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Abstract

Topic models extract groups of words from
documents, whose interpretation as a topic
hopefully allows for a better understanding of
the data. However, the resulting word groups
are often not coherent, making them harder
to interpret. Recently, neural topic models
have shown improvements in overall coher-
ence. Concurrently, contextual embeddings
have advanced the state of the art of neural
models in general. In this paper, we com-
bine contextualized representations with neu-
ral topic models. We find that our approach
produces more meaningful and coherent top-
ics than traditional bag-of-words topic models
and recent neural models. Our results indicate
that future improvements in language models
will translate into better topic models.

1 Introduction
One of the crucial issues with topic models is the
quality of the topics they discover. Coherent top-
ics are easier to interpret and are considered more
meaningful. E.g., a topic represented by the words
“apple, pear, lemon, banana, kiwi” would be con-
sidered a meaningful topic on FRUIT and is more
coherent than one defined by “apple, knife, lemon,
banana, spoon.” Coherence can be measured in
numerous ways, from human evaluation via intru-
sion tests (Chang et al., 2009) to approximated
scores (Lau et al., 2014; Röder et al., 2015).

However, most topic models still use Bag-of-
Words (BoW) document representations as input.
These representations, though, disregard the syn-
tactic and semantic relationships among the words
in a document, the two main linguistic avenues to
coherent text. I.e., BoW models represent the input
in an inherently incoherent manner.

Meanwhile, pre-trained language models are
becoming ubiquitous in Natural Language Pro-
cessing (NLP), precisely for their ability to cap-

ture and maintain sentential coherence. Bidirec-
tional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2019), the most promi-
nent architecture in this category, allows us to ex-
tract pre-trained word and sentence representations.
Their use as input has advanced state-of-the-art per-
formance across many tasks. Consequently, BERT
representations are used in a diverse set of NLP ap-
plications (Rogers et al., 2020; Nozza et al., 2020).

Various extensions of topic models incorporate
several types of information (Xun et al., 2017;
Zhao et al., 2017; Terragni et al., 2020a), use
word relationships derived from external knowl-
edge bases (Chen et al., 2013; Yang et al., 2015;
Terragni et al., 2020b), or pre-trained word em-
beddings (Das et al., 2015; Dieng et al., 2020;
Nguyen et al., 2015; Zhao et al., 2017). Even for
neural topic models, there exists work on incor-
porating external knowledge, e.g., via word em-
beddings (Gupta et al., 2019, 2020; Dieng et al.,
2020).

In this paper, we show that adding contextual
information to neural topic models provides a sig-
nificant increase in topic coherence. This effect is
even more remarkable given that we cannot embed
long documents due to the sentence length limit in
recent pre-trained language models architectures.

Concretely, we extend Neural ProdLDA
(Product-of-Experts LDA) (Srivastava and Sutton,
2017), a state-of-the-art topic model that imple-
ments black-box variational inference (Ranganath
et al., 2014), to include contextualized representa-
tions. Our approach leads to consistent and signifi-
cant improvements in two standard metrics on topic
coherence and produces competitive topic diversity
results.

Contributions We propose a straightforward and
easily implementable method that allows neural
topic models to create coherent topics. We show
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that the use of contextualized document embed-
dings in neural topic models produces significantly
more coherent topics. Our results suggest that topic
models benefit from latent contextual information,
which is missing in BoW representations. The re-
sulting model addresses one of the most central
issues in topic modeling. We release our imple-
mentation as a Python library, available at the fol-
lowing link: https://github.com/MilaNLProc/
contextualized-topic-models.

2 Neural Topic Models with Language
Model Pre-training

We introduce a Combined Topic Model (Com-
binedTM) to investigate the incorporation of con-
textualized representations in topic models. Our
model is built around two main components: (i)
the neural topic model ProdLDA (Srivastava and
Sutton, 2017) and (ii) the SBERT embedded rep-
resentations (Reimers and Gurevych, 2019). Let
us notice that our method is indeed agnostic about
the choice of the topic model and the pre-trained
representations, as long as the topic model extends
an autoencoder and the pre-trained representations
embed the documents.

