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Abstract

Pathology imaging is broadly used for identi-
fying the causes and effects of diseases or in-
juries. Given a pathology image, being able
to answer questions about the clinical find-
ings contained in the image is very impor-
tant for medical decision making. In this
paper, we aim to develop a pathological vi-
sual question answering framework to ana-
lyze pathology images and answer medical
questions related to these images. To build
such a framework, we create PathVQA, a
pathology VQA dataset with 32,795 questions
asked from 4,998 pathology images. We
also propose a three-level optimization frame-
work which performs self-supervised pretrain-
ing and VQA finetuning end-to-end to learn
powerful visual and textual representations
jointly and automatically identifies and ex-
cludes noisy self-supervised examples from
pretraining. We perform experiments on
our created PathVQA dataset and the results
demonstrate the effectiveness of our proposed
methods. The datasets and code are available
at https://github.com/UCSD-AI4H/PathVQA

1 Introduction

Pathology (Levison et al., 2012) studies the causes
and effects of diseases or injuries. It underpins
every aspect of patient care, such as diagnostic
testing, providing treatment advice, preventing dis-
eases using cutting-edge genetic technologies, to
name a few. Given a pathology image, being able
to answer questions about the clinical findings con-
tained in the image is very important for medical
decision-makings.

In this paper, we aim to develop a pathologi-
cal visual question answering framework to ana-
lyze pathology images and answer medical ques-
tions related to these images. We first need to col-

∗Equal Contribution

lect a dataset containing questions about pathol-
ogy imaging. One possible way to create a pathol-
ogy VQA dataset is crowdsourcing, which is used
successfully for creating general domain VQA
datasets (Malinowski and Fritz, 2014; Antol et al.,
2015; Ren et al., 2015a; Johnson et al., 2017; Goyal
et al., 2017). However, it is much more challenging
to build medical VQA datasets than general do-
main VQA datasets via crowdsourcing. First, med-
ical images such as pathology images are highly
domain-specific, which can only be interpreted by
well-educated medical professionals. It is rather
difficult and expensive to hire medical profession-
als to help create medical VQA datasets. Second, to
create a VQA dataset, one first needs to collect an
image dataset. While images in the general domain
are pervasive, medical images are very difficult to
obtain due to privacy concerns.

To address these challenges, we resort to pathol-
ogy textbooks, especially those that are freely ac-
cessible online, as well as online digital libraries.
We extract images and captions from the textbooks
and online digital libraries. Given these images,
question-answer pairs are created based on image
captions. These QA pairs are verified by medi-
cal professionals to ensure clinical meaningfulness
and correctness. In the end, we created a pathol-
ogy VQA dataset called PathVQA, which contains
32,795 questions asked from 4,998 pathology im-
ages. To our best knowledge, this is the first dataset
for pathology VQA.

Given the pathology VQA dataset, the next step
is to develop a pathology VQA system, which is
also very challenging, due to the following reason.
The medical concepts involved in PathVQA are
very diverse while the number of question-answer
pairs available for training is limited. Learning
effective representations of these diverse medical
concepts using limited data is technically diffi-
cult. Poorly learned representations lead to infe-
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Q1: What are dilated and congested? 
Q2: Are the sinuses dilated and congested? 
Q3: Is there increased fibrosis in the  
red pulp, capsule and the trabeculae? 
Q4: Where is increased fibrosis?  
Q5: Is gamna-gandy body also seen? 
 

Q1: What is slightly depressed on 
 the surface? 
Q2: Where is the wedge-shaped  
infarct slightly depressed? 
Q3: Is the wedge-shaped infarct  
slightly depressed on the surface? 
Q4: What is on the surface? 
Q5: What is pale while the margin  
is haemorrhagic? 
 

