classification task. Label representations
of such spurious distinctiveness may degrade the
classification performance.

5 Conclusion and Future Work

In this paper, we introduced a novel method shed-
ding light on semantic relations between labels.
Our method improved the classification accuracy
of representative few-shot classifiers on both Huff-
post and FewRel datasets, confirming the reason-
able applicability of the proposed method.

Technically, our method can be applied to other
classification problems that handle semantic labels,
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Figure 2: Accuracy on the Huffpost development set
when varying α values

such as image and entity classifications. We will
conduct evaluation to see its effects on various
types of classifcations.
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Abstract
In real scenarios, a multilingual model trained
to solve NLP tasks on a set of languages can be
required to support new languages over time.
Unfortunately, the straightforward retraining
on a dataset containing annotated examples
for all the languages is both expensive and
time-consuming, especially when the number
of considered languages grows. Moreover, the
original annotated material may no longer be
available due to storage or business constraints.
Re-training only with the new language data
will inevitably result in Catastrophic Forget-
ting of previously acquired knowledge. We
propose a Continual Learning strategy that up-
dates a model to support new languages over
time, while maintaining consistent results on
previously learned languages. We define a
Teacher-Student framework where the existing
model “teaches” to a student model its knowl-
edge about the languages it supports, while the
student is also trained on a new language. We
report an experimental evaluation in several
tasks including Sentence Classification, Rela-
tional Learning and Sequence Labeling.

1 Introduction

In Natural Language Processing (NLP), multilin-
gualism refers to the capability of a single model
to cope with multiple languages. Recently, dif-
ferent Transformer-based architectures have been
extended to operate over multiple languages, as
in Conneau et al. (2020); Conneau and Lample
(2019); Pires et al. (2019). Despite these models
can be applied in the zero-shot setting (Xian et al.,
2019; Artetxe and Schwenk, 2019), in many practi-
cal applications their quality will not be satisfactory.
Instead, fine-tuning over annotated material in each
target language is needed to obtain competitive re-
sults, as the experimental results in Lewis et al.

(2019); Tran and Bisazza (2019) suggest. Having
annotated material for all the languages is not al-
ways possible, especially when the model has to
support an incremental number of new languages
over time. In fact, the original fine-tuning material
may no longer be available for storage, business or
privacy constraints. For example, in a real-world
application, customers may request deletion of their
data, or the service itself may provide specific data
retention policies, or the adopted model may be
provided by a third party that did not release the
training data (Chen and Moschitti, 2019). In these
cases, new language support can be added in a Con-
tinual Learning (CL) setting (Lange et al., 2019),
that is fine-tuning the model only using the anno-
tated material for the new language(s). However,
this approach is vulnerable to the Catastrophic For-
getting (CF) (McCloskey and Cohen, 1989) of pre-
viously learned languages, a well-documented con-
cern discussed in Chen et al. (2018): when a model
is incrementally fine-tuned on new data distribu-
tions, it risks forgetting how to treat instances of
the previously learned ones.

In this paper, we propose a CL strategy for up-
dating a model over an incremental number of lan-
guages, so that at each step the model requires only
annotated examples of the new language(s). Our
goal is to remove the dependency on the original
fine-tuning material and reduce the need for an-
notated data at each training step. We propose a
Teacher-Student framework inspired by the Knowl-
edge Distillation (KD) literature (Hinton et al.,
2015). Although this technique is traditionally used
for the purpose of model compression (Sanh et al.,
2019), recent works in Computer Vision applied
KD to incrementally learn image processing tasks
(Li and Hoiem, 2018). Here, we adopt KD to miti-
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gate CF when incrementally training Transformer-
based architectures (Devlin et al., 2019) for seman-
tic processing tasks. The existing model (here the
teacher) imparts knowledge to a (student) model
about the languages it already supports, while this
is trained on new languages.

We evaluated our approach using multilingual
BERT-based models on three semantic process-
ing tasks, involving Sentence Classification, Para-
phrase Identification and Sequence Tagging. Re-
sults suggest that the model can progressively learn
new languages, while maintaining or even improv-
ing its quality over previously observed ones.

2 Related Work

Continual Learning (CL) (Chen et al., 2018) studies
how to train a machine from a stream of data, which
can evolve over time by changing the input distri-
bution or by incorporating new tasks. CL aims to
gradually extend the knowledge in a model (Lange
et al., 2019), while avoiding Catastrophic Forget-
ting (Goodfellow et al., 2013). Previous work has
mostly focused on Computer Vision (Shmelkov
et al., 2017; Li and Hoiem, 2018; Rannen et al.,
2017) by using Knowledge Distillation (KD) (Hin-
ton et al., 2015) as the base framework.

CL in NLP, as opposed to Computer Vision, is
still nascent (Greco et al., 2019; Sun et al., 2020).
This reflects in the small number of proposed meth-
ods to alleviate CF, as discussed in Biesialska et al.
(2020). In this context, some works focus on the
Online Learning aspect of the CL (Filice et al.,
2014). In NLP, KD has been mainly adopted to
compress models (Kim and Rush, 2016; Sanh et al.,
2019), and was only recently applied for CL in
Named Entity Recognition (Monaikul et al., 2021).

In the context of multilingual analysis, most of
the works leverage Domain Adaptation techniques
within Machine Translation (Dong et al., 2015; Fi-
rat et al., 2016; Ha et al., 2016; Johnson et al.,
2017; Tan et al., 2019) in order to apply a machine
translation model to an increasing set of languages.

To the best of our knowledge, this is the first
work adopting CL to mitigate CF when training
Transformer-based models in an incremental num-
ber of languages for semantic processing tasks.

3 CL for Multilingual processing

Multilingual Continual Learning. In the targeted
scenario, we have a multilingual neural model,
namely MLA

, originally pre-trained on a set of

languages LP = {l1, l2, . . .} (such as multilingual
BERT (Pires et al., 2019)) and already fine-tuned
to solve a task T (such as sentence classification)
on a given set of languages LA ⊂ LP . The scope
is to extend such model to solve T on a set of new
languages LB ⊂ LP , with LA ∩ LB = ∅.

In the rest of the discussion, without loss of gen-
erality, we assume that LB = {lnew}, i.e., we sup-
port only one new language at a time. In case
n > 1 new languages need to be added, a se-
quence of n model extensions can be performed.
In our setting, we assume that: (i) a new anno-
tated dataset S{lnew} for task T in language lnew is
available; (ii) the examples used to fine-tuneMLA

are not available anymore; (iii) unlabeled exam-
ples are available in each language from LA. Since
lnew ∈ LP , i.e., the original pre-training stage in-
cluded lnew, the model could already operate in a
zero-shot setting (i.e., without any fine-tuning stage
involving lnew data). However, the performance of
the zero-shot setting is typically non-satisfactory
and a dedicated fine-tuning on lnew is generally
required. A naive CL strategy consists of fine-
tuningMLA

over S{lnew}. However, even though
this schema is supposed to produce an effective
model for lnew instances, it is not guaranteed that
the resulting model would still be competitive on
languages LA, due to CF (Greco et al., 2019; Sun
et al., 2020). An alternative greedy solution con-
sists of adopting self-training as in Rosenberg et al.
(2005):MLA

is used to annotate some unlabeled
examples in languages LA so that the resulting
pseudo-labeled dataset S̃LA

can be used together
with S{lnew} to fine-tune MLA

and mitigate CF.
Unfortunately, this can also reinforce the errors of
MLA

, as discussed in Hinton et al. (2015).

Preventing Catastrophic Forgetting. CF is typ-
ically caused by the model’s weights, which are
pushed towards fitting the data of the latest fine-
tuning stage. If the model is not trained using ex-
amples in languages LA, it risks forgetting how to
treat them. To overcome CF, we propose a method
based on Knowledge Distillation (KD). We define
a Teacher-Student framework whereMLA

acts as
the teacher, while the student is a clone ofMLA

which is fine-tuned using the multi-loss function
LCL = LT + LKD. The term LT is the task-
specific loss, computed on the annotated examples
from S{lnew}. LKD is a distillation loss computed
on ULA

, a set of unlabeled examples written in the
previous languages LA and here processed by the
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teacher model. LT thus pushes the model to learn
how to solve T in the new language lnew. LKD

helps the model maintaining a consistent perfor-
mance on the languages LA, by forcing the student
to mimic the teacher predictions on data resembling
the data distribution observed in LA. In order to de-
fine LKD consistently with Hinton et al. (2015), let
us define di(x) as the output logits of the model’s
last layer when applied to an example x. The logits
are converted into a class-probability distribution
using the temperature-softmax:

yi(x) =
exp(di/T )∑
j exp(dj/T )

where T is a temperature hyper-parameter, which
controls the smoothness of the distribution. LKD

is thus computed as the cross-entropy between the
output probability distributions provided by the
student and teacher, namely ysi and yti , i.e.:

LKD(x) = −
∑

i

yti(x) log y
s
i (x)

Using LKD instead of the self-training procedure
preserves the uncertainty of the teacher’s model and
prevents the student from amplifying the teacher’s
errors, as demonstrated in Hinton et al. (2015).

4 Experimental Evaluation

This section presents the results of the proposed
CL strategy over three semantic processing tasks,
involving text classification and sequence tagging.
In particular, we report the Mean Absolute Error
(MAE) over the Multilingual Amazon Review Cor-
pus (MARC) (Keung et al., 2020), i.e., a 5 category
Sentiment Analysis task in 6 languages. We report
the Accuracy over a sentence-pair classification
task, i.e., Paraphrase Identification on the PAWS-X
dataset (Yang et al., 2019) in 6 languages1. Finally,
we report the F1 for the Named Entity Recogni-
tion (NER) in 4 languages by merging the CoNLL
2002 (Tjong Kim Sang, 2002) and 2003 (Tjong
Kim Sang and De Meulder, 2003) datasets. Addi-
tional details about the datasets are in Appendix.
Experimental Setup. We foresee a setting where
a BERT-based model is incrementally trained using
annotated datasets in multiple languages. At each
step, the model is fine-tuned using a dataset in
one specific language, while the annotated material
used up to that point is discarded.

1PAWS-X contains 7 languages. We were not able to
reproduce the results of Yang et al. (2019) for the Korean
language. Thus, we removed this language in our evaluation.

We reasonably assume that a set of unlabeled
data is available for the languages already ob-
served. In order to simulate this scenario, we de-
signed a data splitting procedure such that each
annotated example is observed only in one step.
Let us assume we observe languages in the order
l1 →, . . . ,→ ln. For each language li, its training
set D{li} is divided into n− i+ 1 equal slices, i.e.,

(D(i)
{li}, . . . , D

(n−i+1)
{li} ). Depending on the learning

strategy, each slice will be either annotated (indi-
cated with a S symbol) or not annotated (indicated
with a U symbol). At the last step, we will have
observed all the data, either annotated or not.
Learning Strategies. We compare four CL strate-
gies. We denote with CL-Baseline the strategy
where at step k the modelMk is obtained by up-
datingMk−1 by using only the Sk = S

(1)
{lk} anno-

tated dataset, only with the task loss LT . The sec-
ond strategy is denoted with Self-Training:
at step k, Mk−1 is used to annotate the dataset

S̃k =
k−1⋃
j=1
{U (k−j+1)
{lj} }. Mk is then fine-tuned by

using Sk = S
(1)
{lk} ∪ S̃k with the task loss LT .

We denote with CL-KD the strategy we propose,
where at step k, Mk−1 is used as the teacher in
our proposed KD schema2. Mk−1 is used to de-
rive the target output distribution of the dataset

Uk =
k−1⋃
j=1
{U (k−j+1)
{lj} }. Mk is then trained by

adopting Sk = S
(1)
{lk} with the task loss LT and

Uk with the loss LKD. We compared with a fur-
ther competitive method, namely Elastic Weight
Consolidation, here denoted with EWC (Kirkpatrick
et al., 2017). This popular CL procedure applies a
regularization technique that penalizes large vari-
ations on those model’s weights that are the most
important for the tasks learned so far.

As a sort of upper-bound, we report the results
by adopting a non-Continual Learning strategy,
i.e., Multi-Last, where the model is trained
from scratch using an annotated dataset in all lan-
guages we want to support at step k. More formally,

at step k the data is Sk =
k⋃

j=1
{S(k−j+1)
{lj} }, i.e., the

annotated data is about k times larger than the one
used in the CL settings.

2We also investigated an approach inspired by Gururangan
et al. (2020): we augmented CL-KD with Masked Language
Modeling and Next Sentence Prediction objectives to continue
the pre-training. Preliminary experiments provided negligible
improvements, not reported here due to lack of space.
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Figure 1: Average performance measures for the MARC, PAWS-X and CoNLL for the languages not yet used in
training. At each step k, we report the average score for the languages that will be observed in steps (k+1, . . . , n).
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Figure 2: Average performance measures for the MARC, PAWS-X and CoNLL. At each step k, we report the
average score with respect to the languages observed in steps (1, . . . , k).
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Figure 3: Average performance measures on MARC, PAWS-X and CoNLL for the language observed at step k.
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Figure 4: Average performance measures for the MARC, PAWS-X and CoNLL for the languages observed in the
past steps. At each step k, we report the average score with respect to the languages observed in steps (1, . . . , k−1).
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Model Training. We used the bert-base-
multilingual-cased model in the Huggingface
Transformers package (Wolf et al., 2019). We
trained the models for 10 epochs with Early Stop-
ping (patience= 3) and batch size 32. After initial
experiments, we set the temperature T to 1. We re-
peated our experiments for 6/6/24 sequences of lan-
guage permutations for MARC/PAWS-X/CoNLL,
and we report the average performances.

Experimental Results and Discussion. We first
run zero-shot experiments by fine-tuning a model
on a subset of languages and testing it on the un-
observed ones (see Figure 1). By comparing the
results with the ones in Figure 2, we can observe a
large gap between the results achieved on the lan-
guages still to be observed vs. the training ones.
For instance, at step 1 the average gap is more
than 30 MAE on MARC, about 0.8% Accuracy
on PAWS-X and about 22 F1 on CoNLL. This
confirms the need to fine-tune the model on each
language of interest.

Figures 2a, 2b and 2c show the results on MARC,
PAWS-X and CoNLL, respectively. At each step,
we report the average measure computed over all
the observed languages, averaged over all the per-
mutations. Given that we are solving the same
task in multiple languages, regardless the adopted
strategy, the performance can improve at each
step due to a cross-lingual transfer learning ef-
fect. This beneficial impact is contrasted by the
CF, which is also supposed to increase at each step.
In our experiments, the effect of transfer learning
is generally stronger, with the only exception of
CL-Baseline in CoNLL, where CF seems to
dominate (the F1 drops from 74.29 at step 1 to
72.67 at step 4). In MARC and PAWS-X, this is al-
leviated: we argue that CoNLL is more challenging,
as it is a word-level tagging on a smaller dataset.

The approach we propose, i.e., CL-KD, is able
to constantly outperform its corresponding baseline
CL-Baseline. The adoption of knowledge from
the previously encountered languages is crucial in
mitigating the CF phenomenon. For example, in
MARC the MAE in the CL-KD setting is reduced
from 60.62 in the first step to 53.85 in the last
step. The same applies for PAWS-X where accu-
racy jumps from 74.57 to 87.73 and for CoNLL
with F1 from 74.29 to 79.80. The performances
of CL-KD are similar to the Multi-Last even if
this clearly has an advantage, using a larger dataset
consisting of examples written in all languages.

Figure 3 reports the average performance on the
language observed during the last step only, while
Figure 4 shows results on the previously acquired
languages. Notice that CL-KD achieves compa-
rable results between the previously acquired lan-
guages and the last learned one. Conversely, the
other CL models perform significantly lower.

Notice that the CL-KD model achieves bet-
ter results than Self-Training, especially for
MARC and CoNLL. This means that classifying
the examples with the previous model amplifies
the errors of that model. In PAWS-X, the improve-
ments achieved by CL-KD are less evident: we
argue this is due to the nature of the dataset, where
the training set in each language is derived via auto-
matic machine translation. In any case, CL-KD is
still performing better than Self-Training and
CL-Baseline: despite automatic translation can
be a viable solution, its performances will likely be
sub-optimal. Notice that EWC is considered one of
the most effective approaches for CL, but interest-
ingly in our setting its results are not satisfactory.
We investigated if the order of the languages pro-
vides significant differences. We did not notice
major variations, also when the involved languages
are very different3.

Finally, we trained a full-multilingual model
with all the data for all the languages. The CL-KD
performances are not far from this model, as the
difference is only 4.47, 1.56 and 2.44 for MARC,
PAWS-X and CoNLL, respectively.

5 Conclusions

This paper investigated a Continual Learning strat-
egy, based on Knowledge Distillation, for training
Transformer architectures in an incremental num-
ber of languages. We demonstrated that with our
approach the model maintains its robustness in pro-
cessing already acquired languages without having
access to annotated data for them, while learning
new languages. Future work will apply our method-
ology to other NLP tasks, such as QA.
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A Appendix

A.1 Datasets
Sentence Classification. We used the Multilingual Amazon Reviews Corpus (MARC) (Keung et al.,
2020), i.e., a Sentiment Analysis dataset. MARC is a large-scale collection of Amazon reviews in
6 languages (English, German, Spanish, French, Japanese and Chinese). The dataset is made of
200, 000/5, 000/5, 000 reviews for each language, respectively for train, validation and test. We refer to
the fine-grained classification (the target category is on 1-5 scale) by using the body of the review.

Sentence-Pairs Classification. We adopted the PAWS-X dataset (Yang et al., 2019) for the Paraphrase
Identification task. The dataset is composed of about 24, 000 human translated evaluation pairs and about
296, 000 machine translated training pairs over 7 languages: English, Spanish, French, German, Japanese,
Chinese, Korean. We actually didn’t used the Korean languages, as in preliminary experiment we were
not able to reproduce the results of the (Yang et al., 2019) paper. We suspect a problem in the encoding
affected our results in this language with the bert multilingual model.

Sequence Tagging. We reported experiments on Named Entity Recognition (NER) using the CoNLL
2002 (Tjong Kim Sang, 2002) and CoNLL 2003 (Tjong Kim Sang and De Meulder, 2003) datasets.
We merged the two datasets as in Rahimi et al. (2019) to obtain a single dataset over 4 languages, i.e.,
English, Spanish, German and Dutch. The dataset contains 51, 821/11, 344/13, 556 annotated sentences,
respectively for train, validation and test. Each sentence has been annotated with respect to the following
entities: Person, Location, Organization and Miscellaneous.

A.2 Additional Results
In this section we report more details on the results of the experiments already discussed in Section 4.

A.2.1 Results on Observed Languages
Tables 1, 2 and 3 complement the results already shown in Figure 2 and summarizes the average
performance on the languages observed till each step for MARC, PAWS-X and ConNLL respectively.

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 60.62 60.62 60.62 60.62 60.62
2 57.77 60.53 62.98 59.55 58.71
3 56.63 60.59 62.56 60.03 57.39
4 53.68 58.69 59.83 59.11 55.19
5 53.70 58.47 59.11 58.33 55.02
6 51.85 57.30 58.04 57.22 53.85

Table 1: MARC performances for the observed languages (as in Figure 2a), i.e., at each step we report the average
of the measure for the languages observed including the last step (step ≤ k). The reported measure is the Mean
Absolute Error (lower is better).

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 74.57 74.57 74.57 74.57 74.57
2 81.78 79.47 78.39 79.62 79.90
3 84.89 82.34 82.61 82.46 83.42
4 85.87 84.52 84.24 84.44 85.33
5 86.81 86.09 85.71 85.98 86.75
6 87.89 87.17 86.97 87.41 87.73

Table 2: PAWS-X performances for the observed languages (as in Figure 2b), i.e., at each step we report the
average of the measure for the languages observed including the last step (step ≤ k). The reported measure is the
Accuracy (higher is better).

A.2.2 Results on New Language Only
The following results show how an already fine-tuned model learn to manage a new language. While results
in Figure 2 are averaged across all languages (observed up to the k-th step) the following evaluations focus
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Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 74.29 74.29 74.29 74.29 74.29
2 76.41 73.51 74.66 72.65 76.67
3 78.08 72.46 76.94 72.94 78.32
4 79.09 72.67 78.59 72.15 79.80

Table 3: CoNLL 2002/2003 performances for the observed languages (as in Figure 2c), i.e., at each step we report
the average of the measure for the languages observed including the last step (step ≤ k). The reported measure is
the F1 (higher is better).

only on the last observed language. Figure 3 and Tables 4, 5 and 6 report the average performance on the
last learned language. The average performance tends to improve at each step thanks to the cross-lingual
transfer learning effect. All the models perform similarly, exception for the Self-Training model
that exhibits generally lower results. This is probably due to the error amplification issue that somehow
degrades the cross-lingual transfer.

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 60.62 60.62 60.62 60.62 60.62
2 55.28 55.62 65.53 54.88 57.22
3 55.44 55.37 61.72 54.80 54.60
4 49.17 49.45 53.05 49.45 49.04
5 52.65 52.47 57.39 52.49 52.85
6 47.58 47.49 52.67 47.65 47.85

Table 4: MARC performances for the Current Language (as in Figure 3a). At each step we report the measure for
the language observed in that step (step = k). The reported measure is the Mean Absolute Error (lower is better).

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 74.57 74.57 74.57 74.57 74.57
2 82.81 80.60 80.33 80.81 81.93
3 87.72 86.17 86.40 85.66 86.91
4 85.88 85.14 85.37 85.30 86.13
5 88.32 88.20 88.11 87.93 89.03
6 89.29 89.13 89.12 89.37 89.40

Table 5: PAWS-X performances for the Current Language (as in Figure 3b). At each step we report the measure
for the language observed in that step (step = k). The reported measure is the Accuracy (higher is better).

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 74.29 74.29 74.29 74.29 74.29
2 77.24 77.18 74.09 76.42 77.91
3 79.19 78.90 78.16 78.60 79.91
4 81.51 81.77 80.41 80.93 82.38

Table 6: CoNLL 2002/2003 performances for the Current Language (as in Figure 3c). At each step we report the
measure for the language observed in that step (step = k). The reported measure is the F1 (higher is better).

A.2.3 Results on Previously Learned Languages

Figure 4 and Tables 7, 8 and 9 report the average performance for each step on the previously acquired
languages. This allows us to better assess the impact of Catastrophic Forgetting. In particular, if we
compare these results with the ones reported in Section A.2.2, it is possible to appreciate that model
CL-KD achieves comparable results between the previously acquired languages and the last learned one.
Conversely, the other CL models, and in particular CL-Baseline, provide significantly lower results
on the previously acquired languages w.r.t. to the language learned during the last training step. This is
clearly demonstrating the impact of the Catastrophic Forgetting effect.
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Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 - - - - -
2 60.27 65.44 60.43 64.22 60.19
3 57.23 63.20 62.98 62.64 58.79
4 55.19 61.76 62.09 62.33 57.24
5 53.96 59.97 59.54 59.78 55.56
6 52.71 59.27 59.11 59.14 55.05

Table 7: MARC performances for the Past Languages (as in Figure 4a), i.e., at each step we report the average
measure for the languages observed till that step (step < k). The reported measure is the Mean Absolute Error
(lower is better).

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 - - - - -
2 80.74 78.33 76.44 78.44 77.87
3 83.48 80.43 80.71 80.87 81.68
4 85.86 84.31 83.86 84.15 85.07
5 86.43 85.57 85.11 85.50 86.18
6 87.61 86.77 86.54 87.02 87.40

Table 8: PAWS-X performances for the Past Languages (as in Figure 4b), i.e., at each step we report the average
measure for the languages observed till that step (step < k). The reported measure is the Accuracy (higher is
better).

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 - - - - -
2 75.59 69.84 75.23 68.88 75.43
3 77.52 69.23 76.33 70.11 77.52
4 78.28 69.64 77.99 69.22 78.95

Table 9: CoNLL 2002/2003 performances for the Past Languages (as in Figure 4c), i.e., at each step we report the
average measure for the languages observed till that step (step < k). The reported measure is the F1 (higher is
better).

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 91.99 91.99 91.99 91.99 91.99
2 80.93 80.24 87.83 80.48 82.02
3 74.12 74.44 79.88 74.18 74.52
4 72.41 73.94 78.59 74.24 72.50
5 66.69 70.43 73.32 70.12 68.55
6 - - - - -

Table 10: MARC performances for the Future Languages (zero-shot setting, as in Figure 1a). At each step we
report the average of the measure for the languages still not observed (step > k). The reported measure is the
Mean Absolute Error (lower is better).

A.2.4 Results on Untrained Languages
Figure 1 and Tables 10, 11 and 12 report the average performance for each step on the languages that the
model did not train on so far.

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 73.75 73.75 73.75 73.75 73.75
2 81.46 79.75 78.84 79.71 79.86
3 84.79 83.04 82.94 82.21 84.07
4 86.81 85.59 85.19 85.32 86.23
5 87.68 86.49 86.47 86.37 87.35
6 - - - - -

Table 11: PAWS-X performances for the Future Languages (zero-shot setting, as in Figure 1b). At each step we
report the average of the measure for the languages still not observed (step > k). The reported measure is the
Accuracy (higher is better).

This allows us to evaluate the performance of the zero-shot setting. As expected, results are pretty poor,
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and the gap between the results on training languages and the zero-shot languages is very large: the gap
is more than 30 MAE on MARC, about 8% Accuracy on PAWS-X and about 22 F1 on CoNLL. This
confirms the need to fine-tune the model on each language of interest.

Step/Model MULTI-LAST CL-BASELINE SELF-TR EWC CL-KD
1 51.87 51.87 51.87 51.87 51.87
2 57.88 56.99 57.70 57.15 57.95
3 61.99 58.57 61.09 59.27 61.86
4 - - - - -

Table 12: CoNLL 2002/2003 performances for the Future Languages (zero-shot setting, as in Figure 1c). At each
step we report the average of the measure for the languages still not observed (step > k). The reported measure is
the F1 (higher is better).
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Abstract

Transformer is important for text modeling.
However, it has difficulty in handling long
documents due to the quadratic complexity
with input text length. In order to handle
this problem, we propose a hierarchical inter-
active Transformer (Hi-Transformer) for effi-
cient and effective long document modeling.
Hi-Transformer models documents in a hierar-
chical way, i.e., first learns sentence represen-
tations and then learns document representa-
tions. It can effectively reduce the complexity
and meanwhile capture global document con-
text in the modeling of each sentence. More
specifically, we first use a sentence Trans-
former to learn the representations of each
sentence. Then we use a document Trans-
former to model the global document context
from these sentence representations. Next, we
use another sentence Transformer to enhance
sentence modeling using the global document
context. Finally, we use hierarchical pooling
method to obtain document embedding. Exten-
sive experiments on three benchmark datasets
validate the efficiency and effectiveness of Hi-
Transformer in long document modeling.

1 Introduction

Transformer (Vaswani et al., 2017) is an effective
architecture for text modeling, and has been an es-
sential component in many state-of-the-art NLP
models like BERT (Devlin et al., 2019; Radford
et al., 2019; Yang et al., 2019; Wu et al., 2021). The
standard Transformer needs to compute a dense
self-attention matrix based on the interactions be-
tween each pair of tokens in text, where the compu-
tational complexity is proportional to the square of
text length (Vaswani et al., 2017; Wu et al., 2020b).
Thus, it is difficult for Transformer to model long
documents efficiently (Child et al., 2019).

There are several methods to accelerate Trans-
former for long document modeling (Wu et al.,

2019; Kitaev et al., 2019; Wang et al., 2020; Qiu
et al., 2020). One direction is using Transformer
in a hierarchical manner to reduce sequence length,
e.g., first learn sentence representations and then
learn document representations from sentence rep-
resentations (Zhang et al., 2019; Yang et al., 2020).
However, the modeling of sentences is agnostic to
the global document context, which may be subop-
timal because the local context within sentence is
usually insufficient. Another direction is using a
sparse self-attention matrix instead of a dense one.
For example, Beltagy et al. (2020) proposed to
combine local self-attention with a dilated sliding
window and sparse global attention. Zaheer et al.
(2020) proposed to incorporate a random sparse
attention mechanism to model the interactions be-
tween a random set of tokens. However, these
methods cannot fully model the global context of
document (Tay et al., 2020).

In this paper, we propose a hierarchical interac-
tive Transformer (Hi-Transformer)1 for efficient
and effective long document modeling, which mod-
els documents in a hierarchical way to effectively
reduce the complexity and at the same time can
capture the global document context for sentence
modeling. In Hi-Transformer, we first use a sen-
tence Transformer to learn the representation of
each sentence within a document. Next, we use a
document Transformer to model the global docu-
ment context from these sentence representations.
Then, we use another sentence Transformer to fur-
ther improve the modeling of each sentence with
the help of the global document context. Finally,
we use hierarchical pooling method to obtain the
document representation. Extensive experiments
are conducted on three benchmark datasets. The
results show that Hi-Transformer is both efficient
and effective in long document modeling.

1https://github.com/wuch15/HiTransformer.
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Figure 1: The architecture of Hi-Transformer.

2 Hi-Transformer

In this section, we introduce our hierarchical in-
teractive Transformer (Hi-Transformer) approach
for efficient and effective long document model-
ing. Its framework is shown in Fig. 1. It uses a
hierarchical architecture that first models the con-
texts within a sentence, next models the document
contexts by capturing the interactions between sen-
tences, then employs the global document contexts
to enhance sentence modeling, and finally uses hi-
erarchical pooling techniques to obtain document
embeddings. In this way, the input sequence length
of each Transformer is much shorter than directly
taking the word sequence in document as input, and
the global contexts can be fully modeled. The de-
tails of Hi-Transformer are introduced as follows.

2.1 Model Architecture
Hi-Transformer mainly contains three modules, i.e.,
sentence context modeling, document context mod-
eling and global document context-enhanced sen-
tence modeling. The sentence-level context is first

modeled by a sentence Transformer. Assume a doc-
ument contains M sentences, and the words in the
i-th sentence are denoted as [wi,1, wi,2, ..., wi,K ]
(K is the sentence length). We insert a “[CLS]” to-
ken (denoted as ws) after the end of each sentence.
This token is used to convey the contextual informa-
tion within this sentence. The sequence of words in
each sentence is first converted into a word embed-
ding sequence via a word and position embedding
layer. Denote the word embedding sequence for the
i-th sentence as [ei,1, ei,2, ..., ei,K , es]. Since sen-
tence length is usually short, we apply a sentence
Transformer to each sentence to fully model the in-
teractions between the words within this sentence.
It takes the word embedding sequence as the input,
and outputs the contextual representations of words,
which are denoted as [hi,1,hi,2, ...,hi,K ,hs

i ]. Spe-
cially, the representation hs

i of the “[CLS]” token
is regarded as the sentence representation.

Next, the document-level context is modeled by
a document Transformer from the representations
of the sentences within this document. Denote the
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embedding sequence of sentences in this document
as [hs

1,h
s
2, ...,h

s
M ]. We add a sentence position

embedding (denoted as pi for the i-th sentence)
to the sentence representations to capture sentence
orders. We then apply a document Transformer to
these sentence representations to capture the global
context of document, and further learn document
context-aware sentence representations, which are
denoted as [rs1, r

s
2, ..., r

s
M ].

Then, we use the document context-aware sen-
tence representations to further improve the sen-
tence context modeling by propagating the global
document context to each sentence. Motivated
by (Guo et al., 2019), we apply another sentence
Transformer to the hidden word representations
and the document-aware sentence representation
for each sentence. It outputs a document context-
aware word representation sequence for each sen-
tence, which is denoted as [di,1,di,2, ...,di,K ,ds

i ].
In this way, the contextual representations of words
can benefit from both local sentence context and
global document context.

By stacking multiple layers of Hi-Transformer,
the contexts within a document can be fully mod-
eled. Finally, we use hierarchical pooling (Wu
et al., 2020a) techniques to obtain the document em-
bedding. We first aggregate the document context-
aware word representations in each sentence into a
global context-aware sentence embedding si, and
then aggregate the global context-aware embed-
dings of sentence within a document into a unified
document embedding d, which is further used for
downstream tasks.

2.2 Efficiency Analysis

In this section, we provide some discussions on the
computational complexity of Hi-Transformer. In
sentence context modeling and document context
propagation, the total computational complexity is
O(M ·K2 ·d), where M is sentence number with a
document, K is sentence length, and d is the hidden
dimension. In document context modeling, the
computational complexity is O(M2 · d). Thus, the
total computational cost is O(M ·K2 ·d+M2 ·d).2
Compared with the standard Transformer whose
computational complexity is O(M2 ·K2 · d), Hi-
Transformer is much more efficient.

2Note that Hi-Transformer can be combined with other
existing techniques of efficient Transformer to further improve
the efficiency for long document modeling.

3 Experiments

3.1 Datasets and Experimental Settings

Our experiments are conducted on three bench-
mark document modeling datasets. The first one
is Amazon Electronics (He and McAuley, 2016)
(denoted as Amazon), which is for product review
rating prediction.3 The second one is IMDB (Diao
et al., 2014), a widely used dataset for movie re-
view rating prediction.4 The third one is the MIND
dataset (Wu et al., 2020c), which is a large-scale
dataset for news intelligence.5 We use the content
based news topic classification task on this dataset.
The detailed dataset statistics are shown in Table 1.

In our experiments, we use the 300-dimensional
pre-trained Glove (Pennington et al., 2014) embed-
dings for initializing word embeddings. We use
two Hi-Transformers layers in our approach and
two Transformer layers in other baseline methods.6

We use attentive pooling (Yang et al., 2016) to
implement the hierarchical pooling module. The
hidden dimension is set to 256, i.e., 8 self-attention
heads in total and the output dimension of each
head is 32. Due to the limitation of GPU memory,
the input sequence lengths of vanilla Transformer
and its variants for long documents are 512 and
2048, respectively. The dropout (Srivastava et al.,
2014) ratio is 0.2. The optimizer is Adam (Bengio
and LeCun, 2015), and the learning rate is 1e-4.
The maximum training epoch is 3. The models
are implemented using the Keras library with Ten-
sorflow backend. The GPU we used is GeForce
GTX 1080 Ti with a memory of 11 GB. We use
accuracy and macro-F scores as the performance
metrics. We repeat each experiment 5 times and
report both average results and standard deviations.

3.2 Performance Evaluation

We compare Hi-Transformer with several base-
lines, including: (1) Transformer (Vaswani et al.,
2017), the vanilla Transformer architecture; (2)
Longformer (Beltagy et al., 2020), a variant of
Transformer with local and global attention for
long documents; (3) BigBird (Zaheer et al., 2020),
extending Longformer with random attention; (4)
HI-BERT (Zhang et al., 2019), using Transformers

3https://jmcauley.ucsd.edu/data/amazon/
4https://github.com/nihalb/JMARS
5https://msnews.github.io/
6We also tried more Transformer layers for baseline meth-

ods but do not observe significant performance improvement
in our experiments.
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Dataset #Train #Val #Test Avg. #word Avg. #sent #Class
Amazon 40.0k 5.0k 5.0k 133.38 6.17 5
IMDB 108.5k 13.6k 13.6k 385.70 15.29 10
MIND 128.8k 16.1k 16.1k 505.46 25.14 18

Table 1: Statistics of datasets.

Methods
Amazon IMDB MIND

Accuracy Macro-F Accuracy Macro-F Accuracy Macro-F
Transformer 65.23±0.38 42.23±0.37 51.98±0.48 42.76±0.49 80.96±0.22 59.97±0.24
Longformer 65.35±0.44 42.45±0.41 52.33±0.40 43.51±0.42 81.42±0.25 62.68±0.26
BigBird 66.05±0.48 42.89±0.46 52.87±0.51 43.79±0.50 81.81±0.29 63.44±0.31
HI-BERT 66.56±0.32 42.65±0.34 52.96±0.46 43.84±0.46 81.89±0.23 63.63±0.20
Hi-Transformer 67.24±0.35 43.69±0.32 53.78±0.49 44.54±0.47 82.51±0.25 64.22±0.22

Table 2: The results of different methods on different datasets.

Method Complexity
Transformer O(M2 ·K2 · d)
Longformer O(T ·M ·K · d)
BigBird O(T ·M ·K · d)
HI-BERT O(M ·K2 · d+M2 · d)
Hi-Transformer O(M ·K2 · d+M2 · d)

Table 3: Complexity of different methods. K is sen-
tence length, M is the number of sentences in a docu-
ment, T is the number of positions for sparse attention,
and d is the hidden dimension.

at both word and sentence levels. The results of
these methods on the three datasets are shown in Ta-
ble 2. We find that Transformers designed for long
documents like Hi-Transformer and BigBird out-
perform the vanilla Transformer. This is because
vanilla Transformer cannot handle long sequence
due to the restriction of computation resources, and
truncating the input sequence leads to the loss of
much useful contextual information. In addition,
Hi-Transformer and HI-BERT outperform Long-
former and BigBird. This is because the sparse
attention mechanism used in Longformer and Big-
Bird cannot fully model the global contexts within
a document. Besides, Hi-Transformer achieves the
best performance, and the t-test results show the
improvements over baselines are significant. This
is because Hi-Transformer can incorporate global
document contexts to enhance sentence modeling.

We also compare the computational complexity
of these methods in Table 3. The complexity of
Hi-Transformer is much less than the vanilla Trans-
former and is comparable with other Transformer
variants designed for long documents. These re-

sults indicate the efficiency and effectiveness of
Hi-Transformer.

3.3 Model Effectiveness
Nest, we verify the effectiveness of the global doc-
ument contexts for enhancing sentence modeling
in Hi-Transformer. We compare Hi-Transformer
and its variants without global document contexts
in Fig. 2. We find the performance consistently
declines when the global document contexts are
not encoded into sentence representations. This is
because the local contexts within a single sentence
may be insufficient for accurate sentence model-
ing, and global contexts in the entire document
can provide rich complementary information for
sentence understanding. Thus, propagating the doc-
ument contexts to enhance sentence modeling can
improve long document modeling.

3.4 Influence of Text Length
Then, we study the influence of text length on the
model performance and computational cost. Since
the documents in the MIND dataset are longest,
we conduct experiments on MIND to compare the
model performance as well as the training time
per layer of Transformer and Hi-Transformer un-
der different input text length7, and the results are
shown in Fig. 3. We find the performance of both
methods improves when longer text sequences are
used. This is intuitive because more information
can be incorporated when longer text is input to
the model for document modeling. However, the
computational cost of Transformer grows very fast,

7The maximum length of Transformer is 512 due to GPU
memory limitation.
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Figure 2: Effectiveness of global document context
propagation in Hi-Transformer .

which limits its maximal input text length. Dif-
ferent from Transformer, Hi-Transformer is much
more efficient and meanwhile can achieve better
performance with longer sequence length. These re-
sults further verify the efficiency and effectiveness
of Hi-Transformer in long document modeling.

4 Conclusion

In this paper, we propose a Hi-Transformer ap-
proach for both efficient and effective long docu-
ment modeling. It incorporates a hierarchical ar-
chitecture that first learns sentence representations
and then learns document representations. It can
effectively reduce the computational complexity
and meanwhile be aware of the global document
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Figure 3: Influence of input text length on performance
and training time on the MIND dataset.

contexts in sentence modeling to help understand
document content accurately. Extensive experi-
ments on three benchmark datasets validate the
efficiency and effectiveness of Hi-Transformer in
long document modeling.
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Abstract

Transfer learning with large pretrained
transformer-based language models like
BERT has become a dominating approach for
most NLP tasks. Simply fine-tuning those
large language models on downstream tasks
or combining it with task-specific pretraining
is often not robust. In particular, the perfor-
mance considerably varies as the random seed
changes or the number of pretraining and/or
fine-tuning iterations varies, and the fine-tuned
model is vulnerable to adversarial attack. We
propose a simple yet effective adapter-based
approach to mitigate these issues. Specifically,
we insert small bottleneck layers (i.e., adapter)
within each layer of a pretrained model, then
fix the pretrained layers and train the adapter
layers on the downstream task data, with (1)
task-specific unsupervised pretraining and
then (2) task-specific supervised training
(e.g., classification, sequence labeling). Our
experiments demonstrate that such a training
scheme leads to improved stability and
adversarial robustness in transfer learning to
various downstream tasks. 1

1 Introduction

Pretrained transformer-based language models like
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019) have demonstrated impressive performance
on various NLP tasks such as sentiment analysis,
question answering, text generation, just to name a
few. Their successes are achieved through sequen-
tial transfer learning (Ruder, 2019): pretrain a lan-
guage model on large-scale unlabeled data and then
fine-tune it on downstream tasks with labeled data.
The most commonly used fine-tuning approach is
to optimize all parameters of the pretrained model

*Equal contributions.
†Corresponding author.
1https://github.com/WinnieHAN/

Adapter-Robustness.git

Figure 1: Learning curves of fine-tuning with the task-
specific pretraining iterations varied. The curve with triangles
represents the model that has converged in the 8000-th pre-
training iteration.

with regard to the downstream-task-specific loss.
This training scheme is widely adopted due to its
simplicity and flexibility (Phang et al., 2018; Peters
et al., 2019; Lan et al., 2019; Raffel et al., 2020;
Clark et al., 2020; Nijkamp et al., 2021; Lewis et al.,
2020).

Despite the success of the standard sequential
transfer learning approach, recent works (Guru-
rangan et al., 2020; Lee et al., 2020; Nguyen
et al., 2020) have explored domain-specific or task-
specific unsupervised pretraining, that is, masked
language model training on the downstream task
data before the final supervised fine-tuning on it.
And they demonstrated benefits of task-specific
pretraining on transfer learning performance. How-
ever, both standard sequential transfer learning and
that with task-specific pretraining are unstable in
the sense that downstream task performance is sub-
ject to considerable fluctuation while the random
seed is changed or the number of pretraining and/or
fine-tuning iterations is varied even after the train-
ing has converged (see Section 2 and Section 3
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WNLI RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI
Metrics Acc. Acc. F1/Acc. P/S corr. M corr. Acc. Acc. Acc./F1 M acc.

WO. 56.34 65.7 88.85/84.07 88.64/88.48 56.53 92.32 90.66 90.71/87.49 84.10

W. F. 45.07 61.73 89.47/85.29 83.95/83.70 49.23 91.97 87.46 88.40/84.31 81.08
TSP.+F. 56.34 68.59 89.76/86.37 89.24/88.87 64.87 92.78 91.12 90.92/87.88 84.14

Table 1: Performance on the development dataset of GLUE. Results of W.(F.) are reported in Adapter-Hub. We
report results of WO. using the implementation from Wolf et al. (2020). Acc.: Accuracy. M acc.: Mismatched
Acc. P/S acc.: Person/Spearman corr. M corr.: Matthew’s corr. TSP.: Task-Specific Pretrain. F.: Finetune. WO.:
Without adapter. W.: With adapter.

for details). For instance, as observed in Fig. 1,
as the number of task-specific pretraining iteration
varies, CoLA’s performance is severely unstable in
fine-tuning. Besides instability, we also observe
that task-specific pretraining is vulnerable to ad-
versarial attack. Last but not least, task-specific
pretraining and/or fine-tuning on the entire model
is highly parameter-inefficient given the large size
of these models (e.g., the smallest BERT has 110
million parameters).

In this work, we propose a simple yet effective
adapter-based approach to mitigate these issues.
Adapters are some small bottleneck layers inserted
within each layer of a pretrained model (Houlsby
et al., 2019; Pfeiffer et al., 2020a,b). The adapter
layers are much smaller than the pretrained model
in terms of the number of parameters. For instance,
the adapter used in (Houlsby et al., 2019) only adds
3.6% parameters per task. In our approach, we
adapt the pretrained model to a downstream task
through 1) task-specific pretraining and 2) task-
specific supervised training (namely, fine-tuning)
on the downstream task (e.g., classification, se-
quence labeling) by only optimizing the adapters
and keeping all other layers fixed. Our approach is
parameter-efficient given that only a small number
of parameters are learned in the adaptation.

The adapted model learned through our approach
can be viewed as a residual form of the original
pretrained model. Suppose x is an input sequence
and horiginal is the features of x computed by the
original model. Then the feature computed by the
adapted model is,

hadapted = horiginal + fadapter(x), (1)

where fadapter(x) is the residual feature in addi-
tion to horiginal and fadapter is the adapter learned
in the adaptation process. horiginal extracts general
features that are shared across tasks, while fadapter
is learned to extract task-specific features. In prior
work (Houlsby et al., 2019; Pfeiffer et al., 2020b),

fadapter is learned with task-specific supervised
learning objective, distinctive from the unsuper-
vised pretraining objective, and might not be com-
patible with horiginal, as evidenced in our experi-
ments. In our approach, fadapter is first trained with
the same pretraining objective2 on the task-specific
data before being adapted with the supervised train-
ing objective, encouraging the compatibility be-
tween horiginal and fadapter, which is shown to im-
prove the downstream task performance in our ex-
periments (see Table 1).

Some prior works have examined the potential
causes of the instability of pretrained language
models in transfer learning. Lee et al. (2019)
proposed that catastrophic forgetting in sequential
transfer learning underlined the instability, while
Mosbach et al. (2020) proposed that gradient van-
ishing in fine-tuning caused it. Pinpointing the
cause of transfer learning instability is not the fo-
cus of the current work, but our proposed method
seems to able to enhance transfer learning on both
aspects.

The standard sequential transfer learning or that
with task-specific pretraining updates all model pa-
rameters in fine-tuning. In contrast, our approach
keeps the pretrained parameters unchanged and
only updates the parameters in the adapter layers,
which are a small amount compared to the pre-
trained parameters. Therefore, our approach natu-
rally alleviates catastrophic forgetting considering
the close distance between the original pretrained
model and the adapted model. On the other hand,
we do not observe gradient vanishing with our trans-
fer learning scheme (see Section 2 for more details).
This might be because optimizing over a much
smaller parameter space in our approach, compared
to the standard sequential transfer learning scheme
where all parameters are trained, renders the op-

2In this work, we conduct experiments with the most
widely used pretraining objective, masked language modeling.
The same training scheme can be extended to other pretraining
objectives.
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Figure 2: Distribution of dev scores on RTE from 10 random
seed restarts when finetuning (1) BERT (Devlin et al., 2019)
and (2) BERT with the adapter architecture.
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Figure 3: Gradient norms (on log scale) of intermediate layer
and classification layer on RTE for with/without-adapter fine-
tuning run. WO.: Without adapter. W.: With adapter.

timization easier. We leave it to future work for
further theoretical analysis.

In addition to its improved stability, the proposed
transfer learning scheme is also likely to be more
robust to adversarial attack. Given that it updates
the entire model, the standard transfer learning ap-
proach might suffer from overfitting to the down-
stream task, and thus a small perturbation in the
input might result in consequential change in the
model prediction. In turn, it might be susceptible
to adversarial attack. Our approach only updates
a much smaller portion of parameters, and hence
might be more robust to these attacks, which is con-
firmed in our empirical analysis (see Section 4).

Contributions. In summary our work has the
following contributions. (1) We propose a sim-
ple and parameter-efficient approach for trans-
fer learning. (2) We demonstrate that our ap-
proach improves the stability of the adaptation
training and adversarial robustness in downstream
tasks. (3) We show the improved performance of
our approach over strong baselines. Our source
code is publicly available at https://github.

com/WinnieHAN/Adapter-Robustness.git.

Figure 4: Box plots showing the TSP. stability of BERT
with/without adapter on CoLA.

Figure 5: Attack success rate of BERT with/without adapter
during task-specific pretraining. WO.: Without adapter. W.:
With adapter.

2 Instability to Different Random Seeds

We first evaluate the training instability with re-
spect to multiple random seeds: fine-tuning the
model multiple times in the same setting, vary-
ing only the random seed. We conduct the experi-
ments on RTE (Wang et al., 2018) when fine-tuning
1) BERT-base-uncased (Devlin et al., 2019) and
2) BERT-base-uncased with the adapter (Houlsby
et al., 2019) 3. As shown in Figure 2, the model
without adapter leads to a large standard deviation
on the fine-tuning accuracy, while the one with
adapter results in a much smaller variance on the
task performance.

Gradient Vanishing Mosbach et al. (2020) ar-
gues that the fine-tuning instability can be ex-
plained by optimization difficulty and gradient van-
ishing. In order to inspect if the adapter-based
approach suffers from this optimization problem,
we plot the L2 gradient norm with respect to differ-
ent layers of BERT, pooler layer and classification
layer, for fine-tuning with or without adapter in

3For all the experiments, we use the implementa-
tion of Pfeiffer et al. (2020b): https://github.com/
Adapter-Hub/adapter-transformers.git.

856



(a) Pretraining Iteration 0 (b) Pretraining Iteration 10000 (c) Pretraining Iteration 20000

Figure 9: Box plots showing the fine-tuning stability of BERT with/without adapter for different TSP. iterations on CoLA. WO.:
Without adapter. W.: With adapter.

Figure 3.
In traditional fine-tuning (without adapter), we

see vanishing gradients for not only the top layers
but also the pooler layer and classification layer.
This is in large contrast to the with-adapter fine-
tuning. The gradient norm in the with-adapter fine-
tuning does not decrease significantly in the train-
ing process. These results imply that the adaptation
with adapter does not exhibit gradient vanishing
and presents a less difficult optimization problem,
which in turn might explain the improved stability
of our approach.

3 Instability to Pretraining and
Fine-tuning Iterations

Fine-tuning with all parameters also exhibits an-
other instability issue. In particular, fine-tuning a
model multiple times on the pretrained language
model, varying the task-specific pretraining itera-
tions and fine-tuning iterations, leads to a large stan-
dard deviation in downstream task performance. As
observed in Figure 1, CoLA’s performance when
varying the task-specific pretraining iterations is
severely unstable during pretraining iterations and
fine-tuning iterations. The model has converged at
the pretraining iteration of 8000. However, fine-
tuning based on this model does not obtain the best
performance.

Pretraining Iterations. Figure 4 displays the
performance on CoLA of 10 fine-tuning runs with
and without the adapter. For each run, we vary only
the number of pretraining iterations from 2000 to
20000 with an interval of 2000 and fix the fine-
tuning epochs to 10. We clearly observe that most
runs for BERT with adapter outperforms the one
without adapter. Moreover, the adapter makes pre-
training BERT significantly more stable than the

standard approach (without adapter).

Fine-tuning Iterations. We then study the sta-
bility with regard to the number of fine-tuning
iterations. We show box plots for BERT using
various pretraining iterations and fine-tuning iter-
ations, with and without adapter in Figure 9. The
three sub-figures represent the early, mid, and late
stages of pretraining, corresponding to the 0-th,
10000-th, and 20000-th iteration respectively. The
0-th iteration represents the original model without
task-specific pretraining. The model suffers from
underfitting in the 0-th iteration and overfitting in
the 20000-th iteration.

In Figure 9 (a), we plot the distributions of the de-
velopment scores from 100 runs when fine-tuning
BERT with various fine-tuning epochs ranging
from 1 to 100. In the early stage, the average de-
velopment score of the model with the adapter is a
little lower than the baseline model while the sta-
bility is better. After several epochs of pretraining,
the adapter gradually shows improved performance
in terms of the mean, minimum and maximum as
demonstrated in Figure 9 (b). In the end of the pre-
trainig, there exists an over-fitting problem for the
traditional BERT models. Pretraining transfers the
model to a specific domain and fails to maintain the
original knowledge. In contrast, the performance
with the adapter still grows as training continues
and consistently benefit from pretraining. Besides,
we observe that the adapter leads to a small vari-
ance in the fine-tuning performance, especially in
the late stage. Additional plots and learning curves
can be found in the Appendix.

4 Adversarial Robustness

While successfully applied to many domains, the
predictions of Transformers (Vaswani et al., 2017)
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become unreliable in the presence of small adver-
sarial perturbations to the input (Sun et al., 2020;
Li et al., 2020). Therefore, the adversarial attacker
has become an important tool (Moosavi-Dezfooli
et al., 2016) to verify the robustness of models.
The robustness is usually evaluated from attack
effectiveness (i.e., attack success rate). We use a
SOTA adversarial attack approach to assess the ro-
bustness: PWWS attacker (Ren et al., 2019). 4.
Figure 5 shows the attack success rate of BERT
with/without adapter during task-specific pretrain-
ing on SST-2. The x-axis is the number of epochs
for task-specific pretraining. It can be observed that
the model with the adapter has better adversarial
robustness.

5 Conclusion

We propose a simple yet effective transfer learning
scheme for large-scale pretrained language model.
We insert small bottleneck layers (i.e., adapter)
within each block of the pretrained model and then
optimize the adapter layers in task-specific unsu-
pervised pretraining and supervised training (i.e.,
fine-tuning) while fixing the pretrained layers. Ex-
tensive experiments demonstrate that our approach
leads to improved stability with respect to different
random seeds and different number of iterations in
task-specific pretraining and fine-tuning, enhanced
adversarial robustness, and better transfer learning
task performance. We therefore consider the pro-
posed training scheme as a robust and parameter-
efficient transfer learning approach.
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A Hyper-Parameters Setting

We conduct the experiments on the task of
GLUE tasks (Wang et al., 2018) when fine-
tuning 1) BERT-base-uncased (Devlin et al.,
2019) and 2) BERT-base-uncased with the
adapter architecture (Houlsby et al., 2019). For
all the experiments, we use the implementa-
tion from https://github.com/Adapter-Hub/

adapter-transformers.git. For the model with
adapter, we follows the setup from Mosbach et al.
(2020). For all experiments, we use the default
hyper-parameters except for the number of epochs.
Please refer to the provided link.

The main hyper-parameters are listed in Table 2
and Table 3.

Max Sequence Length 256
Batch Size 32
Learning rate 1e-4
Number of Epochs 20

Table 2: Hyper-parameters for BERT with Adapter.

Max Sequence Length 128
Batch Size 32
Learning rate 2e-5
Number of Epochs 10

Table 3: Hyper-parameters for BERT without Adapter.

B Instability to Pretraining and
Fine-tuning Iterations

We provide box plots for BERT using various pre-
training iterations and fine-tuning iterations, with
and without adapter on CoLA in Figure 10. The
corresponding learning curves are in Figure 13.

C Instability for Large Dataset

In contrast to relatively large datasets, smaller data
is more suitable and convincing as an example
to analyze stability. Small dataset is easier to en-
counter over-fitting problems and often not stable
(Devlin et al., 2019). We use MNLI to evaluate the
training instability in terms of 5 random seeds with
the same setup in Figure 2. The interquartile range
of BERT with adapter on the distribution of dev
scores is smaller than BERT without adapter. It
shows that the model without adapter consistently
leads to the instability issue on the fine-tuning ac-
curacy, while the adapter architecture brings less
benefit with larger dataset.
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Figure 10: Box plots showing the fine-tuning stability of BERT with/without adapter for different pretraining
iteration from 0 to 20000.
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Figure 13: Learning curves of fine-tuning when varying the pretraining iterations.
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Abstract

Natural Language Inference (NLI) datasets
contain examples with highly ambiguous la-
bels. While many research works do not pay
much attention to this fact, several recent ef-
forts have been made to acknowledge and
embrace the existence of ambiguity, such as
UNLI and ChaosNLI. In this paper, we ex-
plore the option of training directly on the es-
timated label distribution of the annotators in
the NLI task, using a learning loss based on
this ambiguity distribution instead of the gold-
labels. We prepare AmbiNLI, a trial dataset
obtained from readily available sources, and
show it is possible to reduce ChaosNLI diver-
gence scores when finetuning on this data, a
promising first step towards learning how to
capture linguistic ambiguity. Additionally, we
show that training on the same amount of data
but targeting the ambiguity distribution instead
of gold-labels can result in models that achieve
higher performance and learn better represen-
tations for downstream tasks.

1 Introduction

Ambiguity is intrinsic to natural language, and cre-
ating datasets free of this property is a hard if not
impossible task. Previously, it was common to
disregard it as noise or as a sign of poor quality
data. More recent research, however, has drawn
our attention towards the inevitability of ambiguity,
and the necessity to take it into consideration when
working on natural language understanding tasks
(Pavlick and Kwiatkowski, 2019; Chen et al., 2020;
Nie et al., 2020; Swayamdipta et al., 2020). This
ambiguity stems from the lack of proper context or
differences in background knowledge between an-
notators, and leads to a large number of examples
where the correctness of labels can be debated.

ChaosNLI (Nie et al., 2020) is a dataset created
by manually annotating a subset of the SNLI (Bow-
man et al., 2015), MNLI (Williams et al., 2018),

and αNLI (Bhagavatula et al., 2020) datasets. Each
of the total 4,645 samples received 100 annotations.
Through this data, they were able to generate a
probability distribution over the labels for these
samples, which they call the human agreement dis-
tribution, with the goal of using it to evaluate the
ability of current state-of-the-art models to cap-
ture ambiguity. The divergence scores between
the model’s predicted probability distribution and
the true target distribution is computed and com-
pared against random and human baselines. They
showed that models trained using gold-labels have
very poor performance on the task of capturing the
human agreement distribution.

Although this is a promising first step, it remains
unclear how to train models with a better under-
standing of ambiguity, and what tangible benefits
we can obtain when actually doing so. In this work,
we study the possibility of shifting the training tar-
get of models from gold-labels to the ambiguity
distribution, a simple and intuitive yet until now un-
explored approach in this domain. We hypothesize
that when we finetune a model in this way, we can
achieve lower divergence scores in the ChaosNLI
benchmark. Further, we believe that it should also
bring accuracy improvements in NLI and other
downstream tasks. The intuition behind our perfor-
mance expectations is that an ambiguity distribu-
tion offers a more informative and less misleading
view on the answer to the task, which allows mod-
els to learn more from the same data.

We prepare a trial dataset with ambiguity distri-
butions obtained from available SNLI and MNLI
data, and run experiments to confirm our hypothe-
ses. We refer to it as AmbiNLI, but we do not
encourage its use in further work. Instead, we en-
courage the community to follow this direction by
performing further data collection in this area.

Our main contributions are showing that 1) mod-
els trained on ambiguity can more closely capture
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Dataset Split Used By #Samples #Labels

SNLI

Train UNLI 55,517 1r

Dev.
UNLI 3,040 1r
ChaosNLI 1,514 100
Original 9,842 5

Test UNLI 3,040 1r
Original 9,824 5

MNLI Dev. M. ChaosNLI 1,599 100
Original 9,815 5

Dev. Mism. Original 9,832 5

Table 1: Data with enough information to generate a
probability distribution over the labels. The marker “1r”
denotes the fact that there is only one data-point avail-
able, but it is a regression label in the [0,1] range, so it
can be converted.

the true human distribution, 2) they are able to
attain higher accuracy under otherwise equal con-
ditions, and 3) they learn better representations for
downstream tasks. We release the code used for
these experiments.1

2 AmbiNLI

2.1 Available Data

Data containing enough information to reveal am-
biguity is relatively scarce. To construct AmbiNLI
we generated the label distributions from several
sources. Table 1 details the available data that we
have taken into consideration.

SNLI / MNLI. Both SNLI and MNLI provide
labels assigned by 5 annotators on some subsets
of the data (marked “Original” in Table 1). Exam-
ples where no human agreement could be reached
(no majority) were given a special label (-1) and
are commonly filtered out. Although the precision
given by 5 labels is much lower than that of the 100
annotations provided in ChaosNLI, we believe that
even a rough and inaccurate ambiguity representa-
tion is more beneficial than gold-labels only.

UNLI. UNLI (Chen et al., 2020) presents a sub-
set of SNLI as a regression task, where each ex-
ample is annotated with a real value in the range
[0,1]. Values close to 0 indicate contradiction, and
values close to 1 represent entailment. Each entry
has one label only, but since it real-valued, it is
also possible to extract a distribution from it. Even
though it seems to be a less suitable data source,

1https://github.com/mariomeissner/
AmbiNLI

Data ChaosSNLI ChaosMNLI
Metric JSD↓ Acc.↑ JSD↓ Acc.↑
S/MNLI Baseline 0.2379 0.7497 0.3349 0.5566

+ AmbiSM Gold 0.2307 0.7497 0.3017 0.5660
+ AmbiSM 0.1893 0.7550 0.2619 0.5810

+ AmbiU Gold 0.3118 0.5878 0.3183 0.5260
+ AmbiU 0.2834 0.5964 0.2843 0.5178
+ AmbiU Filt. 0.2302 0.6790 0.2231 0.5779

+ AmbiSMU Gold 0.2936 0.6162 0.3540 0.5822
+ AmbiSMU 0.2554 0.6420 0.2575 0.5766
+ AmbiSMU Filt. 0.2155 0.7107 0.2748 0.5835

Table 2: Main results of our finetuning experiments on
AmbiNLI. Gold means that gold-labels, and not ambi-
guity distribution, was used for training. Filt. indicates
that extreme examples in UNLI have been filtered out.

we do intend to investigate its effectiveness for our
purposes.

ChaosNLI. ChaosNLI provides annotations
from 100 humans for 3,113 examples in the
development sets of SNLI and MNLI. We will
call these subsets ChaosSNLI and ChaosMNLI. In
order to allow for comparison with the original
paper, we use them for testing only.

2.2 Creating AmbiNLI

Original SNLI and MNLI data with 5 annotations
can be converted to an ambiguity distribution by
simply counting the number of annotations for each
label and then scaling it down into probabilities.
We make sure to avoid overlap between ChaosNLI
and “Original” data by removing the samples used
in ChaosNLI from the data we will include in Am-
biNLI. In the case of UNLI, we have taken only the
55,517 samples from the training set, so there is no
overlap with ChaosNLI. We apply a simple linear
approach to convert the UNLI regression value p
into a probability distribution zNLI, as described in
the following composed function (its plot can be
found in the Appendix A):

zNLI =

{
(0, 2p, 1− 2p) p < 0.5

(2p− 1, 2− 2p, 0) p ≥ 0.5.

The resulting AmbiNLI dataset has 18,152 SNLI
examples, 18,048 MNLI examples, and 55,517
UNLI examples, for a total of 91,717 premise-
hypothesis pairs with an ambiguity distribution as
the target label.
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3 Experiments

In our experiments, we use BERT-base (Devlin
et al., 2019) with pre-trained weights and a softmax
classification head. We use a batch size of 128 and
learning rate of 1e-5.

Learning to capture question ambiguity. In
our main experiment, we aim to judge whether is is
possible to learn how to capture the human agree-
ment distribution. We first obtain a base model
in the same manner as Nie et al. (2020), by pre-
training it for 3 epochs on the gold-labels of the
SNLI and MNLI training sets. We observed that
this pre-training step is necessary to provide the
model with a general understanding of the NLI
task to compensate for the low amount of ambi-
guity data available. We then finetune the model
on our AmbiNLI dataset, setting the training ob-
jective to be the minimization of the cross-entropy
between the output probability distribution and the
target ambiguity distribution. For evaluation, we
compute the ChaosNLI divergence scores, mea-
sured using the Jensen-Shannon Divergence (JSD),
as was done in their original experiments. Fur-
thermore, we explore what effect our ambiguity
learning has on accuracy by comparing models
trained on exactly the same data but with gold-
label training versus ambiguous training. In order
to achieve this, we prepare a version of AmbiNLI
where we replace the ambiguity distributions with
gold-labels. Since the two models have seen the
exact same data, performance differences can be
directly attributed to the process of capturing ambi-
guity. We report accuracy on ChaosNLI using their
re-computed gold-labels.

Further accuracy analysis. To reinforce our hy-
pothesis that accuracy improvements can be gained
by leveraging the extra knowledge that models cap-
ture with ambiguity, we run an additional experi-
ment on the ChaosMNLI dataset. We split it into
three folds, and perform three-fold cross validation
by training the model on two folds and evaluat-
ing on the third. Again, we start with our baseline
model and compare the gold-label approach against
ours.

Performance in different entropy ranges. We
also study the model performance in different en-
tropy ranges of the ChaosMNLI set. We bin the
evaluation samples based on their entropy value
into three equally sized ranges, and compare the

Folds AmbiSM Gold AmbiSM

0 0.4371 0.4409
1 0.5760 0.5591
2 0.4897 0.5629

Average 0.5009 0.5210

Table 3: Model accuracy when performing three-fold
cross validation of a BERT base model on ChaosMNLI.

Entropy Range JSD Accuracy

Full Range 0.2619 0.5810
[0.08 - 0.58] 0.2613 0.6706
[0.58 - 1.08] 0.2472 0.6262
[1.08 - 1.58] 0.2693 0.5087

Table 4: Entropy range performance comparison of the
AmbiSM model.

model performance on each. This experiment ana-
lyzes if the model is able to perform well in both
unambiguous and highly ambiguous settings.

Transfer learning. In this last experiment, we
aim to compare the usefulness of the representa-
tions that the BERT encoder is able to learn when
training on ambiguity distributions as opposed to
gold-labels. We use UNLI and IMBD movie re-
views (Maas et al., 2011) as the two downstream
tasks for evaluation. As we want to focus on the
representations learned during the ambiguity train-
ing phase, during the downstream task finetuning
we freeze the BERT layers and update only the
new classification head. We try with 1-layer and
2-layer heads using the ELU (Clevert et al., 2016)
activation function and a hidden size of 128. We
use the original train, development and test splits
for UNLI, and an 80/10/10% split for IMDB movie
reviews. We track development set loss and stop
after two epochs without improvement. Each ex-
periment is ran for 5 trials with different seeds and
the mean and standard deviation are reported for
each metric.

4 Results and Discussion

Training on the ambiguity distribution can re-
duce divergence scores. Table 2 details the re-
sults of our main experiment. Accuracy and JSD
are provided for both the SNLI and MNLI sec-
tions in ChaosNLI. Due to differences in hyper-
parameters or random seeds, we were not able to
exactly reproduce the base model provided in Nie
et al. (2020), but achieve similar results. We follow
with models further finetuned on different config-
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urations of our AmbiNLI dataset. AmbiSM refers
to the data originating from the original 5 label
distribution only, while AmbiU refers to the data
we obtained from UNLI. AmbiSMU thus refers
to the full dataset. For each combination, we also
trained a model on gold-labels (marked as “Gold”
in the table) for comparison. With the exception
of ChaosSNLI when including UNLI data, every
experiment has yielded a mentionable divergence
score improvement. The AmbiSM model shows a
20.5% and 21.7% JSD decrease in ChaosSNLI and
ChaosMNLI respectively. This means that we can
learn to capture the human agreement distribution
when we use it as a training target.

UNLI’s skewed distribution worsens scores.
When looking at the AmbiU and AmbiSMU results
in Table 2, it becomes apparent that UNLI data
is not always beneficial. Specifically, it seems to
worsen scores in all metrics except for ChaosMNLI
accuracy. The distribution of labels in UNLI is dras-
tically different from that of the remaining data, and
we believe that when a model is finetuned on it, this
distribution shift has a negative influence. We have
found a very large number of samples with labels
very close to 0 or 1, which translate into very ex-
treme non-ambiguous distributions when converted.
To confirm this, we filtered out all UNLI samples
that had a probability label p < 0.05 or p > 0.97,
and ran the “Filtered” experiments. Indeed, in Am-
biU, this naive filtering process yields about 20%
lower JSD scores and about 5% higher accuracy.
We conclude that UNLI data, under the current
conversion approach, is somewhat problematic.

Training on the ambiguity distribution can
yield accuracy improvements. We have found
that, for the case of AmbiSM, a model trained to
target the ambiguity distribution achieves higher
accuracy. This means that more precise knowledge
can be acquired when learning the true underly-
ing ambiguity of questions instead of the some-
times misleading gold-label. When using UNLI
data (AmbiU and AmbiSMU) however, the results
are mixed, as discussed above. Thus, to further
strengthen our argument on the benefit of ambi-
guity data, we refer to the supplementary experi-
ment results in Table 3, where we obtain a 2.1%
accuracy improvement when performing three-fold
cross-validation on the ChaosMNLI dataset. When
performing a qualitative analysis on the predictions
of the AmbiSM and AmbiSM Gold models, we

found that the former has a stronger tendency to-
wards neutrality, both in the number of correctly
predicted neutral labels and in the average neutral-
ity score given. However, it also resulted in some
examples now being incorrectly labeled as neutral.
It seems to be the case that the neutral label is
the main source of ambiguity. Most ambiguous
questions have a considerable amount of neutral
probability, which likely produces the shift. For
more details, including label counts for correct pre-
dictions as well as some prediction examples, refer
to Appendix B.

Divergence scores are stable. Through the en-
tropy range comparison of Table 4 we learn that
divergence scores remain similar across different
entropy subsets, showing that the model is capa-
ble of recognizing which questions are ambiguous,
and appropriately adjusting the entropy level of its
output. Accuracy dramatically decreases in high
entropy ranges, but this goes along with our intu-
ition, since both human annotators and the models
will have doubts regarding the correct answer to
the question, which leads to mismatches between
the model prediction and the assigned label.

Ambiguity models learn better representations
for transfer learning. Lastly, in Table 5, we ob-
serve a consistent performance improvement in
transfer learning to different tasks. From the re-
sults we can infer that, by targeting the ambiguity
distribution, the model can capture better linguis-
tic representations than by targeting gold-labels.
We believe that a similar trend should be visible
in other tasks as well, and that the margins of im-
provement should increase with more ambiguity
data to train on.

Is ambiguity training worth the extra labeling
cost? One argument against this method is the
apparent extra labeling cost required. Indeed,
when comparing the gold-label and ambiguity ap-
proaches at equal number of total labels, the gold-
label approach would likely attain higher perfor-
mance due to the difference in number of samples.
However, we argue that collecting multiple labels
has several benefits other than ambiguity distribu-
tion generation. Most importantly, they help avoid
mis-labelings and raise the overall quality of the
dataset. In many occasions, multiple labels are
already being collected for these reasons, but occa-
sionally not released (for example, Bowman et al.
(2015) didn’t release the multiple labels they col-
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UNLI IMDB
Model Pearson↑ MSE↓ CE Loss↓ Acc.↑

1 Layer
AmbiSM G .6331(0.9) .0758(0.5) .4727(1.7) .7758(6.4)
AmbiSM .6354(1.0) .0754(0.4) .4701(1.5) .7783(6.1)

2 Layers
AmbiSM G .6266(5.9) .0765(1.0) .4431(0.8) .7906(4.3)
AmbiSM .6290(4.1) .0762(0.7) .4392(1.2) .7939(3.3)

Table 5: Transfer learning comparison on UNLI and
IMDB movie reviews (std is ×10−4). For UNLI we
measure the Pearson correlation and mean squared er-
ror (MSE), following Chen et al. (2020). For IMDB,
we measure the accuracy and cross-entropy (CE) loss
on the test set. G means Gold.

lected for 10% of the training data). They can also
be used in other methods such as item response
theory (Lalor et al., 2016). Furthermore, this pa-
per’s main intention is not to encourage multi-label
collection at the cost of sample quantity, but rather
to show the benefits of exploiting the ambiguity
distribution if it is available.

5 Conclusion

We hypothesized that the intrinsic ambiguity
present in natural language datasets can be ex-
ploited instead of treating it like noise. We used
existing data to generate ambiguity distributions
for subsets of SNLI, MNLI, and UNLI, and trained
new models that are capable of more accurately
capturing the ambiguity present in these datasets.
Our results show that it is indeed possible to ex-
ploit this ambiguity information, and that for the
same amount of data, a model trained to recognize
ambiguity shows signs of higher performance in
the same task as well as in other downstream tasks.

However, our dataset was created using existing
resources and lacks in quality and quantity. While
it was enough to show that this research direction
is promising, it limited the strength of our results.
In future work, we wish to obtain larger amounts
of data by using crowdsourcing techniques, and
expand our scope to other NLP tasks as well.
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Figure 1: Linear approach to converting the UNLI re-
gression value into an ambiguity distribution.

A Conversion Function

Figure 1 shows a plot of the linear conversion ap-
proach that we have taken to convert UNLI data
into a probability distribution.

B Qualitative Analysis

To investigate the prediction differences between an
ambiguous model and one trained on gold-labels,
we compared AmbiSM and AmbiSM Gold predic-
tions on the ChaosMNLI dataset (see Table 6). We
use the new labels obtained from the ChaosNLI
majority vote, instead of the original MNLI labels.
We focus on two situations: 1) when only Am-
biSM can predict the label correctly and 2) when
only AmbiSM Gold can predict the label correctly.
We picked samples from the high entropy regions
to observe how the models deal with ambiguity.
Generally, AmbiSM has a higher tendency towards
neutrality. However, it was also able to show con-
fidence in some samples that are more entailed or
contradicted. On the other hand, we also observe
some samples that were missed by AmbiSM due
to its tendency, while AmbiSM Gold could predict
them correctly.

Furthermore, we show the label counts for the
samples that were correctly labeled by only one of
the two models in Figure 2. The labels of the sam-
ples that are predicted correctly by AmbiSM Gold
show the same distribution as the ChaosMNLI
dataset as a whole. However, within the samples
that are only predicted correctly by AmbiSM we
can find a higher amount of neutral labels. This
emphasizes that the behavior of the model trained
on ambiguity targets can deal with neutral labels
in NLI better; neutral labels are likely to be the
biggest source of ambiguity.
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Premise Hypothesis CHAOS ASM ASMG

Only AmbiSM is correct

They were in rotation on the
ground grabbing their weapons.

The woman rolled and drew
two spears before the horse had
rolled and broken the rest.

E0.33

N0.51

C0.16

E0.178

N0.522

C0.300

E0.065

N0.282

C0.653

Some of the unmet needs are
among people who can pay, but
who are deterred from seeking
a lawyer because of the uncer-
tainty about legal fees and their
fear of the profession.

Some people can’t afford it.
E0.47

N0.40

C0.13

E0.572

N0.398

C0.030

E0.476

N0.494

C0.030

This number represents the
most reliable, albeit conserva-
tive, estimate of cases closed in
1999 by LSC grantees.

This is an actual verified num-
ber of closed cases.

E0.21

N0.12

C0.67

E0.281

N0.151

C0.568

E0.485

N0.123

C0.391

Only AmbiSM Gold is correct

And it needs work too, you
know, in case I have to jump
out with this parachute from my
lil’ blue sports plane for real.’

It needs to work Incase he has
to jump out a window.

E0.44

N0.28

C0.28

E0.414

N0.429

C0.156

E0.489

N0.386

C0.125

uh wasn’t that Jane Eyre no he
wrote Jane Eyre too

Was it Jane Eyre or not?
E0.58

N0.36

C0.06

E0.398

N0.422

C0.180

E0.474

N0.413

C0.113

Thus, the imbalance in the vol-
ume of mail exchanged magni-
fies the effect of the relatively
higher rates in these countries.

There is an imbalance in ingo-
ing vs outgoing mail.

E0.60

N0.35

C0.05

E0.400

N0.499

C0.101

E0.458

N0.450

C0.092

Table 6: Example of ChaosMNLI prediction for AmbiSM and AmbiSM Gold. CHAOS is the human distribution,
ASM is the predicted distribution by AmbiSM and ASMG is the predicted distribution by AmbiSM Gold. The
labels E, N, and C stand for entailment, neutral, and contradiction and their probabilities are appended.

Figure 2: The count plot of the labels of the correctly predicted samples by either AmbiSM Gold or AmbiSM,
AmbiSM Gold (left), AmbiSM (middle), and the labels of the whole ChaosMNLI (right). The labels e, n, and c
stand for entailment, neutral, and contradiction respectively.
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Abstract

Detecting Out-of-Domain (OOD) or unknown
intents from user queries is essential in a task-
oriented dialog system. A key challenge of
OOD detection is to learn discriminative se-
mantic features. Traditional cross-entropy loss
only focuses on whether a sample is correctly
classified, and does not explicitly distinguish
the margins between categories. In this pa-
per, we propose a supervised contrastive learn-
ing objective to minimize intra-class variance
by pulling together in-domain intents belong-
ing to the same class and maximize inter-class
variance by pushing apart samples from differ-
ent classes. Besides, we employ an adversar-
ial augmentation mechanism to obtain pseudo
diverse views of a sample in the latent space.
Experiments on two public datasets prove the
effectiveness of our method capturing discrim-
inative representations for OOD detection. 1

1 Introduction

Detecting Out-of-Domain (OOD) or unknown in-
tents from user queries is an essential component
in a task-oriented dialog system (Gnewuch et al.,
2017; Akasaki and Kaji, 2017; Tulshan and Dhage,
2018; Shum et al., 2018). It aims to know when a
user query falls outside their range of predefined
supported intents to avoid performing wrong opera-
tions. Different from normal intent detection tasks,
we do not know the exact number of unknown in-
tents in practical scenarios and can barely annotate
extensive OOD samples. Lack of real OOD ex-
amples leads to poor prior knowledge about these
unknown intents, making it challenging to identify
OOD samples in the task-oriented dialog system.

∗The first two authors contribute equally. Weiran Xu is
the corresponding author.

1Our code is available at https://github.com/p
arZival27/supervised-contrastive-learnin
g-for-out-of-domain-detection.

Previous methods of OOD detection can be gen-
erally classified into two types: supervised and
unsupervised OOD detection. Supervised OOD
detection (Scheirer et al., 2013; Fei and Liu, 2016;
Kim and Kim, 2018; Larson et al., 2019; Zheng
et al., 2020; Zeng et al., 2021b) represents that
there are extensive labeled OOD samples in the
training data. In contrast, unsupervised OOD de-
tection (Bendale and Boult, 2016; Hendrycks and
Gimpel, 2017; Shu et al., 2017; Lee et al., 2018;
Ren et al., 2019; Lin and Xu, 2019; Xu et al., 2020;
Zeng et al., 2021a) means no labeled OOD samples
except for labeled in-domain data. Specifically, for
supervised OOD detection, Fei and Liu (2016); Lar-
son et al. (2019), form a (N+1)-class classification
problem where the (N + 1)-th class represents the
unseen intents. Further, Zheng et al. (2020) uses
labeled OOD data to generate an entropy regular-
ization term to enforce the predicted distribution
of OOD inputs closer to the uniform distribution.
However, these methods heavily rely on large-scale
time-consuming labeled OOD data. Compared to
these supervised methods, unsupervised OOD de-
tection first learns discriminative intent represen-
tations via in-domain (IND) data, then employs
detecting algorithms, such as Maximum Softmax
Probability (MSP) (Hendrycks and Gimpel, 2017),
Local Outlier Factor (LOF) (Lin and Xu, 2019),
Gaussian Discriminant Analysis (GDA) (Xu et al.,
2020) to compute the similarity of features between
OOD samples and IND samples. In this paper, we
focus on the unsupervised OOD detection.

A key challenge of unsupervised OOD detection
is to learn discriminative semantic features via IND
data. We hope to cluster the same type of IND
intents more tightly and separate different types
of IND intents further. Traditional softmax loss
(Hendrycks and Gimpel, 2017) only focuses on
whether the sample is correctly classified, and does
not explicitly distinguish the relationship between
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a) The in-domain intent classifier b) Using intent representations for OOD detection
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Figure 1: The overall architecture of our proposed method. We first train an intent classifier on IND data using CE
or SCL+CE objectives. Then, we extract the intent representation of a test sample to detect OOD.

categories. Further, Lin and Xu (2019) proposes
a large margin cosine loss (LMCL) (Wang et al.,
2018) which maximizes the decision margin in the
latent space. LMCL forces the model to not only
classify correctly but also maximize inter-class vari-
ance and minimize intra-class variance. Following
the similar motivation, we aim to pull intents be-
longing to the same class together while simultane-
ously pushing apart samples from different classes
to further model discriminative semantic features.

In this paper, we propose a supervised con-
trastive learning (SCL) model to learn discrimi-
native semantic intent representation for OOD de-
tection. SCL aims to minimize intra-class vari-
ance by pulling together IND intents belonging to
the same class and maximize inter-class variance
by pushing apart samples from different classes.
Empirical results demonstrate the effectiveness of
discriminative representation for OOD detection.
Besides, to enhance the diversity of data augmen-
tation in SCL, we employ an adversarial attack
mechanism to obtain pseudo hard positive samples
in the latent space by computing model-agnostic
adversarial worst-case perturbations to the inputs.
Our contributions are three-fold: (1) To the best
of our knowledge, we are the first to apply super-
vised contrastive learning to OOD detection. (2)
Compared to cross-entropy (CE) loss, SCL+CE
can maximize inter-class variance and minimize
intra-class variance to learn discriminative seman-
tic representation. (3) Extensive experiments and
analysis on two public datasets demonstrate the
effectiveness of our method.

2 Methodology

Overall Architecture Fig 1 shows the overall ar-
chitecture of our proposed method. As Fig 1(a)
displays, we first train an IND intent classifier us-

ing CE or SCL+CE objectives in the training stage.
Then in the test stage, we extract the intent feature
of a test sample and employ the detection algo-
rithms MSP (Hendrycks and Gimpel, 2017), LOF
(Lin and Xu, 2019) or GDA (Xu et al., 2020) to de-
tect OOD. 2 Fig 1(b) demonstrates the effectiveness
of our method capturing discriminative intent rep-
resentations, where SCL+CE can maximize inter-
class variance and minimize intra-class variance.

Supervised Contrastive Learning We first re-
view the classic cross-entropy (CE) loss and its im-
proved version, large margin cosine loss (LMCL).
Then we explain our supervised contrastive loss
(SCL) in detail. Given an IND sample xi and its
intent label yi, we adopt a BiLSTM (Hochreiter
and Schmidhuber, 1997) or BERT (Devlin et al.,
2019) encoder to get the intent representation si.
The CE loss and LMCL are defined as follows 3:

LCE =
1

N

∑

i

− log
eW

T
yi
si/τ

∑
j e

WT
j si/τ

(1)

LLMCL=
1

N

∑

i

−log eW
T
yi
si/τ

eW
T
yi
si/τ+

∑
j 6=yi

e(W
T
j si+m)/τ

(2)
where N denotes the number of training samples,
yi is the ground-truth class of the i-th sample, τ is
the temperature factor, Wj is the weight vector of
the j-th class, and m is the cosine margin. Com-
pared to CE, LMCL adds a normalized decision
margin on the negative classes and forces the model
to explicitly distinguish positive class and negative
classes. Our experiment 3.2 shows LMCL can
slightly improve the performance of OOD detec-

2In this paper, we focus on the first training stage. Thus
we dive into the details about the detection algorithms MSP,
LOF and GDA in the appendix.

3For brevity, we omit the L2 normalization on both fea-
tures and weight vectors for LMCL.
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Models
CLINC-Full CLINC-Small

IND OOD IND OOD
ACC F1 Recall F1 ACC F1 Recall F1

LSTM

CE 86.34 87.73 63.72 65.23 84.24 84.30 60.40 61.07
LMCL 86.83 87.90 64.14 65.79 84.46 84.87 60.72 61.89
SCL+CE(ours) 87.01 88.28 66.80 67.68 85.73 86.61 63.96 64.44
SCL+LMCL(ours) 87.37 88.60 66.92 68.04 85.93 87.02 64.16 64.70

BERT

CE 88.13 88.98 64.24 66.17 86.68 86.20 61.64 62.58
LMCL 88.57 89.12 64.76 66.80 86.76 86.64 62.20 63.11
SCL+CE(ours) 88.97 89.57 66.84 68.03 87.65 88.07 64.44 64.52
SCL+LMCL(ours) 89.20 90.03 67.28 68.21 87.87 88.30 64.64 65.01

Table 1: Performance comparison on CLINC-Full and CLINC-Small datasets (p < 0.05 under t-test).

tion. To further model discriminative intent repre-
sentations, motivated by recent contrastive learning
work (Chen et al., 2020; He et al., 2020; Khosla
et al., 2020; Gunel et al., 2020), we propose a su-
pervised contrastive learning objective to minimize
intra-class variance and maximize inter-class vari-
ance:

LSCL =
N∑

i=1

− 1

Nyi − 1

N∑

j=1

1i 6=j1yi=yj

log
exp (si · sj/τ)∑N

k=1 1i 6=k exp (si · sk/τ)

(3)

where Nyi is the total number of examples in the
batch that have the same label as yi and 1 is an
indicator function. Note that we only perform SCL
on the IND data since we focus on the unsupervised
OOD detection where no labeled OOD data exists.
As Fig 1(b) shows, SCL aims to pull together IND
intents belonging to the same class and pushing
apart samples from different classes, which helps
recognize OOD intents near the decision boundary.
In the implementation, we first pre-train the intent
classifier using SCL, then finetune the model using
CE or LMCL, both on the IND data. We compare
iterative training and joint training in the appendix.

Adversarial Augmentation Chen et al. (2020)
has proved the necessity of data augmentation for
contrastive learning. However, there is no simple
and effective augmentation strategy in the NLP
area, which requires much handcrafted engineer-
ing. Thus, we apply adversarial attack (Goodfellow
et al., 2015; Kurakin et al., 2016; Jia and Liang,
2017; Zhang et al., 2019; Yan et al., 2020) to gen-
erate pseudo positive samples to increase the diver-
sity of views for contrastive learning. Specifically,
we need to compute the worst-case perturbation
δ that maximizes the original cross-entropy loss
LCE : δ = argmax

‖δ′‖≤ε
LCE

(
θ,x+ δ′

)
, where θ

represents the parameters of the intent classifier and
x denotes a given sample. ε is the norm bound of

the perturbation δ. We apply Fast Gradient Value
(FGV) (Rozsa et al., 2016) to approximate the per-
turbation δ:
δ = ε

g

||g|| ;where g = ∇xLCE(f(x;θ), y) (4)

We perform normalization to g and then use a
small ε to ensure the approximate is reasonable.
Finally, we can obtain the pseudo augmented sam-
ple xadv = x+ δ in the latent space. The pseudo
samples are applied to augment positive views per
anchor in SCL. Ablation study 3.3 shows adversar-
ial augmentation significantly improves the perfor-
mance of SCL for OOD detection.

3 Experiments

3.1 Setup

Datasets We use two benchmark OOD datasets,
CLINC-Full and CLINC-Small (Larson et al.,
2019). We report IND metrics: Accuracy(Acc)
and F1, and OOD metrics: Recall and F1. OOD
Recall and F1 are the main evaluation metrics in
this paper. Baselines We adopt LSTM and BERT
as our intent classifier and compare SCL with CE
and LMCL. Since only using SCL can’t classify
in-domain intents directly, we first pre-train the
classifier using SCL, then finetune the model using
CE or LMCL, both on the IND data. We use three
OOD detection algorithms MSP, LOF and GDA
to verify the generalization capability of SCL. We
present dataset statistics, implementation details,
and results on MSP and LOF in the appendix.

3.2 Main Results

Tab 1 displays the main results on GDA. Com-
bining SCL and CE/LMCL significantly outper-
forms all the baselines, both on OOD and IND met-
rics. For OOD metrics, using SCL+CE in LSTM
outperforms CE by 3.08%(Recall) and 2.45%(F1)
on CLINC-Full, 3.56%(Recall) and 3.37%(F1) on
CLINC-Small. Similar improvements based on
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models min max mean median

LSTM
CE 1.13E-07 2.63E-04 4.23E-05 1.61E-05
SCL+CE 4.35E-08 1.85E-04 3.23E-05 1.39E-05

BERT
CE 8.26E-08 2.23E-04 3.84E-05 1.56E-05
SCL+CE 2.86E-08 1.67E-04 3.05E-05 1.36E-05

Table 2: Intra-class variance statistics.
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Figure 2: Comparison between inter-class distances.