ProdLDA is a neural topic modeling approach
based on the Variational AutoEncoder (VAE). The
neural variational framework trains a neural infer-
ence network to directly map the BoW document
representation into a continuous latent represen-
tation. Then, a decoder network reconstructs the
BoW by generating its words from the latent doc-
ument representation1. The framework explicitly
approximates the Dirichlet prior using Gaussian
distributions, instead of using a Gaussian prior like
Neural Variational Document Models (Miao et al.,
2016). Moreover, ProdLDA replaces the multi-
nomial distribution over individual words in LDA
with a product of experts (Hinton, 2002).

We extend this model with contextualized doc-
ument embeddings from SBERT (Reimers and
Gurevych, 2019),2 a recent extension of BERT
that allows the quick generation of sentence em-
beddings. This approach has one limitation. If a
document is longer than SBERT’s sentence-length
limit, the rest of the document will be lost. The
document representations are projected through a
hidden layer with the same dimensionality as the
vocabulary size, concatenated with the BoW repre-

1For more details see (Srivastava and Sutton, 2017).
2https://github.com/UKPLab/

sentence-transformers

sentation. Figure 1 briefly sketches the architecture
of our model. The hidden layer size could be tuned,
but an extensive evaluation of different architec-
tures is out of the scope of this paper.

Figure 1: High-level sketch of CombinedTM. Refer
to (Srivastava and Sutton, 2017) for more details on the
architecture we extend.

Dataset Docs Vocabulary

20Newsgroups 18,173 2,000
Wiki20K 20,000 2,000
StackOverflow 16,408 2,303
Tweets2011 2,471 5,098
Google News 11,108 8,110

Table 1: Statistics of the datasets used.

3 Experimental Setting
We provide detailed explanations of the experi-
ments (e.g., runtimes) in the supplementary materi-
als. To reach full replicability, we use open-source
implementations of the algorithms.

3.1 Datasets

We evaluate the models on five datasets: 20News-
Groups3, Wiki20K (a collection of 20,000 English
Wikipedia abstracts from Bianchi et al. (2021)),
Tweets20114, Google News (Qiang et al., 2019),
and the StackOverflow dataset (Qiang et al., 2019).
The latter three are already pre-processed. We use
a similar pipeline for 20NewsGroups and Wiki20K:
removing digits, punctuation, stopwords, and infre-
quent words. We derive SBERT document repre-
sentations from unpreprocessed text for Wiki20k

3http://qwone.com/˜jason/20Newsgroups/
4https://trec.nist.gov/data/tweets/

https://github.com/MilaNLProc/contextualized-topic-models
https://github.com/MilaNLProc/contextualized-topic-models
https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
http://qwone.com/~jason/20Newsgroups/
https://trec.nist.gov/data/tweets/
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Model Avg τ Avg α Avg ρ

Results for the Wiki20K Dataset:

Ours 0.1823 0.1980 0.9950
PLDA 0.1397 0.1799 0.9901
MLDA 0.1443 0.2110 0.9843
NVDM -0.2938 0.0797 0.9604
ETM 0.0740 0.1948 0.8632
LDA -0.0481 0.1333 0.9931

Results for the StackOverflow Dataset:

Ours 0.0280 0.1563 0.9805
PLDA -0.0394 0.1370 0.9914
MLDA 0.0136 0.1450 0.9822
NVDM -0.4836 0.0985 0.8903
ETM -0.4132 0.1598 0.4788
LDA -0.3207 0.1063 0.8947

Results for the GoogleNews Dataset:

Ours 0.1207 0.1325 0.9965
PLDA 0.0110 0.1218 0.9902
MLDA 0.0849 0.1219 0.9959
NVDM -0.3767 0.1067 0.9648
ETM -0.2770 0.1175 0.4700
LDA -0.3250 0.0969 0.9774

Results for the Tweets2011 Dataset:

Ours 0.1008 0.1493 0.9901
PLDA 0.0612 0.1327 0.9847
MLDA 0.0122 0.1272 0.9956
NVDM -0.5105 0.0797 0.9751
ETM -0.3613 0.1166 0.4335
LDA -0.3227 0.1025 0.8169

Results for the 20NewsGroups Dataset:

Ours 0.1025 0.1715 0.9917
PLDA 0.0632 0.1554 0.9931
MLDA 0.1300 0.2210 0.9808
NVDM -0.1720 0.0839 0.9805
ETM 0.0766 0.2539 0.8642
LDA 0.0173 0.1627 0.9897

Table 2: Averaged results over 5 numbers of topics.
Best results are marked in bold.

and 20NewsGroups. For the others, we use the
pre-processed text;5 See Table 1 for dataset statis-
tics. The sentence encoding model used is the pre-
trained RoBERTa model fine-tuned on SNLI (Bow-
man et al., 2015), MNLI (Williams et al., 2018),

5This can be sub-optimal, but many datasets in the litera-
ture are already pre-processed.

and the STSb (Cer et al., 2017) dataset.6

3.2 Metrics

We evaluate each model on three different metrics:
two for topic coherence (normalized pointwise mu-
tual information and a word-embedding based mea-
sure) and one metric to quantify the diversity of the
topic solutions.

Normalized Pointwise Mutual Information (τ )
(Lau et al., 2014) measures how related the top-10
words of a topic are to each other, considering the
words’ empirical frequency in the original corpus.
τ is a symbolic metric and relies on co-occurrence.
As Ding et al. (2018) pointed out, though, topic
coherence computed on the original data is inher-
ently limited. Coherence computed on an external
corpus, on the other hand, correlates much more
to human judgment, but it may be expensive to
estimate.

External word embeddings topic coherence (α)
provides an additional measure of how similar the
words in a topic are. We follow Ding et al. (2018)
and first compute the average pairwise cosine simi-
larity of the word embeddings of the top-10 words
in a topic, using Mikolov et al. (2013) embeddings.
Then, we compute the overall average of those
values for all the topics. We can consider this mea-
sure as an external topic coherence, but it is more
efficient to compute than Normalized Pointwise
Mutual Information on an external corpus.

Inversed Rank-Biased Overlap (ρ) evaluates
how diverse the topics generated by a single model
are. We define ρ as the reciprocal of the standard
RBO (Webber et al., 2010; Terragni et al., 2021b).
RBO compares the 10-top words of two topics. It
allows disjointedness between the lists of topics
(i.e., two topics can have different words in them)
and uses weighted ranking. I.e., two lists that share
some of the same words, albeit at different rank-
ings, are penalized less than two lists that share the
same words at the highest ranks. ρ is 0 for identical
topics and 1 for completely different topics.

3.3 Models

Our main objective is to show that contextual in-
formation increases coherence. To show this, we
compare our approach to ProdLDA (Srivastava
and Sutton, 2017, the model we extend)7, and the

6stsb-roberta-large
7We use the implementation of Carrow (2018).
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following models: (ii) Neural Variational Docu-
ment Model (NVDM) (Miao et al., 2016); (iii) the
very recent ETM (Dieng et al., 2020), MetaLDA
(MLDA) (Zhao et al., 2017) and (iv) LDA (Blei
et al., 2003).

3.4 Configurations

To maximize comparability, we train all mod-
els with similar hyper-parameter configurations.
The inference network for both our method and
ProdLDA consists of one hidden layer and 100-
dimension of softplus units, which converts the
input into embeddings. This final representation
is again passed through a hidden layer before the
variational inference process. We follow (Srivas-
tava and Sutton, 2017) for the choice of the pa-
rameters. The priors over the topic and document
distributions are learnable parameters. For LDA,
the Dirichlet priors are estimated via Expectation-
Maximization. See the Supplementary Materials
for additional details on the configurations.

4 Results
We divide our results into two parts: we first de-
scribe the results for our quantitative evaluation,
and we then explore the effect on the performance
when we use two different contextualized represen-
tations.

4.1 Quantitative Evaluation

We compute all the metrics for 25, 50, 75, 100, and
150 topics. We average results for each metric over
30 runs of each model (see Table 2).

As a general remark, our model provides the
most coherent topics across all corpora and topic
settings, even maintaining a competitive diversity
of the topics. This result suggests that the incor-
poration of contextualized representations can im-
prove a topic model’s performance.