Figure 1: Two exemplar images with generated ques-
tions. Both images have three types of questions:
“what”, “where”, and “yes/no”.

rior VQA performance. To address this challenge,
we propose a three-level optimization framework
which performs cross-modal self-supervised pre-
training (Tan and Bansal, 2019) and VQA fine-
tuning of a pathology image encoder and a ques-
tion encoder end-to-end to learn powerful visual
and textual representations jointly and automati-
cally identifies and excludes noisy self-supervised
examples from pretraining. Experiments on our
developed PathVQA dataset demonstrates the ef-
fectiveness of our proposed methods.

The major contributions of this paper are as fol-
lows:

• We create a pathology visual question answer-
ing dataset – PathVQA, to foster the research
of medical VQA. To our best knowledge, this
is the first dataset for pathology VQA.

• We propose a three-level optimization frame-
work which performs cross-modal self-
supervised pretraining and VQA finetuning
of a pathology image encoder and a question
encoder end-to-end to learn powerful visual
and textual representations jointly and auto-
matically identifies and excludes noisy self-
supervised examples from pretraining.

• On our PathVQA dataset, we demonstrate the
effectiveness of our proposed method.

2 Related Work

2.1 Medical VQA Datasets
To our best knowledge, there are two existing
datasets for medical visual question answering.
The VQA-Med (Abacha et al., 2019) dataset is

created on 4,200 radiology images and has 15,292
question-answer pairs. Most of the questions are in
multiple-choice (MC) style and can be answered
by multi-way classifiers. This makes the difficulty
of this dataset significantly lower. VQA-RAD (Lau
et al., 2018) is a manually-crafted dataset where
questions and answers are given by clinicians on
radiology images. It has 3515 questions of 11 types.
Our dataset differs from VQA-Med and VQA-RAD
in two-fold. First, ours is about pathology while
VQA-Med and VQA-RAD (Lau et al., 2018) are
both about radiology. Second, our dataset is a
truly challenging QA dataset where most of the
questions are open-ended while in VQA-Med and
VQA-RAD the majority of questions have a fixed
number of candidate answers and can be answered
by multi-way classification. Besides, the number
of questions in our dataset is much larger than that
in VQA-Med and VQA-RAD.

2.2 Cross-modal Self-supervised Learning

Cross-modal self-supervised learning learns repre-
sentations for data with multiple modalities by solv-
ing cross-modal auxiliary tasks. VisualBERT (Li
et al., 2019) learns representations for images and
texts by implicitly aligning elements of a text and
regions in an associated image with self-attention.
CVLP (Shi et al., 2020) proposes an unbiased
contrastive visual-linguistic pretraining approach,
which constructs a self-supervised loss based on
contrastive learning. ViLBERT (Lu et al., 2019)
proposes to pretrain a vision-and-language BERT
model through masked multi-modal modeling and
alignment tasks, and then transfer the model to
visual question answering tasks.

2.3 Data Selection and Data Reweighting

A number of approaches have been proposed for
data selection. Ren et al. (2018) proposes a meta
learning method to learn the weights of training
examples by performing a meta gradient descent
step on the weights of the current mini-batch of
examples. Shu et al. (2019) propose a method
which can adaptively learn an explicit weighting
function directly from data.

3 The PathVQA Dataset

The PathVQA dataset consists of 32,795 question-
answer pairs generated from 1,670 pathology im-
ages collected from two pathology textbooks:
“Textbook of Pathology” (Muir et al., 1941) and
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Table 1: Frequency of questions in different categories

Question type
Total number
and percentage

Yes/No 16,329 (49.8%)
What 13,401 (40.9%)
Where 2,157 (6.6%)
How 595 (1.8%)
How much/many 139 (0.4%)
Why 114 (0.3%)
When 51 (0.2%)
Whose 9 (0.1%)

“Basic Pathology” (Robbins et al., 1981), and 3,328
pathology images collected from the PEIR1 digital
library. The question-answer pairs are generated us-
ing a semi-automated pipeline with linguistic rules.
Figure 1 shows some examples.