LMCL are observed. The results prove the ef-
fectiveness of SCL for OOD detection. For IND
metrics, using SCL+CE in LSTM outperforms CE
by 0.67%(ACC) and 0.55%(F1) on CLINC-Full,
1.49%(ACC) and 2.31%(F1) on CLINC-Small.
The results confirm SCL also helps IND intent de-
tection. The difference between OOD and IND
improvements is probably attributed to metric scale
and data imbalance in the original test set. Besides,
SCL gains higher improvements on CLINC-Small
than CLINC-Full, which displays the advantage of
our approach in the few-shot scenario (see details
in Section 3.3). SCL also gets consistent improve-
ments on BERT by 2.60%(Recall) and 1.86%(F1)
on CLINC-Full OOD metrics, 0.84%(ACC) and
0.59%(F1) on CLINC-Full IND metrics, substan-
tiating our method is model-agnostic for different
OOD detection architectures.

3.3 Analysis

Analysis of IND feature distribution. We ana-
lyze the representation distribution of IND data on
CLINC-Full dataset from two perspectives, intra-
class and inter-class. We choose SCL+CE based
on GDA to perform analysis. Tab 2 shows the
statistics of intra-class variance, which can indi-
cate the degree of clustering of intra-class data
representations. Specifically, we average the vari-
ances of each sample normalized representation
with the same intent label to its cluster center in
the test set as cluster intra-class variance, then re-
port min/max/mean/median values on all cluster
intra-class variances. Results show SCL effectively
decreases intra-class variances, especially in terms
of max and mean values, which confirms SCL can

Proportion 10% 20% 30% 40% 50%

IND F1
CE 63.31 70.77 77.84 81.55 84.30
SCL+CE 69.50 75.14 81.45 84.18 86.61
Relative↑ 9.78% 6.17% 4.64% 3.23% 2.74%

OOD F1
CE 42.16 48.34 53.00 57.92 61.07
SCL+CE 50.10 54.43 58.61 62.12 64.44
Relative↑ 18.83% 12.60% 10.58% 7.25% 5.52%

Table 3: Effect of training data size.
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Figure 3: Effect of Adversarial Perturbation Norm.

converge intra-class intent representations.
Fig 2 shows the inter-class distances. We aver-

age dot product distances between each class center
to its k nearest class centers, then average results
of all classes as inter-class distance. The X-axis
denotes the number of k. We observe a significant
increase in SCL+CE compared to CE. When k is
smaller, the increase is more obvious. It verifies
SCL can maximize inter-class variance and distin-
guish intent classes. We also provide visualization
analysis in the appendix. In summary, SCL can
pull together IND intents belonging to the same
class and push apart samples from different classes,
which makes representations more discriminative.
Effect of IND Training Data Size. Tab 3 shows
the effect of IND training data size. We randomly
choose training data with a certain proportion from
CLINC-Full IND data and use the original test set
for evaluation. We use the LSTM+GDA setting.
Results show SCL+CE consistently outperforms
CE. Besides, with the decrease of training data
size, the relative improvements gradually increase.
It proves SCL has strong robustness for improving
OOD detection, especially in the few-shot scenario.
Analysis of Adversarial Perturbation Norm.
Fig 3 shows the effect of adversarial perturbation
norm ε on OOD detection performance. We con-
duct the experiments on CLINC-Full dataset, using
LSTM and GDA. The X-axis denotes the value
of ε. The CE+GDA dashed line means no SCL
pre-training and ε = 0.0 in the SCL+CE+GDA
solid line means no adversarial augmentation. In
general, both SCL and adversarial augmentation
contribute to the improvements and ε ∈ (1.0, 2.0)
achieves better performances. Compared with the
baseline without SCL, the SCL+CE method with
a smaller adversarial perturbation can still obtain
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Figure 4: Visualization of in-domain representation distribution.

settings IND OOD
dimension batch size ACC F1 Recall F1
128 50 87.01 88.28 66.80 67.68
128 100 87.52 88.60 67.08 68.12
128 200 88.10 89.05 67.56 68.63
256 50 87.17 88.40 66.96 67.92
256 100 87.85 88.96 67.32 68.37
256 200 88.37 89.24 67.76 68.94
512 50 87.35 88.78 67.32 68.47
512 100 88.14 89.22 67.64 68.69
512 200 88.54 89.50 68.00 69.27

Table 4: Parameter analysis of batch size and represen-
tation dimension.

better results but lower than the results with an
optimal range of perturbation, while large norms
tend to damage the effect of SCL. Our method still
performs well with a broad range of adversarial
perturbation and is insensitive to hyperparameters.
Parameter Analysis. As our proposed SCL is
a method involving contrastive learning, we an-
alyze batch sizes and representation dimensions to
further verify the effectiveness, whose results are
presented in Table 4. We conduct experiments in
CLINC-Full dataset, using LSTM and SCL+CE
objective for training and GDA for detection. With
the increase of batch size and representation dimen-
sion, both in-domain and OOD metrics are slightly
improved. However, compared with the method
proposed in this paper, the improvement is rela-
tively limited. In general, our proposed method is
not sensitive to hyperparameters and can show the
expected effect under a wide range of reasonable
settings.
Feature Visualization. As shown in Fig 4, we
extract several groups of similar classes for PCA
visualization analysis. The three pictures in the

upper part represent training using only CE, while
the three pictures in the lower part use SCL+CE for
training. In the same column, we sample the same
classes for observation. It is worth noting that the
scale of the image has been adjusted adaptively in
order to display all the data. The actual distance
can be sensed by observing the marking of the
coordinate axis. After SCL is added, the distance
between similar classes is significantly expanded,
and the data in the same classes are more closely
clustered.

4 Conclusion

In this paper, we focus on the unsupervised OOD
detection where no labeled OOD data exist. To
learn discriminative semantic intent representations
via in-domain data, we propose a novel supervised
contrastive learning loss (SCL). SCL aims to min-
imize intra-class variance by pulling together in-
domain intents belonging to the same class and
maximize inter-class variance by pushing apart
samples from different classes. Experiments and
analysis confirm the effectiveness of SCL for OOD
detection. We hope to provide new guidance for
future OOD detection work.
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Broader Impact

Task-oriented dialog systems have demonstrated
remarkable performance across a wide range of
applications, with the promise of a significant posi-
tive impact on human production mode and lifeway.
However, in scenarios where information is com-
plex and rapidly changing, models usually face
input that is meaningfully different from typical ex-
amples encountered during training. Current mod-
els are prone to make unfounded predictions on
these inputs, which may affect human judgment
and thus impair the safety of models in practical
applications. In domains with the greatest potential
for societal impacts, such as navigation or medical
diagnosis, models should be able to detect poten-
tially agnostic OOD and be robust to high-entropy
inputs to avoid catastrophic errors. This work pro-
poses a novel unsupervised OOD detection method
that using supervised contrastive learning to learn
discriminative semantic intent representations. The
effectiveness and robustness of the model are sig-
nificantly improved by adding a supervised con-
trastive learning pre-training stage, which takes
a step towards the ultimate goal of enabling the
safe real-world deployment of task-oriented dialog
systems in safety-critical domains. The experimen-
tal results have been reported on standard bench-
mark datasets for considerations of reproducible
research.
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A Dataset Details

Table 5 shows the details of two benchmark OOD
dataset4 CLINC-Full and CLINC-Small (Larson
et al., 2019). They both contain 150 in-domain
intents across 10 domains. It is worth noting that
our paper does not use labeled OOD data from the
training set in the training stage.

CLINC Full Small
Avg utterance length 9 9
Intents 150 150
Training set size 15100 7600
Training samples per class 100 50
Training OOD samples amount 100 100
Development set size 3100 3100
Development samples per class 20 20
Development OOD samples amount 100 100
Testing Set Size 5500 5500
Testing samples per class 30 30
Development OOD samples amount 1000 1000

Table 5: Statistics of the CLINC datasets.

B Baseline Details

We compare many types of unsupervised OOD de-
tection models. Therefore, the model proposed in
this paper can be divided into the training stage and
detection stage. For each model LSTM or BERT,
we use different detection methods to verify its per-
formance. The innovation of this paper focuses
mainly on the training stage. Due to the limitation
of space, we do not detailed introduce the detection
methods in the main body. We will supplement the
relevant contents as follows:
MSP (Maximum Softmax Probability)(Hendrycks
and Gimpel, 2017) applies a threshold on the max-
imum softmax probability where the threshold is
set to 0.5 according to the dev set.
LOF (Local Outlier Factor)(Lin and Xu, 2019)
uses the local outlier factor to detect unknown in-
tents. The motivation is that if an example’s lo-
cal density is significantly lower than its k-nearest
neighbor’s, it is more likely to be considered as the
unknown intents.
GDA (Gaussian Discriminant Analysis)(Xu et al.,
2020) is a generative distance-based classifier
for out-of-domain detection with Euclidean space.
They estimate the class-conditional distribution on
feature spaces of DNNs via Gaussian discriminant
analysis (GDA) to avoid over-confidence problems

4https://github.com/clinc/oos-eval

and use Mahalanobis distance to measure the con-
fidence score of whether a test sample belongs to
OOD. GDA is the state-of-the-art detection meth-
ods till now, so we adopt GDA as our main de-
tection algorithm. We also report MSP and LOF
results in Section D.

C Implementation Details

We use the public pre-trained 300 dimensions
GloVe embeddings (Pennington et al., 2014)5 or
bert-base-uncased (Devlin et al., 2019)6 model to
embed tokens. We use a single-layer BiLSTM as a
feature extractor and set the dimension of hidden
states to 128. The dropout value is fixed at 0.5.
We use Adam optimizer (Kingma and Ba, 2014) to
train our model. We set a learning rate to 1E-03 for
GloVe+LSTM and 1E-04 for Bert. In the training
stage, 100 epochs of supervised contrastive train-
ing are first conducted, then 10 epochs of finetune
training are conducted with CE or LMCL. Both
phases are training only on in-domain labeled data.
The training stage has an early stop setting with
patience equal to 5. We use the best F1 scores on
the validation set to calculate the GDA threshold
adaptively. Each result of the experiments is tested
5 times under the same setting and gets the average
value. The norms of adversarial perturbation are
obtained by the heuristic method, in which MSP
and LOF are 1.0 and GDA is 1.5. The training
stage of our model lasts about 10 minutes using
GloVe embeddings, and 18 minutes using Bert-
base-uncased, both on a single Tesla T4 GPU(16
GB of memory). The average value of the trainable
model parameters is 3.05M.

D Supplementary Experimental Results

Various Detection Methods In this paper, the
experiments and analysis are mainly conducted
around the training stage. Different detection mod-
els are used to verify the generalization of our pro-
posed method. Due to the limitation of space, we
use GDA for most of the presentation in the main
body. The main experiments of LOF and MSP
using LSTM feature extractor are shown in Table
6. It is worth noting that using different detection
methods can obtain the same analysis results as the
main experimental in the main body.
Combining two training stages in different
ways We display results of different combining

5https://github.com/stanfordnlp/GloVe
6https://github.com/google-research/bert
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Models
CLINC-Full CLINC-Small
IND OOD IND OOD
ACC F1 Recall F1 ACC F1 Recall F1

LOF

CE 85.46 85.80 57.40 58.78 82.45 82.73 52.88 53.90
LMCL 85.87 86.08 58.32 59.28 82.83 82.98 53.96 54.63
SCL+CE(ours) 86.52 86.80 60.72 61.80 83.13 83.39 56.88 57.48
SCL+LMCL(ours) 86.94 87.15 61.88 63.03 83.40 83.57 57.92 58.60

MSP

CE 85.76 86.27 27.12 34.91 83.81 84.12 20.40 22.76
LMCL 87.36 87.62 31.28 36.66 85.02 85.30 24.16 25.72
SCL+CE(ours) 87.44 87.87 33.68 39.34 85.54 85.95 27.24 27.43
SCL+LMCL(ours) 88.89 89.21 35.40 41.75 86.87 87.20 29.28 31.02

Table 6: Supplementary experimental results of LOF and MSP.

models
IND OOD
ACC F1 Recall F1

CE 86.34 87.73 63.72 65.23
CE+SCL 82.29 83.59 61.96 63.40
multitask 86.69 88.02 65.76 67.25
SCL+CE 87.01 88.28 66.80 67.68

Table 7: Results of combining two training stages in
different ways

ways of two training stages on CLINC-Full dataset
using LSTM and GDA detection method in Ta-
ble 7. CE is the baseline that only uses the cross-
entropy loss function to train the feature extrac-
tor. SCL+CE follows the paradigm of pre-training
first and then finetuning, which achieves the best
performance. Besides, we try two different com-
binations to explore the relationship between the
two training stages. CE+SCL means that we first
conduct training to minimize cross-entropy loss,
and then conduct supervised contrastive learning.
The results show that the subsequent SCL leads
to a decline in metrics, especially on in-domain.
This is because SCL, while optimizing the repre-
sentation distribution, compromises the mapping
relationship with labels. Multitask means to opti-
mize two losses simultaneously. This setting leads
to mutual interference between two tasks, which
affects the convergence effect and damages the per-
formance and stability of the model. In general,
SCL should be used as a pre-training method and
CE as a finetuning method. The best results can be
achieved by first using SCL to learn discriminative
representation and then finetuning the model by
CE.
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Abstract
Existing dialog state tracking (DST) models
are trained with dialog data in a random or-
der, neglecting rich structural information in
a dataset. In this paper, we propose to
use curriculum learning (CL) to better lever-
age both the curriculum structure and schema
structure for task-oriented dialogs. Specifi-
cally, we propose a model-agnostic framework
called Schema-aware Curriculum Learning
for Dialog State Tracking (SaCLog), which
consists of a preview module that pre-trains
a DST model with schema information, a cur-
riculum module that optimizes the model with
CL, and a review module that augments mis-
predicted data to reinforce the CL training.
We show that our proposed approach improves
DST performance over both a transformer-
based and RNN-based DST model (TripPy and
TRADE) and achieves new state-of-the-art re-
sults on WOZ2.0 and MultiWOZ2.1.

1 Introduction

Dialog state tracking (DST) extracts users’ goals in
task-oriented dialog systems, where dialog states
are often represented in terms of a set of slot-value
pairs (Williams et al., 2016; Eric et al., 2020). Due
to the language variety of multi-turn dialogs, the
concepts of slots and values are often indirectly ex-
pressed in the conversation (such as co-references,
ellipsis, and diverse appearances), which are a ma-
jor bottleneck for improving DST performance
(Gao et al., 2019; Hu et al., 2020). Many exist-
ing DST methods have focused on designing better
model architectures to tackle the problems (Dai
et al., 2018; Wu et al., 2019; Kim et al., 2020), but
still neglect the full exploitation of two important
aspects of structural information.

The first is curriculum structure in a dataset.
Such a structure relies on a measure of the dif-
ficulty of examples, which can be used to guide the

∗∗Corresponding author

Figure 1: An easy and a hard dialog example for DST.

model training in an easy-to-hard manner, imitating
the meaningful learning order in human curricula.
This paradigm is called curriculum learning (CL)
(Bengio et al., 2009) and has been shown useful in
various other problems (Wang et al., 2021). DST
training examples also vary greatly in their diffi-
culty levels. As shown in Figure 1, for the same
slot ‘taxi-departure’, a user can either inform its
value ‘nandos’ explicitly in a simple utterance or
convey her intention implicitly via multi-round in-
teractions, requiring a complex inference process
to find the value ‘golden house’ referred by the slot

‘restaurant-name’. However, CL has been rarely
studied in DST, and models are often trained with
dialog data in a random order.

In addition, schema structure is prominent in
multi-domain task-oriented dialogs. A schema is
specified by a collection of all possible slots and
their values, which describes semantic relations
among them. Some previous work utilized the
structure via an extra schema graph in a regular
training process (Chen et al., 2020; Zhu et al., 2020;
Wu et al., 2020). We propose to incorporate schema
information into CL through a pre-curriculum pro-
cess, in which a DST model can be pre-trained with
schema-related objectives to prepare for upcom-
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ing DST examples. To reinforce the CL training,
we can also expand those examples with frequent
mispredictions during CL based upon the schema,
enabling the model to accumulate more experience
and perform better on similar cases.

Built on these motivations, we propose a novel
framework named as Schema-aware Curriculum
Learning for Dialog State Tracking (SaCLog),
which consists of three components: 1) a pre-
view module that pre-trains the base part of a DST
model (e.g., BERT and RNN) with objectives cap-
turing the connections between the schema and
dialog contexts, 2) a curriculum module that or-
ganizes training data from easy to hard and opti-
mizes the model with CL, and 3) a review mod-
ule which leverages schema-based data augmenta-
tion to extend mispredicted data to boost the CL
training process further. The proposed approach
is model-agnostic, in the sense that it can be in-
corporated into different DST models. To the best
of our knowledge, this is the first attempt to apply
CL to the DST task. We show that our proposed
approach improves DST performance over both
a transformer-based and RNN-based DST model
(TripPy and TRADE) and achieves new state-of-
the-art results on WOZ2.0 and MultiWOZ2.1.

2 Problem Formulation

We denote a dialog context containing t turns as
Xt = {(R1, U1), ..., (Rt, Ut)}, where Ri and Ui

represent system and user utterance at the i-th turn
respectively. DST is tasked to extract turn-level
or discourse-level dialog states in the form of a
set of slot-value pairs given Xt. A turn-level di-
alog state Yt = {(s, vt), s ∈ S} is the slot-value
pairs extracted only from (Rt, Ut) at current turn t,
where S is a predefined set of slot s in the schema
and vt is the corresponding value1 of the slot s. A
discourse-level dialog state Zt is the accumulation
of Lt, representing all slot-value pairs that have
been expressed over the course of the dialog until
the t-th turn. We denote a dialog data for DST as
dt = {Xt, Yt, Zt} and the training dataset as D.

3 Schema-Aware Curriculum Learning

In this section, we first introduce the core curricu-
lum module about how to apply the basic CL to
the DST task; we then describe the preview and
review module, which exploit the schema structure

1Each s contains two special values, none and dontcare,
indicating s has no values and can take any values respectively.

to facilitate the CL training process. The overall
framework of SaCLog is shown in Figure 2.

3.1 Curriculum Learning for DST
We propose curriculum learning for DST and de-
sign two sub-modules: a difficulty scorer that
measures the difficulty level of a dialog example
with respect to a DST model, as well as a training
scheduler module that arranges the scored data as
a sequence of easy-to-hard training stages.

3.1.1 The Difficulty Scorer
As a dialog example could be intuitively complex
for humans or inherently difficult for neural net-
works (NNs), both model-based and rule-based
scores should be considered. We propose to use a
hybrid scoring function that combines the advan-
tages of model predictions and rules.

For model-based difficulty, we predict scores in a
cross-validation-like manner. We divide D into K
equal-sized subsets, where K − 1 subsets are used
to train a DST model to predict the remaining one.
This process is repeated K times until every subset
is predicted. The score rmod

t ∈ [0, 1] is computed
based on the average accuracy of all mentioned
slots (whose values are not none) in Yt for each
dt. In our experiment, we train six models with the
same architecture and different initialization seeds
to obtain the mean value rmod

t of model scores.
For rule-based difficulty, we consider 4 factors

to fuse human prior knowledge about DST into our
curriculum design: 1) current dialog turn number t;
2) the total token number of (Rt, Ut); 3) the num-
ber of mentioned name entities like ‘hotel names’
in Zt; 4) the number of newly added or changed
slots in Yt. We set the maximum values of above
factors as 7/50/4/6 respectively, and normalize all
factors into rrul,it ∈ [0, 1], where i indicates the
i-th factor.

Finally, the hybrid difficulty score is calculated
jointly as rhybt = α0r

mod
t +

∑4
i=1 αir

rul,i
t , where

rhyb ∈ [0, 1] and
∑4

i=0 αi = 1.

3.1.2 The Training Scheduler
We adopt a widely used strategy called baby step
(Spitkovsky et al., 2010) to organize the scored
data for CL. Specifically, we divide the score uni-
formly into N intervals and distribute the sorted
data into N buckets accordingly. The optimization
starts from the easiest bucket as the initial training
stage. After reaching a fixed number of maximum
epochs or convergence, the next bucket is merged
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Figure 2: An overview of the SaCLog training procedures.

into the current training subset and shuffled for the
next training stage. In our experiment, we set the
maximum number of epochs as 3, and treat as the
convergence if the training loss ceases to decrease
and the loss value is within a threshold 15 for 100
steps. As the subset accumulates until all buckets
are aggregated, we then continue to train the model
for several extra epochs.

3.2 The Preview Module
In human learning, previewing learning materials
helps develop an overall picture of what will be
covering and can bring benefits to the learning
process. In our task here, we propose new pre-
training objectives to learn structural inductive bias
of the schema structure. Specifically, our preview
module contains a slot encoder to compute a slot
embedding es for each input slot s, and a dialog
context encoder to extract the hidden states of Xt

as Et = [e1t , e
2
t , ...], then we have:

Bs
t = [φsig1 (es ⊕ e1t ), φsig1 (es ⊕ e2t ), ...]
cst = φsft4 (es ⊕ Att(es, Et))

(1)

where Att(k, V ) is the attention function using the
vector k to query the vector sequence V to get
a context vector and ⊕ the vector concatenation.
φsigd (·) and φsftd (·) denote an FNN with one hidden
layer having the same size as input layer, where the
output layer is of size d, and is sigmoid and softmax
respectively. Bs

t is a binary sequence indicates
which span of Xt belongs to the value of s, while
cst is the classification logits indicates whether s is
added, deleted, changed, or not mentioned in Yt.

Therefore, for each slot s, we have a binary se-
quence loss Lseq and a classification loss Lcls to
optimize. Such pre-training objectives help the
encoders understand how a slot is roughly oper-
ated in the current dialog context and connected
with all possible tokens regarding its values in the
schema. The dialog context encoder is used for the
parameter initialization of the base part of a DST
model. The pre-trained corpus is constructed from

MultiWOZ2.1 dialogs (Eric et al., 2020) and the
off-the-shelf synthesized dialogs (Campagna et al.,
2020), which contains 337,346 dialog data in total.

We also leverage the language modelling (LM)
loss as an auxiliary loss Laux to learn contextual
representations of natural language. To be specific,
we use the MLM loss (Devlin et al., 2019) as Laux

for transformer-based DST modes and the sum-
mation of both forward and backward LM losses
(Peters et al., 2018) for RNN-based DST models.
We only use the original MultiWOZ2.1 dialogs to
optimize Laux, considering that synthesized data is
not suitable for natural language modelling. How-
ever, both the original and synthesized data are
used to optimize Lseq and Lcls.

3.3 The Review Module

The process of review often help a learner consol-
idate difficult concepts newly learned. We design
a review module to consider mispredicted exam-
ples as the concepts that the DST model has not
grasped during CL, and utilize a schema-based data
augmenter to produce similar cases from the exam-
ples. Specifically, the DST model is monitored at
each stage of the CL training process. If a model is
not converged at the end of an epoch in a training
stage, we choose the top 10% incorrectly predicted
examples according to their training losses as the
resource to enlarge the cumulative dataset. The
schema-based data augmenter uses three practical
techniques to generate data as follows:

Slot Substitution. A mentioned slot name in
(Rt, Ut) is changed into another slot name when
its value is dontcare. Specifically, we first collect a
word set for each slot name, e.g. {‘arrive’, ‘arriv-
ing’, ‘arrived’} for the slot ‘taxi-arriveby’. Then,
for a dialog data dt where Yt contains a slot s with
the value dontcare, we substitute the word of s in
the utterance with some word of another slot s′ that
is of the same domain and not mentioned in Yt.

881



Value Replacement. A slot’s value is replaced
with another proper one when the value is explic-
itly contained in Ut. Specifically, we leverage the
predefined schema in the dialog dataset to produce
a value set for each slot and use the label map in
(Heck et al., 2020) to figure out the position of
value span within the utterance. The target value is
then replaced with another one of the same slot.

Dialog Recombination. To recombine the dia-
log data dt, we randomly search another dialog
data in D that possesses the same mentioned slots
(whose values are not none) in Yt. We then cut
and stitch their history Xt−1 and current utterances
(Rt, Ut), and exchange their Yt to produce two new
dialog data.

4 Experiments
Two popular datasets, WOZ2.0 (Wen et al., 2017)
and MultiWOZ2.1 (Eric et al., 2020), are used to
verify our approach. WOZ2.0 is a single-domain
dataset with 1,200 dialogs and 3 slots. Multi-
WOZ2.1 is a multi-domain dialog dataset with
10,438 dialogs, where there are 30 slots spanning
7 domains. The data splits (train/valid/test) of
WOZ2.0 and MultiWOZ2.1 are 600/200/400 and
8438/1000/1000, respectively. We use the joint
goal accuracy (JGA), the ratio of dialog data whose
Zt is correct, as the evaluation metric. We ap-
ply SaCLog onto TripPy (Heck et al., 2020), a
transformer-based DST model, and TRADE (Wu
et al., 2019), an RNN-based DST model, to show
its effect. The slot encoder and the dialog context
encoder are weight-shared. We use a BERTbase

as the encoder and the [CLS] embedding as the
slot embedding in TripPy, and use a bi-GRU as the
encoder and the concatenation of the first and last
hidden state as the slot embedding for TRADE. We
also follow TripPy to add 2 new slot operations (i.e.
refer/dontcare) into the classification types of Lcls.

Implementation Details. For the preview mod-
ule, we use Adam (Kingma and Ba, 2015) with
a fixed learning rate 3e-5 for 3 epochs in the pre-
training. The batch size for Laux is 14 and the
batch size for Lseq and Lcls is 64. For the curricu-
lum module, we perform a warm-up strategy for
Adam optimizer with a maximum learning rate 1e-
4. Before CL, we train models on full dataset for 2
epochs. After all subsets are accumulated, we then
train for 10 extra epochs with a minimum learning
rate 1e-6. We set the bucket number N = 10 and
the crossed fold K = 5. The batch size is 36 and

Models MultiWOZ2.1 WOZ2.0

GLAD (Zhong et al., 2018) 35.57%∗∗ 88.1±0.4%
SUMBT (Lee et al., 2019) 46.65%∗∗ 91.0±1.0%
DST-picklist (Zhang et al., 2019) 53.30% –
Trippy (Heck et al., 2020) 55.29±0.28% 92.7±0.2%
SimpleTOD(Hosseini-Asl et al., 2020) 55.72% –
CHAN (Shan et al., 2020) 58.55% –
TripPy + ConvBERT 58.70% 93.1±0.3%∗

TripPy + CoCoAug 60.53% –
TripPy + SaCLog 60.61±0.31% 94.2±0.2%

Table 1: DST Results on MultiWOZ2.1 and WOZ2.0 in
JGA. ∗ Our implemetation. ∗∗MultiWOZ2.0 results.

Models JGA

TripPy (ours) 58.17±0.25%
+ CL (rule-based) 58.38±0.17%
+ CL (model-based) 58.71±0.21%
+ CL (hybrid) 58.85±0.23%
+ SaCLog (w/o. review) 60.19±0.26%
+ SaCLog (w/o. preview) 60.23±0.34%
+ SaCLog 60.61±0.31%

Table 2: Ablation results on MultiWOZ2.1. +CL
means adding the curriculum module only.

the maximum length is 256. To simplify the review
process, we conduct data augmentation after the
CL training is finished.

4.1 Performance of TripPy+SaCLog

Tables 1 shows the results of our approach compar-
ing to various baselines. Based upon TripPy, we ob-
tain state-of-the-art performance on both datasets
with SaCLog. The two closest baselines2, Con-
vBERT (Mehri et al., 2020) and CoCoAug (Li
et al., 2021), are also built upon TripPy, where Con-
vBERT enhances its performance by using exter-
nal large-scale conversational corpora to pre-train
a BERTbase and CoCoAug leverages a delicate
counter-factual augmentation skill to produce much
larger training data. Our method, however, benefits
from the CL framework and improves TripPy by
utilizing the preview and review modules.

Ablation Study To examine how SaCLog fa-
cilitates DST training, we conduct detailed abla-
tion experiments on MultiWOZ2.1, as shown in
Table 2. In our re-implementation, we improve
the basic TripPy by around 3% JGA via training
for longer epochs (30 vs.10) and pre-training a
BERTbase on MultiWOZ2.1 corpus only with the
MLM loss. First, we investigate the influence of

2We implemented SaCLog upon these two methods, but no
significant gains are observed. We conjecture that this is due
to SaCLog has already largely exploited TripPy’s potential so
that the additional improvement of the two methods is limited.
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Model MultiWOZ2.1 WOZ2.0

TRADE 45.6%∗ 88.3±0.6%
+ SaCLog 49.3±0.5% 91.1±0.4%

Table 3: Results of TRADE+SaCLog on MultiWOZ2.1
and WOZ2.0. * Reported in (Eric et al., 2020).

difficulty scores by adding the curriculum mod-
ule and utilizing the same pre-trained BERTbase.
As we can see, using the hybrid difficulty score
achieves better JGA (58.85%) than using either sin-
gle score, indicating that both model prediction and
human knowledge are necessary. When incorpo-
rating the other two modules in the CL framework,
the performance is greatly boosted further. The
combination of both modules increases the JGA
by 1.76%, suggesting that the schema-aware pre-
training and dialog augmentation are crucial for
improving DST performance in the CL training.

4.2 Performance of TRADE+SaCLog

We also apply SaCLog to the classical RNN-based
generative DST model, TRADE. As Table 3 shows,
SaCLog improves TRADE by around 3∼4% JGA
on both datasets, demonstrating the effectiveness
of SaCLog on different types of base DST models.

5 Related Work

Curriculum Learning (CL) has attracted increasing
research interests in various NLP tasks, such as
machine translation (Liu et al., 2020; Zhou et al.,
2020), general language understanding (Xu et al.,
2020), reading comprehension (Tay et al., 2019)
and open-domain chatbots (Bao et al., 2020; Cai
et al., 2020; Su et al., 2020). Yet, the research on
using CL in task-oriented dialog systems is limited.
There has been some work (Saito, 2018; Zhao et al.,
2021) on using CL in dialog policy learning, but
applying CL to DST has not been investigated.

Learning a structural inductive bias during pre-
training has been shown beneficial in downstream
tasks that require parsing semantics, such as text-
to-SQL (Yu et al., 2021) and table cell recognition
(Wang et al., 2020). There are also many works
(Hou et al., 2018; Yoo et al., 2020; Yin et al., 2020)
on dialog augmentation. We aim to integrate these
methods to build a general CL framework for DST.

6 Conclusion

In this paper, we propose a model-agnostic frame-
work named as schema-aware curriculum learn-
ing for DST, which exploits both the curriculum

structure and the schema structure in task-oriented
dialogs and shows to substantially improve DST
performances. In the future, we plan to investigate
CL approaches on other dialog modeling tasks.
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Abstract

Under the pandemic of COVID-19, people ex-
periencing COVID19-related symptoms have
a pressing need to consult doctors. Be-
cause of the shortage of medical profession-
als, many people cannot receive online con-
sultations timely. To address this problem,
we aim to develop a medical dialog system
that can provide COVID19-related consulta-
tions. We collected two dialog datasets –
CovidDialog – (in English and Chinese respec-
tively) containing conversations between doc-
tors and patients about COVID-19. While the
largest of their kind, these two datasets are
still relatively small compared with general-
domain dialog datasets. Training complex dia-
log generation models on small datasets bears
high risk of overfitting. To alleviate over-
fitting, we develop a multi-task learning ap-
proach, which regularizes the data-deficient di-
alog generation task with a masked token pre-
diction task. Experiments on the CovidDialog
datasets demonstrate the effectiveness of our
approach. We perform both human evaluation
and automatic evaluation of dialogs generated
by our method. Results show that the gener-
ated responses are promising in being doctor-
like, relevant to conversation history, clinically
informative and correct. The code and the
data are available at https://github.com/
UCSD-AI4H/COVID-Dialogue.

1 Introduction
During the COVID-19 pandemic, people who are
experiencing symptoms similar to those of COVID-
19 or were exposed to risk factors have a pressing
need to consult doctors. However, medical pro-
fessionals are highly occupied, who do not have
enough bandwidth to provide COVID19-related
consultations.

To address this issue, we aim to develop a
COVID19-targeted dialog system. We build two
medical dialog datasets that contain conversations

between doctors and patients, about COVID-19 and
other pneumonia: (1) an English dataset contain-
ing 603 consultations, 1232 utterances, and 90664
tokens (English words); (2) a Chinese dataset con-
taining 1088 consultations, 9494 utterances, and
406550 tokens (Chinese characters).

While the largest of their kind, these two datasets
are still relatively small compared with general-
domain dialog datasets. Training complex dialog
generation models on small datasets bears high risk
of overfitting. To alleviate overfitting in COVID-19
dialog generation, we develop a multi-task learn-
ing approach where a masked-token prediction
(MTP) (Devlin et al., 2018) task is used to regular-
ize the training of dialog generation models. Our
method performs the MTP task and the dialog gen-
eration task simultaneously. The MTP loss serves
as a regularization term and is optimized jointly
with the dialog generation loss. Due to the pres-
ence of the MTP task, the dialog generation model
is less likely to be biased to the dialog generation
task defined on the small-sized training data. We
perform experiments on our collected two COVID-
19 dialog datasets, where the results demonstrate
the effectiveness of our approach. We perform hu-
man evaluation and automatic evaluation of dialogs
generated by our approach. The results show that
the generated responses demonstrate high poten-
tial to be doctor-like, relevant to patient history,
clinically informative and correct.

The major contributions of this paper are:

• We collect two medical dialog datasets about
COVID-19: one in English, the other in Chinese.

• We develop a multi-task learning approach,
which uses a masked-token prediction task to
regularize the dialog generation task to alleviate
overfitting.

• We evaluate our method on the collected COVID-
19 dialog datasets and the results demonstrate the
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effectiveness of our method.

2 Related Works
Several works have studied data-driven medical di-
alog generation. Wei et al. (2018) proposed a task-
oriented dialog system to make medical diagno-
sis automatically based on reinforcement learning.
The system converses with patients to collect addi-
tional symptoms beyond their self-reports. Xu et al.
(2019) proposed a knowledge-routed relational di-
alog system that incorporates medical knowledge
graph into topic transition in dialog management.
Xia et al. proposed an automatic diagnosis dialog
system based on reinforcement learning. In these
works, the neural models are trained from scratch
on small-sized medical dialog datasets, which are
prone to overfitting.

3 Datasets
We collected two dialog datasets – CovidDialog-
English and CovidDialog-Chinese – which contain
medical conversations between patients and doctors
about COVID-19 and other related pneumonia. The
statistics of these two datasets are summarized in
Table 1.

The English Dataset The CovidDialog-English
dataset contains 603 English consultations about
COVID-19 and other related pneumonia, having
1,232 utterances. The number of tokens (English
words) is 90,664. The average, maximum, and min-
imum number of utterances in a conversation is 2.0,
17, and 2 respectively. The average, maximum, and
minimum number of tokens in an utterance is 49.8,
339, and 2 respectively. The conversations are from
582 patients and 117 doctors. Each consultation
starts with a short description of the medical con-
ditions of a patient, followed by the conversation
between the patient and a doctor.
The Chinese Dataset The CovidDialog-Chinese
dataset contains 1,088 Chinese consultations about
COVID-19 and other related pneumonia, having
9,494 utterances. In this work, we develop models
directly on Chinese characters without perform-
ing word segmentation. Each Chinese character
in the text is treated as a token. The total number
of tokens in the dataset is 406,550. The average,
maximum, and minimum number of utterances in
a conversation is 8.7, 116, and 2 respectively. The
average, maximum, and minimum number of to-
kens in an utterance is 42.8, 2001, and 1 respec-
tively. The conversations are from 935 patients and
352 doctors. Each consultation consists of three

English Chinese

#dialogs 603 1,088
#tokens 90,664 406,550

Average #utterances per dialog 2.0 8.7
Max #utterances per dialog 17 116
Min #utterances per dialog 2 2

Average #tokens per utterance 49.8 42.8
Max #tokens per utterance 339 2,001
Min #tokens per utterance 2 1

Table 1: Statistics of the English and Chinese dialog
datasets about COVID-19.

parts: (1) description of patient’s medical condi-
tion and history; (2) conversation between patient
and doctor; (3) (optional) diagnosis and treatment
suggestions given by the doctor. In the descrip-
tion of the patient’s medical condition and history,
the following fields are included: present disease,
detailed description of present disease, what help
is needed from the doctor, how long the disease
has been, medications, allergies, and past diseases.
This description is used as the first utterance from
the patient.

For both datasets, the dialogs are crawled from
openly accessible medical websites whose own-
ers make these dialogs visible to the public. The
patients’ personal information is de-identified by
owners of these websites. We further checked
the crawled dialogs to ensure they do not contain
private information of patients. Besides, we also
manually removed borderline sensitive information,
such as specific dates and destinations in patients’
travel histories. Experts in privacy and security
domains helped to check the final version of shared
data and ensured there is no breach of patient pri-
vacy or confidentiality.

4 Method

Given a dialog containing a sequence of alternating
utterances between patient and doctor, we process
it into a set of pairs {(si, ti)} where the target ti
is a response from the doctor and the source si is
the conversation history – the concatenation of all
utterances (from both patient and doctor) before
ti. A dialog generation model takes s as input
and generates t. The model consists of an encoder
which encodes s and a decoder which takes the
encoding of s as input and generates t. The size of
the CovidDialog datasets is small. Training neural
dialog models on these small datasets has high risk
of overfitting.

To solve this problem, we develop a multi-task
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Split # dialogs # utterances # pairs

Train 482 981 490
Validation 60 126 63
Test 61 122 61

Table 2: English dataset split statistics

C R I D

Transformer 2.24 2.57 2.53 2.29
GPT-2 2.58 2.91 2.65 3.09
BART 2.61 3.01 2.74 3.42
BART+TAPT 2.65 3.04 2.68 3.38
Ours 2.83 3.16 2.88 3.47
Groundtruth 3.26 3.63 3.51 3.55

Table 3: Human evaluation on the CovidDialog-
English test set. C, R, I, and D represent correctness,
relevance, informativeness, and doctor-likeness respec-
tively. For GPT-2, the “large” version is used.

learning approach, which uses a masked-token pre-
diction (Devlin et al., 2018) task to regularize the
dialog generation task. Given the conversation his-
tories in the training set, we encode them using
an encoder. Then on top of the encodings, two
tasks are defined. One is the dialog generation task,
which takes the encoding of a conversation history
as input and predicts its corresponding response.
The prediction is conducted using a dialog decoder.
The other task is masked-token prediction (MTP).
In MTP, some percentage of the input tokens are
masked at random. The text with masked tokens
is fed into the text encoder which learns a latent
representation for each token including the masked
ones. The task is to predict these masked tokens
by feeding the final hidden vectors (produced by
the encoder) of the masked tokens into an output
softmax operation over the vocabulary. The loss
of the MTP task serves as a data-dependent regu-
larizer of the encoder to prevent the encoder from
overfitting to the data-deficient dialog generation
task. Formally, the method solves the following
optimization problem:

L(g)(H,R;W (e),W (g)) + λL(p)(H;W (e),W (p))

where H represents the conversation histories and
R represents their corresponding responses. W (e),
W (g), and W (p) denote the encoder, decoder in the
dialog generation task, and prediction head in the
MTP task respectively. L(g) denotes the generation
loss and L(p) denotes the MTP loss. λ is a tradeoff
parameter.

5 Experiments

We compare with the following baselines: Trans-
former (Vaswani et al., 2017), GPT-2 (Radford
et al., b), unregularized BART (Liu et al., 2019), un-
regularized BERT-GPT (Wu et al., 2019), and task
adaptive pretraining (TAPT) (Gururangan et al.,
2020).
5.1 Experiments on the English Dataset
5.1.1 Experimental Settings
For the English dataset, we split it into a training,
a validation, and a test set based on dialogs, with
a ratio of 8:1:1. Table 2 shows the statistics of
the data split. The hyperparameters were tuned
on the validation dataset. Our method and TAPT
are both applied to the BART encoder, where the
probability for masking tokens is 0.15. If a token
t is chosen to be masked, 80% of the time, we
replace t with a special token [MASK]; 10% of the
time, we replace t with a random word; and for the
rest 10% of the time, we keep t unchanged. For the
regularization parameter λ, we set it to 0.1.

We perform human evaluation of the generated
responses. Five medical students are asked to give
ratings (from 1 to 5, higher is better) to generated
responses in four aspects: 1) Correctness: whether
the response is clinically correct; 2) Relevance:
how relevant the response is to the conversation his-
tory; 3) Informativeness: how much medical infor-
mation and suggestions are given in the response;
and 4) Doctor-like: how the response sounds like
a real doctor. The responses are de-identified: an-
notators do not know which method a response is
generated by. The groundtruth response from the
doctor is also given ratings (in an anonymous way).
Human evaluation was conducted on the test ex-
amples in the CovidDialog-English dataset. The
ratings from different annotators are averaged.

We also performed automatic evaluation, using
metrics including perplexity, NIST-n (Doddington,
2002) (where n = 4), BLEU-n (Papineni et al.,
2002) (where n = 2 and 4), METEOR (Lavie and
Agarwal, 2007), Entropy-n (Zhang et al., 2018)
(where n = 4), and Dist-n (Li et al., 2015) (where
n = 1 and 2).

5.1.2 Results on the English Dataset
Table 3 shows the human evaluation results. From
this table, we make the following observations.
First, our method outperforms the unregularized
BART on all metrics. This demonstrates the ef-
fectiveness of our method in alleviating overfitting
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Transformer GPT-2 BART BART+TAPT OursSmall Medium Large

Perplexity 263.1 28.3 17.5 18.9 15.3 15.0 14.9
NIST-4 0.71 1.90 2.01 2.29 1.88 1.89 2.04
BLEU-2 7.3% 9.6% 9.4% 11.5% 8.9% 7.7% 8.3%
BLEU-4 5.2% 6.1% 6.0% 7.6% 6.0% 3.4% 5.0%
METEOR 5.6% 9.0% 9.5% 11.0% 10.3% 9.2% 9.8%
Entropy-4 5.0 6.0 6.6 6.6 6.5 6.3 6.6
Dist-1 3.7% 9.5% 16.6% 13.9% 16.8% 11.5% 15.7%
Dist-2 6.4% 22.9% 36.7% 31.0% 35.7% 25.3% 33.1%
Avg. Len 40.0 51.3 50.1 54.4 45.4 59.8 50.8

Table 4: Performance on the CovidDialog-English test set.

Patient: i have all the symptoms except fever, i went to medicross and dr said i can get tested if i want to i’m not sure if i should. she gave me antibiotics
klacid xl 500mg, she said i can take it if i feel worse i’m worried it will make immune system bad?

Groundtruth response: in brief: antibiotic i don’t recommend antibiotics for a simple viral upper respiratory tract infection unless examination revealed
signs of acute bronchitis or sinusitis. they are not effective for viral infections like covid 19 with no bacterial lung involvement either. if you’ve been
exposed to someone with covid 19 or or if you or someone you were exposed to travelled to a region where it was endemic, get tested would you like to
video or text chat with me?

Transformer: hello and welcome to ‘ask a doctor’ service.i have reviewed your query and here is my advice. i have reviewed your query. let me know
if i can assist you further.

DialoGPT-large: in brief: do you have access to a telephonic consult, or do you need to go in person? would you like to video or text chat with me? i
can understand your concern. i have reviewed your query and here is my advice. yes, telephonically would be best. would you be happy to chat with
you? i have answered your query. let me know if i can assist you further. regards, dr jnikolla, pulmonologist

BART: yes, you should get tested for covid-19. get tested if you have fever, cough or shortness of breath. if you are a smoker or have been in contact
with someone with covid, get tested. would you like to video or text chat with me?

BART+TAPT: if you have been in contact with someone who has been diagnosed with covid-19 then you should definitely get tested. it will make your
immune system stronger. hope i have answered your query. let me know if i can assist you further. take care regards, dr. jnikolla

Ours: you do not need to be tested for covid-19 at this time. if you develop fever, cough, shortness of breath and/or difficulty breathing, then you need
to consult your pcp and get tested.

Table 5: Generated responses on a test example in the CovidDialog-English dataset.

and improving generalization performance. Our
method encourages the encoder to solve an addi-
tional MTP task, which reduces the risk of overfit-
ting to the data-deficient response generation task
on the small-sized training dialogs. Second, our
method performs better than BART+TAPT. Our
method and TAPT both leverage conversation histo-
ries for masked-token prediction. The difference is:
TAPT uses these histories to pretrain the encoder
while our method uses these histories to regular-
ize the encoder during finetuning. In our method,
the encoder is learned to perform the response gen-
eration task and MTP task simultaneously. Thus
the encoder is not completely biased to the gener-
ation task. In TAPT, the encoder is first learned
by performing the MTP task, then finetuned by
performing the generation task. There is a risk
that after finetuning, the encoder is largely biased
to the generation task on the small-sized training
data, which leads to overfitting. Third, our method
achieves a doctor-like score that is close to the
groundtruth. This indicates that the responses gen-
erated by our method have high language quality.
The relevance rating of our method is higher than 3,
which indicates a good level of relevance between
the generated responses and conversation histories.
The informativeness rating of our method is better

than baselines, but still has a large gap with that
of the groundtruth. Additional efforts are needed
to improve informativeness, such as incorporating
medical knowledge.

Table 4 summarizes the automatic evaluation
results achieved by different methods. From this ta-
ble, we make the following observations. First, our
method achieves lower (better) perplexity (which
is a relatively more reliable metric among vari-
ous automatic metrics) than the baselines, which
further demonstrates the effectiveness of our ap-
proach. Second, on machine translation metrics in-
cluding NIST-4, BLEU-2, BLEU-4, and METEOR,
the GPT2-large model achieves the highest scores.
However, as noted in (Liu et al., 2016), machine
translation metrics are not very reliable for evalu-
ating dialog systems. Third, on diversity metrics
including Entropy-4, Dist-1, and Dist-2, the GPT2-
Medium model performs better than other methods.
The average length of the generated responses by
different methods is close to that of the ground-
truth, which is around 50.

Table 5 shows an example of generating a doc-
tor’s response given the utterance of a patient. As
can be seen, the response generated by our method
is more relevant, informative, and human-like, com-
pared with those generated by other baselines. It
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Transformer GPT-2 BERT-GPT BERT-GPT-TAPT OursNo MMI MMI

Perplexity 53.3 22.1 25.7 10.8 9.3 9.0
NIST-4 0.39 0.43 0.46 0.36 0.30 0.37
BLEU-2 5.7% 6.2% 7.2% 4.6% 5.1% 5.4%
BLEU-4 4.0% 4.0% 5.4% 2.8% 2.6% 3.9%
METEOR 13.5% 13.9% 14.3% 12.2% 11.9% 13.0%
Entropy-4 7.9 9.0 9.1 8.5 7.8 7.9
Dist-1 5.5% 5.9% 3.2% 7.9% 9.1% 7.1%
Dist-2 29.0% 38.7% 35.7% 39.5% 39.7% 36.6%
Avg Len 19.3 35.0 58.7 21.6 13.9 20.6

Table 6: Performance on the CovidDialog-Chinese test set.

Split #dialogs #utterances #pairs

Train 870 7844 3922
Validation 109 734 367
Test 109 916 458

Table 7: Chinese dataset split statistics

C R I D

Transformer 1.94 2.09 2.03 2.61
GPT-2 1.72 1.87 1.69 1.78
BERT-GPT 2.15 2.70 2.32 3.02
TAPT 2.27 2.68 2.42 3.11
Ours 2.87 2.77 2.49 3.19
Groundtruth 3.11 3.47 3.22 3.71

Table 8: Human evaluation on CovidDialog-Chinese
test set. C, R, I, and D represent correctness, relevance,
informativeness, and doctor-likeness respectively. Our
method and TAPT are based on BERT-GPT. In GPT-2,
no maximum mutual information (MMI) is used.

gives correct and informative medical advice such
as “if you develop fever, cough, shortness of breath
and/or difficulty breathing, then you need to consult
your pcp and get tested” and has correct grammar
and semantics. In contrast, BART gives clinically
incorrect responses such as if someone is a smoker,
he or she should be tested for COVID-19. So does
BART+TAPT, which incorrectly suggests that get-
ting tested will make the immune system stronger.
The responses from GPT2-large and Transformer
do not contain any useful medical advice.

5.2 Experiments on the Chinese Dataset

Based on dialogs, we split the Chinese dataset into
a training set, validation set, and test set, with a
ratio of 8:1:1. Table 7 shows the statistics of the
data split. The regularization parameter λwas set to
0.8. Human evaluation was conducted by 5 medical
students, on 100 randomly-sampled examples from
the test set of CovidDialog-Chinese. The ratings
from different annotators are averaged.

5.2.1 Results on the Chinese Dataset

Table 8 shows the human evaluation results. Our
method and TAPT are based on BERT-GPT. As can
be seen, our approach outperforms unregularized
BERT-GPT. This further demonstrates the effec-
tiveness of our approach in alleviating overfitting
and improving generalization performance. In ad-
dition, our method outperforms TAPT. This further
demonstrates that it is more beneficial to perform
MTP and dialog generation jointly than separately.

Table 6 summarizes the automatic evaluation
results. Our method achieves the lowest (best)
perplexity among all methods. Our method out-
performs unregularized BERT-GPT and BERT-
GPT-TAPT on machine translation metrics as well.
GPT2-MMI achieves the highest scores on machine
translation metrics. BERT-GPT-TAPT performs
better than other methods on diversity metrics.

6 Conclusions

In this paper, we make the first attempt to develop
dialog generation models about COVID-19. We
first collected two datasets – CovidDialogs – which
contain medical conversations between patients and
doctors about COVID-19. To alleviate the risk of
overfitting, we develop a multi-task learning ap-
proach, which uses a masked-token prediction task
to regularize the dialog generation model. Human
evaluation and automatic evaluation results demon-
strate the effectiveness of our proposed method
in alleviating overfitting and generating clinically
meaningful and linguistically high-quality dialogs
about COVID-19.
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Broader Impact

Dialog systems developed using the collected data
in this work should be used very cautiously, un-
der the guidance and supervision of physicians and
with approval from the Food and Drug Adminis-
tration. These dialog systems have the potential
to provide timely and accessible COVID-19 con-
sultations to the general public, especially to those
who are underserved medically. However, clini-
cal consultation is mission-critical. If the dialog
systems make clinical errors, they may cause nega-
tive health issues to users. Therefore, these dialog
systems should be used as assistants to physicians,
rather than operating independently without human
supervision. The collected dialogs are from public
medical forums, which may be largely different
from the patient-doctor dialogue in clinics and hos-
pitals. Such a bias should be paid attention to when
using this dataset.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of ACL.

David Ireland, Christina Atay, Jacki Liddle, Dana Brad-
ford, Helen Lee, Olivia Rushin, Thomas Mullins,
Dan Angus, Janet Wiles, Simon McBride, et al.
2016. Hello harlie: enabling speech monitoring
through chat-bot conversations. In Digital Health
Innovation for Consumers, Clinicians, Connectiv-
ity and Community-Selected Papers from the 24th
Australian National Health Informatics Conference,

HIC 2016, Melbourne, Australia, July 2016., volume
227, pages 55–60. IOS Press Ebooks.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Liliana Laranjo, Adam G Dunn, Huong Ly Tong, Ah-
met Baki Kocaballi, Jessica Chen, Rabia Bashir,
Didi Surian, Blanca Gallego, Farah Magrabi, An-
nie YS Lau, et al. 2018. Conversational agents
in healthcare: a systematic review. Journal
of the American Medical Informatics Association,
25(9):1248–1258.

Alon Lavie and Abhaya Agarwal. 2007. Meteor: An
automatic metric for mt evaluation with high levels
of correlation with human judgments. In Proceed-
ings of the second workshop on statistical machine
translation, pages 228–231.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting objec-
tive function for neural conversation models. arXiv
preprint arXiv:1510.03055.

Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How not to evaluate your dialogue system:
An empirical study of unsupervised evaluation met-
rics for dialogue response generation. arXiv preprint
arXiv:1603.08023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv:1907.11692.

I. Loshchilov and F. Hutter. 2017. Fixing weight decay
regularization in adam. ArXiv, abs/1711.05101.

Gale M Lucas, Albert Rizzo, Jonathan Gratch, Ste-
fan Scherer, Giota Stratou, Jill Boberg, and Louis-
Philippe Morency. 2017. Reporting mental health
symptoms: breaking down barriers to care with vir-
tual human interviewers. Frontiers in Robotics and
AI, 4:51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of

891



the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Pierre Philip, Jean-Arthur Micoulaud-Franchi, Patricia
Sagaspe, Etienne De Sevin, Jérôme Olive, Stéphanie
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Appendix

A Related Works

A.1 Medical Dialog Generation

Many works have been devoted to developing med-
ical dialog systems. Please refer to (Laranjo et al.,
2018) for a comprehensive review. Some meth-
ods (Lucas et al., 2017; Philip et al., 2017; Tanaka
et al., 2017) predefine a sequence of steps or states
which are used to guide the conversation. Other
methods (Rhee et al., 2014; Ireland et al., 2016;
Fitzpatrick et al., 2017) use predetermined tem-
plates to extract information from the conversation
history and use rules to generate responses from
the filled slots in the templates. These methods rely
heavily on knowledge engineering and are difficult
to be quickly adapted to a new and time-sensitive
task such as COVID-19 dialog generation.

A.2 Self-supervised Learning for NLP

Self-supervised learning (SSL) aims to learn mean-
ingful representations of input data without using
human annotations. It creates auxiliary tasks solely
using the input data and forces deep networks to
learn highly-effective latent features by solving
these auxiliary tasks. In NLP, various auxiliary
tasks have been proposed for SSL, such as next
token prediction in GPT (Radford et al., a), masked
token prediction in BERT (Devlin et al., 2018),
text denoising in BART (Lewis et al., 2019), and
so on. These models have achieved substantial
success in learning language representations. The
GPT model (Radford et al., a) is a language model
(LM) based on Transformer (Vaswani et al., 2017).
Unlike Transformer which defines a conditional
probability on an output sequence given an input
sequence, GPT defines a marginal probability on a
single sequence. In GPT, the conditional probabil-
ity of the next token given the historical sequence is
defined using the Transformer decoder. The weight
parameters are learned by maximizing the likeli-
hood on the sequence of tokens. BERT (Devlin
et al., 2018) aims to learn a Transformer encoder
for representing texts. BERT’s model architecture
is a multi-layer bidirectional Transformer encoder.
In BERT, the Transformer uses bidirectional self-
attention. To train the encoder, BERT masks some
percentage of the input tokens at random, and then
predicts those masked tokens by feeding the final
hidden vectors (produced by the encoder) corre-
sponding to the masked tokens into an output soft-

max over vocabulary. BERT-GPT (Wu et al., 2019)
is a model used for sequence-to-sequence model-
ing where a pretrained BERT is used to encode the
input text and GPT is used to generate the output
text. In BERT-GPT, the pretraining of the BERT en-
coder and the GPT decoder is conducted separately,
which may lead to inferior performance. Auto-
Regressive Transformers (BART) (Lewis et al.,
2019) has a similar architecture as BERT-GPT, but
trains the BERT encoder and GPT decoder jointly.
To pretrain the BART weights, the input text is
corrupted randomly, such as token masking, to-
ken deletion, text infilling, etc., then the network
is learned to reconstruct the original text. AL-
BERT (Lan et al., 2019) uses parameter-reduction
methods to reduce the memory consumption and
increase the training speed of BERT. It also intro-
duces a self-supervised loss which models inter-
sentence coherence.

B Datasets
Table 9 shows an example of the English dataset.
C Experiments
C.1 Baselines
We compare the following baselines.

• Transformer. A conversation history is fed into
the Transformer (Vaswani et al., 2017) encoder
and the encoding is fed into the Transformer de-
coder to generate the corresponding response.
The weights of the encoder and decoder are ini-
tialized randomly.

• GPT-2. Given a dialog history s and a ground-
truth response t = x1, · · · , xn, a GPT-2
model (Radford et al., a) is trained to max-
imize the following probability: p(t|s) =
p(x1|s)

∏n
i=2 p(xi|s, x1, · · · , xi−1), where con-

ditional probabilities are defined by the
Transformer decoder. For experiments on
CovidDialog-English, the GPT-2 model is pre-
trained on English Reddit dialogs (Zhang et al.,
2019). For experiments on CovidDialog-Chinese,
the GPT-2 model is pretrained on Chinese chat-
bot corpus1.

• Unregularized BART (Liu et al., 2019). This
approach is the same as Transformer, except that
the encoder and decoder are initialized using the
pretrained BART (Lewis et al., 2019). The en-
coder and decoder are finetuned on CovidDialog-

1https://github.com/codemayq/chinese_
chatbot_corpus
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Description of patient’s medical condition: I have a little fever with no history of foreign travel or contact. What is
the chance of Covid-19?

Dialog
Patient: Hello doctor, I am suffering from coughing, throat infection from last week. At that time fever did not persist
and also did not feel any chest pain. Two days later, I consulted with a doctor. He prescribed Cavidur 625, Montek LC,
Ambrolite syrup and Betaline gargle solution. Since then throat infection improved and frequent cough also coming
out. Coughing also improved remarkably though not completely. From yesterday onwards fever is occuring (maximum
100-degree Celcius). I have not come in touch with any foreign returned person nor went outside. In our state, there is no
incidence of Covid-19. Please suggest what to do?
Doctor: Hello, I can understand your concern. In my opinion, you should get done a chest x-ray and CBC (complete
blood count). If both these are normal then no need to worry much. I hope this helps.
Patient: Thank you doctor. After doing all these I can upload all for further query.
Doctor: Hi, yes, upload in this query only. I will see and revert to you.

Table 9: An exemplary consultation in the CovidDialog-English dataset. It consists of a brief description of the
patient’s medical conditions and the conversation between the patient and a doctor.

Transformer BERT-GPT Ours TAPT GPT-2
GPU TITAN Xp GeForce RTX 2080 GeForce GTX 1080Ti GeForce GTX 1080Ti TITAN Xp

Num. of GPUs 1 1 1 1 1
Runtime 105 230 488 240 27

Table 10: Computing infrastructure and runtime (seconds per epoch) on CovidDialog-Chinese

English. During finetuning, no self-supervised
regularization is used.

• Unregularized BERT-GPT. This approach is
the same as Transformer, except that the en-
coder is initialized using pretrained BERT and
the decoder is initialized using pretrained GPT-2.
BERT and GPT-2 are both pretrained on large-
scale Chinese corpus (Cui et al., 2019). The en-
coder and decoder are finetuned on CovidDialog-
Chinese. During finetuning, no self-supervised
regularization is used.

• Task adaptive pretraining (TAPT) (Guru-
rangan et al., 2020). In this approach,
given the Transformer encoder pretrained using
BART/BERT on large-scale external corpora, it
is further pretrained by predicting masked tokens
on the input conversation histories in the Covid-
Dialog datasets (without using output responses).
Then the encoder is finetuned by predicting the
responses from conversation histories. Similar
to our method, TAPT also performs masked-
token prediction (MTP) on conversation histories.
The difference is: TAPT performs the MTP task
and the generation task sequentially while our
method performs these two tasks jointly.

C.2 Experimental Settings

C.2.1 Experimental Settings on the English
Dataset

For GPT-2, we used three variants (Zhang et al.,
2019) with different sizes: small, medium, and

large, with 117M, 345M, and 762M weight param-
eters respectively. Maximum mutual information
was not used. We used the Adam (Kingma and
Ba, 2014) optimizer for the Transformer model and
the AdamW (Loshchilov and Hutter, 2017) opti-
mizer for other models. For all methods except
TAPT, we used the optimizer with linear learning
rate scheduling, setting the initial learning rate as
4e-5 and the batch size as 4. We perform TAPT
for 100 epochs, setting the initial learning rate as
1e-4 and the batch size as 256. The objective for
dialog generation is the cross entropy loss with
label smoothing where the factor was set to 0.1.
For pretrained models, we finetune them on the
CovidDialog-English dataset for 5 epochs, while
for the un-pretrained Transformer, we train it for
50 epochs. We set a checkpoint at the end of ev-
ery epoch and finally take the one with the lowest
perplexity on validation set as the final model. In
response generation, for all models, we use beam
search with beam width of 10 during decoding.

Among the automatic evaluation metrics, BLEU,
METEOR, and NIST are common metrics for eval-
uating machine translation. They compare the
similarity between generated responses and the
ground-truth by matching n-grams. NIST is a
variant of BLEU, which weights n-gram matches
using information gain to penalize uninformative
n-grams. Perplexity is used to measure the quality
and smoothness of generated responses. Entropy
and Dist are used to measure lexical diversity of
generated responses. For perplexity, the lower, the
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Transformer BERT-GPT Ours TAPT GPT-2
Num. of epochs 30 2 2 2 8
Validation loss 3.17 1.90 2.10 2.08 2.90

Validation perplexity 32.74 6.68 8.14 7.98 18.94

Table 11: Validation performance on CovidDialog-Chinese

Transformer 90M
BERT-GPT 203M

GPT-2 81M

Table 12: Number of weight parameters of each model
on CovidDialog-Chinese

GPU Runtime
Transformer GeForce GTX 1080 Ti × 4 72

GPT-2 GeForce GTX 1080 Ti × 4 252
BART GeForce GTX 1080 Ti × 4 180
Ours Tesla P100-PCIE-16GB × 1 270
TAPT Tesla P100-PCIE-16GB × 1 150

Table 13: Computing infrastructure and runtime (sec-
onds per epoch) on the CovidDialog-English dataset

better. For other metrics, the higher, the better. As
noted in (Liu et al., 2016), while automatic eval-
uation is useful, they are not completely reliable.
Among these metrics, perplexity is generally con-
sidered to be more reliable than others.

C.2.2 Experimental Settings on the Chinese
Dataset

The hyperparameters were tuned on the validation
set. We stop the training procedure when the val-
idation loss stops to decrease. Our method and
TAPT are both applied to the BERT encoder in
BERT-GPT, where the probability of masking to-
kens is 0.15. The encoder and decoder structures in
BERT-GPT are similar to those in BERT, which is
a Transformer with 12 layers and the size of the hid-
den states is 768. Network weights are optimized
with stochastic gradient descent with a learning rate
of 1e-4. In the finetuning of BERT-GPT, the max
length of the source sequence and target sequence
was set to 400. During decoding for all methods,
beam search with k = 50 was used.

For GPT-2, we used the DialoGPT-small (Zhang
et al., 2019) architecture where the number of lay-
ers in the Transformer was set to 10. The context
size was set to 300. The embedding size was set
to 768. The number of heads in multi-head self-
attention was set to 12. The epsilon parameter
in layer normalization was set to 1e-5. Network

weights were optimized with Adam, with an ini-
tial learning rate of 1.5e-4 and a batch size of 8.
The Noam learning rate scheduler with 2000 warm-
up steps was used. For Transformer, we used the
HuggingFace implementation2 and followed their
default hyperparameter settings. We evaluated the
models using perplexity, NIST-4, BLEU-2, 4, ME-
TEOR, Entropy-4, and Dist-1, 2.

C.2.3 Additional Details about Human
Evaluation

In human evaluation on CovidDialog-Chinese, we
randomly select 100 examples. Each example
includes a conversation history, groundtruth re-
sponse, and responses generated by different meth-
ods. When presented to annotators, the groundtruth
and responses generated by different methods are
de-identified (given a response, annotators do not
know which method generated this response) and
randomly shuffled for different examples. The rat-
ings from different annotators are averaged. In
human evaluation on CovidDialog-English, we per-
form evaluation on all test examples.

C.3 Additional Analysis on Experimental
Results

Additional analysis of results in Table 3 1)
Pretrained models including GPT-2 and BART
perform better than Transformer. This further
demonstrates the effectiveness of pretraining. 2)
BART performs better than GPT-2, though GPT-2
achieves better scores on machine translation met-
rics. This is in accordance with the results in (Liu
et al., 2016) that machine translation metrics are
not good for evaluating dialogue generation.

Additional analysis of results in Table 4 1) Pre-
trained models including GPT-2 and BART in
general perform better than un-pretrained Trans-
former. This demonstrates the effectiveness of
transfer learning, which leverages external large-
scale data to learn powerful representations of texts.
2) BART achieves lower perplexity than GPT-2

2https://github.com/huggingface/transformers
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Transformer GPT-2 TAPT BART Ours
Num. of epochs 100 5 5 5 5
Validation loss 8.02 3.06 2.88 2.84 2.87

Validation perplexity 260.30 21.50 17.74 17.28 17.56

Table 14: Validation performance on CovidDialog-English

Transformer 36M
GPT-2 768M
BART 406M

Table 15: Number of weight parameters of each model
on CovidDialog-English

models. This is probably because BART is pre-
trained on a much larger and more diverse corpus
than GPT-2, which enables BART to better model
the language. 3) GPT2-large performs better than
BART on machine translation metrics including
NIST, BLEU, and METEOR. This is probably be-
cause GPT2-large is pretrained on dialogue data
and therefore tends to generate n-grams that are
more related to dialogues. 4) On diversity-related
metrics including Entropy and Dist, BART is on
par with GPT-2 models.

Additional analysis of results in Table 8 1) Pre-
trained BERT-GPT works better than unpretrained
Transformer. Though pretrained, GPT-2 is not
as good as Transformer. The possible reason is
the training corpora of GPT-2 is daily dialogues,
which has a large domain shift from medical dia-
logues. The performance gap between BERT-GPT
and Groundtruth is larger than that between BART
and Groundtruth, despite the number of Chinese
training dialogues is larger than that of English
training dialogues. This indicates that it is more
challenging to develop COVID-19 dialogue sys-
tems on Chinese. One major reason is the Chinese
dialogues are more noisy than the English ones,
with a lot of incorrect grammar, abbreviations, se-
mantic ambiguities, etc.

Additional analysis of results in Table 6 1) Pre-
trained models including GPT-2 and BERT-GPT
achieve lower perplexity than Transformer. This
further demonstrates the effectiveness of transfer
learning. 2) GPT2-MMI achieves better scores
than other methods on machine translation met-
rics, which is consistent with the results on the
CovidDialog-English dataset. 3) BERT-GPT-TAPT
achieves better Dist scores than other methods.
We manually checked the generated responses by
BERT-GPT-TAPT. Indeed, they are more diverse

than others. 4) Maximum mutual information
(MMI) does not have a clear efficacy in improv-
ing the quality of generated responses.

D Computing infrastructure, runtime,
validation performance, number of
weight parameters, implementation
details

D.1 On Chinese CovidDialog
The computing infrastructure and runtime (seconds
per epoch) on CovidDialog-Chinese is shown in
Table 10. The validation performance is shown in
Table 11. The number of weight parameters of each
model on CovidDialog-Chinese is shown in Table
12.

We use PyTorch to implement all models. The
version of Torch is 1.4.0 (or above). The python
package “Transformers3” is 2.1.1 for GPT-2 and
2.8.0 (or above) for Transformer and BERT-GPT.
When testing, we calculate NIST-n (Doddington,
2002), BLEU-n (Papineni et al., 2002) and ME-
TEOR (Lavie and Agarwal, 2007) using NLTK4

with version 3.5, and calculate Entropy-n (Zhang
et al., 2018) and Dist-n (Li et al., 2015) based on
the scripts in DialoGPT5. We use Gradient Accu-
mulation in PyTorch to enlarge the mini-batch size
to 32. Gradient Accumulation is a mechanism of
PyTorch, which splits a large batch into smaller
batches. The computation on smaller batches is
executed sequentially. We set the number of gradi-
ent accumulation as 4 so that the mini-batch size is
8 ∗ 4 = 32.

D.2 On English CovidDialog
Table 13 shows the computing infrastructure and
runtime (seconds per epoch) on the CovidDialog-
English dataset. The number of epochs and valida-
tion performance of each model on CovidDialog-
English are shown in Table 14. The number of
weight parameters of each model on CovidDialog-
English is shown in Table 15.

3https://github.com/huggingface/transformers
4https://www.nltk.org/
5https://github.com/microsoft/DialoGPT
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Abstract

In multi-modal dialogue systems, it is impor-
tant to allow the use of images as part of a
multi-turn conversation. Training such dia-
logue systems generally requires a large-scale
dataset consisting of multi-turn dialogues that
involve images, but such datasets rarely exist.
In response, this paper proposes a 45k multi-
modal dialogue dataset created with minimal
human intervention. Our method to create
such a dataset consists of (1) preparing and
pre-processing text dialogue datasets, (2) cre-
ating image-mixed dialogues by using a text-
to-image replacement technique, and (3) em-
ploying a contextual-similarity-based filtering
step to ensure the contextual coherence of
the dataset. To evaluate the validity of our
dataset, we devise a simple retrieval model
for dialogue sentence prediction tasks. Auto-
matic metrics and human evaluation results on
such tasks show that our dataset can be effec-
tively used as training data for multi-modal di-
alogue systems which require an understand-
ing of images and text in a context-aware man-
ner. Our dataset and generation code is avail-
able at https://github.com/shh1574/

multi-modal-dialogue-dataset.

1 Introduction

Humans often use images in instant messaging ser-
vices to express their meaning and intent in the
dialogue context. For a dialogue system such as a
chatbot to respond to human users adequately in
this kind of multi-modal situations, it is necessary
to understand both images and texts in their context
and incorporate them in the dialogue generation
process.

Training such a multi-modal dialogue system
generally requires a large amount of training data
involving images and texts in various contexts.
However, numerous existing approaches relying

∗ Equal contribution.

What are you going to school for?

I like to study business

What was your favorite toy growing up? Mine is the lite brite.

I enjoyed playing with model cars.

My dad built those. he still has them.

substituted image

target sentence

Figure 1: Example of multi-modal dialogue dataset.

on image captioning (Lin et al., 2014; Young et al.,
2014) or visual question answering (Mostafazadeh
et al., 2016; Das et al., 2017) techniques had to
be trained with the datasets mostly irrelevant to
the dialogue context. In other words, images were
interpreted independently of the dialogue context,
due to the lack of sufficient multi-modal dialogue
datasets.

Those datasets containing image-grounded con-
versations (Mostafazadeh et al., 2017; Shuster et al.,
2020a) do not even cover the situations related to
dialogue context before the image, because all con-
versations in the dataset always start from the given
image. Although the relationship between images
and texts can be learned using image-grounded con-
versations (Lu et al., 2019; Chen et al., 2020; Tan
and Bansal, 2019; Su et al., 2020; Li et al., 2019b),
it cannot still learn the dependency between the
dialogue context before and after the image.

In this paper, we propose a 45k multi-modal
dialogue dataset in the form of Fig. 1. Each multi-
modal dialogue instance consists of a textual re-
sponse and a dialogue context with multiple text
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Do you like animals?

Yeah, I have a cat.

What's he doing now ?

How are you ?

Fine. What are you doing ?

I’m cooking now

Source Dialogues

Source Dialogue 
Pre-Processing

Processed Source Dialogues

How are you?

Fine. What are you doing?

I’m cooking now

Text-to-Image Replacement

Image 
Source

Contextual-Similarity-based 
Filtering

Multi-Modal Dialogue

=  target sentence

Do you like animals?

Yeah, I have a cat.

What's he doing now ?

The cat is looking at me now.

=  text-to-image similarity

0.57

=  filter by criteria

The cat is looking at me now.

0.58

0.72

0.24

0.62

Raw Multi-Modal Dialogue

A B C

0.60

How are you?How are you?

Fine. What a..

0.72

Do you like..

Yeah, I ha..

What’s he..

Do you like..

What’s he..

The cat is...
0.24

0.58

0.62

How are you?

Fine. What a..

How are you?

Fine. What a..

0.72

Do you like..

Yeah, I ha..

What’s he..

Do you like..

What’s he..

The cat is...
0.24

0.58

0.62

Fine. What a..

Figure 2: Overall pipeline for multi-modal dialogue dataset creation.

utterances and an image. To create this dataset,
we start with existing text-only dialogue datasets
as source dialogues, and then replace part of sen-
tences in source dialogues with their semantically
relevant images. The detailed steps include (1)
source dialogue pre-processing, such as deleting
a stop word, to improve the quality of similarity
calculations, (2) creating dialogues containing an
image by replacing a sentence with a similarity-
based text-to-image replacement technique, and
(3) pruning low-quality dialogues by employing a
contextual-similarity-based filtering method. The
overall process ensures that the created dataset con-
sists of natural dialogue examples containing di-
verse images.

In order to validate our dataset creation process
and examine the quality of our multi-modal dia-
logue dataset, we devise the task of predicting cur-
rent and next dialogue sentences while considering
the dialogue context and images. We also develop
simple retrieval models to learn the relationship be-
tween images and texts for the tasks. Human eval-
uation results for predicting dialogue tasks show
that the sentences are predicted as intended, i.e.,
in a context-aware manner, using the images. The
results also show that our dataset can serve as prac-
tical training resources for multi-modal dialogue
tasks that involve both image and dialogue context.

2 Multi-Modal Dialogue Generation

Our multi-modal dialogue dataset is constructed
based on three source dialogue datasets and two
image captioning datasets: DailyDialog (Li et al.,
2017), EmpatheticDialogues (Rashkin et al., 2019),
and Persona-Chat (Zhang et al., 2018) for the for-

mer and the MS-COCO (Lin et al., 2014) and
Flicker 30k (Young et al., 2014) for the latter.
The statistics of each dataset are summarized in
Appendix A. After obtaining the source datasets,
we replace sentences in the source dialogues with
proper images by searching the image dataset to
create image-mixed dialogues that maintain seman-
tic coherence. To this end, we apply the three-stage
method as shown in Fig. 2: (1) source dialogue
pre-processing, (2) text-to-image replacement, and
(3) contextual-similarity-based filtering.

Source Dialogue Pre-Processing We pre-
process source dialogue datasets for the subsequent
text-to-image replacement (A in Fig. 2). To select
candidate dialogue sentences to be replaced by
images, we first exclude the question sentences
from the candidate dialogues because it is not
realistic to infer back a question out of an image to
put in the place of the question. This step filters
out 25.08% of the total sentences in the source
dialogue datasets. Second, we remove stop words
from the source dialogue datasets, because they
do not contain meaningful information. All the
remaining sentences in dialogue contexts after the
pre-processing step are considered as potential
target sentences to replace.

Text-to-Image Replacement In this step, we
create multi-modal dialogues containing images
by replacing target sentences from the candidate
dialogue sentences with appropriate images in the
image dataset based on text-to-image similarity
(B in Fig. 2). We calculate the similarity by the
pre-trained Visual Semantic Reasoning Network
(VSRN) (Li et al., 2019a), a state-of-the-art image-
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text matching model based on text-to-image simi-
larity. We first identify target sentences and then
select candidate images for replacement using the
threshold ensuring context coherence, as will be
discussed in the subsequent contextual-similarity-
based filtering step. Because we aim to maintain
the comprehensive flow of the dialogue, we replace
only one sentence with an image per dialogue. If
multiple image candidates exist for a single sen-
tence, we separate them into distinct image-mixed
dialogue instances. In detail, such separated in-
stances are all made up of the same dialogue con-
text and text response except for substituted im-
ages.

Contextual-Similarity-based Filtering We em-
ploy a contextual-similarity-based filtering step to
enhance the context coherence of the created image-
mixed dialogues (C in Fig. 2). We filter out the
dialogues where text-to-image similarity does not
exceed the threshold determined by human annota-
tors. For human annotators on the matching quality
of an image, a total of 300 test dialogues are se-
lected for each combination. Since we used three
source dialogue datasets and two image datasets,
we create six combinations of each dialogue dataset
and each image dataset. Automatically created
image-mixed dialogue instances are divided into
ten segments based on the similarity values, and 30
are selected randomly from each. We hired a total
of 18 annotators to evaluate 1,800 instances sam-
pled from these six combinations. The evaluation
system is described in Appendix C.

The human evaluation was conducted based on
three questions for each instance:

• Q1: How well does the substituted image con-
tain key objects in the target sentence?

• Q2: How well does the substituted image rep-
resent the meaning in the target sentence?

• Q3: When the image is substituted for the
target sentence, how consistent is it with the
context of the conversation?

Q1 and Q2 ask whether the substituted image con-
tains the core meaning of the target sentence (on a
3-point scale). Q3 evaluates the context coherence
of the created dialogue containing the image (on
a 5-point scale). We assume that dialogues above
the median of the evaluation score (2 for Q1, Q2,
and 3 for Q3) are suitable for use as training in-
stances. Based on this assumption, we determine

Similarity Q1 Q2 Q3
Similarity 0.5893 0.4422 0.4334
Q1 0.7103 0.6646
Q2 0.7570
Q3

Table 1: Spearman’s correlation ρ between three ques-
tions and text-to-image similarity.

train valid test
# total dataset 39956 2401 2673
Avg length of dialogue turns 13.01 13.62 13.59
Avg length of sentences 51.47 50.76 50.70
# total unique images 12272 334 682
# total unique dialogues 13141 2148 2390
# total unique target sentences 21495 2400 2671
Avg # of substituted images in a dialogue 1.86 1.00 1.00
Avg # of targets in a dialogue 1.64 1.12 1.12

Table 2: Multi-modal dialogue dataset statistics for
splits of training, validation, and test set.

the threshold for each combination by interpolating
the median in the correlation graph of the evalua-
tion results and the similarity (Appendix B). We
then analyze the correlation between the score for
each question and text-to-image similarity using
Spearman’s correlation analysis as shown in Ta-
ble 1. Overall, the similarity values are positively
correlated with the scores obtained for the ques-
tions. Since Q2 and Q3 are reasonably correlated
with semantic similarity, the substituted images
tend to reflect the meaning of the target and con-
text sentences. Thus, the evaluation results indi-
cate that the automatically created image-text pairs
with high similarity can be used as multi-modal
dialogues. We filter the generated multi-modal di-
alogues based on the determined similarities, and
then set the filtered dialogues as our final dataset.
The statistics of the final dataset are summarized in
Table 2.

Data Quality We evaluate the quality of our
dataset to validate the proposed dataset creation
method. To this end, we randomly sample 300
image-mixed dialogues from our final dataset. The
evaluation proceeds in the same manner as be-
fore, but we add a new question Q4, which asks to
choose the intent of the image used in the dialogue
as one among (1) answering the question, (2) ex-
pressing emotional reactions, (3) proposing a new
topic, and (4) giving additional explanations for the
previous context. For Q1, Q2, and Q3, the average
scores evaluated by three annotators are shown to
be 2.56, 2.17, and 3.13, respectively, indicating that
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Model Task R@1 R@5 Mean Rank

IR Baseline Current 21.62 49.49 30.04
IR Baseline Next 8.13 21.07 29.41
Retrieval Model Current 50.35 86.64 3.11
Retrieval Model Next 14.38 36.10 20.58

Table 3: Automatic evaluation results about retrieval
models and an information retrieval baseline on the cur-
rent and next dialogue prediction task.

the context of the conversation containing the sub-
stituted image is consistent in our dataset. For Q4,
the responses from the annotators are distributed
with 27.3%, 20.0%, 32.7%, and 14.7%, for the four
intent types as mentioned above, indicating our
dataset contains balanced intent types.

3 Experiments

3.1 Experimental Setup

We consider two dialogue sentence prediction tasks
given an image and a dialogue: current dialogue
prediction and next dialogue prediction for a given
image. We use a simple retrieval model com-
posed of three modules (Shuster et al., 2020a,b):
Resnext-101 (Xie et al., 2017) for an image en-
coder, BERT (Devlin et al., 2019) for a text encoder,
and the fusion module. As input for training the
model, we use images and up to three dialogue sen-
tences immediately before the images as dialogue
context.

3.2 Automatic Evaluation

We perform quantitative comparisons that follow
recent work (Shuster et al., 2020a) to find the opti-
mal setting for our retrieval model (Appendix D).
To evaluate the retrieval accuracy, we use the re-
call at 1 and 5 out of 100 candidates consisting
of 99 candidates randomly chosen from the test
set and 1 ground-truth sentence, called R@1/100
and R@5/100, respectively. We also use the mean
reciprocal rank. We compare our model with a sim-
ple information retrieval baseline. The candidates
of the baseline model are ranked according to their
weighted word overlap between the target sentence
and an image caption followed by dialogue context.

As shown in Table 3, the R@1 performance of
the retrieval model obtained 50.35 and 14.38 on the
current and next sentence prediction task, outper-
forming the baseline on both tasks. This result indi-
cates that our dataset properly works as the training
data to learn the relationship between images and
dialogue context in dialogue sentence prediction

Model inputs R@1 R@5 Mean Rank

Image Only 37.30 80.66 3.91
Dialogue Context Only 28.06 56.83 12.57
Image + Dialogue Context 51.21 86.34 3.08

Table 4: Ablation studies of our retrieval models on the
current dialogue prediction task.

Model inputs R@1 R@5 Mean Rank

Image Only 7.29 21.92 31.78
Dialogue Context Only 11.90 29.89 23.95
Image + Dialogue Context 14.38 36.10 20.58

Table 5: Ablation studies about our retrieval models on
the next dialogue prediction task.

tasks where images and dialogue context have to
be considered together.

3.3 Ablation Study

We then conduct ablation studies by removing
modalities (image and dialogue context) in turn
to check whether unwanted correlations exist in
our dataset. Since we created our training and test
datasets by a semi-automatic data creation method,
unwanted correlations can exist in datasets that
can infer the correct answer without using the im-
age and context simultaneously. Such correlations
would prevent the model from properly learning
the relationship between images and context.

As shown in Tables 4 and 5, the results first show
that the recall measure for ground-truth answers in
the model that considers both context and image is
higher than the model considering only images. It
indicates that the models in each task properly con-
sider both images and dialogue context to predict
sentences. To elaborate, the model that only con-
siders images are likely to choose responses that do
not match the dialogue context before the image.
For example in a given dog photo shown during a
sad mood conversation, the model that only consid-
ers images can generate an out-of-context response,
such as “It is so cute.”. On the other hand, in the
same context, the model that considers both the
context and the image could generate appropriate
responses, such as “what is wrong with your dog?”
or “I miss your dog.”.

The overall tendency also shows that the model
performance degrades when we delete each modal-
ity one by one. Such results suggest that our data
creation process did not generate correlations that
interfere with forming the relationship between im-
ages and dialogue context.
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3.4 Human Evaluation

We create a new test set to confirm that the model
can predict sentences well even on test dialogues
that are not constructed in the same manner. To this
end, two researchers manually created 100 multi-
modal dialogues by adding images to source dia-
logues that were not used in our dataset generation
process for human evaluation. We proceed with the
evaluation with three annotators per each prediction
task, using a question (on a 5-point scale) asking
how much the sentences predicted by the model are
relevant to the image and dialogue context. The av-
erage scores of three annotators for each task were
shown to be 3.36 for the current turn prediction
and 3.06 for the next turn prediction. The results
indicate that the models can predict sentences in
a context-aware manner even with dialogues orga-
nized by humans.

4 Conclusions

We present the multi-modal dialogue dataset con-
sisting of 45k multi-turn dialogues containing se-
mantically coherent images as well as the dataset
creation method. Human evaluation results of our
multi-modal dialogues reveal that context coher-
ence is well maintained even if the sentence is re-
placed by an image, showing the validity of our
dataset and data creation approach. We then eval-
uate our dataset using two multi-modal dialogue
prediction tasks, demonstrating its effectiveness
when training a dialogue system to learn the re-
lationship between images and dialogue contexts.
Our proposed data creation method can be applied
when efficiently preparing large-scale multi-modal
dialogue datasets that cover diverse multi-modal
situations.
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Figure 3: Correlation between text-to-image similarity and question scores (Q1, Q2, and Q3) for six combinations.

A Source Datasets Statistics

type training validation test
DailyDialogue dialog 11118 1000 1000
Persona-Chat dialog 8938 999 967
EmpatheticDialogues dialog 17792 2758 2539
MS-COCO image 113287 5000 5000
Flickr 30k image 28000 1000 1000

Table 6: Source dialogue and image captioning dataset
statistics for splits of training, validation, and test set.

B Detailed Description of
Contextual-Similarity-based Filtering

threshold train valid test
Persona-COCO 0.546 11606 411 1136
Persona-Flickr 0.509 19148 1654 1014
Daily-COCO 0.555 3418 47 319
Daily-Flickr 0.619 141 6 5
Empathetic-COCO 0.623 245 2 11
Empathetic-Flickr 0.516 5398 281 188
Total 39956 2401 2673

Table 7: Number of data instances filtered by the thresh-
olds for each combination

In this section, we analyze the human evalua-
tion results for contextual-similarity-based filtering
and determine thresholds for each dataset combina-
tion. The correlations between the similarity and
evaluation results for each question are shown in
Fig. 3. We assume that dialogue instances above
the median of the evaluation score (2 for Q1, Q2,
and 3 for Q3) are suitable for use in training. Based
on the assumption, we determine the threshold for
each combination by interpolating the median in
the correlation graph of the evaluation results and
the similarity. We select the largest one of three
interpolated values of each question (Q1, Q2, and
Q3). The data statistics for each combination fil-
tered by the threshold are shown in Table 7.

Since the thresholds for each combination are
determined differently, there are differences in
the number of dialogue instances by combination.
Such results suggest that the quality of multi-modal
dialogue generation may vary depending on com-
bining the text and image datasets. For example,
the DailyDialog goes well with the MS-COCO but
not with Flicker 30k. On the contrary, the Empa-
theticDialogues goes well with the Flicker 30k but
not with MS-COCO. Thus, we must consider find-
ing the right combination among text and image
datasets in the multi-modal dialogues generation
process.
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C Human Evaluation System

i am from the south in the us. what about you?

Multi-Modal Dialogue

Evaluation System

1. How well does the replaced image 
contain key objects in the target 
sentence?

1 2 3

2. How well does the replaced image 
explain the meaning in the target 
sentence?

1 2 3

3. If the image replaces the source 
sentence, how consistent is the 
context of the conversation?

1 2 3 4 5

4. If the image replaces the source 
sentence, what's the purpose of using 
the image in the conversation?

Select the purpose

7 / 100

PREV NEXT

i live in hawaii and i work from home .

beautiful place . i have a dog walking business . do you have pets?

it is. i love it here . i have 2 dogs they love it here too .

 good to talk to a fellow dog lover ! we have three .

Figure 4: Human evaluation system for testing our multi-modal dialogue dataset.

hi, how are you doing ?

Multi-Modal Dialogue

Evaluation System How much is the sentence following 
the image related to the dialogue 
context that contains the image ?

1 2 3 4 5

13 / 100

PREV NEXT

hi, i am doing well, how are you ?

hi, how are you, please tell me more about yourself !

Figure 5: Human evaluation system for testing two dialogue sentence prediction tasks using our retrieval models.

In this section, we introduce the human evaluation system. We develop the system using a JavaScript
library called ReactJS. Fig. 4 shows the implemented system for evaluating our multi-modal dialogue
dataset. In this system, we ask users to evaluate a total of 100 dialog instances and answer three or four
questions per instance. In addition to three questions described in Section 2, Q41 is added depending
on the purpose of use. Fig. 5 shows the system for evaluating the performance of a retrieval model that
performs dialog sentence prediction tasks. Similarly, we also ask users to evaluate a total of 100 dialog
instances and answer one question per instance.

1Q4: If the image replaces the source sentence, what is the purpose of using the image in the conversation?
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D Best Model Search

Model Fusion Module Image Encoder Text Encoder R@1 R@5 Mean Rank
IRBaseline n/a n/a n/a 21.62 49.49 30.04
RetrievalModelAtt Attention Unfreeze Freeze 11.74 39.13 15.73
RetrievalModelSum Sum Unfreeze Freeze 9.95 35.13 15.73
RetrievalModelAtt Attention Unfreeze Unfreeze 43.51 80.55 4.13
RetrievalModelSum Sum Unfreeze Unfreeze 48.19 84.21 3.66
RetrievalModelAtt Attention Freeze Unfreeze 48.41 85.97 3.40
RetrievalModelSum Sum Freeze Unfreeze 50.35 86.64 3.11

Table 8: Comparison tests of the current dialogue prediction task on the multi-modal dialogue dataset. We compare
different module variations and training strategies for our retrieval models.