LDA and NVDM obtain low coherence. This re-
sult has also also been confirmed by Srivastava and
Sutton (2017). ETM shows good external coher-
ence (α), especially in 20NewsGroups and Stack-
Overflow. However, it fails at obtaining a good τ
coherence for short texts. Moreover, ρ shows that
the topics are very similar to one another. A man-
ual inspection of the topics confirmed this problem.
MetaLDA is the most competitive of the models
we used for comparison. This may be due to the
incorporation of pre-trained word embeddings into
MetaLDA. Our model provides very competitive re-
sults, and the second strongest model appears to be

Wiki20K 25 50 75 100 150

Ours 0.17♣ 0.19♣ 0.18♣ 0.19♣ 0.17♣

MLDA 0.15 0.15 0.14 0.14 0.13

SO

Ours 0.05 0.03♣ 0.02♣ 0.02♣ 0.02♣

MLDA 0.05♣ 0.02 0.00 -0.02 0.00

GNEWS

Ours -0.03♣ 0.10♣ 0.15♣ 0.18♣ 0.19♣

MLDA -0.06 0.07 0.13 0.16 0.14

Tweets

Ours 0.05♣ 0.10♣ 0.11♣ 0.12♣ 0.12♣

MLDA 0.00 0.05 0.06 0.04 -0.07

20NG

Ours 0.12 0.11 0.10 0.09 0.09
MLDA 0.13♣ 0.13♣ 0.13♣ 0.13♣ 0.12♣

Table 3: Comparison of τ between CombinedTM
(ours) and MetaLDA over various choices of topics.
Each result averaged over 30 runs. ♣ indicates statis-
tical significance of the results (t-test, p-value < 0.05).

MetaLDA. For this reason, we provide a detailed
comparison of τ in Table 3, where we show the
average coherence for each number of topics; we
show that on 4 datasets over 5 our model provides
the best results, but still keeping a very competitive
score on 20NG, where MetaLDA is best.

Readers can see examples of the top words for
each model in the Supplementary Materials. These
descriptors illustrate the increased coherence of
topics obtained with SBERT embeddings.

4.2 Using Different Contextualized
Representations

Contextualized representations can be generated
from different models and some representations
might be better than others. Indeed, one question
left to answer is the impact of the specific contextu-
alized model on the topic modeling task. To answer
to this question we rerun all the experiments with
CombinedTM but we used different contextualized
sentence embedding methods as input to the model.

We compare the performance of CombinedTM
using two different models for embedding the con-
textualized representations found in the SBERT
repository:8 stsb-roberta-large (Ours-R), as em-
ployed in the previous experimental setting, and
using bert-base-nli-means (Ours-B). The latter is
derived from a BERT model fine-tuned on NLI

8https://github.com/UKPLab/
sentence-transformers

https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
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Wiki20K SO GN Tweets 20NG

Ours-R 0.18 0.03 0.12 0.10 0.10
Ours-B 0.18 0.02 0.08 0.06 0.07

Table 4: τ performance of CombinedTM using differ-
ent contextualized encoders.

data. Table 4 shows the coherence of the two ap-
proaches on all the datasets (we averaged all re-
sults). In these experiments, RoBERTa fine-tuned
on the STSb dataset has a strong impact on the
increase of the coherence. This result suggests that
including novel and better contextualized embed-
dings can further improve a topic model’s perfor-
mance.

5 Related Work
In recent years, neural topic models have gained
increasing success and interest (Zhao et al., 2021;
Terragni et al., 2021a), due to their flexibility and
scalability. Several topic models use neural net-
works (Larochelle and Lauly, 2012; Salakhutdinov
and Hinton, 2009; Gupta et al., 2020) or neural
variational inference (Miao et al., 2016; Mnih and
Gregor, 2014; Srivastava and Sutton, 2017; Miao
et al., 2017; Ding et al., 2018). Miao et al. (2016)
propose NVDM, an unsupervised generative model
based on VAEs, assuming a Gaussian distribution
over topics. Building upon NVDM, Dieng et al.
(2020) represent words and topics in the same em-
bedding space. Srivastava and Sutton (2017) pro-
pose a neural variational framework that explicitly
approximates the Dirichlet prior using a Gaussian
distribution. Our approach builds on this work but
includes a crucial component, i.e., the representa-
tions from a pre-trained transformer that can benefit
from both general language knowledge and corpus-
dependent information. Similarly, Bianchi et al.
(2021) replace the BOW document representation
with pre-trained contextualized representations to
tackle a problem of cross-lingual zero-shot topic
modeling. This approach was extended by Mueller
and Dredze (2021) that also considered fine-tuning
the representations. A very recent approach (Hoyle
et al., 2020) which follows a similar direction uses
knowledge distillation (Hinton et al., 2015) to com-
bine neural topic models and pre-trained transform-
ers.