On average, each image has 6.6 questions. The
maximum and minimum number of questions for a
single image is 14 and 1 respectively. The average
number of words per question and per answer is
9.5 and 2.5 respectively. There are eight different
categories of questions: what, where, when, whose,
how, why, how much/how many, and yes/no. Ta-
ble 1 shows the number of questions and percent-
age in each category. The questions in the first
7 categories are open-ended: 16,466 in total and
accounting for 50.2% of all questions. The rest
are close-ended “yes/no” questions. The questions
cover various aspects of visual contents, including
color, location, appearance, shape, etc. Such clini-
cal diversity poses great challenges for AI models
to solve this pathology VQA problem.

4 Method

We propose a three-level optimization based frame-
work to perform VQA on PathVQA. In our frame-
work, there are three learning stages, which are
performed end-to-end jointly. In the first stage,
self-supervised learning (He et al., 2019; Tan and
Bansal, 2019) is performed to pretrain the image
encoder and text encoder. In the second stage, we
finetune the image encoder and text encoder on the
PathVQA dataset. In the third stage, the trained
model is validated on the validation set. In the
first stage, we perform cross-modal self-supervised
learning (Tan and Bansal, 2019) of an image en-

1http://peir.path.uab.edu/library/
index.php?/category/2

coder W and a text encoder T . The image encoder
is used to extract visual features of pathology im-
ages. The text encoder is used to extract semantic
features of questions and answers. Self-supervised
learning (He et al., 2019) is an unsupervised rep-
resentation learning approach where pretext tasks
are defined solely based on the input data, and rep-
resentations are learned by solving these pretext
tasks.

There are many ways to construct pretext tasks.
In our work, following (Tan and Bansal, 2019), we
define a simple yet effective pretext task: in the
PathVQA dataset, given a pathology image and a
question, judge whether this question is about this
image. From the PathVAQ training setD, we create
another dataset D′ = {(xi, yi, ti)}Mi=1 to perform
the SSL task. There are M tuples, each contain-
ing a pathology image x from D and a question
y from D. ti is a binary variable where ti = 1 if
x and y are from the same training example in D
and ti = 0 if otherwise. Given D′, we develop a
model to map (xi, yi) to ti. In this model, an im-
age encoder is used to encode xi and a text encoder
is used to encode yi; the concatenation of these
two encodings is fed into a linear layer to predict
whether the image matches with the question.

In self-supervised learning (He et al., 2019), the
labels are typically constructed automatically with-
out human supervision. As a result, they contain a
lot of noises. For example, in D′, t is determined
simply based on whether x and y are from the
training example in D. It is totally possible that a
question y asked about an image x′ is appropriate
to be a question for another image x as well if x
and x′ are pathologically similar. In this case, the
correct label t for (x, y) should be 1. However,
it is set to 0 in D′. Training the encoders using
these noisy and incorrect labels may confuse the
encoders and result in poor-quality representations.

To address this problem, we aim to develop a
method to automatically identify incorrectly auto-
labeled examples in the training data of the SSL
task. For each example (x, y, t) inD′, we associate
a selection variable a ∈ [0, 1] with it. If a is close
to 1, it means this example is correctly labeled;
if a is close to 0, it means this example is incor-
rectly labeled. Let l(f(x, y;W,T ), t) denote the
SSL loss defined on (x, y, t), where f(x, y;W,T )
is the predicted probability that t = 1 and l(·)
is the cross-entropy loss. We multiply a with
l(f(x, y;W,T ), t) so that if (x, y, t) is incorrectly

http://peir.path.uab.edu/library/index.php?/category/2
http://peir.path.uab.edu/library/index.php?/category/2
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labeled, its loss will be down-weighted to 0 and
effectively (x, y, t) is excluded from the SSL pre-
training process. In the end, only correctly-labeled
examples are used for pretraining the encoders. To
this end, in the first stage, we solve the following
optimization problem:

W ∗(A), T ∗(A) =

argmin
W,T

∑M
i=1 ail(f(xi, yi;W,T ), ti).