Model Fusion Module Image Encoder Text Encoder R@1 R@5 Mean Rank
IRBaseline n/a n/a n/a 8.13 21.07 29.41
RetrievalModelAtt Attention Unfreeze Freeze 2.04 9.50 40.99
RetrievalModelSum Sum Unfreeze Freeze 3.08 12.46 36.36
RetrievalModelAtt Attention Unfreeze Unfreeze 4.09 15.95 32.07
RetrievalModelSum Sum Unfreeze Unfreeze 13.38 33.93 21.10
RetrievalModelAtt Attention Freeze Unfreeze 10.02 28.49 23.71
RetrievalModelSum Sum Freeze Unfreeze 14.38 36.10 20.58

Table 9: Comparison tests of the next dialogue prediction task on the multi-modal dialogue dataset. We compare
different module variations and training strategies for our retrieval models.

We compare different module options of our model. Each encoder has two options: whether to freeze
or not during training, and the fusion module has two options: summation, and the attention-based
transformer encoder. For final image-context fused representation, context and image representations are
added in the summation fusion method, while two representations are concatenated, and then fed into the
attention-based two-layer transformer encoder in the attention-based method. By this comparison, we
decide to freeze only the image encoder and use the summation fusion method for both current and next
dialogue prediction tasks.

We additionally show the results of an information retrieval baseline, which retrieves target dialogue
using the tf-idf method between candidate dialogues and the caption of an image followed by dialogue
context. As shown in Tables 8 and 9, our retrieval model significantly outperforms the information retrieval
baseline, indicating that comprehensive understanding of context and images is helpful in multi-modal
dialogues.

Our implementation uses an NVIDA TITAN RTX GPU for training, and training each epoch takes
about 15 minutes. Our retrieval model using the summation fusion method has 204M parameters, while
that using the attention-based fusion method has 254M parameters.
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E Multi-Modal Dialogue Dataset Example

Extreme sports are only for a small minority of people. Several people from my 
university enjoy them, but most of us just watch. No one I know plays golf.

I know loads of people who play it regularly. There are plenty of golf courses 
around the country. In the past, only a tiny number of people played.

A great deal of people follow rugby in my country

There are plenty of rugby fans in my country too.

substituted image

target sentence

I am from the south in the US. what about you?

I live in Hawaii and I work from home.

Beautiful place. I have a dog walking business. Do you have pets ?

It is. I love it here. I have 2 dogs they love it here too.

Good to talk to a fellow dog lover! we have three.

substituted image

target sentence

Figure 6: Our multi-modal dialogue dataset examples

For easy understanding of our dataset, we provide two additional examples of the multi-modal dialogue
dataset in Fig. 6.

F Selected Example of Current Dialogue Prediction Task

How about any other family?

yes, I was married three times before, but they are all ex wives now, you?

nope... I am an only child and mostly just hang with friends.

I enjoyed playing with model cars.

image input

That is a very cool hobby. I like old cars

ground-truth

model’s prediction

Figure 7: Ground-truth and dialogue sentence prediction example by our retrieval model used in the current turn
prediction task.

Fig. 7 shows a reasonable example of a retrieved dialogue sentence by the retrieval model used in the
current turn prediction task. Even if the model does not predict the ground-truth sentence, it can predict a
plausible dialogue sentence.
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Abstract
Reducing and counter-acting hate speech on
Social Media is a significant concern. Most
of the proposed automatic methods are con-
ducted exclusively on English and very few
consistently labeled, non-English resources
have been proposed. Learning to detect hate
speech on English and transferring to unseen
languages seems an immediate solution. This
work is the first to shed light on the limits of
this zero-shot, cross-lingual transfer learning
framework for hate speech detection. We use
benchmark data sets in English, Italian, and
Spanish to detect hate speech towards immi-
grants and women. Investigating post-hoc ex-
planations of the model, we discover that non-
hateful, language-specific taboo interjections
are misinterpreted as signals of hate speech.
Our findings demonstrate that zero-shot, cross-
lingual models cannot be used as they are, but
need to be carefully designed.

1 Introduction

An increasing propagation of hate speech has been
detected on social media platforms (e.g., Twitter)
where (pseudo-) anonymity enables people to target
others without being recognized or easily traced.
While this societal issue has attracted many studies
in the NLP community, it comes with three impor-
tant challenges. First, “hate speech” covers a wide
range of target types, including misogyny, racism,
and various other forms. While they often intersect,
these types require different approaches.

Second, available labeled corpora refer to differ-
ent definitions of hate speech, collection strategies,
and annotation frameworks (Fortuna and Nunes,
2018). This lack of consistency strongly limits re-
search on hate speech, which ultimately needs to
apply cross-domain or transfer learning approaches
for using different corpora.

Third, most of the research on hate speech de-
tection consider only English and only a limited

number of labeled corpora are available (Fortuna
and Nunes, 2018; Vidgen and Derczynski, 2021;
Poletto et al., 2020). However, hate speech is not
specific to any one language, and approaches pro-
posed for English may not fit other languages. Each
language exhibits different complexities in dealing
with gender or reflecting cultural ideas around it.

The lack of models and labeled corpora for
non-English languages seems a perfect application
for zero-shot, cross-lingual learning (Lamprinidis
et al., 2021; Bianchi et al., 2021). But is it? In this
paper, we investigate the limitations of zero-shot,
cross-lingual solutions based on mBERT (Devlin
et al., 2019) and XLM-R (Conneau et al., 2020) on
benchmark data sets of hate speech against immi-
grants and women in English, Italian, and Spanish.

Our analysis demonstrates that these approaches
have significant limitations: (1) they are not able
to capture common (taboo) language-specific ex-
pressions, and (2) they do not transfer to different
hate speech target types. We show that the reasons
for these limitations are due to the high presence of
language- and target-specific taboo interjections in
non-hateful contexts, like porca puttana or puta.1

While derogatory for women, these terms are
often used as intensifiers in non-hateful context,
blurring the lines for detection. Since English
does not use equivalent words in the same way,
zero-shot, cross-lingual models will not observe
them in the training data. Consequently, these mod-
els consider the literal meaning of these terms as
individual words, treating them as misogynous hate
speech. These findings demonstrate that, at the
current moment, cross-lingual, zero-shot transfer
learning is not a solution for solving the lack of
models and labeled corpora in non-English lan-
guages for hate speech detection.

1We report the uncensored words to ensure non-native
speaker understanding.
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(a) Misclassified prediction by zero-shot, cross-lingual model
trained on English and Spanish and tested on Italian data.

(b) Correct prediction by monolingual model trained on Italian
and tested on Italian data.

Figure 1: Hierarchical explanations of predictions of a non-hateful Italian tweet. Literal English translation: “how
the hell can you break the washing machine”.

Contributions 1) We investigate different learn-
ing frameworks on benchmark corpora for the de-
tection of hate speech targeting women and immi-
grants 2) We expose the limits of zero-shot, cross-
lingual solutions using the multilingual BERT
model (mBERT) 3) We show interpretable results
through post-hoc explanation.

2 Zero-shot, Cross-lingual Hate Speech
Detection

We investigate different learning settings: 1) zero-
shot, cross-lingual, i.e., training on one language
and testing on unseen languages; 2) monolingual,
i.e., training and testing on the same language; 3)
few-shot, cross-lingual, i.e., training on one lan-
guage and a small percentage of samples from the
test language and testing on the test language; 4)
augmented cross-lingual, i.e., training on several
languages and testing on a language included in the
training.

Multilingual BERT Recently, contextual em-
beddings pretrained on large corpora substantially
advanced research for several major Natural Lan-
guage Processing (NLP) tasks (Nozza et al., 2020).
In particular, multilingual BERT (mBERT) (Devlin
et al., 2019), a model pretrained on monolingual
Wikipedia dumps in 104 languages, has shown sur-
prisingly good abilities for zero-shot, cross-lingual
model transfer for different NLP tasks (Pires et al.,
2019). In this paper, we fine-tune the mBERT
model on the task of hate speech detection con-
sidering data from one or multiple languages.

Post-hoc Explanation One of the biggest limi-
tations of using complex black-box models, such
as BERT, is the lack of interpretability. Following
Kennedy et al. (2020), we use the Sampling and
Occlusion (SOC) algorithm (Jin et al., 2020) to gen-
erate hierarchical explanations of predictions. SOC
assigns an importance score to show how much

a given word or sequence of words contributes to
classifying a sentence as hate speech. Then, it com-
bines this score hierarchically following semantic
compositions. Visual representation examples are
given in Figures 1 and 2. The hierarchy reflects how
the model captures compositional semantics (e.g.,
stress or negation) in making predictions. Color
intensity represents how much each phrase con-
tributes to classifying the sentence as hate speech.
The label prediction is encoded in the color: blue
for non-misogynous and red for misogynous.

3 Data

Immigrants Women

EN IT ES EN IT ES
Train 4500 2000 1618 4500 2500 2882
Dev 500 500 173 500 500 327
Test 1499 1000 800 1472 1000 799

Table 1: Corpora splits # of instances by target type.

To assess the cross-lingual evaluation frame-
work, we use hate speech benchmark data sets with
consistent definitions, annotation schema, and col-
lection strategies (see Appendix C). For English
and Spanish, we adopt the data sets proposed in the
shared task of hate speech against immigrants and
women on Twitter (HatEval) (Basile et al., 2019).
For Italian, we consider two different corpora pro-
posed for Evalita shared tasks (Caselli et al., 2018):
the automatic misogyny identification challenge
(AMI) (Fersini et al., 2018) for hate speech towards
women, and the hate speech detection shared task
on Facebook and Twitter (HaSpeeDe) (Bosco et al.,
2018) for hate speech towards immigrants. Table 1
reports data distributions across languages and tar-
gets.
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Immigrants

Test IT EN ES

Tr
ai

n
IT 0.777 0.635∗∗ 0.666
EN 0.590∗∗ 0.368 0.633
ES 0.683∗∗ 0.596∗∗ 0.630

EN+ES 0.706* 0.353 0.676*
ES+IT 0.757 0.538∗∗ 0.686*
EN+IT 0.771 0.340 0.657

Baseline 0.799 - -

(a)

Women

Test IT EN ES

Tr
ai

n

IT 0.808 0.545 0.463∗∗

EN 0.449∗∗ 0.559 0.546∗∗

ES 0.337∗∗ 0.558 0.839

EN+ES 0.440 0.449∗∗ 0.873∗

ES+IT 0.820 0.502 0.878∗

EN+IT 0.798 0.469∗∗ 0.603∗∗

Baseline 0.844 - -

(b)

Table 2: Macro-F1 results for the two hate speech targets. Monolingual results are underlined. Zero-shot cross-
lingual results are highlighted in italic. ∗ = differs significantly from monolingual at p ≤ 0.05. ∗∗ = significant
difference at p ≤ 0.01.

4 Experimental Results

Table 2 shows the macro-averaged F1 score for
hate speech detection on different training and test
languages (in rows and columns, respectively). Un-
derlined numbers refer to the monolingual setting
results, while zero-shot, cross-lingual results are
italicized. We report as baselines the best perform-
ing model for each of the considered data set re-
leased in conjunction with shared tasks.2 Since
the aim of this paper is to investigate classification
abilities of cross-lingual, zero-shot models, we do
not aim to overcome the baselines but to provide
comparable results.

4.1 Hate speech towards immigrants
Observing monolingual results (underlined num-
bers in Table 2), we see that training and testing
in English gives the poorest performance. This
behavior is due to an over-sensitivity to specific
words/hashtags used during data collection (e.g.
#SendThemBack, #StopTheInvasion), which leads
to overfitting. In Appendix A, we report the SOC
explanation of a misclassified tweet containing
these hashtags. We confirm this finding by training
the monolingual English model on data deprived
of these hashtags, which lead to higher macro-F1
(from 0.368 to 0.438).

The zero-shot, cross-lingual configuration (italic
numbers in Table 2) shows very different results
between the two targets. Zero-shot learning ob-
tains good performance for detecting hate speech
towards immigrants: when testing Italian and Span-
ish, results are very similar; when testing on En-
glish, training on a different language is better than

2State-of-the-art performance do not exist for every com-
bination, since Hateval (English and Spanish) consider hate
speech towards women and immigrant in conjunction.

including English data, resulting in a 22% macro-
F1 improvement on average. This is because train-
ing sets based on other languages do not contain
the above-mentioned specific words and therefore
do not suffer from over-sensitization.

4.2 Hate speech towards women

Concerning hate speech towards women, the zero-
shot, cross-lingual model obtains significantly
lower performance for Spanish and Italian. To bet-
ter understand this substantially different finding,
we analyze wrongly labeled instances. We discover
that zero-shot, cross-lingual models are strongly
influenced by common, language-specific taboo
interjections to mislabel non-hateful text as misog-
ynous. In particular, expressions that contain literal
insults towards women but are not misogynistic
per se. For example in Spanish, beyond its misog-
ynistic meaning, the word puta (literally bitch) is
also used as an exclamation of surprise (e.g., puta
mierda). The Italian expressions porca troia and
porca puttana (literally porca (pig) + troia/puttana
(slut)) are very generic taboo interjections that do
not have a misogynistic connotation. It is impor-
tant to notice that these interjections are not directly
translatable and usually used in combination, e.g.
porca + puttana, puta + mierda.

To demonstrate this finding, in Table 3 we re-
port the number of times a zero-shot cross-learning
model correctly predicts the labels of instances con-
taining taboo interjections for Italian and Spanish
(i.e., porca puttana, porca troia, puta). The high
frequency of instances containing taboo interjec-
tions (29% and 78% of the test set), due also to
the keyword-driven collection strategy, proves the
importance of understanding these linguistic ex-
pressions. The following numbers illustrate the
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Test Lang Frequency Zero-Shot,
Cross-Lingual Monolingual

IT 294 ( 29%) 9 ( 3%) 291 ( 99%)
ES 627 ( 78%) 365 (58%) 514 ( 82%)

Table 3: Correct predictions for instances containing
Italian and Spanish taboo interjections.

impact of taboo interjections: all the 276 Ital-
ian tweets containing porca puttana are labeled
as non-misogynous and are consistently misclassi-
fied by zero-shot, cross-lingual model; the Spanish
expression hijo de puta appears in 64 tweets (of
which 57 are non-misogynous) for which the zero-
shot, cross-lingual model achieves 62% accuracy
vs. 90% accuracy of the monolingual model. We
confirm this finding by training models on data
deprived of these taboo interjections, obtaining im-
provements: 0.627 for ES⇒IT; 0.479 for IT⇒ES;
0.662 for EN⇒IT; 0.660 for IT⇒EN.

Figure 1 shows the SOC explanation of a non-
hateful tweet correctly classified by the mono-
lingual Italian model and wrongly classified by
the zero-shot, cross-lingual model trained on En-
glish and Spanish data. As expected, training and
testing on Italian teach the model that porca put-
tana is a very general exclamation that does not
imply misogyny (high importance score for non-
misogynous prediction). However, when training
on other languages, this taboo interjection is not
recognized because it is strictly related to the test
language. We observe that zero-shot, cross-lingual
models consider the literal meaning of individual
words, and consequently treat terms like porca put-
tana as misogynous regardless of their use in con-
text.

To further validate this major finding, we con-
duct an additional experiment on the corpus of hate
speech towards women: we train few-shot, cross-
lingual models randomly sampling 1% of training
data in the test language. The averaged results
on 10 runs in terms of macro-F1 are: 0.660 for
ES+EN⇒IT; 0.702 for EN+IT⇒ES. The signifi-
cant improvements with respect to zero-shot perfor-
mances prove that misogyny detection is strongly
entangled with common, language-specific taboo
interjections that are very frequent in the data set.

4.3 Hate speech towards immigrants and
women

Finally, to demonstrate the need for treating tar-
get types separately, we run the zero-shot, cross-

lingual model on the merged data sets of hate
speech towards immigrants and women. The
results in terms of macro-F1 are: 0.572 for
ES+IT⇒EN; 0.513 for ES+EN⇒IT; 0.632 for
EN+IT⇒ES (see Appendix B).

Following Stappen et al. (2020), these scores
suggest a sufficient adaptation by the models. How-
ever, they represent a compromise between the high
results of zero-shot cross-lingual hate speech de-
tection against immigrants and the low results of
hate speech detection against women. By showing
the results for the two separate targets, we demon-
strated that zero-shot cross-lingual models suffer
from limitations when predicting hate speech detec-
tion against women and that, in general, zero-shot
cross-lingual hate speech detection has yet to be
solved.

4.4 Impact of language-specific taboo
interjections on XLM-R

In order to understand whether common, language-
specific taboo interjections play a role in other
language models, we conducted experiments with
XLM-R (Conneau et al., 2020). XLM-R is a large
cross-lingual language model based on RoBERTa
(Liu et al., 2019), trained on 2.5TB of filtered Com-
monCrawl data, which significantly outperformed
mBERT on a variety of cross-lingual benchmarks.

XLM-R achieves high macro-F1 scores in mono-
lingual settings for detecting hate speech towards
women in Italian and Spanish (0.806 for IT⇒IT;
0.859 for ES⇒ES). Similar to the previously pre-
sented findings, we observe a significant drop of
36% in macro-F1 when considering the zero-shot
cross-lingual settings (0.604 for EN⇒IT; 0.511 for
ES⇒IT; 0.404 for IT⇒ES; 0.658 for EN⇒ES).
This drop in macro-F1 is more evident when con-
sidering the performance when training on Spanish
and testing on Italian and vice versa. These re-
sults on XLM-R bring more evidence about the
role that language-specific taboo interjections have
in impacting the performance.

5 Related Work

Hate speech detection has attracted great interest in
the NLP community. This has led to the proposal
of automatic detection approaches based on ma-
chine learning (Indurthi et al., 2019; Nozza et al.,
2019; Fersini et al., 2020a; Kennedy et al., 2020;
D’Sa et al., 2020, inter alia) and the creation of
benchmark data sets, usually distributed through
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shared tasks (Waseem and Hovy, 2016; Davidson
et al., 2017; Founta et al., 2018; Bosco et al., 2018;
Kumar et al., 2018; Wiegand et al., 2018; Basile
et al., 2019; Fersini et al., 2018; Zampieri et al.,
2020; Fersini et al., 2020b, inter alia).

Only a few studies have investigated hate speech
detection across different languages. Steimel et al.
(2019) asked which factors affect multilingual set-
tings for German and English, concluding that a
shared classification algorithm is not conceivable
due to lack of corpora comparability. In Sohn and
Lee (2019), the authors proposed a multi-channel
model exploiting multilingual BERT and language-
specific BERT for Chinese, English, German, and
Italian. Finally, Stappen et al. (2020) proposed a
novel, attention-based classification block for per-
forming zero- and few-shot, cross-lingual learning
on the HatEval data set. While they state that trans-
fer learning is effective for hate speech detection,
we argue that there is a need to investigate hate
speech targets separately since these models con-
sistently fail misogyny classification.

6 Conclusion

We demonstrate that cross-lingual, zero-shot trans-
fer learning, in its traditional settings, is not a fea-
sible solution for solving the lack of models and
labeled corpora for hate speech detection. We ar-
gue that hate speech is language specific, and NLP
approaches to identifying hate speech must account
for that specificity and the adoption of related tech-
niques must be done with care (Bianchi and Hovy,
2021). We plan to expand this evaluation to other
languages and to investigate a solution based on
bias mitigation (Nozza et al., 2019; Kennedy et al.,
2020) and on pragmatic role-aware models (Hol-
gate et al., 2018; Pamungkas et al., 2020) to reduce
the impact of this problem on classification. Future
work will also focus on modeling language’s social
factors (Hovy and Spruit, 2016; Hovy, 2018; Hovy
and Yang, 2021), such as speaker and receiver char-
acteristics, and study their impact on hate speech
detection classifiers.

Ethical Considerations

We are aware that the inherent (gender) biases of
sentence and word embeddings are affecting the
model’s performance on detecting hate speech to-
wards women (Bolukbasi et al., 2016; Sheng et al.,
2019; Nangia et al., 2020; Nozza et al., 2021). We
believe that this issue plays a role in the classifica-

tion models. However, in this paper we extensively
demonstrate that the presence of taboo interjections
is one of the main hurdles that specifically hinder
zero-shot, cross-lingual hate speech detection re-
sults.

Finally, we want to highlight that the presented
findings are specifically related to the considered
languages and data sets. Hopefully, our work will
generate more conscious research about the use of
hate speech detection models in zero-shot, cross-
lingual frameworks.
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A Additional Post-Hoc Explanation

Figure 2 shows the hierarchically clustered expla-
nations from SOC for an example of non-hateful
speech wrongly classified as hateful by the mono-
lingual English model. It is evident how the (incor-
rect) high score of the hashtag eclipses the influ-
ence of non-hateful words such as days, kids, and
school.

Figure 2: Hierarchical explanations of the incorrect pre-
diction of a non-hateful English tweet by a monolingual
model trained on English and tested on English data.

B Additional Results

Immigrants+Women

Test IT EN ES

Tr
ai

n

IT 0.804 0.571∗∗ 0.596∗∗

EN 0.564∗∗ 0.416 0.648∗∗

ES 0.513∗∗ 0.576∗∗ 0.752

EN+ES 0.513∗∗ 0.335∗∗ 0.768
ES+IT 0.797 0.572∗∗ 0.744
EN+IT 0.802 0.399 0.632∗∗

Baseline - 0.651 0.730

Table 4: Results in terms of macro-F1 for the merged
corpora containing hate speech towards immigrants
and women. Monolingual results are underlined. Zero-
shot cross-lingual results are highlighted in italic.
∗ = differs significantly from monolingual at p ≤ 0.05.
∗∗ = significant difference at p ≤ 0.01.

C Experimental Configuration

C.1 Consistent Data sets

We use benchmark hate speech data sets with con-
sistent definitions, annotation schema, and collec-
tion strategies. All the three data sets (Bosco et al.,
2018; Fersini et al., 2018; Basile et al., 2019) re-
fer to the same definitions of hate speech towards
immigrant and women.3 This paper focuses on
the common binary classification task (hateful/non-
hateful) across all data sets, ensuring the same an-
notation schema. Finally, all data sets have been

3https://github.com/msang/hateval/blo
b/master/annotation guidelines.md

collected by following three strategies: (1) moni-
toring potential victims of hate accounts, (2) down-
loading the history of identified haters and (3) fil-
tering Twitter streams with keywords, i.e. words,
hashtags and stems.

For experimental evaluation, we use the data set
splits provided in the associated shared task for
comparability with previous work.

C.2 Implementation Details
We implement the proposed work exploiting the
public code implementation of the classification
model presented by Kennedy et al. (2020)4. We
use their hyperparameter configuration for training:
batch size is set to 32, the learning rate of the Adam
optimizer is set to 2×10−5, the loss function is the
binary cross entropy.

Computing Infrastructure We independently
run the experiments on two machines: the first
one is equipped with two NVIDIA RTX 2080TI
and has 64GB of RAM. The other one is equipped
with four GPUs, NVIDIA GTX 1080TI, and has
32GB of RAM.

4https://github.com/BrendanKennedy/co
ntextualizing-hate-speech-models-with-ex
planations
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Abstract

Neural machine translation models are often
biased toward the limited translation refer-
ences seen during training. To amend this
form of overfitting, in this paper we pro-
pose fine-tuning the models with a novel train-
ing objective based on the recently-proposed
BERTScore evaluation metric. BERTScore
is a scoring function based on contextual em-
beddings that overcomes the typical limita-
tions of n-gram-based metrics (e.g. synonyms,
paraphrases), allowing translations that are dif-
ferent from the references, yet close in the
contextual embedding space, to be treated
as substantially correct. To be able to use
BERTScore as a training objective, we pro-
pose three approaches for generating soft pre-
dictions, allowing the network to remain com-
pletely differentiable end-to-end. Experiments
carried out over four, diverse language pairs
have achieved improvements of up to 0.58 pp
(3.28%) in BLEU score and up to 0.76 pp
(0.98%) in BERTScore (FBERT ) when fine-
tuning a strong baseline.

1 Introduction

Neural machine translation (NMT) has imposed it-
self as the most performing approach for automatic
translation in a large variety of cases (Sutskever
et al., 2014; Vaswani et al., 2017). However, NMT
models suffer from well-known limitations such
as overfitting and moderate generalization, partic-
ularly when the training data are limited (Koehn
and Knowles, 2017). This mainly stems from the
fact that NMT models have large capacity and are
usually trained to maximize the likelihood of just
a single reference sentence per source sentence,
thus ignoring possible variations within the transla-
tion (e.g. synonyms, paraphrases) and potentially
resulting in overfitting. A somewhat analogous
problem affects evaluation, where metrics such
as BLEU (Papineni et al., 2002) only consider as

correct the predicted n-grams that match exactly
in the ground-truth sentence. In order to allevi-
ate the n-gram matching issue during evaluation,
Zhang et al. (2020) have recently proposed the
BERTScore metric that measures the accuracy of a
translation model in a contextual embedding space.
In BERTScore, a pretrained language model (e.g.
BERT (Devlin et al., 2019)) is first used to com-
pute the contextual embeddings of the predicted
sentence, 〈ŷ1, . . . , ŷk〉, and the reference sentence,
〈y1, . . . , yl〉, with k and l word-pieces, respectively.
Then, recall (RBERT ), precision (PBERT ), and F1
(FBERT ) scores are defined as cosine similarities
between the normalized contextual embeddings.
For example, the recall is defined as:

RBERT =
1

|l|
∑

yi∈y
max
ŷj∈ŷ

yTi ŷj (1)

where the max function acts as an alignment be-
tween each word in the reference sentence (y) and
the words in the predicted sentence (ŷ). Conversely,
PBERT aligns each word of the predicted sen-
tence with the words of the reference sentence, and
FBERT is the usual geometric mean of precision
and recall. Note that with this scoring function a
candidate and reference sentences with similar em-
beddings will be assigned a high score even if they
differ completely in terms of categorical words.
Zhang et al. (2020) have shown that this evaluation
metric has very high correlation with the human
judgment.

In this work, we propose using BERTScore as
an objective function for model fine-tuning. Our
rationale is that BERTScore is a sentence-level ob-
jective that may be able to refine the performance of
NMT models trained with the conventional, token-
level log-likelihood. However, in order to fine-tune
the model with BERTScore as an objective, end-
to-end differentiability needs to be ensured. While
the BERTScore scoring function is based on word
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embeddings and is in itself differentiable, its input
derives from categorical predictions (i.e. argmax
or sampling), breaking the differentiability of the
overall model. In this work, we solve this problem
by generating soft predictions during training with
three different approaches. One of the approaches,
based on the Gumbel-Softmax (Jang et al., 2017),
also leverages sampling, allowing the model to ben-
efit from a certain degree of exploration. For imme-
diacy, we refer to our approach as BERTTune. The
experimental results over four, diverse language
pairs have shown improvements of up to 0.58 pp
(3.28%) in BLEU score and up to 0.76 pp (0.98%)
in BERTScore with respect to a contemporary base-
line (Ott et al., 2019).

2 Related Work

In recent years, various researchers have addressed
the problem of overfitting in NMT models. This
problem can be specially severe for neural models,
given that, in principle, their large number of pa-
rameters could allow for a perfect memorization
of the training set. For instance, Ma et al. (2018)
have trained an NMT model using both a reference
sentence and its bag-of-words vector as targets, as-
suming that the space of alternative, correct transla-
tions share similar bags-of-words. Others (Elbayad
et al., 2018; Chousa et al., 2018) have proposed
smoothing the probability distribution generated
by the decoder using the embedding distance be-
tween the predicted and target words, forcing the
network to increase the probability of words other
than the reference. Another line of work has pro-
posed to explicitly predict word embeddings, using
the cosine similarity with the target embedding as
the reward function (Kumar and Tsvetkov, 2019;
Jauregi Unanue et al., 2019).

Reinforcement learning-style training has also
been used to alleviate overfitting (Ranzato et al.,
2016; Edunov et al., 2018). The use of beam search
removes the exposure bias problem (Wiseman and
Rush, 2016), and the use of sampling introduces
some degree of exploration. In addition, these ap-
proaches allow using non-differentiable, sequence-
level metrics as reward functions. However, in prac-
tice, approximating the expectation of the objective
function with only one or a few samples results in
models with high variance and convergence issues.

Significant effort has also been recently dedi-
cated to leveraging large, pretrained language mod-
els (Devlin et al., 2019; Radford et al., 2018; Pe-

ters et al., 2018) for improving the performance of
NMT models. This includes using contextual word
embeddings either as input features (Edunov et al.,
2019) or for input augmentation (Yang et al., 2020;
Zhu et al., 2020), and using a pretrained language
model for initializing the weights of the encoder
(Clinchant et al., 2019). Alternatively, Baziotis et al.
(2020) have proposed using a pretrained language
model as a prior, encouraging the network to gen-
erate probability distributions that have a high like-
lihood in the language model. In abstractive sum-
marization, Li et al. (2019) have used BERTScore
as reward in a deep reinforcement learning frame-
work. In a similar vein, our work, too, aims to
leverage pretrained language models for improv-
ing the NMT accuracy. However, to the best of
our knowledge, ours is the first work to directly
include a language model as a differentiable eval-
uation measure in the training objective. In this
way, the NMT model is able to exploit the value
of a pretrained language model while at the same
time being fine-tuned over a task-specific evalua-
tion metric.

3 BERTScore Optimization

Translation evaluation metrics, including
BERTScore, typically require a predicted trans-
lation, 〈ŷ1, . . . , ŷk〉, and at least one reference
translation, 〈y1, . . . , yl〉, as inputs. At its turn, the
predicted translation is typically obtained as a
sequence of individual word (or token) predictions,
using beam search or greedy decoding. We can
express the predictions as:

ŷj = arg max
y

p(y|x, ŷj−1, θ) j = 1, . . . , k (2)

where x represents the source sentence and θ the
model’s parameters. During model training, it is
common practice to use teacher forcing (i.e., use
words from the reference sentence as ŷj−1) for
efficiency and faster convergence.

In brief, the computation of BERTScore works
as follows: the scorer first converts the words in the
predicted and reference sentences to corresponding
static (i.e., non-contextual) word embeddings using
the embedding matrix, E, stored in the pretrained
language model. For the predicted sequence, we
note this lookup as:

eŷj = embLM (E, ŷj) j = 1, . . . , k (3)

The sequences of static embeddings for the pre-
dicted and reference sentences are then used as
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inputs into the language model to generate corre-
sponding sequences of contextualized embeddings,
〈ŷ1, . . . , ŷk〉 and 〈y1, . . . , yk〉, respectively, over
which the BERTScore is finally computed. For
our work, we have chosen to optimize the FBERT

score as it balances precision and recall. For more
details on the scoring function we refer the reader
to (Zhang et al., 2020).

3.1 Soft predictions

However, it is not possible to directly use the
FBERT score as a training objective since the
argmax function in (2) is discontinuous. There-
fore, in this work we propose replacing the hard
decision of the argmax with “soft predictions” that
retain differentiability. Let us note concisely the
probability in (2) as pij , where i indexes a particular
word in the V -sized vocabulary and j refers to the
decoding step, and the entire probability vector at
step j as pj . Let us also note as ei the embedding
of the i-th word in the embedding matrix of the
pretrained language model, E. We then compute
an “expected embedding” as follows:

ēŷj = E[E]pj
=

V∑

i=1

pije
i (4)

In other terms, probabilities pj act as attention
weights over the word embeddings in matrix E,
and the resulting expected embedding, ēŷj , can be
seen as a trade-off, or weighted average, between
the embeddings of the words with highest proba-
bility. To be able to compute this expectation, the
NMT model must share the same target vocabu-
lary as the pretrained language model. Once the
expected embeddings for the whole predicted sen-
tence, 〈ēŷ1 , . . . , ēŷk〉, are computed, they are input
into the language model to obtain the correspond-
ing sequence of predicted contextualized embed-
dings, and the FBERT score is computed. The fine-
tuning loss is simply set as L = −FBERT . During
fine-tuning, only the parameters of the NMT model
are optimized while those of the pretrained lan-
guage model are kept unchanged.

3.2 Sparse soft predictions

A potential limitation of using the probability vec-
tors to obtain the expected embeddings is that they
are, a priori, dense, with several words in the vocab-
ulary possibly receiving a probability significantly
higher than zero. In this case, the expected em-
beddings risk losing a clear interpretation. While

we could simply employ a softmax with tempera-
ture to sparsify the probability vectors, we propose
exploring two more contemporary approaches:

• Sparsemax (Martins and Astudillo, 2016):
Sparsemax generates a Euclidean projection of
the logits computed by the decoder (noted as
vector sj) onto the probability simplex, ∆V−1:

pSM
j = arg min

pj∈∆V −1

||pj − sj ||2 (5)

The larger the logits, the more likely it is that the
resulting pSM

j vector will have a large number
of components equal to zero. The sparsemax
operator is fully differentiable.

• Gumbel-Softmax (Jang et al., 2017; Maddison
et al., 2017): The Gumbel-Softmax is a recent re-
parametrization technique that allows sampling
soft categorical variables by transforming sam-
ples of a Gumbel distribution. The transforma-
tion includes a temperature parameter, τ , that
allows making the resulting soft variables more
or less sparse. By noting a sample from the Gum-
bel distribution as gi, the Gumbel-Softmax can
be expressed as:

pi GS
j =

exp((log pij + gi)/τ)
∑V

v=1 exp((log pvj + gv)/τ)
(6)

where pi GS
j , i = 1, . . . , V , are the components

of the probability vector used in (4). In the exper-
iments, τ has been set to 0.1 to enforce sparsity.
In addition to obtaining more “selective” predic-
tions, the Gumbel-Softmax leverages sampling,
allowing the fine-tuning to avail of a certain de-
gree of exploration. The Gumbel-Softmax, too,
is fully differentiable.

4 Experiments

4.1 Datasets
We have carried out multiple experiments over
four, diverse language pairs, namely, German-
English (de-en), Chinese-English (zh-en), English-
Turkish (en-tr) and English-Spanish (en-es), using
the datasets from the well-known IWSLT 2014
shared task1, with 152K, 156K, 141K and 172K
training sentences, respectively. Following Edunov
et al. (2018), in the de-en dataset we have used
7, 000 samples of the training data for valida-
tion, and tst2010, tst2011, tst2012, dev2010 and

1https://wit3.fbk.eu/2014-01
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Model de-en zh-en en-tr en-es
BLEU FBERT MS BLEU FBERT MS BLEU FBERT MS BLEU FBERT MS

Transformer NMT 33.61 77.56 52.86 18.28 68.04 34.81 17.68 76.55 18.3 37.80 79.31 45.76
+ BERTTune (DV) 33.58 77.90 53.4† 18.53† 68.53† 35.57† 17.81† 76.57 18.19 37.36 79.30 45.92†
+ BERTTune (SM) 33.39 77.88 53.27† 18.09 68.48† 35.18† 17.52 76.55 18.09 37.70 79.27 45.89†

+ BERTTune (GS) 33.97 78.32† 53.58† 18.39† 68.45† 35.33† 18.26† 76.75† 18.33 37.96† 79.33 45.84†

Table 1: Average BLEU, FBERT and MoverScore (MS) results over the test sets. (†) refers to statistically signif-
icant differences with respect to the baseline computed with a bootstrap significance test with a p-value < 0.01
(Dror et al., 2018). The bootstrap test was carried out at sentence level for FBERT and MS, and at corpus level for
BLEU.

dev2012 as the test set. For the other language
pairs, we have used the validation and test sets pro-
vided by the shared task. More details about the
preprocessing are given in Appendix A.

4.2 Models and training

We have implemented the fine-tuning objective us-
ing the fairseq translation toolkit2 (Ott et al., 2019).
The pretrained language models for each language
have been downloaded from Hugging Face (Wolf
et al., 2020)3. As baseline, we have trained a full
NMT transformer until convergence on the valida-
tion set. With this model, we have been able to
reproduce or exceed the challenging baselines used
in (Zhang et al., 2020; Xia et al., 2019; Miculi-
cich et al., 2018; Wu et al., 2020). The fine-tuning
with the FBERT loss has been carried out over the
trained baseline model, again until convergence on
the validation set. For efficient training, we have
used teacher forcing in all our models. During
inference, we have used beam search with beam
size 5 and length penalty 1. As performance mea-
sures, we report the BLEU, FBERT and Mover-
Score (MS) (Zhao et al., 2019) results over the
test sets averaged over three independent runs. In-
cluding BLEU and MS in the evaluation allows
us to probe the models on metrics different from
that used for training. Similarly to FBERT , MS,
too, is a contextual embedding distance-based met-
ric, but it leverages soft alignments (many-to-one)
rather than hard alignments between words in the
candidate and reference sentences. To make the
evaluation more probing, for MS we have used dif-
ferent pretrained language models from those used
with FBERT . For more details on the models and
hyperparameter selection, please refer to Appendix
A.

2https://github.com/ijauregiCMCRC/fairseq-bert-loss
3https://huggingface.co/models
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Figure 1: Entropy of the probability vectors generated
by the different approaches over the de-en test set.

4.3 Results

Table 1 shows the main results over the respective
test sets. As expected, fine-tuning the baseline with
the proposed approach has generally helped im-
prove the FBERT scores. However, Table 1 also
shows that it has often led to improvements in
BLEU score. In the majority of cases, the best re-
sults have been obtained with the Gumbel-Softmax
(GS), with more marked improvements for de-en
and en-tr (+0.36 pp BLEU and +0.76 pp FBERT

and +0.72 pp MS for de-en, and +0.58 pp BLEU,
+0.20 pp FBERT and +0.03 pp MS for en-tr). Con-
versely, the dense vectors (DV) and sparsemax
(SM) have not been as effective, with the exception
of the dense vectors with the zh-en dataset (+0.25
pp BLEU, +0.49 pp FBERT and +0.54 pp MS).
This suggests that the Gumbel-Softmax sampling
may have played a useful role in exploring alter-
native word candidates. In fairness, none of the
proposed approaches has obtained significant im-
provements with the en-es dataset. This might be
due to the fact that the baseline is much stronger to
start with, and thus more difficult to improve upon.
In general, both the embedding-based metrics (i.e.,
FBERT and MS) have ranked the approaches in the
same order, with the exception of the en-es dataset.
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To provide further insights, similarly to Baziotis
et al. (2020), in Figure 1 we plot the distribution
of the entropy of the probability vectors generated
by the different approaches during inference over
the de-en test set. Lower values of entropy corre-
spond to sparser predictions. The plot shows that
the models fine-tuned with the dense vectors and
the Gumbel-Softmax have made test-time predic-
tions that have been sparser on average than those
of the baseline, with the Gumbel-Softmax being
the sparsest, as expected. Conversely, and some-
how unexpectedly, the model fine-tuned with the
sparsemax has made predictions denser than the
baseline’s. We argue that this may be due to the
scale of the logits that might have countered the
aimed sparsification of the sparsemax operator. In
all cases, the sparsity of the predictions seems to
have positively correlated with the improvements
in accuracy. For a qualitative analysis, Appendix B
presents and discusses various comparative exam-
ples for different language pairs.

Finally, Figure 2 shows the effect of the pro-
posed objective over the measured metrics on the
de-en validation set at different fine-tuning steps.
The plots show that the model rapidly improves the
performance in FBERT and MS scores during the
first epoch (steps 1− 967), peaking in the second
epoch (≈ step 1, 200). After that, the performance
of the model starts dropping, getting back to the
baseline levels in epoch 4. This suggests that train-
ing can be limited to a few epochs only, to prevent
overfitting. On the other hand, the plots also show
a trade-off between the metrics, as the model’s im-
provements in FBERT and MS come at cost of a
decrease in BLEU. However, this phenomenon has
not been visible on the test set, where all the fine-
tuned models have outperformed the baseline also
in BLEU score. This suggests that for this dataset
the distributions of the training and test sets may
be more alike.

5 Conclusion

In this work, we have proposed fine-tuning NMT
models with BERTScore, a recently proposed word
embedding-based evaluation metric aimed to over-
come the typical limitations of n-gram match-
ing. To be able to use BERTScore as an objec-
tive function while keeping the model end-to-end
differentiable, we have proposed generating soft
predictions with differentiable operators such as
the sparsemax and the Gumbel-Softmax. The ex-

Figure 2: BLEU, FBERT and MS scores of the BERT-
Tune (GS) model over the de-en validation set at differ-
ent fine-tuning steps. Step 0 is the score of the baseline
model, and the vertical dashed lines delimit the epochs.

perimental results over four language pairs have
showed that the proposed approach – nicknamed
BERTTune – has been able to achieve statistically
significant improvements in BLEU, FBERT and
MS scores over a strong baseline. As future work,
we intend to explore the impact of key factors such
as the dataset size, the sparsity degree of the pre-
dictions and the choice of different pretrained lan-
guage models, and we also plan to evaluate the use
of beam search/sequential sampling during training
to leverage further exploration of candidate transla-
tions.
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Stéphane Clinchant, Kweon Woo Jung, and Vassilina
Nikoulina. 2019. On the use of bert for neural ma-
chine translation. In Proceedings of the 3rd Work-
shop on Neural Generation and Translation.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Re-
ichart. 2018. The hitchhiker’s guide to testing statis-

919



tical significance in natural language processing. In
Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1383–
1392.

Sergey Edunov, Alexei Baevski, and Michael Auli.
2019. Pre-trained language model representations
for language generation. In Proceedings of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies.

Sergey Edunov, Myle Ott, Michael Auli, David Grang-
ier, and Marc’Aurelio Ranzato. 2018. Classical
structured prediction losses for sequence to se-
quence learning. In Proceedings of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies.

Maha Elbayad, Laurent Besacier, and Jakob Verbeek.
2018. Token-level and sequence-level loss smooth-
ing for RNN language models. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2094–2103.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cat-
egorical reparameterization with gumbel-softmax.
In Proceedings of the International Conference on
Learning Representations.

Inigo Jauregi Unanue, Ehsan Zare Borzeshi, Nazanin
Esmaili, and Massimo Piccardi. 2019. ReWE: Re-
gressing word embeddings for regularization of neu-
ral machine translation systems. In Proceedings of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 430–436.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR).

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceed-
ings of the First Workshop on Neural Machine Trans-
lation.

Sachin Kumar and Yulia Tsvetkov. 2019. Von mises-
fisher loss for training sequence to sequence models
with continuous outputs. In Proceedings of the Inter-
national Conference on Learning Representations.

Siyao Li, Deren Lei, Pengda Qin, and William Yang
Wang. 2019. Deep reinforcement learning with dis-
tributional semantic rewards for abstractive summa-
rization. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP).

Shuming Ma, Xu Sun, Yizhong Wang, and Junyang
Lin. 2018. Bag-of-words as target for neural ma-
chine translation. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics, pages 332–338.

Christopher Maddison, Andriy Mnih, and Yee Teh.
2017. The concrete distribution: A continuous relax-
ation of discrete random variables. In Proceedings
of the International Conference on Learning Repre-
sentations.

Andre Martins and Ramon Astudillo. 2016. From soft-
max to sparsemax: A sparse model of attention and
multi-label classification. In International Confer-
ence on Machine Learning, pages 1614–1623.

Lesly Miculicich, Dhananjay Ram, Nikolaos Pappas,
and James Henderson. 2018. Document-level neu-
ral machine translation with hierarchical attention
networks. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL
https://s3-us-west-2.amazonaws.com/openai-
assets/researchcovers/languageunsupervised/
language understanding paper. pdf.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In Proceedings
of the International Conference on Learning Repre-
sentations.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1715–1725.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the Advances in Neural Informa-
tion Processing Systems, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of Advances in Neural In-
formation Processing Systems, pages 5998–6008.

920



Sam Wiseman and Alexander M. Rush. 2016.
Sequence-to-sequence learning as beam-search opti-
mization. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1296–1306.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

Lijun Wu, Shufang Xie, Yingce Xia, Yang Fan, Jian-
Huang Lai, Tao Qin, and Tie-Yan Liu. 2020. Se-
quence generation with mixed representations. In
Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, pages 10388–10398.

Yingce Xia, Tianyu He, Xu Tan, Fei Tian, Di He, and
Tao Qin. 2019. Tied transformers: Neural machine
translation with shared encoder and decoder. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, pages 5466–5473.

Jiacheng Yang, Mingxuan Wang, Hao Zhou, Chengqi
Zhao, Weinan Zhang, Yong Yu, and Lei Li. 2020.
Towards making the most of bert in neural machine
translation. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 9378–9385.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In Proceedings of
the International Conference on Learning Represen-
tations.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. MoverScore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing, pages 563–578.

Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin,
Wengang Zhou, Houqiang Li, and Tie-Yan Liu.
2020. Incorporating bert into neural machine trans-
lation. In Proceedings of the International Confer-
ence on Learning Representations.

921



Appendix A: Preprocessing and
hyperparameters

This appendix provides detailed information about
the preprocessing of the datasets and the hyperpa-
rameter selection to facilitate the reproducibility of
the experiments. All the code will be released after
the anonymity period.

As part of the preprocessing of the datasets, all
sentences have been tokenized and lowercased.
The source languages have been tokenized with
the Moses tokenizer4, except for Chinese that
has been tokenized using Jieba5. The target
languages have instead been tokenized with the
tokenizer learned by the pretrained language
model. As language models for BERTScore, we
have used bert-base-uncased (en), dbmdz/
bert-base-turkish-uncased (tr) and
dccuchile/bert-base-spanish-wwm-
uncased (es) from Hugging Face. As lan-
guage model for the MoverScore, we have used
the suggested language model for English6,
dbmdz/distilbert-base-turkish-
cased for Turkish and
mrm8488/distill-bert-base-spa
nish -wwm-cased-fine
tuned-spa-squad2-es for Spanish, the
last two from Huggingface. The few sentences
longer than 175 tokens have been removed from
all datasets as in the original fairseq preprocessing
script. Additionally, further tokenization at
subword level has been performed over the source
languages using byte-pair encoding (BPE) (Sen-
nrich et al., 2016) with 32, 000 merge operations.
An important step in the preprocessing has been to
force the decoder and the language model to share
the same vocabulary. Therefore, we have assigned
the decoder with the vocabulary from the selected
pretrained language model, ensuring that both used
identical bos, eos, pad and unk tokens.

For training a strong transformer baseline,
we have followed the recommendations in
fairseq7. The architecture is the prede-
fined transformer iwslt de en architec-
ture (79M parameters) with word embedding and
hidden vector dimension size of 512, and 6 trans-
former layers. We have set the training batch size

4https://github.com/moses-smt/mosesdecoder
5https://github.com/fxsjy/jieba
6https://github.com/AIPHES/emnlp19-

moverscore/releases/download/0.6/MNLI BERT.zip
7https://fairseq.readthedocs.io/en/latest/index.html

to 4, 096 tokens, the dropout rate to 0.3 and the
clip norm gradient clipping parameter to 0.0.
The objective function is the label-smoothed nega-
tive log-likelihood, with the smoothing factor set
to 0.1. We have used the Adam optimizer (Kingma
and Ba, 2015) with a 5e− 4 learning rate and beta
values β1 = 0.9 and β2 = 0.98. We have set the
warm-up steps to 4, 000 with an initial learning
rate of 1e − 7. During training, we have reduced
the learning rate with an inverse square-root sched-
uler and the weight decay set to 0.001. We have
trained the model until convergence of the BLEU
score on the validation set, with checkpoints at each
epoch and patience set to 3, or until the learning
rate dropped below 1e− 9.

For fine-tuning with FBERT , we have initialized
the transformer models with the trained weights
of the baseline. We have kept all hyperparameters
identical, except for the learning rate which has
been reduced by an order of magnitude to 5e −
5, following common fine-tuning strategies. The
models have been fine-tuned until convergence over
the validation set, with patience set to 3. Since the
changes have only involved the training objective,
the number of trainable parameters has remained
exactly the same (79M). At test time, we have used
beam search decoding with beam size 5 and length
penalty 1.

For all the experiments we have used an NVIDIA
Quadro P5000 GPU card with 16 GB of memory.

Appendix B: Translation examples

This appendix shows a few translation examples
from the de-en and zh-en language pairs to provide
further insights into the behavior of the different
models.

The example in Table 2 shows that only the
BERTTune model with the Gumbel-Softmax has
been able to translate phrases such as at the moment
and it was as if / it was like. This model seems to
have been able to capture the exact meaning of the
source German sentence, even though it has trans-
lated it with a slightly different wording (note that
the Gumbel-Softmax fine-tuning explores a larger
variety of predictions). The other BERTTune mod-
els, too, have translated this sentence better than
the baseline.

In the example in Table 3, the baseline has not
been able to correctly pick the name of the artist
(bono, lowercased from Bono), choosing instead
word bonobos (primates). All the BERTTune mod-
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els have instead made the correct prediction. In
this example, it is possible that the BERTTune
models have benefited from the fine-tuning with a
pretrained language model: word bono might not
have been present in the limited translation training
data, but might have been encountered in the large
unsupervised corpora used to train the language
model. Another possibility is that they have simply
used the copy mechanism more effectively.

In the example in Table 4, all the BERTTune
models have correctly translated the phrase part
of the national statistics, while the baseline has
incorrectly translated it as part of the world record.
In turn, the BERTTune models have translated the
phrase in a decade or two as in 10 or 20 years
which is a correct paraphrase, whereas the baseline
has used the exact phrase as the reference. We also
note that although both the baseline and BERTune
translations have scored a BLEU score of 0.0 in
this case, the FBERT score has been able to differ-
entiate between them, assigning a score of 72.36
to the BERTTune translation and 72.10 to the base-
line. This also shows that small gains in FBERT

score can correspond to significant improvements
in translation quality.

Finally, in the example in Table 5 only the
BERTTune models with dense vectors and Gumbel-
Softmax have been able to translate the beginning
of the sentence (i was the guy beaten up) with ac-
ceptable paraphrases (i.e. and i was the kind of
person who had been beaten up / i was that guy
who had been beaten). Conversely, the baseline has
translated the ending part of the sentence (until one
teacher saved my life) with a phrase of antithetical
meaning (until a teacher turned me into this kind
of life).
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Src: in dem moment war es , als ob ein filmregisseur einen bühnenwechsel verlangt hätte .
Ref: at that moment , it was as if a film director called for a set change .
Transformer NMT: the moment a film director would have asked a stager .
BERTTune (Dense vectors) and at that moment , a film director would have wanted a stage change .
BERTTune (Sparsemax) the moment a film director wanted a stage change .
BERTTune (Gumbel-Softmax) at the moment , it was like a film director would have wanted a stage change .

Table 2: De-en translation example.

Src: und interessanterweise ist bono auch ein ted prize gewinner .
Ref: and interestingly enough , bono is also a ted prize winner .
Transformer NMT: and interestingly , bonobos are also a ted prize winner .
BERTTune (Dense vectors) and interestingly , bono is also a ted prize winner .
BERTTune (Sparsemax) and interestingly , bono is also a ted prize winner .
BERTTune (Gumbel-Softmax) and interestingly , bono is also a ted prize winner .

Table 3: Another de-en translation example.

Src: 我想在十年或二十年内，这将会成为国家统计数据的一部分。

Ref: this is going to be , i think , within the next decade or two , part of national statistics .
Transformer NMT: i think it ’ s going to be part of the world record in a decade or two .
BERTTune (Dense vectors) and i think that in 10 or 20 years , this will be part of the national statistics .
BERTTune (Sparsemax) i think that in 10 or 20 years , this will be part of the national statistics .
BERTTune (Gumbel-Softmax) i think that in 10 or 20 years , this will be part of the national statistics .

Table 4: Zh-en translation example.

Src: 我是那种每周在男生宿舍被打到出血的那种人直到一个老师把我从这种生活中解救出来。

Ref: i was the guy beaten up bloody every week in the boys ’ room , until one teacher saved my life .
Transformer NMT: i was the one who was in the dorm room every week , and it wasn ’ t until a teacher turned me into this kind of life .
BERTTune (Dense vectors) and i was the kind of person who had been beaten up in the dorma every week until a teacher turned me out of this life .
BERTTune (Sparsemax) i ’ m the kind of person who fell into his dorm room till a teacher turned me through this kind of life .
BERTTune (Gumbel-Softmax) i was that guy who had been beaten in his dorm room every week, until a teacher took me out of that life .

Table 5: Another zh-en translation example.
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Abstract

Implicit discourse relation classification is a
challenging task, in particular when the text
domain is different from the standard Penn
Discourse Treebank (PDTB; Prasad et al.,
2008) training corpus domain (Wall Street
Journal in 1990s). We here tackle the task of
implicit discourse relation classification on the
biomedical domain, for which the Biomedi-
cal Discourse Relation Bank (BioDRB; Prasad
et al., 2011) is available. We show that entity
information can be used to improve discourse
relational argument representation. In a first
step, we show that explicitly marked instances
that are content-wise similar to the target rela-
tions can be used to achieve good performance
in the cross-domain setting using a simple un-
supervised voting pipeline. As a further step,
we show that with the linked entity informa-
tion from the first step, a transformer which is
augmented with entity-related information (K-
BERT; Liu et al., 2020) sets the new state of
the art performance on the dataset, outperform-
ing the large pre-trained BioBERT (Lee et al.,
2020) model by 2% points.

1 Introduction

Discourse relation classification (DRC) involves
automatically inferring the logical link between dif-
ferent text segments (such as causal, contrastive,
temporal etc.). It has been shown to be a valuable
preprocessing step to many downstream natural
language processing tasks such as machine transla-
tion (Guzmán et al., 2014; Meyer et al., 2015), text
summarization (Gerani et al., 2014) and question-
answering (Jansen et al., 2014). A main obstacle to
a wider usage of automatic DR classifiers however
lies in getting the classifiers to work reliably on do-
mains other than the WSJ, that discourse relation
parsers are usually trained on PDTB (Prasad et al.,
2008) and RST (Carlson et al., 2003).

Moving to a different domain is particularly chal-
lenging in DRC because the overall distribution of
relations typically differs between domains, and
because many of the content words that classifiers
may rely on are very different between domains.
We here focus on the most challenging subtask
of implicit discourse relation classification, which
involves classifying those relations that are not
linked by any explicit connectives like “because”
or “but”. In order to correctly recognize implicit
relations, the classifier needs to recognize subtle
surface cues (which may differ between domains)
and learn about typical content-related relations.
For instance, from the example “it’s hot outside,
therefore I’d like to eat an icecream”, the words
“hot outside” and “icecream” are relevant cues for
the relation. An overview of typical cues for deter-
mining a coherence relation is provided in Das and
Taboada (2018).

The key to improving automatic DRC on a new
domain hence consists of better encoding of the
discourse relational arguments. As we will show
below (in line with earlier findings by Shi and Dem-
berg, 2019b), it makes a big difference to have at
least a small amount of in-domain discourse anno-
tated data.

We here explore DRC on the biomedical do-
main, which seems particularly suitable because a
discourse-annotated corpus is available (BioDRB;
Prasad et al., 2011), which we can use for evalua-
tion, as well as a setting with a small amount of in-
domain training data. Furthermore, the biomedical
domain does have large raw text corpora available.
An example instance from BioDRB (Prasad et al.,
2011) is shown below:

1. [These abnormalities in active RA are thought
to be induced mainly after chronic expo-
sure to high concentrations of IL-6.]Arg1

(Implicit=thus) [The limited efficacy of IL-10
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treatment of RA patients may be explained
in part by the unresponsiveness to IL-10 of
inflammatory cells, including T cells .]Arg2

—Implicit, Contingency.Cause

Scientific texts such as those from the biomed-
ical domain are well known to express much of
the content in nominal phrases, and less in verb
phrases (Halliday, 2006). Concretely, for the above
example, understanding the relation between the
RA (Rheumatoid Arthritis) and inflammatory cells
(including T cells) is important to correctly un-
derstanding the relation. The high importance of
entities in these texts is a crucial insight on which
we base our approach.

In this paper, we first propose an unsupervised
method using information retrieval and knowledge
graph techniques for identifying text passages that
are similar content-wise to the coherence relation
we want to label. The underlying assumption here
is that if two instances share the same entities in
both the relational arguments, it is possible that
they have the same or a similar discourse relation.
This part of the method is applicable to any do-
main for which large amounts of in-domain text
are available, but no in-domain discourse relation
annotations. We find that this method helps to im-
prove results substantially compared to a Bi-LSTM
baseline model, but doesn’t reach state of the art
performance (which is set by transformer models).

We therefore proceed to enrich a transformer
model with the knowledge extracted from the unla-
belled texts, using the K-BERT model (Liu et al.,
2020). The model is fine-tuned on the discourse-
annotated in-domain BioDRB data. We show that
this setting sets the new state of the art on discourse
relation classification on the biomedical domain,
achieving an accuracy of 69.57%.

2 Related Work

Early approaches on BioDRB use probabilistic clas-
sifiers such as Naı̈ve Bayes, Maximum Entropy, etc.
to predict the relation (Xu et al., 2012). Bai and
Zhao (2018) combine representations from differ-
ent types of embeddings including contextualized
word vectors from ELMo (Peters et al., 2018) and
achieve 55.9% accuracy on BioDRB for in-domain
training, and 29.52% in the cross-domain setting
(reported in Shi and Demberg (2019b)).

Shi and Demberg (2019b) also explore the per-
formance of BERT (Devlin et al., 2019) models

on the DRC task on BioDRB using cross-domain
(fine-tuning on PDTB, testing on BioDRB) as well
as in-domain (fine-tuning on BioDRB and testing
on BioDRB) settings. They find a very good perfor-
mance of the BERT model, which they attribute to
its “next sentence prediction” task in pre-training.
Comparing the original BERT model to BioBERT
(Lee et al., 2020), which was trained on biomedical
text, they however find that BioBERT has only a
limited ability for learning domain specific repre-
sentations: Cross-domain performance is no better
than for the BERT model, and in-domain perfor-
mance improvements are moderate at only 1.5%
points. Given that the entities play an important
role in inferring implicit discourse relation in sci-
entific texts, putting an emphasis on entities seems
vital for achieving further improvements.

In contrast with previous studies that (largely
unsuccessfully) attempted to train on explicit dis-
course relations for learning to classify implicit
classifiers in supervised ways, such as Marcu and
Echihabi (2002); Sporleder and Lascarides (2008);
Biran and McKeown (2013); Qin et al. (2017); Shi
et al. (2017) etc., we here propose an unsupervised
voting pipeline and achieve good performance even
comparing with supervised models like BERT and
BioBERT. We believe that the key difference lies
in the fact that previous methods tried to learn sur-
face cues from explicit relations and tried to use
them for implicits (which does not work, because
these features differ between explicits and implicits,
see e.g., Sporleder and Lascarides (2008); Asr and
Demberg (2012)), while our method focuses on the
content of the discourse relational arguments.

3 Unsupervised Method with
Information Retrieval System

The successful usage of a memory network in Shi
and Demberg (2019a) showed that instances that
share the same relation have close representations.
We believe that for sparse data like BioDRB, which
has only around 2,000 labeled implicit instances in
total, it is essential to use similar explicit instances
to help find the latent patterns they share. In this
section, we introduce an unsupervised method for
implicit DRC, which is inspired by a recent infor-
mation retrieval method.

The core idea is as follows: we use informa-
tion retrieval methods to identify explicitly marked
coherence relations from the corpus which are
content-wise similar to the relation we want to la-
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bel. We then automatically label these explicitly
marked instances (relying on the high DRC accu-
racy of ca. 96% for explicit relations) and assign
the majority label from the explicit instances to the
implicit instance from our test set.

3.1 Retrieval of similar instances from a
large corpus

Figure 1 illustrates the overall pipeline of the pro-
posed method. First, each instance from BioDRB
(Prasad et al., 2011) is seen as a query and fed into
the PubMed1 and PMC2 databases.

PubMed and PMC are free full-text archives of
biomedical and life sciences journal literature at
NIH National Library of Medicine. The database
we use here is a corpus created from a subset of the
whole PubMed and PMC collections, consisting of
7,079 documents in total (1,376 for pubMed and
5,703 for PMC).

With the query and candidate documents, we
employ TF-IDF to extract the top 10 relevant docu-
ments. The candidate documents are then fed into a
discourse parser; we here use the PDTB-style end-
to-end parser by Lin et al. (2014). The outputs of
the parser contain the two arguments, the explicit
discourse connective and a discourse relation label.

The Quasi Knowledge Graphs System, proposed
by Lu et al. (2019), is designed to answer com-
plex questions. It is a novel method that computes
answers by dynamically building up a knowledge
graph that fits the query. It consists of several steps
including the extraction of subject-predicate-object
(SPO) triples, knowledge graph construction, and
a graph algorithm. We here only use the first step
from this pipeline, extracting SPO triples, and ac-
tually only use the subject and object, not the pred-
icate, to match with the noun phrases in the query.
For example, from the relation instance in Exam-
ple 1 above, the system would extract SPO triples
(NETosis, enhanced in, RA) and (autoantibodies,
known risk factors for, RA), from which we further
employ only NETosis, RA; autoantibodies, RA.

After extracting the SPO triples from all the ex-
plicit discourse instances, we employ two types of
matching strategies to connect them with the query:

1PubMed [Internet]. Bethesda (MD): National Library
of Medicine (US). [1946]. Available from: https://www.
ncbi.nlm.nih.gov/pubmed/

2PubMed Central (PMC) [Internet]. Bethesda (MD): Na-
tional Library of Medicine (US), National Center for Biotech-
nology Information; 2000. Available from: https://www.
ncbi.nlm.nih.gov/pmc/

Methods Cross-domain
Majority class 20.66
Bai and Zhao (2018) 29.52
Bi-LSTM + Word2Vec 32.97
BERT 44.79
BioBERT 44.33

Hard-matching 35.29
Soft-matching 41.95

Table 1: Performances on BioDRB across domains.
Across domains means that the model is trained on
PDTB and tested on BioDRB. Majority class here is
the majority relation of explicits.

(i) Hard matching, which means that if the sub-
ject or object appear in the query, we count it as
a vote. (ii) Soft matching. We find that with the
hard matching, lots of positive samples have been
filtered out and very few explicit instances are iden-
tified. Therefore, we use the cosine similarity be-
tween the subject or object and the noun phrases in
the query, to detect similar entities. Cosine similar-
ities are estimated based on the BioBERT encoding
of the entities. We define a threshold for deciding
when an explicit instance is similar enough to be
counted as a valid vote or not. It is seen in the train-
ing phase as a hyper-parameter to be fine-tuned
on the validation set. This method for detecting
similar explicit instances is also used in our second
approach described in Section 4.

With the steps described above, eventually each
query has been connected to a number of similar
explicit instances and the prediction for the query
is the majority vote from all of them with their
explicit discourse sense labels.

3.2 Experiments and results

On average 813.99 explicit instances are extracted
for each query. With the hard matching, 7.91 sim-
ilar entities are matched with the Subject or the
Object in the query. For the soft matching, we ran-
domly choose 10% of the total instances acting as
validation set in order to help set the threshold for
the cosine similarity score.

The experimental results are shown in Table 1.
We compare the results with related work by Bai
and Zhao (2018) as well as several models reported
in Shi and Demberg (2019b).

Our proposed unsupervised method achieves
an accuracy of 35.29% with hard-matching and
41.95% with soft-matching. These results outper-
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Figure 1: The Pipeline of the Proposed Method.

form other non-transformer approaches by a large
margin. Comparing the hard and soft matching
variants, our results show that identifying instances
with similar entities leads to a larger set of relevant
documents, which then help to increase robustness
in the majority vote.

The table also shows that the approach almost
reaches the performance of recent very strong trans-
former models: the BERT model achieves a per-
formance of 44.79% accuracy in the cross-domain
setting (Shi and Demberg, 2019b).

The approach proposed here could be further
refined by using better argument representations
than simple matching of subject and object entities,
and by learning the classification decisions instead
of using simple majority voting, and by moving
to transformer architectures. Our second approach
addresses these points by employing a transformer
architecture which can take the SPO triple infor-
mation into account for more richly encoding the
relational arguments.

4 DRC with an entity-augmented
transformer

Integrating external domain-specific knowledge
into the model is beneficial for this task has been
found by Kishimoto et al. (2018), who integrated
the ConceptNet relations as additional knowledge
into the LSTM network and achieved better perfor-
mance on the PDTB.

We here aim to explore whether model per-
formance can be further improved by exploiting
richer entity representations in specialized texts

Figure 2: The structure of K-BERT. It is equipped with
an editable knowledge graph which can be adapted to
its application domain. Picture taken from Liu et al.
(2020).

like the biomedical domain. The pipeline with soft-
matching proposed in the above section provides
us with SPO triples from related documents for
each implicit relation instance in the test set. We
here employ the recently proposed Knowledge-
enabled Language Representation model (Liu
et al., 2020, K-BERT) to integrate the external en-
tity knowledge into the pre-trained language model
for better argument representations.

4.1 K-BERT

Due to the domain gap between the pre-training and
fine-tuning, unsupervised language models (such
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as BERT etc.) do not perform well on knowledge-
driven tasks (Liu et al., 2020). Integrating domain
specific knowledge into pre-trained model can alle-
viate this problem. However, the process of knowl-
edge acquisition can be inefficient and expensive.

In order to tackle the heterogeneous embedding
space and knowledge noise problems, Liu et al.
(2020) proposed a Knowledge-enabled Bidirec-
tional Encoder Representation from Transformers
(K-BERT), as illustrated in Figure 2. With the
knowledge layer and the external knowledge graph,
the input sentence has been expanded into a sen-
tence tree, which is then fed into into the embed-
ding layer and the “seeing” layer. The seeing layer
controls when the model has access to the original
sentence and when it has access to the additional
information.

However, knowledge graphs are not available
for all domains. We therefore here replace infor-
mation from the knowledge graph with the SPO
triples extracted from related raw texts. Compared
to a general knowledge graph, our extracted SPO
triples have attached more importance on the dis-
course relations since that they are extracted from
the explicit instances, and are specifically selected
to be on-topic. For each input sentence, we attach
the top 2 (default number from the K-BERT) simi-
lar SPO triples to the entities and convert it into a
sentence tree. We train K-BERT on the BioDRB
as a classification task. The input sequence of the
Example 1 is shown below, where the words in
italics are the linked entities.

2. These abnormalities in active NETosis en-
hanced in autoantibodies known risk factors
for RA result in Neutrophil Chemotaxis are
thought to be induced mainly after chronic
exposure to high concentrations of IL-6. The
limited efficacy of IL-10 treatment of RA pa-
tients reduced complement activation may be
explained in part by the unresponsiveness to
IL-10 of inflammatory cells, including T cells
isolated from CTCL patient.

The whole sentence tree has been flattened into
a sequence with the position index. The visible
matrix is generated to keep the interactions of each
of the tokens within the original sentence and also
inside the knowledge graph triples. The visible
matrix controls the self-attention layers in the trans-
former not to look into tokens other than the corre-
sponding entities.

Methods In-domain
Bai and Zhao (2018) 55.90
Bi-LSTM + Word2Vec 46.49
BERT 63.02
BioBERT 67.58

proposed model using K-BERT 69.57*

Table 2: Performances on BioDRB within domain.
Within domain here means 5-folds cross validation (see
also Shi and Demberg (2017)) on BioDRB. * denotes
significant improvement over BioBERT with p<0.05.

4.2 Experiments and Results

The experimental results are illustrated in Table 2.
We compare the results with the previous state of
the art on the BioDRB dataset (Shi and Demberg,
2019b). K-BERT, which is initialized with the orig-
inal BERT parameters, achieves 69.57% accuracy
and outperforms BERT without entity augmenta-
tion by 6.5% points, and the the gigantic in-domain
continuously pre-trained BioBERT by around 2%.
In addition, we tried to remove the relevant en-
tities. The model then performed similar to the
basic BERT, which is consistent with the results
reported in Liu et al. (2020). These results con-
firm that adding related entities improves argument
encoding and help improve the DRC task.

5 Conclusion

In this paper, we address the task of implicit dis-
course relation classification on BioDRB in the
biomedical domain. Due to the importance of
entities in scientific text, we decided to address
this problem by identifying explicitly marked re-
lations containing the same instances, and using a
simple majority voting system. While this setting
showed good performance in the unsupervised set-
ting, much better results are achieved when at least
a small amount of labelled data is available. We
show that when a transformer model is augmented
with entity information from the domain, the previ-
ous state of the art on the task is exceeded by 2%
points.
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Abstract

In this work, we propose Masked Noun-Phrase
Prediction (MNPP), a pre-training strategy to
tackle pronoun resolution in a fully unsuper-
vised setting. Firstly, We evaluate our pre-
trained model on various pronoun resolution
datasets without any finetuning. Our method
outperforms all previous unsupervised meth-
ods on all datasets by large margins. Secondly,
we proceed to a few-shot setting where we fine-
tune our pre-trained model on WinoGrande-S
and XS separately. Our method outperforms
RoBERTa-large baseline with large margins,
meanwhile, achieving a higher AUC score af-
ter further finetuning on the remaining three
official splits of WinoGrande.

1 Introduction

Co-reference resolution is an important NLP task
that aims to find all expressions that refer to the
same entity in a text. The resolution of an ambigu-
ous pronoun, known as pronoun resolution, is a
longstanding challenge for the NLU community
and an essential step for various high-level NLP
tasks such as natural language inference (Bowman
et al., 2015; Williams et al., 2018), question answer-
ing (Rajpurkar et al., 2016), and relation extraction
(Zhang et al., 2017).

The most successful approach to pronoun res-
olution is first fine-tuning a large pre-trained lan-
guage model such as BERT (Devlin et al., 2019)
or RoBERTa (Liu et al., 2019) on a human-labeled
pronoun resolution dataset such as Definite Pro-
noun Resolution Dataset (DPR) (Rahman and Ng,
2012) or WinoGrande (WG) (Sakaguchi et al.,
2020), and then either directly transferring to a
smaller dataset such as Winograd Schema Chal-
lenge (WSC) (Levesque et al., 2012) or Pronoun
Disambiguation Problems (PDP) (Morgenstern

∗Equal Contribution

WSC Sentences Candidate Choices

The trophy doesn’t fit in the
suitcase because it is too small. A. the trophy B. the suitcase

The trophy doesn’t fit in the
suitcase because it is too big. A. the trophy B. the suitcase

Table 1: Above are two WSC examples. A system is required
to resolve the bold pronoun “it” to “the suitcase” in the first
sentence and to “the trophy” in the second sentence.

et al., 2016) or further finetuning on a downstream
dataset such as SuperGLUE-WSC (Wang et al.,
2019a). However, all the pipelines above can not
avoid the phase of pre-training on a large human-
labeled pronoun resolution dataset. Crowd-sourced
“unbiased” labels that do not introduce annotation-
artifacts (Gururangan et al., 2018) are shown to be
costly and challenging to collect, requiring a well-
designed annotation interface and dedicated anno-
tators. To this end, we propose the unsupervised
Masked Noun-Phrase Prediction task to pre-train
a language model without any pronoun resolution
training signal and directly transfer the pre-trained
model to downstream datasets such as WSC.1 Two
examples of WSC are listed in Table 1. Our work
improves on all previous unsupervised methods by
large margins and even outperforms several strong
supervised methods on all datasets we study.

We then proceed to the few-shot setting
where we finetune our best zero-shot model on
WinoGrande-S and XS respectively. MNPP gives a
large margin of improvements over strong baselines
including CSS (Klein and Nabi, 2020), RoBERTa-
large (Sakaguchi et al., 2020), and UnifiedQA-
BART-large (Khashabi et al., 2020). We further
finetune on the remaining three data splits and
achieve a higher AUC score on all five splits of
WinoGrande over RoBERTa-large baseline.

1We refer to unsupervised or zero-shot transfer as without
training on any pronoun resolution dataset.
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In summary, our main contributions in this work
are threefold.

• First, we propose the MNPP pre-training task
and study how different synthetic dataset prop-
erties affect zero-shot performances.

• Second, we show MNPP outperforms all pre-
vious fully unsupervised methods and even
several strong supervised baselines on all pro-
noun resolution datasets we study.

• Finally, we show that under few-shot settings,
MNPP pre-training gives a significant perfor-
mance boost on WinoGrande-S and XS and
furthermore achieves a higher AUC score over
all five splits of WinoGrande.

2 Related Works

In this work, we mainly compare with unsuper-
vised methods.2 On WSC, Zhang and Song (2018)
propose the first unsupervised model where they
modify Skip-Gram (Mikolov et al., 2013) objec-
tive to predict semantic dependencies then use this
additional information during testing. Wang et al.
(2019b) propose Unsupervised Deep Structured Se-
mantic Models (UDSSM), which utilizes BiLSTM
(Hochreiter and Schmidhuber, 1997) to compute
contextual word embedding and uses models en-
semble. Klein and Nabi (2019) directly explore the
inner attention layers of BERT. Ye et al. (2019)
adapt a masking and predicting strategy, called
align, mask, and select (AMS), where entities that
are connected with ConceptNet (Speer and Havasi,
2012) are masked and the model is required to
select from a given list of candidate entities. An en-
semble of large pre-trained models is first utilized
by Trinh and Le (2018). GPT-2 is directly evalu-
ated on WSC in Radford et al. (2019). Prakash et al.
(2019) extend a language model with a knowledge
hunting strategy. Kocijan et al. (2019b) and Koci-
jan et al. (2019a) are the most similar works to us
and we will discuss the details in Section 3.1. Most
recently, Klein and Nabi (2020) study a contrastive
self-supervised learning approach (CSS) for WSC
and DPR and also establish the first unsupervised
baseline for KnowRef (Emami et al., 2019). On
WinoGrande, knowledge hunting (Prakash et al.,
2019) and language models ensemble (Sakaguchi
et al., 2020) have been studied.

2Please refer to supplemental materials for more details on
supervised methods.

3 Masked Noun-Phrase Prediction

We treat MNPP as a binary classification task.
Given the sentence: “She put the cup on the chair,
but he knocked over the chair, and the cup fell.”,
the underlined “the chair” will be masked and a
pair of replacement phrases for this masked posi-
tion is given as {“the cup”, “the chair”}. One of
the candidates is the masked phrase,“the chair”,
and the other candidate is a different phrase in the
sentence, “the cup” extracted from “She put the
cup on the chair”. The constraint we impose is that
both the ground-truth noun-phrase and the alterna-
tive candidate need to appear before the masked
phrase location, which mimics the pronoun reso-
lution task. We sample sentences following the
above constraint to create our synthetic datasets for
pre-training.

We convert the sentence into the format of
{[CLS] first half option second half [SEP]}
where first half refers to “She put the cup on the
chair but he knocked over ” and second half refers
to “, and the cup fell.”. The option is replaced by
candidates, “the cup” or “the chair”. We compute
P(the chair|sentence, θ) and P(the cup|sentence, θ)
and optimize θ, the parameters of the model, using
cross-entropy loss. We use the final layer [CLS]
vector from transformer-based language models
and pass it through a single layer feed-forward net-
work to calculate the logits.

3.1 Discussion

The intuition behind MNPP is that given sufficient
samples that mimic pronoun resolution task, the
model can learn rich knowledge to perform well
on human-annotated pronoun resolution datasets.
Such idea is also in-line with recent advances in
unsupervised QA (Lewis et al., 2019; Li et al.,
2020; Banerjee and Baral, 2020; Banerjee et al.,
2020, 2021), where synthetic QA datasets are cre-
ated from unannotated corpora to perform unsuper-
vised pre-training. Strictly speaking, MNPP is even
more unsupervised since our synthetic datasets are
not created with true pronoun resolution signals,
whereas synthetic QA datasets in works cited above
contain true question-answer pairs.

As mentioned in previous Section 2, similar to
our work, Kocijan et al. (2019b) studied such pre-
training strategy by constructing a synthetic dataset,
called MaskedWiki, which is crawled from English
Wikipedia. However, our work is significantly dif-
ferent from theirs in the following ways. First, their
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Dataset \ Source CNN QUOREF Gutenberg Knowledge Total

Hybrid Source 100,556 51,451 6,381 - 158,388
Hybrid Source
w/ Knowledge 189,376 98,844 19,424 75,993 383,637

Table 2: Number of instances from each source of two hybrid-source synthetic datasets in the first group.

Synth. Dataset \ Downstream WinoGrande (AUC) WSC DPR KnowRef COPA

Hybrid Source (160k) 58.08 (0.6961) 79.48 82.27 79.83 71.29
Hybrid Source w/ Know. (380k) 58.56 (0.6821) 78.39 83.88 79.04 73.27

Gutenberg-10k 57.93 (-) 75.09 81.21 77.15 79.21
Gutenberg-50k 57.40 (-) 76.19 77.84 75.10 74.26
Gutenberg-100k 58.56 (-) 72.53 75.00 74.40 75.25
Gutenberg-300k 57.38 (-) 75.82 81.56 76.44 78.22
Gutenberg-500k 59.19 (0.6748) 76.56 80.50 79.12 85.51

Gutenberg-Easy (33k) 56.43 (-) 69.60 70.92 75.10 77.23
Gutenberg-Medium (33k) 57.00 (-) 75.10 80.32 78.17 79.21
Gutenberg-Hard (33k) 57.54 (-) 75.82 80.67 79.98 74.36

Table 3: Zero-shot transfer performances (%) on downstream datasets. AUC scores of WinoGrande are calculated after
finetuning on all 5 splits of WinoGrande training sets. Difficulty level is decided using cosine similarity between the two
candidate word vectors. Hard samples are the top 33% of samples when they are sorted in descending order using similarity
score. Easy are bottom 33%, with Medium in-between.

pipeline requires further finetuning on another pro-
noun resolution task before transferring to down-
stream datasets, whereas our method can be directly
evaluated on downstream datasets. Second, the size
of MaskedWiki is 2.4 millions, which is 15 times
the size of our best performing synthetic dataset.
Third, we study how different properties of syn-
thetic datasets affect zero-shot performances. Fi-
nally, they use a masked token prediction loss, and
we model it as a classification task. Kocijan et al.
(2019a) also construct another synthetic dataset
called WikiCREM following the same masking
principle but with only personal names masked.

4 Experiments and Results

4.1 Synthetic Dataset
We study three properties of synthetic dataset:
source style, size, and difficulty level. The sources
we choose include various styles of texts, includ-
ing CNN stories (See et al., 2017), Wikipedia, and
PG-19 language modeling benchmark (Rae et al.,
2020). We study 3 groups and a total of 10 differ-
ent synthetic datasets. The first group contains two
synthetic datasets collected from all sources with
and without knowledge hunting strategy (Prakash
et al., 2019). The second group contains five syn-
thetic datasets collected only from PG-19 but with
varying sizes from 10k to 500k. The third group
contains three synthetic datasets collected from PG-
19 but with easy, medium, and hard samples with

the same size of 33k each.3 Datasets’ names are
listed in the first column of Table 3 and statistics of
the first group are described in Table 2.

4.2 Unsupervised Pronoun Resolution

The downstream datasets we test on are the Wino-
Grande test set (17k instances), DPR test set (564
instances), KnowRef test set (12k instances), and
COPA validation set (101 instances). Although
COPA (Wang et al., 2019a) is a cause and ef-
fect identification dataset, Sakaguchi et al. (2020)
show that directly transferring from a WinoGrande-
finetuned RoBERTa-large model to COPA already
achieves a good performance, indicating that fine-
tuning on WinoGrande can serve as a resource for
common sense knowledge. We also investigate
whether learning through MNPP can serve as a
resource for common sense. Note that we also
provide evaluation on the GAP dataset (Webster
et al., 2018) in Table 5 for reference although the
authors of GAP explicitly mention in their paper
that they urge the community to not treat GAP as a
Winograd-style task but a co-reference resolution
task without gold mention provided.

4.2.1 Results
We report our experiment results in Table 3 and
Table 4. Table 3 shows that different downstream

3Please refer to supplemental materials for details on syn-
thetic datasets constructions.
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WSC (Levesque et al., 2012)

Bi-LSTM-DPR (2018) 56.0
BERT NSP-DPR (2019) 71.1
CorefBERTLARGE (2020) 71.4
BERT-WIKICREM-DPR (2019a) 71.8
BERT-MASKEDWIKI-DPR (2019b) 72.5
UDSSM-MASKEDWIKI-DPR (2019) 75.1
AMS-CSQA-DPR (2019) 75.5
RoBERTa-DPR (2020) 83.1
CorefRoBERTaLARGE (Ye et al., 2020) 83.2
RoBERTa-WG (2020) 90.1
Modified Skip-Gram (2018) 60.3
BERT Inner Attention (2019) 60.3
BERT-MASKEDWIKI (2019b) 61.9
UDSSM (2019b) 62.4
BERT-WIKICREAM (2019a) 63.4
Ensemble LMs (2018) 63.7
CSS (2020) 69.6
GPT-2 (2019) 70.7
WSC Know. Hunting (2019) 71.1
MNPP (this work) 79.5

WinoGrande (Sakaguchi et al., 2020) AUC

RoBERTa (local context) (2020) 50.0 -
BERT-DPR (2020) 51.0 -
BERT (local context) (2020) 51.9 -
RoBERTa-DPR (2020) 58.9 -
BERT (2020) 64.9 0.5289
CSS (2020) 65.0 0.6046
UnifiedQA-Bart-large (2020) 73.3 0.6358
CorefRoBERTaLARGE (2020) 77.9 -
RoBERTa-large (2020) 79.1 0.6641
CorefBERTLARGE (2020) 80.8 -
TTTTT (2020) 84.6 0.7673
UnifiedQA-T5-11B (2020) 89.4 0.8571
Wino Know. Hunting (2020) 49.6 -
Ensemble LMs (2020) 50.9 -
MNPP (this work) 59.2 0.6706

dataset benefits from different property of the syn-
thetic dataset. The hybrid-source synthetic dataset
of size 160k outperforms PG-500k by a large mar-
gin on both WSC and DPR. It shows that pre-
training on text of various styles instead of larger
size is probably a better guarantee for better zero-
shot performance on WSC and DPR. However, on
WinoGrande and KnowRef, text style and dataset
size both seem to impact zero-shot performance.
On WinoGrande, larger size matters slightly more,
whereas on KnowRef, synthetic dataset with var-
ious styles of texts gives better performance. On
COPA, it is clear that using books as the source and
with larger size at the same time is the key, probably
because fictional event descriptions describing day-
to-day activities in books contain more common
sense, whereas CNN or Wikipedia articles contain
precise, factual, non-fictional event descriptions.
Finally, pre-training on more challenging examples
helps on all tasks except COPA.

DPR (Rahman and Ng, 2012)

Bi-LSTM (2018) 63.0
FeatureEng+Ranking (2012) 73.0
BERT-WIKICREM-DPR (2019a) 80.0
BERT-DPR (2019a) 83.3
BERT-MASKEDWIKI-DPR (2019b) 84.8
BERT-WG (2020) 84.9
CorefBERTLARGE (Ye et al., 2020) 85.1
RoBERTa-DPR (2020) 91.7
CorefRoBERTaLARGE (Ye et al., 2020) 92.2
RoBERTa-WG (2020) 92.5
RoBERTa-WG-DPR (2020) 93.1
BERT-WIKICREAM (2019a) 67.4
CSS (2020) 80.1
MNPP (this work) 83.9

KnowRef (Emami et al., 2019)

E2E-CoNLL (2019) 60.0
E2E-KnowRef (2019) 61.0
BERT (2019) 65.0
E2E-KnowRef+CoNLL (2019) 65.0
RoBERTa-DPR (2020) 84.2
RoBERTa-WG (2020) 85.6
CSS (2020) 65.5
MNPP (this work) 80.0

COPA (Wang et al., 2019a)

RoBERTa-WG (2020) 84.4
MNPP (this work) 85.5

Table 4: Comparisons of zero-shot transfer performance (%)
among baselines and MNPP. Works highlighted with gray
are supervised methods either directly finetuned on down-
stream datasets or additionally finetuned on another pronoun
resolution dataset. Works highlighted with cyan are fully un-
supervised methods. Best performances are in bold. We also
underline supervised methods that our method outperforms.
Note that AUC score for MNPP is obtained after finetuning
on all WinoGrande data splits. (Model-A-B stands for model
finetuned on A and B sequentially.)

Compared with previous methods in Table 4,
MNPP outperforms all unsupervised methods on
all datasets and is comparable with several strong
supervised methods. Current best unsupervised
methods on WinoGrande is either random guess
or below it, however, MNPP outperforms all of
them by a margin of at least 8%. Even compared
with a supervised baseline where BERT is first
finetuned on DPR, our method outperforms it by
8%. On WSC, MNPP also outperforms all SOTA
unsupervised methods by more than 8% and out-
performs most supervised methods by at least 4%
except RoBERTa-large finetuned on another pro-
noun resolution dataset. On DPR, our method out-
performs the SOTA unsupervised baseline over 3%
and also achieves only 1% behind the strong super-
vised baseline that finetunes BERT on MaskedWiki
and DPR sequentially or only on WinoGrande. On
KnowRef, MNPP outperforms the only unsuper-
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M F B O

BERT
(Kocijan et al., 2019a) 75.3 75.1 1.00 75.2

CorefBERTLARGE
(Ye et al., 2020) - - - 76.8

BERT-WIKICREM-GAP
(Kocijan et al., 2019a) 76.4 78.4 1.03 77.4

CorefRoBERTaLARGE
(Ye et al., 2020) - - - 77.8

BERT-WIKICREM-ALL-GAP
(Kocijan et al., 2019a) 76.7 79.4 1.04 78.0

BERT-WIKICREM
(Kocijan et al., 2019a) 60.5 57.5 0.95 59.0

MNPP (this work) 71.3 75.2 1.05 73.3

Table 5: Performance comparisons among previous works
and MNPP on GAP measured in F1. M stands for male, F
stands for female, B stands for bias, and O stands for overall.
Works highlighted with lightgray are supervised methods and
works highlighted with cyan are fully un-supervised methods.

vised baseline by nearly 15% and achieves only 5%
behind SOTA supervised model. Finally, on COPA,
we show that MNPP gives models better common
sense knowledge than finetuning on WinoGrande.

Meanwhile, we are not surprised that SOTA su-
pervised methods still outperform unsupervised
methods, including ours, considering the supervi-
sion itself and huge models with billions of param-
eters such as T5-11B.

4.3 Few-Shot Pronoun Resolution

We further proceed to the few-shot setting on
WinoGrande-S and XS. We take the top three per-
formance zero-shot models on WinoGrande devel-
opment set and finetune them on WinoGrande-XS
(160 instances) and S (640 instances) separately.
After few-shot evaluation, we also finetune on the
remaining three data splits, which are WinoGrande-
M, L, and XL. Best performances on all 5 data
splits are reported in Fig. 1 and AUC scores are
reported in thrid column of WinoGrande section in
Table 4.

4.3.1 Results
As indicated in Figure 1, MNPP outperforms CCS,
UnifiedQA-BART-large, and RoBERTa-large on
WinoGrande-S and XS with a large margin, and
more importantly, achieves a higher AUC score as
indicated in Table 4. It is clear that MNPP pre-
training gives the model crucial additional infor-
mation in the few-shot setting where only minimal
data is available. We also notice that in the AUC
column of Table 3, there is a negative correlation
between zero-shot performance and AUC score,
which means higher zero-shot performance does

Figure 1: Performances (%) on WinoGrande test set after
finetuning on 5 sizes of WinoGrande training set.

not guarantee better finetuning results.
Again we need to mention that we are not com-

paring with SOTA performances from billions-
parameters models such as UnifiedQA-T5-11B
from Khashabi et al. (2020) or T5-3B from Lin
et al. (2020).

