@inproceedings{bianchi-etal-2021-pre,
title = "Pre-training is a Hot Topic: Contextualized Document Embeddings Improve Topic Coherence",
author = "Bianchi, Federico and
Terragni, Silvia and
Hovy, Dirk",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/2021.acl-short.96/",
doi = "10.18653/v1/2021.acl-short.96",
pages = "759--766",
abstract = "Topic models extract groups of words from documents, whose interpretation as a topic hopefully allows for a better understanding of the data. However, the resulting word groups are often not coherent, making them harder to interpret. Recently, neural topic models have shown improvements in overall coherence. Concurrently, contextual embeddings have advanced the state of the art of neural models in general. In this paper, we combine contextualized representations with neural topic models. We find that our approach produces more meaningful and coherent topics than traditional bag-of-words topic models and recent neural models. Our results indicate that future improvements in language models will translate into better topic models."
}
Markdown (Informal)
[Pre-training is a Hot Topic: Contextualized Document Embeddings Improve Topic Coherence](https://preview.aclanthology.org/fix-sig-urls/2021.acl-short.96/) (Bianchi et al., ACL-IJCNLP 2021)
ACL