In this problem, the selection variables A =
{ai}Mi=1 are fixed (we will discuss how to learn
A later on). {ai}Mi=1 are used to weigh the losses of
individual examples in D. W and T are trained by
minimizing the sum of weighted losses. Note that
the optimal solutions W ∗(A) and T ∗(A) are func-
tions of A since W ∗(A) and T ∗(A) are functions
of the loss function, which is a function of A.

In the second stage, we finetune the image en-
coder and text encoder in the VQA task defined on
the PathVQA dataset D. Let V , U , R denote the
network weights of the image encoder, text encoder,
and QA network respectively. We train V , U , R by
minimizing the VQA loss:

∑N(tr)

i=1 L(d
(tr)
i , V, U,R)

where d(tr)i is a training example in D, consisting
of an input pathology image, an input question,
and an output answer. When training V and U ,
we encourage them to be close to the optimally
trained network weights W ∗(A) and T ∗(A) of the
image and text encoder in the first stage, to transfer
the representations learned in the SSL task to the
VQA task. The second stage amounts to solving
the following optimization problem:

V ∗(W ∗(A)), U∗(T ∗(A)), R∗ =

argmin
V,U,R

∑N(tr)

i=1 L(d
(tr)
i , V, U,R)+

γ1 ‖V −W ∗(A)‖22 + γ2 ‖U − T ∗(A)‖22 .

(1)

where the L2 losses encourage V and U to be
close to W ∗(A) and T ∗(A). γ1 and γ2 are trade-
off parameters. Note that V ∗(W ∗(A)) is a func-
tion of W ∗(A) since V ∗(W ∗(A)) is a function of
‖V − W ∗(A)‖22 which is a function of W ∗(A).
Similarly, U∗(T ∗(A)) is a function of T ∗(A).

In the third stage, we apply the optimally trained
VQA model including V ∗(W ∗(A)), U∗(T ∗(A)),
and R∗ to make predictions on the valida-
tion dataset. Then we learn the selection
variables A by minimizing the validation loss∑N(val)

i=1 L(d
(val)
i , V ∗(W ∗(A)), U∗(T ∗(A)), R∗).

Putting all these pieces together, we have the
following three-level optimization framework:

minA

∑N(val)

i=1 L(d
(val)
i , V ∗(W∗(A)), U∗(T∗(A)), R∗)

s.t. V ∗(W∗(A)), U∗(T∗(A)), R∗ =

argminV,U,R

∑N(tr)

i=1 L(d
(tr)
i , V, U,R)

+γ1 ‖V −W∗(A)‖22 + γ2 ‖U − T∗(A)‖22
W∗(A), T∗(A) = argminW,T

M∑
i=1

ail(f(xi, yi;W,T ), ti)

4.1 VQA Models

Our proposed method can be applied to any VQA
method. In this work, we choose two well-
established and state-of-the-art VQA methods to
perform the study while noting that other VQA
methods are applicable as well.

• Method 1: In (Tan and Bansal, 2019), a
large-scale Transformer (Vaswani et al., 2017)
model is built that consists of three encoders:
an object relationship encoder, a language en-
coder, and a cross-modal encoder. The three
encoders are built mostly based on two kinds
of attention layers — self-attention layers and
cross-attention layers. The object relationship
encoder and the language encoder are both
single-modality encoders. A cross-modal en-
coder is proposed to learn the connections
between vision and language.

• Method 2: The method proposed in (Kim
et al., 2018) uses a Gated Recurrent Unit
(GRU) (Cho et al., 2014) recurrent network
and a Faster R-CNN (Ren et al., 2015b) net-
work to embed the question and the image.
It extends the idea of co-attention to bilinear
attention which considers every pair of multi-
modal channels.

5 Experiment

5.1 Experimental Settings

Data split We partition the images in the
PathVQA dataset along with the associated ques-
tions into a training set, validation set, and testing
set with a ratio of about 3:1:1. In the PathVQA
dataset, the frequencies of question categories are
imbalanced. Because of this, during the partition
process, we perform sampling to ensure the fre-
quencies of these categories in each set to be consis-
tent. In the end, there are 19,755 question-answer
pairs in the training set, 6,279 in the validation set,
and 6,761 in the testing set.
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Table 2: Accuracy (%), BLEU-n (%), and F1 (%) achieved by different methods. We denote cross-modal SSL on
image-question pairs and image-answer pairs as CMSSL-IQ and CMSSL-IA.