5 Conclusion

In this work, we propose MNPP pre-training
to tackle unsupervised pronoun resolution and
study how different properties of the synthetic pre-
training dataset impact zero-shot performance on
downstream datasets. Without finetuning on any
pronoun resolution signal, MNPP outperforms all
previous fully unsupervised methods on all tasks
we study and even several strong supervised base-
lines. In the few-shot case where we finetune the
zero-shot transfer model on WinoGrande-S and XS
respectively, our model outperforms baselines by
large margins, and further achieves a higher AUC
score.

This work shows the effectiveness of unsu-
pervised task definitions on text-based pronoun-
resolution and common sense reasoning tasks. It
would be interesting to design such tasks for multi-
modal common sense reasoning (Zellers et al.,
2019; Fang et al., 2020).
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A Related Work on Supervised Methods

WSC & DPR. Opitz and Frank (2018) is the first
work to propose transfer learning from another pro-
noun resolution dataset such as DPR to WSC. He
et al. (2019) use a hybrid model of Wang et al.
(2019b) and Kocijan et al. (2019b). Ruan et al.
(2019) explore BERT’s next sentence prediction
with finetuning on DPR. Ye et al. (2020) fine-
tune a new language representation model called
CorefBERT, which is trained with a novel task to
strengthen the co-referential reasoning ability of
BERT, on DPR and then test on DPR and WSC.
The SOTA supervised performance is provided
by Sakaguchi et al. (2020) where they finetune
a RoBERTa-large model on WinoGrande or DPR
and evaluate on WSC and DPR without and with
further finetuning. A detailed review of WSC and
WSC related dataset can be found at Kocijan et al.
(2020).

KnowRef. In Emami et al. (2019), an end-to-
end neural system (Lee et al., 2018) is trained
on CoNLL2012 shared task (Pradhan et al.,
2012) and then tested under three settings: di-
rectly applying to KnowRef test set, retraining
on KnowRef, and retraining on KnowRef plus
CoNLL2012. Sakaguchi et al. (2020) transfer a
WinoGrande-finetuned RoBERTa-large model and
DPR-finetuned RoBERTa-large model to KnowRef
test set respectively.

WinoGrande. The authors of WinoGrande fine-
tune a RoBERTa-large on WinoGrande training
set and evaluate on the test set in standard su-
pervised setting, and Lin et al. (2020) finetune
a T5-3B model instead. Sakaguchi et al. (2020)
also study finetuning BERT and RoBERTa with
only local context (only tokens near the pronoun
location are available instead of the whole sen-
tence). Ye et al. (2020) finetune WinoGrande us-
ing CorefBERT. Klein and Nabi (2020) finetune
their unsupervised CSS model. Finally, UnifiedQA
(Khashabi et al., 2020), which is pre-trained on
eight seed QA datasets spanning four different for-
mats in a unified way, is finetuned on WinoGrande.

B Synthetic Datasets Construction

For the first synthetic dataset in the first group, we
choose 5000 stories in CNN stories, a small portion
of Gutenberg books, and the whole training set of
QUOREF (Dasigi et al., 2019), which is a reading
comprehension dataset that requires resolving co-

reference among entities crawled from Wikipedia,
and these sources result in the size of 160k. The
second synthetic dataset in the first group com-
prises the same sources as above plus extra knowl-
edge crawled by Google query using the knowledge
hunting strategy introduced in Prakash et al. (2019).
Following their strategy, we scrap 6531 and 69462
knowledge sentences for WSC and WinoGrande
respectively. We relax the filtering process to allow
longer sentences than those in the first synthetic
dataset and lead to 380k samples in total. We then
fix the text style and study the influence of data
size on pre-training. We use 2000 books from PG-
19 as the source and create five synthetic datasets
with size of 500k, 300k, 100k, 50k, and 10k as
the second group. We further study how difficulty
levels of samples affect the downstream zero-shot
performance. We select 100k samples from the PG-
19 books described above and evenly split them
into three synthetic datasets with low, medium, and
high similarity scores between candidate choices
as the third group. As a result, we create 3 groups
of synthetic datasets with ten synthetic datasets
in total. We used spaCy4 to pre-process raw text,
including removing blank spaces, special charac-
ters, sentences that are too short or too long, and
extracting noun-phrases.

C Zero-shot Experiment Details

Recent study (Khot et al., 2020) has shown that
finetuning a RACE-finetuned (Lai et al., 2017)
RoBERTa model as a start point is much more sta-
ble than directly finetuning a RoBERTa model from
scratch, we follow the same strategy to start fine-
tuning a RACE-finetuned RoBERTa-large model
on all synthetic datasets. We use Hugging Face
Transformers5 as our codebase. We set Adam op-
timizer with an initial learning rate of 1e− 5 and
epsilon of 1e− 8, and without weight decaying for
all settings. For a synthetic dataset whose size is
larger or equal to 100k, we choose the batch size of
32 and train for 20 epochs, otherwise, we choose
the batch size of 16 and train for 50 epochs. We
checkpoint every X steps, with X in [50,500].

D Few-shot Experiment Details

We set Adam optimizer with an initial learning rate
of 1e − 5 and epsilon of 1e − 8, without weight
decaying, and batch size between 16 and 32 for all

4https://spacy.io/
5https://github.com/huggingface/
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sizes. We finetune 20 epochs for WinoGrande-XL,
L, and M, 40 epochs for S, and 160 epochs for XS.
We checkpoint every X steps, with X in [50,500].
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Abstract

Recently, question answering (QA) based on
machine reading comprehension has become
popular. This work focuses on generative QA
which aims to generate an abstractive answer
to a given question instead of extracting an an-
swer span from a provided passage. Genera-
tive QA often suffers from two critical prob-
lems: (1) summarizing content irrelevant to a
given question, (2) drifting away from a cor-
rect answer during generation.

In this paper, we address these problems by
a novel Rationale-Enriched Answer Genera-
tor (REAG), which incorporates an extractive
mechanism into a generative model. Specifi-
cally, we add an extraction task on the encoder
to obtain the rationale for an answer, which
is the most relevant piece of text in an input
document to a given question. Based on the
extracted rationale and original input, the de-
coder is expected to generate an answer with
high confidence. We jointly train REAG on
the MS MARCO QA+NLG task and the ex-
perimental results show that REAG improves
the quality and semantic accuracy of answers
over baseline models.

1 Introduction

Question Answering (QA) has come a long way
from answer sentence selection, relationship QA to
machine reading comprehension (MRC). Recently,
QA has become an essential problem in natural
language understanding and a major milestone to-
wards human-level machine intelligence. Current
mainstream approaches (Chen et al., 2017; Wang
et al., 2018; Yan et al., 2018) treat MRC as a pro-
cess of extracting a consecutive piece of text from
a document to a given question.

Despite the great success in extractive MRC
(Wang et al., 2018; Chen et al., 2020), in real-world
applications, correct answers may span different

Question does gameplay programmer need math skill

Passage
A good computer programmer is more of
a problem solver and logical thinker than a
math buff. Besides, the industry is peppered
with many computer programmers who do
not really know much about mathematics.

Gold no, gameplay programmer does not need
math skill.

PALM yes, gameplay programmer is a math buff.

REAG no, gameplay programmer does not need
math skill.

Table 1: An example of the ”semantic drift” issue in
generative reading comprehension from the MARCO
dataset (Nguyen et al., 2016). The text span of words
in blue is the rationale extracted by REAG.

passages or even not be literally present in the pas-
sages. Directly extracting a consecutive answer
span is often inadequate. Therefore, the ability of
generating an abstractive answer is needed, which
requires a QA model to summarize the main con-
tent in a paragraph that is relevant to a given ques-
tion.

Answering questions in natural language can be
beneficial to a variety of QA applications, and has
led to the development of smart devices such as
Siri, Cortana and Alexa. However, compared with
answer extraction, answer generation for reading
comprehension is more challenging, and has been
less explored. A major challenge in generative
reading comprehension comes from out-of-control
generation of abstractive answers. Although much
work has been done in neural language generation
(NLG), e.g., KIGN(Li et al., 2018) for summariza-
tion, out-of-control generation remains an open
question for generative QA which aims to produce
correct and coherent answers. Specifically, we ob-
served that generative models often generate an-
swers semantically drifting away from the given
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passage and question, known as the “semantic drift”
problem. As shown in Table 1, the baseline gener-
ative model PALM (Bi et al., 2020) generates an
answer that has almost contrary semantics with the
gold answer. In general, a generative model often
suffers from two critical problems: (1) summariz-
ing content irrelevant to a given question, and (2)
drifting away from a correct answer during genera-
tion.

In this paper, we address these problems by
a novel Rationale-Enriched Answer Generator
(REAG), which incorporates an extractive mecha-
nism into a generative model in order to leverage
relevant information to a given question in the con-
textual passage. Specifically, we add an extraction
task on the encoder to obtain the rationale for an
answer, which is the most relevant piece of text
in an input document to the given question. On
one hand, the introduction of the supervised extrac-
tion task enables the encoder to learn the relevance
between a question and a passage; On the other
hand, the extracted rationale can be further used
to guide the answer generation. Based on the ex-
tracted rationale and original input, the decoder is
expected to summarize content relevant to a given
question and generates an answer with high con-
fidence. Finally, we jointly train REAG on the
MS MARCO QA+NLG task based on the common
bottom layers. The experimental results show that
REAG improves the semantic accuracy of answers
over the other state-of-the-art models.

2 Related Work

2.1 Machine Reading Comprehension

In recent years, machine reading comprehen-
sion has made great progress with the develop-
ment of SQuAD (Rajpurkar et al., 2016) and MS
MARCO (Nguyen et al., 2016). The current main-
stream studies treat machine reading comprehen-
sion as answer span extraction from one passage
(Rajpurkar et al., 2016, 2018) or multi-passages
(Nguyen et al., 2016), which is usually done by
predicting the start and end position of an answer.
SLQA (Wang et al., 2018) improved answer qual-
ity with a hierarchical attention fusion network,
which conducted attention and fusion horizontally
and vertically across layers between a passage and
a question. Recently, the BERT model Devlin
et al. (2019) has proved effective for reading com-
prehension via unsupervised pre-training.

2.2 Generative Reading Comprehension
Bi et al. (2019) proposed a Knowledge-Enriched
Answer Generator (KEAG) to compose a natural
answer by exploiting and aggregating evidence
from all four information sources available: ques-
tion, passage, vocabulary and knowledge. Nishida
et al. (2019a) proposed a multi-style generative
model to generate an abstractive summary from the
given question, passages and multi-style.

2.3 Reliable Text Generation
Compared with answer extraction, answer genera-
tion for reading comprehension is more challeng-
ing, and the major challenge in generative read-
ing comprehension lies in out-of-control genera-
tion. Recently, some studies have been carried out
on increasing the reliability of generation in the
encoder-decoder framework(Liu et al., 2018; Li
et al., 2018).

3 Rationale-Enriched Answer
Generation

3.1 Rationale Span Extraction
In a generative reading comprehension task, every
answer has its corresponding rationale, an extrac-
tive span in the passage, which can be derived by
matching the passage text with the answer. The
rationale can usually be located in a certain con-
tinuous area of the passage. We use continuous
text span as the rationale to minimize the difficulty
of the extraction task. Compared with the gold
answer, the text span with the highest F1-score in
passage is identified as the rationale for training
supervision.

Based on the identified rationale, we introduce a
rationale extraction task into the encoder. It enables
the encoder to learn the relevance between the input
question and the passage. Specifically, the encoder
predicts whether each token of the passage should
be included in the rationale. Every token in the
rationale is labeled by 1 and the rest is labeled by
0.

Given input question Q and passage P , we first
concatenate them together into an input sequence
X = {x1, x2, ..., xN}. Then we use a shared word
embedding layer to project each of the vectors into
d-dimensional vectors, and add to each the corre-
sponding position embedding. The resulting vec-
tors are then fed into the Transformer encoder to
map the text into a sequence of encoder hidden
states {h1, h2, ..., hN}.
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The encoder hidden states can be used to pre-
dict whether each token of the passage should be
included in the rationale. Therefore, we add a fully
connected layer with the sigmoid activation on top
of the encoder, to compute the probability for each
input word:

pri = sigmoid(w1 · relu(W2hi)) (1)

where hi ∈ Rd is the output hidden state of the
encoder for the ith token.

This gives the probability pri that the ith token
should be included in the rationale. We then calcu-
late the averaged cross entropy, similar to(Ju et al.,
2019), for the rationale extraction loss:

LREj = −
1

N

N∑

i=1

(yrji log p
r
ji+(1−yrji) log(1−prji)),

(2)
where N is the number of input tokens. yri is the
rationale label for the ith token, and LREj repre-
sents the rationale loss for the jth example in the
training set.

3.2 Rationale-Enriched Answer Generation

This layer uses a stack of Transformer decoder
blocks on top of the embeddings provided by the
encoder’s word embedding layer. The decoder is
similar in structure to the encoder except that it
includes a standard attention mechanism after each
self-attention layer that attends to the output of the
encoder. The rationale-aware hidden states output
by the encoder are used for rationale extraction.

In calculating the decoder states st, an cross
attention is introduced into the decoder to attend
to the rationale-aware encoder hidden states. This
results in the rationale-aware decoder hidden state
st:

p(yt|y1, ..., yt−1) = softmax(W e(W vst+b
v)+be)

(3)
During training, we minimize the negative log-

likelihood of the answer word at each decoding
time step. Let y∗t denote the target word in the de-
coding time step t. The overall loss is then defined
as:

LGEN = − 1

T

T∑

t=1

log p(y∗t |y∗1, ..., y∗t−1, x, θ)

(4)
where T denotes the length of a gold answer.

3.3 Joint Training and Prediction

The rationale extraction task and the answer genera-
tion task are designed to share the same embedding
and the encoder. Therefore, we propose to train
them together as multi-task learning. The joint
objective function is formulated as follows:

L = LGEN + βLRE (5)

where β is a hyper-parameter that controls the
weight of the rationale extraction task. During the
training process, we use a linear decay schedule
on the value of β, in order to rely more on the ra-
tionale extraction task for addressing the semantic
drift problem at the early stage, following by more
focus on the target generation task subsequently.

4 Experiments

4.1 Experiment Configuration

Dataset and Evaluation Metric. Given our objec-
tive of generating natural answers by document
reading, the MARCO dataset 1 (Nguyen et al.,
2016) released by Microsoft is a good fit for bench-
marking REAG and other answer generation meth-
ods. We use the latest MARCO V2.1 dataset and
focus on the “QA + Natural Language Generation”
task in the evaluation. The data has been split into
a training set (150k QA pairs), a dev set (12k QA
pairs) and a test set (110k questions). Since true
answers are not available in the test set and the task
is retired now, we hold out the dev set for evalua-
tion in our experiments, and test models for each
question on its associated passages by concatenat-
ing them all together. Following Bi et al. (2019),
we tune the hyper-parameters by cross-validation
on the training set.

Implementation Details. Our REAG is based
on PALM (Bi et al., 2020), an encoder-decoder
generative language model pre-trained on a large
corpus. It consists of a 12-layer encoder and 12-
layer decoder with 768 embedding/hidden size,
3072 feed-forward filter size and 12 attention heads.
REAG is trained with a dropout of 0.1 on all layers
and attention weights. During training and testing,
we truncate the text to 512 tokens and limit the
length of the answer to 50 tokens. At test time,
answers are generated using beam search with a
beam size 5.

1https://microsoft.github.io/msmarco/
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Model ROUGE-L BLEU-1

BIDAF+Seq2Seqa 34.15 29.68

S-Netb 42.71 36.19

S-Net+Seq2Seqb 46.83 39.74

gQAc 45.46 40.22

KEAGd 51.68 45.97

Masquee 69.77 65.56

PALMf 69.87 66.31

REAG 70.98 69.12

Table 2: Performance of generative reading com-
prehension in ROUGE-L and BLEU-1 on MARCO
Q&A+NLG. All our ROUGE scores have a 95%
confidence interval of at most ±0.25. a(Seo et al.,
2016);b(Tan et al., 2017);c(Mitra, 2017);d(Bi et al.,
2019);e(Nishida et al., 2019b);f (Bi et al., 2020).

Ablation ROUGE-L BLEU-1

REAG 70.98 69.12

7 rationale-span extraction 69.87 66.31

7 linear-decay joint training 70.45 68.28

7 pre-training 69.54 68.12

Table 3: Ablation tests of REAG on the MARCO
Q&A+NLG dataset.

4.2 Model Comparisons

Table 2 gives the comparison of other state-of-the-
art QA models on the MARCO Q&A+NLG dataset
in ROUGE-L and BLEU-1. From this table, we
observe that generative QA models (e.g., REAG,
PALM) are consistently superior to extractive mod-
els (e.g., BiDAF) in answer quality. Therefore,
generative QA models establish a strong base ar-
chitecture to be enhanced with the extra signals,
which motivates this work. Among the generative
models, REAG outperforms all the other state-of-
the-art models with an improvement of over 2.8%
BLEU-1 point and 1.1% ROUGE-L. Part of the
results in the Table 2 are from (Bi et al., 2019),
which re-running other researchers’ code.

4.3 Ablation Study

We conduct ablation studies to assess the individual
contribution of every component in REAG. Table 3
reports the results of full REAG and its ablations
on the MS MARCO Q&A NLG dataset.

We evaluate how much rationale-span extraction

Method Semantic Acc ROUGE-L BLEU-1

PALM 81.67 69.87 66.31

REAG 84.33 70.31 68.59

Table 4: Comparison of the semantic accuracy,
ROUGE-L and BLEU-1 of REAG with those of PALM

ROUGE-L BLEU-1

Generated Answers 47.25 50.34

Gold Answers 38.14 43.12

Table 5: Agreement of generated/gold answers with ex-
tracted rationales for REAG

contributes to generation quality by removing it
from the REAG model. This ablation results in
a drop from 70.98 to 69.87 on Rouge-L, demon-
strating the role of the rationale-span extraction in
REAG. In addition, we ablate the linear-decay joint-
training which proves to be critical with over 0.5%
drops on the metrics after the ablation. In order to
exclude the influence of the pre-trained model, we
ablate pre-training, retaining the rationale-span ex-
traction. This ablation leads to a drop from 70.98 to
69.54 on Rouge-L, which demonstrates the power
of REAG in generating high-quality answers with-
out pre-training.

4.4 Quantitative Analysis on Semantic Drift

For generative reading comprehension, it is difficult
to make the answer completely correct, because
even if the semantics are correct, there may be
some expression differences from the gold answer.
Since neither ROUGE-L nor BLEU-1 can measure
it, we conduct a human evaluation of the seman-
tic accuracy. We randomly select 100 questions
from the MARCO dev set, and manually evaluate
whether the generated answers to these questions
are semantically drifted. Table 4 reports the se-
mantic accuracy of REAG and PALM obtained
by human. Our REAG model surpasses PALM in
generating correct answers without semantic drift.
Although our REAG model improves over PALM
by 1.1% in automatic evaluation metric ROUGE-L,
it gives a 3.26% improvement in semantic accuracy.
This shows the fact that in some cases automatic
evaluation metrics, such as ROUGE-L and BLEU-
1, do not reflect semantic accuracy.

In addition, we compute the agreement of gen-
erated/gold answers with extracted rationales for
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Example 1

Relevant Passage
Yes | No Thank you! Flu shots are not made for children under the age of 6
months. If you read the vaccine insert and studies regarding the flu shot and
kids, you will see that flu shots don’t even work for children under the age
of 2.

Question can a child get a flu vaccine under 6 months?

Gold Answer No, a child under 6 months can’t be given a flu vaccine.

PALM Answer Yes, a child can get a flu vaccine under 6 months.

REAG Answer No, a child cannot get a flu vaccine under 6 months.

Example 2

Relevant Passage
Modesto, Stanislaus County Sales Tax Rate. Details. The sales tax in
Modesto is 7.625%, which is about average for cities in Stanislaus County
and lower than average for California (8%). Modesto is one of 21 cities in
Stanislaus County with a distinct sales tax as listed by the California Board
of Equalization. See all cities in Stanislaus County. Advertisement.

Question what is the sales tax in california

Gold Answer The sales tax in California is 8%.

PALM Answer The sales tax in California is 7.625%

REAG Answer The sales tax in California is 8%

Table 6: Examples of the output of REAG and PALM on the MARCO dataset. The text span of words in blue is
the rationale extracted by REAG

REAG in ROUGE-L and BLEU-1. As shown in Ta-
ble 5, the generated answers are strongly correlated
with the rationales, demonstrating the effectiveness
of leveraging the rationale signal. Also, the fact
that the gold answers have a lower agreement with
the rationales indicates that a generative model,
as opposed to an extractive one, is needed for the
MARCO Q&A+NLG task.

4.5 Case Study

Table 6 gives two examples to show the answers
generated by the REAG model and the PALM
model. In addition to the answers, we provide
the rationales predicted by REAG’s encoder to
demonstrate the effectiveness of rationale extrac-
tion. In both examples, the rationale extraction
module identifies the correct rationales, e.g., Flu
shots are not made for children under the age of 6
months. and California (8%).

In Example 1, PALM is confused by the noise
“Yes” in the beginning of the passage, which leads
to the contrary semantics of its generated answer.

With the correctly extracted rationale, our REAG
model generates an answer semantically consistent
with the gold answer. In Example 2, PALM fails to
identify a correct sales tax rate 8% for California,
so the response is incorrect and useless, even if it
results in high ROUGE and BLEU scores against
the gold answer. In contrast, based on the extracted
rationale California (8%), our REAG generates a
semantically correct answer.

5 Conclusion and Future Work

This paper presents a novel model REAG that is
designed to incorporate an extractive mechanism
into a generative QA model. REAG introduces a
new task on the encoder to extract rationales. Based
on these rationales and original input, a rationale-
enriched decoder is proposed to generate an answer
with high confidence. The experimental results
show that REAG significantly improves the quality
and semantic accuracy of generated answers over
state-of-the-art models.
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Abstract

In news articles the lead bias is a common
phenomenon that usually dominates the learn-
ing signals for neural extractive summarizers,
severely limiting their performance on data
with different or even no bias. In this pa-
per, we introduce a novel technique1 to de-
mote lead bias and make the summarizer fo-
cus more on the content semantics. Exper-
iments on two news corpora with different
degrees of lead bias show that our method
can effectively demote the model’s learned
lead bias and improve its generality on out-of-
distribution data, with little to no performance
loss on in-distribution data.

1 Introduction

Neural extractive summarization, which produces a
short summary for a document by selecting a set of
representative sentences, has shown great potential
in real-world applications, including news (Cheng
and Lapata, 2016; Nallapati et al., 2017) and sci-
entific paper summarization (Cohan et al., 2018;
Xiao and Carenini, 2019). Typically, a general-
purpose extractive summarizer learns to select the
most important sentences from a document to form
the summary by considering their content salience,
informativeness and redundancy. However, when
restricted to a specific domain, the summarizer can
learn to exploit particular biases in the data, the
most famous of which is the lead bias in news
(Nenkova et al., 2011; Hong and Nenkova, 2014);
namely that sentences at the beginning of a news
article are more likely to contain summary-worthy
information. As a result, not surprisingly, such bias
is strongly captured by neural extractive summa-
rizers for news, for which the sentence positional
information tends to dominate the actual content of

∗ The first two authors contributed equally to this work.
1https://github.com/lxing532/Debiasing

the sentence in model prediction (Jung et al., 2019;
Grenander et al., 2019; Zhong et al., 2019a,b).

While learning a summarizer reflecting the bi-
ases in the training dataset is completely fine when
the summarizer is going to be deployed to summa-
rize documents having similar biases, it would be
problematic when the model was applied to deal
with documents coming from a mixture of datasets
with different degrees of such biases. In this pa-
per, we address this problem in the context of the
lead bias in the news domain by exploring ways in
which an extractive summarizer for news can be
trained so that it learns to balance the lead bias with
the content of the sentences, resulting in a model
that can be applied more effectively when the target
documents belong to news datasets in which the
lead bias is present in rather different degrees.

Recently, Grenander et al. (2019) proposes two
preliminary solutions. One is to pretrain the sum-
marizer on an automatic generated “unbiased” cor-
pus where the document sentences are randomly
shuffled, which however has the negative effects
of preventing the learning of inter-sentential infor-
mation. The other, which can be only applied to
RL-based summarizers, is to add an explicit auxil-
iary loss to directly balance position with content.
Alternatively, Zhong et al. (2019b) and Wang et al.
(2019) investigate strategies to train the summarizer
on multiple news datasets with different degrees of
lead bias, but this may still be problematic when
we apply the trained summarizer to the documents
with lead bias not covered in the training data. Out-
side the summarization area, methods have also
been proposed to eliminate data biases for other
NLP tasks like text classification or entailment (Ku-
mar et al., 2019; Clark et al., 2019, 2020).

Inspired by Kumar et al. (2019), we have de-
veloped an alternating adversarial learning tech-
nique to demote the summarizer lead bias, but also
maintain the performance on the in-distribution
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data. We introduce a position prediction compo-
nent as an adversary, and optimize it along with
the neural extractive summarizer in an alternating
manner. Furthermore, in contrast with Grenander
et al. (2019) and Wang et al. (2019), our proposal
is model-independent and only requires one type
of news dataset as training input.

In this paper, we apply our proposed method
to a biased transformer-based extractive summa-
rizer (Vaswani et al., 2017) trained on CNN/DM
training set (Hermann et al., 2015) and conduct
experiments on two test sets with different degrees
of lead bias: CNN/DM and XSum (Narayan et al.,
2018), for in-distribution and generality evaluation
respectively. The experimental results indicate that
our proposed “debiasing” method can effectively
demote the lead bias learned by the neural news
summarizer and improve its generalizability, while
still mostly maintaining the model’s performance
on the data with a similar lead bias.

2 Proposed Debiasing Method

Our method aims to demote the lead bias learned by
the summarizer and encourage it to select content
based more on the semantics covered in sentences.
As shown in Figure 1, our method comprises two
components: one for Summarization (red) and the
other for sentence Position Prediction (green).

2.1 Summarization Component

Following previous work, we formulate extractive
summarization as a sequence labeling task (Xiao
and Carenini, 2019, 2020; Xiao et al., 2020). For
a document d = {s1, s2, ..., sk}, each sentence
will be assigned a score α ∈ [0, 1]. The sum-
mary will then be formed with the highest scored
sentences. We adopt a transformer-based model
(Vaswani et al., 2017) as our basic “biased” sum-
marization component (red in Fig. 1), as shown to
be heavily impacted by the lead bias (Zhong et al.,
2019a). This component contains a transformer-
based encoder Encθt and a multilayer perceptron
(MLP) decoder Decθs , parameterized by θt and θs
respectively. We use the averaged word embedding
from Glove as sentence embedding as suggested in
Kedzie et al. (2018). We optimize this summariza-
tion system by minimizing the loss:

L1 = −
1

N

N∑

i=1

CE(αi, yi)

αi = Decθs(Encθt(si))

(1)

Figure 1: The overall architecture of our proposed lead
bias demoting method.

where CE denotes the cross-entropy loss and
yi ∈ {0, 1} is the ground truth label for sentence si,
representing if si is selected to form the summary.

2.2 Position Prediction Component

Our goal is to train the summarization model to
make accurate predictions based more on the sen-
tence semantics, rather than whether the sentence
is in the lead position. More specifically, we
aim to design an encoder network Encθt to out-
put the set of contextualized sentence representa-
tions H = {h1, ..., hk} which cover less sentence
positional information, so that the following de-
coder Decθs will make predictions depending less
on such positional information. To achieve this,
the first step is to understand how much and in
what form the positional information is encoded in
Encθt . Therefore, we propose a position predic-
tion network to learn to predict the position of sen-
tences in a document based only on H. Intuitively,
the higher accuracy this component can achieve,
the more positional information is contained in H.
This position prediction component will then play
the role of an adversary module to demote the in-
fluence of lead bias presented in the training phase
of the summarization component.

Concretely, because predicting the exact posi-
tion for each sentence would require an extremely
large set of labels with a skewed distribution, we
choose to predict the portion of the document each
sentence belongs to. In particular, once we ob-
tain the set of contextualized sentence represen-
tations H from the encoder network Encθt , we
initialize a MLP (parameterized by θp and fol-
lowed by Softmax) as the position prediction com-
ponent Posθp (green in Fig 1). In essence, this
component Posθp takes H as input and outputs a
M-dimensional multinomial distribution for each
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sentence to represent its position in a document.
More formally, Posθp(hi) = (p̂

(i)
1 , .., p̂

(i)
j , .., p̂

(i)
M )

where
∑M

j=1 p̂
(i)
j = 1. p̂(i)j is the predicted proba-

bility of the ith sentence belongs to the jth portion
of a document when the document is divided into
M parts (M is a tunable hyperparameter). We use
the cross-entropy loss to optimize Posθp to extract
sentence positional signals encoded in the system:

L2 = −
1

N

N∑

i=1

CE(Posθp(hi), pi) (2)

where pi is the true position of sentence i.

2.3 Alternating Adversarial Learning
To demote the influence of positional bias and bal-
ance it with the sentence semantics in the summa-
rization system, we want to modify the encoder
to produce H, which can still be accurate for sum-
mary generation but fail at sentence position pre-
diction. We achieve this by alternatingly executing
“Position learning” and “Position debiasing”, as
proposed in Kumar et al. (2019) and presented in
Algorithm 1. In the “Position learning” phase, once
a pretrained summarization system is obtained, we
first fix its weights and train an adversary network
Pos∗θp (sentence position predictor) to extract the
positional information contained in the encoder.
Then in the “Position debiasing” phase, we fix the
weights of Pos∗θp and update the parameters of the
summarization component to maximize the posi-
tion prediction loss of adversary (Ladv in eq 3)
while minimizing the summarization loss L1:

L3 = βL1 + (1− β)Ladv

Ladv = −
1

N

N∑

i=1

CE(Pos∗θp(hi), UM )
(3)

To maximize the position prediction loss, the fixed
adversary Pos∗θp should ideally output the uniform
distribution, UM = ( 1

M , ...,
1
M ), for the position

prediction of each sentence. β is the trade-off pa-
rameter tuned at validation stage to control the de-
gree of lead bias demoting.

In practice, we notice that reusing the same ad-
versary for all iterations will make the positional
signals not weakened but instead encoded in a dif-
ferent way. To avoid this problem, we follow Ku-
mar et al. (2019) to use multiple adversaries (pa-
rameterized with [θ

(1)
p , ..., θ

(N)
p ] in Algorithm 1),

making it more difficult for the encoder to keep the

sentence positional signals by encoding them into a
more implicit format for position predictor to learn.

3 Experiments and Analysis

3.1 Datasets
We use the standard CNN/DM dataset (204,045
training, 11,332 validation and 11,334 test data)
(Hermann et al., 2015) for training since it is one of
the mainstream news datasets with observed lead
bias (Jung et al., 2019; Grenander et al., 2019). For
model evaluation, we use the test set of CNN/DM
to evaluate model’s in-distribution performance,
as well as the test set of XSum (Narayan et al.,
2018), which consists of 11,334 datapoints, to eval-
uate model’s generality when transferred to less
biased data. The empirical analysis in Narayan
et al. (2018) and Jung et al. (2019) shows the doc-
uments and summaries in XSum are shorter and
have less lead bias compared to CNN/DM.

3.2 Experimental Design
Baselines: We compare our proposal with various
baselines (see Table 1). The top section of Table 1
presents Lead baseline and Oracle. For CNN/DM,
lead baseline refers to Lead-3 and for XSum, it
refers to Lead-1. The middle section of Table 1
contains the basic transfomer-based summarizer
accepting “sentence representation + position en-
coding” as input, and its two variants, one without
positional encoding, while the other with only po-
sitional encoding as input. The bottom section
contains Shuffling (Grenander et al., 2019), which
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Model CNN/DM XSum
R1 R2 RL Mean R1 R2 RL Mean

Lead 40.30 17.52 36.54 31.45 16.32 1.60 11.96 9.96
Oracle 56.04 33.10 52.29 47.14 30.98 8.98 23.51 21.16

Basic Transformer (Vaswani et al., 2017) 41.02 18.39 37.39 32.27 16.79 1.84 12.33 10.32
– No Position Encoding 37.82↓ 15.59↓ 34.32↓ 29.24 18.29↑ 2.53↑ 13.45↑ 11.42
– Only Position Encoding 40.13↓ 17.36↓ 36.38↓ 31.29 16.22↓ 1.62↓ 11.90↓ 9.91

Learned-Mixin (Clark et al., 2019) 40.72↓ 18.27 37.17↓ 32.05 16.67 1.91↑ 12.28 10.29
Shuffling (Grenander et al., 2019) 41.00 18.43 37.37 32.27 16.98↑ 1.96↑ 12.48↑ 10.47

Our Method 40.88↓⇓ 18.37 37.27↓ 32.18 17.20↑⇑ 1.99↑⇑ 12.63↑⇑ 10.61

Table 1: The ROUGE-1/2/L F1 scores and “Mean” (mean of ROUGE-1/2/L) on CNN/DM and XSum test data.
The best and second best performances over the basic transformer are in bold and underlined. ↑/↓ indicates
the results are significantly higher/lower than Basic Transformer and ⇑/⇓ indicates the results are significantly
higher/lower than Shuffling (p < 0.01 with bootstrap resampling test (Lin, 2004)).

Model Dearly Dmiddle Dlate

Lead-3 49.33 30.90 19.80
Oracle 49.51 47.02 43.81

Basic Transformer 44.30 31.91 22.65
– No Position Encoding 16.07 16.88 18.59

– Only Position Encoding 48.65∗†‡ 30.97 19.70
Learned-Mixin 40.45 31.82 22.70

Shuffling 42.69 31.91 22.99∗†‡

Our Method 42.67 32.18∗†‡ 22.85∗†

Table 2: Avg. of ROUGE-1/2/L F1 scores on Dearly ,
Dmiddle and Dlate. Results significantly better than
Basic Transformer on ROUGE-1/2/L are marked with
∗, †, and ‡ respectively.

is a method proposed lately for summarization lead
bias demoting, and Learned-Mixin (Clark et al.,
2019), which is a general debiasing method pro-
posed to deal with NLP tasks when the type of
data bias in the training set is known and bias-only
model is available. In our case, the data bias is lead
bias and the bias-only model is the transformer
trained with only positional encoding as input.

Implementation Details: All the transformer-
based models have the same setting as the stan-
dard transformer (Vaswani et al., 2017), with 6
layers, 8 heads per layer, and dmodel = 512. We
use Adam to train all the models with scheduled
learning rate with warm-up (initial learning rate
lr = 2e − 3). We choose the top-3 sentences to
form the final summary for CNN/DM and the top-
1 sentence for XSum due to the different average
summary lengths. The class number of sentence
position M is set to 10 and trade-off parameter β
is set to 0.9 (searched from 0 to 1, by increasing
0.1 for each step). We tune these hyper-parameters
on a “balanced” validation set sampled from the
standard CNN/DM validation data.

3.3 Results and Analysis

Table 1 reports the performance of the chosen base-
lines and our proposal on CNN/DM test set, which
has the same data distribution as the training data,
and XSum test set, which is from another news re-
source and with much less lead bias than CNN/DM.

From the middle section of Table 1, we observe
that if we withhold the position cues (No Position
Encoding) by using only semantic representation
as input, the model’s performance drops consid-
erably on CNN/DM, but remarkably increase on
XSum. In contrast, if we merely use position cues
as input (Only Position Encodings), the decrease of
the performance on CNN/DM becomes much more
modest, while there is substantial performance drop
on XSum. These results confirm that positional
signal is a rather important feature for bias-relied
neural summarizers. However, relying too much
on it will also limit model’s generality when ap-
plied to the dataset with less bias than the training
samples. Therefore, seeking strategies to balance
the semantics and position features is crucial for
the neural extractive summarization for news.

When we compare the lead bias demoting meth-
ods presented at the bottom of Table 1, our proposal
and Shuffling give significant performance boosting
on XSum, while Learned-Mixin results in perfor-
mance decrease on both datasets. Comparing our
method and Shuffling directly, while they are essen-
tially equivalent on maintaining the performance
on the in-distribution CNN/DM data (0.09 differ-
ence in terms of the average of ROUGE scores
(ROUGE-Mean)), our method provides a signifi-
cant improvement on XSum, and outperforms Shuf-
fling and the basic transformer by 0.14 and 0.29 on
ROUGE-Mean respectively. It is noteworthy that
the transformer without position encoding achieves
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Figure 2: Relative position distributions of selected sentences in the original document of two testing corpora
(CNN/DM and XSum), obtained by different lead bias demoting strategies.

the best performance on XSum. However, it is the
worst system on in-distribution data. Throughout
all the comparisons, our proposal can best balance
the sentence position and content semantics.

To more deeply investigate the behavior of our
demoting method on the documents whose sum-
mary sentences are from different document por-
tions, we follow Grenander et al. (2019) to cre-
ate three subsets, Dearly, Dmiddle, Dlate, from the
CNN/DM testing set. Documents are ranked by
the mean of their summary sentences’ indices in
ascending order, and then the top-ranked 100 doc-
uments, the 100 documents closest to the median,
and the bottom-ranked 100 documents are selected
to form Dearly, Dmiddle, Dlate

2. Results in Ta-
ble 2 show that even if our model does not match
the basic transformer on documents in Dearly, it
does yield benefits for bothDmiddle andDlate with
significant improvements, while the competitive
baseline Shuffling only achieves that on Dlate.
Position of Selected Content: To more explic-
itly investigate how well the prediction of differ-
ent models fits the ground-truth sentence selec-
tion (Oracle), we compare the relative position
of the selected content of our method with the
undebiased model (Basic Transformer) and the
most competitive debiased model (with Shuffling),
as illustrated in Figure 2. We can observe that:
(1) CNN/DM contains much more lead bias than
XSum, shown by a more right-skewed histogram
for Oracle. Thus, the basic transformer trained
on it is also heavily impacted by the lead bias
and tends to select sentences ∈ [0, 0.1] with much
higher probability even on the less biased XSum.

2Due to the common generation mechanism of oracles, the
number of sentences in the oracle is not fixed. For fair com-
parison, we only consider adding documents with the oracle
having exactly 3 sentences into Dearly , Dmiddle, Dlate.

(2) While Shuffling and our method can both effec-
tively demote the extreme trend towards selecting
sentences in the lead position, our method seems to
be sightly better at encouraging the model to select
sentences with higher relative position.

4 Conclusion and Future Work

We propose a lead bias demoting method to make
news extractive summarizers more robust across
datastets, by optimizing a position prediction and
a summarization component in an alternating
way. Experiments indicate that our method im-
proves model’s generality on out-of-distribution
data, while still largely maintaining its performance
on in-distribution data. As such, it represents the
best viable solution when at inference time input
documents may come from an unknown mixture of
datasets with different degrees of position bias.

For the future, we plan to explore more sophis-
ticated and effective methods (e.g., adjusting the
lead bias online) and infuse them together with
neural abstractive summarization models, known
to generate more succinct and natural summaries.
Another interesting direction for future work can
be exploring the potential of applying our proposed
bias demoting strategy to other tasks, which can
also be framed as the sequence labeling problem
and possibly troubled by biases in the training data
(e.g., Topic Segmentation (Xing et al., 2020) and
Semantic Role Labeling (Ouchi et al., 2018)).
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Abstract

Machine reading comprehension (MRC) is a
crucial task in natural language processing and
has achieved remarkable advancements. How-
ever, most of the neural MRC models are still
far from robust and fail to generalize well in
real-world applications. In order to compre-
hensively verify the robustness and general-
ization of MRC models, we introduce a real-
world Chinese dataset – DuReaderrobust. It
is designed to evaluate the MRC models from
three aspects: over-sensitivity, over-stability
and generalization. Comparing to previous
work, the instances in DuReaderrobust are nat-
ural texts, rather than the altered unnatural
texts. It presents the challenges when apply-
ing MRC models to real-world applications.
The experimental results show that MRC mod-
els do not perform well on the challenge test
set. Moreover, we analyze the behavior of ex-
isting models on the challenge test set, which
may provide suggestions for future model de-
velopment. The dataset and codes are publicly
available at https://github.com/baidu/
DuReader.

1 Introduction

Machine reading comprehension (MRC) requires
machines to comprehend text and answer ques-
tions about it. With the development of deep learn-
ing, the recent studies of MRC have achieved re-
markable advancements (Seo et al., 2017; Wang
and Jiang, 2017; Devlin et al., 2019; Liu et al.,
2019; Lan et al., 2020). However, previous studies
show that most of the neural models are not robust
enough (Jia and Liang, 2017; Ribeiro et al., 2018b;
Talmor and Berant, 2019a; Welbl et al., 2020) and
fail to generalize well (Talmor and Berant, 2019b).

∗ This work was done while the first author was doing
internship at Baidu Inc.

†Corresponding authors

To further promote the studies of robust and well
generalized MRC, we construct a Chinese dataset
– DuReaderrobust which comprises natural ques-
tions and documents. In this paper, we focus on
evaluating the robustness and generalization from
the following aspects, where robustness consists of
over-sensitivity and over-stability:

(1) Over-sensitivity denotes that MRC models
provide different answers to the paraphrased ques-
tions. It means that the models are overly sensitive
to the difference between the original question and
its paraphrased question. We provide an example
in Table 1a.

(2) Over-stability means that the models might
fail into a trap span that has many words in common
with the question, and extract an incorrect answer
from the trap span. Because the models overly
rely on spurious lexical patterns without language
understanding. We provide an example in Table 1b.

(3) Generalization. The well-generalized MRC
models have good performance on both in-domain
and out-of-domain data. Otherwise, they are less
generalized. We provide an example in Table 1c.

In previous work, the above issues have been
studied separately. In this paper, we aim to cre-
ate a dataset namely DuReaderrobust to compre-
hensively evaluate the three issues of neural MRC
models. Previous work mainly studies these is-
sues by altering the questions or the documents.
Ribeiro et al. (2018b); Iyyer et al. (2018); Gan and
Ng (2019) evaluate the over-sensitivity issue via
paraphrase questions generated by rules or gener-
ative models. Jia and Liang (2017); Ribeiro et al.
(2018a); Feng et al. (2018); Talmor and Berant
(2019a) focus on evaluating the over-stability issue
by adding distracting sentences to the documents
or reducing question word sequences. However,
the altered questions and documents are not natural
texts and rarely appear in the real-world applica-
tions. It is not clear that how the evaluation based
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Passage Passage
近年来，随着琥珀蜜蜡市场的兴起，蜜蜡与琥珀的价格
都有不断上涨的趋势，其中蜜蜡首饰的价格一般是琥珀
首饰价格的2–4倍，最近几年二者价格差距更大. . . . . .

In recent years, with the rise of the amber market, the price
of amber keeps going up. The price of opaque amber is
generally 2–4 times the price of clear amber ...

Original Question Original Question
琥珀和蜜蜡哪一个比较贵 Which is more expensive, clear amber or opaque amber?
Golden Answer : 蜜蜡 Golden Answer : opaque amber
Predicted Answer : 蜜蜡 (BERTbase) Predicted Answer : opaque amber (BERTbase)
Paraphrase Question Paraphrase Question
蜜蜡和琥珀哪个价格高 Which has the higher price, opaque amber or clear amber?
Golden Answer : 蜜蜡 Golden Answer : opaque amber
Predicted Answer : 琥珀 (BERTbase) Predicted Answer : clear amber (BERTbase)

(a) An example illustrates the over-sensitivity issue, where BERTbase gives different predictions to the original question and the
paraphrased question.

Passage Passage
包粽子的线以前人们认为是来自麻叶子，其实是棕榈
树，粽子的音就来自棕叶子。

Many people argue that the zongzi (rice dumpling) leaves
are made of hemp. Actually, it is the palm tree, the real origin,
that endows zongzi with the special pronunciation.

Question Question
包粽子的线来自什么 What is the raw material of zongzi leaves?
Golden Answer : 棕榈树 Golden Answer : palm tree
Predicted Answer : 麻叶子 (BERTbase) predicted Answer : hemp (BERTbase)

(b) An example illustrates the over-stability issue. The underlined span in the passage appears as a trap because it has many
words in common with the question. BERTbase falls into the trap.

Passage Passage
cos(2x)’=-sin(2x)*(2x)’=-2sin(2x)属于复合函数的求导。 cos(2x)’=-sin(2x)*(2x)’=-2sin(2x) This is the derivative of a

compound function.
Question Question
cos2x的导数是多少? What is the derivative of cos2x?
Golden Answer : -2sin(2x) Golden Answer : -2sin(2x)
Predicted Answer : -sin(2x) (BERTbase) Predicted Answer : -sin(2x) (BERTbase)

(c) An example illustrates the generalization issue. Although BERTbase is sufficiently trained on large-scale open-domain data, it
fails to predict the answer to a math question.

Table 1: The examples of over-sensitivity, over-stability and generalization issues.

on such unnatural texts can help the improvements
of the neural models in real-world applications. By
contrast, all the instances in DuReaderrobust are
natural texts and collected from the Baidu search.

We conduct extensive experiments based on
DuReaderrobust. The experimental results show
that the models based on pre-trained language mod-
els (LMs) (Devlin et al., 2019; Sun et al., 2019; Liu
et al., 2019) do not perform well on the challenge
set. Besides, we have the following findings on
the behaviors of the models: (1) if a paraphrased
question contains more words rephrased from the
original question, it is more likely that MRC mod-
els provide different answers; (2) the trap spans
which share more words with the questions easily
mislead MRC models; (3) domain knowledge is a
key factor that affects the generalization ability of
MRC models.

2 Dataset: DuReaderrobust
DuReaderrobust is built on DuReader, a large-
scale Chinese MRC dataset (He et al., 2018). In
DuReader, all questions are issued by real users of

Dataset len(p) len(q) len(a) #
Train 291.88 9.19 5.39 14,520
Development 288.16 9.38 6.66 1,417
Test 285.36 9.41 6.55 1,285
Challenge 132.09 11.97 7.33 3,556
All 20,778

Table 2: The statistics of DuReaderrobust.

Baidu search, and the document-level contexts are
collected from search results. In DuReaderrobust,
we select entity questions and paragraph-level con-
texts from DuReader. We further employ crowd-
workers to annotate the answer span conditioned
on the question and the paragraph-level context 1.
Additionally, we used a mechanism to ensure data
quality, where 10% of the annotated data will be
randomly selected and reviewed by linguistic ex-
perts. If the accuracy is lower than 95%, the crowd-
workers need to revise all the answers until the
accuracy for the randomly selected data is higher
than 95%.

1The instances which have insufficient contexts for answer-
ing the questions are discarded.
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Answer Type % Examples
Date 24.7 15分钟 (15 minutes)
Number 17.5 53.28厘米 (53.28cm)
Interval 11.8 1%至5% (1% to 5%)
Person 8.8 成龙 (Jackie Chan)
Organization 7.5 湖南卫视 (Hunan Satellite TV)
Money 7.0 2.7亿美元 (270 million dollars)
Location 6.0 北京 (Beijing)
Software 2.2 百度地图 (Baidu Map)
Item 1.6 华为P9 (Huawei P9)
Other 12.9 管理学 (Management Science)

Table 3: The frequency distribution and examples of
different answer types in DuReaderrobust.

Eventually, we collect about 21K instances for
DuReaderrobust, each of which is a tuple 〈q, p, A〉,
where q is a question, p is a paragraph-level con-
text containing reference answers A. Similar to
the existing MRC datasets, DuReaderrobust con-
sists of training set, in-domain development set and
in-domain test set, whose sizes are 15K, 1.4K and
1.3K respectively. Besides, DuReaderrobust con-
tains a challenge test set, in which 3.5K instances
are created to evaluate the robustness and gener-
alization of MRC models. The challenge test set
can be divided into three subsets including over-
sensitivity set, over-stability set and generalization
set. Table 2 shows the statistics of DuReaderrobust.
Besides, DuReaderrobust covers a wide range of
answer types (e.g. date, numbers, person, etc. ).
The frequency distribution and examples of the an-
swer types are shown in Table 3. Next, we will
present our way to construct the three subsets in
the challenge test set.

2.1 Over-sensitivity Subset

We build the over-sensitivity subset in the fol-
lowing way. First, we sample a subset of in-
stances {〈q, p, A〉} from the in-domain test set of
DuReaderrobust. For each question q, we obtain
its N paraphrases {q′1, q′2, ..., q′N} using the para-
phrase retrieval toolkit (See Appendix A for fur-
ther details). To ensure the paraphrase quality, we
employ crowd-workers to discard all false para-
phrases. Then, we replace q with the paraphrased
question q′i, and keep the original context p and
answers A unchanged. This leads to the new in-
stances {〈q′i, p, A〉}, and they are used as the model-
independent instances in the over-sensitivity sub-
set. Besides, we also employ a model-dependent
way to collect instances. Specifically, we use para-
phrased instances to attack the MRC models based
on ERNIE (Sun et al., 2019) and RoBERTa (Liu

Algorithm 1: Annotate an instance for
over-stability subset

Input: {〈q, p, A〉} tuple
Output: {〈q′, p, A′〉} tuple or null
Identify the named entities {e1, ..., en} along with

their entity types in p
Keep the named entities {ei, ..., em} with the same

types as A
if 1 <m <k then

if linguistic experts consider the passage p
contains a trap then

annotate a new question q′ and answers A′

A and A′ share the same named entity type
return {〈q′, p, A′〉}

else return null;
else return null;

et al., 2019). If one of the models gives a different
prediction from the predicted answer of the original
question, we adopt the instance, otherwise we dis-
card it. The instances collected in the above model-
dependent and model-independent ways constitute
the over-sensitivity subset. The over-sensitivity
subset consists of 1.2K instances. The number of
model-independent instances is equal to that of
model-dependent instances. Table 1a shows an
example in the over-sensitivity subset.

2.2 Over-stability Subset
Intuitively, a trap span that has many words in com-
mon with the questions may easily mislead MRC
models. Following this intuition, the over-stability
subset is constructed as follows. First, we randomly
select a set of instances 〈q, p, A〉 from DuReader.
In general, a trap span may contain non-answer
named entities of the same type as the reference
answers A. This is because over-stable models
usually rely on spurious patterns that match the
correct answer types. Thus, we use a named en-
tity recognizer 2 to identify all named entities in p
along with their entity types. We keep the corre-
sponding instance, if there are non-answer named
entities that are of the same type as A. Then, we
ask linguistic experts to annotate a new question
q′ and answers A′, if they consider p contains trap
spans. A and A′ share the same named entity type.
The annotated question q′ has a high level of lex-
ical overlap with a trap span that does not con-
tain A. We say {〈q′, p, A′〉} can be considered as
a candidate instance. Each candidate instance is
used to attack one of the MRC models based on
ERNIE (Sun et al., 2019) and RoBERTa (Liu et al.,

2https://ai.baidu.com/tech/nlp_basic/
lexical
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In-domain
dev set

In-domain
test set

Challenge
test set

EM F1 EM F1 EM F1
BERTbase 71.20 82.87 67.70 80.85 37.57 53.86
ERNIE 1.0base 68.73 81.12 66.72 80.50 36.75 55.64
RoBERTalarge 74.17 86.02 71.20 84.16 45.02 62.83
Human 78.00 89.75 72.00 86.43

Table 4: Comparing MRC baselines to human on the
development, test and all challenge sets.

Over-
Sensitivity

Over-
Stability

Genera-
lization

EM F1 EM F1 EM F1
BERTbase 53.31 69.30 16.78 38.40 36.41 50.15
ERNIE 1.0base 58.10 73.89 17.27 38.34 32.86 52.84
RoBERTalarge 55.24 75.16 28.18 47.03 46.03 61.67

Table 5: The results on the three subsets of the chal-
lenge set.

2019). The candidate instance will be used to con-
struct an overstability subset, if one of the model
fails. Algorithm 1 shows the detailed procedure
(See Appendix B for details). As a result, we have
0.8K instances to evaluate over-stability. Table 1b
shows an example from the over-stability subset.

2.3 Generalization Subset

The in-domain test set consists merely of in-domain
data (i.e., the distribution is the same as the one
in the training and development sets). In order to
evaluate the generalization ability of MRC models,
we construct a generalization subset which com-
prises out-of-domain data. The out-of-domain data
is collected from two vertical domains. The details
are as follows.

Education We collect educational questions
and documents from Baidu search, and we ask
crowdworkers to annotate 1.2K high-quality tuples
〈q, p, A〉. The topics include mathematics, physics,
chemistry, language and literature. Table 1c shows
an example.

Finance Following Fisch et al. (2019), we lever-
age a dataset that was originally designed for infor-
mation extraction in the finance domain for MRC.
We obtain 0.4K instances of financial reports this
way. The construction details are presented in Ap-
pendix C.

3 Experiments

3.1 Baselines and Evaluation Metrics

We consider three baseline models in the exper-
iments. They are based on different pre-trained
language models, including BERTbase (Devlin

DPR (%)
BERTbase 22.73
ERNIE 1.0base 19.88
RoBERTalarge 16.44

Table 6: The DPRs of baselines on the over-sensitivity
subset.

et al., 2019), ERNIE 1.0base (Sun et al., 2019) and
RoBERTalarge (Liu et al., 2019). In Appendix D,
we set the hyperparameters of our baseline models.

Following Rajpurkar et al. (2016), we use ex-
act match (EM) and F1-score to evaluate the held-
out accuracy of an MRC model. All the metrics
are calculated at Chinese character level, and we
normalize both the predicted and true answers by
removing spaces and punctuation marks.

3.2 Main Results
Table 4 shows the baseline results on the in-domain
development set, in-domain test set, and chal-
lenge test set. The baseline performance is close
to human performance on the in-domain test set,
whereas the gap between baseline performance
and human performance on the challenge test set
is much larger. In Appendix E, we describe the
method for calculating human performance.

We further evaluate the baselines on the three
challenge subsets for over-sensitivity, over-stability
and generalization separately. Table 5 shows the re-
sults. We have found that baseline performance de-
clines significantly for over-stability and generaliza-
tion subsets (compared to the “In-domain test set”
in Table 4). In contrast, the baseline performance
degrades less significantly on the over-sensitivity
subset, although there is still a noticeable gap.

3.3 Discussion 1: Over-sensitivity
First, we calculate the different prediction ratios
(DPRs) of the baselines on the over-sensitivity sub-
set. DPR measures the percentage of the para-
phrased questions that yield different predictions.
DPR is formulated in Appendix F . Table 6 presents
the DPRs of the baselines on the over-sensitivity
subset. The baselines obtained around 16% to 22%
DPRs, which demonstrates that the baselines are
sensitive to part of the paraphrased questions.

Second, we examine a hypothesis - if a para-
phrased question contains more words rephrased
from the original question, the MRC model is more
likely to produce different answers. To measure
how similar paraphrased questions are to the origi-
nal questions, we use the F1-score. A low F1-score

958



 

0

100

200

300

400

0%

20%

40%

60%

80%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Th
e 

# 
of

 in
st

an
ce

s

D
PR

F1-score similarity

BERT-base
ERNIE1.0-base
RoBERTa-large

Figure 1: The correlation between DPR and F1-score
based question similarity on the over-sensitivity subset.
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Figure 2: The correlation between the model perfor-
mance and question-trap similarity on the over-stability
subset.

means that many words in the original question
have been rephrased. We divide the paraphrased
questions into buckets based on how similar they
are to the original questions, and we then examine
whether there is correlation between DPR and F1-
score similarity. Based on Figure 1, we can observe
that the DPRs of all the baselines are negatively
correlated with the F1-score similarity between the
original and paraphrased questions. The results
confirm the hypothesis.

3.4 Discussion 2: Over-stability

MRC models might be easily misled by trap spans
that share many words with the questions. We ex-
amine whether there is a correlation between MRC
performance (F1-score) and question-trap similar-
ity in this section. Based on the similarity between
trap spans and questions, we divide trap spans into
buckets. According to Figure 2, the performance of
the base models decreases as similarity increases
and the large model (RoBERTalarge) is less over-
stable than the base ones.

3.5 Discussion 3: Generalization

Table 7 shows the baseline performance in the the
domains of finance and education. We can observe

Finance Education
EM F1 EM F1

BERTbase 30.73 51.16 38.70 50.83
ERNIE 1.0base 26.53 50.53 34.67 53.11
RoBERTalarge 40.22 61.16 47.77 61.82

Table 7: The performance of baselines in the domains
of education and finance.

Topcis EM F1 #
Math 19.85 34.63 136
Chemistry 37.46 53.88 323
Language 44.31 61.18 255
Others 69.63 79.28 438
All 49.13 62.88 1152

Table 8: The performance of baselines on different top-
ics in the domain of education.

that the baselines perform poorly for both domains.
Additionally, we examine how baseline models be-
have in the education domain. Table 8 shows the
performance of RoBERTalarge on the four topics in
the education domain. The model performs much
worse when it comes to math and chemistry, since
these topics are rare in the training set. The results
of this analysis suggest that domain knowledge is
a key factor affecting the generalization ability of
MRC models. More discussion can be found in
Appendix G.

4 Conclusion

In this paper, we create a Chinese dataset –
DuReaderrobust and use it to evaluate both the
robustness and generalization of the MRC mod-
els. Its questions and documents are natural texts
from Baidu search. This presents the robustness
and generalization challenges in the real-world ap-
plications. Our experiments show that the MRC
models based on the pre-trained LMs do not per-
form well on DuReaderrobust challenge set. We
also conduct extensive experiments to examine the
behaviors of the MRC models on the dataset and
provide insights for future model development.
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Ethical Considerations

We aim to provide researchers and developers with
a dataset DuReaderrobust to improve the robust-
ness and generalization ability of MRC models.
We also take the potential ethical issues into ac-
count. (1) All the instances in the DuReaderrobust
have been desensitised. (2) Regarding to the issue
of labor compensation, we make sure that all the
crowdsourcing workers are fairly compensated.
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A Paraphrase Retrieval Toolkit

We use a paraphrase retrieval toolkit to obtain para-
phrase questions. The toolkit is used internally at
Baidu, and our manual evaluations show that the
accuracy of the retrieval results is around 98%. The
paraphrase retrieval toolkit consists of two basic
modules as follows.

• Paraphrase Candidate Retriever The retriever
is a light-weight module. Given a question, the
retriever will retrieve top-k paraphrase candidates
from the search logs of Baidu Search.

• Paraphrase Candidate Re-ranker The re-
ranker is a model fine-tuned from ERNIE (Sun
et al., 2019) by using a set of manually labeled
paraphrase questions. Given a set of retrieved
paraphrase candidates, the re-ranker will esti-
mate the semantic similarity between the original
question and the paraphrase candidates. If the
semantic similarity is higher than a pre-defined
threshold, the candidate will be used as a para-
phrased question.

B The Illustration of Annotating
Over-stability Instances

Figure 3 illustrates the annotation of an over-
stability instance. In the instance, the answer to the
original question is 30-40 minutes. The entity type
of 5-10 minutes is the same as 30-40 minutes. The
annotator raise a new question by revising the origi-
nal question, the answer to the new question is 5-10
minutes. The sentence contains 30-40 minutes has
many words in common with the new question, and
it is considered as a trap sentence. The new ques-
tion may mislead the model to predict the answer
to the new question as 30-40 minutes.

C The Construction of Finance Data

We leverage a dataset that is originally designed
for information extraction in finance domain. The
original dataset contains the full texts of the fi-
nancial reports as documents and the structured
data that is extracted from the texts. Then, we use
templates to generate questions for each data field
in the structured data. Finally, we use these con-
structed instances for MRC. Each instance contains
(1) a question generated from a template for a data
field, (2) an answer that is the value in the data
field and (3) a document from which the value (i.e.
answer) is extracted.

How	long	does	it	take	for	an	adult	to	drive	three	kilometers

Context:

Original	Question:

Answer:

Reformed	Question:

Answer:

An	adult	walks	at	a	speed	of	about	5-7	kilometers	per	hour,
and	it	takes	about	30-40	minutes	to	walk	three	kilometers.
Driving	in	the	city	is	about	30-40	km/h,	and	it	takes	less	than
5-10	minutes	to	drive	3	km.

30-40	minutes

5-10	minutes

How	long	does	it	take	for	an	adult	to	walk	three	kilometers

Figure 3: The illustration of annotating an over-
stability instance.

D Hyperparameters

We use a number of pre-trained language models in
our baseline systems. When fine-tuning different
pre-trained language models, we use the same hy-
perparameters. The settings of hyperparameters are
as follows. The learning rate is set to 3e-5 and the
batch size is 32. We set the number of epochs to 5.
The maximal answer length and document length
are set to 20 and 512, respectively. We set the
length of document stride to 128. All experiments
are conducted on 4 Tesla P40 GPUs.

E Human Performance

We evaluate human performance on both the in-
domain test set and challenge test set. We randomly
sample two hundred instances from the in-domain
test set, and three hundred instances from the chal-
lenge test set. We ask crowdworkers to provide
answers to the questions in the sampled instances.
Then, we use EM and F1-scores of these annotated
answers as human performance.

F Different Prediction Rate

Different prediction rate (DPR) measures the per-
centage of paraphrase questions whose predictions
are different from the original questions. Formally,
we define DPR of a neural model f(θ) on a dataset
D as follows.

DPRD(f(θ)) =

∑
(q,q′)∈Q

1[f(θ; q) 6= f(θ; q′)]

‖Q‖

where, f(θ; q) denotes the prediction of the trained
MRC model f(θ). Q represents a set of pairs of
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Types # of changes (%) # of same (%)
WR 1 (12.50) 7 (87.50)
RF 0 (00.00) 4 (100.00)
SS 6 (17.14) 29 (82.85)
AD 7 (23.33) 23 (76.66)
CO 7 (30.43) 16 (69.56)

Table 9: Distributions of paraphrases and DPRs.

Question Types EM F1 #
Company abbreviations 0 31.15 18
Pledgee 80.76 89.96 26
Pledgor 0 24.62 25
The pledge amount 18.36 53.84 98
Others (e.g. pledge date) 47.91 58.97 48
All 28.83 54.05 215

Table 10: The performance of RoBERTalarge on the five
topics in the domain of financial reports.

original question q and paraphrased question q′ in
dataset D, and 1[∗] is an indicator function. A high
DPR score means that the MRC model is overly
sensitive to the paraphrased question q′, otherwise
insensitive.

G Experimental Analysis

G.1 Over-sensitivity Analysis
We further analyze the prediction results to figure
out what kind of paraphrases lead to different pre-
dictions. Five types of paraphrasing phenomena
have been found, including (1) word reordering
(WR), (2) replacement of function words (RF), (3)
substitution by synonyms (SS), (4) inserting or re-
moving content words (AD), and (5) more than
one previously defined types happen in one para-
phrase (CO). We randomly sample one hundred
instances from the over-sensitivity subset and ana-
lyze the changes of the predictions by ERNIE (Sun
et al., 2019). As shown in Table 9, most of changed
predictions come from AD and CO. This analy-
sis suggests that the models are sensitive to the
changes of content words.

G.2 Generalization Analysis
In previous section, we have already analyzed the
behaviors of baseline systems on education domain.
In this section, we conduct analysis on financial do-
main. The data of financial domain contains man-
agement changes and equity pledge. The perfor-
mance of RoBERTalarge on management changes
and equity pledge is 68.63% and 49.15% respec-
tively. The model generalizes well on management
changes, since the training set contains the relevant
knowledge about asking person names. By contrast,

the model performs worse on equity pledge. We
classify the instances of equity pledge into five sets
according to the question types. Table 10 shows the
performance of RoBERTalarge on the five question
types. We can observe that the model performs
the worst on the questions about company abbre-
viations, pledgee and pledgor, since there is little
domain knowledge in the training set. By contrast,
the model performs better on the questions about
amount and date, since the model has already learnt
relevant knowledge in the training set.
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Abstract

With the recent advancements in deep learning,
neural solvers have gained promising results in
solving math word problems. However, these
SOTA solvers only generate binary expression
trees that contain basic arithmetic operators
and do not explicitly use the math formulas.
As a result, the expression trees they produce
are lengthy and uninterpretable because they
need to use multiple operators and constants to
represent one single formula. In this paper, we
propose sequence-to-general tree (S2G) that
learns to generate interpretable and executable
operation trees where the nodes can be for-
mulas with an arbitrary number of arguments.
With nodes now allowed to be formulas, S2G
can learn to incorporate mathematical domain
knowledge into problem-solving, making the
results more interpretable. Experiments show
that S2G can achieve a better performance
against strong baselines on problems that re-
quire domain knowledge.1

1 Introduction

Math word problem (MWP) solving is a special
subfield of question answering. It requires machine
solvers to read the problem text, understand it, and
then compose the numbers and operators into a
meaningful equation (as shown in Table 1). This
process, even for the simplest problem in elemen-
tary school, demands language understanding and
numerical reasoning capabilities, making this task
a long-standing challenge in AI (Bobrow, 1964;
Zhang et al., 2019).

As with any QA task, solving an MWP requires
the introduction of external knowledge or domain
knowledge (Mishra et al., 2020). However, current
state-of-the-art solvers (Xie and Sun, 2019; Zhang
et al., 2020; Wu et al., 2020) do not address this

1Data and code are available at the GitHub repository:
https://github.com/doublebite/Sequence-to-General-tree/

Problem: The outer radius and the inner radius
of a circular annulus are 5m and 3m repsectively.
Find the area of this circular annulus.

Equation: x = 5 ∗ 5 ∗ 3.14− 3 ∗ 3 ∗ 3.14
Answer: 50.24

With formula: x = circle area(5) - circle area(3)

Table 1: Example problem that requires geometry
knowledge.

Figure 1: (a). binary expression tree and (b). operation
tree along with formulas for the problem in Table 1.

issue explicitly. They learn to map the problem text
into binary expression trees regardless of whether it
requires any knowledge. This is counterintuitive for
problems that need math concepts or formulas. As
illustrated in Figure 1(a), without explicitly using
the corresponding area formula, the expression tree
for the problem is lengthy and uninterpretable.

To address this issue, we propose a sequence-
to-general tree (S2G) architecture where the nodes
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can be arbitrary math concepts or formulas with
arbitrary number of arguments. In this way, our
S2G model can learn to map the problem text into
executable operation trees that contain different
formulas across different domains. For example,
S2G can learn to generate tree nodes that contain
the required geometry formula for circles, as shown
in Figure 1(b), making the result more intuitive and
explainable.

In addition, we propose a knowledge-guided
mechanism to guide tree-decoding using a math-
ematical knowledge graph (KG). To evaluate our
model, we also construct a middle-sized dataset
consisting of 1,398 geometry word problems which
require a diversified set of formulas. Experimental
results show that our S2G model can provide better
performance and more interpretable results against
strong baselines on problems that require domain
knowledge.

The main contributions of this paper are:

1. We propose a seq-to-general tree model that
learns to map the problem text into operation
trees where the nodes can be formulas with
arbitrary number of arguments. This helps to
incorporate domain knowledge into problem
solving and produce interpretable results.

2. We design a knowledge-guided mechanism
that guides tree decoding using mathematical
knowledge graphs and GNNs.

3. We curate a middle-sized dataset that contains
1,398 geometry word problems. In addition,
we annotate them with detailed formulas that
can be readily converted into operation trees.

2 Seq2seq v.s. Seq2tree v.s. Seq2general

Our goal is to design a sequence-to-general tree
model that learns to map the problem text into its
corresponding operation tree. Before diving into
the model, we first compare the decoding mecha-
nisms between seq-to-seq, seq-to-tree and our seq-
to-general tree solvers. Figure 2 illustrates the tree
decoding process of these three types of model,
respectively.

For seq2seq models, their decoder basically does
two things: (1) predicting the current output and
(2) generating the next state. These two steps can
be conditioned on different information including
the current state, the current input, or a context vec-
tor calculated using attention. The decoder would
repeat these two steps until it outputs an end token.

Figure 2: Comparison between three types of decoding:
(a) seq2seq, (b) seq2tree, and (c) seq-to-general tree.

For seq2tree models, however, this process is
slightly different. The decoder predicts the current
output as in seq2seq, but it will decide whether to
generate the next state based on the current output.
If the current output is a arithmetic operator, the de-
coder knows it should produce two child states, and
these states are used to expand into its left and right
children. If the current output is a number, then the
decoder would end the decoding process, so the
current node becomes a leaf node. As a result, the
whole decoding process resembles generating an
expression tree in a top-down manner.

In our work, we generalize the decoding process
by making the decoder produce a variable number
of children based on the type of the current output.
If the output is a number or operator, the decoder
would produce zero or two child states as before.
If the output is a formula, the decoder will generate
the pre-specified number of child states for this
formula.

965



3 Sequence-to-General Tree Model

In this section, we give a detailed description for
each part of our S2G model.

3.1 Encoder
The main function of the encoder is to encode the
problem text P = (x1, x2, ..., xn) into a sequence
of hidden states (h1, h2, ..., hn) and their summary
state hencoder. The hidden states h1 to hn are ex-
pected to contain the information for each input
token x1 to xn, while the summary state hencoder
is expected to capture the overall information of
the problem.

Specifically, we use bidirectional gated recur-
rent units (GRU) (Cho et al., 2014) as our en-
coder. Given the current input xt, the previous
state ht−1, and the next state ht+1, the current state
ht ∈ (h1, h2, ..., hn) can be calculated with:

−→
ht = GRU(xt,

−−→
ht−1), (1)

←−
ht = GRU(xt,

←−−
ht+1), (2)

where the arrows represent different directions in
the bidirectional encoding. After calculating the
hidden state for each input token, we combine the
last state of the forward and backward directions to
get the summary state for the encoder:

hencoder =
←−
h0 +

−→
hn (3)

3.2 Geometry Knowledge Graph
To incorporate domain knowledge into problem
solving, we propose to utilize the knowledge from
mathematical knowledge graphs. The main idea is
that given a formula predicted as the current node,
we could use the physical meaning of its arguments
to help us better predict its children. For example,
if the current node is the formula for rectangle area,
then we know its child nodes should be related
to ”length ” and ”width”. We can thus use the
node embeddings of ”length” and ”width” from a
geometry KG to provide additional information for
our solver.

We manually collect a geometry knowledge
graph which contains the common geometry shapes
(e.g., square, circle) and their geometry quantities
(e.g., area, length), and we link these nodes to each
other if they belong to the same shape. To embed
this KG, we employ a graph convolutional network
(GCN) (Kipf and Welling, 2017) that transforms
the KG into some vector space and calculates the

embedding of each node. Given the feature matrix
X and the adjacency matrix A of the KG, we use a
two-layer GCN to encode it as follows:

Z = GCN(X,A), (4)

where Z = (z1, ..., zn) are the node embeddings
for each node in the graph. Then, we can use the
embedding to represent the physical meaning of a
certain formula argument in the decoding process.

3.3 General Tree Decoder
In the decoding stage, the decoder learns to produce
the target operation trees in a recursive manner. It
first predicts the current output yt in order to deter-
mine the number of children of the current node.
Given the current decoder state st, the embedding
of the last output e(yt−1), and the node embedding
zt which represents the physical meaning in the
knowledge graph, the probability of the current
output P (yt) is calculated using:

ct = Attention(e(yt−1), h
n
1) (5)

z′t = Attention(zt, h
n
1) (6)

P (yt) = Softmax(Wy[st; e(yt−1); ct; z
′
t]), (7)

where hn1 is the encoder states (h1, ..., hn), ct is the
context vector of e(yt−1) with respect to hn1 , and z′t
is another context vector calculated using the node
embedding zt and hn1 . Specifically, we use additive
attention (Bahdanau et al., 2015) to calculate these
context vectors and use hencoder as the first decoder
state s0. Given the probability P (yt), we can then
determine the output token ŷt:

ŷt = argmaxP (yt). (8)

Next, we predict the child states conditioned on
the required number of children for ŷt. Unlike
previous binary-tree decoders that use two distinct
DNNs to predict the left and right children respec-
tively (Xie and Sun, 2019; Zhang et al., 2020; Wu
et al., 2020), we employ a GRU to predict a variable
number of children. Given the current state st, its
child states st1 , ..., stn are generated in a recurrent
manner:

sti = Decoder(sti−1 ; e(yt); ct), (9)

where we generate the first child st1 using st, and
the following child state sti using its previous sib-
ling sti−1until we reach the required number of
children. The decoder is basically a GRU followed
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by a linear projection layer and an activation func-
tion:

s′ti = GRU([e(yt); ct], sti−1), (10)

sti = ReLU(Wss
′
ti), (11)

where the input of GRU is the concatenation of e(yt)
and ct, Ws is the linear projection layer, and ReLU
is used as the activation function. After getting
these child states, we push them into a stack and
repeat the steps from Equation (5) to Equation (11)
until all the states are realized into tokens.

3.4 Training Objective

For a problem and operation tree pair (P, T), we
follow previous seq2tree work (Xie and Sun, 2019;
Wu et al., 2020) and set our objective to minimize
the negative log likelihood:

L(T, P ) =

n∑

t=1

−logP (yt|st, P,KG). (12)

4 Dataset

To evaluate our S2G model on problems that re-
quire formulas, we curate a middle-sized dataset,
GeometryQA, that contains 1,398 geometry word
problems. These problems are collected from
Math23K (Wang et al., 2017) using the keywords
of common geometric objects (e.g., circle, square,
etc.) and their shapes (e.g., rectangular, circular,
etc.). Then, we re-annotate each problem with
their associated formulas if the problem belongs
to one of the six major shapes: square, cubic, rect-
angle, cuboid, triangle and circle. Table 2 shows
the overall statistics of GeometryQA and Table 7
in Appendix B shows the 11 formulas we used to
annotate these problems.

Note that not all problems in GeometryQA are
annotated with formulas. About 16% of the prob-
lems belong to other shapes (e.g., parallelogram,
rhombus, etc.) which currently are not covered
in our formula set. About 40% are problems that
contain geometric keywords but do not actually
require any formulas. Table 3 shows such an exam-
ple. We use these problems to test the robustness
of our model. That is, S2G has to learn to apply
the correct formulas or equations from misleading
keywords (as shown in Table3) and has to learn to
generate both binary expression trees and operation
trees as a whole.

GeometryQA

Number of problems 1,398
Number of sentences/words 5.4k / 41.1k
Vocabulary size 2,872

Annotated with formulas 604 (43.20%)
Problems of other shapes 225 (16.09%)
Formulas not required 569 (40.70%)

Table 2: Dataset statistics of GeometryQA

Problem: The perimeter of a rectangular swim-
ming pool is 300 m. If you place a chair every
10 m all the way around its perimeter, how many
chairs do you need?

Equation: x = 300/10
Answer: 30

Table 3: Example problem that contains misleading
keywords (perimeter, rectangular) but do not require
any geometry formulas.

5 Experiments

5.1 Implementation Details

We implement our S2G model and the GNN mod-
ule using Pytorch2 and Pytorch Geometric3. We set
the dimension of word embedding to 128 and the
dimension of the hidden state of GRU and GNN
to 512. The dropout rate (Srivastava et al., 2014)
is set to 0.5 and the batch size is 64. For optimiza-
tion, we use ADAM (Kingma and Ba, 2015) with a
learning rate of 10−3 and a weight decay of 10−5.
Besides, we use a learning rate scheduler to reduce
the learning rate by half every 20 epochs. Dur-
ing evaluation, we use beam search (Wiseman and
Rush, 2016) with a beam size of 5.

5.2 Experimental Results on GeometryQA

We evaluate our S2G model on GeometryQA to
check whether it can learn to predict the corre-
sponding operation tree for the geometry word
problems. Table 4 shows the results of our S2G
against other seq2tree SOTA models. S2G is
trained using the re-annotated equations that con-
tain formulas, while the baselines are trained using
the original equations.

First, we find that S2G has about 3.8% perfor-

2https://pytorch.org/
3https://pytorch-geometric.readthedocs.io/en/latest/
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mance gain over its baselines (with p-value< 0.01).
We attribute this to the fact that operation trees
are easier to learn and generate since they are less
lengthy and complex than binary expression trees.
Hence, there is a better chance for S2G to produce
the correct trees and arrive at the correct answers.

Second, there is a small performance gain by
adding Geometry KG. However, the improvement
is not significant (with p-value≈0.8). We guess that
is because the dataset currently has only six geomet-
ric objects, which is not complex enough to show
the effectiveness of adding knowledge graphs.

Model Accuracy(%)

KA-S2T (Wu et al., 2020) 49.61%
GTS (Xie and Sun, 2019) 51.01%
S2G 54.79%
S2G + Geometry KG 54.99%

Table 4: Answer accuracy of S2G and other SOTA
seq2tree models on GeometryQA (all evaluated with
5-fold cross validation).

6 Conclusion

In this work, we proposed a sequence-to-general
tree model (S2G) that aims to generalize previous
seq2tree architectures. Our S2G can learn to gen-
erate executable operation trees where the nodes
can be formulas with arbitrary number of argu-
ments. By explicitly generating formulas as nodes,
we make the predicted results more interpretable.
Besides, we also proposed a knowledge-guided
mechanism to guide the tree decoding using KGs
and constructed a dataset in which problems are
annotated with associated formulas. Experimental
results showed that our S2G model can achieve
better performance against strong baselines.
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A Data Preprocessing

In this section, we describe the data preprocessing
steps required for our S2G model.

A.1 Converting to prefix notation

To perform top-down tree decoding, we follow (Xie
and Sun, 2019) to convert the equations into their
prefix notation, where the operators are placed in
front of their operands, rather than in between. In
this way, the order of the equation tokens would
match the order of decoding. In our case, we also
need to consider the formulas used in the equation.
For a formula in the form ”F (arg1, arg2)”, we
turn it into ”[F, arg1, arg2]” so that it can fit into
the prefix notation. Table 5 shows an example of
this infix-to-prefix conversion for an equation with
formulas.

Problem: The outer radius and inner radius of
a circular annulus are 5m and 3m respectively.
Find the area of this circular annulus.

Equation: x = circle area(5) - circle area(3)
Prefix form: [ -, circle area, 5, circle area, 3]

Table 5: Infix-to-prefix conversion for an equation with
formulas.

A.2 Vocabulary

We follow the canonical sequence-to-sequence ar-
chitecture (Sutskever et al., 2014) to prepare for
the source vocabulary. For the target vocabulary,
however, we have to take into consideration the
way that humans solve MWPs. To solve a math
problem, we use the numbers from the problem
text (a dynamic vocabulary) and the mathematical
operators learned before (a static vocabulary) and
try to compose them into an equation. Sometimes,
we also need to use external constant numbers (a
static vocabulary) that are not in the problem text
but would appear in the equation (e.g., 1, 2, or
3.14). These three types of vocabulary make up the
vocabulary for the equations in arithmetic problems
(equation 13).

Varith = Vnumber ∪ Vop ∪ Vconst (13)

We follow (Xie and Sun, 2019) to use a copy mech-
anism (Gu et al., 2016) to copy the numbers from
the problem text. Hence, we can dynamically get
the problem numbers during decoding. Besides, we

Vocab Type Instances
Operator +, -, *, /, ˆ
Number 〈N0〉, 〈N1〉, 〈N2〉, ...
Constant 1, 2, 3.14

*Formula
circle area, square area,
rectangle perimeter, and
so on.

Table 6: Types of the vocabulary.

extend the original vocabulary by adding domain-
specific formulas into it so that the decoder can
generate formulas during decoding (equation 14).
Table 6 shows the overall vocabulary that we use
for our decoder.

Vtarget = Vnumber∪Vop∪Vconst∪Vformula (14)

B GeometryQA

Table 7 shows the 11 formulas used for annotation.

Name Formula # args

Square
square area side * side 1
square perimeter 4 * side 1

Cubic
cubic volume side*side*side 1

Circle
circle area π * radiusˆ2 1
circumference r 2 * π * radius 1
circumference d π * diameter 1

Triangle
triangle area base*height / 2 2

Rectangle
rectangle area length * width 2
rectangle perimeter 2 * (l+w) 2

Cuboid
cuboid volume l* w* height 3
cuboid surface 2*(l*w+w*h+l*h) 3

Table 7: Eleven geometry formulas used in annotating
GeometryQA.

C Related Work

In this section, we briefly introduce the progress of
MWP solvers, and then we focus on topics that are
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closer to our work, including seq2tree solvers and
knowledge graphs for problem solving.

C.1 Math Word Problem Solving
Ever since 1960s, efforts have been made to build
automatic math word problem solving systems
(Feigenbaum et al., 1963; Bobrow, 1964). Sta-
tistical solvers learn to map problem features into
corresponding equation templates or operations to
solve the problem (Kushman et al., 2014; Hosseini
et al., 2014; Mitra and Baral, 2016; Liang et al.,
2016, 2018; Roy and Roth, 2018). For example,
Kushman et al. (2014) propose to align MWPs to
their templates, while Hosseini et al. (2014) pro-
pose to find the operations by verb categorization.
Semantic parsing approaches, on the other hand,
parse the problem into intermediate representations
using semantic parsers (Shi et al., 2015; Koncel-
Kedziorski et al., 2015; Huang et al., 2017).

Recently, neural architectures have emerged as a
dominant paradigm in math word problem solving.
Wang et al. (2017) first attempt to use a seq2seq
solver that utilize encoder-decoder architectures
to encode the problem text and then decode into
equations in a way similar to machine translation.
Copy mechanism (Huang et al., 2018) or atten-
tion mechanisms (Li et al., 2019) are introduced
to improvement the performance of seq2seq mod-
els. These seq2seq models, however, suffer from
producing invalid equations, like a binary opera-
tor with three operands, because there is no gram-
matical constraint on its sequential decoding. To
solve this problem, seq2tree models are proposed
to bring into the grammatical constraints (Xie and
Sun, 2019; Liu et al., 2019). We will give a more
detailed introduction to seq2tree models in Section
C.2.

C.2 Sequence-to-Tree Models
To convert text into structured representations, sev-
eral research strands have utilized sequence-to-tree
models. Dong and Lapata (2016) first use seq2tree
on semantic parsing to translate text into structured
logical forms. Similar frameworks are also adopted
for code generation (Yin and Neubig, 2017; Ra-
binovich et al., 2017) where they translate code
snippets into executable representations or abstract
syntax trees (ASTs).

Inspired by their ideas, MWP solving also adopts
seq2tree to map the problem text into expression
trees. This introduces a constraint that the non-leaf
nodes of the tree should be operators and leaf nodes

be numbers, and thus the resulted equations are al-
ways guaranteed to be valid. Most seq2tree solvers
choose bidirectional LSTM or GRU as their text
encoder and use two separate models to predict the
left and right nodes during decoding respectively
(Xie and Sun, 2019; Zhang et al., 2020; Wu et al.,
2020; Li et al., 2020). Our model differs from the
previous that we use a single RNN-based decoder
to predict a variable number of children nodes dur-
ing decoding. In addition, our model can predict
formulas as nodes that increase the interpretability
of the model outputs, while previous solvers can
only predict basic arithmetic operators.

C.3 Knowledge Graph for Math Word
Problem Solving

To incorporate external knowledge into problem
solving, some solvers utilize graph convolutional
networks (Kipf and Welling, 2017) or graph atten-
tion networks (Veličković et al., 2018) to encode
knowledge graphs (KGs) as an additional input.
Wu et al. (2020) proposed to incorporate common-
sense knowledge from external knowledge bases.
They constructed a dynamic KG for each problem
to model the relationship between the entities in the
problem. For example, ”daisy” and ”rose” would
be linked to their category ”flower” so that the
solver can use this hyperonymy information when
counting the number of flowers. Zhang et al. (2020)
proposed to build graphs that model the quantity-
related information using dependency parsing and
POS tagging tools (Manning et al., 2014). Their
graphs provide better quantity representations to
the solver. Our model differs from previous models
that we aim to incorporate domain knowledge from
mathematical KGs rather than from commonsense
knowledge bases.
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Abstract

Understanding the multi-scale visual informa-
tion in a video is essential for Video Question
Answering (VideoQA). Therefore, we propose
a novel Multi-Scale Progressive Attention Net-
work (MSPAN) to achieve relational reasoning
between cross-scale video information. We
construct clips of different lengths to represent
different scales of the video. Then, the clip-
level features are aggregated into node features
by using max-pool, and a graph is generated
for each scale of clips. For cross-scale feature
interaction, we design a message passing strat-
egy between adjacent scale graphs, i.e., top-
down scale interaction and bottom-up scale in-
teraction. Under the question’s guidance of
progressive attention, we realize the fusion of
all-scale video features. Experimental evalua-
tions on three benchmarks: TGIF-QA, MSVD-
QA and MSRVTT-QA show our method has
achieved state-of-the-art performance.

1 Introduction

Video Question Answering (VideoQA) is a popular
vision-language task, which focuses on predicting
the correct answer to a given natural language ques-
tion based on the corresponding video. VideoQA
task entails representing video features in both spa-
tial and temporal dimensions. Compared with the
visual features of a picture in Visual Question An-
swering, it requires a more complex attention.

Therefore, (Jang et al., 2017) employed appear-
ance features and motion features as video represen-
tation, and designed a dual-LSTM network based
on spatio-temporal attention to fuse visual and text
information. Next, memory networks are widely
used to capture long-term dependencies. For exam-
ple, (Cai et al., 2020) applied feature augmented
memory to strengthen the information augmenta-
tion of video and text. Complex relational reason-
ing is important for VideoQA task. Consequently,
a conditional relationship network (Le et al., 2020)

Question: who is cleaning in a kitchen while wearing gloves ? Answer: woman

time

Video: 

two-frame clipone-frame clipthree-frame clip

Figure 1: Understanding the video and answering the
question require different levels of clips.

was designed in previous work, which can support
high-order relationships and multi-step reasoning.

Many methods complete this task from a certain
aspect, however, none of them have a fine-grained
understanding of video information. When looking
for the answer in a question-based video, the video
frames corresponding to different objects in the
question are of different lengths. As shown in Fig.
1, when asked “who is cleaning in a kitchen while
wearing gloves?”, we need to find the keywords
“cleaning”, “a kitchen” and “wearing gloves” from
different levels of clips. Previous methods searched
for the answer on the same level of clips in a video,
leading to insufficient or redundant information.

Firstly, we construct clips of different lengths
from the frame sequence, and regard the length of
a clip as its scale information. Then, multi-scale
graphs are generated separately for clips of differ-
ent scales. The nodes in the multi-scale graphs
indicate video features corresponding to different
clips. For implementing relational reasoning, the
nodes in each scale graph are first updated by using
graph convolution. Most importantly, under the
guidance of the question, progressive attention has
been utilized to enable the fusion of multi-scale
features during cross-scale graph interaction. In
detail, each graph is gradually updated in top-down
scale order, followed by updating each graph in
bottom-up scale order. Finally, node features of a
graph are fused with question embedding, and a
classifier is employed to find the answer.
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Question:
How many times 
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Video Representation

Question Representation
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Figure 2: The model architecture of Multi-Scale Progressive Attention Network for VideoQA. Major contributions
focus on the construction of multi-scale graphs and the progressive attention for cross-scale feature interaction.

2 Method

An overview of the proposed MSPAN is shown in
Fig. 2. The input is a short video and a question
sentence, while the output is the produced answer.

2.1 Video and Question Representation

Video representation N frames are uniformly
sampled to represent the video. Then we use the
pre-trained ResNet-152 (He et al., 2016) to extract
video appearance features for each frame. And,
we apply the 3D ResNet-152 (Hara et al., 2018)
pre-trained on Kinetics-700 (Carreira et al., 2019)
dataset to extract video motion features. Specifi-
cally, 16 frames around each frame are placed into
the 3D ResNet-152 to obtain the motion features
around this frame. Finally, we get a joint video rep-
resentation by concatenating appearance features
and motion features. By using a fully-connected
layer to reduce feature dimension, we obtain video
representation as V = {vi : i ≤ N, vi ∈ R2048}.