6 Conclusions
We propose a straightforward and simple method to
incorporate contextualized embeddings into topic

models. The proposed model significantly im-
proves the quality of the discovered topics. Our
results show that context information is a signifi-
cant element to consider also for topic modeling.

Ethical Statement
In this research work, we used datasets from the
recent literature, and we do not use or infer any
sensible information. The risk of possible abuse of
our models is low.
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A Datasets
We pre-processed 20NewsGroup and Wiki20K. We
removed punctuation, digits, and nltk’s English
stop-words. Following other researchers, we se-
lected 2,000 as the maximum number of words for
the BoW, and thus we kept only the 2,000 most fre-
quent words in the documents. The other datasets
come already pre-processed (reference links are in
the paper) and thus we take them as is.

B Models and Baselines

B.1 ProdLDA

We use the implementation made available by Car-
row (2018) since it is the most recent and with
the most updated packages (e.g., one of the latest
versions of PyTorch). We run 100 epochs of the
model. We use ADAM optimizer. The inference
network is composed of a single hidden layer and
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the topic and document distributions are learnable
parameters. Momentum is set to 0.99, the learning
rate is set to 0.002, and we apply 20% of drop-out
to the hidden document representation. The batch
size is equal to 200. More details related to the
architecture can be found in the original work (Sri-
vastava and Sutton, 2017).

B.2 Combined TM

The model and the hyper-parameters are the same
used for ProdLDA with the difference that we also
use SBERT features in combination with the BoW:
we take the SBERT English embeddings, apply a
(learnable) function/dense layerR1024

→ R
∣V ∣ and

concatenate the representation to the BoW. We run
100 epochs of the model. We use ADAM optimizer.

B.3 LDA

We use Gensim’s9 implementation of this model.
The hyper-parameters α and β, controlling the
document-topic and word-topic distribution respec-
tively, are estimated from the data during training.

B.4 ETM

We use the implementation available at https:

//github.com/adjidieng/ETM with default hy-
perparameters.

B.5 Meta-LDA

We use the authors’ implementation available
at https://github.com/ethanhezhao/MetaLDA.
As suggested, we use the Glove embeddings to ini-
tialize the models. We used the 50-dimensional
embeddings from https://nlp.stanford.edu/

projects/glove/. The parameters α and β have
been set to 0.1 and 0.01 respectively.

B.6 Neural Variational Document Model
(NVDM)

We use the implementation available at https:

//github.com/ysmiao/nvdm with default hyper-
parameters, but using two alternating epochs for
encoder and decoder.

C Computing Infrastructure
We ran the experiments on two common laptops,
equipped with a GeForce GTX 1050: models can
be easily run with basic infrastructure (having a
GPU is better than just using CPU, but the experi-
ment can also be replicated with CPU). Both lap-

9https://radimrehurek.com/gensim/
models/ldamodel.html

tops have 16GB of RAM. CUDA version for the
experiments was 10.0.

C.1 Runtime

What influences the computational time the most
is the number of words in the vocabulary. Table 5
shows the runtime for one epoch of both our Com-
bined TM (CTM) and ProdLDA (PDLDA) for 25
and 50 topics on Google News and 20Newsgroups
datasets with the GeForce GTX 1050. ProdLDA
is faster than our Combined TM. This is due to
the added representation. However, we believe
that these numbers are quite similar and make our
model easy to use, even with common hardware.

GNEWS 20NG

50 topics 100 topics 50 topics 100 topics

CTM 2.1s 2.2s 1.2s 1.2s
PLDA 1.5s 1.5s 0.8s 0.9s

Table 5: Time to complete one epoch on Google News
and 20Newsgroups datasets with 25 and 50 topics.
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