Method Accuracy BLEU-1 BLEU-2 BLEU-3 F1
Method 1 without image 49.2 50.2 2.8 1.2 9.5
Method 1 57.6 57.4 3.1 1.3 9.9
Method 1 with CMSSL-IQ 58.7 59.0 3.5 2.1 11.0
Method 1 with CMSSL-IQ + three-level optimization framework 63.4 63.7 4.1 2.5 12.2
Method 1 with CMSSL-IA 58.6 58.9 3.4 2.0 10.3
Method 1 with CMSSL-IA + three-level optimization framework 62.4 62.2 3.6 2.3 12.0
Method 2 without image 46.2 46.5 1.0 0.0 0.8
Method 2 55.1 56.2 3.2 1.2 8.4
Method 2 with CMSSL-IQ 55.9 57.1 3.4 1.4 9.2
Method 2 with CMSSL-IQ + three-level optimization framework 58.9 59.1 3.8 1.6 9.2
Method 2 with CMSSL-IA 55.9 57.1 3.5 1.5 9.2
Method 2 with CMSSL-IA + three-level optimization framework 58.8 59.1 4.0 1.6 9.4

Evaluation metrics We perform evaluation us-
ing three metrics: 1) accuracy (Malinowski and
Fritz, 2014) which measures the percentage of in-
ferred answers that match exactly with the ground-
truth using string matching; only exact matches
are considered as correct; 2) macro-averaged
F1 (Goutte and Gaussier, 2005), which measures
the average overlap between the predicted answers
and ground-truth, where the answers are treated
as bag of tokens; 3) BLEU (Papineni et al., 2002),
which measures the similarity of predicted answers
and ground-truth by matching n-grams.

5.2 Results

Table 2 shows the VQA performance achieved by
different methods. From this table, we make the
following observations. First, for both Method 1
and Method 2, applying our three-level optimiza-
tion based framework improves the performance.
Our framework learns to identify and remove noisy
and erroneous SSL training examples, which can
avoid the model to be distorted by such bad-quality
examples. Second, for both Method 1 and 2, apply-
ing cross-modal SSL (CMSSL) methods including
CMSSL-IQ and CMSSL-IA improves the perfor-
mance, which demonstrates the effectiveness of
CMSSL. CMSSL uses auxiliary tasks, including
judging whether an image matches with a question
and judging whether an image matches with an an-
swer, to learn semantic correspondence between
image regions and words in questions/answers,
which can improve the effectiveness of visual and
textual representations for accurate VQA. It also
learns image and text encoders by encourages the
image and text encoders to solve auxiliary tasks,
which reduces the risk of overfitting to the data-
deficient VQA task on the small-sized training data.

One may suspect how much information in im-
ages is used during the inference of the answers?
Could it be possible that the models simply learn
the correlations between questions and answers
and ignore the images? In light of these concerns,
we perform studies where the images are not fed
into VQA models and only questions are used as
inputs for inferring answers. Table 2 shows the
results of not using images (“Method 1/2 without
image”). As can be seen, for both Method 1 and
2, ignoring images leads to substantial degradation
of performance. This shows that images in our
dataset provide valuable information for VQA and
PathVQA is a meaningful VQA dataset. The mod-
els trained on our datasets are not degenerated to
simply capturing the correlation between questions
and answers.