Question representation All words in ques-
tion are represented as 300-dimensional embed-
dings initialized with pre-trained GloVe vectors
(Pennington et al., 2014). And a 512-dimensional
question embedding is generated from the last hid-
den state of a three-layer BiLSTM, i.e., q ∈ R512.

2.2 Multi-Scale Graphs Generation

Each object in the video corresponds to a differ-
ent number of frames, but previous methods (Seo
et al., 2020; Lei et al., 2021) cannot treat various
levels of visual information separately. Therefore,
we construct clips of different lengths to express
the visual information in the video delicately, and

regard the length attribute as a scale.
We use max-pools of different kernel-sizes to

aggregate frame-level visual features, and kernel-
size is the scale attribute of these clips. In this way,
clip-level visual features are obtained, as follows:

P = {pooli|1 ≤ i ≤ K, kernel sizei = i} (1)

Vi = Pi(v1, v2, · · · , vN ) (2)

Where K is the range of scales, and K ≤ N . Thus,
we construct Mi = N − i+ 1 clips at scale i:

Vi = {vij : 1 ≤ j ≤Mi, v
i
j ∈ R2048} (3)

In order to reason the relationships between dif-
ferent objects in a video, we separately build a
graph for each scale. Each node in a graph rep-
resents the clip-level visual features. Only when
two nodes contain overlapping or adjacent frames,
an edge will be connected between them. Frame
interval of the j-th clip at scale i is [j, j + i − 1],
so all edges in the K graphs can be expressed as:

Ei = {(x, y)|x− i ≤ y ≤ x+ i} (4)

Finally, these multi-scale graphs constructed in this
paper can be denoted as Gi = {Vi, Ei}.

2.3 Cross-Scale Feature Interaction

Before cross-scale feature interaction, the original
node features of K graphs are copied as V o

i = Vi.
Interaction at the same scale. For all nodes

with the same scale, we apply a two-layer graph
convolutional network (GCN) (Kipf and Welling,
2017) to perform relational reasoning over the K
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graphs. The process of graph convolution is repre-
sented as:

Xl+1 = D̂−
1
2 ÂD̂−

1
2XlWl (5)

Where Â is the input adjacency matrix, Xl is the
node feature matrix of layer l, and Wl is the learn-
able weight matrix. The diagonal node degree ma-
trix D̂ is used to normalize Â. Due to the small
number of nodes in each graph, we decide to share
the weight matrix Wl when K graphs are updated.

Interaction at top-down scale. We realize
the interaction of adjacent scale graphs from small
scale to large scale. Therefore, visual information
is understood step by step from details to the whole
through the interaction of top-down scale. Guided
by the question, the nodes in graph Gi are used to
update the nodes in graph Gi+1. Visual features at
different scales show hierarchical attention to the
question, so we call it progressive attention.

If the clip corresponding to node x in graph Gi

has the same frames as the clip corresponding to
node y in graph Gi+1, there will exist a directed
edge from x to y. Therefore, we can use the edge to
fuse the cross-scale features of these same frames.

Firstly, visual features and question embedding
are fused to capture the joint features of each node
in graph Gi. Then, the process of message passing
from graph Gi to graph Gi+1 can be expressed as:

mxy = (W1v
i+1
y )⊗ ((W2v

i
x)� (W3q))

T (6)

Where ⊗ is the outer product, � is the hadamard
product. After receiving the delivery messages, the
attention weights of these messages are calculated:

wxy = softmax
x∈Ny

(mxy) (7)

Where Ny is the set of all neighbor nodes in graph
Gi through cross-scale edges. Consequently, all
the messages passed into node y are summed to
derive the update of node y, as follows:

ṽi+1
y =

∑

x∈Ny

wxy · ((W4v
i
x)� (W5q)) (8)

V u
i+1 = {ṽi+1

y : y ≤Mi+1, ṽ
i+1
y ∈ R2048} (9)

When updating all nodes in graph Gi+1, we con-
sider the new features V u

i+1 and the original features
V o
i+1. Therefore, we use the residual connection to

preserve original information of the video:

Vi+1 = W6[Vi+1;V
u
i+1] + V o

i+1 (10)

Where [; ] is the concatenation operator. Above
W1 ∼ W6 are learnable weights, and they are
shared in the update of graphs G2 ∼ GK . To sum-
marize, the update of K−1 graphs is a progressive
process from small scale to large scale, hence it is
referred to as top-down scale interaction.

Interaction at bottom-up scale. After an
overall understanding of the video, people can ac-
curately find all details related to the question at the
second time they watch the video. Therefore, we
achieve an understanding of the video from global
to local through bottom-up scale interaction. After
the previous interaction, we realize the interaction
of adjacent graphs from large scale to small scale.

Following the same method as top-down scale
interaction from Eq. 6 to Eq. 10, we apply graph
Gi to update graph Gi−1 in this interaction. But
the weights W1 ∼W6 are another group in the up-
date of graphs GK−1 ∼ G1. After this interaction,
graph G1 can grasp the all-scale video features
related to the question by progressive attention.

2.4 Multimodal Fusion and Answer Decoder
After T iterations of cross-scale feature interaction,
we read out all the nodes in graph G1. Then, a
simple attention is used to aggregate the N nodes.
And, final multi-modal representation is given as:

w̃j = softmax(W7(W8v
1
j )� (W9q)) (11)

F̃ =
N∑

j=1

w̃j · v1j (12)

F = ELU(W10F̃ �W11q + b) (13)

Where ELU is activation function, above W7 ∼
W11 are learnable weights and b is learnable bias.
We can find the answer by applying a classifier
(two fully-connected layers) on multi-modal rep-
resentation F . Multi-label classifier is applied to
open-ended tasks, and cross-entropy loss function
is used to train the model. Due to repetition count
is a regression task, we use the MSE loss function.

For the multi-choice task, each question corre-
sponds to R answer sentences. We first get the
embedding of each answer in the same way as the
question embedding. Then we use the multi-modal
fusion method in Eq. 11∼13 to fuse the answer
embedding with node features. After using two
fully-connected layers, the answer scores {si}Ri=1

have appeared. This model is trained by minimiz-
ing the hinge loss (Jang et al., 2017) of pairwise
comparisons between answer scores {si}Ri=1.
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3 Experiments

3.1 Datasets

TGIF-QA (Jang et al., 2017) is a widely used large-
scale benchmark dataset for VideoQA. And four
task types are covered in this dataset: repeating
action (Action), repetition count (Count), video
frame QA (FrameQA) and state transition (Trans.).
MSVD-QA (Xu et al., 2017) and MSRVTT-QA
(Xu et al., 2016) are open-ended tasks which are
generated from video descriptions. In both datasets,
questions can be divided into 5 types according to
question words: what, who, how, when and where.

3.2 Implementation Details

We evenly sample N = 16 frames for each video in
the three datasets. The hyperparameters we set in
experiments are as follows: T = 3, K = 8. When
training the network, Adam is used with an initial
learning rate of 10−4. For TGIF-QA dataset, the
batch size is 64. While the batch size is set to 128
for both MSVD-QA and MSRVTT-QA datasets.

3.3 Results

We compare our MSPAN with the state-of-the-art
methods: PSAC (Li et al., 2019), HME (Fan et al.,
2019), FAM (Cai et al., 2020), LGCN (Huang et al.,
2020), HGA (Jiang and Han, 2020), QueST (Jiang
et al., 2020) and HCRN (Le et al., 2020).

Table 1: Comparison on TGIF-QA dataset.

Method Action Count FrameQA Trans.
PSAC 70.4 4.27 55.7 76.9
HME 73.9 4.02 53.8 77.8
FAM 75.4 3.79 56.9 79.2

LGCN 74.3 3.95 56.3 81.1
HGA 75.4 4.09 55.1 81.0

QueST 75.9 4.19 59.7 81.0
HCRN 75.0 3.82 55.9 81.4

MSPAN 78.4 3.57 59.7 83.3

Results on TGIF-QA. As shown in Table 1,
our method outperforms the state-of-the-art meth-
ods by 2.5% and 1.9% of accuracy on Action and
Transition tasks. For the Count task, our method
also achieves the best Mean Square Error (MSE) of
3.57 among all methods. Due to QueST used multi-
dimension visual features containing more appear-
ance information, our method can only get the same
accuracy 59.7% as QueST on the FrameQA task.

Table 2: Comparison on MSVD-QA dataset.

Method What Who How When Where All
62.7% 33.9% 2.8% 0.4% 0.2% 100%

HME 22.4 50.1 73.0 70.7 42.9 33.7
QueST 24.5 52.9 79.1 72.4 50.0 36.1
HGA 23.5 50.4 83.0 72.4 46.4 34.7
FAM 23.1 51.6 82.2 71.4 51.9 34.5

MSPAN 31.0 53.8 77.0 72.4 53.6 40.3

Table 3: Comparison on MSRVTT-QA dataset.

Method What Who How When Where All
68.5% 27.7% 2.5% 1.0% 0.3% 100%

HME 26.5 43.6 82.4 76.0 28.6 33.0
QueST 27.9 45.6 83.0 75.7 31.6 34.6
HGA 29.2 45.7 83.5 75.2 34.0 35.5
FAM 26.9 43.9 82.8 70.6 31.1 33.2

MSPAN 31.9 47.2 83.2 77.5 38.4 37.8

All in all, our method makes sense of the multi-
scale information of the video, so that the effect on
tasks related to action recognition, temporal rela-
tionship and object count are very noticeable.

Results on MSVD-QA. As shown in Table 2,
our method improves the overall accuracy by 4.2%
compared to recent methods. We have achieved the
best accuracy on questions whose question words
are “What” , “Who”, “When” and “Where”. Due
to a small proportion, the accuracy on the question
word “How” is lower than other methods.

Results on MSRVTT-QA. As shown in Table
3, our method achieves the best overall accuracy
of 37.8%. What’s more, Our method could obtain
excellent accuracy on different question words.

4 Ablation Studies

To explore the potential of our network, ablation
experiments are performed on TGIF-QA dataset.
Default hyperparameters are: T = 3 and K = 8.
We study the effectiveness of our network in the
next two aspects, as shown in Table 4 and Fig. 4.

4.1 Different Structures

Considering the interaction of cross-scale graphs,
three structures are designed, as shown in Fig. 3.
For the dense scale in Fig. 3 (a), we apply graphs
G1 ∼ GK to update each graph Gi. The other two
structures have been introduced in Sec 2.3, and we
will not use a graph to update itself for the three
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(a) Dense Scale (b) Top-down Scale (c) Bottom-up Scale

Figure 3: Three methods of cross-scale feature interac-
tion, where the dense connection is not adopted.

structures. The readout of top-down scale interac-
tion is graph GK , and the readout of bottom-up
scale interaction is G1. However, the readout of
dense scale interaction is all K graphs. Our net-
work is a combination of top-down scale interaction
and bottom-up scale interaction, but we will use
these two structures separately for comparison.

4.2 Network structure

When choosing the pooling function to aggregate
these frames in a clip, we find that max-pool is
more effective than avg-pool. In reverse gradient
propagation of max-pool, only the maximum of
features in the previous layer receive the gradient.
So, max-pool facilitates the fusion of appearance
features and motion features in the previous layer.

Our experiments show that GCN is beneficial to
the stable training of models. If there is no GCN,
the gradient will gradually disappear as the number
of interactions between the graphs increases. The
role of GCN is to re-recover the features of these
nodes which have lost their visual features.

As shown in Table 4, the performances of the
three structures in Fig. 3 are poorer than that of our
entire network. Due to dense connections between
all scale graphs, the dense scale interaction will
add much unnecessary computation, and make it
difficult to accurately find the visual information re-
lated to the question. Although both the top-down
scale interaction and the bottom-up scale interac-
tion can achieve good performance. However, the
combination of these two structures will obtain a
more detailed understanding of the video.

4.3 Hyperparameters T and K

As the number of iterations T increases, the model
will achieve better performance. But when T =
4, the effect of the model decreases, as shown in
Table 4. Because too many modules will produce
noise for answer generation. The improvement

Table 4: Ablation experiments of four types: (1)Replac-
ing max-pool with avg-pool. (2)Without GCN. (3)Dif-
ferent structures in Fig. 3. (4)Different iterations T .

Parameters Action Count FrameQA Trans.
Avg-pool 78.0 3.56 59.5 83.3
w/o GCN 77.5 3.64 59.1 82.7

Dense scale 77.2 3.74 59.2 82.0
Top-down scale 78.1 3.62 59.6 82.8
Bottom-up scale 78.1 3.60 59.3 82.6

T = 0 75.2 3.86 56.7 79.9
T = 1 77.1 3.69 58.6 82.5
T = 2 77.7 3.61 59.7 82.9
T = 4 77.6 3.63 59.4 82.5

Full MSPAN 78.4 3.57 59.7 83.3

Figure 4: Ablation experiments for different scales K.

of models with the increase of K is very obvious,
and best performance is obtained when K = 8, as
shown in Fig. 4. However, the larger K also means
that many multi-scale graphs, which will lead to
network instability.

5 Conclusion

We introduce a multi-scale learning method to
achieve a fine-grained understanding of the video.
Compared with existing spatio-temporal attention,
we use progressive attention to realize cross-scale
feature interaction. The top-down and bottom-up
structures we have designed are conducive to learn-
ing all-scale visual information of the video. For
longer videos, we plan to use dilated max-pools
with different strides to reduce the size of graphs.
In general, we consider the VideoQA task from the
perspective of multi-scale information interaction,
and the proposed network is instructive.
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Abstract

Most state-of-the-art open-domain question
answering systems use a neural retrieval model
to encode passages into continuous vectors
and extract them from a knowledge source.
However, such retrieval models often require
large memory to run because of the massive
size of their passage index. In this paper, we
introduce Binary Passage Retriever (BPR), a
memory-efficient neural retrieval model that
integrates a learning-to-hash technique into
the state-of-the-art Dense Passage Retriever
(DPR) (Karpukhin et al., 2020) to represent
the passage index using compact binary codes
rather than continuous vectors. BPR is trained
with a multi-task objective over two tasks: ef-
ficient candidate generation based on binary
codes and accurate reranking based on con-
tinuous vectors. Compared with DPR, BPR
substantially reduces the memory cost from
65GB to 2GB without a loss of accuracy on
two standard open-domain question answering
benchmarks: Natural Questions and TriviaQA.
Our code and trained models are available
at https://github.com/studio-ousia/

bpr.

1 Introduction

Open-domain question answering (QA) is the task
of answering arbitrary factoid questions based on a
knowledge source (e.g., Wikipedia). Recent state-
of-the-art QA models are typically based on a two-
stage retriever–reader approach (Chen et al., 2017)
using a retriever that obtains a small number of
relevant passages from a large knowledge source
and a reader that processes these passages to pro-
duce an answer. Most recent successful retrievers
encode questions and passages into a common con-
tinuous embedding space using two independent
encoders (Lee et al., 2019; Karpukhin et al., 2020;
Guu et al., 2020). Relevant passages are retrieved
using a nearest neighbor search on the index con-

BERTqBERTp

questiontitle + passage

Hash layerHash layer

Task 2: RerankingTask 1: Candidate generation

Continuous vector Continuous vector

Binary code Binary code

Hamming distance Inner product

Figure 1: Architecture of BPR, a BERT-based model
generating compact binary codes for questions and pas-
sages. The passages are retrieved in two stages: (1)
efficient candidate generation based on the Hamming
distance using the binary code of the question and (2)
accurate reranking based on the inner product using the
continuous embedding of the question.

taining the passage embeddings with a question
embedding as a query.

These retrievers often outperform classical meth-
ods (e.g., BM25), but they incur a large memory
cost due to the massive size of their passage index,
which must be stored entirely in memory at runtime.
For example, the index of a common knowledge
source (e.g., Wikipedia) requires dozens of giga-
bytes.1 A reduction in the index size is critical
for real-world QA that requires large knowledge
sources such as scientific databases (e.g., PubMed)
and web-scale corpora (e.g., Common Crawl).

In this paper, we introduce Binary Passage Re-
triever (BPR), which learns to hash continuous
vectors into compact binary codes using a multi-
task objective that simultaneously trains the en-
coders and hash functions in an end-to-end man-
ner (see Figure 1). In particular, BPR integrates
our learning-to-hash technique into the state-of-
the-art Dense Passage Retriever (DPR) (Karpukhin
et al., 2020) to drastically reduce the size of the

1The passage index of the off-the-shelf DPR model
(Karpukhin et al., 2020) requires 65GB for indexing the 21M
English Wikipedia passages, which have 13GB storage size.
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passage index by storing it as binary codes. BPR
computes binary codes by applying the sign func-
tion to continuous vectors. As the sign function
is not compatible with back-propagation, we ap-
proximate it using the scaled tanh function during
training. To improve search-time efficiency while
maintaining accuracy, BPR is trained to obtain both
binary codes and continuous embeddings for ques-
tions with multi-task learning over two tasks: (1)
candidate generation based on the Hamming dis-
tance using the binary code of the question and
(2) reranking based on the inner product using the
continuous embedding of the question. The former
task aims to detect a small number of candidate
passages efficiently from the entire passages and
the latter aims to rerank the candidate passages
accurately.

We conduct experiments using the Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019) and Triv-
iaQA (TQA) (Joshi et al., 2017) datasets. Com-
pared with DPR, our BPR achieves similar QA
accuracy and competitive retrieval performance
with a substantially reduced memory cost from
65GB to 2GB. Furthermore, using an improved
reader, we achieve results that are competitive with
those of the current state of the art in open-domain
QA. Our code and trained models are available at
https://github.com/studio-ousia/bpr.

2 Related Work

Retrieval for Open-domain QA Many recent
open-domain QA models depend on the retriever to
select relevant passages from a knowledge source.
Early works involved the adoption of sparse rep-
resentations (Chen et al., 2017) for the retriever,
whereas recent works (Lee et al., 2019; Guu et al.,
2020; Karpukhin et al., 2020) have often adopted
dense representations based on neural networks.
Our work is an extension of DPR (Karpukhin et al.,
2020), which has been used in recent state-of-the-
art QA models (Lewis et al., 2020; Izacard and
Grave, 2020). Concurrent with our work, Izac-
ard et al. (2020) attempted to reduce the memory
cost of DPR using post-hoc product quantization
with dimension reduction and filtering of passages.
However, they observed a significant degradation
in the QA accuracy compared with their full model.
We adopt the learning-to-hash method with our
multi-task objective and substantially compress the
index without losing accuracy.

Learning to Hash The objective of hashing is to
reduce the memory and search-time cost of the near-
est neighbor search by representing data points us-
ing compact binary codes. Learning to hash (Wang
et al., 2016, 2018) is a method for learning hash
functions in a data-dependent manner. Recently,
many deep-learning-to-hash methods have been
proposed (Lai et al., 2015; Zhu et al., 2016; Li
et al., 2016; Cao et al., 2017, 2018) to jointly learn
feature representations and hash functions in an
end-to-end manner. We follow Cao et al. (2017) to
implement our hash functions. Similar to our work,
Xu and Li (2020) used the learning-to-hash method
to reduce the computational cost of the answer sen-
tence selection task, the objective of which is to
select an answer sentence from a limited number
of candidates (up to 500 in their experiments). Our
work is different from the aforementioned work
because we focus on efficient and scalable pas-
sage retrieval from a large knowledge source (21M
Wikipedia passages in our experiments) using an ef-
fective multi-task approach. In addition to hashing-
based methods, improving approximate neighbor
search has been actively studied (Jégou et al., 2011;
Malkov and Yashunin, 2020; Guo et al., 2020). We
use Jégou et al. (2011) and Malkov and Yashunin
(2020) as baselines in our experiments.

3 Model

Given a question and large-scale passage collection
such as Wikipedia, a retriever finds relevant pas-
sages that are subsequently processed by a reader.
Our retriever is built on DPR (Karpukhin et al.,
2020), which is a retriever based on BERT (Devlin
et al., 2019). In this section, we first introduce DPR
and then explain our model.

3.1 Dense Passage Retriever (DPR)
DPR uses two independent BERT encoders to en-
code question q and passage p into d-dimensional
continuous embeddings:

eq = BERTq(q), ep = BERTp(p), (1)

where eq ∈ Rd and ep ∈ Rd. We use the uncased
version of BERT-base; therefore, d = 768. The out-
put representation of the [CLS] token is obtained
from the encoder. To create passage p, the passage
title and text are concatenated ([CLS] title [SEP]
passage [SEP]). The relevance score of passage
p, given question q, is computed using the inner
product of the corresponding vectors, 〈eq, ep〉.
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Training Let D = {〈qi, p+i , p−i,1, · · · , p−i,n〉}mi=1

be m training instances consisting of a question
qi, a passage that answers the question (positive
passage), p+i , and n passages that are irrelevant for
the question (negative passages), p−i,j . The model is
trained by minimizing the negative log-likelihood
of the positive passage:

Ldpr = − log
exp(〈e

q
i
, e

p+
i
〉)

exp(〈e
q
i
, e

p+
i
〉)+∑n

j=1 exp(〈eq
i
, e

p−
i,j
〉) . (2)

Inference DPR creates a passage index by apply-
ing the passage encoder to each passage in the
knowledge source. At runtime, it retrieves the
top-k passages employing maximum inner product
search with the question embedding as a query.

3.2 Model Architecture

Figure 1 shows the architecture of BPR. BPR builds
a passage index by computing a binary code for
each passage in the knowledge source. To compute
the binary codes for questions and passages, we
add a hash layer on top of the question and pas-
sage encoders of DPR. Given embedding e ∈ Rd

computed by an encoder, the hash layer computes
its binary code, h ∈ {−1, 1}d, as

h = sign(e), (3)

where sign(·) is the sign function such that for
i = 1, ..., d, sign(hi) = 1 if hi > 0; otherwise,
sign(hi) = −1. However, the sign function is
incompatible with back-propagation because its
gradient is zero for all non-zero inputs and is ill-
defined at zero. Inspired by Cao et al. (2017), we
address this by approximating the sign function
using the scaled tanh function during the training:

h̃ = tanh(βe), (4)

where β is a scaling parameter. When β increases,
the function gradually becomes non-smooth, and
as β → ∞, it converges to the sign function.
At each training step, we increase β by setting
β =

√
γ · step+ 1, where step is the number of

finished training steps. We set γ = 0.1 and explain
the effects of changing it in Appendix B.

3.3 Two-stage Approach

To reduce the computational cost without losing
accuracy, BPR splits the task into candidate genera-
tion and reranking stages. At the candidate genera-
tion stage, we efficiently obtain the top-l candidate

passages using the Hamming distance between the
binary code of question hq and that of each pas-
sage, hp. We then rerank the l candidate passages
using the inner product between the continuous
embedding of question eq and hp and select the
top-k passages from the reranked candidates. We
perform candidate generation using binary code
hq for search-time efficiency, and reranking using
expressive continuous embedding eq for accuracy.
We set l = 1000 and describe the effects of using
different l values in Appendix C.

3.4 Training
To compute effective representations for both the
candidate generation and reranking stages, we com-
bine the loss functions of the two tasks:

L = Lcand + Lrerank. (5)

Task #1 for Candidate Generation The objec-
tive of this task is to improve candidate generation
using the ranking loss with the approximated hash
code of question h̃q and that of passage h̃p:

Lcand =
∑n

j=1max(0,−(〈h̃qi
, h̃p+i

〉+ 〈h̃qi
, h̃p−i,j

〉) + α). (6)

We setα = 2 and investigate the effects of selecting
different α values and using the cross-entropy loss
instead of the ranking loss in Appendix D. Note that
the retrieval performance based on the Hamming
distance can be optimized using this loss function
because the Hamming distance and inner product
can be used interchangeably for binary codes.2

Task #2 for Reranking We improve the rerank-
ing stage using the following loss function:

Lrerank = − log
exp(〈e

q
i
, h̃

p+
i
〉)

exp(〈e
q
i
, h̃

p+
i
〉)+∑n

j=1 exp(〈eq
i
, h̃

p−
i,j
〉) . (7)

This function is equivalent to Ldpr, with the excep-
tion that h̃p is used instead of ep.

3.5 Algorithms for Candidate Generation
To perform candidate generation, we test two stan-
dard algorithms: (1) linear scan based on efficient
Hamming distance computation,3 and (2) hash ta-
ble lookup implemented by building a hash table
that maps each binary code to the corresponding
passages and querying it multiple times by increas-
ing the Hamming radius until we obtain l passages.

2Given two binary codes, hi and hj , there exists a relation-
ship between their Hamming distance, distH(·, ·), and inner
product, 〈·, ·〉: distH(hi,hj) =

1
2
(const− 〈hi,hj〉).

3The Hamming distance can be computed more efficiently
than the inner product using the POPCNT CPU instruction.
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Model Top 1 Top 20 Top 100 QA Acc. (EM) Index
size

Query
timeNQ TQA NQ TQA NQ TQA NQ TQA

DPR 46.0 53.5 78.4 79.4 85.4 85.0 41.5 56.8 64.6GB 456.9ms
DPR + HNSW 45.7 53.2 78.8 78.8 85.2 84.2 41.2 56.6 151.0GB 1.8ms

DPR + Simple LSH 21.5 28.4 63.9 65.2 77.2 76.9 35.8 48.1 2.0GB 28.8ms
DPR + PQ 32.5 42.8 72.2 73.2 81.2 80.4 38.4 52.0 2.0GB 44.0ms

BPR (linear scan; l = 1000) 41.1 49.7 77.9 77.9 85.7 84.5 41.6 56.8 2.0GB 85.3ms
BPR (hash table lookup; l = 1000) " " " " " " " " 2.2GB 38.1ms

Table 1: Top k recall and exact match (EM) QA accuracy on test sets with the index size and query time of BPR
and baselines. All models use the same reader based on BERT-base to evaluate the QA accuracy.

Model Top 1 Top 20 Top 100 Query
timeNQ TQA NQ TQA NQ TQA

BPR (l = 1000) 41.1 49.7 77.9 77.9 85.7 84.5 38.1ms
BPR w/o reranking 38.0 46.1 76.5 75.9 84.9 83.4 37.9ms
BPR w/o candidate generation 41.1 49.7 77.9 77.9 85.7 84.5 457.8ms

Table 2: Results of our ablation study. Hash table lookup is used to implement candidate generation.

4 Experiments

Datasets We conduct experiments using the NQ
and TQA datasets and English Wikipedia as the
knowledge source. We use the following pre-
processed data available on the DPR website:4

Wikipedia corpus containing 21M passages and the
training/validation datasets for the retriever contain-
ing multiple positive, random negative, and hard
negative passages for each question.

Baselines We compare our BPR with DPR with
linear scan and DPR with Hierarchical Naviga-
ble Small World (HSNW) graphs (Malkov and
Yashunin, 2020) – which builds a multi-layer struc-
ture consisting of a hierarchical set of proximity
graphs, following Karpukhin et al. (2020) – for
our primary baselines. We also apply two popular
post-hoc quantization algorithms to the DPR pas-
sage index: simple locality sensitive hashing (LSH)
(Neyshabur and Srebro, 2015) and product quan-
tization (PQ) (Jégou et al., 2011). We configure
these algorithms such that their passage representa-
tions have the same size as that of BPR: the number
of bits per passage of the LSH is set as 768, and
the number of centroids and the code size of the
PQ are configured as 96 and 8 bits, respectively.

Experimental settings Our experimental setup
follows Karpukhin et al. (2020). We evaluate our
model based on its top-k recall (the percentage of
positive passages in the top-k passages), retrieval

4https://github.com/facebookresearch/
DPR

efficiency (the index size and query time), and exact
match (EM) QA accuracy measured by combining
our model with a reader. We use the same BERT-
based reader as that used by DPR. Our model is
trained using the same method as DPR. We conduct
experiments on servers with two Intel Xeon E5-
2698 v4 CPUs and eight Nvidia V100 GPUs. The
passage index are built using Faiss (Johnson et al.,
2019). Further details are provided in Appendix A.

4.1 Results

Main results Table 1 presents the top-k recall
(for k ∈ {1, 20, 100}), EM QA accuracy, index
size, and query time achieved by BPR and base-
lines on the NQ and TQA test sets. BPR achieves
similar or even better performance than DPR in
both retrieval with k ≥ 20 and EM accuracy with
a substantially reduced index size from 65GB to
2GB. We observe that BPR performs worse than
DPR for k = 1, but usually the recall in small k is
less important because the reader usually produces
an answer based on k ≥ 20 passages. BPR signifi-
cantly outperforms all quantization baselines. The
query time of BPR is substantially shorter than that
of DPR. Hash table lookup is faster than linear scan
but requires slightly more storage. DPR+HNSW
is faster than BPR; however, it requires 151GB of
storage.

Ablations Table 2 shows the results of our ab-
lation study. Disabling the reranking clearly de-
grades performance, demonstrating the effective-
ness of our two-stage approach. Disabling the can-
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Model Pretrained model #params NQ TQA

RAG (Lewis et al., 2020) BART-large 406M 44.5 56.1
FiD (base) (Izacard and Grave, 2020) T5-base 220M 48.2 65.0
FiD (large) (Izacard and Grave, 2020) T5-large 770M 51.4 67.6

BPR (l = 1000) BERT-base 110M 41.6 56.8
BPR (l = 1000) ELECTRA-large 335M 49.0 65.6

Table 3: Exact match QA accuracy of BPR and state of the art models. BPR achieves performance close to FiD
(large) with almost half of the parameters.

didate generation (treating all passages as candi-
dates) results in the same performance as using only
top-1000 candidates, but significantly increases the
query time due to the expensive inner product com-
putation over all passage embeddings.

Comparison with State of the Art Table 3
presents the EM QA accuracy of BPR combined
with state-of-the-art reader models. Here, we also
report the results of our model using an improved
reader based on ELECTRA-large (Clark et al.,
2020) instead of BERT-base. Our improved model
outperforms all models except the large model
of Fusion-in-Decoder (FiD), which contains more
than twice as many parameters as our model.

5 Conclusion

We introduce BPR, which is an extension of DPR,
based on a learning-to-hash technique and a novel
two-stage approach. It reduces the computational
cost of open-domain QA without a loss in accuracy.
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Appendix for “Efficient Passage Retrieval
with Hashing for Open-domain Question
Answering”

A Details of Experimental Setup

A.1 Knowledge Source

As the knowledge source, we use the prepro-
cessed Wikipedia corpus consisting of 21,015,324
Wikipedia passages available on the website of
Karpukhin et al. (2020). The corpus is based
on the December 20, 2018 version of the En-
glish Wikipedia and created by filtering out semi-
structured data (i.e., tables, infoboxes, lists, and
disambiguation pages) and splitting the remain-
ing Wikipedia articles into multiple, disjointed text
blocks of 100 words each.

A.2 Question Answering Datasets

We conduct experiments using the NQ and TQA
datasets with the training, development, and test
sets as in Lee et al. (2019); Karpukhin et al. (2020).
A brief description of these datasets is provided as
follows:
• NQ is a QA dataset for which questions are ob-

tained from Google queries and answers com-
prise the spans of English Wikipedia articles.

• TQA consists of trivia questions and their an-
swers retrieved from the Web.
We use the preprocessed datasets available on

the website of Karpukhin et al. (2020).5 The num-
bers of questions contained in these datasets are
listed in Table 4. For each question, the dataset
contains three types of passages: (1) positive pas-
sages selected based on gold-standard human anno-
tations or distant supervision, (2) random negative
passages selected randomly from all the passages,
and (3) hard negative passages selected based on
the BM25 scores between the question and all the
passages.

A.3 Details of BPR

Our training configuration follows that of
Karpukhin et al. (2020). In particular, for each
question, we use one positive and one hard negative
passage and create a mini-batch comprising 128
questions. We use the method of inbatch-negatives,
wherein each positive passage in a mini-batch is
treated as the negative passage of each question

5https://github.com/facebookresearch/
DPR

Dataset Train Validation Test

NQ 58,880 8,757 3,610
TQA 60,413 8,837 11,313

Table 4: Number of questions in the preprocessed
dataset used in our experiments.

Name Value

Batch size 128
Maximum question length 256
Maximum passage length 256
Maximum training epochs 40
Peak learning rate 2e-5
Learning rate decay linear
Warmup ratio 0.06
Dropout 0.1
Weight decay 0.0
Adam β1 0.9
Adam β2 0.999
Adam ε 1e-6

Table 5: Hyperparameters used to train BPR.

in the mini-batch if it does not correspond to the
question. Our model contains 220 million parame-
ters, and is trained for up to 40 epochs using Adam.
Regarding the hyperparameter search, we select
the learning rate from the search range {1e-5, 2e-
5, 3e-5, 5e-5} based on the top-100 recall on the
validation set of the NQ dataset. Therefore, the
number of hyperparameter search trials is 4. The
detailed hyperparameters are listed in Table 5.

A.4 Details of Reader

For each passage in the top-k passages retrieved by
the retriever, the reader assigns a relevance score
to the passage and selects the best answer span in
the passage. The final answer is the selected span
from the passage with the highest relevance score.

Let Pi ∈ Rq×d (1 ≤ i ≤ k) be a BERT output
representation for the i-th passage, where q is the
maximum token length of the passage, and d is
the dimension size of the output representation.
The probabilities of a passage being selected and a
token being the start or end positions of an answer
is computed as

Pscore(i) = softmax
(
P̂>wscore

)
i
, (8)

Pstart,i(s) = softmax
(
Piwstart

)
s
, (9)

Pend,i(t) = softmax
(
Piwend

)
t
, (10)

where P̂ = [P
[CLS]
1 , . . . ,P

[CLS]
k ] ∈ Rd×k,

wscore ∈ Rd, wstart ∈ Rd, and wend ∈ Rd.
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Name BERT-base ELECTRA-large

Batch size 32 32
Maximum token length 350 350
Maximum training epochs 20 20
Negative passage size 23 17
Peak learning rate 2e-5 1e-5
Learning rate decay linear linear
Warmup ratio 0.06 0.06
Dropout 0.1 0.1
Weight decay 0.0 0.0
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Adam ε 1e-6 1e-6

Table 6: Hyperparameters used to train the reader based
on BERT-base and that based on ELECTRA-large.

Configuration Top 1 Top 20 Top 100

γ = 0.025 39.4 76.7 83.8
γ = 0.05 39.5 76.5 84.0
γ = 0.1 39.8 76.7 84.1
γ = 0.2 39.6 76.3 83.9

Table 7: Top-1, top-20, and top-100 recall of our model
with γ ∈ {0.025, 0.05, 0.1, 0.2} on the validation set of
the NQ dataset.

The passage selection score of the i-th passage
is given as Pscore(i), and the score of the s-th
to t-th tokens from the i-th passage is given as
Pstart,i(s)× Pend,i(t).

During the training, we sample one positive and
multiple negative passages from the passages re-
turned by the retriever. The model is trained to
maximize the log-likelihood of the correct answer
span in the positive passage, combined with the log-
likelihood of the positive passage being selected.
We use the BERT-base or ELECTRA-large as our
pretrained model. Regarding the hyperparameter
search, we select the learning rate from {1e-5, 2e-5,
3e-5, 5e-5} based on its EM accuracy on the valida-
tion set of the NQ dataset. Therefore, the number
of hyperparameter search trials is 4. Detailed hy-
perparameters are listed in Table 6.

B Effects of Scaling Parameter

To investigate how the scaling parameter, γ, af-
fects the performance, we test the performance
of our model using various γ values, where γ ∈
{0.025, 0.05, 0.1, 0.2}. The retrieval performance
on the validation set of the NQ dataset is shown in
Table 7. Overall, the scaling parameter has a minor
impact on the performance. We select γ = 0.1
because of its enhanced performance.

#candidates Top 1 Top 20 Top 100
NQ TQA NQ TQA NQ TQA

l = 200 41.1 49.7 77.9 77.9 85.4 84.0
l = 500 41.1 49.7 77.9 77.9 85.6 84.4
l = 1000 41.1 49.7 77.9 77.9 85.7 84.5
l = 2000 41.1 49.7 77.9 77.9 85.7 84.5

Table 8: Top-1, top-20, and top-100 recall of our model
with l ∈ {200, 500, 1000} on test sets.

Configuration Top 1 Top 20 Top 100

Cross entropy loss 28.6 67.8 79.8

Ranking loss α = 0.0 39.8 76.4 84.0
Ranking loss α = 1.0 40.0 76.5 84.0
Ranking loss α = 2.0 39.8 76.7 84.1
Ranking loss α = 4.0 40.3 76.7 84.0

Table 9: Top-1, top-20, and top-100 recall of our model
with the various settings of the loss function Lcand eval-
uated on the validation set of the NQ dataset.

C Effects of Number of Candidate
Passages

We report the performance of our model with the
varied number of candidate passages l in Table 8.
Overall, BPR achieves similar performance in all
settings. Increasing the number of candidate pas-
sages slightly improves the top-100 performance
until it reaches l = 1000.

D Effects of Loss of Task #1 with Various
Settings

We investigate the effects of using various settings
of the loss function Lcand in Eq.(6). Instead of us-
ing the ranking loss, we test the performance with
the cross-entropy loss, similar to Eq.(2), and h̃q

and h̃p are used instead of eq and ep, respectively.
Furthermore, we also test how the parameter α af-
fects the performance. As shown in Table 9, the
cross-entropy loss clearly performs worse than the
ranking loss. Furthermore, a change in the parame-
ter α has a minor impact on the performance. Here,
we select the ranking loss with α = 2.0 because
of its enhanced performance on the top-20 and top-
100 performance.
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Abstract

Few-shot relation extraction (FSRE) is of
great importance in long-tail distribution
problem, especially in special domain with
low-resource data. Most existing FSRE
algorithms fail to accurately classify the
relations merely based on the information of
the sentences together with the recognized
entity pairs, due to limited samples and lack
of knowledge. To address this problem, in this
paper, we proposed a novel entity CONCEPT-
enhanced FEw-shot Relation Extraction
scheme (ConceptFERE), which introduces the
inherent concepts of entities to provide clues
for relation prediction and boost the relations
classification performance. Firstly, a concept-
sentence attention module is developed to
select the most appropriate concept from
multiple concepts of each entity by calculating
the semantic similarity between sentences and
concepts. Secondly, a self-attention based
fusion module is presented to bridge the gap of
concept embedding and sentence embedding
from different semantic spaces. Extensive
experiments on the FSRE benchmark dataset
FewRel have demonstrated the effective-
ness and the superiority of the proposed
ConceptFERE scheme as compared to the
state-of-the-art baselines. Code is available at
https://github.com/LittleGuoKe/ConceptFERE.

1 Introduction

Relation extraction (RE) is a fundamental task
for knowledge graph construction and inference,
which however often encounters challenges of long-
tail distribution and low-resource data, especially
in practical applications including medical or pub-
lic security fields. In this case, it is difficult for

∗Corresponding Author

existing RE models to learn effective classifiers
(Zhang et al., 2019; Han et al., 2020). Therefore,
FSRE has become a hot topic in both academia and
industry. Existing FSRE methods can be roughly
divided into two categories according to the type
of adopted training data. The models of the first
category only uses the plain text data, without any
external information. The representative Siamese
(Koch et al., 2015) and Prototypical (Snell et al.,
2017) network in metric learning are used in the
FSRE task to learn representation and metric func-
tion. BERT-PAIR (Gao et al., 2019b) pairs up all
supporting instances with each query instance, and
predicts whether the pairs are of the same category,
which can be regarded as a variant of the Prototyp-
ical network. Gao (Gao et al., 2019a) and Ye (Ye
and Ling, 2019) add the attention mechanism to
enhance the prototype network. In order to allevi-
ate the problem of insufficient training data, MICK
(Geng et al., 2020) learns general language rules
and grammatical knowledge from cross-domain
datasets. Wang (Wang et al., 2020) proposes the
CTEG model to solve the relation confusion prob-
lem of FSRE. Cong (Cong et al., 2020) proposes an
inductive clustering based framework, DaFeC, to
solve the problem of domain adaptation in FSRE.

Since the information of the plain text is lim-
ited in FSRE scenarios, the performance gain is
marginal. Thus, the algorithms in the second cate-
gory introduce external information, to compensate
the limited information in FSRE, so as to enhance
the performance. In order to improve the model’s
generalization ability for new relations, Qu (Qu
et al., 2020) studies the relationship between dif-
ferent relations by establishing a global relation
graph. The relations in the global relation graph
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Relation founder
Sentence Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975
Head entity concept company, vendor, client
Tail entity concept person, billionaire, entrepreneur

Table 1: The bold words in the sentence correspond to the head entity and the tail entity.

come from Wikidata.1 TD-Proto (Yang et al., 2020)
introduces text descriptions of entities and relations
from Wikidata to enhance the prototype network
and provide clues for relation prediction.

Although the introduction of knowledge of text
description can provide external information for
FSRE and achieve state-of-the-art performance,
TD-proto only introduces one text description in
Wikidata for each entity. However, this might suf-
fer from the mismatching between entity and text
description and leads to the degraded performance.
Besides, since the text description for each entity is
often relatively long, it is not a easy job to extract
the most useful information within the long text
description.

In contrast to the long text descriptions, the con-
cept is an intuitive and concise description of an
entity and can be readily obtained from concept
databases, like YAGO3, ConceptNet and Concept
Graph, etc. Besides, the concept is more abstract
than the specific text description for each entity,
which is an idea compensation to the limited infor-
mation in FSRE scenarios.

As shown in Table 1, intuitively knowing that
the concept of head entity is a company and the
concept of tail entity is an entrepreneur, the rela-
tion corresponding to the entity pair in the sentence
can be limited to a range: ceo, founder, inaugura-
tion. On the other hand, some relations should be
wiped out, e.g., educated at, presynaptic connec-
tion, statement describes. The semantic informa-
tion of concept can assist determining the relation:
founder predicted by the model.

To address the above challenges, we propose a
novel entity CONCEPT-enhanced FEw-shot Re-
lation Extraction scheme (ConceptFERE), which
introduces the entity concept to provide effective
clues for relation prediction. Firstly, as shown in
Table 1, one entity might have more than one con-
cept from different aspects or hierarchical levels
and only one of the concepts might be valuable
for final relation classification. Therefore, we de-
sign a concept-sentence attention module to choose

1https://www.wikidata.org/

the most suitable concept for each entity by com-
paring the semantic similarity of the sentence and
each concept. Secondly, since the sentence em-
bedding and pre-trained concept embedding are
not learned in the same semantic space, we adopt
the self-attention mechanism (Devlin et al., 2018)
for word-level semantic fusion of the sentence and
the selected concept for final relation classification.
Experimental results on benchmark dataset show
that our method achieves state-of-the-art FSRE per-
formance.

2 Model

2.1 System Overview

Figure 1 shows the structure of our proposed Con-
ceptFERE. The sentence representation module
uses BERT to obtain the sentence embedding, the
concept representation adopts the pre-trained con-
cept embedding (Shalaby et al., 2019), which uses
the skip-gram model to learn the representation of
the concept on the Wikipedia text and the Concept
Graph. Relation classifier can be implemented by
the fully connected layer. The remaining modules
of the model will be described in detail below.

2.2 Concept-Sentence Attention Module

Intuitively, one needs to pay more attention to the
concept of high semantic correlation with the sen-
tence, which can provide more effective clues for
RE. Firstly, since the pre-trained concept embed-
ding (vc) and sentence embedding (vs) are not
learned in the same semantic space, we can not
compare the semantic similarity directly. So the
semantic transformation is performed by multiply-
ing the vc and vs by the projection matrix P to
get their representations vcP and vsP in the same
semantic space, where P can be learned by fully
connected networks. Secondly, by calculating the
semantic similarity between sentence and each con-
cept of entity, the similarity value is obtained the
dot product of the concept embedding vc and the
sentence embedding vs as similarity simcs. Finally,
in order to select a suitable concept from the cal-
culated similarity value, we design the 01-GATE.
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Figure 1: Structure diagram of ConceptFERE model.

The similarity value is normalized by the Softmax
function. If simcs is less than the set threshold α,
01-GATE assigns 0 to the attention score of the
corresponding concept, and this concept will be
excluded in subsequent relation classification. We
choose the suitable concept with the attention score
of 1, which is used as a effective clue to participate
in relation prediction.

2.3 Self-Attention based Fusion Module

Since concept embedding and the embedding of
words in sentences are not learned in the same se-
mantic space, we design a self-attention (Devlin
et al., 2018) based fusion module to perform word-
level semantic fusion of the concept and each word
in the sentence. First, the embedding of all words
in the sentence and the selected concept embedding
are concatenated, and then fed to the self-attention
module. As shown in Figure 2, the self-attention
module calculates the similarity value between the
concept and each word in the sentence. It mul-
tiplies the concept embedding and the similarity
value, and then combine with its corresponding
word embedding as follow:

fusionvi =

N∑

j=1

sim (qi, kj) vj (1)

where fusionvi represents the embedding of vi
after vi performs the word-level semantic fusion.
The qi, kj , and vj are derived from self-attention,
they represent the concept embedding or the word
embedding.

3 Experiment

3.1 Dataset, Evaluation and Comparable
Models

Dataset: In order to verify our proposed method,
we use the most commonly used FSRE dataset
FewRel (Han et al., 2018), which contains 100
relations and 70,000 instances extracted from

Figure 2: The word-level semantic fusion.

Wikipedia, with 20 relations in the unpublished
test set. So we follow previous work (Yang et al.,
2020) to re-split the published 80 relations into
50, 14 and 16 for training, validation and testing,
respectively.

Evaluation: N-way-K-shot (N-w-K-s) is com-
monly used to simulate the distribution of FewRel
in different situations, where N and K denote the
number of classes and samples from each class, re-
spectively. In N-w-K-s scenario, accuracy is used
as the performance metric.

Comparable Models: We choose excellent
baseline models, GNN (Garcia and Bruna, 2017),
SNAIL (Mishra et al., 2017), Proto (Snell et al.,
2017), HATT-Proto (Gao et al., 2019a), MLMAN
(Ye and Ling, 2019) and TD-proto (Yang et al.,
2020) for comparison, and their experimental re-
sults are derived from (Yang et al., 2020).

3.2 Model Training Details

The BERT parameters are initialized by bert-base-
uncased, and the hidden size is 768. The threshold
α is 0.7. Hyperparameters such as learning rate fol-
low the settings in (Gao et al., 2019b). The entity
concept is obtained from Concept Graph2. Concept
Graph is a large-scale common sense conceptual
knowledge graph developed by Microsoft, which
contains concept of entities stored in triplets (Entity,

2https://concept.research.microsoft.com/Home/Download
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Model Encoder 5-w-1-s 5-w-5-s 10-w-1-s 10-w-5-s
GNN (Garcia and Bruna, 2017) CNN 67.30 78.84 54.10 62.89
SNAIL (Mishra et al., 2017) CNN 71.13 80.04 50.61 66.68
Proto (Snell et al., 2017) CNN 74.29 85.18 61.15 74.41
HATT-Proto (Gao et al., 2019a) CNN 74.84 85.81 62.05 75.25
MLMAN (Ye and Ling, 2019) CNN 78.21 88.01 65.70 78.35
Bert-PAIR (Gao et al., 2019b) BERT 82.57 88.47 73.37 81.10
TD-Proto (Yang et al., 2020) BERT 84.76 92.38 74.32 85.92
ConceptFERE BERT 89.21 – 75.72 –
ConceptFERE (Simple) BERT 84.28 90.34 74.00 81.82

Table 2: Accuracies (%) of different models on test set.

IsA, Concept) and can provide concept knowledge
for entities in ConceptFERE. The concept embed-
ding adopts the pre-trained concept embedding3

(Shalaby et al., 2019).
Our proposed scheme is implemented on top of

BERT-PAIR, since the concept provided by Con-
ceptFERE can be used as an effective clue.

3.3 Performance and Comparisons

Table 2 tabulates the performance of different com-
parable models on the test set, where the algorithms
in the first group are those state-of-the-art schemes
without using any external information, while the
TD-Proto in the second group uses external infor-
mation of text descriptions of entities, and finally
our proposed scheme in the third group. It should
be noted that, due to the insufficient computing
power of our GPU, the performance of the pro-
posed ConceptFERE scheme is tested only under
5way1shot and 10way1shot scenarios. It can be
observed from Table 2 that the proposed Concept-
FERE model achieves the best performance, as
compared to all the comparable schemes. More
specifically, ConceptFERE achieves respectively
4.45 and 1.4 gains over the latest TD-Proto using
external entity descriptions. And a performance
gain of 6.64 and 2.35 is registered as compared
to Bert-PAIR, the best model in the first category,
under the 5way1shot and 10way1shot scenarios, re-
spectively. This might due to that the generalization
ability of concepts is stronger than text description
and it is more suitable for FSRE. In theory, 1-shot
relation extraction is a more difficult task than 5-
shot relation extraction. The experimental results
of 1-shot relation extraction have illustrated the ef-
fectiveness and superiority of our approach. We
believe that our ConceptFERE scheme would also

3https://sites.google.com/site/conceptembeddings/

Model 5-w-1-s
ConceptFERE (bert) 89.21
w/o FUSION 83.11
w/o ATT 84.03
w/o ATT & FUSION 82.57

Table 3: Results of ablation study with ConceptFERE.

achieve the best performance under the other two
scenarios.

3.4 Ablation Study

In this section, to verify the effectiveness of the pro-
posed concept-sentence attention module and self-
attention based fusion module, presented in 2.2 and
2.3, respectively. As shown in Table 3, without us-
ing the concept-sentence attention and fusion mod-
ule, the model performance of ConceptFERE (sim-
ple) drops sharply. This proves that the proposed
concept-sentence attention module (ATT) and fu-
sion module (FUSION) can effectively select ap-
propriate concepts and perform word-level seman-
tic integration of concepts and sentences. On the
other hand, we present a simplified version of the
ConceptFERE model, denoted as ConceptFERE
(Simple), in which both the concept selection and
fusion module are removed and the concepts and
sentences are concatenated and inputted into the
relation classification model. Specifically, we can
input the concatenated sentences and concepts into
BERT-PAIR (Gao et al., 2019b). As shown in Ta-
ble 2, ConceptFERE (simple) achieves much better
performance as compared to Bert-PAIR, the best
model in the first category, under all four scenarios.
This further validates the effectiveness of introduc-
ing the concept in enhancing the RE performance.
More importantly, it can be easily applied to other
models. As mentioned above, we only need to in-
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put the concatenated entity concepts and sentences
into the model.

4 Conclusion

In this paper, we have studied the FSRE task and
presented a novel entity concept-enhanced FSRE
scheme (ConceptFERE). The concept-sentence at-
tention module was designed to select the appro-
priate concept from multiple concepts correspond-
ing to each entity, and the fusion module was de-
signed to integrate the concept and sentence se-
mantically at the word-level. The experimental
results have demonstrated the effectiveness of our
method against state-of-the-art algorithms. As a
future work, the commonsense knowledge of the
concepts as well as the possible relations between
them will be explicitly considered to further en-
hance the FSRE performance.
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Abstract

Generalization is an important ability that
helps to ensure that a machine learning model
can perform well on unseen data. In this pa-
per, we study the effect of data bias on model
generalization, using Chinese Named Entity
Recognition (NER) as a case study. Specifi-
cally, we analyzed five benchmarking datasets
for Chinese NER, and observed the following
two types of data bias that may compromise
model generalization ability. Firstly, the test
sets of all the five datasets contain a significant
proportion of entities that have been seen in
the training sets. These test data are therefore
not suitable for evaluating how well a model
can handle unseen data. Secondly, all datasets
are dominated by a few fat-head entities, i.e.,
entities appearing with particularly high fre-
quency. As a result, a model might be able
to produce high prediction accuracy simply by
keyword memorization. To address these data
biases, we first refine each test set by excluding
seen entities from it, so as to better evaluate a
model’s generalization ability. Then, we pro-
pose a simple yet effective entity rebalancing
method to make entities within the same cate-
gory distributed equally, encouraging a model
to leverage both name and context knowledge
in the training process. Experimental results
demonstrate that the proposed entity resam-
pling method significantly improves a model’s
ability in detecting unseen entities, especially
for company, organization and position cate-
gories.

1 Introduction

Named Entity Recognition (NER) is a fundamental
building block for various downstream natural lan-
guage processing tasks such as relation extraction
(Bunescu and Mooney, 2005), event extraction (Ji
and Grishman, 2008), information retrieval (Chen
et al., 2015), question answering (Diefenbach et al.,
2018), etc. Due to the ambiguous word boundaries

and complex composition (Gui et al., 2019), Chi-
nese NER task is more challenging compared with
English NER.

Recently, by leveraging upon the pretrained lan-
guage model (e.g, BERT (Devlin et al., 2018),
etc.), we have witnessed superior performances on
Chinese NER datasets, including: MSRA, Weibo,
Ontonotes 4.0 and Resume (Li et al., 2020, 2019;
Xuan et al., 2020). Despite the superior perfor-
mance of the fine-tuned models, we argue that there
are two types of data bias that can compromise the
model generalization ability.

First, we observe that in widely used Chinese
NER datasets, 50% to 70% entities in test data are
seen in the training data. Such test data would there-
fore not be able to evaluate the true generalization
ability of a model.

Second, the datasets are dominated by a few
fat-head entities, i.e., entities appearing with par-
ticularly high frequency. For example, within the
organization category of Cluener (Xu et al., 2020),
fat-head entity曼联 (Manchester United) appears
59 times, while法兰克福队 (Eintracht Frankfurt)
occurs only once. As a result, a model might be en-
couraged to memorize those fat-head entities rather
than leveraging context knowledge during training
process. The rationale is that given the same en-
tity and diverse contexts, the easiest way for model
convergence is to memorize the entity rather than
extracting patterns from the diverse contexts.

To address these data biases, we first refine each
test set by excluding seen entities from it, so as
to better evaluate a model’s generalization ability.
Then, we propose a simple yet effective entity re-
balancing method to make entities within the same
category distributed equally, encouraging a model
to leverage both name and context knowledge in
the training process.

The contributions of this paper are as follows.
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Dataset Categories Train Dev Test
MSRA LOC, ORG, PER 41728 4636 4365
OntoNotes 4.0 GPE, LOC, ORG, PER 15724 4301 4346
Resume CONT, EDU, LOC, NAME, ORG, PRO, RACE, TITLE 3821 463 477
Weibo GPE.NAM, GPE.NOM, LOC.NAM, LOC.NOM, ORG.NAM, ORG.NOM, PER.NAM, PER.NOM 1350 270 270
Cluener movie, organization, company, game, book, scene, name, government, address, position 10748 1343 1345

Table 1: Chinese NER datasets overview: entity categories and the sentence number in train/dev/test data.

• We analyze five benchmarking Chinese NER
datasets and identify two types of data bias
that can compromise model generalization
ability.

• We refine each test set by excluding seen en-
tities from it, which can measure real model
generalization. Specifically, the competitive
BERT+CRF model only achieves 33.33% and
65.10% F1 score on detecting unseen organi-
zation entities of Cluener and MSRA dataset
respectively, which are far from satisfactory.

• We design a simple yet effective algorithm
to rebalance the entity distribution. The ex-
periments show that the proposed method sig-
nificantly improves the model generalization.
In particular, the F1 score has been improved
by 12.61% and 37.14% on the organization
category of Cluener and MSRA dataset re-
spectively.

2 Dataset Observation

2.1 Dataset Overview

In this study, we analyze five benchmarking Chi-
nese NER datasets, including: (1) MSRA (Levow,
2006), (2) Ontonotes 4.0 (Weischedel et al.), (3)
Resume (Zhang and Yang, 2018), (4) Weibo (Peng
and Dredze, 2015) and (5) Cluener (Xu et al., 2020).
The statistics of these datasets are shown in Table
1.

2.2 Seen vs Unseen Entity

If an entity in dev/test data has been covered by the
training data, we refer it as a seen entity. Otherwise,
it is an unseen entity. To quantify the degree to
which entities in the dev/test data have been seen in
the training data, we define a measurement called
entity coverage ratio. The entity coverage ratio of
data Dte is denoted by r(Dte), which is calculated
using the below equation.

r(Dte) =
|Ent(Dte)

⋂
Ent(Dtrain)|

|Ent(Dtrain)| (1)

where Ent(.) denotes a function to obtain the list of
annotated entities and Dtrain represents the train-
ing data. As Table 2 shows, the entity coverage
ratios of the dev and test data in different bench-
marking datasets are very high, ranging from 0.429
to 0.709.

Dataset r(dev) r(test)
MSRA 0.554 0.709
OntoNotes 4.0 0.505 0.514
Resume 0.540 0.544
Weibo 0.498 0.429
Cluener 0.615 -

Table 2: Entity coverage ratio of dev and test data in
different Chinese NER datasets.

Observation 1 The test sets of Chinese NER
datasets contain a significant proportion of seen
entities.

2.3 Fat-head vs Long-tail Entity

Fat-head entity is defined as the entity appearing
with particularly high frequency, while long-tail en-
tity is defined as the entity with very few mentions.
To identify the existence of fat-head entity, we use
kurtosis (Balanda and MacGillivray, 1988), a sta-
tistical measure that defines how heavily the tails
of a distribution differ from the tails of a normal
distribution. Usually, high kurtosis (greater than
3) indicates the existence of outliers, i.e., fat-head
entities.

Table 3 shows the kurtosis score of each cate-
gory in different datasets. For example, the kurtosis
score of PER category of training data in MSRA
dataset is 984.1, which is very high. We find that
1% distinct entities with the highest frequency con-
tribute 21% of the overall annotation.

Observation 2 Fat-head entities prevail in dif-
ferent categories of Chinese NER datasets.

We think this finding is also valid in other NER
datasets, since the annotated corpus is usually col-
lected within a certain time frame when some enti-
ties (e.g., celebrities, organizations) get much more
exposure than others.

We hypothesize that the dominance of fat-head
entities will cause the model to simply memorize
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those high-frequency entities without fully leverag-
ing context knowledge. The rationale is that given
the same entity and diverse contexts, the easiest
way for model convergence is to memorize the en-
tity rather than extracting patterns from the diverse
contexts.

Dataset Training Test

MSRA
ORG : 609.2
PER : 984.1
LOC : 1272.1

ORG : 66.3
LOC : 226.6
PER : 387.4

OntoNotes 4.0

LOC : 46.9
PER : 77.2
GPE : 108.9
ORG : 151.4

LOC : 36.9
PER : 79.0
GPE : 184.7
ORG : 337.5

Resume

LOC : 0.0
RACE : 4.2
EDU : 11.1
CONT : 11.8
PRO : 45.6
NAME : 59.6
TITLE : 239.3
ORG : 1723.1

CONT : 1.0
RACE : 1.0
LOC : 3.3
EDU : 4.5
PRO : 9.1
NAME : 35.6
TITLE : 53.5
ORG : 212.4

Weibo

GPE.NOM : 1.5
LOC.NAM : 6.4
LOC.NOM : 8.0
ORG.NOM : 9.9
GPE.NAM : 13.4
PER.NOM : 38.5
ORG.NAM : 101.1
PER.NAM : 188.4

GPE.NOM : 0.0
ORG.NOM : 1.7
GPE.NAM : 4.5
ORG.NAM : 5.0
LOC.NOM : 6.1
LOC.NAM : 6.6
PER.NOM : 27.7
PER.NAM : 48.0

Cluener

movie : 25.4
organization : 35.3
company : 81.4
game : 90.2
book : 97.5
scene : 117.4
name : 261.8
government : 308.2
address : 511.0
position : 570.0

-

Table 3: Kurtosis score of different categories in vari-
ous Chinese NER datasets.

3 Method

To improve model’s generalization ability in detect-
ing unseen entities, we argue that the model should
be trained to leverage both name and context knowl-
edge (Nie et al., 2020; Lin et al., 2020). Thus, we
propose a simple yet effective entity rebalancing
algorithm. The main idea is to make the annotated
entity equally distributed within the same category.

There are two major reasons why the proposed
entity rebalancing algorithm works. First, the
equal distribution will encourage the model to lever-
age both name knowledge and context knowledge,
since there are no simple statistical cues (Niven
and Kao, 2019) to exploit due to uneven distribu-
tion. Second, different entities within the same
category should be interchangeable semantically in
most cases, which avoids the train-test discrepancy.

The proposed algorithm works as follows. First,
rebalance the annotated entity frequency in the
training data. Let Cl denotes the original entity
frequency counter of category l. For example,
given Cl = {e1 : 11, e2 : 1, e3 : 1}, which
means entity e1 is annotated 11 times, and both
e2 and e3 are annotated once in the category l,
which is very imbalanced. Then we turn Cl to
the balanced entity frequency counter Cb

l , which
is Cb

l = {e1 : 5, e2 : 4, e3 : 4}. In Cb
l , the differ-

ence between the maximum and minimum entity
frequency is 1 at most. Second, replace the fat-
head entity with randomly sampled entity of the
same category, once its accumulated occurrence
surpasses the rebalanced frequency in Cb

l . Details
are shown in Algorithm 1.

Algorithm 1: Entity replacement algorithm

foreach sentence in Dataset do
foreach ent text, ent label in sentence do

l = ent label;
if Cb

l [ent text] > 0 then
keep ent text as it is;
Cb

l [ent text] −= 1;
else

sample ent s from cbl if cbl [ent s] > 0;
replace ent text with ent s;
Cb

l [ent s] −= 1;

4 Experiments

4.1 Experiment Settings

According to observation 1, the test sets of Chinese
NER datasets contain a significant proportion of
seen entities, which fails to evaluate the true model
generalization ability. In our study, the test sam-
ple will be excluded if it contains entities that are
covered in training data. For Cluener (Xu et al.,
2020), we split the original training set into 90%
train and 10% dev, and use the development set for
test, as the test set is not publicly available. For
Resume (Zhang and Yang, 2018) and Weibo (Peng
and Dredze, 2015) datasets, we report evaluation re-
sults on the selected categories, since there are zero
or very few unseen entities on other categories.

We use the BIOES tagging scheme to label
named entities, since previous studies have shown
optimistic improvement with this scheme (Rati-
nov and Roth, 2009). We report span-level
micro-averaged F1 score obtained from seqeval
(Nakayama, 2018) toolkit using IOBES scheme.

We use BERT+CRF as the model architec-
ture. In particular, we use bert-base-chinese pre-
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trained model 1 (12-layer, 768-hidden, 12-heads)
released by google (Devlin et al., 2018). The hyper-
parameters of the model are tuned on the devel-
opment set using grid search method (details are
reported in Appendix A.). As shown in Table 4, the
adopted BERT+CRF model is competitive with the
complicated state-of-the-art models.

Model MSRA OntoNotes Resume Weibo
Glyce-BERT
(Meng et al.,
2019)

95.54 81.63 96.54 67.60

BERT+FLAT
(Li et al., 2020)

96.09 81.82 95.86 68.55

BERT+CRF
(Ours)

95.57 82.29 95.71 69.89

Table 4: Comparison between BERT+CRF and the
state-of-the-art models using the same train/dev/test
splits as (Li et al., 2020, 2019; Xuan et al., 2020)

4.2 Results

Table 5 presents the comparisons between the pro-
posed method and the baseline on five Chinese
NER datasets. The baseline uses the original train-
ing data, while the proposed applies entity rebal-
ancing algorithm on the original training data.

For Cluener, MSRA and OntoNotes datasets
with over 10K training samples, our proposed
method outperforms the baseline on different cat-
egories. One exception is on the address category
of Cluener dataset when the proposed method per-
forms worse than the baseline by -2.58%. We be-
lieve it is due to the fact that the address category
contains both geopolitical entities and location en-
tities, which are not interchangeable semantically.

For Weibo dataset, the proposed outperforms
the baseline by 8.89% in PER.NAM category, but
performs worse in PER.NOM category. Note that
the PER.NOM category contains entities such as
man, woman and friend, which are hard to gen-
eralize based on context knowledge. For Resume
dataset, the proposed method does not work well.
We think it is due to the structure of the resume
corpus, which is the mere concatenation of name,
education and organization, etc. Thus, there is very
few context knowledge to leverage.

Overall, the proposed entity rebalancing method
is able to improve model’s generalization ability in
detecting unseen entities. However, the proposed
method only works for categories which meet cer-

1https://storage.googleapis.com/bert_
models/2018_11_03/chinese_L-12_H-768_
A-12.zip.

Cluener
Category Baseline Proposed F1 Improvement
address 58.48 56.97 -2.58%
book 77.65 83.72 +7.82%

company 62.34 64.86 +4.04%
game 61.29 62.50 +1.97%

government 80.00 83.78 +4.72%
movie 71.91 75.61 +5.15%
name 74.38 75.81 +1.92%

organization 33.33 45.71 +37.14%
position 35.90 52.63 +46.60%

scene 74.56 78.31 +5.03%
MSRA

Category Baseline Proposed F1 Improvement
LOC 86.79 89.17 +2.74%
ORG 89.69 89.69 +0.00%
PER 95.85 96.35 +0.52%

OntoNotes 4.0
Category Baseline Proposed F1 Improvement

GPE 64.93 66.94 +3.10%
LOC 37.88 45.03 +18.88%
ORG 65.10 73.31 +12.61%
PER 96.45 96.32 -0.13%

Weibo
Category Baseline Proposed F1 Improvement
PER.NAM 69.09 75.23 +8.89%
PER.NOM 46.67 45.28 -2.98%

Resume
Category Baseline Proposed F1 Improvement

NAME 1.00 1.00 0%
ORG 90.62 87.88 -3.02%

Table 5: Evaluation results (F1 score) of the proposed
entity resampling method and the baseline on unseen
test data

tain conditions. First, the entities of the same cat-
egory require to be interchangeable semantically.
Second, the entities should be dependent of context
knowledge.

5 Conclusion and Future Work

In this paper, we take Chinese NER as a case study,
aiming to improve the model generalization by mit-
igating the data bias. We first refine each test set
by excluding seen entities from it, so as to better
evaluate a model’s generalization ability. Then, we
propose an entity rebalancing method to make en-
tities within the same category distributed equally.
Experimental results show that the proposed en-
tity rebalancing method significantly improves a
model’s ability in detecting unseen entities.

As future work, we will first investigate the gen-
eralizability of this study to non-Chinese NER. Sec-
ond, we will improve the entity replacement algo-
rithm by leveraging language model so that the
replaced entity is more semantically plausible.
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Appendix A: Hyper-parameter Settings

Parameter Value
learning rate [5e-5, 3e-5, 2e-5]
warmup proportion [0]
train batch size [32]
seed [2020, 1, 10]
crf learning rate [1e-3, 1e-4]
model name or path [”bert-base-chinese”]
max seq length [128]
eval batch size [16]
num train epochs [10]
weight decay [0]
is learning rate linearly decrease [”yes”]

Table 6: The range of hyper-parameters grid-search for
BERT+CRF model.
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Abstract

Document-level Relation Extraction (RE) is a
more challenging task than sentence RE as
it often requires reasoning over multiple sen-
tences. Yet, human annotators usually use
a small number of sentences to identify the
relationship between a given entity pair. In
this paper, we present an embarrassingly sim-
ple but effective method to heuristically select
evidence sentences for document-level RE,
which can be easily combined with BiLSTM
to achieve good performance on benchmark
datasets, even better than fancy graph neural
network based methods. We have released our
code at https://github.com/AndrewZhe/Three-
Sentences-Are-All-You-Need.

1 Introduction

The task of relation extraction (RE) focuses on
extracting relations between entity pairs in texts,
and has played an important role in information
extraction. While earlier works focus on extracting
relations within a sentence (Lin et al., 2016; Zhang
et al., 2018), recent studies begin to explore RE
at document level (Peng et al., 2017; Zeng et al.,
2020a; Nan et al., 2020a), which is more challeng-
ing as it often requires reasoning across multiple
sentences.

Compared with sentence level extraction, doc-
uments are significantly longer with useful infor-
mation scattered in a larger scale. However, given
a pair of entities, one may only need a few sen-
tences, not the entire document, to infer their rela-
tionship; reading the whole document may not be
necessary, since it may introduce unrelated infor-
mation inevitably. As we can see in Figure 1, S[1]
is sufficient to recognize Finland as the country
of Espoo, and recognizing the rest two instances
requires just 2 sentences as supporting evidence as

∗Corresponding author.

Figure 1: A case extracted from the DocRED dataset.
While the document has 6 sentences, only 1 or 2 sen-
tences form the evidence for each relation instance.

well. Although the document contains 6 sentences
and evidence may span from S[1] ∼ S[6], identify-
ing each relation instance can be achieved by just
reading through 1 or 2 related sentences. This natu-
rally leads us to consider a question: given an entity
pair, how many sentences are required to identify
a relationship between them? We perform a pilot
study across 3 widely-used document RE datasets,
DocRED (Yao et al., 2019), CDR (Li et al., 2016)
and GDA (Wu et al., 2019). As shown in Table 1,
we find that more than 95% instances require no
more than 3 sentences as supporting evidence, and
87% even requires only 2 or less.

Our preliminary finding suggests that, instead
of taking the entire document as context, a case-
specific selection may be more useful to help
a model focus on the most relevant and infor-
mative evidence. Previous studies apply graph
neural networks (GNNs) for this filtering pro-
cess (Christopoulou et al., 2019; Zeng et al., 2020b).
Here, GNNs are used to collect relevant informa-
tion from the entire context through an aggregation
scheme (Nan et al., 2020a) and achieve great perfor-
mance, but the selection of crucial evidence from
documents is still implicit and lacks interpretabil-
ity. If, as indicated by our pilot study, most entity
relationships can be decided with just 1 ∼ 3 evi-
dence sentences, is there a simpler method that can
filter the document explicitly while maintaining the
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0 1 2 3 >=4 # Sent

DocRED 3.7% 49.7% 34.3% 8.4% 3.8% 8.0

CDR 0.0% 68.0% 30.0% 0.0% 2.0% 9.7
GDA 0.0% 66.0% 19.0% 3.0% 5.0% 10.2

Table 1: The proportion of instances with different sup-
porting evidence sizes. # Sent shows the average num-
ber of sentences in a document.

crucial information?
We take a closer look at how entity pairs are

contextually related in the annotated supporting
evidence, and find that annotators tend to select
sentences that can connect the two entities. We
therefore design three heuristic rules to extract a
small set of paths from the document, which can
be seen as an approximation of the supporting evi-
dence. Specifically, the Consecutive Paths consider
the scenario where the head and tail entities are
close in the context: if they are within 3 consec-
utive sentences, we regard these sentences as one
path. The Multi-Hop Paths correspond to the entity
pairs in distant sentences, which can be bridged via
other entities that co-occur with the head entity and
tail entity in different sentences. As the third rela-
tion in Figure 1 shows, Finland co-occurs with The
Espoo Cathedral in S[1] and with the EC Parish in
S[6], which makes it a bridge to connect The Espoo
Cathedral and the EC Parish. In this case, S[1] and
S[6] compose a multi-hop path. When neither of
the above rules applies, we collect all the pairs of
sentences where one contains head entity and the
other contains tail entity as Default Paths.

By comparing our path set with human-
annotated supporting evidence, we find that up to
87.5% of the supporting evidence can be fully cov-
ered by our heuristically selected paths. In other
words, our straightforward and interpretable rules
serve as an effective proxy to select supporting
evidence from documents. We further feed our se-
lected paths to a simple neural network model and
obtain surprisingly good performance on DocRED,
showing that our selected evidence can retain suf-
ficient information from the entire document to
support document-level relation extraction.

2 Do we need the entire document?

For document RE, the major challenge is that the
subject and object involved in a relationship may
appear in different sentences. Thus, more than
one sentence is required to capture the relations.
Nonetheless, how many sentences from the entire

document are required to identify the relationship
between an entity pair? To address this question,
we analyze the supporting evidence presented in
DocRED. The supporting evidence for a relation
instance refers to all the sentences that can be used
to decide whether this relation holds between the
entity pair, labeled by human annotators (Yao et al.,
2019). Table 1 shows the proportions of entity rela-
tion instances with different number of supporting
sentences. As can be seen, more than 96% of the
DocRED instances are associated with at most 3
supporting evidence. These only take up 37.5% of
a document, since the average document length is
8 sentences. This means that reading a small part
of a document is adequate for one to identify an
entity relation instance.

We further extend our study to two widely used
document RE datasets, CDR (Li et al., 2016) and
GDA (Wu et al., 2019), where CDR is manually
constructed and GDA is distantly supervised. In
order to find the minimal number of sentences re-
quired, we ask annotators to label a minimal set
of sentences that are exactly sufficient to identify
an entity relation instance, instead of including all
relation-associated sentences as the original Do-
cRED pattern. We randomly select 100 instances
respectively from CDR and GDA for this further
annotation, and the results are shown at the bot-
tom of Table 11. Although the average length of
documents in GDA and CDR are longer than Do-
cRED, it turns out that one can still use no more
than 3 supporting sentences to identify over 95%
of the entity relation instances. The results on CDR
and GDA confirm our previous finding that, a very
small number of sentences (or more exactly, no
more than 3 sentences) would make it sufficient
for human annotators to recognize almost all entity
relation instances in a document in widely-used
benchmark datasets.

3 Which sentences are decisive?

Now our question is how to select the supporting
sentences that are sufficient to identify an entity re-
lation instance. Intuitively, the supporting evidence
should be the sentences that build up the connection
between a pair of entities. Thus, we aim to extract
sentence paths from the head entity to the tail entity
to describe how they are connected. As for the sim-
plest case, if there exists one sentence that contains

1As GDA is a distantly supervised dataset, 7 instances that
are found wrongly labeled are discarded.
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Figure 2: Types of paths connecting head and tail entities. The rounded rectangles represent sentences and the
circles are mentions of involved entities or other irrelevant tokens. eh and et stands for a mention of head and tail
entities respectively, and S∗ represents a sentence.

both the head and tail entities, the sentence itself
can be seen as a path (the intra-sentence case). For
more complex situations where the head and tail
entities do not co-occur in one sentence, we define
the following 3 types of paths which indicate how
the head and tail entities can be possibly related in
the context. Figure 2 provides a visualization of
the three types of paths.

Consecutive Paths Previous studies have shown
that the majority of inter-sentence relations are of-
ten in nearby text (Swampillai and Stevenson, 2010;
Quirk and Poon, 2017). We thus select the consec-
utive sentences to form a path when the head and
tail entities are in nearby sentences. Formally, if
one mention of the head entity appears in sentence
Si and one mention of the tail entity is in sentence
Sj , these two sentences along with the sentence in
between, i.e., sentence Si+1, . . . , Sj−1 (or Sj+1,
. . . , Si−1 when i ≥ j) forms a possible path that
connects the two entities.

Given that no more than 3 sentences would suf-
fice for inference, we limit the length of these
Consecutive Paths to be at most 3, which means
|j − i| ≤ 2. Note that this definition can be nat-
urally extended to the intra-sentence case where
j = i. We thus consider the intra-sentence case as
a type of the Consecutive Path. A pair of entities
can correspond to multiple consecutive paths since
they can be mentioned more than once.

Multi-Hop Paths Another typical case for inter-
sentence relation instances is the multi-hop relation
(Yao et al., 2019; Zeng et al., 2020a). In such cases,
the head and tail entities are far from each other in
the document but can be connected through bridge

entities, just like the entity The Espoo Cathedral
in Figure 1 bridges the EC Parish and Finland in
sentence 1 and 6.

For these cases, we start from the head entity,
go through all the bridge entities, arrive at the tail
entity, and select all the corresponding sentences
in this route as a path. Formally, for the head entity
eh and the tail entity et, the multi-hop relation in-
dicates that there exist a list of bridge entities eb1 ,
. . . , ebk such that (eh, eb1), (eb1 , eb2), . . . , (ebk , et)
form k + 1 intra-sentence relations respectively in
sentence Sp1 , . . . , Spk+1

. Following this route, we
choose these k+1 sentences as the Multi-Hop Path.
Given the discovery in §2 that most instances only
needs 3 sentences, we restrict k to be at most 2, i.e.,
with only 1 or 2 bridge entities. It is possible to
have several multi-hop paths for a certain pair with
different lists of bridge entities.

Default Paths If neither of the aforementioned
rules applies, we consider a rough estimate for the
evidence with the most relevant sentences. We
collect all pairs of sentences where one contains
the head entity and the other contains the tail en-
tity as Default Paths. Formally, let {Sh1 , . . . , Shp}
and {St1 , . . . , Stq} denote the sets of sentences that
contain the head entity eh and the tail entity et, re-
spectively. For this entity pair, we will have p× q
Default Paths {Sh1 , St1}, . . . , {Shp , Stq}. Note
that this type of paths is extracted only when no
paths are found with the previous two patterns.

4 Comparing with Annotated Evidence

To demonstrate the effectiveness of our heuristic
rules, we check the size of our path set on DocRED
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Path Recall #Sent #Path

C 71.7% 2.31 1.71
M 31.5% 3.14 2.35
C+M 80.5% 2.73 2.37
C+M+D 87.5% 2.69 2.27

document - 8.00 -

Table 2: C, M and D stand for Consecutive Paths, Multi-
hop Paths, and Default Paths, respectively. #Path and
#Sent are the average path numbers and average sen-
tence numbers in the union of all paths.

and their consistency with the gold supporting ev-
idence. As mentioned in §2, the gold annotation
acts as a collection of all related evidence, while
each of our extracted paths represents one possi-
ble and minimal sentence set. Ideally, if the path
set is sufficient, all connecting sentences between
the entity pair should be successfully captured. In
other words, they would be presented via various
paths in our path set. Therefore, the union of paths
is expected to be a superset of the supporting ev-
idence. We use the Coverage of the supporting
evidence to measure the sufficiency of our path
set, which stands for the percentage of instances
whose supporting evidence is fully covered by the
union of our paths. Meanwhile, the total num-
ber of paths (#Path) and union size of the paths
(#Sent) should also remain at a low standard, so
as to avoid redundancy.

Table 2 shows the statistics of the path sets
extracted via our rules. The Consecutive Paths
form a strong baseline that covers 71.7% of in-
stances. Combining the three types, up to 87.5%
of instances from the supporting evidence are fully
covered by our path sets. The main reason that
C+M+D can not cover all the instances is that
the supporting evidence annotated in DocRED in-
cludes all associated sentences, while C+M+D only
find a sufficient set to identify the relation.

Meanwhile, notice that the union of the three
types contains only 2.69 different sentences on
average, which means that our methods can fil-
ter out up to 2/3 of the original text. Also, our
method is computationally efficient since only 2.27
paths need to be modeled on average. This demon-
strates that our methods form a sufficient and non-
redundant estimate for the gold supporting evi-
dence, drastically alleviating the negative impact
of irrelevant information.

Model Dev Test

Intra-F1 Inter-F1 F1 F1

CNN 51.87 37.58 43.45 42.26
BiLSTM 57.05 43.49 50.94 51.06
HIN-Glove 60.83 48.35 52.95 53.30

GAT 58.14 43.94 51.44 49.51
GCNN 57.78 44.11 51.52 51.62
EoG 58.90 44.60 52.15 51.82
AGGCN 58.76 45.45 52.47 51.45
LSR-Glove 60.83 48.35 55.17 54.18
GAIN-Glove 61.67 48.77 55.29 55.08

Paths+BiLSTM 62.73 49.11 56.54 56.23

Table 3: Model performance on DocRED.

5 Experiments

To further validate the sufficiency of our selected
paths, we perform evaluation on DocRED by feed-
ing the paths to an RE model. While previous
works take entire documents as input, we replace
the document with our selected paths regarding a
given entity pair. Intuitively, if the paths can cover
all crucial information in the document, we would
expect comparable or better performance with iden-
tical model architecture, as our paths contain little
irrelevant information and may help focus on a few
key sentences.
Setup Given a pair of entities, all paths are first
extracted as described in §3. Since each path corre-
sponds to one possible connection of the head and
tail entities, we predict the relations with each path
independently and aggregate the results afterwards.

For every single path c, we concatenate all sen-
tences in it as one segment [wc

1, ...,w
c
m], where

the order of sentences is the same as in the origi-
nal document. The segment is fed to a BiLSTM
to obtain the contextual embeddings [hc

1, ...,h
c
m].

The representation of an entity mention, which
spans from the s-th word to the t-th word, is de-
fined as mc

k = 1
t−s+1

∑t
j=s h

c
j . The represen-

tation of an entity eci with K mentions is com-
puted as the average of the representations of its
mentions: eci = 1

K

∑
k m

c
k. Then, we use a

two-layer perceptron to calculate the probability
of each relation r based on the current path c:
P c
ij(r) = σ(F ([eci ; e

c
j ; |eci − ecj |; eci ∗ ecj ])), where

σ(·) is the Sigmoid function and F (·) stands for
the two-layer perceptron.

After obtaining the prediction of every path be-
tween a given entity pair, we aggregate the pre-
dicted results by selecting the most likely predic-
tions: Pij(r) = maxc P

c
ij(r).

We use the Glove-100 (Pennington et al., 2014)
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embedding for the BiLSTM encoder with hid-
den size 256. Following previous works (Nan
et al., 2020b), we report the F1 for intra- and inter-
sentence entity pairs along with the overall F1 score
as evaluation metrics.
Results We compare our methods with previous
sequence-based models and graph-based models.
All these models take the entire document as input.
As shown in Table 3, our selected path with BiL-
STM achieves 56.23% F1 on the test set, which
outperforms the sequence-based models. Com-
pared with the baseline BiLSTM, our model brings
5.68% and 5.62% improvement on intra- and inter-
sentence entity pairs on the dev set, respectively.

Surprisingly, our simple method achieves a
higher performance compared with graph-based
models, which are more complex and also possess
the ability to filter out irrelevant information. Com-
bined with our path-selection scheme, a BiLSTM
can perform 1.25% and 1.15% better on the dev
and test set, respectively, compared to the SOTA
graph-based model in the same situation. This
may indicate that, while graph-based models have
shown excellent abilities to focus on important in-
formation in a self-adaptive manner, it is more help-
ful to explicitly select from the document than to
fully rely on graph-based models. With a simple
filtering scheme inspired by human annotations, we
can better explore the potentials of existing models
and produce better results.

6 Discussion

So far we have shown from experiments the limited
number of sentences required to deduce a relation
instance. While the interesting results seem uncon-
ventional for Document RE, which features com-
plex inter-sentence relations, it is worth mentioning
that possible explanations exist in current works
in related fields. The interdisciplinary outlooks
may provide helpful insights for community mem-
bers to understand the causes of the three-sentences
phenomenon and revisit the problem of Document-
level Relation Extraction.

Linguistic Perspective One likely cause of the
discussed phenomenon is that the seemingly distant
relations are not so difficult given their linguistic
form. Stevenson (2006) mentions that a majority of
inter-sentence relation instances are in fact due to
co-references (anaphoric expressions or alternative
descriptions). In these cases, relations could be
considered to be described entirely within one sen-

tence but with head or tail entities being referred
to indirectly. Considering anaphoric expressions
are likely to appear in surrounding sentences for
the candidate mentions (Chowdhury and Zweigen-
baum, 2013), these findings are directly in line with
our observation that consecutive paths could sup-
port more than 70% relation instances, and provide
evidence for three-sentences phenomenon.

Cognitive Perspective Another possible expla-
nation is that the RE task is naturally defined within
a limited amount of entities and context, given the
nature of the human brain. It is widely believed that
Working Memory (WM) (Baddeley, 1992) plays a
vital role to store and manipulate information in
inference tasks (Barreyro et al., 2012), but the ca-
pacity of separate information chunks in WM are
often limited to 4 (Cowan, 2001). As we need to
memorize all the separate entities in the inference
chain along with their relations, it is natural that we
tend to describe a relation within a limited number
of sentences, since rendering a relationship with
more sentences may cause our WM to exceed its
capacity. Daneman and Carpenter (1980) show that
the success rate of completing a reading task dras-
tically drops if too much information, exceeding
the subject’s WM capacity, is required for the task.
Therefore, as the datasets are constructed from nat-
ural language, the three-sentences phenomenon in
the data may be a common pattern that we (uncon-
sciously) follow for mutual understanding.

7 Conclusion

In this paper, we perform an analysis over 3 docu-
ment RE benchmark datasets, and find that human
annotators often use a small number of sentences
to extract entity relations in document level. This
motivates us to think over which sentences are criti-
cal for document RE. We carefully design heuristic
rules to select informative path sets from entire
documents, which can be further combined with
a simple BiLSTM to achieve competitive perfor-
mance on a benchmark dataset, even better than
complex graph-based methods.
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Abstract
Learning prerequisite chains is an essential
task for efficiently acquiring knowledge in
both known and unknown domains. For ex-
ample, one may be an expert in the natural
language processing (NLP) domain but want
to determine the best order to learn new con-
cepts in an unfamiliar Computer Vision do-
main (CV). Both domains share some com-
mon concepts, such as machine learning basics
and deep learning models. In this paper, we
propose unsupervised cross-domain concept
prerequisite chain learning using an optimized
variational graph autoencoder. Our model
learns to transfer concept prerequisite relations
from an information-rich domain (source do-
main) to an information-poor domain (target
domain), substantially surpassing other base-
line models. Also, we expand an existing
dataset by introducing two new domains––CV
and Bioinformatics (BIO). The annotated data
and resources, as well as the code, will be
made publicly available.

1 Introduction

With the rapid growth of online educational re-
sources in diverse fields, people need an efficient
way to acquire new knowledge. Building a con-
cept graph can help people design a correct and
efficient study path (ALSaad et al., 2018; Yu et al.,
2020). There are mainly two approaches to learn-
ing prerequisite relations between concepts: one is
to extract the relations directly from course content,
video sequences, textbooks, or Wikipedia articles
(Yang et al., 2015b; Pan et al., 2017; Alzetta et al.,
2019), but this approach requires extra work on
feature engineering and keyword extraction. Our
method follows a different approach of inferring
the relations within a concept graph (Liang et al.,
2018; Li et al., 2019, 2020).

In a concept graph, we define p → q as the
notion that learning concept p is a prerequisite to
learning concept q. Existing methods formulate

Figure 1: Cross-domain prerequisite chains.

this question as a classification task. A typical
method is to encode concept pairs and train a clas-
sifier to predict if there is a prerequisite relation
(Alzetta et al., 2019; Yu et al., 2020). However, this
method requires annotated prerequisite pairs dur-
ing training. Alternatively, others have used graph-
based models to predict prerequisite relations. Gor-
don et al. (2016) proposed information-theoretic
approaches to infer concept dependencies. Li et al.
(2019) modeled a concept graph using Variational
Graph Autoencoders (VGAE) (Kipf and Welling,
2016), training their model to infer unseen prerequi-
site relations in a semi-supervised way. While most
of the previous methods were supervised or semi-
supervised, Li et al. (2020) introduced Relational-
VGAE, which enabled unsupervised learning on
prerequisite relations.

Existing work mainly focuses on prerequisite
relations within a single domain. In this paper, we
tackle the task of cross-domain prerequisite chain
learning, by transferring prerequisite relations be-
tween concepts from a relatively information-rich
domain (source domain) to an information-poor
domain (target domain). As an example, we illus-
trate in Figure 1, a partial concept graph from the
Natural Language Processing (NLP) domain and
a partial concept graph from the Computer Vision
(CV) domain. Prerequisite relations among con-
cepts in the NLP domain are known, and we seek
to infer prerequisite relations among concepts in
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the CV domain. These two domains share some
concepts, such as Convolutional Neural Network.
We assume that being aware of prerequisite rela-
tions among concepts in the source domain helps
infer potential relations in the target domain. More
specifically, in the figure, knowing that Convolu-
tional Neural Network→Document Classification
helps us determine that Convolutional Neural Net-
work→Image Classification.

Our contributions are two-fold. First, we
propose cross-domain variational graph autoen-
coders to perform unsupervised prerequisite chain
learning in a heterogeneous graph. Our model
is the first to do domain transfer within a single
graph, to the best of our knowledge. Second,
we extend an existing dataset by collecting and
annotating resources and concepts in two new
target domains. Data and code will be made
public in https://github.com/Yale-LILY/

LectureBank/tree/master/LectureBankCD.

2 Dataset

LectureBank2.0 (Li et al., 2020) dataset contains
1,717 lecture slides (hereon called resources) and
322 concepts with annotated prerequisite relations,
largely from NLP. We treat this dataset as our
information-rich source domain (NLP). Also, we
propose an expansion dataset, LectureBankCD, by
introducing two new target domains in the same
data format: CV and Bioinformatics (BIO). We re-
port statistics on the dataset in Table 1. For each do-
main, we identify high-quality lecture slides from
the top university courses, collected by domain ex-
perts, and we choose concepts by crowd-sourcing.
We end up with 201 CV concepts and 100 BIO con-
cepts. In each domain, we ask two graduate-level
annotators with deep domain knowledge to add pre-
requisite chain annotations for every possible pair
of concepts. The Cohen’s kappa agreement scores
(McHugh, 2012) are 0.6396 for CV and 0.8038
for BIO. Cohen’s kappa between 0.61–0.80 is con-
sidered substantial, so our annotations are reliable.

Domain Files Pages Tks/pg Con. PosRel

NLP 1,717 65,028 47 322 1,551
CV 1,041 58,32 43 201 871
BIO 148 7,13 135 100 234

Table 1: LectureBankCD statistics on NLP, CV and
BIO domain: Tks/pg (Tokens per slide page), Con.
(Number of concepts), PosRel (Positive Relations).

“Image
Classification”

“Text
Classification”Source

Concept 
Nodes

Target
Concept 
Nodes

Source + Target
Resource

Nodes

Cross-Domain Concept-Resource Graph 

Figure 2: Cross-Domain Concept-Resource Graph: we
model the resource nodes (solid nodes) and concept
nodes (hollow nodes) from two domains (in blue and
orange) in a heterogeneous graph. We show a subset of
nodes and edges.

We take the union of the positive annotations for
our experiments: 871 positive relations for CV and
234 positive relations for BIO.

3 Methodology

Inspired by Li et al. (2020), we build a cross-
domain concept-resource graph G = (X,A) that
includes resource nodes and concept nodes from
both the source and target domains (Figure 2). To
obtain the node feature matrix X , we use either
BERT (Devlin et al., 2019) or Phrase2Vec (Artetxe
et al., 2018) embeddings. We consider four edge
types to build the adjacency matrix A: Ac,s: edges
between source concept nodes;Arc: edges between
all resource nodes and concept nodes; Ar: edges
between resource nodes only; and Ac,t: edges be-
tween target concept nodes. In unsupervised pre-
requisite chain learning, Ac,s—concept relations
of the source domain—are known, and the task
is to predict Ac,t—concept relations of the target
domain. For Arc and Ar, we calculate cosine simi-
larities based on node embeddings, consistent with
previous works (Li et al., 2019; Chiu et al., 2020).

Cross-Domain Graph Encoder VGAE (Kipf
and Welling, 2016) contains a graph neural network
(GCN) encoder (Kipf and Welling, 2017) and an
inner product decoder. In a GCN, the hidden repre-
sentation of a node i in the next layer is computed
using only the information of direct neighbours
and the node itself. To account for cross-domain
knowledge, we additionally consider the domain
neighbours for each node i. These domain neigh-
bours are a set of common or semantically similar
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concepts from the other domain.1 We define the
cross-domain graph encoder as:

h
(l+1)
i = σ

(∑

j∈Ni

W (l)h
(l)
j +W (l)h

(l)
i

+
∑

k∈ND
i

W
(l)
D h

(l)
k

)

where Ni denotes the set of direct neighbours of
node i, ND

i is the set of domain neighbours, and
WD and W are trainable weight matrices. To de-
termine the domain neighbors, we compute cosine
similarities and match the concept nodes only from
source domain to target domain: cosine(hs, ht).
The values are then normalized into the range of
[0,1], and we keep the top 10% of domain neigh-
bors.2

DistMult Decoder We optimize the original in-
ner product decoder from VGAE. To predict the
link between a concept pair (ci, cj), we apply the
DistMult (Yang et al., 2015a) method: we take the
output node features from the last layer, X̂ , and
define the following score function to recover the
adjacency matrix Â by learning a trainable weight
matrix R: Â = X̂RX̂ . A Sigmoid function is used
to predict positive/negative labels from Â.

4 Evaluation

We evaluate on our new corpus LectureBankCD,
treating the NLP domain as the source domain
and transferring to the two new target domains:
NLP→CV and NLP→BIO. Consistent with Kipf
and Welling (2017); Li et al. (2019), we randomly
split the positive relations into 85% training, 5%
validation, and 10% testing. To account for imbal-
anced data, we randomly select negative relations
such that the training set has the same number of
positive and negative relations. We do the same
for the validation and test sets. We report average
scores over five different randomly seeded splits.

To encode concepts and resources, we test BERT
and P2V embeddings. For BERT, we applied a pre-
trained version from Google3. We trained P2V
using all the resource data. Both methods only
require free-text for training and encoding.

Baseline Models We concatenate the
BERT/P2V embeddings of each pair of con-

1In Figure 2, the two labeled nodes are domain neighbors.
2Parameter is selected using validation dataset.
3https://github.com/google-research/

bert, (version with L = 12 and H = 768)

cepts and feed the result into a classifier (CLS +
BERT and CLS + P2V). We train the classifier on
the source domain only, then evaluate on the target
domain. We report the best performance among
Support Vector Machine, Logistic Regression,
Gaussian Naı̈ve Bayes, and Random Forest. In
addition, we train the VGAE model Li et al.
(2019) on the source domain and test on the
target domain, initializing the VGAE input with
BERT and P2V embeddings separately (VGAE
+ BERT and VGAE + P2V). Given that GAE is
structurally similar to VGAE, we leave this for
future work. Other graph-based methods including
DeepWalk (Perozzi et al., 2014) and Node2vec
(Grover and Leskovec, 2016) are not applicable in
this setting as both models require training edges
from the target domain in order to generate node
embeddings for target concepts.

Proposed Method We report results of our pro-
posed model, CD-VGAE, initialized with BERT
and P2V node embeddings separately. Consistent
with the work from Li et al. (2019) and Li et al.
(2020), P2V embeddings yield better results than
BERT embeddings in general. One possible reason
for this difference is that BERT embeddings have a
large number of dimensions, making it very easy
to overfit. The two CLS models yield a negative re-
sult, with F1 worse than random guess. A possible
reason is that treating concept pairs independently
from the source domain may not be beneficial for
the target domains. The VGAE models have a bet-
ter performance when considering the concepts in
a large graph. As shown in the table, our method
performs better than the chosen baselines on both
accuracy and F1 score, by incorporating informa-
tion from domain neighbors. In particular, it yields
much higher recall than all the baseline models.
We provide further analysis in a later section.

Upper Bound Performance Finally, we con-
duct in-domain experiments on CV and BIO (su-
pervised training and testing in the target domain),
to show an upper bound for cross-domain perfor-
mance. We test a variety of methods including tradi-
tional classifiers as well as graph-based approaches,
including DeepWalk, Node2vec, and GraphSAGE
(Hamilton et al., 2017).

5 Analysis

Next, we conduct quantitative analysis and case
studies on the target domain concept graphs re-
covered by our model (CD-VGAE+P2V) and two
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NLP→CV NLP→BIO
Method F1 Acc Pre Rec F1 Acc Pre Rec

Baseline Models
CLS + BERT 0.4277 0.5480 0.5743 0.3419 0.3930 0.6000 0.7481 0.2727
CLS + P2V 0.4881 0.5757 0.6106 0.4070 0.2222 0.5333 0.6000 0.1364
VGAE + BERT (Li et al., 2019) 0.5885 0.5477 0.5398 0.6488 0.6011 0.6091 0.6185 0.5909
VGAE + P2V (Li et al., 2019) 0.6202 0.5500 0.5368 0.7349 0.6177 0.6273 0.6521 0.6091

Proposed Method
CD-VGAE + BERT 0.6391 0.5593 0.5441 0.7884 0.6289 0.6273 0.6425 0.6364
CD-VGAE + P2V 0.6754 0.5759 0.5468 0.8837 0.6512 0.6591 0.6667 0.6364

Supervised Performance - Upper Bound
CLS + Node2vec (Grover and Leskovec, 2016) 0.8172 0.8197 0.8223 0.8140 0.8060 0.7956 0.7547 0.8727

Table 2: Evaluation results on two target domains. Underlined scores are the best among the baseline models.
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Figure 3: Case Study in BIO: direct neighbors of BLAST, including successors and prerequisites, from the ground
truth, VGAE, and our proposed CD-VGAE model. SVD stands for Singular Value Decomposition. Correct nodes
are marked in blue, incorrect nodes are marked in red. (Best viewed in color!)

baseline models (CLS + P2V, VGAE + P2V), to
take a closer look at the results.

Quantitative Analysis We first apply the three
trained models to recover the concept graph in the
CV domain. Compared to the ground truth with
871 positive relations, the baseline model predicts
527, VGAE predicts 963, and our model predicts
1,209. Similarly, in the BIO domain with 234 pos-
itive relations, the baseline model predicts only
128 positive edges, VGAE predicts 261, and our
model predicts 303. Since our model tends to pre-
dict more positive edges, it has a higher recall. A
higher recall is preferred in real-world applications
as a system should not miss any relevant concepts
when designing a user’s study path.

Concept Graph Recovery We now provide
case studies of the recovered concept graphs. In
Table 3, we show successors of the concept Image
Processing from the CV domain, i.e. concepts for
which Image Processing is a prerequisite. Both the
baseline model and VGAE miss many successor
concepts, whereas our model can recover a correct
list without any missing concepts.

We illustrate another case study from the BIO
domain in Figure 3 using the concept BLAST (short
for “basic local alignment search tool ”), an algo-
rithm for comparing primary biological sequence
information. In the ground truth, BLAST has

three prerequisite concepts (Dynamic Program-
ming, DNA and Sequence Alignment), and one suc-
cessor concept (Homology Model). We observe
that VGAE predicts only one prerequisite, DNA,
and misses all the others. In contrast, our model
successfully includes all the ground truth relations,
although it predicts some extra ones compared to
VGAE. A closer look at the extra predictions re-
veals that these are still relevant topics, even though
they are not direct prerequisites. For example, Se-
quence Alignment, BLAST and Graph Theory are
all associated with sequence analysis and share
some common algorithms (i.e. De Bruijn Graph).

We provide a case study in the CV domain,
shown in Figure 4, by selecting concept node Ob-
ject Localization. The ground truth shows that it
has 14 direct neighbors. The VGAE model only
predicts five neighbors, while our model predicts
more. Our model has two wrong predictions, but it
gets 12 correct ones. In contrast, the VGAE model
misses up to 10 neighbors, which is not accept-
able in an application scenario of an educational
platform leading students to miss very useful infor-
mation.

6 Conclusion

In this paper, we proposed the CD-VGAE model to
solve the task of cross-domain prerequisite chain
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Base VGAE

Image Representation Image Representation
OCR Computer graphics

Eye Tracking

CD-VGAE Ground Truth

Video/Image augmentation Video/Image augmentation
Image Representation Image Representation

Face Detection Face detection
Emotion Recognition Emotion Recognition

Feature Extraction Feature Extraction
Feature Learning Feature Learning

OCR OCR
Computer Graphics Computer Graphics

Eye Tracking Eye Tracking

Table 3: Successors of the concept Image Processing,
i.e. concepts for which Image Processing is a prerequi-
site (OCR stands for Optical Character Recognition).

learning. Results show that our model outperforms
previous unsupervised graph-based models by a
large margin, especially with respect to the F1 and
recall scores. In addition, we created a new dataset
that contains resources and concepts from two do-
mains along with annotated prerequisite relations.
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A Supervised Results

Method Acc F1 Pre Rec

GS+BERT 0.7491 0.7513 0.7404 0.7628
GS+P2V 0.7457 0.7423 0.7486 0.7372
CLS+P2V 0.7642 0.757 0.7754 0.7395
CLS+BERT 0.7572 0.7495 0.7677 0.7326
DeepWalk 0.7988 0.791 0.8182 0.7674
Node2vec 0.8197 0.8172 0.8223 0.8140

Table 4: Supervised evaluation results: CV→CV.
GS:GraphSAGE.

Method Acc F1 Pre Rec

GS+BERT 0.7289 0.7355 0.7104 0.7727
GS+P2V 0.7911 0.7904 0.7787 0.8091
CLS+P2V 0.72 0.7367 0.6874 0.8091
CLS+BERT 0.7067 0.7189 0.683 0.7727
DeepWalk 0.7911 0.8079 0.7334 0.9091
Node2vec 0.7956 0.8060 0.7547 0.8727

Table 5: Supervised evaluation results: BIO→BIO.
GS:GraphSAGE.

As a supplementary experiment, we present
in-domain results in Table 4, 5: CV→CV and
BIO→BIO respectively. While we show in the
main paper that CLS + Node2vec yields the best
result, which serves as an upper bound on cross-
domain performance, we additionally show our
experimental results for other supervised methods:

CLS + P2V/BERT We encode concept pairs
with P2V/BERT, concatenate the embeddings of
both concepts within each possible pair, and then
train a binary classifier. We report the best perfor-
mance among Support Vector Machine, Logistic
Regression, Gaussian Naı̈ve Bayes, and Random
Forest.

DeepWalk, Node2vec DeepWalk (Perozzi et al.,
2014) randomly samples a node and traverses to a
neighbor node until it reaches a maximum length,
updating the latent representation of each node af-
ter each “walk ”to maximize the probability of
each node’s neighbors given a node’s represen-
tation. Node2Vec (Grover and Leskovec, 2016)
improves DeepWalk by providing the additional
flexibility of placing weights on random walks. For
both methods, we input the training prerequisite
relations and obtain concept node embeddings. Af-
ter generating embeddings for each concept in the
target domain, we concatenate the embeddings of
both concepts in each concept pair and pass the con-
catenated representation into a classifier to predict

the relation. Again, we report the best performance
from the same four classifiers.

GraphSAGE + P2V/BERT GraphSAGE
(Hamilton et al., 2017) is an inductive framework
to generate node embeddings for unseen data
by leveraging existing node features. We first
treat it as a node embedding method, as done
with DeepWalk and Node2vec. After generating
concept node embeddings, we train a classifier
to predict concept relations and report in-domain
results. In addition, we investigate GraphSAGE
for the out-of-domain setting. We assume that,
because there are unseen topics when transferring
to new domains, such an inductive method like
GraphSAGE may fit in our scenario. However, we
end up with negative results as the original Graph-
SAGE may not fit in to this specific application.
We leave further investigation for future work.
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Abstract

We present a text representation approach that
can combine different views (representations)
of the same input through effective data fusion
and attention strategies for ranking purposes.
We apply our model to the problem of differ-
ential diagnosis, which aims to find the most
probable diseases that match with clinical de-
scriptions of patients, using data from the Un-
diagnosed Diseases Network. Our model out-
performs several ranking approaches (includ-
ing a commercially-supported system) by ef-
fectively prioritizing and combining represen-
tations obtained from traditional and recent
text representation techniques. We elaborate
on several aspects of our model and shed light
on its improved performance.

1 Introduction

Electronic Health Records (EHRs) (Dick et al.,
1997) contain a wealth of documented information
and insights about patients health and well-being.
However, it is difficult to effectively process such
data due to complex terminology, missing informa-
tion, and imprecise clinical descriptions (Friedman
et al., 2013; Rajkomar et al., 2019). In addition, an
especially challenging class of diseases are orphan
or rare diseases (Kodra et al., 2012; Walley et al.,
2018), which are diverse in symptoms and affect a
smaller percentage of the population.

In this paper, we investigate how well Natural
Language Processing (NLP) algorithms could re-
produce the performance of clinical experts in the
task of differential diagnosis–the process of dis-
tinguishing a particular disease from others that
present similar clinical features, given medical his-
tories (descriptions) of individual patients. We for-
mulate this task as a ranking problem where the aim
is to find the most probable diseases given medical
histories of patients (Dragusin et al., 2013).

We develop a novel pairwise ranking algorithm
that combines different views of patient and disease
descriptions, and prioritizes effective views through
an Attentive Multiview Neural Model (AMNM).
We research this problem using data from the Un-
diagnosed Diseases Network (UDN) (Gahl et al.,
2015; Ramoni et al., 2017)1, which includes con-
cise medical history of patients and their corre-
sponding diseases in the Online Mendelian Inher-
itance in Man (OMIM) dataset (Amberger et al.,
2015).2 All diagnoses–mappings between each pa-
tient and corresponding diseases–are provided by a
team of expert clinicians from the UDN.

The contributions of this paper are as follows:
• illustrating the impact of NLP in detecting the

nature of illness (diagnosis) in patients with
rare diseases in a real-world setting, and

• a novel neural approach that effectively com-
bines and prioritizes different views (represen-
tations) of inputs for ranking purposes.

Our Attentive Multiview Neural Model employs
traditional and recent representation learning tech-
niques and outperforms current pairwise neural
ranking approaches through effective data fusion
and attention strategies. We conduct several exper-
iments to illustrate the utility of different fusion
techniques for combining patient (query) and dis-
ease (document) representations.3

2 Method

In many domains, entities can be represented from
multiple views. For example, a patient can be rep-
resented by demographic data, medical history, di-
agnosis codes, radiology images, etc. We propose
a neural model to effectively prioritize important
views and combine them for ranking purposes.

1https://undiagnosed.hms.harvard.edu/
2https://www.omim.org/
3code: https://clu.cs.uml.edu/tools.html
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Figure 1 shows our model, which comprises of
three major components: (a): an attention network
that estimates and weights the contribution of each
view in the ranking process, (b): a fusion network
the utilizes intra-view feature interactions to ef-
fectively combine query-document representations,
and (c): a softmax layer at the end that estimates
the query-document relevance scores given their
combined representations. We first formulate the
problem and then explain these components.

2.1 Problem Statement
Let (q′, d′) and (q′′, d′′) denote two different views
of the same query and document (throughout the
paper, we think of queries and documents as clin-
ical descriptions of patients and diseases respec-
tively).4 These views can be obtained using tradi-
tional (Robertson and Walker, 1994) or recent (De-
vlin et al., 2019) representation learning techniques
applied to textual descriptions or codified data of
queries and documents. For example, q′ and d′

can indicate representations of the texts of a query
and a document, and q′′ and d′′ can indicate rep-
resentations of the medical concepts and codes
associated with the same query and document. Our
task is to determine a relevance score between each
given query and document. Toward this goal, we
effectively prioritize and combine these represen-
tations through Attention and Fusion neural net-
works, which are described blow.

2.2 Attention Model
We develop an attention sub-network to explicitly
capture the varying importance of views by assign-
ing attentive weights to them. Specifically, given
the embedding vectors of a query qi ∈ Rl and a
document di ∈ Rm in the ith view, we use a Feed-
forward network, i.e. function f(.) in Figure 1, to
estimate the vector a that captures attention weights
across views as follows:

f(qi,di) = ϕ(Wqqi + bq)> · ϕ(Wddi + bd),

a = softmax([f(qi,di),∀i]),
(1)

where Wq ∈ Rn×l and Wd ∈ Rn×m are weight
matrices to transform the query and document rep-
resentations into the same underlying space of di-
mension n, bq ∈ Rn and bd ∈ Rn are the train-
able bias vectors for the query and document re-
spectively and ϕ(.) is the ReLU function. The

4Our model can incorporate any number of views; we only
illustrate two views here for simplicity.
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Figure 1: The architecture of our Attentive Multiview
Neural Model (AMNM). For simplicity, we illustrate
two views only, e.g. (q′, d′) indicates representations
of the texts of a query and a document, and (q′′, d′′)
indicates representations of the medical codes and con-
cepts associated with the same query and document.
f(.) and g(.) indicate attention and fusion functions re-
spectively, and ai indicates the attentive weight of the
ith view estimated by the attention sub-network.

softmax activation function transforms the at-
tention weights to [0, 1] range. Assuming that the
query-document pair of the more influential view
are more similar in the underlying shared space (es-
timated by dot product in (1)), a captures attention
weights of different views.

2.3 Fusion Model

Previous learning to rank approaches often con-
catenate query and document representations to
combine their corresponding features (dos Santos
et al., 2015; Amiri et al., 2016). There are a few
approaches that explicitly capture feature interac-
tions between queries and documents (Severyn and
Moschitti, 2015; Echihabi and Marcu, 2003). We
extend these fusion techniques and compare them.

Given the attention weights from (1), we develop
a fusion sub-network, function g(.) in Figure 1,
to capture the intra-view feature interactions for
query and document representations of each view.
Our fusion network takes as input the attentive
embeddings of each view, i.e. (α× q, α× d), and
combines them through one of the following tensor
fusion operations:

gdot(αq, αd) =α2 × ϕ(Wqq+ bq)>·
ϕ(Wdd+ bd),

gouter(αq, αd) =α2 × q⊗ d,

gconv(αq, αd) =α2 × Conv1d(q⊗ d),

(2)
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where gdot, gouter, and gconv denote the dot prod-
uct, outer product, and one-dimensional (1D) con-
volution with average pooling. In contrast to gdot,
gouter and gconv are considerably more expensive
operations but may better encode feature interac-
tions. The output of function g is flattened and
considered as the intra-view embedding.

Finally, we obtain the overall fused representa-
tion for each view by concatenating its intra-view
and attentive embeddings. The representations of
all views are then fed into a softmax to estimate
the relevance between queries and documents.

3 Experiments

Data: Our data includes medical histories of 257
patients provided by the the Undiagnosed Diseases
Network (UDN5) (Gahl et al., 2015; Ramoni et al.,
2017), as well as general descriptions (including
clinical features) of more than 9K diseases avail-
able in the Online Mendelian Inheritance in Man
(OMIM) dataset (Amberger et al., 2015). The UDN
is a nationwide program that improves the level of
diagnosis for individual patients (with severe clin-
ical conditions) whose signs and symptoms have
been intractable to diagnosis (Kobren et al., 2021;
Amiri et al., 2021). To the best of our knowl-
edge, this dataset is the largest available dataset
for investigation on rare disease patients. The rel-
evance judgment between patients and diseases is
provided by a team of expert clinicians at the UDN.
The total number of positive patient-disease pairs
is 4, 746, where the number of unique diseases
among these pairs is 1, 131; note that different pa-
tients can match with the same disease. We split
the patients into training (80%), validation (10%),
and test (10%) sets. In addition, for each positive
pair in the training set, we create a negative pair
for the same patient through random sampling of
diseases. At test time, we create all the possible
patient-disease pair combinations (more than 218K
pairs) and use the estimated confidence scores of
the classifier to rank all diseases against each test
patient. In terms of views, we consider the texts of
medical histories and diseases as the first view, and
medical concepts and codes extracted from histo-
ries by QuickUMLS (Soldaini and Goharian, 2016)
as the second view.

5Access to phenotypic and genomic UDN data can be
granted by submitting an online access request at dbGaP:
https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs001232.
v1.p1.

We note the concept and code view provides a
higher level and more general semantic distinctions
by grouping semantically-similar terms, while text
view encodes other elements of semantics such as
negation, hedging, etc.

Baselines: We consider the following baselines:
• BM25 (Robertson et al., 1995): An unsuper-

vised approach that effectively predicts relevance
based on term frequency, inverse document fre-
quency, and document length.
• SVMs (Cortes and Vapnik, 1995): We de-

velop TF/IDF weighted ngrams (n=[1–2]) as fea-
tures for the text and code/concept views, and con-
duct exhaustive search over hyperparameters for
best performance on validation data. Such features
were found effective on clinical texts by previous
work (Howes et al., 2012; Reuber et al., 2009).
• BERT (Devlin et al., 2019): An attentive bidi-

rectional language model that estimates the rele-
vance between queries and documents by generat-
ing contextual representations, jointly conditioned
on left and right contexts. We use BERT models
developed for clinical text (Alsentzer et al., 2019).6

• SVMrank (Joachims, 2002): An extension of
SVMs to ranking problems which adaptively sorts
documents based on their relevance to each query
through empirical risk minimization. As features,
we use relevance scores or probability predictions
generated by the above baselines as well as addi-
tional features (unigram overlap and IDF-weighted
unigram overlap) (Yu et al., 2014) to better estab-
lish the relevance between queries and documents.
• PhenoTips (Girdea et al., 2013): This com-

mercial tool is currently used at the UDN to assist
diagnostic efforts. It utilizes external sources such
as the Human Phenotype Ontology (Köhler et al.,
2017) and Orphanet data7 to rank candidate dis-
eases according to their ontology-based similarity
to phenotypic descriptions of patients. PhenoTips
employs advanced statistical modeling to differen-
tiate candidate diseases, accounts for disorder fre-
quencies in the general population according to Or-
phanet, supports negative phenotypes–symptoms
that were not observed in the patient–and utilizes
both code and text views.

6We input medical concepts to BERT by replacing them
with their “preferred” concept, determined by UMLS (Lind-
berg, 1990; Bodenreider, 2004), across all patient and disease
descriptions. For example, “diabetes mellitus type 1,” “type 1
diabetes,” “juvenile diabetes” and “IDDM” are all converted
to “juvenile diabetes” (as the preferred concept).

7http://www.orpha.net
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Settings: Initial representations for patient and
disease descriptions are obtained from clinical
BERT (Devlin et al., 2019; Alsentzer et al., 2019),
i.e. d1, d2 = 768. In (1) and (2), we set the di-
mension of the shared space between query and
document representations to n = 100. In addi-
tion, for the CNN fusion model, see (2), we use
250 filters and kernel size of 3. Further details are
provided in the supplementary materials.

Evaluation Metrics: We employ Mean Av-
erage Precision (MAP), Precision at rank K
(P@K), and Precision-Recall curve implemented in
trec eval8 to compare competing systems. We
use t-test for significance testing and asterisk mark
(*) to indicate significant difference at ρ = 0.01.

3.1 Experimental Results
We report the performance of single and multiview
models separately to ease comparison between
views. The overall MAP and P@K, ∀K ∈ {5, 10},
performance of baselines for each view are reported
in Table 1. The results show that BERT outper-
forms the other baselines across almost all mea-
sures. We attribute the poor performance of BM25
and SVMs to considerable difference in the under-
lying word/concept distribution in query and docu-
ment spaces which can’t be effectively addressed
through lexical features (Burgun and Bodenreider,
2001; Pedersen et al., 2007).9 In addition, BERT
(code view) shows lower performance than BERT
(text view). We conjecture that this results could be
explained through the following points: (a): BERT
is a strong language model and is robust in retriev-
ing noun hypernyms or in completions involving
shared category or role reversal (Ettinger, 2020),
and (b): replacing medical concepts in text with
their preferred concepts (see footnote 6) makes the
original text less coherent, which can adversely
affect the performance of BERT.

Table 2 shows the performance of SVMrank with
combined features across views, PhenoTips, and
our Attentive Multiview Neural Model (AMNM)
with different fusion functions. AMNM com-
bines traditional and recent representation learn-
ing techniques by using BERT representations for
text view, and BERT and SVMs representations
for code view. All model combinations except

8https://trec.nist.gov/trec_eval/
9For example, these models can’t effectively match a query

containing “congestive heart failure” to relevant documents
containing “cardiac decompensation,” “pulmonary edema,”
and “ischemic cardiomyopathy.”

Text View Code View
Model MAP P@5 P@10 MAP P@5 P@10
BM25 4.1 5.0 3.8 6.5 8.3 6.3
SVMs 8.8 8.3 8.3 7.7 8.3 8.8
BERT 15.5 12.5 11.7 10.8 13.3 10.8
SVMrank 12.1 9.2 12.5 8.5 8.3 8.6

Table 1: MAP, P@5 and P@10 performance of base-
lines (in percentages) on text and code views.

Model Fusion MAP P@5 P@10
SVMrank text & code 12.9 12.5 12.9
PhenoTips text & code 15.4 8.3 5.4
AMNMbert-bert gdot 18.9* 14.2 17.5
AMNMbert-bert gouter 18.0* 16.7 17.5
AMNMbert-bert gconv 16.0* 10.0 12.1
AMNMbert-svms gdot 18.4* 18.3 17.9
AMNMbert-svms gouter 17.1* 17.5 17.1
AMNMbert-svms gconv 11.4 14.2 13.9

Table 2: Model performance across different fusion
functions. The Model column shows the source of rep-
resentations for text and code views respectively. * indi-
cates significant improvement against best-performing
baseline reported in Table 1.

for AMNMbert-svms (gconv) lead to significant im-
provement against the best performing baseline–
BERT (text view) in Table 1. AMNMbert-bert (gdot)
improves the best baseline by 3.4, 1.7 and 5.8
points in MAP, P@5 and P@10 respectively; the
corresponding improvement for AMNMbert-svms

(gdot) is 2.9, 5.8 and 6.2 points respectively. We
note that AMNMbert-svms (gdot) leads to consider-
ably higher P@{5,10}, metrics that have a pivotal
role in practical use of search systems. In addition,
PhenoTips shows comparable MAP to BERT but
has considerably lower P@{5,10}.10

The fusion functions gdot (dot product) and
gouter (outer product) outperform the more expen-
sive fusion function gconv (one-dimensional con-
volution). The lower performance of gconv could
be attributed to average pooling, which assumes
different input dimensions equally contribute to the
final representation and relevance. As a result, it
may fail to eliminate noisy features or prioritize
important ones.

10We note that, in case of rare and undiagnosed diseases,
any small improvement is crucial as it can lead to better di-
agnostic clues. Clinicians often look at the top K results
for clues and potential matches for each patient. Therefore,
compared to standard evaluation metrics, a more practical
evaluation metric for our task is Hit@K, which measures the
likelihood of observing “at least one” relevant disease in the
ranked list of top K diseases. The Hit@K (K = 20) perfor-
mance of our model is 0.49, while the corresponding value for
our best performing baseline is 0.37.
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3.2 Model Analysis

We discuss how and why AMNM achieves its im-
proved performance through the following experi-
ments; see supplementary materials for details:

Prediction Variance Across Views: The Pear-
son correlation between the Average Precision of
BERT (text view) and BERT (code view) on indi-
vidual test queries (patients) is 0.87, which indi-
cates less performance variation across views at
query level. This is while the corresponding corre-
lation between BERT (text view) and SVMs (code
view) is only 0.34. The lack of diversity in the
performance of BERT across these views could be
a source of improvement in AMNMbert-svms.

Attention Function: Given test examples (more
than 218K patient-disease pairs), our attention sub-
network is expected to assign a higher attentive
weight to the view that better estimates the corre-
sponding relevance score. To estimate the accu-
racy of this sub-network, we separately apply the
trained BERT (text view) and SVMs (code view)
models to generate their corresponding ranked lists
of diseases for test patients. Then, for each rele-
vant patient-disease pair, we evaluate our attention
function in AMNMbert-svms by measuring whether
it assigns a higher attentive weight to the better
view–the view that positions the relevant disease
at a higher rank compared to the other view. The
results show that (a): our attention sub-network
is 57.7% accurate in prioritizing better views, (b):
BERT (text view) outperforms SVMs (code view)
on 64.7% of relevant patient-disease pairs in terms
of relative ranks, and our attention network accu-
rately assigns higher weight to BERT on 88.6% of
these examples, and (c): on the remaining 35.3%
of examples that SVMs (code view) outperforms
BERT (text view) in terms of relative ranks, our at-
tention network assigns higher weight to SVMs in
only 0.9% of these examples. Improving this per-
centage could boost the performance of our model
and is the subject of our future work.

4 Related Work

The National Institutes of Health established the
Undiagnosed Diseases Network (UDN) (Gahl et al.,
2015; Ramoni et al., 2017) to facilitate research on
undiagnosed and rare diseases. The UDN is a net-
work of 12 clinical sites, and application to the
UDN is open to all individuals who complete the
application form and submit a referral letter from

a health care professional (Kobren et al., 2021). A
committee of experts in a review session reviews
each UDN application and makes admission de-
cisions. Walley et al. (2018) investigated major
factors that may determine application outcomes of
the UDN, which has been found effective in devel-
oping computational models for predicting admis-
sion outcomes (Amiri et al., 2021). In (Dragusin
et al., 2013), authors developed a search engine
for rare diseases, named FindZebra11, which was
based on information retrieval techniques available
in Indri search engine (Strohman et al., 2005). In
addition, previous work developed experimental
setup to evaluate and compare search engines such
as Google or Bing in predicting relevant diseases
to given phenotypes (Shenker, 2014), employed
medical anthologies and information content tech-
niques (Köhler et al., 2009), leveraged collabora-
tive filtering (Shen et al., 2017) and ensemble tech-
niques (Jia et al., 2018) for this purpose.

Our work departs from previous research by in-
vestigating a multiview approach to undiagnosed
patients, where we show effective attention and fu-
sion techniques lead to better pairwise ranking for
differential diagnosis.

5 Conclusion and Future Work

Given electronic health records of patients, we de-
velop an attentive multiview text representation
model to assist clinical experts by ranking the
most probable and relevant diseases. Accurate and
timely diagnosis is especially important for criti-
cally ill patients as it assists specialists to distin-
guish, prioritize, and accelerate treatment for such
patients. Our work can be improved by (a): enrich-
ing the feature space through patient- and disease-
specific information such patient demographic in-
formation and clinical synopsis of diseases, (b):
improving model’s attention mechanism, and (c):
tackling differences in word distributions across
patients (queries) and diseases (documents).
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Abstract

Crowdworker-constructed natural language in-
ference (NLI) datasets have been found to
contain statistical artifacts associated with the
annotation process that allow hypothesis-only
classifiers to achieve better-than-random per-
formance (Poliak et al., 2018; Gururangan
et al., 2018; Tsuchiya, 2018). We investi-
gate whether MedNLI, a physician-annotated
dataset with premises extracted from clinical
notes, contains such artifacts (Romanov and
Shivade, 2018).

We find that entailed hypotheses contain
generic versions of specific concepts in the
premise, as well as modifiers related to respon-
siveness, duration, and probability. Neutral hy-
potheses feature conditions and behaviors that
co-occur with, or cause, the condition(s) in
the premise. Contradiction hypotheses feature
explicit negation of the premise and implicit
negation via assertion of good health. Adver-
sarial filtering demonstrates that performance
degrades when evaluated on the difficult subset.
We provide partition information and recom-
mendations for alternative dataset construction
strategies for knowledge-intensive domains.

1 Introduction

In the clinical domain, the ability to conduct natural
language inference (NLI) on unstructured, domain-
specific texts such as patient notes, pathology re-
ports, and scientific papers, plays a critical role in
the development of predictive models and clinical
decision support (CDS) systems.

Considerable progress in domain-agnostic NLI
has been facilitated by the development of large-
scale, crowdworker-constructed datasets, including
the Stanford Natural Language Inference corpus
(SNLI), and the Multi-Genre Natural Language In-
ference (MultiNLI) corpus (Bowman et al., 2015;
Williams et al., 2017). MedNLI is a similarly-
motivated, healthcare-specific dataset created by a

small team of physician-annotators in lieu of crowd-
workers, due to the extensive domain expertise re-
quired (Romanov and Shivade, 2018).

Poliak et al. (2018), Gururangan et al. (2018),
Tsuchiya (2018), and McCoy et al. (2019) empiri-
cally demonstrate that SNLI and MultiNLI contain
lexical and syntactic annotation artifacts that are
disproportionately associated with specific classes,
allowing a hypothesis-only classifier to signifi-
cantly outperform a majority-class baseline model.
The presence of such artifacts is hypothesized to
be partially attributable to the priming effect of
the example hypotheses provided to crowdworkers
at annotation-time. Romanov and Shivade (2018)
note that a hypothesis-only baseline is able to out-
perform a majority class baseline in MedNLI, but
they do not identify specific artifacts.

We confirm the presence of annotation artifacts
in MedNLI and proceed to identify their lexical and
semantic characteristics. We then conduct adversar-
ial filtering to partition MedNLI into easy and diffi-
cult subsets (Sakaguchi et al., 2020). We find that
performance of off-the-shelf fastText-based
hypothesis-only and hypothesis-plus-premise clas-
sifiers is lower on the difficult subset than on the full
and easy subsets (Joulin et al., 2016). We provide
partition information for downstream use, and con-
clude by advocating alternative dataset construction
strategies for knowledge-intensive domains.1

2 The MedNLI Dataset

MedNLI is domain-specific evaluation dataset in-
spired by general-purpose NLI datasets, including
SNLI and MultiNLI (Romanov and Shivade, 2018;
Bowman et al., 2015; Williams et al., 2017). Much
like its predecessors, MedNLI consists of premise-
hypothesis pairs, in which the premises are drawn

1See https://github.com/crherlihy/clinical_nli_artifacts for
code and partition ids.
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from the Past Medical History sections of
a randomly selected subset of de-identified clinical
notes contained in MIMIC-III (Johnson et al., 2016;
Goldberger et al., 2000 (June 13). MIMIC-III was
created from the records of adult and neonatal in-
tensive care unit (ICU) patients. As such, complex
and clinically severe cases are disproportionately
represented, relative to their frequency of occur-
rence in the general population.

Physician-annotators were asked to write a def-
initely true, maybe true, and definitely false set
of hypotheses for each premise, corresponding to
entailment, neutral and contradiction labels, re-
spectively. The resulting dataset has cardinality:
ntrain = 11232; ndev = 1395; ntest = 1422.

3 MedNLI Contains Artifacts

To determine whether MedNLI contains annota-
tion artifacts that may artificially inflate the perfor-
mance of models trained on this dataset, we train a
simple, premise-unaware, fastText classifier to
predict the label of each premise-hypothesis pair,
and compare the performance of this classifier to a
majority-class baseline, in which all training exam-
ples are mapped to the most commonly occurring
class label (Joulin et al., 2016; Poliak et al., 2018;
Gururangan et al., 2018). Note that since annota-
tors were asked to create an entailed, contradictory,
and neutral hypothesis for each premise, MedNLI
is class-balanced. Thus, in this setting, a major-
ity class baseline is equivalent to choosing a label
uniformly at random for each training example.

The micro F1-score achieved by the fastText
classifier significantly exceeds that of the majority
class baseline, confirming the findings of Romanov
and Shivade (2018), who report a micro-F1 score
of 61.9 but do not identify or analyze artifacts:

dev test
majority class 33.3 33.3
fastText 64.8 62.6

Table 1: Performance (micro F1-score) of the
fastText hypothesis-only classifier.

As the confusion matrix for the test set shown
in Table 2 indicates, the fastText model is most
likely to misclassify entailment as neutral, and neu-
tral and contradiction as entailment. Per-class pre-
cision and recall on the test set are highest for con-
tradiction (73.2; 72.8) and lowest for entailment
(56.7; 53.8).

entailment neutral contradiction
entailment 255 151 68
neutral 126 290 58
contradiction 69 60 345

Table 2: Confusion matrix for fastText classifier.

4 Characteristics of Clinical Artifacts

In this section, we conduct class-specific lexi-
cal analysis to identify the clinical and domain-
agnostic characteristics of annotation artifacts as-
sociated with each set of hypotheses in MedNLI.

4.1 Preprocessing
We cast each hypothesis string in the MedNLI train-
ing dataset to lowercase. We then use a scispaCy
model pre-trained on the en_core_sci_lg cor-
pus for tokenization and clinical named entity
recognition (CNER) (Neumann et al., 2019a). One
challenge associated with clinical text, and scien-
tific text more generally, is that semantically mean-
ingful entities often consist of spans rather than
single tokens. To mitigate this issue during lexi-
cal analysis, we map each multi-token entity to a
single-token representation, where sub-tokens are
separated by underscores.

4.2 Lexical Artifacts
Following Gururangan et al. (2018), to identify
tokens that occur disproportionately in hypotheses
associated with a specific class, we compute token-
class pointwise mutual information (PMI) with add-
50 smoothing applied to raw counts, and a filter to
exclude tokens appearing less than five times in the
overall training dataset. Table 3 reports the top 15
tokens for each class.

PMI(token, class) = log2
p(token, class)

p(token, ·)p(·, class)

Entailment Entailment hypotheses are charac-
terized by tokens about: (1) patient status and re-
sponse to treatment (e.g., responsive; failed; longer
as in no longer intubated); (2) medications and
procedures which are common among ICU pa-
tients (e.g., broad_spectrum; antibiotics; pressors;
steroid_medication; underwent; removal); (3) gen-
eralized versions of specific words in the premise
(e.g., comorbidities; multiple_medical_problems),
which Gururangan et al. (2018) also observe in
SNLI; and (4) modifiers related to duration, fre-
quency, or probability (e.g., frequent, possible,
high_risk).

1021



entailment % neutral % contradiction %

just 0.25% cardiogenic_shock 0.33% no_history_of_cancer 0.27%
high_risk 0.26% pelvic_pain 0.30% no_treatment 0.27%
pressors 0.25% joint_pain 0.30% normal_breathing 0.27%
possible 0.26% brain_injury 0.32% no_history_of_falls 0.27%
elevated_blood_pressure 0.26% delerium 0.30% normal_heart_rhythm 0.28%
responsive 0.25% intracranial_pressure 0.30% health 0.26%
comorbidities 0.26% smoking 0.42% normal_head_ct 0.26%
spectrum 0.27% obesity 0.41% normal_vision 0.26%
steroid_medication 0.25% tia 0.32% normal_aortic_valve 0.27%
longer 0.26% acquired 0.31% bradycardic 0.26%
history_of_cancer 0.26% head_injury 0.31% normal_blood_sugars 0.27%
broad 0.26% twins 0.30% normal_creatinine 0.28%
frequent 0.25% fertility 0.30% cancer_history 0.26%
failed 0.26% statin 0.30% cardiac 0.33%
medical 0.29% acute_stroke 0.30% normal_chest 0.28%

Table 3: Top 15 tokens by PMI(token, class); % of class training examples that contain the token.

Neutral Neutral hypotheses feature tokens re-
lated to: (1) chronic and acute clinical conditions
(e.g., obesity; joint_pain; brain_injury); (2) clini-
cally relevant behaviors (e.g., smoking; alcoholic;
drug_overdose); and (3) gender and reproductive
status (e.g., fertility; pre_menopausal). Notably,
the most discriminative conditions tend to be com-
monly occurring within the general population and
generically stated, rather than rare and specific.
This presumably contributes to the relative diffi-
culty that the hypothesis-only fastText model
has distinguishing between the entailment and neu-
tral classes.

Contradiction Contradiction hypotheses are
characterized by tokens that convey normalcy and
good health. Lexically, such sentiment manifests
as: (1) explicit negation of clinical severity, medi-
cal history, or in-patient status (e.g., denies_pain;
no_treatment; discharged_home), or (2) affirma-
tion of clinically unremarkable findings (e.g., nor-
mal_heart_rhythm; normal_blood_sugars), which
would generally be rare among ICU patients. This
suggests a heuristic of inserting negation token(s)
to contradict the premise, which Gururangan et al.
(2018) also observe in SNLI.

4.3 Syntactic Artifacts

Hypothesis Length In contrast to Gururangan
et al. (2018)’s finding that entailed hypotheses in
SNLI tend to be shorter while neutral hypotheses
tend to be longer, hypothesis sentence length does
not appear to play a discriminatory role in MedNLI,
regardless of whether we consider merged- or
separated-token representations of multi-word enti-
ties, as illustrated by Table 4:

entailment neutral contradiction
mean median mean median mean median

separate 5.6 5.0 5.2 5.0 5.6 5.0
merged 5.3 5.0 4.9 5.0 5.3 5.0

Table 4: Average and median hypothesis length by
class and entity representation.

5 Physician-Annotator Heuristics

In this section, we re-introduce premises to our
analysis to evaluate a set of hypotheses regarding
latent, class-specific annotator heuristics. If annota-
tors do employ class-specific heuristics, we should
expect the semantic contents, ϕ, of a given hy-
pothesis, h ∈ H, to be influenced not only by the
semantic contents of its associated premise, p ∈ P ,
but also by the target class, c ∈ C.

To investigate, we identify a set of heuristics pa-
rameterized by ϕ(p) and c, and characterized by
the presence of a set of heuristic-specific Medical
Subject Headings (MeSH) linked entities in the
premise and hypothesis of each heuristic-satisfying
example. These heuristics are described below; spe-
cific MeSH features are detailed in the Appendix.

Hypernym Heuristic This heuristic applies
when the premise contains clinical condition(s),
medication(s), finding(s), procedure(s) or event(s),
the target class is entailment, and the generated hy-
pothesis contains term(s) that can be interpreted as
super-types for a subset of elements in the premise
(e.g., clindamycin <: antibiotic).

Probable Cause Heuristic This heuristic ap-
plies when the premise contains clinical condi-
tion(s), the target class is neutral, and the generated
hypothesis provides a plausible, often subjective
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or behavioral, causal explanation for the condition,
finding, or event described in the premise (e.g., as-
sociating altered mental status with drug overdose).

Everything Is Fine Heuristic This heuristic ap-
plies when the premise contains condition(s) or
finding(s), the target class is contradiction, and
the generated hypothesis negates the premise or
asserts unremarkable finding(s). This can take two
forms: repetition of premise content plus negation,
or inclusion of modifiers that convey good health.

Analysis We conduct a χ2 test for each heuris-
tic to determine whether we are able to reject
the null hypothesis that pattern-satisfying premise-
hypothesis pairs are uniformly distributed over
classes.

heuristic χ2 p-value top class

hypernym 59.15 1.4e-13‡ entail. (45.2%)
probable cause 111.05 7.7e-25‡ neutral (57.8%)
everything fine 874.71 1.1e-190‡ contradict. (83.8%)

Table 5: Results of χ2 test statistic by heuristic, com-
puted using the combined MedNLI dataset (‡ p < 0.001,
† p < 0.01, * p < 0.5). Top class presented with % of
heuristic-satisfying pairs.

The results support our hypotheses regarding
each of the three heuristics. Notably, the percentage
of heuristic-satisfying pairs accounted for by the
top class is lowest for the HYPERNYM hypothesis,
which we attribute to the high degree of semantic
overlap between entailed and neutral hypotheses.

6 Adversarial Filtering

To mitigate the effect of clinical annotation arti-
facts, we employ AFLite, an adversarial filtering
algorithm introduced by Sakaguchi et al. (2020)
and analyzed by Bras et al. (2020), to create easy
and difficult partitions of MedNLI.
AFLite requires distributed representations of

the full dataset as input, and proceeds in an iterative
fashion. At each iteration, an ensemble of n linear
classifiers are trained and evaluated on different ran-
dom subsets of the data. A score is then computed
for each premise-hypothesis instance, reflecting the
number of times the instance is correctly labeled
by a classifier, divided by the number of times the
instance appears in any classifier’s evaluation set.
The top-k instances with scores above a threshold,
τ , are filtered out and added to the easy partition;
the remaining instances are retained. This process
continues until the size of the filtered subset is < k,

or the number of retained instances is < m; re-
tained instances constitute the difficult partition.

To represent the full dataset, we use
fastTextMIMIC-III embeddings, which have
been pretrained on deidentified patient notes from
MIMIC-III (Romanov and Shivade, 2018; Johnson
et al., 2016). We represent each example as the
average of its component token vectors. We pro-
portionally adjust a subset of the hyperparameters
used by Sakaguchi et al. (2020) to account for the
fact that MedNLI contains far fewer examples
than WINOGRANDE2: specifically, we set the
training size for each ensemble, m, to 5620, which
represents ≈ 2

5 of the MedNLI combined dataset.
The remaining hyperparameters are unchanged:
the ensemble consists of n = 64 logistic regression
models, the filtering cutoff, k = 500, and the
filtering threshold τ = 0.75.

We apply AFLite to two different versions of
MedNLI: (1) Xh,m: hypothesis-only, multi-token
entities merged, and (2) Xph,m: premise and hy-
pothesis concatenated, multi-token entities merged.
AFLIte maps each version to an easy and diffi-
cult partition, which can in turn be split into train-
ing, dev, and test subsets. We report results for
the fastText classifier trained on the original,
hypothesis-only (hypothesis + premise) MedNLI
training set, and evaluated on the full, easy and
difficult dev and test subsets of Xh,m (Xph,m), and
observe that performance decreases on the difficult
partition:

model eval dataset full easy (∆) difficult (∆)

no premise majority class dev 0.33 0.34 (+0.01) 0.35 (+0.02)
no premise majority class test 0.33 0.35 (+0.02) 0.37 (+0.04)
no premise fastText dev 0.65 0.67 (+0.02) 0.46 (-0.19)
no premise fastText test 0.63 0.65 (+0.02) 0.4 (-0.23)
with premise majority class dev 0.33 0.45 (+0.12) 0.36 (+0.03)
with premise majority class test 0.33 0.48 (+0.15) 0.37 (+0.04)
with premise fastText dev 0.53 0.6 (+0.07) 0.43 (-0.1)
with premise fastText test 0.51 0.55 (+0.04) 0.4 (-0.11)

Table 6: Performance (micro F1-score) for the major-
ity class baseline and fastText classifiers, with and
without premise, by partition (e.g., full, easy, difficult).

7 Discussion

7.1 MedNLI is Not Immune from Artifacts
In this paper, we demonstrate that MedNLI suffers
from the same challenge associated with annotation
artifacts that its domain-agnostic predecessors have

2MedNLI’s training dataset contains 14049 examples
when the training, dev, and test sets are combined, while
WINOGRANDE contains 47K after excluding the 6K used for
fine-tuning.
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encountered: namely, NLI models trained on {Med,
S, Multi}NLI can perform well even without access
to the training examples’ premises, indicating that
they often exploit shallow heuristics, with negative
implications for out-of-sample generalization.

Interestingly, many of the high-level lexical char-
acteristics identified in MedNLI can be considered
domain-specific variants of the more generic, class-
specific patterns identified in SNLI. This observa-
tion suggests that a set of abstract design patterns
for inference example generation exists across do-
mains, and may be reinforced by the prompts pro-
vided to annotators. Creative or randomized prim-
ing, such as Sakaguchi et al. (2020) ’s use of anchor
words from WikiHow articles, may help to decrease
reliance on such design patterns, but it appears un-
likely that they can be systematically sidestepped
without introducing new, “corrective” artifacts.

7.2 A Prescription for Dataset Construction

To mitigate the risk of performance overestima-
tion associated with annotation artifacts, Zellers
et al. (2019) advocate adversarial dataset construc-
tion, such that benchmarks will co-evolve with
language models. This may be difficult to scale
in knowledge-intensive domains, as expert vali-
dation of adversarially generated benchmarks is
typically required. Additionally, in high-stakes
domains such as medicine, information-rich infer-
ences should be preferred over correct but trivial
inferences that time-constrained expert annotators
may be rationally incentivized to produce, because
entropy-reducing inferences are more useful for
downstream tasks.

We advocate the adoption of a mechanism de-
sign perspective, so as to develop modified anno-
tation tasks that reduce the cognitive load placed
on expert annotators while incentivizing the pro-
duction of domain-specific NLI datasets with high
downstream utility (Ho et al., 2015; Liu and Chen,
2017). An additional option is to narrow the gener-
ative scope by defining a set of inferences deemed
to be useful for a specific task. Annotators can then
map (premise, relation) tuples to relation-satisfying,
potentially fuzzy subsets of this pool of useful in-
ferences, or return partial functions when more
information is needed.

8 Ethical Considerations

When working with clinical data, two key ethi-
cal objectives include: (1) the preservation of pa-

tient privacy, and (2) the development of language
and predictive models that benefit patients and
providers to the extent possible, without causing
undue harm. With respect to the former, MedNLI’s
premises are sampled from de-identified clinical
notes contained in MIMIC-III (Goldberger et al.,
2000 (June 13; Johnson et al., 2016), and the hy-
potheses generated by annotators do not refer to
specific patients, providers, or locations by name.
MedNLI requires users to complete Health Insur-
ance Portability and Accountability Act (HIPAA)
training and sign a data use agreement prior to be-
ing granted access, which we have complied with.

Per MedNLI’s data use agreement requirements,
we do not attempt to identify any patient, provider,
or institution mentioned in the de-identified corpus.
Additionally, while we provide AFLite easy and
difficult partition information for community use
in the form of split-example ids and a checksum,
we do not share the premise or hypothesis text
associated with any example. Interested readers
are encouraged to complete the necessary training
and obtain credentials so that they can access the
complete dataset (Romanov and Shivade, 2018;
Goldberger et al., 2000 (June 13).

With respect to benefiting patients, the discus-
sion of natural language artifacts we have pre-
sented is intended to encourage clinical researchers
who rely on (or construct) expert-annotated clinical
corpora to train domain-specific language models,
or consume such models to perform downstream
tasks, to be aware of the presence of annotation
artifacts, and adjust their assessments of model per-
formance accordingly. It is our hope that these
findings can be used to inform error analysis and
improve predictive models that inform patient care.
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A Appendix

A.1 Hypothesis-only Baseline Analysis
To conduct the analysis presented in Section 3, we
take the MedNLI training dataset as input, and ex-
clude the premise text for each training example.
We cast the text of each training hypothesis to low-
ercase, but do not perform any additional prepro-
cessing. We use an off-the-shelf fastText clas-
sifier, with all model hyperparameters set to their
default values with the exception of wordNgrams,
which we set equal to 2 to allow the model to use bi-
grams in addition to unigrams (Joulin et al., 2016).
We evaluate the trained classifier on the hypotheses
contained in the MedNLI dev and test datasets, and
report results for each split.

A.2 Lexical Artifact Analysis
To perform the analysis presented in Section 4, we
cast each hypothesis string in the MedNLI training
dataset to lowercase. We then use a scispaCy
model pre-trained on the en_core_sci_lg cor-
pus for tokenization and clinical named entity
recognition (CNER) (Neumann et al., 2019a). Next,
we merge multi-token entities, using underscores as
delimiters—e.g., “brain injury”→ “brain_injury”.

When computing token-class pointwise mutual
information (PMI), we exclude tokens that ap-
pear less than five times in the overall training
dataset’s hypotheses. Then, following Gururan-
gan et al. (2018), who apply add-100 smoothing
to raw counts to highlight particularly discrimina-
tive token-class co-occurrence patterns, we apply
add-50 smoothing to raw counts. Our approach is
similarly motivated; our choice of 50 reflects the
smaller state space associated with a focus on the
clinical domain.

A.3 Semantic Analysis of Heuristics
To perform the statistical analysis presented in
Section 5, we take the premise-hypothesis pairs
from the MedNLI training, dev, and test splits,
and combine them to produce a single corpus.
We use a scispaCy model pre-trained on the
en_core_sci_lg corpus for tokenization and
entity linking (Neumann et al., 2019b), and link
against the Medical Subject Headings (MeSH)
knowledge base. We take the top-ranked knowl-
edge base entry for each linked entity. Linking
against MeSH provides a unique concept id, canon-
ical name, alias(es), a definition, and one or more
MeSH tree numbers for each recovered entity. Tree

numbers convey semantic type information by em-
bedding each concept into the broader MeSH hier-
archy 3. We operationalize each of our heuristics
with a set of MeSH-informed semantic properties,
which are defined as follows:

1. Hypernym Heuristic: a premise-hypothesis
pair satisfies this heuristic if specific clinical
concept(s) appearing in the premise appear in
a more general form in the hypothesis. For-
mally: {(p, h)|ϕ(p) ( ϕ(h)}. MeSH tree
numbers are organized hierarchically, and in-
crease in length with specificity. Thus, when
a premise entity and hypothesis entity are left-
aligned, the hypothesis entity is a hypernym
for the premise entity if the hypothesis entity
is a substring of the premise entity. To pro-
vide a concrete example: diabetes mellitus is
an endocrine system disease; the associated
MeSH tree numbers are C19.246 and C19,
respectively.

2. Probable Cause Heuristic: a premise-
hypothesis pair satisfies this heuristic if: (1)
the premise contains one or more MeSH enti-
ties belonging to high-level categories C (dis-
eases), D (chemicals and drugs), E (analyt-
ical, diagnostic and therapeutic techniques,
and equipment) or F (psychiatry and psy-
chology); and (2) the hypothesis contains
one or more MeSH entities that can be in-
terpreted as providing a plausible causal or
behavioral explanation for the condition, find-
ing, or event described in the premise (e.g.,
smoking, substance-related disorders, mental
disorders, alcoholism, homelessness, obesity).

3. Everything Is Fine Heuristic: a premise-
hypothesis pair satisfies this heuristic if the
hypothesis contains one or more of the same
MeSH entities as the premise (excluding the
patient entity, which appears in almost all
notes) and also contains: (1) a negation word
or phrase (e.g., does not have, no finding, no,
denies); or (2) a word or phrase that affirms
the patient’s health (e.g., normal, healthy, dis-
charged).

For each heuristic, we subset the complete
dataset to find pattern-satisfying premise-heuristic
pairs. We use this subset when performing the χ2

tests.
3https://meshb.nlm.nih.gov/treeView
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A.4 Adversarial Filtering
When implementing AFLite, we follow Sak-
aguchi et al. (2020). We use a smaller training
set size of m = 5620, but keep the remaining hy-
perparameters unchanged, such that the ensemble
consists of n = 64 logistic regression models, the
filtering cutoff, k = 500, and the filtering threshold
τ = 0.75.
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Abstract
With the explosion of chatbot applications,
Conversational Question Answering (CQA)
has generated a lot of interest in recent
years. Among proposals, reading comprehen-
sion models which take advantage of the con-
versation history (previous QA) seem to an-
swer better than those which only consider the
current question. Nevertheless, we note that
the CQA evaluation protocol has a major lim-
itation. In particular, models are allowed, at
each turn of the conversation, to access the
ground truth answers of the previous turns.
Not only does this severely prevent their appli-
cations in fully autonomous chatbots, it also
leads to unsuspected biases in their behavior.
In this paper, we highlight this effect and pro-
pose new tools for evaluation and training in
order to guard against the noted issues. The
new results that we bring come to reinforce
methods of the current state of the art.

1 Introduction

The ability to automatically answer questions from
a set of raw text paragraphs has long been coveted
by computer scientists (Woods, 1977). For appli-
cations in search engines, one could consider an
isolated task where a user formulates a single ques-
tion (Croft et al., 2010; Siblini et al., 2020). But
recently, with usage in conversational agents (e.g.
chatbots), a more contextualized variant referred
to as Conversational Question Answering (CQA)
has attracted a great deal of attention (Reddy et al.,
2019; Choi et al., 2018). CQA differs from tradi-
tional (extractive) Question Answering (Rajpurkar
et al., 2016) because Question-Answer (QA) pairs
are not single but come in sequences within conver-
sations. Therefore, models can use previous turns
as context to extract the answer of the current ques-
tion (Zhu et al., 2018; Huang et al., 2018; Qu et al.,
2019a). In some cases, the history is even crucial
to disambiguate pronouns in the question.

Similarly to other NLP tasks, the state-of-the-
art approaches for CQA are variants of the Trans-
former Encoder (Vaswani et al., 2017), a deep neu-
ral network with several self-attention layers that
produce contextualized representations of the ”to-
kens” (words, subwords) that compose a text. For
instance, models like BERT (Devlin et al., 2019;
Lan et al., 2019; Sanh et al., 2019) obtain a more
than decent performance on CQA datasets like
QuAC (Choi et al., 2018) or CoQA (Reddy et al.,
2019). However, they miss the context to fully un-
derstand the questions. Proposals have been made
to integrate the history in several manners: using
a recursive strategy (Huang et al., 2018), append-
ing previous QAs to the current question as input
(Zhu et al., 2018), and contextualizing the question-
paragraph pair with respect to the history. We
can mention in particular BERT-HAE and BERT-
PHAE (Qu et al., 2019a,b) which improve BERT in
a simple yet efficient way by encoding, in addition
to segment and position, the fact that parts of the
paragraph’s words belonged to previous answers.

2 Motivation and main contributions

Our objective here is not to propose yet another
model to try to obtain the best predictive score on
CQA leaderboards. Instead, we focus our think-
ing around the current evaluation/training proto-
cols with regards to the possible application cases.
The starting point of our reflection is that cur-
rently, when evaluated on CQA datasets, models
like BERT-HAE use the ground-truth answers of
previous turns as context to answer the current ques-
tion. This limits the scope of applicability to only a
”semi-automatic” bot that would require a human
providing supervision at each turn. We also show
how it biases the selection of models towards those
with an undesired filter behavior.

To make approaches from the literature usable
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in more difficult/realistic scenarios like standalone
chatbots (in which they can only access the previ-
ous questions and their predictions of the answers),
we make the following contributions: (1) We imple-
ment new evaluation tools to first highlight the cur-
rent unnoticed and undesirable behavior: in ground-
truth free conditions, CQA approaches can become
even less accurate than baselines like BERT which
do not exploit the history at all. (2) We develop
the analog training protocol to make approaches ro-
bust to the observed issues. In particular, this gives
back state-of-the-art models the strength to outper-
form the baseline but this time in a scenario that
connects better to real-world conversational agents.
Our work comes with an implementation of conver-
sational QA tools, based on the most widely used
transformers library (Wolf et al., 2019).

3 Conversational Question Answering

Conversational Question Answering (CQA) is a
Natural Language Processing task related to Ma-
chine Comprehension (MC) (Zhang et al., 2019;
Gupta et al., 2020). MC has grown significantly
over the last decade, particularly thanks to (1)
large scale datasets such as SQuAD (Rajpurkar
et al., 2016) or Natural Questions (Kwiatkowski
et al., 2019), (2) the improvement of representation
learning models (Joulin et al., 2017), (3) powerful
mechanisms such as attention (Yang et al., 2016;
Vaswani et al., 2017), and (4) the emergence of
several related topics like multi-lingual modeling
(Pires et al., 2019; Siblini et al., 2019) or Conver-
sational Question Answering (Choi et al., 2018;
Reddy et al., 2019).

In CQA, questions are grouped in conversations
and often require the context, i.e. previous QA
turns, to be fully understandable. QuAC (Choi
et al., 2018) and CoQA (Reddy et al., 2019) are
two examples of CQA datasets. They were both
generated by humans (a ”student” and a ”teacher”)
through conversations where the student asks a se-
ries of questions, complementary or not, on a given
paragraph and the teacher answers them. In this
paper, we focus on QuAC (Question Answering
in Context) which is more recent and described as
more challenging than CoQA (Choi et al., 2018).
It contains 14k conversations and around 100k
question-paragraph pairs, split into a training set
(11,567 conversations / 83,568 questions), a valida-
tion set (1,000 conversations / 7,354 questions) and
a test set. It evaluates models with several metrics,

the main one being the F1-score (Flach, 2003).
Models proposed for QuAC are similar to those

developed for SQuAD (e.g. BiDAF (Seo et al.,
2016) or BERT (Devlin et al., 2019)) but they addi-
tionally integrate the history. A popular example is
BERT-HAE (Qu et al., 2019a). It uses BERT’s ar-
chitecture but modifies the input embedding layer
to add a novel component: the History Answer
Embedding (HAE). As usual, the input question-
paragraph pair is tokenized and marked with po-
sitions and segments. Then, an additional History
Answer marker is added to indicate whether the to-
kens belonged to answers of previous questions or
not, and the resulting embedding is simply added
to the other embedding vectors (token, position,
segment) before the self-attention blocks. BERT-
HAE was enhanced, in a later publication (Qu et al.,
2019b) by BERT-PHAE (Positional HAE) which
additionally encodes the turn position of the an-
swers in the history. Although very promising, we
note that BERT-HAE and BERT-PHAE, as well
as other state of the art models for QuAC, access
the ground-truth answers of previous turns during
evaluation. Therefore, reported results only reflect
the performance within a reduced scope of appli-
cability. In the following, we detail this limitation
and propose to complement the current protocol in
order to improve both evaluation and training.

4 A more Robust Protocol

Consider a standalone chatbot that successively an-
swers questions from documents. At each turn, it
cannot know for sure the ground truth (GT) answers
of the previous turns except if the user or another
human provides supervision. This could happen in
scenarios where the role of the algorithm is only to
provide answer suggestions (semi-automatic) to a
human agent (e.g. in customer support). However,
applications often seek bots where the question-
answer loop is automated (standalone). Here we
investigate this second setting. We start by repro-
ducing the literature results on the semi-automatic
scenario, then we exhibit the limits and propose
solutions for our target scenario.

4.1 Reproducing the Regular Evaluation in
the Semi-automatic Scenario

To evaluate the baseline performance (semi-
automatic), we train BERT-HAE and BERT-PHAE
on QuAC using the protocol described by the au-
thors (Qu et al., 2019a) and the same hyperparame-
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ters: history markers from up to 6 turns, and spe-
cific optimization parameters (12 as batch size, 3e-
5 as learning rate with a linear decrease to 0 over
24k training steps). We implement our own train-
ing script on the basis of codes pieces from the
transformers library (Wolf et al., 2019) and BERT-
HAE’s authors1. Experiments are run with a Nvidia
Tesla V100 GPU.

Model F1 Uses history

BiDAF++ (Choi et al., 2018) 51.8 No

BERT (Qu et al., 2019a) 54.4 (54.8) No
BERT-HAE (Qu et al., 2019a) 63.1 (63.4) Yes
BERT-PHAE (Qu et al., 2019b) 64.7 (64.4) Yes

Table 1: F1-score of BERT, BERT-HAE, BERT-PHAE
and a previous baseline on QuAC using the regular eval-
uation protocol. We display the original results pub-
lished by the authors and the ones we reproduced (in
parentheses).

Our results are roughly equal to those previously
reported (Table 1). BERT’s F1 score is 54.8, which
compares favorably to previous baselines such as
BiDAF. By adjusting the representation of the to-
kens based on the history of answers, BERT-HAE
allows a significant improvement to 63.4 (+15.7
%). The position of the turns in the history also
has its importance allowing BERT-PHAE to fur-
ther improve the F1-score to 64.4. This is probably
because questions are often related to the answers
that directly precede them. To improve the results
even further, one can also select a specific subset
of turns in the history (Qu et al., 2019b).

4.2 Critical Analysis: The Filtering Behavior
Although promising, the aforementioned results
need to be considered with caution. A hasty con-
clusion is that adding the history allows the model
to benefit from a context and hence to better process
the current question. However the improvement
could also be explained by a bias in the dataset at
hand. Indeed, this question answering task is ex-
tractive, i.e. answers are selected from a paragraph.
In the course of a conversation in QuAC, an aver-
age of 7 questions are successively asked on the
same rather small paragraph. Thus simply filtering
the paragraph tokens with the answer history pro-
vides the advantage of reducing considerably the
list of possible remaining answers. Note however
that such a filtering could also have a negative ef-
fect, in the presence of overlap between answers.

1https://github.com/prdwb/bert_hae

To get better insights of the impact of a filtering
behavior in practice, we run three experiments.

Model F1 F1 w/ post filtering

BEST 95.6 92.7
BERT 54.8 56.9
BERT-HAE 63.4 62.5

Table 2: Evaluation of the impact of post-filtering on
BEST, BERT and BERT-HAE.

Experiment 1: The negative impact of filtering
due to overlap We first compute the best reach-
able F1-score (that we refer to as BEST) as if we
had a model that always predicts the expected an-
swer. Then we compute ”BEST w/ post filtering”
with the same predictions except that we post-filter
all tokens that belong the 6 previous turns’ answers,
except for the ”Cannot Answer” tokens (reserved
for unanswerable questions). BEST F1 score is
95.62 while ”BEST F1 w/ post filtering” is lower
but very close: 92.7 (Table 2). This tells us that
the maximal negative impact of a filtering strategy
on QuAC is weak. We find an explanation by do-
ing proportion measurements in QuAC’s eval set:
in particular, the percentage of overlapping tokens
(resp. non overlapping tokens) between answers
is low (resp. high): 5.7% (resp. 74.1%), the other
20.2% being the ”Cannot Answer” tokens.

Experiment 2: Global impact of a post filtering
on the models After 6 turns, sometimes almost
half of the paragraph tokens belong to the history
of answers. Even if experiment 1 suggests a nega-
tive impact of filtering due to overlap, the positive
impact on our baselines (due to the significant re-
duction of the number of candidate answers) could
counterbalance. We therefore re-evaluate the mod-
els trained in section 4.1, but this time we apply a
post processing of their predictions: the start/end
logits of tokens that belong to the answers of pre-
vious turns are set to −∞, except for the ”Cannot
Answer” tokens. This forces previous answers to
be excluded from the final predicted span text. This
simple strategy to integrate the history in BERT al-
lows an improvement to an F1-score of 56.9 (Table
2). On the contrary, it globally reduces the score

2Intuitively, it should be 100. But this value is unreachable
in practice. The reason is that questions in QuAC have several
acceptable answers (span texts of various length) and we select
one randomly as BEST prediction. And, QuAC’s official
evaluation script computes, for each sample, the average F1
between the prediction and all possible answers.
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of BERT-HAE to 62.5 (a reduction factor slightly
lower than with BEST). These results suggest that
access to ground-truth answers of previous turns
allows in QuAC, in which the overlap is weak, a
filtering mechanism to be a positive way of integrat-
ing history. Results also suggest that BERT-HAE
might already implicitly integrate a filtering behav-
ior. Unquestionably, it does it in a more expressive
manner than our hard post-processing, since the
history markers are passed as inputs to the model.

Experiment 3: Does BERT-HAE exhibit a fil-
ter behavior? Although suggested by the previous
experiment, we want to answer this question more
clearly. We consider an experiment aligned with
the philosophy of adversarial attacks (Akhtar and
Mian, 2018; Morris et al., 2020). During evalua-
tion, we systematically modify the history answer
markers so that the tokens of the current expected
answer are marked as if they belonged to the his-
tory. The results obtained from this evaluation pro-
tocol are displayed under the column ”F1 w/ Adv”
in Table 3. F1 w/ Adv allows to measure, with
the F1 metric, the ability of the models to answer
a question when its answer has already appeared
in the conversation before. In this condition, we
observe a dramatic drop in BERT-HAE’s perfor-
mance (from 63.4 to 41.7), and an even worse for
BERT-PHAE. This confirms that these models tend
to output lower probabilities for tokens that are in
the history, which suggests a filtering behavior and
makes their usage potentially counter productive.

4.3 Proposed Evaluation for the Standalone
Scenario

The current evaluation protocol on QuAC’s valida-
tion set can bias model selection towards those able
to implement a filtering behavior, which seems to
be the case for BERT-(P)HAE. Thus, it does not
guarantee a robust behavior in a fully autonomous
bot. Here we propose an extension.

Inspired by the literature of recurrent mod-
els, we refer to the regular evaluation protocol,
which access to ground truth answers of previous
turns, as the ”Teacher Forcing” (w/ TF) proto-
col. Analogically, we consider a mode ”without
Teacher Forcing” (w/o TF) where models pro-
cess a conversation in the natural order and only
use their predictions as history. The latter is out-
lined in Algorithm 1, where ”build mark” refers
to a function that computes the new HAE mark-
ers given the previous ones and the new answer.

Note that the algorithm for evaluation w/ TF sim-
ply replaces ”build mark(HAE,answerpred)” with
”build mark(HAE,answerGT)”.

Algorithm 1 Evaluation w/o TF
1: s← 0
2: for conversation ∈ valid set do
3: HAE← None
4: for turn ∈ conversation do
5: question← turn[’question’]
6: answerGT← turn[’answer’]
7: answerpred← model(question, HAE)
8: HAE← build mark(HAE,answerpred)
9: s← s + F1(answerpred,answerGT)

10: end for
11: end for
12: return s

card(valid set)

When we take the models trained in section 4.1
(w/ TF) and evaluate them with the new standalone
protocol (w/o TF), Table 3 shows that the perfor-
mance drops from 63.4 to 53.5 with BERT-HAE
and from 64.4 to 54.2 with BERT-PHAE. Con-
cretely, although unsuspected with the original pro-
tocol, the approaches do not necessarily seem ad-
vantageous compared to BERT here. This in no
way detracts the interest of these proposals, which
implement clever architectures to integrate the his-
tory. It only prevents their application, as is, in the
standalone scenario. Nevertheless, now that this
issue is identified, we can try to design an appro-
priate strategy to avoid it from the start, by taking
measures at the training phase.

4.4 Training for the Standalone Scenario

To complement the proposed evaluation protocol
with a training one, we propose to apply a recipe
inspired by the most popular defense mechanism
against adversarial attacks called adversarial train-
ing (Ren et al., 2020), i.e. we introduce the dis-
ruptive element (here the mode without Teacher
Forcing) at training time. We consider three heuris-
tics: (1) we disable TF during all the training steps
(Robust), (2) we disable TF randomly based on a
Coin Flip (Robust-CF), (3) we progressively dis-
able TF from 0% of the steps to 100% of the steps
over the training iterations (Robust-P). The new
training process is detailed in Algorithm 2, where
”update” refers to the optimization algorithm that
updates the model based on the loss and ”heuris-
tic.condition” is a condition that depends on the
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heuristic (e.g. always true for heuristic (1)). Note
that both heuristics (2) and (3) are inspired from
scheduled sampling methods (Bengio et al., 2015)
adapted to the context of CQA.

Algorithm 2 Robust Training

1: for conversation ∈ train set do
2: HAE← None
3: for turn ∈ conversation do
4: question← turn[’question’]
5: answerGT← turn[’answer’]
6: answerpred← model(question, HAE)
7: l← loss(answerpred,answerGT)
8: update(model,l)
9: if heuristic.condition then

10: answeradd ← answerpred
11: else
12: answeradd ← answerGT
13: end if
14: HAE← build mark(HAE,answeradd)
15: end for
16: end for
17: return model

We obtain encouraging results (Table 3). In par-
ticular, BERT-PHAE Robust-P reaches a F1-score
of 58.1 in the standalone scenario which is better
than BERT’s F1. Besides, ”F1 /w Adv” for BERT-
(P)HAE Robust seems to indicate that, the less we
apply TF, the less the entailed model exhibits a
filtering behavior. In fact, all the robust variants ex-
hibit a weaker filtering behaviour than the original
methods.

Model F1 w/ TF F1 w/o TF F1 w/ Adv

BERT - 54.4 -

BERT-HAE 63.4 53.5 41.7
BERT-HAE Robust 59.5 56.6 51.7
BERT-HAE Robust-CF 61.6 55.9 47.4
BERT-HAE Robust-P 60.7 56.7 50.7

BERT-PHAE 64.4 54.2 40.7
BERT-PHAE Robust 60.5 57.4 53.3
BERT-PHAE Robust-CF 62.2 56.4 47.7
BERT-PHAE Robust-P 62.4 58.1 51.6

BERT-AH - 58.3 -

Table 3: Evaluation of BERT, BERT-HAE, BERT-
PHAE, BERT-AH and the robust variants with different
validation protocols.

Our experiment and results leave room for im-
provement with additional considerations on pro-
tocols/parameters/models. For instance, contrary
to answers, standalone models can have access to

the exact history of questions. What if we inte-
grated the latter instead of the answer history in the
model’s input? We tested this by implementing a
simple model that we refer to as BERT-AH (Ap-
pended History) in which previous questions are
added to the regular BERT’s inputs, and marked
with a special embedding. BERT-AH obtains an
F1-score of 58.3 (whatever the evaluation protocol,
since answer history is not used). Thus, our guess
is that the best direction for standalone CQA lies
towards both the integration of previous questions
and the robust integration of previous answers.

5 Conclusion

The work presented in this paper comes to comple-
ment the current training and evaluation protocols
for CQA. It allows (1) highlighting unnoticed and
undesirable behavior in existing approaches from
the literature and (2) more robustness for their ap-
plication in autonomous chatbots. We hope that
this will encourage additional proposals in the same
direction. Several improvements could be made in
the future. First, because without Teacher Forcing
the history is now predicted and not fixed, we could
explore the impact of updating the model by back-
propagating an answer’s error through all previous
turns and not only the current one. This would be
analog to backpropagation through time. Second,
we could augment the current CQA datasets or pro-
pose new ones to prevent the biases we observed:
for example, QuAC could have conversations in-
cluding wrong answers, since this occurs in real-
life, so that models could be properly trained for.
The associated turns would of course only be used
as a part of histories. Finally, we should perform
user tests to evaluate the robustness of models in
real-life, because when a model’s answer is wrong,
we expect it to impact the next user’s question(s).
And this cannot be taken into account with the cur-
rent protocol since the datasets are static.
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Abstract

Existing models on Machine Reading Com-
prehension (MRC) require complex model ar-
chitecture for effectively modeling long texts
with paragraph representation and classifica-
tion, thereby making inference computation-
ally inefficient for production use. In this
work, we propose VAULT: a light-weight and
parallel-efficient paragraph representation for
MRC based on contextualized representation
from long document input, trained using a
new Gaussian distribution-based objective that
pays close attention to the partially correct
instances that are close to the ground-truth.
We validate our VAULT architecture show-
ing experimental results on two benchmark
MRC datasets that require long context model-
ing; one Wikipedia-based (Natural Questions
(NQ)) and the other on TechNotes (TechQA).
VAULT can achieve comparable performance
on NQ with a state-of-the-art (SOTA) complex
document modeling approach while being 16
times faster, demonstrating the efficiency of
our proposed model. We also demonstrate that
our model can also be effectively adapted to a
completely different domain – TechQA – with
large improvement over a model fine-tuned on
a previously published large PLM.

1 Introduction
Machine Reading Comprehension (MRC) has seen
great advances in recent years with the rise of
pre-trained language models (PLM) (Devlin et al.,
2019; Liu et al., 2019; Lan et al., 2019) and public
leaderboards (Rajpurkar et al., 2016, 2018; Yang
et al., 2018; Joshi et al., 2017; Welbl et al., 2018;
Kwiatkowski et al., 2019). While some challenges
(Rajpurkar et al., 2016, 2018) focus on reading
comprehension with shorter contexts, many others

∗ Work done during an internship at IBM Research AI.
† Equal contributions.

(Welbl et al., 2018; Joshi et al., 2017; Kwiatkowski
et al., 2019; Tanaka et al., 2021) focus on longer
contexts that cannot fit into a typical 512 sub-token
transformer window. Motivated by this, we focus
on reading comprehension with long contexts.

One newer approach to this task (Zheng et al.,
2020) focuses on modeling document hierarchy to
represent multi-grained information for answer ex-
traction. Although this approach creates a strong
representation of the text, it suffers from a sig-
nificant drawback. The graph-based methods
(Veličković et al., 2018) are inefficient on parallel
hardware, such as GPUs, resulting in slow infer-
ence speed (Zhou et al., 2018; Zheng et al., 2020).
Motivated by this, in this paper, we propose a
reading comprehension model that addresses the
above issue and uses a more light-weight, parallel-
efficient (i.e. efficient on parallel hardware) para-
graph representation based on long contextual rep-
resentations for providing paragraph answers to
questions. Instead of modeling document hierarchy
from tokens to document pieces, we first introduce
a base model that builds on top of a large “long-
context" PLM (we use Longformer, Beltagy et al.,
2020) to model longer contexts with lightweight
representations of each paragraph. We note that
while our approach could work with any PLM, we
expect it to perform better with models that can
support long contexts and therefore see more para-
graph representations at once (Gong et al., 2020).
To provide our model a notion of paragraph posi-
tion relative to a text we also introduce position-
aware paragraph representations (PAPR) utilizing
special markup tokens and provide them as input
for efficient paragraph classification. This approach
allows us to encode paragraph-level position in the
text and teach the model to impute information on
each paragraph into the hidden outputs for these
tokens that we can exploit to determine in which
paragraph the answer resides. We then predict the
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answer span from this identified paragraph.

While previous MRC methods (Chen et al.,
2017; Devlin et al., 2019) use ground-truth start
and end span positions exclusively as training ob-
jectives when extracting answer spans from the
context and consider all other positions as incor-
rect instances equally. However, spans that over-
lap with the ground-truth should be considered as
partially correct. Motivated by Li et al. (2020)
which proposes a new optimization criteria based
on constructing prior distribution over synonyms
for machine translation, we further propose to im-
prove the above base model by considering the start
and end positions of ground-truth answer spans as
Gaussian-like distributions, instead of single points,
and optimize our model using statistical distance.

We call this final model, VAULT (VAriable
Unified Long Text representation) as it can handle
a variable number and lengths of paragraphs at any
position with the same unified model structure to
handle long texts.

To evaluate the performance of VAULT, we se-
lect the new Natural Questions (NQ, Kwiatkowski
et al., 2019) and TechQA (Castelli et al., 2020)
datasets. NQ attempts to make Machine Read-
ing Comprehension (MRC) more realistic by pro-
viding longer Wikipedia documents as contexts
and real user search-engine queries as questions,
and aims at avoiding observation bias: high lexi-
cal overlap between the question and the answer
context which can happen frequently if the ques-
tion is created after the user sees the paragraph
(Rajpurkar et al., 2016, 2018; Yang et al., 2018;
Chakravarti et al., 2020; Karpukhin et al., 2020;
Lee et al., 2019; Murdock et al., 2018). The task in-
troduces the extraction of long answers (henceforth
LA; typically paragraphs) besides also requiring
short answers (henceforth SA) similar to SQuAD
(Rajpurkar et al., 2016). In Figure 1 we examine
an example from NQ along with the answers of
VAULT and (Zheng et al., 2020). We see that while
VAULT can extract answers from the very bottom
of a page – if relevant – the existing system suf-
fers from positional bias. It often predicts answers
from the first paragraph of Wikipedia (a region
which often contains the most relevant informa-
tion). We evaluate our model for domain adapta-
tion on TechQA, a recently introduced challenging
dataset for QA on technical support articles where
answers are typically 3-5 times longer than stan-
dard MRC datasets (Rajpurkar et al., 2016, 2018).

Figure 1: Example from the NQ dataset with answers
from VAULT and (Zheng et al., 2020).

Empirically we first show that VAULT achieves
comparable performance on NQ with (Zheng et al.,
2020)’s document modeling architecture based on
graph neural networks while being 16 times faster,
demonstrating the efficiency of our proposed model.
Secondly, we show the generalization of our model
architecture for domain adaptation on TechQA. Our
experiments show that our model pre-trained on
NQ can be effectively adapted to TechQA outper-
forming a standard fine-tuned model trained on a
large PLM such as RoBERTa. To summarize, our
contributions include:

1. We introduce a novel and effective yet simple
paragraph representation.

2. We introduce soft labels to leverage informa-
tion from local contexts near ground-truth dur-
ing training which is novel for MRC.

3. Our model provides similar performance to
a SOTA system on NQ while being 16 times
faster and also effectively adapts to a new do-
main: TechQA.

2 Related Work

Machine reading comprehension has been widely
modeled as cloze-type span extraction (Chen et al.,
2017; Cui et al., 2017; Devlin et al., 2019). In NQ,
we need to identify answers in two levels, long
and short answers. (Alberti et al., 2019a) adapt a
span extraction model for short answer extraction.
(Zheng et al., 2020; Liu et al., 2020) construct com-
plex networks for paragraph-level representation
to enhance long answer classification along with
span extraction for short answers. In this work, we
propose a more light-weight and parallel-efficient
way for constructing paragraph-level representa-
tion and classification by using longer context and
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modeling the negative instance through Gaussian
prior optimization.

Using the hierarchical nature of a long docu-
ment for question answering has been previously
studied by (Choi et al., 2017), where they use a
hierarchical approach to select candidate sentences
and extract answers in those candidates. However,
due to the limit of input length for large PLMs, ex-
isting methods (Alberti et al., 2019b; Zheng et al.,
2020; Chakravarti et al., 2020) slice long docu-
ments into document pieces and perform prediction
for each piece separately. In our work, we show
that by modeling longer input with position-aware
paragraph representation coupled with Gaussian
prior optimization (which is novel for MRC), we
can achieve comparable performance using much
simpler architecture compared to previous models,
which coincide with recent new PLM for long in-
puts on question answering (Ainslie et al., 2020)1.

3 Model Architecture
In this section, we introduce VAULT, our proposed
model that uses a simple yet effective paragraph
representation based on a longer context. VAULT

starts from a base classifier that utilizes position-
aware paragraph representations trained on top of
a large PLM: Longformer (Beltagy et al., 2020).
Next, we further introduce our Gaussian Prior-
based training objective that considers partial cred-
its for positions near the ground-truth, instead of
only focusing on one ground-truth position. We
show an overview of VAULT on the example from
Figure 1 in Figure 2.

3.1 A Base “Paragraph” Predictor Model

SOTA methods for paragraph prediction (Zheng
et al., 2020; Liu et al., 2020) represent paragraphs
through expensive graph modeling, making it inef-
ficient for “large-scale” production MRC systems.
On the other hand, simply selecting the first para-
graph performs poorly (Kwiatkowski et al., 2019).
We hypothesize that by modeling a much longer
context even simple paragraph representation can
be effective for paragraph (i.e., long answers) clas-
sification. For this purpose, we employ a large-
window PLM: Longformer (Beltagy et al., 2020),
which has shown effectiveness in modeling long
contexts for QA (Yang et al., 2018; Welbl et al.,
2018; Joshi et al., 2017). Compared to conven-

1The code and model weights of ETC has not been released
at the time of writing of the paper for us to have an accurate
comparison.

tional Transformer-based PLMs e.g. RoBERTa
(Liu et al., 2019) that can only take up to 512 sub-
word tokens, Longformer provides a much larger
maximum input length of 4,096.
Position-aware Paragraph Representation
(PAPR): To address the fact that many popular
unstructured texts such as Wikipedia pages have
relatively standard ways of displaying certain
relevant information (e.g. birthdays are usually in
the first paragraph vs. spouse names are in the “Per-
sonal Life” paragraph), we provide the base model
with a representation of which part of the text it is
reading by marking the paragraphs with special
atomic markup tokens ([paragraph=i]) at
the beginning of each paragraph, indicating the
position of the paragraph within the text2. With this
input representation, we then directly perform long
answer classification using the special paragraph
token output embedding. Formally, for every
paragraph li ∈ P , where P are all paragraphs in a
text and the representation for the corresponding
markup token hp

i , the logit of a paragraph answer
a it computes is as api = Whp

i + b.
We obtain additional document-piece representa-

tion from the standard [CLS] (Devlin et al., 2019)
token to model document pieces that do not contain
paragraph answers. The probability of choosing
the paragraph given context c, is computed as the
softmax over paragraph candidate (with an answer
span) logits and not containing answer logit:

pl(li | c) = softmax(api ).

We pad the paragraph representations to ensure a
rectangular tensor in a batch. Our final prediction
strategy is similar to Zheng et al. (2020) as we first
choose the paragraph candidate with the highest
logit among all candidates. We then extract span
answers within the selected paragraph answer can-
didate using a standard pointer network.

3.2 Gaussian Prior Optimization (GPO)

Conventional span extraction models (Chen et al.,
2017; Glass et al., 2020; Liu et al., 2020) optimize
the probability of predicted start and end positions
of the answer spans with ground-truth spans via
maximum likelihood estimation (MLE,Wilks et al.,
1938). MLE methods promote the probability for
the ground-truth positions while suppressing the
probability for all other positions. However we
hypothesize that, for all those negative instances,
the positions that are near the ground-truth should

2Similar tags are added for lists and tables.
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Figure 2: Overview of VAULT answering the example from Figure 1. The 10th paragraph containing the correct
answer is underlined. The span linear layer receives hidden state outputs from all 4096 tokens in the window
to create the start and end logits. The paragraph linear layer receives the orange-highlighted [CLS] and markup
tokens (e.g. [Para=10]) to predict in which paragraph the answer resides. These logits are then used together to
first select the best paragraph (LA) and finally select the best answer within said paragraph (SA).

be given higher credit than farther distant positions,
since the extracted answers will be partially over-
lapping with the ground-truth.