6 Conclusion
In this paper, we build a pathology VQA dataset –
PathVQA – that contains 32,795 question-answer
pairs of 8 categories, generated from 4,998 images.
Majority of questions in our dataset are open-ended,
posing great challenges for the medical VQA re-
search. Our dataset is publicly available. To ad-
dress the challenges that the self-supervised train-
ing data may contain errors and the effective repre-
sentations of pathology images and questions are
difficult to learn on limited data, we propose a three-
level optimization framework to automatically iden-
tify and remove problematic SSL training examples
and learn sample-efficient visual and textual repre-
sentations. Experiments on the PathVQA dataset
demonstrate the effectiveness of our method.
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cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Bonnie Dorr, David Zajic, and Richard Schwartz. 2003.
Hedge trimmer: A parse-and-trim approach to head-
line generation. In HLT-NAACL workshop.

Zhihao Fan, Zhongyu Wei, Piji Li, Yanyan Lan, and
Xuanjing Huang. 2018. A question type driven
framework to diversify visual question generation.

Cyril Goutte and Eric Gaussier. 2005. A probabilistic
interpretation of precision, recall and f-score, with
implication for evaluation. In European Conference
on Information Retrieval.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2017. Making the
v in vqa matter: Elevating the role of image under-
standing in visual question answering. In CVPR.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2019. Momentum contrast for un-
supervised visual representation learning. arXiv
preprint arXiv:1911.05722.

Michael Heilman and Noah A Smith. 2009. Question
generation via overgenerating transformations and
ranking. Technical report.

Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross
Girshick. 2017. Clevr: A diagnostic dataset for com-
positional language and elementary visual reasoning.
In CVPR.

Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk,
Jonghyun Choi, Ali Farhadi, and Hannaneh Ha-
jishirzi. 2017. Are you smarter than a sixth grader?
textbook question answering for multimodal ma-
chine comprehension. In CVPR.

Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang.
2018. Bilinear attention networks. In NIPS.

Diederik Kingma and Jimmy Ba. 2014a. Adam: A
method for stochastic optimization. International
Conference on Learning Representations.

Diederik P Kingma and Jimmy Ba. 2014b. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Dan Klein and Christopher D Manning. 2003. Accu-
rate unlexicalized parsing. In ACL.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
2017. Visual genome: Connecting language and vi-
sion using crowdsourced dense image annotations.
International Journal of Computer Vision.

Jason J Lau, Soumya Gayen, Asma Ben Abacha, and
Dina Demner-Fushman. 2018. A dataset of clini-
cally generated visual questions and answers about
radiology images. Scientific data.

David Levison, Robin Reid, Alistair D Burt, David J
Harrison, and Stewart Fleming. 2012. Muir’s text-
book of pathology. CRC Press.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019. Visualbert: A
simple and performant baseline for vision and lan-
guage. arXiv preprint arXiv:1908.03557.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In ECCV.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan
Lee. 2019. Vilbert: Pretraining task-agnostic visi-
olinguistic representations for vision-and-language
tasks. In Advances in Neural Information Process-
ing Systems, pages 13–23.

Mateusz Malinowski and Mario Fritz. 2014. A multi-
world approach to question answering about real-
world scenes based on uncertain input. In NIPS.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In ACL.

Robert Muir et al. 1941. Text-book of pathology. Text-
Book of Pathology., (Fifth Edition).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In ACL.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP.



714

Mengye Ren, Ryan Kiros, and Richard Zemel. 2015a.
Image question answering: A visual semantic em-
bedding model and a new dataset. NIPS.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel
Urtasun. 2018. Learning to reweight exam-
ples for robust deep learning. arXiv preprint
arXiv:1803.09050.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015b. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. In
Advances in neural information processing systems,
pages 91–99.

Stanley L Robbins, Marcia Angell, and Vinay Kumar.
1981. Basic pathology. WB Saunders.

Lei Shi, Kai Shuang, Shijie Geng, Peng Su, Zhengkai
Jiang, Peng Gao, Zuohui Fu, Gerard de Melo, and
Sen Su. 2020. Contrastive visual-linguistic pretrain-
ing. arXiv preprint arXiv:2007.13135.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping
Zhou, Zongben Xu, and Deyu Meng. 2019. Meta-
weight-net: Learning an explicit mapping for sam-
ple weighting. In Advances in Neural Information
Processing Systems, pages 1919–1930.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and
Rob Fergus. 2012. Indoor segmentation and support
inference from rgbd images. In ECCV.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Hao Tan and Mohit Bansal. 2019. Lxmert: Learning
cross-modality encoder representations from trans-
formers. arXiv preprint arXiv:1908.07490.