To tackle this problem, we follow the intuition
from Li et al. (2020) which proposes to promote
the probability of generating synonyms using a
Gaussian-like distribution for machine translation.
We construct the distribution where it has the high-
est probability at ground-truth positions, and drop
the probability exponentially as computed by the
distance to the corresponding ground-truth posi-
tions. Specifically, for a groundtruth start or end
position at ys, where s ∈ {start, end}, we use a
Gaussian distribution N (ys, σ), where the mean is
the position ys and variance σ is a hyperparameter.
We consider the probability density ϕ(y | ys, σ)
of the Gaussian distribution at each position y as
the logit for the corresponding position. We then
use the softmax function with temperature T to re-
scale the logits to get the Gaussian-like distribution
q(y | ŷs) for ground-truth distribution at position
ys,

q(y | ys) = softmax(ϕ(y | ys, σ)/T ).
We augment our MLE objective with an additional
KL divergence (Kullback and Leibler, 1951) term

between constructed distribution q(y | ys) and
model prediction ps(y | c), s ∈ {start, end}, so
that we can guide our model to follow the Gaussian-
like distribution for partial credit.

LD = KL (q(y | ys) ‖ ps(y | c))
=

∑

y

q(y | ys) log ps(y | c)

−
∑

y

q(y | ys) log q(y | ys).

We refer to this final model as VAULT.

4 Experiments
Datasets: We experiment with two challenging
“natural” MRC datasets: NQ (Kwiatkowski et al.,
2019) and TechQA (Castelli et al., 2020). We pro-
vide a brief summary of the datasets and direct
interested readers to the corresponding papers. NQ
consists of crowdsourced-annotated full Wikipedia
pages which appear in Google search logs with
two tasks: the start and end offsets for the short
answer (SA) and long answer (LA, eg. paragraph)
– if they exist. TechQA is developed from real user
questions in the customer support domain where
each question is accompanied by 50 documents –
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at most one of which has an answer – with answers
significantly longer (~3-5x) than standard MRC
datasets like SQuAD. We report official F1 scores
for each dataset.

Results on NQ: We train VAULT on NQ – pre-
dicting the paragraph and span answers as NQ’s
LA and SA respectively – and compare against
ROBERTADM : a RoBERTa (Liu et al., 2019) vari-
ant of the SOTA document model (DM) (Zheng
et al., 2020) using the base variants for a more sys-
tematic comparison. Although it may seem fair to
include a Longformer DM baseline in our table,
doing so would be infeasible (and unwise) due to
production resource constraints. We further show
the impact of VAULT by providing ablation experi-
ments where its components (GPO and PAPR) are
removed. The base LM (Longformer in our exper-
iments) without GPO and PAPR, is implemented
in the style of (Alberti et al., 2019b; Chakravarti
et al., 2020) where we first predict the SA and
then select the enclosing LA. We aim to show that
our proposed method provides comparable results
to ROBERTADM while being considerably faster
while decoding and displaying improved perfor-
mance over experiments just using the language
model. To do this we consider development set
SA and LA F1 (the F1 metrics with respect to the
span and paragraph answers respectively) as well
as decoding time tdecode (on a V100) as metrics.

Table 1 shows the results on the NQ dev set. We
see VAULT and ROBERTADM provide comparable
F1 performance (precision and recall are shown in
the Appendix). However, when it comes to decod-
ing time, we can find VAULT decodes over 16 times
faster than ROBERTADM . We additionally see in
the ablation experiments that our enhancements in-
crease both F1 metrics by multiple points, at the
expense of some decoding time. In particular we
note that the F1 performance of Longformer is not
competitive with VAULT. We conclude that VAULT

provides the best balance of F1 and decoding time
as it is effectively tied on F1 (with ROBERTADM )
and is only around 20 minutes slower to decode
than the quickest model.

Domain Adaptation: Results on TechQA: Since
VAULT has shown to be effective on NQ, we eval-
uate it on a new domain, TechQA. We compare it
against a RoBERTa base model trained with the
same hyper-parameters as (Castelli et al., 2020) –
except we use 11 epochs instead of 20. We chose
base instead of large (as is used for the TechQA

Model SA F1 LA F1 tdecode

ROBERTADM 52.2 70.1 11h
VAULT 51.6 70.4 40m
- GPO 49.1 67.6 41m
- PAPR (Longformer) 49.5 65.6 22m

Table 1: Comparison of VAULT vs. ROBERTADM on
NQ. We achieve comparable performance while being
16 times faster.

baseline) to give a fair comparison since we are
using a base PLM for our experiments with VAULT.
Similarly, we use RoBERTa rather than BERT as
it is closer to Longformer. Having already estab-
lished the run-time effectiveness of VAULT on NQ,
we focus on F1 metrics here, including “has answer”
(HA) F1. We consider HA F1 our primary metric
as we are exploring paragraph answer extraction in
this work and (as previously mentioned) answers in
TechQA are much longer than other datasets. We
believe that the improvements in HA F1, at least
partially, come from GPO.

Model F1 HA F1
RoBERTa 48.6 7.6
VAULT 49.3 16.1

Table 2: Results on TechQA dev set. VAULT clearly
outperforms RoBERTa on both F1 and Has Answer F1.

Results on TechQA are reported in Table 2. We
see that our VAULT model provides an improve-
ment of 0.7 F1 and 8.5 HA F1 (denotes Has An-
swer); thus showing the effectiveness of our ap-
proach. In particular, we see that this approach
of imputing a paragraph structure to classify pro-
vides a large boost to performance when a non-null
answer exists (HA F1).

5 Conclusions
In this work we introduce and examine a power-
ful yet simple model for reading comprehension
on long texts which we call VAULT, based on the
hypothesis that with a large sequence length long
answers can be classified effectively without com-
putationally heavy graph-based models. We vali-
date our approach by showing it yields F1 scores
competitive with heavier methods at a fraction of
the decoding cost on two very different domain
benchmark datasets that require reading long texts.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations.

Johannes Welbl, Pontus Stenetorp, and Sebastian
Riedel. 2018. Constructing datasets for multi-hop
reading comprehension across documents. Transac-
tions of the Association for Computational Linguis-
tics, 6:287–302.

SS Wilks et al. 1938. The large-sample distribution of
the likelihood ratio for testing composite hypotheses.
The Annals of Mathematical Statistics, 9(1):60–62.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,

Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset
for diverse, explainable multi-hop question answer-
ing. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2369–2380, Brussels, Belgium. Association
for Computational Linguistics.

Bo Zheng, Haoyang Wen, Yaobo Liang, Nan Duan,
Wanxiang Che, Daxin Jiang, Ming Zhou, and Ting
Liu. 2020. Document modeling with graph attention
networks for multi-grained machine reading compre-
hension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6708–6718, Online. Association for Computa-
tional Linguistics.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. 2018. Graph neu-
ral networks: A review of methods and applications.
CoRR, abs/1812.08434.

A Additional Experimental Results
For interested readers we further show precision
and recall numbers for the NQ experiments in Ta-
ble 3.

B Implementation Details

B.1 NQ

All models for this work are implemented in (Wolf
et al., 2020). We use the following hyperparame-
ters for VAULT when finetuning on NQ: sequence
length 4096, doc stride 2048 (Ainslie et al., 2020),
negative instance subsampling rates (has answer/no
answer) 0.02/0.08, learning rate 5e-5, and 4 epochs
of training.

B.2 TechQA

While TechQA does provide full HTML for its
Technotes, the answers are annotated with re-
spect to the cleaned plaintext. Therefore to de-
termine paragraph breaks for VAULT we split on
the "\n\n" token "ĊĊ" in the vocabulary. By
imputing paragraph answers in this way, we are
then able to predict the paragraph answer and then
a contained span answer.

C Example Analysis
We examine additional examples in Figure 3 to pro-
vide insight on the improvements of VAULT. We
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Model SA F1 SA P SA R LA F1 LA P LA R
ROBERTADM 52.2 57.2 48.0 70.1 69.4 70.9
VAULT 51.6 61.5 44.4 70.4 69.5 71.4
- GPO 49.1 57.6 42.7 67.6 67.0 68.1
- PAPR (Longformer) 49.5 56.4 44.2 65.6 62.4 69.3

Table 3: Comparison of VAULT vs. ROBERTADM on NQ with precision (P) and recall (R) statistics.

compare the correct answers produced by VAULT

with the incorrect answers produced by the ab-
lated model from the last row of Table 3 (NQ)
and Roberta baseline from the first row of Table 2
(TechQA).

In the first example the gold SA is null, however
there is a gold LA. This indicates that there is no
short span which answers the question: the correct
answer here is an entire paragraph. This does not
confuse VAULT which is able to identify the cor-
rect answer directly. However the ablated model
which attempts to predict SA first struggles here –
predicting the incorrect LA – as there is no gold
SA.

In the second example we see that in this Tech-
note both the correct and incorrect answers are sin-
gle sentence paragraphs surrounded by paragraph
breaks. Our VAULT is able to identify the correct
paragraph using our imputed structure and select
the correct answer – whereas the Roberta baseline
selects a nearby but incorrect answer.

Example A1 (NQ)
Question: why did government sponsored surveys and land
acts encourage migration to the west
Wikipedia Page: Homestead Acts
Text: ...
An extension of the Homestead Principle in law, the Home-
stead Acts were an expression of the " Free Soil " policy
of Northerners who wanted individual farmers to own and
operate their own farms, as opposed to Southern slave-owners
who wanted to buy up large tracts of land and use slave labor,
thereby shutting out free white men.

The first of the acts, the Homestead Act of 1862 , opened
up millions of acres. Any adult who had never taken up
arms against the U.S. government could apply. Women and
immigrants who had applied for citizenship were eligible. The
1866 Act explicitly included black Americans and encouraged
them to participate, but rampant discrimination slowed black
gains. Historian Michael Lanza argues that while the 1866
law pack was not as beneficial as it might have been, it was
part of the reason that by 1900 one fourth of all Southern
black farmers owned their own farms. [1]
...

Example A2 (TechQA)
Question: Are there any probes that can connecto the
Nokia NSP EPC v17.9 and Nokia NSP RAN v17.3 using
JMS/HTTP?
Text: release notice; downloads; nco-p-nokia-nfmp; Probe
for Nokia Network Functions Manager for Packet NEWS

ABSTRACT
This new probe will be ready for downloading on July 20,
2017.

CONTENT

This probe is written to support Nokia Network Func-
tions Manager for Packet release 17.3.

You can download the package you require from the
IBM Passport Advantage website:

www-01.ibm.com...

Figure 3: Additional Examples of questions in the
NQ and TechQA datasets. VAULT’s correct answer is
shown in green, incorrect baseline in red. (A1) The cor-
rect answer is a paragraph LA; only VAULT identifies
the correct LA directly even though the gold SA is null.
(A2) VAULT identifies the correct "paragraph" answer.
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Abstract

Leveraging additional unlabeled data to boost
model performance is common practice in ma-
chine learning and natural language process-
ing. For generation tasks, if there is over-
lap between the additional data and the target
text evaluation data, then training on the addi-
tional data is training on answers of the test set.
This leads to overly-inflated scores with the
additional data compared to real-world testing
scenarios and problems when comparing mod-
els. We study the AMR dataset and Gigaword,
which is popularly used for improving AMR-
to-text generators, and find significant overlap
between Gigaword and a subset of the AMR
dataset. We propose methods for excluding
parts of Gigaword to remove this overlap, and
show that our approach leads to a more realis-
tic evaluation of the task of AMR-to-text gen-
eration. Going forward, we give simple best-
practice recommendations for leveraging addi-
tional data in AMR-to-text generation.1

1 Introduction

Deep learning has made remarkable progress in
many areas of natural language processing, includ-
ing language generation (Sutskever et al., 2014;
Luong et al., 2015) and semantic parsing (Dong
and Lapata, 2016). Nevertheless, neural models
are usually data-hungry, and sophisticated use of
data augmentation can often go a long way (Kon-
stas et al., 2017; Wang et al., 2018; Du and Black,
2019; Wei and Zou, 2019). One common method
of data augmentation is to leverage large amounts
of out-of-domain data for semi-supervised learn-
ing. However, without proper examination of the
data being used, the external data may contain sig-
nificant overlap with the test set, leading to unfair
gains as a result. This issue is a unique problem

1Our code for these best practices is available at https:
//github.com/jlab-nlp/amr-clean.

for natural language generation (NLG) tasks with
data augmentation, because training with data that
overlaps with the test set is akin to training on the
answers. In this work, we study the task of AMR-
to-text generation and scrutinize the datasets used
for training and evaluation. Our contributions are
two-fold: (1) we develop an examination procedure
to confirm that there are serious overlaps between
one of the AMR datasets and Gigaword (Parker
et al., 2011), and conduct experiments showing
that some of the performance gains are indeed “un-
fair”; (2) we propose several strategies to apply
when collecting external data for training, and em-
pirically show that these strategies can mitigate the
aforementioned unfair gains. For best practice, we
suggest future work on AMR-to-text generation
exclude Gigaword articles that are written in the
nearby months of those covering Proxy to be on
the safer side (strategy no-3Months described in
Section 5).

2 Related Work

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) has gained growing interest as
a semantic formalism. The first AMR-to-text gener-
ator was developed using tree transducers (Flanigan
et al., 2016). More recent work heavily adopted
neural models, explored different architectures, and
commonly employed Gigaword data to boost re-
sults (Konstas et al., 2017; Song et al., 2018; Wang
et al., 2020). The most common approach is to use
JAMR (Flanigan et al., 2014) to bootstrap labels
for the additional data and then add them to the
training data.

Prior work on AMR generation has used auto-
matic metrics such as BLEU (Papineni et al., 2002)
and human evaluations (May and Priyadarshi,
2017). Currently, there is increased research on
evaluation metrics for NLG (Zhang et al., 2019;
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Dataset # Sentences Domain
Bolt 133 Web
Consensus 100 News
DFA 229 Web
Proxy 823 News
Xinhua 86 News

Table 1: The number of test sentences and domain
of each AMR dataset. Note that LDC2015E86 and
LDC2017T10 have identical test sentences.

Sellam et al., 2020, inter alia). However, we are
not aware of prior work investigating the problem
of test set overlap when using data-augmentation
methods for generation. Closest to our work is
prior practice in machine translation evaluation of
excluding articles from the same time period as the
test set (NIST, 2012).

3 Origin of AMR and Gigaword Overlap

In this section, we describe the reason for the
overlap between the AMR dataset and Gigaword.
In standard LDC releases of AMR, for example
LDC2015E86 and LDC2017T10, the dev and test
set consist of 5 datasets from different sources.
Information about these datasets are listed in Ta-
ble 1. Each sentence in the dev and test set is
associated with an ID. The sentences of the Proxy
dataset, in particular, have IDs that can be traced
back to Gigaword articles. Upon inspection, these
sentences appear to originate as close edits of sen-
tences in Gigaword. For example, the sentence
with ID “PROXY LTW ENG 20070831 0072.1”
is originated from the Gigaword article with ID
“LTW ENG 20070831”. The date on which a Gi-
gaword news article was written is included in the
ID. Since Proxy takes up more than half of the test
sentences, such overlap could have a high impact
on the evaluation of AMR-to-text generators. In the
next section, we describe our procedure to empiri-
cally examine the effect of overlap between Proxy
and Gigaword.

4 Measuring Overlap

We use the following procedure to quantitatively
examine the overlap between Proxy and Gigaword
dataset. For each Proxy sentence in the validation
and test split, we find the Gigaword article whose
ID is associated with the Proxy sentence ID. Then
we tokenize and split the article into sentences. We
measure the overlap between the Proxy sentence

Mean Median
Count 1st 13.85 13.0
Count 2nd 7.87 8.0
Count 3rd 7.16 7.0
ROUGE 1st 0.64 0.68
ROUGE 2nd 0.33 0.35
ROUGE 3rd 0.29 0.32
BLEU 1st 0.39 0.36
BLEU 2nd 0.07 0.05
BLEU 3rd 0.04 0.01

Table 2: The mean and median of the 3 highest scores
for word count, BLEU, and ROUGE.

and each of the Gigaword sentences with 3 differ-
ent metrics: (1) absolute count of common words,
which is the number of distinct words that appear in
both sentences, (2) BLEU score, and (3) ROUGE-L
score.

5 Exclusion Strategies

We propose and investigate 3 sampling strategies
for constructing semi-supervised training datasets
from Gigaword, and these strategies differ by how
to exclude certain Gigaword articles: no-ID ex-
cludes articles whose id appeared in the proxy
dataset; no-Month excludes articles that are
written in the same month as those excluded by
no-ID ; no-3Months excludes articles that are
written in the same month or neighboring months
from those excluded by no-ID . We use reservoir
sampling (Vitter, 1985) to sample sentences from
Gigaword. We first collect a set with 200k sen-
tences without any exclusion as a baseline. We
then filter out sentences that are from articles ex-
cluded by no-ID , and sample same number of
sentences as those being filtered from articles that
are included by no-ID . This yields a set of 200k
sentences representing no-ID . We collect the sam-
ple sets for no-Month and no-3Months based
on the baseline set in a similar fashion.2

We use the GGNN-dual-encoder model by
(Ribeiro et al., 2019) as our model to study the
effects of different exclusion strategies. For each
exclusion strategy, we obtain 3 different samples
using different random seeds and repeat experi-
ments. We keep most of the hyperparameters from
the original paper. We adjusted the learning rate
schedule to accommodate larger sets of training

2Our code for doing this filtering is available on our GitHub
repository.
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Sentence Score

Count 1st At least one of those bands appears to be splitting into
at least two different groups.

13

Count 2nd Even though the Bush White House has generally entrusted government
agencies to officials ...

7

Count 3rd The rentals violated U-Haul’s rule requiring the tow vehicle to be
at least 750 pounds heavier than the one being towed.

7

Bleu 1st At least one of those bands appears to be splitting into
at least two different groups.

0.70

Bleu 2nd At least one of those inspections would have come
at a particularly delicate time ...

0.20

Bleu 3rd ... as well as other outside organizations, at least one of which then
sold tickets to its own members.

0.19

Rouge 1st At least one of those bands appears to be splitting into
at least two different groups.

0.91

Rouge 2nd For at least a few of those percentage points, we have to thank Sheehan. 0.44

Rouge 3rd At least one Democratic member of the group questioned
Giuliani’s decision to quit.

0.4

Table 3: Examples of top matches found in Gigaword with test set sentence “At least one of those bands appears
to be splitting into different groups.”

No Extra Data Top 1 (Cheat) Top 2 to 4 Top 5 to 7 Top 8 to 10
Overall 27.58 32.71 31.67 30.82 30.85
Bolt 17.36 18.59 18.54 18.80 20.36
Consensus 20.18 21.50 22.73 21.90 22.58
Dfa 21.45 22.86 24.39 23.05 22.87
Proxy 31.56 39.12 36.85 35.75 35.68
Xinhua 25.22 24.22 26.03 27.16 25.90

Table 4: Evaluation results (BLEU) when the model is trained on cheat set and other highly overlapping sets.

No Extra Data Cheat Baseline Strategy no-ID no-Month no-3Months
Overall 24.32 30.73 32.72 32.69 31.83 32.35
Bolt 15.11 15.31 19.85 20.21 18.98 19.79
Consensus 17.04 16.47 25.02 20.80 24.55 24.00
Dfa 18.21 17.95 20.14 21.50 20.34 19.96
Proxy 29.33 38.16 38.52 38.46 37.33 37.99
Xinhua 23.01 22.52 32.21 31.82 31.08 32.65

Table 5: Results (BLEU) on LDC2015E86. Average of 3 experiments are reported.

No Extra Data Cheat Baseline Strategy no-ID no-Month no-3Months
Overall 27.58 32.71 34.46 33.53 33.44 33.16
Bolt 17.36 18.59 21.37 21.20 22.66 19.7
Consensus 20.18 21.50 25.96 27.18 26.44 25.06
Dfa 21.45 22.86 24.78 22.81 24.79 23.61
Proxy 31.56 39.12 39.81 38.84 38.09 38.39
Xinhua 25.22 24.22 32.59 31.68 31.77 32.40

Table 6: Results (BLEU) on LDC2017T10. Average of 3 experiments are reported.
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data. With sample sets of 200k sentences, each
experiment takes 3 days to finish on a Tesla V100.

6 Results

6.1 Overlap between Proxy and Gigaword

In this section, we measure the overlap between
Proxy and Gigaword using word and n-gram over-
lap evaluation measures, and study the effect of
the overlap on the final trained system. We list the
mean and median of the 3 sentences with highest
overlap scores for each overlap measure in Table 2.
It is clear that sentences with the top overlap score
overlap significantly more than those sentences at
the 2nd and 3rd place. Examples for illustration
are given in Table 3. All three metrics tend to find
the same top matching sentence. Most of the time,
the test sentence in Proxy is an extractive summa-
rization or rephrase of the top match in Gigaword,
indicating a concerning overlap between Proxy and
Gigaword.

To investigate the impact of semi-supervised
training with these Gigaword sentences that are
close duplicates of the test set, we create various
sets for semi-supervised training. We create a cheat
set using sentences with highest matching ROUGE
scores, called Top 1 (Cheat). We are also interested
in the impact of sentences from the same article as
these duplicates, but with less overlap. We create
additional sets with those that have top 2-4 overlap
scores, top 5-7 overlap scores, etc. We trained the
model with these sample sets for semi-supervised
training, and the results on LDC2017T10 are listed
in Table 4. The cheat set helped the evaluation
on Proxy by more than 7 points, but only helped
other datasets by about 1 point, if not hurting. As
the matching scores decrease, the improvement on
Proxy also went down. This indicates that the over-
lap sentences between Proxy and Gigaword give
a significant unfair advantage, especially for the
sentences with highest overlap.

6.2 Exclusion Strategies for Gigaword

To find a good exclusion strategy for construct-
ing semi-supervised datasets from Gigaword, we
sample semi-supervised training sets as described
in Section 5 and ran experiments. The re-
sults on LDC2015E86 and LDC2017T10 are pre-
sented in Table 5 and 6, respectively. The re-
sults on LDC2017T10 is generally better than
LDC2015E86, since the size of training of the for-
mer is larger than that of the later. Without exclud-

Proxy All Other
LDC2015/no-ID 0.400 0.379
LDC2015/no-Month 0.045 0.200
LDC2015/no-3Months 0.387 0.192
LDC2017/no-ID 0.202 0.357
LDC2017/no-Month 0.002 0.129
LDC2017/no-3Months 0.047 0.100

Table 7: P-values from statistical tests comparing sys-
tem performance against baseline sampling. Signifi-
cant results at p = .05 are highlighted.

ing (i.e. baseline strategy), the results on Proxy
are significantly better than no additional semi-
supervised data (by about 8 points on LDC2017T10
and 10 points on LDC2015E86). It is also slightly
better than being trained with the cheat set. This is
because training on sample sets of size 200k yields
much better language model than the small cheat
set. On the other hand, training on the cheat set is
almost as good as training on 200k additional data,
since neural models are good at memorization. For
LDC2017T10, filtering out articles covering Proxy
test sentences decreases performance on Proxy by 1
point; excluding articles written in the same month
and nearby months further decreases results on
Proxy by more than 0.5 points. For LDC2015E86,
excluding articles written in the same month de-
creases results on proxy by more than 1 point.

Finally, we perform statistical tests with a
paired t-test for comparing performance of systems
trained on different sample sets against the base-
line (no filtering). See Table 7. For LDC2015E86,
no-Month resulted in lower BLEU scores
on proxy dataset that are statistically signifi-
cant; for LDC2017T10, both no-Month and
no-3Months resulted in lower BLEU scores on
proxy and the differences are statistically signifi-
cant. All strategies performed similarly on all other
datasets. This shows that the exclusion of certain
overlapping articles in Gigaword has significant
impact on the evaluation on Proxy dataset, but less
so on the rest.

7 Conclusion and Recommendation

In this paper, we examined Gigaword, the com-
monly used dataset for improving AMR-to-text
generation, and found sentences that almost dupli-
cate the test set of Proxy, one of the AMR datasets.
We developed a procedure that utilizes a word over-
lap measure to find overlapping sentences, and
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found several metrics that may be good at find-
ing duplicating sentences. We proposed 3 different
strategies for excluding overlapping data from Gi-
gaword, and validated the idea that without filtering
certain articles, the evaluation results may be unfair.
For best practice, we suggest future work on AMR-
to-text generation exclude Gigaword articles that
are written in the nearby months of those cover-
ing Proxy to be on the safer side (no-3Months).
Additionally, we suggest future work report results
on each AMR dataset separately so that techniques
favoring one dataset can be detected.
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Abstract

Social media has become a valuable resource
for the study of suicidal ideation and the as-
sessment of suicide risk. Among social me-
dia platforms, Reddit has emerged as the most
promising one due to its anonymity and its
focus on topic-based communities (subred-
dits) that can be indicative of someone’s state
of mind or interest regarding mental health
disorders such as r/SuicideWatch, r/Anxiety,
r/depression. A challenge for previous work
on suicide risk assessment has been the small
amount of labeled data. We propose an em-
pirical investigation into several classes of
weakly-supervised approaches, and show that
using pseudo-labeling based on related issues
around mental health (e.g., anxiety, depres-
sion) helps improve model performance for
suicide risk assessment.

1 Introduction

Suicide has been identified as one of the leading
causes of deaths and approximately 1.5% of people
die by suicide every year (WHO et al., 2016; Fazel
and Runeson, 2020). Despite years o clinical re-
search on suicide, researoners have concluded that
suicide cannot be predicted using the standard clin-
ical practice of asking patients about their suicidal
thoughts (McHugh et al., 2019). Recently, Copper-
smith et al. (2018) and Nock et al. (2019) discuss
the opportunities of using social media combined
with natural language processing (NLP) techniques
to complement traditional clinical records and help
in suicide risk analysis and early suicide interven-
tion.

To facilitate further research on automatic sui-
cide risk assessment, Zirikly et al. (2019) proposed
a shared task, where they collected user data from
r/SuicideWatch subreddit and annotated it with
user-level suicide risk: no-risk, low-risk, medium-
risk and high-risk. By comparing the results of the

participating teams in this shared task, Zirikly et al.
(2019) conclude that one of the major challenges
comes from the insufficient data for intermediate
suicide risk levels (i.e., low risk and medium risk)
rather than extreme risk levels (i.e., no risk and
high risk). Matero et al. (2019) find that using a
dual BERT-LSTM-Attention model to separately
extract information from both SuicideWatch and
Non-SuicideWatch posts together with feature engi-
neering that includes emotion features, personality
scores, user’s anxiety and depression scores are
important for model performance.

In this paper, instead of feature engineering or
complex model architectures, we explore whether
weakly supervised methods and data augmentation
techniques based on clinical psychology research
can help improve model performance. We explore
several weakly-supervised methods, and show that
a simple approach based on insights from clinical
psychology research (O’Connor and Nock, 2014)
obtains the best performance. This model uses
pseudo-labeling (PL) on data from the subreddits
r/Anxiety and r/depression, which are considered
important risk factors for suicide. We also present a
potential application of our model for studying the
suicide risk among people who use drugs, opening
the door for using NLP methods to deepen our
understanding between opioid use disorder (OUD)
and mental health. The code for this paper can
be found at https://github.com/yangalan123/
WM-SRA.

2 Methods

We focus on Task A from the CLPsych 2019 shared
task “Predicting the Degree of Suicide Risk in Red-
dit Posts” (Zirikly et al., 2019). The goal of the
task is to predict the user-level suicide risk category
based on their posts in the r/SuicideWatch subred-
dit. Specifically, a user ui is associated with a col-
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lection of n(i) posts Ci = {xi,1, xi,2, . . . , xi,n(i)},
where each post xi,k(1 ≤ k ≤ n) has m(i, k) sen-
tences xi,k = [sik,1, sik,2, . . . , sik,m(i,k)]. We need
to predict yi ∈ {a, b, c, d} using Ci, where a, b, c, d
represent no-risk, low-risk, medium-risk and high-
risk, respectively. In the original dataset, there
are 496 users in the training set and 125 users in
the test sets. We further split 100 users from the
training set to create the validation set. The sizes
for the train/valid/test sets are 746, 173, and 186
respectively.

Data Pre-processing Following the advice in
(Zirikly et al., 2019), we replace all human names
and URLs in the Reddit posts with special tokens
” PERSON ” and ” URL ”, respectively. We also
remove punctuation and stop words besides low-
ercasing. Due to the limitation of GPU memory,
we split those large posts to be passages with no
more than 128 words1 and make sure that the split
point is not in the middle of the sentence2. Such
passages are treated as separate posts.

Model Architecture Our architecture is a BERT
(Devlin et al., 2019) model. We also experi-
mented with other state-of-the-art pre-trained lan-
guage models (PLMs), including RoBERTa (Liu
et al., 2019) and XLNET (Yang et al., 2019), but
found BERT to work the best and thus consider
it as our baseline architecture (more details can
be found in Appendix A). Each post xi,k is fed
into BERT (Devlin et al., 2019) and we get post
embedding ~ei,k = BERT(xi,k). Then we do sim-
ple mean-pooling to obtain the user embedding

~ui =
∑n(i)

k=1 ~ei,k
n(i) . Finally, we feed ~ui to a fully-

connected layer and use the Softmax layer to pre-
dict the risk level probability P̃ (yi|Ci). The label
with the largest probability is picked as the final
prediction ŷi. For training, the cross entropy loss
Lclf is applied to optimize our model.

2.1 Weakly-supervised Methods

Task-Adaptive Pre-training Recent works (Lee
et al., 2020; Gururangan et al., 2020) point out

1The 128 maximum passage length is tuned based on the
validation set for both GPU memory and better computational
efficiency for large posts. We do not observe a significant
performance drop without a larger passage length.

2We use a limited-size stack and greedily add each sen-
tence into the stack. If adding a new sentence will make the
sum of lengths of all sentences in the stack exceed 128, we
pop out all sentences, concatenate them to a new passage and
then add this new sentence to the stack. For sentences having
more than 128 words, we treat them as individual posts.

that task-adaptive pre-training (TAP) can help pre-
trained language models better adapt to the target
domains and can bring improvement, especially
in data-poor scenarios. Specifically, we continue
pre-training (e.g., masked language modeling for
BERT) on a task-relevant unlabeled corpus and
then do normal fine-tuning on the task. Our unla-
beled corpus consists of all r/SuicideWatch posts
(aggregated per user) from the training sets of all
the tasks (A, B, C) in the shared task (Zirikly et al.,
2019). There are 621 users and 138, 057 posts
in this unlabeled corpus. We do continued pre-
training for 2 to 3 epochs and do early stopping.

Multi-view Learning Multi-view learning (Xu
et al., 2013) (MVL) is one of the widely recog-
nized semi-supervised methods. Clark et al. (2018)
provides a successful example of utilizing MVL in
sequential labeling tasks. The idea is to create per-
turbations by masking words in certain positions
and requiring the model to learn the similar dis-
tribution over the complete labeled examples and
the corresponding masked examples besides nor-
mal classification training. However, since ours is
a user-level classification task, we cannot directly
borrow the same strategy from (Clark et al., 2018)
as it mainly works on sequence labeling. We pro-
pose to create perturbations C̃i based on four strate-
gies.3First, for each sentence, we will randomly
mask 10% of tokens (Word-Mask). Second, con-
sidering that users may have posts of many words,
we also propose a sentence-level masking strategy
(Sent-Mask). For each post of a single user in the
training set, we would randomly mask 10% of to-
kens. Third, we only keep the beginning and ending
sentences in each passage (BegEd). Usually these
sentences convey the main purpose of the posts and
should preserve important semantics. Forth, we
use Bert-extractive-summarizer (Miller, 2019) to
extract the summary for each passage (K-Sum). It
works mainly by first encoding each sentence sik,j
using a PLM to a continuous-valued representation
~sik,j and then training a K-means clustering over
~sik,j . Finally it will pick K sentences for each pas-
sage that are closest to the center. Empirically, we
set K = 5.

In training, we use KL-divergence to enforce
the constraint that the predicted probability on per-
turbed examples P̃ (yi|C̃i) should be close to the
one on complete examples (i.e., P̃ (yi|Ci)). The

3The masking proportions for Word-mask and Sent-
Mask are tuned empirically on the validation set.
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loss incurred by KL-divergence is simply added
to the classification loss and these two losses are
optimized together for each training instance.

Clinical Psychology Inspired Pseudo-labeling
According to the analysis of the shared task report
(Zirikly et al., 2019), the main challenge for the 4-
way classification comes from insufficient data for
the intermediate classes (i.e., low-risk and medium-
risk). A straightforward solution is to collect data
for these two classes. Recent clinical psycholog-
ical research (O’Connor and Nock, 2014) points
out that mental health issues such as depression
and anxiety can be important risk factors for sui-
cide. Inspired by this study, we collect data from
r/Anxiety and r/depression from Reddit. The time
range of all collected data is from December 1,
2008 to September 30, 2020. We sample a small
proportion of the collected data from both subred-
dits and after manual verification, we decided to
assign low-risk labels to all r/Anxiety users in the
sample and medium-risk labels to all r/depression
users in the sample. Since we do not have experts to
label these posts, adding too much pseudo-labeling
data might introduce too much noise. Based on
preliminary experiments on the validation set, the
number of added pseudo-labeling data is 8% of
the suicide risk assessment training data. The only
difference between these experiments and the main
experiments is that we only train the model for 10
epochs rather than full 20 epochs. Table 1 show
results for different sizes of added pseudo-labeled
data from r/depression on the validation set. All
pseudo-labeling data follows roughly the same pat-
tern with the best proportion being 8%.

#(r/depression)
#(Training) Macro-F1 on Validation set

2% 0.408
8% 0.471
16% 0.442
32% 0.408

Table 1: Results of different proportions of added
pseudo-labeling data from r/depression.

3 Experiments and Results

We implement our BERT model based on hugging-
face Transformer (Wolf et al., 2020). Due to the
limitation of GPU memory, we only use the base
version.We split 20% of original training data to
be the validation set and fix the split for all models.
The model selection is made by early stopping and
we train all models for 20 epochs with the batch

No. Approach Setup Macro (P/R/F1)
1 Baseline BERT 0.436 / 0.424 / 0.427
2 TAP BERT 0.439 / 0.445 / 0.432
3 MVL Word-Mask 0.464 / 0.466 / 0.463
4 MVL Sent-Mask 0.380 / 0.409 / 0.383
5 MVL BegEd 0.384 / 0.422 / 0.401
6 MVL K-Sum 0.384 / 0.422 / 0.401

7 PL Depression
(medium-risk) 0.535 / 0.480 / 0.498

8 PL Anxiety
(low-risk) 0.495 / 0.469 / 0.478

9 PL Depression
+ Anxiety 0.473 / 0.456 / 0.463

10 PL Task C
(low-risk) 0.475 / 0.462 / 0.460

11 -
Task C
(crowd-
labeled)

0.418 / 0.406 / 0.408

Table 2: Results Task A test set. For each of tasks 7-11,
the size of added data is 8% of training data. Metrics
are all reported on macro-average.

size 32. For users with too many posts and words,
we only sample 100 passages for them. Table 2
shows our results on Macro-F1.

Task-Adaptive Pre-training After applying
task-adaptive pre-training on BERT, we see small
performance gains over BERT (i.e., from 0.427 to
0.432). That might be because even we use the
whole corpus provided by the shared task, it is still
not large enough.

Multi-view Learning Word-Mask strategy im-
proves over the BERT baseline. Compared with
the adaptive pre-training results on BERT, which
also do word-level masking but only trained on lan-
guage modeling, we can see that MVL provides a
more efficient way to utilize a small training corpus
and bring 3.1% gain on Macro-F1. However, all the
other MVL approaches hurt the performance when
compared to the BERT baseline. This might be
because the proposed sentence-level perturbation
strategy can seriously break the semantics of each
post and thus influence the overall performance,
and random sampling over sentences hurts most.

Clinical Psychology Inspired Pseudo-labeling
Exp 7, 8 and 9 in Table 2 achieve the Top-3
Macro-F1 scores. This indicates that although
our psychology-inspired pseudo-labeling technique
is simpler than other weakly-supervised methods,
adding meaningful pseudo-label data from relevant
domains helps mitigate the problem of insufficient
data in the intermediate classes (b and c). To verify
this point, we show the class-wise classification re-
sults for PL-based models in Table 3 where we can
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Setup a b c d
Baseline 0.730 0.077 0.333 0.566

Depression
(medium-risk) 0.764 0.273 0.327 0.627

Anxiety
(low-risk) 0.724 0.160 0.415 0.614

Depression
+ Anxiety 0.767 0.143 0.370 0.574

Task C
(low-risk) 0.762 0.080 0.318 0.678

Task C
(crowd-
labeled)

0.667 0 0.357 0.609

Table 3: Class-wise performance (F1) for PL-
based methods (a=no-risk; b=low-risk; c=medium-risk;
d=high-risk).

see improvements on b and c classes. Due to space
constraints, we present the class-wise performance
for all models in Appendix C.

The investigation over the confusion matrix of
the best model (shown in Section 4) further sup-
ports our hypothesis. However, when we try to
combine different pseudo-labeling data together
(see Exp 9, where we add users from r/depression
and r/Anxiety following the proportion of 1 : 24

and still keep the added user number the same),
we observe a slight performance drop. The reason
might be that users in these two PL datasets might
be at the boundary of the low-risk and medium-risk
and simply mixing them together will make the
model confuse between these two classes (see Sup-
plemental material D for all confusion matrices).

Furthermore, we wanted to test the role of the
clinical psychology aspect of our pseudo-labeling
approach. Does the gain come from the meaningful
domains (anxiety and depression) or just by adding
additional data? To answer this, we use additional
data provided by Task C of the shared task that con-
tains posts from random subreddits (e.g., sports).
We do two experiments: 1) assign low-risk to all
such users and 2) assign the gold labels provided by
the task via crowdsourcing. We add the same size
as for the other pseudo-label experiment (8% of
training data). The results (Exp 10 & 11 in Table 2)
show that the clinical psychology inspired PL out-
performs these models by meaningfully addressing
the intermediate classes insufficient data problem.

4 Error Analysis

In this section, we take a closer look at the pre-
diction results of our best model (clinical psychol-

4See Supplemental material B for detailed experiments
over different mixing proportions

ogy inspired pseudo labeling using r/depression as
medium risk) by looking at the confusion matrix
and sampled error cases. We plot the confusion ma-
trices for the baseline model (Exp 1 in Table 2) and
the best model (Exp 7 in Table 2) in Figure 1. We
can see that, the best model achieves the improve-
ment mainly by fixing error cases wrongly pre-
dicted as no-risk (where the true labels are “b”, “c”
and “d”, with greater error reduction for ”d”) and
low-risk (where the true labels are “c” and “d”). As
O’Connor and Nock (2014) point out, depression
is a serious mental issue and has become one of
the most important risk factors of suicide. Adding
posts from r/depression can help the model under-
stand better what is “medium-risk” and “high-risk”
and thus raise the alert for the signals of similar or
related mental issues.

We can also see that the main problem of our best
model, is still the confusion between “b” (low-risk)
and “c” (medium-risk). In addition, the problem
of wrongly predicting the examples belonging to
intermediate classes to high-risk ones still exists.
By manual investigation, we find that both prob-
lems require expertise in mental health to make the
subtle distinctions. For example, the following text
comes from a low-risk example5 that is wrongly
predicted as high-risk by our best model:

“ sadness has taken me. . . i am sad ,
lonely , and i have no interest in liv-
ing anymore. . . i didnt want to die. . . my
mind is diseased , unable to take happi-
ness. . . i have no interest in forming any
more. . . . i dont think ill do it. . . ”

It can be seen that there are many negative or
even desperate expressions (marked as red) in this
examples, mixed with some short signals (marked
as blue) possibly indicating a person considered at
low-risk. The model can be fooled by the massive
negative expressions and make the wrong predic-
tions if the model is not aware of the true intent of
the person. Therefore, reliable intent identification
that could consider user posts across time and other
information would be a powerful tool to help the
model prevent mistakes like this.

5 Application: Predicting Suicide Risk of
People Who Use Drugs

In order to further verify the effectiveness of our
model in real-world applications, we create a sim-

5Based on ethical consideration, we drop out many sensi-
tive and private content of this example.
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Figure 1: Visualization of the confusion matrices for the baseline model (Exp 1) and the best model (Exp 7) .

ulation scenario: we apply our best model (Exp
7) over the data that is collected for 612 users
who post on both r/opiates and r/SuicideWatch.
r/opiates is a subreddit where people discuss topics
around opioid usage (e.g., drug doses, withdrawal
anguish, daily experiences, harm reduction). This
community members could often be at a high sui-
cide risk (Aladağ et al., 2018; Yao et al., 2020).
We apply our model over their 1, 176 posts on
r/SuicideWatch and find that our model predicts
that 15.52% of them are no-risk, while 84.48% of
them are of low-risk, medium-risk and high-risk.
The results on sampled 2, 863 r/opiate posts are
30.56% for no-risk and 69.44% for at least some
risk. The predicted outputs are highly aligned with
reported results using crowdsourcing annotation of
suicidal or not-suicidal by Yao et al. (2020) and
show the effectiveness of our model in this simu-
lated scenario.6 We hope this will open the door of
using NLP methods to investigate the link between
suicidal ideation and fatal overdoses among people
who use drugs.

6 Conclusions

We investigated a series of weakly-supervised meth-
ods and find that pseudo-labeling on data related
to risk factors for suicide (depression, anxiety) can
help improve model performance. This provides an
alternative way to use theoretically-grounded mod-
els (e.g., compared to feature engineering). We
also show a potential use case of this work for un-
derstanding suicidal ideation among users who use
drugs (e.g., opiates).

6The original Mturk annotation dataset is not open-sourced
and thus we can only do rough trend matching on our own
collected data.

Ethical Considerations

The dataset for suicide risk assessment was ob-
tained from the organizers of the 2019 Clinical
Psychology Shared Task on Suicide Risk Assess-
ment, by filling in a participant application where
we affirmed that we would follow the shared task’s
rules. We have obtained IRB approval (exempt)
from Columbia University to use the data as it con-
sists of publicly available and anonymous posts
extracted from Reddit. For the application part,
we also obtained Columbia IRB approval (exempt)
for the data publicly available and anonymous data
from r/opiates. All data is kept secure and online
userIDs are not associated to the posts.

Our intention of developing and improving sui-
cide risk assessment models is to help health pro-
fessionals and/or social workers identify people
that might be at risk of committing suicide. We em-
phasize our intention that suicide risk assessment
models such as the ones developed here to be used
responsibly, with a human in the loop — for exam-
ple a medical professional, a mental health special-
ist, who can look at the predicted labels and offer
explanations and decide whether or not they seem
sensible. We would urge any user of suicide risk as-
sessment technology to carefully control who may
use the system. Currently, the presented models
may fail in two ways: they may either mislabel an
at-risk user as no-risk (our current models are par-
ticularly designed to minimize this risk), or classify
a no-risk user with some level of risk. Obviously,
there is some potential harm to a person who is
truly in need if a system based on this work fails to
detect their suicidal ideation, and it is possible that
a person who is not truly in need may be irritated or
offended if someone reaches out to them because
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of a mistake. That is why, this system needs only to
be used as additional help for health professionals.

We note that because most of our data were col-
lected from Reddit, a website with a known overall
demographic skew (towards young, white, Ameri-
can men7), our conclusions about what expressions
of different suicide risk levels look like and how
to detect them cannot necessarily be applied to
broader groups of people. This might be particu-
larly acute for vulnerable populations such as peo-
ple with opioid use disorder (OUD). We hope that
this research stimulates more work by the research
community to consider and model ways in which
different groups express suicidal ideation.
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A Comparison of Different Pre-trained
Language Models

Given that there has been significant progress on
the architecture designs after BERT, we have exper-
imented with different PLMs, such as RoBERTa
(Liu et al., 2019) and XLNet (Yang et al., 2019).
From Table 4, we can see that on the Test set, the
Macro-F1 scores for BERT and RoBERTa are al-
most the same and XLNet performs worse than
BERT. Therefore, we hypothesis that the architec-
ture of PLMs will not influence substantially the
results on this task so we chose BERT model.

PLM TAP? PL? MVL? Macro-F1
BERT No No No 0.427

XLNET No No No 0.422
RoBERTa No No No 0.408

Table 4: Experiment results for different PLMs. Here
we only show the macro-F1 for the baseline model built
on different PLMs.

B Results for Different Mixing
Proportions

Table 5 shows the results for different mixing pro-
portions of pseudo-labeling data from r/Anxiety
and r/depression. Due to the limitation of space, in
the main paper, we only show the results achieved
by the best mixing proportions.

Mixing Proportion Macro-F1
1: 5 0.398
1: 2 0.463
1: 1 0.434
2: 1 0.441
5: 1 0.442

Table 5: Experiment results for different mixing pro-
portions. Here the proportion represents the user ratio
of #(r/depression) : #(r/Anxiety).

C Class-wise Decomposition of
Experimental Results

Here we show the class-wise performance for all
the models in Table 6.

D Additional Error Analysis

Additional confusion matrices for high-
performance models (8, 9, 10 in Table 2)
are in Figure 3.
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Figure 2: Word-Mask Confusion Matrix.

Figure 3: Additional Confusion Matrices for Task 8, 9,
10, 3 in Table 2
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No. Approach Setup a b c d
1 Baseline BERT 0.742/0.719/0.730 0.077/0.077/0.077 0.400/0.286/0.333 0.525/0.615/0.566
2 TAP BERT 0.774/0.750/0.762 0.143/0.154/0.148 0.250/0.107/0.150 0.588/0.769/0.667
3 MVL Word-Mask 0.788/0.812/0.800 0.111/0.077/0.091 0.391/0.321/0.353 0.567/0.654/0.607
4 MVL Sent-Mask 0.551/0.844/0.667 0.091/0.077/0.083 0.294/0.179/0.222 0.583/0.538/0.560
5 MVL BegEd 0.686/0.750/0.716 0/0/0 0.320/0.286/0.302 0.531/0.654/0.586
6 MVL K-Sum 0.686/0.750/0.716 0/0/0 0.320/0.286/0.302 0.531/0.654/0.586

7 PL Depression
(c) 0.913/0.656/0.764 0.333/0.231/0.273 0.333/0.321/0.327 0.561/0.712/0.627

8 PL Anxiety
(b) 0.808/0.656/0.724 0.167/0.154/0.160 0.440/0.393/0.415 0.565/0.673/0.614

9 PL Depression
+ Anxiety 0.821/0.719/0.767 0.133/0.154/0.143 0.385/0.357/0.370 0.554/0.596/0.574

10 PL Task C
(b) 0.774/0.750/0.762 0.083/0.077/0.080 0.438/0.250/0.318 0.606/0.769/0.678

11 -
Task C
(crowd-
labeled)

0.760/0.594/0.667 0/0/0 0.357/0.357/0.357 0.556/0.673/0.609

Table 6: Class-wise decomposition results for models considered in this paper. The results under each class are
presented following the ”Precision/Recall/F1” format.
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Abstract

The Shuffle Test is the most common task to
evaluate whether NLP models can measure co-
herence in text. Most recent work uses di-
rect supervision on the task; we show that by
simply finetuning a RoBERTa model, we can
achieve a near perfect accuracy of 97.8%, a
state-of-the-art. We argue that this outstand-
ing performance is unlikely to lead to a good
model of text coherence, and suggest that the
Shuffle Test should be approached in a Zero-
Shot setting: models should be evaluated with-
out being trained on the task itself. We eval-
uate common models in this setting, such as
Generative and Bi-directional Transformers,
and find that larger architectures achieve high-
performance out-of-the-box. Finally, we sug-
gest the k-Block Shuffle Test, a modification
of the original by increasing the size of blocks
shuffled. Even though human reader perfor-
mance remains high (around 95% accuracy),
model performance drops from 94% to 78%
as block size increases, creating a conceptually
simple challenge to benchmark NLP models.

1 Introduction

In recent years, text generation applications, fu-
eled by Transformer models pre-trained on large
datasets, have achieved dramatic results on a wide
range of NLP tasks. These include GPT2 applied
to story completion of fan fiction (Radford et al.,
2019), the PEGASUS model (Zhang et al., 2020)
improving state-of-the-art on ten summarization
datasets in widely varying domains, and more re-
cently GPT3 (Brown et al., 2020) doing well on a
diversity of tasks in a zero-shot setting. However,
it is not clear how coherent the text generated by
these models is.

The computational linguistics literature holds
many competing definitions of coherence in text;
Wang and Guo (2014) provide a useful brief sum-
mary of key competing theories. This work at-

Jesse on the other hand prefers tea.
Jesse and Hayden go to the park.
There is no accounting for tastes.
Hayden usually brings coffee.
It's a good way to get fresh air.
They go there every day.

Hayden usually brings coffee.
Jesse on the other hand prefers tea.
There is no accounting for tastes.
Jesse and Hayden go to the park.
They go there every day.
It's a good way to get fresh air.

Original

Shuffle - Block 1 Shuffle - Block 3

Jesse and Hayden go to the park.
They go there every day.

It's a good way to get fresh air.
Hayden usually brings coffee.

Jesse on the other hand prefers tea.
There is no accounting for tastes.

Figure 1: Can modern NLP models recognize shuf-
fled, incoherent text without supervision? Yes
(mostly) when all sentences are shuffled (left), but less
so when shuffling k blocks at a time (right).

tempts to identify the absence of coherence, noting
that a text might be composed of valid sentences
when viewed independently, but when read sequen-
tially, semantic relations are not well-supported.

The NLP community has proposed models to
measure coherence, as well as repeatable tasks to
evaluate these models. In this paper, we outline
these common tasks, and describe what we believe
is a limitation in the framework of the most com-
mon task: the Shuffle Test. The Shuffle Test is
a conceptually simple and reproducible task, in
which a model must differentiate between an origi-
nal text and a sentence-order shuffled version. Be-
cause of its simplicity, we make the argument that
the Shuffle Test should be viewed as a probe: a task
on which models should be evaluated without di-
rected supervision. Prior work (Paulus et al., 2018)
has shown that directly optimizing evaluation met-
rics such as ROUGE or BLEU leads to inadequate
models, exploiting weaknesses in the evaluation
metrics.

We show that this phenomenon occurs with the
current application of the Shuffle Test in related
work. To demonstrate the pitfalls, we finetune a
RoBERTa-large model – an architecture several or-
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Figure 2: Timeline of incremental accuracy improve-
ments on the Shuffle Test on the WSJ corpus. Letters
are for models described in Section 2.2.

ders of magnitude larger than previously used mod-
els – on the Shuffle Test and show the results outper-
form previous models, with an accuracy of 97.8%.
We argue this model has most likely learned fea-
tures specific to recognizing shuffled-ness, which
is probably a conflated signal for the underlying
goal of learning a strong coherence model.

We first outline prior work on tasks and models
to measure textual coherence, then describe the
framework for the Zero-Shot Shuffle Test, showing
how to adapt common models to the setting, and
finally propose a variation to the Shuffle Test that
significantly increases the challenge for models,
while not affecting human performance at the task.1

2 Tasks and Models for Coherence

2.1 Tasks for Coherence Evaluation

The Shuffle Test, introduced by Barzilay and Lap-
ata (2008), is the most common task for coherence
model evaluation. The task is a binary classifica-
tion, in which a model must discriminate between
a document and a shuffled document, obtained by
randomly shuffling the order of sentences in the
document. The most common dataset for evalua-
tion is a set of articles from the Wall Street Journal
(Elsner and Charniak, 2011).

In the Insertion Test, a single sentence from a
document is removed, and the model must predict
the sentence position. Typically, models assign a
score to each possible position, and predict the one
with highest score. One limitation of the Insertion
Test is that model accuracies are low, often in the
10-20% range (Elsner and Charniak, 2011). To our
knowledge, there is no evaluation of human perfor-
mance on this test; with the possibility that the task

1The code and model checkpoints are available at: https:
//github.com/tingofurro/shuffle_test.

can have more than one plausible solution. Com-
putational cost is another limitation, often growing
linearly with the number of sentences.

In the Sentence Ordering Task, a model is
given an randomly ordered sentence set, and must
produce the correct ordering of sentences. The
task is often restricted to generative models, as it is
prohibitively expensive to score all combinations
to extract a best-scoring order (Logeswaran et al.,
2018).

2.2 Models for the Shuffle Test

Figure 2 is a timeline of models that have led to
progress on the Shuffle Test since its introduction.

The Entity Grid (model A in Fig. 2) was intro-
duced by Barzilay and Lapata (2008). A text is
transformed into an entity grid, a matrix (#sen-
tences x #entities) indicating presence of an entity
in a sentence. The entity grid is featurized and used
to train a predictor on coherence tasks.

Elsner and Charniak (2011) (model B) extended
the entity grid by adding linguistic features such
as named-entity type. Nguyen and Joty (2017)
(model C) introduce the first neural approach, using
a convolutional neural network (CNN) to operate
over the entity grid, and Joty et al. (2018) (model
D) added word embeddings to entity-grid features.
Most recently, Moon et al. (2019) (model E) re-
placed traditional word vectors with ELMO (Peters
et al., 2018) contextual word vectors.

Crucially, all these models are directly trained
on the Shuffle Test, and with each iteration of im-
provement, model capacity (i.e., the number of
trainable parameters) has increased. We finetune
a RoBERTa-large (Liu et al., 2019) (model F), a
still larger model, on the Shuffle Test, and achieve
a 97.8% accuracy on the WSJ test set, a new state-
of-the-art.

Training details. We finetune the RoBERTa-
large on the training portion of the WSJ dataset,
and setup the task as a sequence classification. We
trained using the ADAM optimizer, using a learn-
ing rate of 1e−5 and a batch-size of 16. The model
was trained on a single GPU, an Nvidia V-100,
and training converged within 10 minutes. Model
checkpoint was selected based on a validation set
accuracy, and tested once on the standard WSJ test
set.

This stellar performance leads us to believe that
there are two conflated factors that cause good per-
formance on the Shuffle Test: a model that can
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truly recognize the lack of coherence in shuffled
text, and a model specialized at the Shuffle Test,
recognizing shuffle-specific features in text, with-
out assessing textual coherence. This resonates
with findings from Mohiuddin et al. (2020), who
show that increased model performance at the Shuf-
fle Test in supervised models does not necessarily
lead to improvements in downstream tasks, such as
ranking of generated summaries. Ideally, the Shuf-
fle Test would be used to assess coherence models
that work independently of the test itself.

We propose a simple solution: coherence models
should be evaluated on the Shuffle Test in a Zero-
Shot setting; without being supervised on the test,
preventing the learning of shuffle-specific features,
and more directly evaluating coherence aptitudes.

3 Zero-Shot Shuffle Test

We now define specifically what factors need to be
respected to satisfy the zero-shot setting.

In the Zero-Shot Shuffle Test, the evalu-
ated model must not be pre-trained, fine-
tuned or modified using shuffled text.

More specifically, this restricts the use of the
Shuffle Test as supervision (as a binary classifi-
cation task), as well as other tasks that involve
shuffling text, such as the sentence ordering task.

Next, we adapt common architectures to the
Zero-Shot Shuffle Test and assess performance in
diverse textual domains.

3.1 Zero-Shot Coherence Models
We adapt the two common classes of Transformer
models to the Zero-Shot Shuffle Test: Generative
and Bi-directional Transformers.

Generative Transformers are compatible with
language modeling, in which a model assigns a like-
lihood to a sequence of words (S = [W1, ....Wn]).
Transformers estimate the likelihood of a sequence
by factoring on sequence order:

P (S) =

N∏

i=1

P (Wi|W1...Wi−1) (1)

Taking the log of the likelihood (log(P (S))) is
often preferred as it allows for numerical stability.

To perform a Zero-Shot Shuffle Test, we com-
pute log-likelihoods of the original and shuffled
documents and predict the lower-scoring one as
shuffled.

We experiment with GPT2 models of varying
sizes (GPT2-base, GPT2-medium, GPT2-large),
and finetune an In-Domain GPT2-medium using
a language modeling loss in each domain to eval-
uate whether in-domain specialization improves
performance (GPT2-med-ID).

When texts exceed sequence-length limits of
models (e.g., 512 words), we implement a slid-
ing window mechanism. The sequence is split into
successive windows with 50% overlap. Window
log-likelihoods are averaged into a document log-
likelihood.

Bi-Directional Transformers, exemplified by
BERT (Devlin et al., 2019), are the second class
of models we adapt to the test. Unlike Generative
Transformers, bi-directional Transformers do not
impose strict sequence order, rendering sequence
likelihood estimation less straightforward.

Salazar et al. (2020) propose a solution, with
Masked Language Model Scoring (MLMS), in
which a likelihood is estimated by masking each
word in the sequence, predicting its identity, and
averaging all word-likelihoods into a score:

MLMS(S) =
1

N

N∑

i=1

logPMLM (Wi|W\i) (2)

whereW\i = S−{Wi}. Unlike generative models,
each word’s likelihood is conditioned on all others,
an advantage of Bi-directional models. For the
Zero-Shot Shuffle Test, the document with lower
MLMS is predicted as shuffled.

One key disadvantage of MLMS is its compu-
tational cost: scoring requires a forward-pass for
each word in the sequence; by contrast, generative
models usually require a single forward pass. This
limits our ability to test large models, and therefore
test only base models: BERT-base and RoBERTa-
base.

3.2 Datasets
To examine whether there are significant differ-
ences in performance across domains, we evaluate
with the Shuffle Test using three distinct domains.
We performed a manual check to determine that the
datasets we selected do not overlap with the dataset
used to pre-train BERT, RoBERTa and GPT2. The
three domains are:

News domain. We use the standard Wall Street
Journal (WSJ) test-set introduced by Elsner and
Charniak (2011) in the supervised Shuffle Test. The
dataset contains 1006 documents.
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Domain (%)
Model WSJ Legal Reddit Overall
GPT2-base 47.2 92.0 74.8 71.3
GPT2-medium 91.2 98.6 88.9 92.9
GPT2-large 73.2 99.3 90.6 87.7
BERT-base 73.2 96.1 86.1 85.1
RoBERTa-base 82.3 94.8 96.7 91.3
GPT2-med-id 93.1 98.8 90.0 94.0

Table 1: Accuracy of Zero-Shot Shuffle Tests of models
on three domains: Wall Street Journal (WSJ), Billsum
documents (Legal), and Reddit. We report an overall,
averaged performance across domains.

Legal domain. We use the full document re-
leased in the BillSum dataset (Kornilova and Eidel-
man, 2019) which consists of US Congressional
and California state bills. We use the first 1,000
documents in the standard test set.

Blog domain. We use posts of the Reddit TIFU
dataset (Kim et al., 2019), consisting of stories
written by members of the Reddit community. We
use the first 1,000 documents of the corpus.

We choose these datasets as they are publicly
available, can easily be accessed through the Hug-
gingFace datasets package (Wolf et al., 2020) and
represent a diversity of textual domains.

We note that document length affects the amount
of displacement that occurs from shuffling, with
more displacement in longer texts. To take this
effect into account, we truncate documents at 20
sentences before administering the Shuffle Test.

3.3 Results

Overall, all models significantly outperform ran-
dom chance, with the GPT2-medium achieving
91.2% on the WSJ test-set out of the box where
the previous supervised state-of-the-art was 93%.
Bi-directional models achieve better results than
generative models at Transformer-base size (e.g.,
GPT2-base vs. RoBERTa-base).

Increasing model size leads to large performance
improvement for GPT2, confirming that according
to the Shuffle Test, larger Transformer models im-
prove at modeling coherence. In-domain finetuning
leads to an improvement on all domains (GPT2-
med-id outperforming GPT2-medium), confirming
the strength of in-domain finetuning (Howard and
Ruder, 2018).

Finally, models achieved stronger performance
on the Legal domain, with models all scoring 92.0
or above. Overall, three of the six models we test
achieve compound performance over 90%.

Block Size
Model 1 2 3 4 5
Human Perf. - WSJ 97.5 94.5 93.0 96.0 94.0
GPT2-med - WSJ 95.3 91.4 89.5 87.4 85.3
GPT2-med - Legal 98.7 98.0 96.9 95.9 94.5
GPT2-med - Reddit 89.5 76.9 66.1 59.1 53.8
GPT2-med - Avg. 94.5 88.8 84.2 80.8 77.9

Table 2: Results of Zero-Shot KBST varying the
block size from one to five. The GPT2-medium model
was tested on all three domains, and human perfor-
mance was measured on WSJ.

There is a potential question about the zero-shot
nature of the BERT training method. The original
BERT model is trained with two objectives, one of
which is Next Sentence Prediction (NSP). In NSP,
the model is exposed to two blocks of text, and
must predict whether they are adjacent in a docu-
ment or not. It can be argued that NSP is an indirect
supervision signal for the Shuffle Test. However,
we find that the BERT model performs worse than
RoBERTa, a similar model in architecture trained
without the NSP objective. This difference in per-
formance suggests that the NSP objective is not the
cause of the superior performance of these mod-
els, thus preserving the claim that they act in a
zero-shot manner for the purposes of the Shuffle
Test.

We next propose a modification to the Shuffle
Test that challenges models significantly more.

4 The k-Block Shuffle Test

Results in Section 3 can be interpreted to mean that
with large enough Transformer models, the Shuffle
Test with no supervision is essentially a solved task.
We find that a simple modification of the Shuffle
Test can significantly reduce model performance,
without affecting human annotator performance.

The modification we propose, k-Block Shuffle
Test (KBST), is illustrated in Figure 1. In the stan-
dard Shuffle Test, text is divided into sentences and
shuffled, with a unit of one sentence. In the k-Block
Shuffle Test, sentences are grouped in contiguous
blocks of k sentences (resembling paragraphs), and
the blocks are shuffled, maintaining sentence order
in each block. Within a block, sentences remain
locally coherent, and as block size increases, the
fraction of correct sentence transitions increases,
while potentially incoherent transitions decrease.

To establish the feasibility of the KBST with
differing block-sizes, we performed a human evalu-
ation completed by authors of the paper as well as a
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third annotator recruited on the Upwork2 platform.
This annotator is a native English speaker with ex-
perience in proofreading, and was remunerated at
$15/hour USD.

The human evaluation consisted of performing
KBST on 500 documents randomly sampled from
the WSJ dataset, with 100 tests for each block-size
from one to five. Each Shuffle test was performed
by at least two annotators. We find that there is
high inter-annotator agreement (Cohen’s Kappa
κ = 0.86), which does not significantly vary with
block-size (ranging from 0.76-0.94).

KBST results for human and computational mod-
els are shown in Table 2. Human performance is
very high on WSJ, averaging above 95%, and is
not significantly affected by block-size.

Timings logged during human annotation show
that Shuffle Tests took on average 40% more time
for larger (3-5) than smaller blocks (1-2), showing
the task requires more attention from annotators as
block size increases.

In all three domains, increased block size leads
to a decrease in model performance. The magni-
tude of decrease in performance from block-size
1 to 5 is sensitive to the domain, with a drop of
4% in the legal domain, and 36% for Reddit, on
which the 5-block performance of 53.8% narrowly
outperforms random performance.

Aggregate model performance drops from 94.5%
for block-size 1 to 77.9% for block-size 5, leaving
significant room in larger block-size to measure
future model improvements.

Although increasing the block size leads to a
more challenging task for current models, we argue
models should not be evaluated on a single block
size, but on several block sizes, with each block
size giving a perspective on the model’s perfor-
mance at a specific point between local and global
coherence (Van Dijk, 1985).

5 Limitations and Future Work

Shuffling vs. Coherence. In this work, we pro-
pose an improved setting for the Shuffle Test, the
most popular probe to measure textual coherence.
However, many linguistic phenomena necessary for
coherence of text cannot be measured by shuffling
sentence order. In the long-run, the community
should build more elaborate coherence measures,
to build a more complete picture of model capabili-
ties and limitations.

2https://www.upwork.com

Coherence in Long Text. We limited our anal-
ysis to texts with up to 512 words, a common
constraint in pre-trained Transformers. Recent
progress in model architectures open the possibil-
ity to process longer text, with models such as the
Reformer (Kitaev et al., 2019), Longformer (Belt-
agy et al., 2020) and Big Bird (Zaheer et al., 2020)
processing sequences of several thousand words.
With longer sequences, one can further increase
the block-size of the k-Blocked Shuffle Test (i.e.,
k=20) to gain understanding of model’s ability to
discern global coherence (Van Dijk, 1985), or main
topics and subtopics (Hearst, 1997).

Specialized Coherence Models. In this work,
we limit our analysis to popular models out-of-
the-box, establishing baseline performances for
the Zero-Shot KBST. Future work should estab-
lish whether performance can be further improved,
for instance using word-level likelihood signals and
surprisal profiles.

6 Conclusion

In this work, we discuss a potential limitation in
the framing of the Shuffle Test, the most commonly
used task to evaluate models for textual coherence.
We show that a RoBERTa model can be finetuned
to achieve near-perfect performance without nec-
essarily measuring coherence, and propose a new
framework: the Zero-Shot Shuffle Test, in which
direct supervision is disallowed. Modern NLP ar-
chitectures can achieve high performance out-of-
the-box in this Zero-Shot setting on a variety of
textual domains. We find however that models
struggle when we introduce a simple modification,
k-Blocking, to the shuffling strategy, with accuracy
dropping from around 94% to around 78%. The
k-Block Shuffle Test in a Zero-Shot setting is a
straightforward, reproducible task that can be used
to benchmark future NLP architectures to measure
coherence capabilities.
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Abstract

In this paper, we present a conceptually sim-
ple while empirically powerful framework for
abstractive summarization, SIMCLS, which
can bridge the gap between the learning ob-
jective and evaluation metrics resulting from
the currently dominated sequence-to-sequence
learning framework by formulating text gen-
eration as a reference-free evaluation prob-
lem (i.e., quality estimation) assisted by con-
trastive learning. Experimental results show
that, with minor modification over existing top-
scoring systems, SimCLS can improve the per-
formance of existing top-performing models
by a large margin. Particularly, 2.51 abso-
lute improvement against BART (Lewis et al.,
2020) and 2.50 over PEGASUS (Zhang et al.,
2020a) w.r.t ROUGE-1 on the CNN/DailyMail
dataset, driving the state-of-the-art perfor-
mance to a new level. We have open-sourced
our codes and results: https://github.

com/yixinL7/SimCLS. Results of our pro-
posed models have been deployed into EX-
PLAINABOARD (Liu et al., 2021a) platform,
which allows researchers to understand our
systems in a more fine-grained way.

1 Introduction

Sequence-to-sequence (Seq2Seq) neural mod-
els (Sutskever et al., 2014) have been widely used
for language generation tasks, such as abstractive
summarization (Nallapati et al., 2016) and neu-
ral machine translation (Wu et al., 2016). While
abstractive models (Lewis et al., 2020; Zhang
et al., 2020a) have shown promising potentials in
the summarization task, they share the widely ac-
knowledged challenges of Seq2Seq model training.
Specifically, Seq2Seq models are usually trained
under the framework of Maximum Likelihood Es-
timation (MLE) and in practice they are commonly
trained with the teacher-forcing (Williams and

∗Corresponding author.

Figure 1: SimCLS framework for two-stage abstractive sum-
marization, where Doc, S, Ref represent the document, gen-
erated summary and reference respectively. At the first stage,
a Seq2Seq generator (BART) is used to generate candidate
summaries. At the second stage, a scoring model (RoBERTa)
is used to predict the performance of the candidate summaries
based on the source document. The scoring model is trained
with contrastive learning, where the training examples are
provided by the Seq2Seq model.

Zipser, 1989) algorithm. This introduces a gap
between the objective function and the evaluation
metrics, as the objective function is based on lo-
cal, token-level predictions while the evaluation
metrics (e.g. ROUGE (Lin, 2004)) would compare
the holistic similarity between the gold references
and system outputs. Furthermore, during the test
stage the model needs to generate outputs autore-
gressivelly, which means the errors made in the
previous steps will accumulate. This gap between
the training and test has been referred to as the
exposure bias in the previous work (Bengio et al.,
2015; Ranzato et al., 2016).

A main line of approaches (Paulus et al., 2018; Li
et al., 2019) proposes to use the paradigm of Rein-
forcement Learning (RL) to mitigate the aforemen-
tioned gaps. While RL training makes it possible to
train the model with rewards based on global pre-
dictions and closely related to the evaluation met-
rics, it introduces the common challenges of deep
RL. Specifically, RL-based training suffers from
the noise gradient estimation (Greensmith et al.,
2004) problem, which often makes the training un-
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stable and sensitive to hyper-parameters. Minimum
risk training, as an alternative, has also been used
in the language generation tasks (Shen et al., 2016;
Wieting et al., 2019). However, the accuracy of
the estimated loss is restricted by the number of
sampled outputs. Other methods (Wiseman and
Rush, 2016; Norouzi et al., 2016; Edunov et al.,
2018) aim to extend the framework of MLE to in-
corporate sentence-level scores into the objective
functions. While these methods can mitigate the
limitations of MLE training, the relation between
the evaluation metrics and the objective functions
used in their methods can be indirect and implicit.

Among this background, in this work we gener-
alize the paradigm of contrastive learning (Chopra
et al., 2005) to introduce an approach for abstrac-
tive summarization which achieves the goal of di-
rectly optimizing the model with the correspond-
ing evaluation metrics, thereby mitigating the gaps
between training and test stages in MLE training.
While some related work (Lee et al., 2021; Pan
et al., 2021) have proposed to introduce a con-
trastive loss as an augmentation of MLE training
for conditional text generation tasks, we instead
choose to disentangle the functions of contrastive
loss and MLE loss by introducing them at different
stages in our proposed framework.

Specifically, inspired by the recent work of
Zhong et al. (2020); Liu et al. (2021b) on text sum-
marization, we propose to use a two-stage model
for abstractive summarization, where a Seq2Seq
model is first trained to generate candidate sum-
maries with MLE loss, and then a parameterized
evaluation model is trained to rank the generated
candidates with contrastive learning. By optimiz-
ing the generation model and evaluation model
at separate stages, we are able to train these two
modules with supervised learning, bypassing the
challenging and intricate optimization process of
the RL-based methods.

Our main contribution in this work is to approach
metric-oriented training for abstractive summariza-
tion by proposing a generate-then-evaluate two-
stage framework with contrastive learning, which
not only put the state-of-the-art performance on
CNN/DailyMail to a new level (2.2 ROUGE-1
improvement against the baseline model), also
demonstrates the great potentials of this two-stage
framework, calling for future efforts on optimizing
Seq2Seq models using methods beyond maximum
likelihood estimation.

2 Contrastive Learning Framework for
Abstractive Summarization

Given a source document D and a reference sum-
mary Ŝ, the goal of an abstractive summarization
model f is to generate the candidate summary
S = f(D) such that it receives the highest score
m = M(S, Ŝ) assigned by an evaluation metric
M . In this work, we break down the holistic gen-
eration process into two stages which consist of a
generation model g for generating candidate sum-
maries and a evaluation model h for scoring and
selecting the best candidate. Fig 1 illustrates the
general framework.

Stage I: Candidate Generation The generation
model g(·) is a Seq2Seq model trained to maxi-
mize the likelihood of reference summary Ŝ given
the source document D. The pre-trained g(·) is
then used to produce multiple candidate summaries
S1, · · · , Sn with a sampling strategy such as Beam
Search, where n is the number of sampled candi-
dates.
Stage II: Reference-free Evaluation The high-
level idea is that a better candidate summary Si
should obtain a higher quality score w.r.t the source
document D. We approach the above idea by con-
trastive learning and define an evaluation function
h(·) that aims to assign different scores r1, · · · , rn
to the generated candidates solely based on the
similarity between the source document and the
candidate Si, i.e., ri = h(Si, D). The final output
summary S is the candidate with the highest score:

S = argmax
Si

h(Si, D). (1)

Here, we instantiate h(·) as a large pre-trained self-
attention model, RoBERTa (Liu et al., 2019). It is
used to encode Si and D separately, and the cosine
similarity between the encoding of the first tokens
is used as the similarity score ri.

Contrastive Training Instead of explicitly con-
structing a positive or negative example as most ex-
isting work with contrastive learning have adopted
(Chen et al., 2020; Wu et al., 2020), here the “con-
trastiveness” is reflect in the diverse qualities of
naturally generated summaries evaluated by a pa-
rameterized model h(·). Specifically, we introduce
a ranking loss to h(·):
L =

∑

i

max(0, h(D, S̃i)− h(D, Ŝ))

+
∑

i

∑

j>i

max(0, h(D, S̃j)− h(D, S̃i) + λij),
(2)
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where S̃1, · · · , S̃n is descendingly sorted by
M(S̃i, Ŝ). Here, λij = (j−i)∗λ is the correspond-
ing margin that we defined following Zhong et al.
(2020), and λ is a hyper-parameter.1 M can be any
automated evaluation metrics or human judgments
and here we use ROUGE (Lin, 2004).

3 Experiments

3.1 Datasets

We use two datasets for our experiments. The
dataset statistics are listed in Appendix A.
CNNDM CNN/DailyMail2 (Hermann et al., 2015;
Nallapati et al., 2016) dataset is a large scale news
articles dataset.
XSum XSum3 (Narayan et al., 2018) dataset is a
highly abstractive dataset containing online articles
from the British Broadcasting Corporation (BBC).

3.2 Evaluation Metrics

We use ROUGE-1/2/L (R-1/2/L) as the main evalu-
ation metrics for our experiments. We also evaluate
our model on the recently developed semantic sim-
ilarity metrics, namely, BERTScore (Zhang et al.,
2020b) and MoverScore (Zhao et al., 2019).

3.3 Base Systems

As the generation model and the evaluation model
in our two-stage framework are trained sepa-
rately, we use pre-trained state-of-the-art abstrac-
tive summarization systems as our generation
model. Specifically, we use BART (Lewis et al.,
2020) and Pegasus (Zhang et al., 2020a) as they are
popular and have been comprehensively evaluated.

3.4 Training Details

For baseline systems, we use the checkpoints pro-
vided by the Transformers4 (Wolf et al., 2020) li-
brary. We use diverse beam search (Vijayakumar
et al., 2016) as the sampling strategy to generate
candidate summaries. We use 16 groups for di-
versity sampling, which results in 16 candidates.
To train the evaluation model, we use Adam opti-
mizer (Kingma and Ba, 2015) with learning rate
scheduling. The model performance on the vali-
dation set is used to select the checkpoint. More
details are described in Appendix B.

1As it is insensitive, we fix it to 0.01 in our experiments.
2https://cs.nyu.edu/˜kcho/DMQA/
3https://github.com/EdinburghNLP/XSum
4https://github.com/huggingface/

transformers

System R-1 R-2 R-L BS MS

BART* 44.16 21.28 40.90 - -
Pegasus* 44.17 21.47 41.11 - -
Prophet* 44.20 21.17 41.30 - -
GSum* 45.94 22.32 42.48 - -

Origin 44.39 21.21 41.28 64.67 58.67
Min 33.17 11.67 30.77 58.09 55.75
Max 54.36 28.73 50.77 70.77 61.67
Random 43.98 20.06 40.94 64.65 58.60

SimCLS 46.67† 22.15† 43.54† 66.14† 59.31†

Table 1: Results on CNNDM. BS denotes BERTScore, MS de-
notes MoverScore. Origin denotes the original performance
of the baseline model. Min, Max, Random are the oracles
that select candidates based on their ROUGE scores. †: signif-
icantly better than the baseline model (Origin) (p < 0.01). *:
results reported in the original papers.
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Figure 2: Test performance with different numbers of can-
didate summaries on CNNDM. Origin denotes the original
performance of the baseline model.

3.5 Results on CNNDM dataset

The results on CNNDM dataset are shown in Tab. 1.
We use the pretrained BART5 as the base gener-
ation model (Origin). We use BART, Pegasus,
GSum (Dou et al., 2021) and ProphetNet (Qi
et al., 2020) for comparison. Notably, the Max
oracle which always selects the best candidate has
much better performance than the original outputs,
suggesting that using a diverse sampling strategy
can further exploit the potential power of the pre-
trained abstractive system. Apart from ROUGE,
we also present the evaluation results on semantic
similarity metrics. Our method is able to outper-
form the baseline model on all metrics, demon-
strating its improvement is beyond exploiting the
potential artifacts of ROUGE. While the scale of
improvement is harder to interpret with these met-
rics, we note that the improvement is able to pass
the significance test.

5‘facebook/bart-large-cnn’
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System Summary Article

Ref. chris ramsey says he has no problem shaking hands
with john terry . queens park rangers host chelsea
in the premier league on sunday . terry was once
banned and fined for racist comments at loftus road
. rio ferdinand , brother of anton , will not be fit to
play against chelsea .

queens park rangers manager chris ramsey has revealed he will have no problem
shaking john terry’s hand in light of the racist comments the former england cap-
tain directed at former rs defender anton ferdinand four years ago . terry , who will
line up against ramsey’s side , was banned for four games and fined # 220,000 for the
remarks made in october 2011 during chelsea’s 1-0 defeat at loftus road . but ramsey
, the premier league’s only black manager , thinks the issue has been dealt with . ... ‘ i
don’t know what his feelings are towards me . as long as there wasn’t anything on the
field that was unprofessional by him , i would shake his hand . . queens park rangers
manager chris ramsey speaks to the media on friday ahead of the chelsea match .
chelsea captain john terry controls the ball during last weekend’s premier league match
against stoke . ramsey arrives for friday’s pre-match press conference as qpr prepare to
host chelsea at loftus road . ‘ the whole episode for british society sat uncomfortably
. it’s not something we want to highlight in football . it happened and it’s being dealt
with . we have to move on . and hopefully everyone has learned something from it . ’ .
ramsey revealed that rio ferdinand , who labelled terry an idiot for the abuse aimed at
his brother , won’t be fit in time for a reunion with the chelsea skipper this weekend . but
the 52-year-old suspects his player’s one-time england colleague will be on the receiving
end of a hostile welcome from the home fans on his return the scene of the unsavoury
incident . ... ferdinand and terry argue during qpr’s 1-0 victory against chelsea at loftus
road in october 2011 . rio ferdinand , brother of anton , will not be fit for sunday’s
match against chelsea .

SimCLS queens park rangers host chelsea in the premier
league on sunday . qpr boss chris ramsey says he
will have no problem shaking john terry’s hand .
terry was banned for four games and fined # 220,000
for racist comments . rio ferdinand , brother of anton
, will not be fit for the match at loftus road .

Origin. john terry was banned for four games and fined #
220,000 for the remarks made in october 2011 dur-
ing chelsea’s 1-0 defeat at loftus road . terry will line
up against chris ramsey’s side on sunday . rio ferdi-
nand , who labelled terry an idiot for the abuse aimed
at his brother , won’t be fit in time for a reunion with
the chelsea skipper this weekend .

Table 2: Sentence alignments between source articles and summaries on CNNDM dataset. The aligned sentences for reference
and our summaries are bolded (they are the same in this example). The aligned sentences for baseline summaries are italicized.
Origin denotes the original performance of the baseline model.

Level System Precision Recall F-Score

Entity Origin 40.70 59.13 48.22
SimCLS 43.36 59.79 50.27

Sentence
Origin 38.11 38.65 37.18

SimCLS 42.58 40.22 40.12

Table 3: Performance analysis on CNNDM dataset. Origin
denotes the original performance of the baseline model.

With the constraints of computation power, we
try to use as many candidates as possible for the
evaluation model training. However, we also notice
that our method is robust to the specific number of
candidates, as during test we found that our model
is still able to outperform the baseline model with
fewer candidates, which is illustrated in Fig. 2.

3.6 Fine-grained Analysis

To demonstrate that our method is able to make
meaningful improvement w.r.t the summary quality,
here we compare our method with the baseline
model at different semantic levels on CNNDM.

3.6.1 Entity-level
Inspired by the work of Gekhman et al. (2020) and
Jain et al. (2020), we compare the model perfor-
mance w.r.t the salient entities, which are entities in
source documents that appear in the reference sum-
maries. Specifically, (1) we extract the entities from
the source documents,6 (2) select the salient enti-
ties based on the entities in reference summaries,

6We use a pre-trained NER model provided by spaCy to
extract the entities: https://spacy.io/

(3) compare the salient entities with entities in can-
didate summaries. Results in Tab. 3 demonstrate
that our method can better capture the important
semantic information of the source documents.

3.6.2 Sentence-level
Sentence Alignments Here we investigate if our
method makes sentence-level differences compared
to the baseline model. Specifically, (1) we match
each sentence in the summaries to a sentence in
the source documents based on their similarity
(indicated by ROUGE scores),7 (2) compute the
sentence-level similarity between the reference and
system-generated summaries based on the overlaps
of their matched sentences in the source documents.
The results in Tab. 3 demonstrate that the generated
summaries of our method is more similar to the
reference summaries at the sentence level.

Positional Bias In Tab. 2, we present a case study
of the sentence alignment. We use the same match-
ing approach to map the summary sentences to the
sentences in source articles. In this example, the
output of our method focuses on the same sentences
as the reference summary does, while the baseline
summary focuses on some different sentences.

Interestingly, the reference summary focuses on
the very last sentence in the article, and our method
can follow this pattern. Upon examining this pat-
tern, we notice a positional bias of abstractive mod-
els when handling long source articles (more than

7Notably, this matching approach formulates an extrac-
tive oracle when reference summaries are used for matching,
which achieves 54.54/30.73/50.35 ROUGE-1/2/L scores.
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Figure 3: Positional Bias. X-asis: the relative position of the
matched sentence in source documents. Y-axis: the ratio of
the matched sentences. For fair comparison, articles are first
truncated to the generator’s maximum input length. Origin
denotes the original performance of the baseline model.

30 sentences). Fig. 3 shows that the baseline sum-
maries are more likely to focus on the head sen-
tences compared to the references, which may re-
sult from the autoregressive generation process of
the Seq2Seq models. Our method is able to miti-
gate this bias, as the candidate sampling process
(diverse beam search) generates candidates differ-
ent from the original outputs, and our evaluation
model can assess the holistic quality of the candi-
dates.

3.7 Results on XSum dataset

To evaluate our method’s performance beyond
CNNDM dataset, we also test our method on XSum
dataset, and the results are shown in Tab. 4. Here,
we use Pegasus8 as the base system since it
achieves better performance than BART on XSum.
We follow the same sampling strategy to generate
the training data. However, as this strategy gen-
erally results in lower ROUGE-2 score on XSum
dataset, we use a different strategy to generate the
validation and test data (4 candidates generated
by 4 diverse groups). Our method is still able to
outperform the baseline, but with a smaller mar-
gin compared to CNNDM. Summaries in XSum are
shorter (one-sentence) and more abstractive, which
restricts the semantic diversity of candidates and
makes it harder to make meaningful improvement.

4 Conclusion

In this work, we present a contrastive summariza-
tion framework that aims to optimize the quality of
generated summaries at summary-level, which mit-
igates the discrepancy between the training and test

8‘google/pegasus-xsum’

System R-1 R-2 R-L BS MS

BART* 45.14 22.27 37.25 - -
Pegasus* 47.21 24.56 39.25 - -
GSum* 45.40 21.89 36.67 - -

Origin 47.10 24.53 39.23 69.48 61.34
Min 40.97 19.18 33.68 66.01 59.58
Max 52.45 28.28 43.36 72.56 62.98
Random 46.72 23.64 38.55 69.30 61.23

SimCLS 47.61† 24.57 39.44† 69.81† 61.48†

Table 4: Results on XSum dataset. BS denotes BERTScore,
MS denotes MoverScore. Origin denotes the original per-
formance of the baseline model. Min, Max, Random are
the oracles that select candidates based on their ROUGE
scores. †: significantly better than the baseline model (Origin)
(p < 0.05). *: results reported in the original papers.

stages in the MLE framework. Apart from the sig-
nificant improvement over the baseline model on
CNNDM dataset, we present a comprehensive eval-
uation at different semantic levels, explaining the
sources of the improvement made by our method.
Notably, our experimental results also indicate that
the existing abstractive systems have the poten-
tial of generating candidate summaries much bet-
ter than the original outputs. Therefore, our work
opens up the possibility for future directions includ-
ing (1) extending this two-stage strategy to other
datasets for abstractive models; (2) improving the
training algorithms for abstractive models towards
a more holistic optimization process.
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Çağlar Gulçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290, Berlin, Germany.
Association for Computational Linguistics.

1070



Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Mohammad Norouzi, Samy Bengio, zhifeng Chen,
Navdeep Jaitly, Mike Schuster, Yonghui Wu, and
Dale Schuurmans. 2016. Reward augmented max-
imum likelihood for neural structured prediction. In
Advances in Neural Information Processing Systems,
volume 29, pages 1723–1731. Curran Associates,
Inc.

Xiao Pan, Mingxuan Wang, Liwei Wu, and Lei Li.
2021. Contrastive learning for many-to-many mul-
tilingual neural machine translation.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In International Conference on Learn-
ing Representations.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu,
Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming
Zhou. 2020. ProphetNet: Predicting future n-gram
for sequence-to-SequencePre-training. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 2401–2410, Online. Associa-
tion for Computational Linguistics.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In 4th Inter-
national Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1683–1692, Berlin, Germany. Asso-
ciation for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Vol-
ume 2, NIPS’14, page 3104–3112, Cambridge, MA,
USA. MIT Press.

Ashwin K. Vijayakumar, Michael Cogswell, Ram-
prasaath R. Selvaraju, Qing Sun, Stefan Lee, David J.
Crandall, and Dhruv Batra. 2016. Diverse beam
search: Decoding diverse solutions from neural se-
quence models. CoRR, abs/1610.02424.

John Wieting, Taylor Berg-Kirkpatrick, Kevin Gimpel,
and Graham Neubig. 2019. Beyond BLEU:training
neural machine translation with semantic similarity.
In Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics, pages
4344–4355, Florence, Italy. Association for Compu-
tational Linguistics.

Ronald J. Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural Comput., 1(2):270–280.

Sam Wiseman and Alexander M. Rush. 2016.
Sequence-to-sequence learning as beam-search op-
timization. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1296–1306, Austin, Texas. Association
for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Hanlu Wu, Tengfei Ma, Lingfei Wu, Tariro
Manyumwa, and Shouling Ji. 2020. Unsuper-
vised reference-free summary quality evaluation
via contrastive learning. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 3612–3621,
Online. Association for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. CoRR, abs/1609.08144.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020a. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020b. Bertscore:
Evaluating text generation with BERT. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. MoverScore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings

1071



of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 563–578, Hong
Kong, China. Association for Computational Lin-
guistics.

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang,
Xipeng Qiu, and Xuanjing Huang. 2020. Extrac-
tive summarization as text matching. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 6197–6208, On-
line. Association for Computational Linguistics.

A Dataset Statistics

Datasets # Num Avg. Len

Train Valid Test Doc. Sum.

CNNDM 287K 13K 11K 768.6 55.7
XSum 203K 11K 11K 429.2 23.3

Table 5: Datasets Statistics. Len is the length of tokens.

The source documents and reference summaries
are lower-cased. Due to the input length limita-
tion, some source documents are truncated during
training.

B Experiment Details

Candidate Generation We use diverse beam
search to generate the candidate summaries. We
use the same beam search configuration as the orig-
inal work except those related to diverse beam
search. In particular, the diversity penalty is set
to 1, and we use 16 diversity groups with 16 beams,
which results in 16 candidates.
Model We use the pretrained RoBERTa with
‘roberta-base’ version provided by the Transform-
ers library as our evaluation model, which contains
125M parameters.
Optimizer We use Adam optimizer with learning
rate scheduling:

lr = 0.002 ·min(step num−0.5, (3)

step num · warmup steps−1.5),

where the warmup steps is 10000.
Training details The batch size in our experiments
is 32. We evaluate the model performance on the
validation set at every 1000 steps, using the aver-
aged ROUGE-1/2/L score as the selecting crite-
ria. The training is converged in 5 epochs, which
takes around 40 hours on 4 GTX-1080-Ti GPUs
on CNN/DailyMail dataset and 20 hours on XSum
dataset.
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Abstract

In this work, we introduce a corpus for satire
detection in Romanian news. We gathered
55,608 public news articles from multiple real
and satirical news sources, composing one of
the largest corpora for satire detection regard-
less of language and the only one for the Ro-
manian language. We provide an official split
of the text samples, such that training news
articles belong to different sources than test
news articles, thus ensuring that models do
not achieve high performance simply due to
overfitting. We conduct experiments with two
state-of-the-art deep neural models, resulting
in a set of strong baselines for our novel cor-
pus. Our results show that the machine-level
accuracy for satire detection in Romanian is
quite low (under 73% on the test set) com-
pared to the human-level accuracy (87%), leav-
ing enough room for improvement in future re-
search.

1 Introduction

According to its definition in the Cambridge Dic-
tionary, satire is “a humorous way of criticizing
people or ideas”1. News satire employs this mecha-
nism in the form of seemingly legitimate journalis-
tic reporting, with the intention of ridiculing public
figures, politics or contemporary events (McClen-
nen and Maisel, 2014; Peters and Broersma, 2013;
Rubin et al., 2016). Although the articles pertain-
ing to this genre contain fictionalized stories, the
intent is not to mislead the public into thinking that
the discussed subjects are real. On the contrary,
satirical news articles are supposed to reveal their
nature by the writing style and comedic devices
employed, such as irony, parody or exaggeration.
Thus, the intention behind the writing differenti-
ates satirical news (Rubin et al., 2016) from fake

1https://dictionary.cambridge.org/
dictionary/english/satire

news (Meel and Vishwakarma, 2019; Pérez-Rosas
et al., 2018; Sharma et al., 2019). However, in
some rare cases, the real intent might be deeply
buried in the complex irony and subtleties of news
satire (Barbieri et al., 2015a), which has the effect
of fiction being deemed as factual (Zhang et al.,
2020). Even so, there is a clear distinction between
satirical and fake news. In fake news, the intent
is to deceive the readers in thinking that the news
is real, while presenting fake facts to influence the
readers’ opinion. Since our study is focused on
satire detection, we consider discussing research
on fake news detection as being out of our scope.
At the same time, we acknowledge the growing
importance of detecting fake news and the fact that
an accurate differentiation of satirical from legiti-
mate journalistic reports might be seen as a starting
point in controlling the spread of deceptive news
(De Sarkar et al., 2018).

Satire detection is an important task that could
be addressed prior to the development of conversa-
tional systems and robots that interact with humans.
Certainly, the importance of understanding satirical
(funny, ridiculous or ironical) text becomes obvi-
ous when we consider a scenario in which a robot
performs a dangerous action because it takes a satir-
ical comment of the user too literally. Given the
relevance of the task for the natural language pro-
cessing community, satire detection has already
been investigated in several well-studied languages
such as Arabic (Saadany et al., 2020), English (Bur-
foot and Baldwin, 2009; De Sarkar et al., 2018;
Goldwasser and Zhang, 2016; Yang et al., 2017),
French (Ionescu and Chifu, 2021; Liu et al., 2019),
German (McHardy et al., 2019), Spanish (Barbi-
eri et al., 2015b) and Turkish (Toçoğlu and Onan,
2019). Through the definition of satire, the satire
detection task is tightly connected to irony and sar-
casm detection. These tasks strengthen or broaden
the language variety with languages such as Ara-
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Data Set Language #articles
Regular Satirical Total

(Burfoot and Baldwin, 2009) English 4,000 233 4,233
(Frain and Wubben, 2016) English 1,705 1,706 3,411
(Goldwasser and Zhang, 2016) English 10,921 1,225 12,146
(Ionescu and Chifu, 2021) French 5,648 5,922 11,570
(Li et al., 2020) English 6,000 4,000 10,000
(Liu et al., 2019) French 2,841 2,841 5,682
(McHardy et al., 2019) German 320,219 9,643 329,862
(Ravi and Ravi, 2017) English 1,272 393 1,665
(Saadany et al., 2020) Arabic 3,185 3,710 6,895
(Toçoğlu and Onan, 2019) Turkish 1,000 1,000 2,000
(Yang et al., 2017) English 168,780 16,249 185,029
SaRoCo (ours) Romanian 27,980 27,628 55,608

Table 1: Number of regular and satirical news articles in existing corpora versus SaRoCo.

Set Regular Satirical Total
#articles #tokens #articles #tokens #articles #tokens

Training 18,000 8,174,820 17,949 11,147,169 35,949 19,321,989
Validation 4,986 2,707,026 4,878 3,030,055 9,864 5,737,081
Test 4,994 2,124,346 4,801 1,468,199 9,795 3,592,545
Total 27,980 13,006,192 27,628 15,645,423 55,608 28,651,615

Table 2: Number of samples (#articles) and number of tokens (#tokens) for each subset in SaRoCo.

bic (Karoui et al., 2017), Chinese (Jia et al., 2019),
Dutch (Liebrecht et al., 2013) and Italian (Giudice,
2018).

In this work, we introduce SaRoCo2, the Satire
detection Romanian Corpus, which comprises
55,608 news articles collected from various sources.
To the best of our knowledge, this is the first and
only data set for the study of Romanian satirical
news. Furthermore, SaRoCo is also one of the
largest data sets for satirical news detection, being
surpassed only two corpora, one for English (Yang
et al., 2017) and one for German (McHardy et al.,
2019). However, our corpus contains the largest
collection of satirical news articles (over 27,000).
These facts are confirmed by the comparative statis-
tics presented in Table 1.

Along with the novel data set, we include two
strong deep learning methods to be used as base-
lines in future works. The first method is based
on low-level features learned by a character-level
convolutional neural network (Zhang et al., 2015),
while the second method employs high-level se-
mantic features learned by the Romanian version of
BERT (Dumitrescu et al., 2020). The gap between
the human-level performance and that of the deep
learning baselines indicates that there is enough
room for improvement left for future studies. We
make our corpus and baselines available online for

2https://github.com/MihaelaGaman/
SaRoCo

Sample Part Average #tokens
Title 24.97
Full Articles 515.24

Table 3: Average number of tokens in full news articles
and titles from SaRoCo.

nonprofit educational and research purposes, under
an open-source noncommercial license agreement.

2 Corpus

SaRoCo gathers both satirical and non-satirical
news from some of the most popular Romanian
news websites. The collected news samples were
found in the public web domain, i.e. access is pro-
vided for free without requiring any subscription
to the publication sources. The entire corpus con-
sists of 55,608 samples (27,628 satirical samples
and 27,980 non-satirical samples), having more
than 28 million tokens in total, as illustrated in
Table 2. Each sample is composed of a title (head-
line), a body and a corresponding label (satirical or
non-satirical). As shown in Table 3, an article has
around 515.24 tokens on average, with an average
of 24.97 tokens for the headline. We underline that
the labels are automatically determined, based on
the fact that a publication source publishes either
regular or satirical news, but not both.

We provide an official split for our corpus, such
that all future studies will use the same training, val-
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Category Example Translation

Regular

“Tragedie ı̂n zi de
sărbătoare”

“Tragedy during cele-
bration day”

“Demisia lui $NE$
$NE$ se amână”

“$NE$ $NE$’s resigna-
tion is post-poned”

“Premierul bulgar
$NE$ $NE$ are
$NE$”

“Bulgarian prime-
minister $NE$ $NE$
has $NE$”

“A murit actorul $NE$
$NE$”

“The actor $NE$ $NE$
died”

“Metroul din $NE$
$NE$ se deschide
azi”

“Subway to $NE$
$NE$ opens up
today”

Satirical

“Comedia cu
pŭlărioară de
staniol”

“Comedy with little tin-
foil hat”

“10 restricţii dure
pe care $NE$
le pregăteşte pe
ascuns”

“10 harsh restrictions
that $NE$ is planning
in secrecy”

“Câţi pokemoni ai
prins azi?”

“How many pokemons
did you catch to-
day?”

“Biserica $NE$
lansează apa sfinţită
cu aromă”

“The $NE$ Church
launches flavored
holy water”

“Dragostea ı̂n vremea
sclerozei”

“Love in the time of
sclerosis”

Table 4: Examples of news headlines from SaRoCo.

idation and test sets, easing the direct comparison
with prior results. Following McHardy et al. (2019),
we use disjoint sources for training, validation and
test, ensuring that models do not achieve high per-
formance by learning author styles or topic biases
particular to certain news websites. While crawl-
ing the public news articles, we selected the same
topics (culture, economy, politics, social, sports,
tech) and the same time frame (between 2011 and
2020) for all news sources to control for potential
biases induced by uneven topic or time distribu-
tions across the satirical and non-satirical genres.

After crawling satirical and non-satirical news
samples, our first aim was to prevent discrimination
based on named entities. The satirical character of
an article should be inferred from the language use
rather than specific clues, such as named entities.
For example, certain sources of news satire show
preference towards mocking politicians from a spe-
cific political party, and an automated system might
erroneously label a news article about a member
of the respective party as satirical simply based on
the presence of the named entity. Furthermore, we
even noticed that some Romanian politicians have
certain mocking nicknames assigned in satirical
news. In order to eliminate named entities, we fol-
lowed a similar approach as the one used for the

MOROCO (Butnaru and Ionescu, 2019) data set.
Thus, all the identified named entities are replaced
with the special token $NE$. Besides eliminating
named entities, we also substituted all whitespace
characters with space and replaced multiple consec-
utive spaces with a single space. A set of processed
satirical and regular headlines are shown in Table 4.

3 Baselines

Fine-tuned Ro-BERT. Our first baseline consists
of a fine-tuned Romanian BERT (Dumitrescu et al.,
2020), which follows the same transformer-based
model architecture as the original BERT (Devlin
et al., 2019). According to Dumitrescu et al. (2020),
the Romanian BERT (Ro-BERT) attains better re-
sults than the multilingual BERT on a range of
tasks. We therefore assume that the Romanian
BERT should represent a stronger baseline for our
Romanian corpus.

We use the Ro-BERT encoder to encode each
text sequence into a list of token IDs. The tokens
are further processed by the model, obtaining the
corresponding 768-dimensional embeddings. At
this point, we add a global average pooling layer to
obtain a Continuous Bag-of-Words (CBOW) repre-
sentation for each sequence of text, followed by a
Softmax output layer with two neural units, each
predicting the probability for one category, either
non-satirical or satirical. To obtain the final class
label for a text sample, we apply argmax on the
two probabilities. We fine-tune the whole model
for 10 epochs on mini-batches of 32 samples, using
the Adam with decoupled weight decay (AdamW)
optimizer (Loshchilov and Hutter, 2019), with a
learning rate of 10−7 and the default value for ε.
Character-level CNN. The second baseline model
considered in the experiments is a Convolutional
Neural Network (CNN) that operates at the charac-
ter level (Zhang et al., 2015). We set the input size
to 1,000 characters. After the input layer, we add
an embedding layer to encode each character into
a vector of 128 components. The optimal architec-
ture for the task at hand proved to be composed of
three convolutional (conv) blocks, each having a
conv layer with 64 filters applied at stride 1, fol-
lowed by Scaled Exponential Linear Unit (SELU)
activation. From the first block to the third block,
the convolutional kernel sizes are 5, 3 and 1, re-
spectively. Max-pooling with a filter size of 3 is
applied after each conv layer. After each conv
block, we insert a Squeeze-and-Excitation block
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Method
Validation Test

Acc. Macro Satirical Regular Acc. Macro Satirical Regular
F1 Prec. Rec. Prec. Rec. F1 Prec. Rec. Prec. Rec.

Ro-BERT 0.8241 0.8160 0.9260 0.6991 0.7633 0.9462 0.7300 0.7150 0.8750 0.5250 0.6700 0.9250
Char-CNN 0.7342 0.7475 0.8023 0.6138 0.6928 0.8520 0.6966 0.7109 0.7612 0.5551 0.6606 0.8326

Table 5: Validation and test results of the character-level CNN and the fine-tuned Ro-BERT applied on SaRoCo.

with the reduction ratio set to r = 64, following
Butnaru and Ionescu (2019). To prevent overfitting,
we use batch normalization and Alpha Dropout
(Klambauer et al., 2017) with a dropout rate of
0.5. The final prediction layer is composed of two
neural units, one for each class (i.e. legitimate and
satirical), with Softmax activation. We use the
Nesterov-accelerated Adaptive Moment Estimation
(Nadam) optimizer (Dozat, 2016) with a learning
rate of 2 · 10−4, training the network for 50 epochs
on mini-batches of 128 samples.

4 Experiments

Evaluation. We conducted binary classification ex-
periments on SaRoCo, predicting if a given piece
of text is either satirical or non-satirical. As evalu-
ation metrics, we employ the precision and recall
for each of the two classes. We also combine these
scores through the macro F1 and micro F1 (accu-
racy) measures.
Results. In Table 5, we present the results of the
two baselines on the SaRoCo validation and test
sets. We observe that both models tend to have
higher precision scores in detecting satire than in
detecting regular news. The trade-off between pre-
cision and recall is skewed towards higher recall
for the non-satirical news class. Since both models
share the same behavior, we conjecture that the
behavior is rather caused by the particularities of
the satire detection task.
Discriminative feature analysis. We analyze the
discriminative features learned by the character-
level CNN, which is one of the proposed base-
line systems for satire detection. We opted for
the character-level CNN in favor of the fine-tuned
BERT, as the former method allows us to visual-
ize discriminative features using Grad-CAM (Sel-
varaju et al., 2017), a technique that was initially
used to explain decisions of CNNs applied on im-
ages. We adapted this technique for the character-
level CNN, then extracted and analyzed the most
predictive patterns in SaRoCo. The motivation
behind this was to validate that the network’s de-
cisions are not based on some biases that escaped

Category Example Translation
Slang “cel mai marfă serial

din lume”
“the dopest TV show
in the world”

“cocalar” “douche”
Insult “odiosul primar” “the odious mayor”

“bunicuţ retardat” “retarded grandpa”
“dugongul ăla slinos
de la sectorul 4”

“that slender dugong
in the 4th sector”

Repetition “Mii de gunoaie care
lasă gunoaie au
remarcat că [...]
plajele [...] s-au
umplut de gunoaie,
lăsate [...] de
gunoaiele care au
venit ı̂naintea lor”

“Thousands of scums
who leave garbage
noticed that [...]
beaches [...] got
full of garbage, left
behind [...] by the
scums who were
there before them”

Exaggeration “Ne-am săturat!” “We’re sick of it!”
Exclamation “Ruşine să le fie!” “Shame on them!”
Irony “Chiar nu suntem o

naţie de hoţi!”
“We’re totally not a
nation of thieves!”

Popular “a sărit calul” “went overboard”
Saying “a făcut-o de oaie” “messed up”

“minte de găină” “bird brain”

Table 6: Examples of predictive patterns of satire
learned by the character-level CNN.

Category Example Translation
Stats “Importurile au

scăzut cu 2.1%
[...] pentru o
creştere de 0.1%
şi prelungirea
scăderii de 1.4%
din iulie.”

“Imports decreased
by 2.1% [...] for
an increase of 0.1%
and the prolonga-
tion of the decrease
of 1.4% since July.”

Legal terms “asasinat” “assasinated”
“l-au denunţat pe au-
torul atacului”

“denounced the perpe-
trator”

Weather “temperatura ı̂n
timpul nopţii a
scăzut”

“the temperature has
dropped during the
night”

Political
terms

“scrutinul
prezidenţial”

“presidential elec-
tion”

“prefectura in-
formează că”

“prefecture informs
that”

Table 7: Examples of predictive patterns of legitimate
news learned by the character-level CNN.

our data collection and cleaning process.
In Tables 6 and 7, we present a few examples

of interesting patterns considered relevant for pre-
dicting satire versus regular news, respectively. A
broad range of constructions covering a great vari-
ety of styles and significant words are underlined
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Method Acc. Macro Satirical Regular
F1 Prec. Rec. Prec. Rec.

Ro-BERT 0.6800 0.6750 0.7800 0.5100 0.6350 0.8550
Char-CNN 0.6500 0.6510 0.6389 0.6900 0.6630 0.6100
Humans 0.8735 0.8711 0.9416 0.7970 0.8332 0.9500

Table 8: Averaged performance of ten human annotators versus deep learning baselines on 200 news headlines
from SaRoCo.

via Grad-CAM in the satirical news samples. The
network seems to pick up obvious clues such as
slang, insults and popular sayings rather than more
subtle indicatives of satire, including irony or ex-
aggeration. At the same time, for the real news in
SaRoCo, there are fewer categories of predictive
patterns. In general, the CNN deems formal, stan-
dard news expressions as relevant for regular news.
These patterns vary across topics and domains. The
CNN also finds that the presence of numbers and
statistical clues is indicative for non-satirical con-
tent, which is consistent with the observations of
Yang et al. (2017). Our analysis reveals that the
discriminative features are appropriate for satire de-
tection, showing that our corpus is indeed suitable
for the considered task.

Deep models versus humans. Given 100 satirical
and 100 non-satirical news headlines (titles) ran-
domly sampled from the SaRoCo test set, we asked
ten Romanian human annotators to label each sam-
ple as satirical or non-satirical. We evaluated the
deep learning methods on the same subset of 200
samples, reporting the results in Table 8. First,
we observe that humans have a similar bias as the
deep learning models. Indeed, for both humans
and models, the trade-off between precision and
recall is skewed towards higher precision for the
satirical class and higher recall for the non-satirical
class. We believe this is linked to the way people
and machines make a decision. Humans look for
patterns of satire in order to label a sample as satire.
If a satire-specific pattern is not identified, the re-
spective sample is labeled as regular, increasing
the recall for the non-satirical class. Although hu-
mans and machine seem to share the same way of
thinking, there is a considerable performance gap
in satire detection between humans and machines.
Indeed, the average accuracy of our ten human an-
notators is around 87%, while the state-of-the-art
deep learning models do not surpass 68% on the
same news headlines. Even on full news articles
(see Table 5), the models barely reach an accuracy
of 73% on the test set. Hence, we conclude there is

a significant performance gap between humans and
machines, leaving enough room for exploration in
future work on Romanian satire detection.

We would like to emphasize that our human
evaluation was performed by casual news readers,
and the samples were shown after named entity
removal, thus having a fair comparison with the AI
models. We underline that named entity removal
makes the task more challenging, even for humans.

5 Conclusion

In this work, we presented SaRoCo, a novel data
set containing satirical and non-satirical news sam-
ples. To the best of our knowledge, SaRoCo is
the only corpus for Romanian satire detection and
one of the largest corpora regardless of language.
We trained two state-of-the-art neural models as
baselines for future research on our novel corpus.
We also compared the performance of the neural
models with the averaged performance of ten hu-
man annotators, showing that the neural models
lag far behind the human-level performance. Our
discriminative feature analysis confirms the limita-
tions of state-of-the-art neural models in detecting
satire. Although we selected a set of strong models
from the recent literature as baselines for SaRoCo,
significant future research is necessary to close the
gap with respect to the human-level satire detection
performance. Designing models to pick up irony or
exaggerations could pave the way towards closing
this gap in future work.
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Abstract

Faceted summarization provides briefings of a
document from different perspectives. Read-
ers can quickly comprehend the main points of
a long document with the help of a structured
outline. However, little research has been con-
ducted on this subject, partially due to the lack
of large-scale faceted summarization datasets.
In this study, we present FacetSum, a faceted
summarization benchmark built on Emerald
journal articles, covering a diverse range of do-
mains. Different from traditional document-
summary pairs, FacetSum provides multi-
ple summaries, each targeted at specific sec-
tions of a long document, including the pur-
pose, method, findings, and value. Analy-
ses and empirical results on our dataset reveal
the importance of bringing structure into sum-
maries. We believe FacetSum will spur fur-
ther advances in summarization research and
foster the development of NLP systems that
can leverage the structured information in both
long texts and summaries.

1 Introduction

Text summarization is the task of condensing a long
piece of text into a short summary without losing
salient information. Research has shown that a
well-structured summary can effectively facilitate
comprehension (Hartley et al., 1996; Hartley and
Sydes, 1997). A case in point is the structured ab-
stract, which consists of multiple segments, each
focusing on a specific facet of a scientific publica-
tion (Hartley, 2014), such as background, method,
conclusions, etc. The structure therein can provide
much additional clarity for improved comprehen-
sion and has long been adopted by databases and
publishers such as MEDLINE and Emerald.

Despite these evident benefits of structure, sum-
maries are often framed as a linear, structure-less
sequence of sentences in the flourishing array of
summarization studies (Nallapati et al., 2017; See

Title Emotion in enterprise social media systems

Purpose The purpose of this paper is to investigate enterprise social 

media systems and quantified gender and status influences on 

emotional content presented in these systems.

Method Internal social media messages were collected from a global 

software company running an enterprise social media system. 

An indirect observatory test using Berlo’s “source–message–
channel–receiver” model served as a framework to evaluate 
sender, message, channel and receiver for each text. These texts 

were categorized by gender and status using text analytics with 

SAP SA to produce sentiment indications.

Findings Results reveal women use positive language 2.1 times more 

than men. Senior managers express positive language 1.7 times 

more than non-managers, and feeling rules affect all genders 

and statuses, but not necessarily as predicted by theory. Other 

findings show that public messages contained less emotional 

content, and women expressed more positivity to lower status 

colleagues. Men expressed more positivity to those in higher 

positions. Many gender and status stereotypes found in face-to-

face studies are also present in digital enterprise social 

networks.

Value This study offers a behavioral measurement approach free from 

validity issues found in self-reported surveys, direct 

observations and interviews. The collected data offered new 

perspectives on existing social theories within a new 

environment of computerized, enterprise social media.

Keyword Social media, Gender, Communication, Computer-mediated

Figure 1: An example of the proposed FacetSum
dataset. Each facet of the structured abstract summa-
rizes different sections of the paper.

et al., 2017; Paulus et al., 2018; Grusky et al., 2018;
Narayan et al., 2018; Sharma et al., 2019; Lu et al.,
2020; Cachola et al., 2020). We postulate that a
primary reason for this absence of structure lies in
the lack of a high-quality, large-scale dataset with
structured summaries. In fact, existing studies in
faceted summarization (Huang et al., 2020; Tauch-
mann et al., 2018; Jaidka et al., 2016; Contractor
et al., 2012; Kim et al., 2011; Jaidka et al., 2018;
Stead et al., 2019) are often conducted with rather
limited amount of data that are grossly insufficient
to meet today’s ever-growing model capacity.

We aim to address this issue by proposing the
FacetSum dataset. It consists of 60,024 scientific
articles collected from Emerald journals, each as-
sociated with a structured abstract that summarizes
the article from distinct aspects including purpose,
method, findings, and value. Scale-wise, we empir-
ically show that the dataset is sufficient for train-
ing large-scale neural generation models such as
BART (Lewis et al., 2020) for adequate generaliza-
tion. In terms of quality, each structured abstract
in FacetSum is provided by the original author(s)
of the article, who are arguably in the best position
to summarize their own work. We also provide
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# documents
Train: 46,289 / Dev: 6,000 / Test: 6,000 / OA-Test: 2,243

# words in abstracts
Full Purpose Method Findings Value

mean 290.4 54.1 52.0 68.6 47.3
std ±82.8 ±28.4 ±27.8 ±32.4 ±24.2

# words in paper sections
Full Intro. Method Result Conc.

recall% - 84.3% 67.0% 72.4% 79.0%
mean 6,827 885 1,194 2,371 747
std ±2,704 ±557 ±861 ±1,466 ±567

Table 1: Statistics of the FacetSum dataset.

quantitative analyses and baseline performances on
the dataset with mainstream models in Sections 2
and 3.

2 FacetSum for Faceted Summarization

The FacetSum dataset is sourced from journal
articles published by Emerald Publishing1 (Fig-
ure 1). Unlike many publishers, Emerald imposes
explicit requirements that authors summarize their
work from multiple aspects (Emerald, 2021): Pur-
pose describes the motivation, objective, and rele-
vance of the research; Method enumerates specific
measures taken to reach the objective, such as ex-
periment design, tools, methods, protocols, and
datasets used in the study; Findings present major
results such as answers to the research questions
and confirmation of hypotheses; and Value high-
lights the work’s value and originality2. Together,
these facets give rise to a comprehensive and in-
formative structure in the abstracts of the Emerald
articles, and by extension, to FacetSum’s unique
ability to support faceted summarization.

2.1 General Statistics
We collect 60,532 publications from Emerald Pub-
lishing spanning 25 domains. Table 1 lists some de-
scriptive statistics of the dataset. Since FacetSum
is sourced from journal articles, texts therein are
naturally expected to be longer compared to other
formats of scientific publications. In addition, al-
though each facet is more succinct than the tradi-
tional, structure-less abstracts, a full length abstract
containing all facets can be considerably longer.

1The data has been licensed to researchers at subscrib-
ing institutions to use (including data mining) for non-
commercial purposes. See detailed policies at https://
www.emerald.com/

2There are three optional facets (about research, practical
and social implications) that are missing from a large number
of articles and hence omitted in this study.

Empirically, we compare the source and the target
lengths with some existing summarization datasets
in similar domains including CLPubSum (Collins
et al., 2017), PubMed (Cohan et al., 2018), ArXiv
(Cohan et al., 2018), SciSummNet (Yasunaga et al.,
2019), and SciTldr (Cachola et al., 2020). On av-
erage, the source length in FacetSum is 58.9%
longer (6,827 vs 4,297), and the target length is
37.0% longer (290.4 vs 212.0).

From a summarization perspective, these dif-
ferences imply that FacetSum may pose signifi-
cantly increased modeling and computation chal-
lenges due to the increased lengths in both the
source and the target. Moreover, the wide range of
research domains (Figure 3, Appendix D) may also
introduce much linguistic diversity w.r.t. vocabu-
lary, style, and discourse. Therefore, compared to
existing scientific publication datasets that only fo-
cus on specific academic disciplines (Cohan et al.,
2018; Cachola et al., 2020), FacetSum can also
be used to assess a model’s robustness in domain
shift and systematic generalization.

To facilitate assessment of generalization, we
reserve a dev and a test set each consisting of 6,000
randomly sampled data points; the remaining data
are intended as the training set. We ensure that the
domain distribution is consistent across all three
subsets. Besides, we intentionally leave out Open-
Access papers as another test set, to facilitate re-
searchers who do not have full Emerald access3.

2.2 Structural Alignment

In this section, we focus our analysis on one of the
defining features of FacetSum — its potential to
support faceted summarization. Specifically, we
investigate how the abstract structure (i.e., facets)
aligns with the article structure. Given an abstract
facet A and its corresponding article S, we quantify
this alignment by:

SA = {arg max
si∈S

(Rouge-1(si, aj)) : aj ∈ A} (1)

Semantically, SA consists of sentence indices in S
that best align with each sentence in A.
Sentence-level Alignment We first plot the tu-
ples {(si, i/|S|) : i ∈ SA}, where si is the i-th sen-
tence in S, and |S| is the number of sentences in S.
Intuitively, the plot density around position i/|S|
entails the degree of alignment between the facet

3Both the split information of FacetSum and the code
for scraping and parsing the data are available at https:
//github.com/hfthair/emerald_crawler
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Figure 2: Oracle sentence distribution over a paper. X-axis: 10,000 papers sampled from FacetSum, sorted by
full text length from long to short; y-axis: normalized position in a paper. We provide each sub-figure’s density
histogram on their right.

62.09 56.47 48.47 43.32 49.73 50.42

49.76 47.06 44.23 30.12 33.87 36.23

45.36 34.23 30.82 37.53 29.07 28.46

52.09 45.28 33.65 29.49 42.80 42.35

45.98 42.37 35.29 26.68 32.52 36.85

Full

Purpose

Method

Findings

Value

Abstract

Paper Section

Table 2: Scores of sentence aligning in Rouge-L.

A and the article S at that position4. With 10,000
articles randomly sampled from FacetSum, Fig-
ure 2 exhibits distinct differences in the density
distribution among the facets in FacetSum. For
example, with A = Purpose, resemblance is clearly
skewed towards the beginning of the articles, while
Findings are mostly positioned towards the end;
the Method distribution is noticeably more uniform
than the others. These patterns align well with
intuition, and are further exemplified by the accom-
panying density histograms.
Section-level Alignment We now demonstrate
how different abstract facets align with different
sections in an article. Following conventional struc-
ture of scientific publications (Suppe, 1998; Rosen-
feldt et al., 2000), we first classify sections into
Introduction, Method, Result and Conclusion using
keyword matching in the section titles.5

Given a section Si ⊆ S and an abstract Aj ⊆ A,
we define the section-level alignment g(Si, Aj) as
Rouge-1(cat(Si

Aj
),cat(Aj)), where cat(·)

4We use the relative position i/|S| so that all positions are
commensurate across multiple documents.

5To ensure close-to-perfect precision, we choose keywords
that are as specific and prototypical to each section as possible
(listed in Appendix A). The resulting recall is around 0.7, i.e.
about 70% of sections can be correctly retrieved with the title-
keyword matching method. And we find 2,751 (out of 6,000)
test samples that all four sections are matched successfully.
Though far from perfect, we believe this size is sufficient for
the significance of subsequent analyses.

denotes sentences concatenation, and Si
Aj

is de-
fined by Equation (1). Table 2 is populated by
varying Aj and Si across the rows and columns,
respectively. Full denotes the full paper or abstract
(concatenation of all facets). We also include the
concatenation of introduction and conclusion (de-
noted I+C) as a possible value for Si, due to its
demonstrated effectiveness as summaries in prior
work (Cachola et al., 2020).

The larger numbers on the diagonal (in red)
empirically confirm a strong alignment between
FacetSum facets and their sectional counterparts
in articles. We also observe a significant perfor-
mance gap between using I+C and the full paper
as Si. One possible reason is that the summaries
in FacetSum (particularly Method and Findings)
may contain more detailed information beyond in-
troduction and conclusion. This suggests that for
some facets in FacetSum, simple tricks to con-
dense full articles do not always work; models need
to instead comprehend and retrieve relevant texts
from full articles in a more sophisticated manner.

3 Experiments and Results

We use FacetSum to benchmark a variety of sum-
marization models from state-of-the-art supervised
models to unsupervised and heuristics-based mod-
els. We also provide the scores of a sentence-level
extractive oracle system (Nallapati et al., 2017). We
report Rouge-L in this section and include Rouge-
1/2 results in Appendix E.
Unsupervised Models vs Heuristics We report
performances of unsupervised and heuristics sum-
marization methods (see Table 3). Tailoring to
the unique task of generating summaries for a spe-
cific facet, we only use the section (defined in Sec-
tion 2.2) corresponding to a facet as model input.
Evaluation is also performed on the concatenation
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Model Source Text Full Purpose Method Findings Value

FacetSum Test

Oracle Greedy Extractive (Nallapati et al., 2017) corresponding 60.39 44.66 41.00 46.44 38.10

Heuristic Lead-K corresponding 36.78 17.83 15.29 15.92 16.08
Models Tail-K sections 33.31 21.67 12.62 16.66 17.43

SumBasic (Vanderwende et al., 2007) 38.71 18.17 15.41 16.31 16.57
Unsupervised LexRank (Erkan and Radev, 2004) corresponding 42.18 18.72 16.23 18.11 17.75

Models LSA (Gong and Liu, 2001) sections 35.98 18.29 15.86 16.92 16.62
TextRank (Mihalcea and Tarau, 2004) 41.87 21.67 13.62 18.63 19.23
HipoRank (Dong et al., 2020) 42.89 22.73 15.20 18.38 19.68

BART (Lewis et al., 2020) I+C 44.36 41.14 20.75 14.72 5.85
Supervised BART-Facet I+C 47.09 43.47 29.07 30.97 28.90

Models BART full paper 42.74 41.21 20.53 14.33 5.07
BART-Facet full paper 45.76 42.55 28.07 28.98 28.70

FacetSum OA-Test

BART I+C 44.97 43.51 26.73 11.79 0.31
BART-Facet I+C 51.32 43.66 30.16 32.22 29.68

Table 3: Model performance on FacetSum (Rouge-L). See Table 6 and 7 in Appendix E for full results. Bold
text indicates the best scores on FacetSum test split in each column.

of all facets (column Full), which resembles the
traditional research abstract. Lead-K/Tail-K are
two heuristic-based models that extract the first/last
k sentences from the source text.

We observe that heuristic models do not per-
form well on Full, where the unsupervised models
can achieve decent performance. Nevertheless, all
models perform poorly on summarizing individual
facets, and unsupervised models fail to perform
better than simple heuristics consistently. The in-
ductive biases of those models may not be good
indicators of summary sentences on specific facets.
A possible reason is that they are good at locating
overall important sentences of a document, but they
cannot differentiate sentences of each facet, even
we try to alleviate this by using the corresponding
section as input.
Supervised Models As for the supervised base-
line, we adopt the BART model (Lewis et al., 2020),
which has recently achieved SOTA performance
on abstractive summarization tasks with scientific
articles (Cachola et al., 2020). We propose two
training strategies for the BART model, adapting
it to handle the unique challenge of faceted sum-
marization in FacetSum. In BART, we train the
model to generate the concatenation of all facets,
joined by special tokens that indicate the start of
a specific facet (e.g., |PURPOSE| to indicate the
start of Purpose summary). During evaluation, the
generated text is split into multiple facets based
on the special tokens, and each facet is compared

against the corresponding ground-truth summary.
In BART-Facet, we train the model to generate
one specific facet given the source text and an in-
dicator specifies which facet to generate. Inspired
by CATTS (Cachola et al., 2020), we prepend sec-
tion tags at the beginning of each training input
to generate summaries for a particular facet (see
implementation details in Appendix C).

Empirically, supervised models outperform
unsupervised baselines by a large margin (Ta-
ble 3). Comparing between the two training strate-
gies, BART-Facet outperforms BART significantly.
While BART performs comparably on Purpose,
performance decreases drastically for subsequent
facets, possibly due to current models’ inadequacy
with long targets. Thus it can perform decently
at the beginning of generation (≈40 on Purpose),
where the dependency is relatively easy-to-handle.
However, the output quality degrades quickly to-
wards the end (≈5 on Value).

With I+C as source text, both training strategies
exhibit much better results than using full paper.
This is opposite to the observation in Table 2, po-
tentially due to the limitation of the current NLG
systems, i.e., the length of source text has cru-
cial impacts to the model performance. With the
much extended positional embeddings in our mod-
els (10,000 tokens), we suspect some other issues
such as long term dependencies may lead to this
discrepancy, which warrants further investigation.
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4 Conclusion & Future Work

We introduce FacetSum to support the research
of faceted summarization, which targets summa-
rizing scientific documents from multiple facets.
We provide extensive analyses and results to in-
vestigate the characteristics of FacetSum. Our
observations call for the development of models
capable of handling very long documents and out-
putting controlled text. Specifically, we will con-
sider exploring the following topics in future work:
(1) incorporating methods for long-document pro-
cessing, such as reducing input length by extract-
ing key sentences (Pilault et al., 2020) or seg-
ments (Zhao et al., 2020); (2) examining the possi-
bility of building a benchmark for systematic gen-
eralization (Bahdanau et al., 2018) with the domain
categories; (3) automatically structuring traditional
abstracts (Huang et al., 2020) with FacetSum.
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A Keyword List for Identifying Paper
Sections

Category Keyword
Introduction intro, purpose
Method design, method, approach
Result result, find, discuss, analy
Conclusion conclu, future

Table 4: Keywords for identifying paper sections used
in Section 2.2.

B Most Frequent Words in Each
Abstract Facet

Facet Verb Noun Adjective
Purpose aim paper social

examin purpos new
investig studi organiz
explor manag differ
develop research public

Method base studi structur
conduct data qualit
collect analysi differ
test model empir
develop paper social

Findings found result signific
indic studi posit
suggest manag social
provid effect differ
identifi relationship higher

Value provid studi new
contribut paper social
develop research differ
base manag empir
examin literatur import

Table 5: Top five frequent verbs/nouns/adjectives in
each facet of structured abstract. We preprocess the
text with lowercasing, stemming and stopword removal
and extract part-of-speech tags using Spacy (Honnibal
et al., 2020).

C Implementation Details

To make BART take full text as input, we extend
the positional embedding to 10,000 tokens. This
was required to leverage long text of papers in
FacetSum with average length of 6000 words.

Experiments of unsupervised baselines are im-
plemented with Sumy (Belica, 2021) and official
code of HipoRank. We tune the hyperparameters of
HipoRank with the validation set. The BART exper-
iments are finetuned using Fairseq (Ott et al., 2019),

with learning rate of 3e−5, batch size of 1, max to-
kens per batch of 10,000 and update frequency of
4. We finetune all models for 20,000 steps with
single NVIDIA Tesla V100 16GB and we report
the results of the last checkpoint. The small batch
size is the consequence of the large input size. For
inference, we use beam size of 4 and maximum
length of 500/200 tokens for BART/BART-Facet
respectively.

D Domains Covered by FacetSum

In Figure 3, we show the distribution of domain
categories in FacetSum.

E Full Results

In this section, we provide additional experiment
results. In Table 6, we show the full results of the
extractive oracle system (first row in Table 3). In
Table 7, we provide full results of all other mod-
els (heuristic models, unsupervised models, and
supervised models in Table 3).

F Example of Outputs by BART and
BART-Facet

In Table 8, we show an example of the generated
faceted summaries by BART and BART-Facet of
the same paper, compared against the ground-truth
faceted abstract.
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R1/R2/RL Full Purpose Method Findings Value

Fullbody 64.92/33.75/60.39 57.35/30.24/49.42 53.30/26.40/45.58 59.30/33.25/52.42 53.39/26.84/45.55
ICbody 58.82/28.42/54.17 53.60/27.13/45.73 43.13/17.08/35.64 52.03/25.90/44.86 48.97/22.84/41.09

Introbody 53.32/22.96/48.59 52.51/26.48/44.66 41.27/16.05/34.03 44.67/17.49/37.10 44.65/17.80/36.47
Methodbody 52.05/20.52/47.35 45.16/16.61/36.84 48.60/21.67/41.00 44.77/17.69/37.67 40.94/13.55/32.94
Resultbody 56.85/23.79/51.97 47.90/18.07/38.96 42.31/14.46/34.41 53.71/26.32/46.44 44.93/16.91/36.66
Conclubody 55.26/25.26/50.58 47.76/18.88/38.94 40.53/13.84/32.83 51.81/25.81/44.73 46.14/19.66/38.10

Table 6: Full results (Rouge-1/2/L) of the extractive oracle system (Nallapati et al., 2017) on FacetSum. Bold
text indicates the best scores in the lower four rows in each column.

R1/R2/RL Full Purpose Method Findings Value

FacetSum Test

Lead-K 39.65/11.01/36.78 21.95/4.89/17.83 18.69/5.94/15.29 18.84/4.31/15.92 20.14/3.05/16.08

Tail-K 35.90/10.96/33.31 25.48/7.23/21.67 14.88/2.64/12.62 19.25/4.41/16.66 20.90/4.71/17.43

SumBasic 42.11/10.01/38.71 22.23/4.68/18.17 18.40/5.02/15.41 19.15/3.93/16.31 20.64/3.08/16.57

LexRank 46.35/15.12/42.18 22.97/5.28/18.72 19.44/5.84/16.23 21.66/5.66/18.11 22.39/4.05/17.75

LSA 39.84/9.59/35.98 22.47/4.91/18.29 19.10/5.58/15.86 20.29/4.59/16.92 20.96/3.31/16.62

TextRank 46.90/16.04/41.87 28.29/9.39/21.67 17.55/4.32/13.62 23.90/7.17/18.63 25.99/7.07/19.23

HipoRank 46.48/15.42/42.89 27.71/8.29/22.73 18.27/4.65/15.20 21.75/5.31/18.38 24.54/5.26/19.68

BART I+C 47.21/19.59/44.36 46.61/27.10/41.14 23.85/7.98/20.75 16.84/5.34/14.72 7.21/1.93/5.85

BART-Facet I+C 50.62/20.97/47.09 49.59/28.70/43.47 34.61/11.82/29.07 36.42/12.63/30.97 35.37/11.75/28.90
BART full body 45.49/18.10/42.74 46.74/27.09/41.21 23.66/7.92/20.53 16.39/4.63/14.33 6.30/1.62/5.07

BART-Facet full body 49.29/19.60/45.76 48.65/27.72/42.55 33.49/11.01/28.07 34.46/10.49/28.98 35.27/11.44/28.70

FacetSum OA-Test

BART I+C 48.85/20.84/44.97 49.43/29.44/43.51 31.1/10.16/26.73 13.78/4.45/11.79 0.4/0.1/0.31

BART-Facet I+C 48.31/22.63/51.32 49.59/28.69/43.66 35.82/12.84/30.16 37.46/14.02/32.22 35.9/12.75/29.68

Table 7: Full results (Rouge-1/2/L) of different models on FacetSum. Bold text indicates the best scores on
FacetSum test split in each column.
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Facet Ground Truth BART BART-Facet
Purpose The purpose of this paper is to

advance the information society
research by examining and better
understanding the impact of the
adoption information and com-
munication technologies (ICT)
within households on improving
sustainability.

The purpose of this paper is to an-
swer the question: Does the adop-
tion of information and communi-
cation technologies (ICT) within
households contribute to sustain-
ability? For this purpose, the study
focuses on addressing the follow-
ing specific questions: What cri-
teria clearly and deeply describe
the ICT adoption within house-
holds? What are the criteria
that clearly describe sustainabil-
ity within households, and are
there statistically significant corre-
lations between ICT and sustain-
ability?

The purpose of this paper is to an-
swer the question: Does the adop-
tion of information and communi-
cation technologies (ICT) within
households contribute to sustain-
ability?

Method The survey questionnaire was
used and data collected from 679
Polish households were statisti-
cally analyzed to understand the
phenomena of ICT adoption and
sustainability as well as identify
correlations between them.

A survey was carried out in
Poland. The data were col-
lected through a structured ques-
tionnaire and analyzed using struc-
tural equation modeling (SEM).

The study is based on a quanti-
tative research design. The data
were collected through a question-
naire survey among the house-
holds in Poland. The survey was
carried out in two phases. In
the first phase, the ICT adop-
tion within households was mea-
sured using a structured question-
naire, and in the second phase the
data were analyzed using struc-
tural equation modeling (SEM)
to test the hypothesized relation-
ships.

Findings The research findings reveal that
the ICT adoption is well de-
scribed by the ICT outlay, infor-
mation culture, ICT management
and ICT quality, whereas sustain-
ability is composed of ecological,
economic, socio-cultural and po-
litical sustainability. Furthermore,
the ICT quality, ICT management
and information culture have a sig-
nificant impact on sustainability,
whereas the ICT outlay does not
have such an impact.

Results show that ICT is a key
enabler of sustainability in house-
holds. The results also show that
there are statistically significant
correlation between the IIT adop-
tion within the households and
sustainability.

The results show that the adop-
tion of ICT within households is
positively related to sustainability.
The results also show that there
are statistically significant corre-
lations between the ICT adoption
within households and sustainabil-
ity.

Value The paper provides and verifies
a new theoretical model of sus-
tainable information society to de-
pict various dimensions shaping
the ICT adoption and their impact
on different types of sustainability
in the context of households.

This study is the first to empiri-
cally investigate the impact of ICT
on sustainability. The findings of
this study will be complementary
with findings concerning the con-
tribution of IIT to sustainability in
enterprises and allow for the ad-
vancement in the sustainable infor-
mation society (SIS) research.

This study contributes to the lit-
erature by providing a deeper un-
derstanding of the ICT adoption
within households and the contri-
bution of ICT to sustainability in
transition economies, i.e. the for-
mer European Eastern Bloc coun-
tries.

Table 8: Outputs by BART and BART-Facet on different facets. Both models are able to generate reasonable
summaries given the specified facet. BART-Facet provides more information of Method and less errors than BART
(e.g. “IIT” is a typo of “ICT”). However both models tend to directly copy text from the source, for example both
outputs of Purpose can be found in the introduction of the paper.
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Abstract

Søgaard (2020) obtained results suggesting the
fraction of trees occurring in the test data iso-
morphic to trees in the training set accounts for
a non-trivial variation in parser performance.
Similar to other statistical analyses in NLP, the
results were based on evaluating linear regres-
sions. However, the study had methodologi-
cal issues and was undertaken using a small
sample size leading to unreliable results. We
present a replication study in which we also
bin sentences by length and find that only a
small subset of sentences vary in performance
with respect to graph isomorphism. Further,
the correlation observed between parser perfor-
mance and graph isomorphism in the wild dis-
appears when controlling for covariants. How-
ever, in a controlled experiment, where covari-
ants are kept fixed, we do observe a strong cor-
relation. We suggest that conclusions drawn
from statistical analyses like this need to be
tempered and that controlled experiments can
complement them by more readily teasing fac-
tors apart.

1 Introduction

We undertake a replication study of Søgaard (2020)
which introduced graph isomorphism (DUG - di-
rected unlabelled graph isomorphism) as a means
of explaining differences in parser performance
across different treebanks. It measures the ratio
of graphs1 in the test set that were also observed
in the training data. It is intuitive that this would
likely be related to parser performance.

However, DUG has two important covariants.
The size of the training data impacts DUG because
the smaller a treebank is, the less likely there will
be many crossovers between training and test data.
DUG is also tied to the mean sentence length in the
test data: smaller sentences are much more likely to

1Note that in the treebanks used in this paper, namely
Universal Dependencies, well-formed trees are enforced.

have a tree structure already seen in the training, as
there are fewer possible trees and the reverse is true
for longer sentences, e.g. the number of possible
trees for a sentence with 20 tokens is 12,826,228.

2 Related Work

There is a long history of investigating the causes of
variance in parser performance. The effect of train-
ing data size on parser performance is well attested
(Sagae et al., 2008; Falenska and Çetinoğlu, 2017;
Strzyz et al., 2019; Dehouck et al., 2020). Sentence
length has also been observed to impact perfor-
mance (McDonald and Nivre, 2011). One likely
factor behind this is different sentence lengths hav-
ing difference dependency distance distributions
(Ferrer-i-Cancho and Liu, 2014) which in turn af-
fects parsing as longer dependencies are typically
harder to parse (Anderson and Gómez-Rodrı́guez,
2020; Falenska et al., 2020). Others have offered
explanations based on linguistic characteristics
such as morphological complexity (Dehouck and
Denis, 2018; Çöltekin, 2020), part-of-speech bi-
gram perplexity (Berdicevskis et al., 2018), and
word order freedom (Gulordava and Merlo, 2016).

The history of reproduction and replication in
NLP is not so well established, with only a few stud-
ies in recent years, e.g. on Universal Dependency
(UD) parsing (Çöltekin, 2020) and on automatic
essay scoring systems (Huber and Çöltekin, 2020).

Linear techniques, linear regression models or
evaluating correlation coefficients are commonly
used for statistical analyses of NLP systems. They
have been used to model constituency parser perfor-
mance (Ravi et al., 2008), to evaluate what affects
annotation agreement (Bayerl and Paul, 2011), to
investigate what impacts statistical MT systems
(Guzman and Vogel, 2012), what impacts perfor-
mance on span identifying tasks (Papay et al.,
2020), and many other examples. Therefore, it
is likely that lessons drawn from this replication
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Original 10 seeds
CoNLL18 UDPipe 1.2 UDPipe 2.0 CoNLL18 UDPipe 1.2 UDPipe 2.0

Training size 0.014 0.100 0.060 -0.019 -0.346 -0.005
+ DUG 0.228 0.061 0.097 -0.004 -0.553 0.091
+ 〈Ltest〉 0.195 0.169 0.146 -0.007 -0.370 0.140

All -0.078 0.157 0.086 -0.413 -0.138 0.106

Table 1: Issues with using multivariable linear model and cross-validation (CV) to evaluate explained variance.
The first set of columns (Original) uses the exact same settings as the original paper (namely one CV split and
the original seed) on the original data (CoNLL18) and the predictions from UDPipe 1.2 and UDPipe 2.0 for the
extended data. The DUG explained variance is much smaller for the new data. The second set of columns show
the same analysis but averaged over 10 different seeds used for the CV splits. The explained variances are almost
all negative, which means the linear fit failed.

analysis will be impactful in a broader sense as
the conclusions here can be applied in many sub-
areas of NLP, namely the sensitive handling of
covariants by using partial coefficients, controlled
experiments, or signal subtraction; a strong adher-
ence to visualising data; and considering whether
the phenomena under consideration are likely to
be sensitive to sentence length, as is often the case
in NLP, and if so undertaking a sentence-length
binning analysis to complement coarser analyses.

2.1 Original paper

Søgaard (2020) attempted to explain the difference
of parser performance across treebanks by using
DUG and also undirected unlabelled graph isomor-
phism (UUG). Two graphs are isomorphic if there
is a renaming of vertices that makes them equal.
The first process in calculating DUG (or UUG) is
to collect the set of unique graphs that occur in
the training data. In the original paper, this set of
graphs is referred to as the isomorphisms. Once
the training isomorphisms are obtained for a given
treebank, the number of graphs in the test data that
are members of one of these equivalence classes
is counted. The final value is then the proportion
of test instances that are isomorphic to the train-
ing data. This then gives a value between 0 (all
test instances are unique) and 1 (no unique test
instances).

The analysis was undertaken using a small sam-
ple of treebanks that were used at the CoNLL 2018
shared task, using the LAS of the top performing
system for each treebank to measure parser per-
formance (Zeman et al., 2018). The impact DUG
(or UUG) has on parsing performance was evalu-
ated by fitting a linear regression to the data with
DUG as the control variable. A number of other
potential measurements that could explain parser

performance were also taken into consideration,
but only as alternative explanation and not covari-
ants. The exception to this was using the size of the
training data as a covariant. The explained variance
and absolute error for each linear regression fit was
reported using a three-fold cross-validation. The
results suggested that DUG was the most strongly
correlated measurement evaluated. We show that
this result does not hold up when accounting for
covariants, that using cross-validation method with
the linear regression is not a robust method for
an analysis like this, and that by controlling the
main covariants of DUG, we can observe a more
trustworthy correlation to parser performance.

3 Analysis and results

We evaluate directed graph isomorphism (DUG) as
it was more strongly related to parser performance
in the original paper.

Main covariants We focus on the two main co-
variants of DUG: training data size (in sentences)
and mean sentence length of the test data, 〈Ltest〉.

Data and parsers The data from the original pa-
per consists of 33 UD treebanks, with LAS taken
from the respective top performing parser from
the CoNLL 2018 shared task (Zeman et al., 2018).
Note that these systems are all variations of the
biaffine graph-based parser of Dozat and Man-
ning (2017). For replication, we also use a neural
transition-based system UDPipe 1.2 (Straka et al.,
2016), using UD models 2.4 and UD v2.5 (Zeman
et al., 2019), and a neural graph-based system UD-
Pipe 2.0 (Straka, 2018), using UD models 2.6 and
UD v2.7 (Zeman et al., 2020). This results in 94
treebanks for UDPipe 1.2 and 90 for UDPipe 2.0.
The difference is due to issues running the web-
based UDPipe 2.0 on larger files.
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3.1 Reproduction and replication

In the original paper, the analysis focuses on fit-
ting a multi-variable linear regression to the data
to control for covariants. However, the models
only used training size plus one other variable as
features. Further, cross-validation is used so as to
avoid over-fitting. While over-fitting isn’t directly
an issue, the metrics that are typically reported over-
estimate the variance explained by a linear model,
e.g. explained variance, η2, or R2 (Lane et al.,
2007). Averaging η2 over different splits can po-
tentially offset this positive bias but it requires a
certain amount of data to be reliable. In Table 1,
we show the results using the original data from
Søgaard (2020). The values shown in the left-most
column are exact reproductions of the original val-
ues. Only the value for 〈Ltest〉 is different as the
original paper appears to have used a normalised
value. We also show η2 for the linear model using
all variables, which is negative, i.e. the fit failed.

We next show the results using UDPipe 1.2 and
2.0. While the values for training size on its own
and with 〈Ltest〉 are similar, the high η2 for training
size with DUG is no longer observed. This seems to
be due to specious results born out of serendipitous
splits for the smaller sample from CoNLL 2018.

We then tested this same procedure using dif-
ferent seeds to shuffle the cross-validation splits.
The results are almost exclusively negative, i.e. the
linear models failed to fit to the data at all. This fur-
ther highlights an issue of using this methodology
when sample size is small, as the random split can
have large impact on the statistical metrics.

3.2 Extending the analysis

As the linear models performed so poorly, we mea-
sured the correlation coefficients (Spearman’s ρ)
for each of the variables with respect to LAS and
also the potential covariants with respect to DUG.
These are reported in Table 2 and we include visual-
isations of these in Figures 5 and 6 in the Appendix

CoNLL18 UDPipe 1.2 UDPipe 2.0

size 0.46 (p=0.007) 0.54 (p<0.001) 0.37 (p<0.001)
DUG -0.13 (p=0.458) -0.13 (p=0.213) -0.18 (p=0.083)
〈Ltest〉 0.20 (p=0.272) 0.35 (p=0.001) 0.33 (p=0.001)

size 0.44 (p=0.011) 0.42 (p<0.001) 0.46 (p<0.001)
〈Ltest〉 -0.96 (p<0.001) -0.91 (p<0.001) -0.92 (p<0.001)

Table 2: Spearman’s ρ for variables with respect to
LAS (top) and DUG (bottom).

CoNLL18 UDPipe 1.2 UDPipe 2.0

log-size 0.055 0.319 0.126
+DUG 0.132 0.410 0.277
+〈Ltest〉 0.106 0.452 0.294

All -0.184 0.412 0.229

Table 3: Using multivariable linear model and CV to
evaluate explained variance with random shuffling (10
splits) and logarithmic transformation of treebank size.

for the CoNLL 2018 data and the UDPipe 2.0 data.
Interestingly, DUG has the highest p-value for all
systems, far from statistical significance. How-
ever, DUG appears to be strongly correlated to
both covariants, especially 〈Ltest〉 with ρ > 0.9
and p < 0.001 for all datasets and systems. Also
of note is that training data size is convincingly
correlated to LAS, but based on the linear models
it doesn’t appear to be predictive of parser perfor-
mance. Based on this and on the visualisation of
the data in Figures 5 and 6 in the Appendix (as well
as visualisations of training size vs. LAS in the
literature, see §2), it seems clear that the relation
between these variables is not linear but logarith-
mic. We show LAS against training data size with
a logarithmic scale in Figure 4 in the Appendix.

Table 3 shows the results of the limited linear
model and cross-validation technique using 10 dif-
ferent seeds as above and using log training size.
For these results, the explained variance of the mod-
els are all positive and relatively high, that is, the
models manage to fit the data unlike in the origi-
nal setup. This one change offsets the failure of
the linear model technique, which is not surpris-
ing. However, it seems to suggest that DUG is not
a useful feature, as training size with 〈Ltest〉 out-
performs training size with DUG for all datasets
except CoNLL18. And the models which use all
features are worse than just using training data size
and 〈Ltest〉, with the CoNLL18 model resulting
in a negative explained variance, again meaning
the fit failed. For CoNLL18, training data size and
DUG does outperform the model using 〈Ltest〉.

3.3 Sentence length binning

We analyse the relation between test sentence
lengths and DUG by binning the data with respect
to sentence length. This entails taking each sen-
tence of length l for each treebank, in both the
training and test data, and calculating DUG and the
corresponding LAS based on these subsets. Fig-
ure 1 shows some of these bins (for sentences of
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Figure 1: DUG binned wrt sentence length. Values are for UDPipe 2.0 with UD v2.7 for 90 treebanks.

length of 5, 12, and 21 tokens) for UDPipe 2.0. A
full visualisation of each bin ranging from length 3
tokens to 30 is shown in Figure 7 in the Appendix.

DUG is almost exclusively 1.0 for shorter sen-
tences, as can be seen in Figure 1 for sentence
length 5. The number of possible directed trees for
sentences with less tokens is too small for there
not to be crossover: there are only 9 possible un-
labelled trees for sentences of length 5 (Sloane,
1996). Conversely, for longer sentences, DUG is
almost exclusively 0.0 as the number of possible
tree structures is considerable (35,221,832 for sen-
tences of length 21).

For a small subset of sentence lengths, ranging
from length 9 to 14, there is meaningful spread of
values for DUG, with a broadly-speaking linear re-
lation with respect to LAS. Based on this result, i.e.
that only certain sentence lengths are suitable for
using DUG, we considered using a focused version
of DUG, i.e. a variant calculated considering only
sentences between length 9 and 14 in the training
and test data. We then analysed how this measure-
ment correlated with parser performance. Table
4 shows the correlations for focused DUG with
respect to LAS, training size, and 〈Ltest〉. While
the correlation between focused DUG and LAS is
much higher than for DUG and LAS, this is due
to the focused version being much more strongly
correlated to training size (ρ = 0.91 with a p-value

UDPipe 1.2 UDPipe 2.0

LAS 0.47 (p<0.001) 0.31 (p=0.003)
size 0.91 (p<0.001) 0.91 (p<0.001)
〈Ltest〉 0.32 (p=0.002) -0.34 (p=0.001)

log-size 0.319 0.126
+DUG 0.331 0.147
+〈Ltest〉 0.452 0.294
All 0.406 0.265

Table 4: Correlations wrt focused DUG (top) and ex-
plained variance (bottom) for focused DUG (sentence
lengths 9 to 14) with shuffling for CV (10 seeds).

less than 0.001 for both datasets) and the correla-
tion with 〈Ltest〉 is much diminished. Also, this
focused version of DUG improves performance for
the linear model when used only with training data
size, but 〈Ltest〉 improves it much more. Using all
3 is again worse than just using training data size
with 〈Ltest〉, however, focused DUG doesn’t lower
the performance as much as the full variant does.

3.4 Controlling covariants

Having established that DUG does not improve
linear models predicting LAS and that DUG is
strongly correlated to training treebank size and
〈Ltest〉, we attempted to find a signal by removing
the background signals associated with these vari-
ables. We applied a linear fit to the training data
size and LAS and then divided the LAS scores by
the predicted values of that fit. Then we applied
a linear fit to 〈Ltest〉 and these normalised values
and again divided these values out. Finally, we
evaluated these doubly normalised values against
DUG. This process is shown in Figure 2 for UD-
Pipe 2.0 and the resulting coefficients for UDPipe
1.2 and 2.0 are in Table 7 of the Appendix. Remov-
ing the signals of the covariants results in a linear
fit against DUG with a zero gradient and with a
coefficient of 0.01 (p=0.926). Removing the vari-
ance associated with these covariants effectively
removes any signal associated with DUG.

To corroborate this background subtraction anal-
ysis, we also report the partial coefficients in Table
5. When controlling for both covariants, correla-
tions are small, and p-values very high, for both

CoNLL18 UDPipe 1.2 UDPipe 2.0

DUG -0.13 (p=0.458) -0.13 (p=0.213) -0.18 (p=0.083)

size -0.44 (p=0.010) -0.50 (p<0.001) -0.46 (p<0.001)
〈Ltest〉 0.18 (p=0.329) -0.13 (p=0.213) 0.21 (p=0.049)
both -0.27 (p=0.126) 0.01 (p=0.915) -0.12 (p=0.245)

Table 5: Partial Spearman’s ρ for DUG with covariants.
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Figure 2: Visualisation of removing background signal associated with covariants of the log of training size
(log(Size)) and mean test length 〈Ltest〉. The spearman’s ρ for DUG and LAS is -0.18 (p=0.083), for DUG
and LAS/bcgsize is -0.40 (p<0.001) compared to 〈Ltest〉and LAS/bcgsize of 0.465 (p<0.001), and finally DUG
and LAS/bcgsizebcgLtest is 0.01 (p=0.926).

UDPipe systems. CoNLL18 has a stronger signal,
but it is negative (which is the opposite relation one
would expect) and has a large p-value.

3.5 Controlled experiment - fixing covariants

We also evaluated DUG’s relation to LAS in a con-
trolled experiment where we sampled subsets of
treebanks keeping training data size constant and
also the sentence length of both training and test
data. We trained UDPipe 1.2 models (UDPipe 2.0
is not available beyond using pre-existing mod-
els), using standard settings. We were limited to
9 treebanks, as we required a reasonable amount
of data and using only one sentence length reduces
the number of usable treebanks. We combined all
of the data for treebanks which had over 1200 sen-
tences of length 12. We then created splits such that
a single 1000-sentence training set was created by
randomly sampling sentences. Then a number of
200-sentence test sets were created, generating as
many splits as the data allowed for a given treebank.

Figure 3: DUG vs LAS for controlled experiment. ρ =
0.82 (p< 0.001).

In this way we varied DUG indirectly, but by using
different treebanks to sample from we obtained val-
ues spanning a reasonable range (0.6 - 0.9). This
results in a Spearman’s ρ of 0.82 (p<0.001) and is
visualised in Figure 3 in the Appendix. So in this
rigid context, we do observe a very strong correla-
tion between DUG and LAS, echoing the analysis
from the sentence-length binning procedure.

4 Conclusion

With this case study we have shown the value
of replicating analyses in NLP. Our analysis has
shown that the original results were unreliable and
it has highlighted methodological issues the orig-
inal analysis had. Also, the results regarding the
methodology presented here (i.e. the need to visu-
alise and evaluate correlations before considering
linear regression techniques, the potential sensi-
tivity to sentence length of measurements used in
NLP statistical analyses, the need to control for all
covariants and evaluate their impact using partial
coefficients at the very least, and finally that using
controlled experiments can help better evaluate the
impact of specific measurements and can comple-
ment statistical analyses) will likely be useful for
other statistical analyses in different areas of NLP.
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A Appendix

The appendix mainly consists of visualisations cor-
responding to the statistical analyses described in

Figure 4: LAS with respect to training set size, in loga-
rithmic scale, for UDPipe 2.0 and UD v2.7.

UDPipe 1.2 UDPipe 2.0

DUG 0.47 (p<0.001) 0.31 (p=0.003)

size -0.15 (p=0.153) -0.10 (p=0.335)
〈Ltest〉 0.64 (p<0.001) 0.48 (p<0.001)
both 0.17 (p=0.110) 0.04 (p=0.683)

Table 6: Partial Spearman’s ρ for focused DUG (i.e.
using only the measurement for sentences of length 9
to 14) with covariants.

the main body. Some additional information is
given to supplement the main analyses in Tables 6
and 7 which give the correlations for the focused
DUG analysis and the background removal process,
respectively.

Figure 4 shows the logarithmic relation between
LAS and the training data size for UDPipe 2.0 and
UD v2.7. Figure 5 gives the visualisations for the
data used in the original paper and Figure 6 gives
the corresponding visualisation for UDPipe 2.0 and
UD v2.7.

Figure 7 expands the example plots shown in
Figure 1 which only showed extreme cases. This
shows LAS versus DUG for every sentence length
bin from length 3 to 30. This clearly shows the
issue with DUG as discussed in the main body.

All the data used for the analyses presented in
this paper can be found in the supplementary mate-
rial associated with the paper.

Spearman’s ρ p-value
DUG LAS -0.184 0.083
DUG LAS-bcgsize -0.400 0.000
DUG LAS-bcgsize,Ltest 0.010 0.926

〈LTest〉 LAS-bcgsize 0.465 0.000

Table 7: Correlation of DUG with LAS and then with
LAS with the background associated with size and
length (L) removed. Isolated row shows correlation
of LAS without size background and mean sentence
length in test data.
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Figure 5: Data from original paper.

Figure 6: Data for UDPipe 2.0 and UD v2.7 using DUG.
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Figure 7: Length-binned analaysis. Data for UDPipe 2.0 and UD v2.7 using DUG.
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Abstract

High-performing machine translation (MT)
systems can help overcome language barriers
while making it possible for everyone to com-
municate and use language technologies in the
language of their choice. However, such sys-
tems require large amounts of parallel sen-
tences for training, and translators can be diffi-
cult to find and expensive. Here, we present a
data collection strategy for MT which, in con-
trast, is cheap and simple, as it does not require
bilingual speakers. Based on the insight that
humans pay specific attention to movements,
we use graphics interchange formats (GIFs)
as a pivot to collect parallel sentences from
monolingual annotators. We use our strategy
to collect data in Hindi, Tamil and English. As
a baseline, we also collect data using images as
a pivot. We perform an intrinsic evaluation by
manually evaluating a subset of the sentence
pairs and an extrinsic evaluation by finetun-
ing mBART (Liu et al., 2020) on the collected
data. We find that sentences collected via GIFs
are indeed of higher quality.

1 Introduction

Machine translation (MT) – automatic translation
of text from one natural language into another –
provides access to information written in foreign
languages and enables communication between
speakers of different languages. However, devel-
oping high performing MT systems requires large
amounts of training data in the form of parallel
sentences – a resource which is often difficult and
expensive to obtain, especially for languages less
frequently studied in natural language processing
(NLP), endangered languages, or dialects.

For some languages, it is possible to scrape data
from the web (Resnik and Smith, 2003), or to
leverage existing translations, e.g., of movie subti-
tles (Zhang et al., 2014) or religious texts (Resnik
et al., 1999). However, such sources of data are
only available for a limited number of languages,

Figure 1: Sentences written by English and Hindi an-
notators using GIFs or images as a pivot.

and it is impossible to collect large MT corpora
for a diverse set of languages using these meth-
ods. Professional translators, which are a straight-
forward alternative, are often rare or expensive.

In this paper, we propose a new data collection
strategy which is cheap, simple, effective and, im-
portantly, does not require professional translators
or even bilingual speakers. It is based on two as-
sumptions: (1) non-textual modalities can serve
as a pivot for the annotation process (Madaan
et al., 2020); and (2) annotators subconsciously
pay increased attention to moving objects, since
humans are extremely good at detecting motion,
a crucial skill for survival (Albright and Stoner,
1995). Thus, we propose to leverage graphics in-
terchange formats (GIFs) as a pivot to collect par-
allel data in two or more languages.

We prefer GIFs over videos as they are short in
duration, do not require audio for understanding
and describe a comprehensive story visually. Fur-
thermore, we hypothesize that GIFs are better piv-
ots than images – which are suggested by Madaan
et al. (2020) for MT data collection – based on our
second assumption. We expect that people who
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are looking at the same GIF tend to focus on the
main action and characters within the GIF and,
thus, tend to write more similar sentences. This is
in contrast to using images as a pivot, where peo-
ple are more likely to focus on different parts of
the image and, hence, to write different sentences,
cf. Figure 1.

We experiment with collecting Hindi, Tamil and
English sentences via Amazon Mechanical Turk
(MTurk), using both GIFs and images as pivots.
As an additional baseline, we compare to data col-
lected in previous work (Madaan et al., 2020). We
perform both intrinsic and extrinsic evaluations
– by manually evaluating the collected sentences
and by training MT systems on the collected data,
respectively – and find that leveraging GIFs indeed
results in parallel sentences of higher quality as
compared to our baselines.1

2 Related Work

In recent years, especially with the success of
transfer learning (Wang et al., 2018) and pretrain-
ing in NLP (Devlin et al., 2019), several tech-
niques for improving neural MT for low-resource
languages have been proposed (Sennrich et al.,
2016; Fadaee et al., 2017; Xia et al., 2019; Lample
et al., 2017; Lewis et al., 2019; Liu et al., 2020).

However, supervised methods still outperform
their unsupervised and semi-supervised counter-
parts, which makes collecting training data for MT
important. Prior work scrapes data from the web
(Lai et al., 2020; Resnik and Smith, 2003), or uses
movie subtitles (Zhang et al., 2014), religious texts
(Resnik et al., 1999), or multilingual parliament
proceedings (Koehn, 2005). However, those and
similar resources are only available for a limited
set of languages. A large amount of data for a di-
verse set of low-resource languages cannot be col-
lected using these methods.

For low-resource languages, Hasan et al. (2020)
propose a method to convert noisy parallel docu-
ments into parallel sentences. Zhang et al. (2020)
filter noisy sentence pairs from MT training data.

The closest work to ours is Madaan et al.
(2020). The authors collect (pseudo-)parallel sen-
tences with images from the Flickr8k dataset (Ho-
dosh et al., 2013) as a pivot, filtering to obtain
images which are simplistic and do not contain
culture-specific references. Since Flickr8k already

1All data collected for our experiments is available at
https://nala-cub.github.io/resources.

contains 5 English captions per image, they select
images whose captions are short and of high sim-
ilarity to each other. Culture-specific images are
manually discarded. We compare to the data from
Madaan et al. (2020) in Section 4, denoting it as
M20.

3 Experiments

3.1 Pivot Selection

We propose to use GIFs as a pivot to collect paral-
lel sentences in two or more languages. As a base-
line, we further collect parallel data via images as
similar to our GIFs as possible. In this subsection,
we describe our selection of both mediums.

GIFs We take our GIFs from a dataset pre-
sented in Li et al. (2016), which consists of 100k
GIFs with descriptions. Out of these, 10k GIFs
have three English one-sentence descriptions each,
which makes them a suitable starting point for our
experiments. We compute the word overlap in F1
between each possible combination of the three
sentences, take the average per GIF, and choose
the highest scoring 2.5k GIFs for our experiments.
This criterion filters for GIFs for which all annota-
tors focus on the same main characters and story,
and it eliminates GIFs which are overly complex.
We thus expect speakers of non-English languages
to focus on similar content.

Images Finding images which are comparable
to our GIFs is non-trivial. While we could com-
pare our GIFs’ descriptions to image captions, we
hypothesize that the similarity between the images
obtained thereby and the GIFs would be too low
for a clean comparison. Thus, we consider two al-
ternatives: (1) using the first frame of all GIFs, and
(2) using the middle frame of all GIFs.

In a preliminary study, we obtain two Hindi
one-sentence descriptions from two different an-
notators for both the first and the middle frame for
a subset of 100 GIFs. We then compare the BLEU
(Papineni et al., 2002) scores of all sentence pairs.
We find that, on average, sentences for the mid-
dle frame have a BLEU score of 7.66 as compared
to 4.58 for the first frame. Since a higher BLEU
score indicates higher similarity and, thus, higher
potential suitability as MT training data, we use
the middle frames for the image-as-pivot condition
in our final experiments.
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Rating Sentences from the GIF-as-Pivot Setting

1 A child flips on a trampoline.
A girl enjoyed while playing.

3 A man in a hat is walking up the stairs holding a bottle of water.
A man is walking with a plastic bottle.

5 A man is laughing while holding a gun.
A man is laughing while holding a gun.

Sentences from the Image-as-Pivot Setting

1 A woman makes a gesture in front of a group of other women.
This woman is laughing.

3 An older woman with bright lip stick lights a cigarette in her mouth.
This woman is lighting a cigarette.

5 A woman wearing leopard print dress and a white jacket is walking forward.
A woman is walking with a leopard print dress and white coat.

Table 1: Sentences obtained in English and Hindi for each setting where both annotators agree on the rating. The
first sentence is the sentence written in English and the second sentence is the corresponding English translation of
the Hindi sentence, translated by the authors.

3.2 Data Collection

We use MTurk for all of our data collection. We
collect the following datasets: (1) one single-
sentence description in Hindi for each of our 2,500
GIFs; (2) one single-sentence description in Hindi
for each of our 2,500 images, i.e., the GIFs’ mid-
dle frames; (3) one single-sentence description in
Tamil for each of the 2,500 GIFs; (4) one single-
sentence description in Tamil for each of the 2,500
images; and (5) one single-sentence description in
English for each of our 2,500 images. To build
parallel data for the GIF-as-pivot condition, we
randomly choose one of the available 3 English
descriptions for each GIF.

For the collection of Hindi and Tamil sentences,
we restrict the workers to be located in India and,
for the English sentences, we restrict the workers
to be located in the US. We use the instructions
from Li et al. (2016) with minor changes for all
settings, translating them for Indian workers.2

Each MTurk human intelligence task (HIT)
consists of annotating five GIFs or images, and we
expect each task to take a maximum of 6 minutes.
We pay annotators in India $0.12 per HIT (or $1.2
per hour), which is above the minimum wage of
$1 per hour in the capital Delhi.3 Annotators in the
US are paid $1.2 per HIT (or $12 per hour). We
have obtained IRB approval for the experiments
reported in this paper (protocol #: 20-0499).

2Our instructions can be found in the appendix.
3https://paycheck.in/salary/

minimumwages/16749-delhi

GIF-as-Pivot Image-as-Pivot M20

Hindi–English 2.92 2.20 2.63
Tamil–English 3.03 2.33 -

Table 2: Manual evaluation of a subset of our collected
sentences; scores from 1 to 5; higher is better.

3.3 Test Set Collection

For the extrinsic evaluation of our data collection
strategy we train and test an MT system. For
this, we additionally collect in-domain develop-
ment and test examples for both the GIF-as-pivot
and the image-as-pivot setting.

Specifically, we first collect 250 English sen-
tences for 250 images which are the middle frames
of previously unused GIFs. We then combine
them with the English descriptions of 250 addi-
tional unused GIFs from Li et al. (2016). For
the resulting set of 500 sentences, we ask Indian
MTurk workers to provide a translation into Hindi
and Tamil. We manually verify the quality of a
randomly chosen subset of these sentences. Work-
ers are paid $1.2 per hour for this task. We use
100 sentence pairs from each setting as our devel-
opment set and the remaining 300 for testing.

4 Evaluation

4.1 Intrinsic Evaluation

In order to compare the quality of the parallel
sentences obtained under different experimental
conditions, we first perform a manual evaluation
of a subset of the collected data. For each lan-
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Rating GIF-as-pivot Image-as-pivot M20

Hi-En 5 13.08 2.5 10.0
Ta-En 6.0 3.5 -

Hi-En
>= 4 35.77 15.5 26.43

Ta-En 37.0 14.0 -

Hi-En
>= 3 61.15 39.0 51.43

Ta-En 67.5 42.5 -

Hi-En
>= 2 82.69 63.0 75.0

Ta-En 92.5 72.5 -

Hi-En
>= 1 100.0 100.0 100.0

Ta-En 100.0 100.0 -

Table 3: Cumulative percentages with respect to each
setting; GIF-as-pivot shows the best results;

guage pair, we select the same random 100 sen-
tence pairs from the GIF-as-pivot and image-as-
pivot settings. We further choose 100 random sen-
tence pairs from M20. We randomly shuffle all
sentence pairs and ask MTurk workers to evaluate
the translation quality. Each sentence pair is evalu-
ated independently by two workers, i.e., we collect
two ratings for each pair. Sentence pairs are rated
on a scale from 1 to 5, with 1 being the worst and
5 being the best possible score.4

Each evaluation HIT consists of 11 sentence
pairs. For quality control purposes, each HIT con-
tains one manually selected example with a perfect
(for Hindi–English) or almost perfect (for Tamil–
English) translation. Annotators who do not give
a rating of 5 (for Hindi–English) or a rating of at
least 4 (for Tamil–English) do not pass this check.
Their tasks are rejected and republished.

Results The average ratings given by the annota-
tors are shown in Table 2. Sentence pairs collected
via GIF-as-pivot obtain an average rating of 2.92
and 3.03 for Hindi–English and Tamil–English,
respectively. Sentences from the image-as-pivot
setting only obtain an average rating of 2.20 and
2.33 for Hindi–English and, respectively, Tamil–
English. The rating obtained for M20 (Hindi only)
is 2.63. As we can see, for both language pairs the
GIF-as-pivot setting is rated consistently higher
than the other two settings, thus showing the ef-
fectiveness of our data collection strategy. This
is in line with our hypothesis that the movement
displayed in GIFs is able to guide the sentence
writer’s attention.

We now explicitly investigate how many of the
translations obtained via different strategies are

4The definitions of each score as given to the annotators
can be found in the appendix.

Test Set Training Set 500 1000 1500 1900 2500

Direction: Hindi to English

GIF GIF 6.41 13.06 14.39 14.81 16.09
GIF Image 5.71 8.17 9.5 9.7 10.49
GIF M20 3.19 6.84 7.99 6.9 N/A

Image GIF 2.93 8.18 9.11 8.84 9.24
Image Image 8.46 10.05 11.15 11.25 12.14
Image M20 1.27 5.79 6.76 6.68 N/A

M20 GIF 1.66 5.21 5.75 6.78 6.69
M20 Image 1.63 4.53 4.98 5.09 5.63
M20 M20 5.08 6.96 7.23 8.23 N/A

All GIF 3.47 8.46 9.35 9.81 10.28
All Image 4.9 7.28 8.19 8.32 9.04
All M20 3.37 6.57 7.32 7.37 N/A

Direction: English to Hindi

GIF GIF 0.63 1.68 2.01 1.72 3.07
GIF Image 0.81 2.18 1.43 2.29 1.86
GIF M20 0.42 2.09 2.99 3.06 N/A

Image GIF 0.11 1.19 1.03 0.97 1.42
Image Image 0.15 1.19 1.04 1.09 1.29
Image M20 0.22 1.23 1.95 1.68 N/A

M20 GIF 1.15 2.75 4.25 4.52 4.88
M20 Image 1.32 3.09 4.41 4.1 5.16
M20 M20 5.12 12.27 12.65 13.31 N/A

All GIF 0.68 1.96 2.61 2.62 3.3
All Image 0.82 2.25 2.51 2.65 3.01
All M20 2.24 5.9 6.54 6.75 N/A

Table 4: BLEU for different training and test sets; All
denotes a weighted average over all test sets; all mod-
els are obtained by finetuning mBART; best scores for
each training set size and test set in bold.

acceptable or good translations; this corresponds
to a score of 3 or higher. Table 3 shows that
61.15% of the examples are rated 3 or above in
the GIF-as-pivot setting for Hindi as compared to
39.0% and 51.43% for the image-as-pivot setting
and M20, respectively. For Tamil, 67.5% of the
sentences collected via GIFs are at least accept-
able translations. The same is true for only 42.5%
of the sentences obtained via images.

We show example sentence pairs with their rat-
ings from the GIF-as-pivot and image-as-pivot set-
tings for Hindi–English in Table 1.

4.2 Extrinsic Evaluation

We further extrinsically evaluate our data by train-
ing an MT model on it. Since, for reasons of
practicality, we collect only 2,500 examples, we
leverage a pretrained model instead of training
from scratch. Specifically, we finetune an mBART
model (Liu et al., 2020) on increasing amounts of
data from all setting in both directions. mBART is
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Test Set Training Set 500 1000 1500 2000 2500

Direction: Tamil to English

GIF GIF 2.63 4.46 8.26 9.27 4.99
GIF Image 2.33 3.34 3.00 4.77 3.83

Image GIF 0.95 2.42 3.15 3.67 2.74
Image Image 6.65 5.62 6.02 7.75 7.22

All GIF 1.79 3.44 5.71 6.47 3.87
All Image 4.49 4.48 4.51 6.26 5.53

Direction: English to Tamil

GIF GIF 0 0.54 1.00 0.83 0.84
GIF Image 0.5 0.18 0.96 0.43 0.48

Image GIF 0 0.31 0.36 0.62 0.7
Image Image 0.41 0.35 0.51 0.36 0.29

All GIF 0 0.43 0.68 0.73 0.77
All Image 0.46 0.27 0.74 0.4 0.39

Table 5: BLEU for different training and test sets; All
denotes a weighted average over all test sets; all mod-
els are obtained by finetuning mBART; best scores for
each training set size and test set in bold.

a transformer-based sequence-to-sequence model
which is pretrained on 25 monolingual raw text
corpora. We finetune it with a learning rate of 3e-5
and a dropout of 0.3 for up to 100 epochs with a
patience of 15.

Results The BLEU scores for all settings are
shown in Tables 4 and 5 for Hindi–English and
Tamil–English, respectively. We observe that in-
creasing the dataset size mostly increases the per-
formance for all data collection settings, which in-
dicates that the obtained data is useful for training.
Further, we observe that each model performs best
on its own in-domain test set.

Looking at Hindi-to-English translation, we see
that, on average, models trained on sentences col-
lected via GIFs outperform sentences from im-
ages or M20 for all training set sizes, except for
the 500-examples setting, where image-as-pivot is
best. However, results are mixed for Tamil-to-
English translation.

Considering English-to-Hindi translation, mod-
els trained on M20 data outperform models trained
on sentences collected via GIFs or our images
in nearly all settings. However, since the BLEU
scores are low, we manually inspect the obtained
outputs. We find that the translations into Hindi
are poor and differences in BLEU scores are of-
ten due to shared individual words, even though
the overall meaning of the translation is incor-
rect. Similarly, for English-to-Tamil translation,

all BLEU scores are below or equal to 1. We thus
conclude that 2,500 examples are not enough to
train an MT system for these directions, and, while
we report all results here for completeness, we be-
lieve that the intrinsic evaluation paints a more
complete picture.5 We leave a scaling of our ex-
trinsic evaluation to future work.

5 Conclusion

In this work, we made two assumptions: (1) that a
non-textual modality can serve as a pivot for MT
data collection, and (2) that humans tend to focus
on moving objects. Based on this, we proposed
to collect parallel sentences for MT using GIFs as
pivots, eliminating the need for bilingual speak-
ers and reducing annotation costs. We collected
parallel sentences in English, Hindi and Tamil us-
ing our approach and conducted intrinsic and ex-
trinsic evaluations of the obtained data, compar-
ing our strategy to two baseline approaches which
used images as pivots. According to the intrinsic
evaluation, our approach resulted in parallel sen-
tences of higher quality than either baseline.
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A Sentence Rating Instructions
Score Title Description
1 Not a translation There is no relation whatsoever between the source and the target sentence
2 Bad Some word overlap, but the meaning isn’t the same
3 Acceptable The translation conveys the meaning to some degree but is a bad translation
4 Good The translation is missing a few words but conveys most of the meaning adequately
5 Perfect The translation is perfect or close to perfect

Table 6: Description of the ratings for the manual evaluation of translations.
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B MTurk Instructions

Instructions for English image task

Below you will see five images. Your task is to describe each image in one English sentence. You should focus solely on the visual content presented in
the image. Each sentence should be grammatically correct. It should describe the main characters and their actions, but NOT your opinions, guesses or
interpretations.

● DOs
○ Please use only English words. No digits allowed (spell them out, e.g., three).
○ Sentences should neither be too short nor too long. Try to be concise.
○ Each sentence must contain a verb.
○ If possible, include adjectives that describe colors, size, emotions, or quantity.
○ Please pay attention to grammar and spelling.
○ Each sentence must express a complete idea, and make sense by itself.
○ The sentence should describe the main characters, actions, setting, and relationship between the objects.

● DONTs
○ The sentence should NOT contain any digits.
○ The sentence should NOT mention the name of a movie, film, and character.
○ The sentence should NOT mention invisible objects and actions.
○ The sentence should NOT make subjective judgments about the image.

Remember, please describe only the visual content presented in the images. Focus on the main characters and their actions.

�नद�श (Instructions for GIF Task in Hindi)

नीचे आपको पांच �गफ (GIF) �दखाई द�गे। आपको हर �गफ को एक वा�य म� �हदं� म� समझाना है। आपको �सफ�  �गफ म� जो हो रहा है उसपर �यान देना है। आपके वा�य क� �याकरण
सह� होनी चा�हए। आपको म�ुय पा�� और उनके काय� का वण�न करना है और आपको अपनी राय नह�ं देनी है।

● �या कर� -
○ कृपया केवल �हदं� श�द� और �हदं� �ल�प (देवनागर�) का उपयोग कर�। �कसी भी अकं को परू� तरह �लखे (उदहारण - तीन �लखे ना�क ३)।
○ वा�य न तो बहुत छोटे होने चा�हए और न ह� बहुत लबें। सं���त होने का �यास कर�। वा�य कम से कम चार श�द� का होना चा�हए |
○ ��येक वा�य म� एक ��या होनी चा�हए।
○ य�द सभंव हो तो �वशषेण� का इि�तमाल कर� जो क� रंगो, आकार व भावनाओ ंको अ�छे से समझा सके।
○ कृपया �याकरण और �पे�लगं पर �यान द�।
○ ��येक वा�य को एक पणू� �वचार �य�त करना चा�हए, और खदु से समझ म� आना चा�हए।
○ आपके वा�य को म�ुय अ�त�थओ, व�तओु और उनके साथ हो रह� चीज़ो को समझाना है।

● �या न कर� -
○ वा�य म� कोई अकं नह�ं होना चा�हए।
○ वा�य म� �कसी �फ�म या ए�टर का नाम नह�ं होना चा�हए।
○ वा�य म� अ��य व�तओु ंऔर काय� का उ�लेख नह�ं होना चा�हए।
○ वा�य म� अपने �यि�तगत राय न डाल�।

याद रख�, �गफ म� जो �दख रहा है उसी के बारे म� �लखे। म�ुय पा�� और उनके काय� पर �यान द�।

வழி�ைறக� (Instructions for GIF task in Tamil)

கீேழ ஐ�� அன�ேமஷ� ெச�ய�ப�ட கி� (GIF) கா�ட�ப���ளன.ஒ�ெவா� GIF ஐ ஒ� தமி� வா�கிய�தி� வ�வ��பேத
உ�க� பண�. GIF இ� உ�ள கா�சிய�� ம��ேம ந��க�கவன� ெச��த ேவ���. GIF இ� உ�ள ��கிய
கதாபா�திர�கைள�� அவ�றி� ெசய�கைள�� வ�ண��க ேவ���, ஆனா� உ�க� க����க�, �க�க� அ�ல�
வ�ள�க�க� அ�ல. ஒ�ெவா� வா�கிய�� இல�கண�ப� ச�யாக இ��க ேவ���.

● ெச�க:
○ தமி� வா�ைதகைள ம��� பய�ப��த��. எ�கைள வா��ைதய��எ�த�� (3 -> ���)
○ வா�கிய�க� மிக� ��கியதாகேவா அ�ல� ந��டதாகேவாஇ��க��டா�.
○ ஒ�ெவா� வா�கிய�தி�� ஒ� வ�ைன (ெசயைல �றி���வா��ைத) இ��க ேவ���.
○ ���தா�, வ�ண�க�, அள�, உண��சிகைள வ�வ����வா��ைதகைள ேச��க��.
○ இல�கண� ம��� எ����ப�ைழக� இ�லாத�ப� எ�த��.
○ ஒ�ெவா� வா�கிய�� ��ைமயாக இ��க ேவ���, ேம��வா�கிய�ைத தன�யாக� ப��தா�

அ��த� ��ய ேவ���.।
○ வா�கிய� GIFஇ� உ�ள ��கிய கதாபா�திர�க�, ெசய�க�,அைம��, ம��� ெபா��க���

இைடய�லான உறைவ வ�வ��க ேவ���.
● ெச�யாத��:

○ வா�கிய�தி� எ�த எ�க�� இ��க��டா�.
○ வா�கிய�தி� எ�த திைர�பட�, ம��� ந�க� அ�ல�கதாபா�திர�தி� ெபயைர� �றி�ப�ட��டா�.
○ வா�கிய�தி� க���� ெத�யாத ெபா��க� ம���ெசய�கைள� �றி�ப�ட��டா�.
○ வா�கிய�தி� த�கள�� எ�ண�கேளா த��மான�கேளா இ��க��டா�.

கவன��க��: அன�ேமஷ� ெச�ய�ப�ட GIF இ� கா�� கா�சிையம��� வ�ண��க��. அதி� இ���� ��கிய
கதா�பா�திர�க� ம��� ெசய�கள�� கவன� ெச��த��.

Figure 2: Instructions for the data collection via images in English, via GIFs in Hindi and Tamil.
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