Kristina Toutanova, Chris Brockett, Michael Gamon,
Jagadeesh Jagarlamudi, Hisami Suzuki, and Lucy
Vanderwende. 2007. The pythy summarization sys-
tem: Microsoft research at duc 2007. In Proc. of
DUC.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng,
and Alex Smola. 2016. Stacked attention networks
for image question answering. In CVPR.

C Lawrence Zitnick and Devi Parikh. 2013. Bring-
ing semantics into focus using visual abstraction. In
CVPR.



715

Table 3: Statistics of the data split.

Training set Validation set Test set
# images 3,021 987 990
# QA pairs 19,755 6,279 6,761

Appendix

A Experimental setup

Table 3 shows dataset split statistics. We implement
the methods using PyTorch and perform training
on four GTX 1080Ti GPUs.

We basically follow the original model configu-
rations used in (Tan and Bansal, 2019), (Kim et al.,
2018), and (Yang et al., 2016). Data augmentation
is applied to images, including shifting, scaling,
and shearing. From questions and answers in the
PathVQA dataset, we create a vocabulary of 4,631
words that have the highest frequencies.

In Method 1, we use the default hyperparam-
eter settings in (Tan and Bansal, 2019). For the
text encoder, the hidden size was set to 768. The
image features were extracted from the outputs
of the Faster-RCNN network, which is pretrained
on BCCD2 – a medical dataset containing blood
cells photos, as well as on Visual Genome (Kr-
ishna et al., 2017). The initial learning rate was set
to 5e-5 with the Adam (Kingma and Ba, 2014a)
optimizer used. The batch size was set to 256.
The model was trained for 200 epochs. In the
SSL pretraining task on Method 1, we train a lin-
ear classifier with a dimension of 1,280 to judge
whether an image matches with a question. In
Method 2, words in questions and answers are rep-
resented using GloVe (Pennington et al., 2014) vec-
tors pretrained on general-domain corpora such as
Wikipedia, Twitter, etc. The image features are
extracted from the outputs of the Faster-RCNN
network pretrained on BCCD and Visual Genome.
Given an image and a question, the model outputs
an answer from a predefined set of answers. The
dropout (Srivastava et al., 2014) rate for the linear
mapping was set to 0.2 while for the classifier it
was set to 0.5. The initial learning rate was set
to 0.005 with the Adamax optimizer (Kingma and
Ba, 2014b) used. The batch size was set to 512.
The model was trained for 200 epochs. In the SSL
pretraining task on Method 2, similar to that on
Method 1, we train a linear classifier with a dimen-
sion of 1,280 to predict whether an image matches

2https://public.roboflow.ai/object-detection/bccd

with a question. We optimize the selection vari-
ables using the Adam optimizer, with an initial
learning rate of 0.01. We set γ1 and γ2 to 0.3 and
0.7 respectively.

B Dataset Creation

We develop a semi-automated pipeline to generate
a pathology VQA dataset from pathology textbooks
and online digital libraries. We manually check the
automatically-generated question-answer pairs to
fix grammar errors. The automated pipeline con-
sists of two steps: (1) extracting pathology images
and their captions from electronic pathology text-
books and the Pathology Education Informational
Resource (PEIR) Digital Library3 website; (2) gen-
erating questions-answer pairs from captions.

B.1 Extracting Pathology Images and
Captions

Given a pathology textbook that is in the PDF
format and available online publicly, we use
two third-party tools PyPDF24 and PDFMiner5

to extract images and the associated captions
therefrom. PyPDF2 provides APIs to access
the “Resources” object in each PDF page where
the “XObject” gives information about images.
PDFMiner allows one to obtain text along with
its exact location in a page. To extract image
captions from text in each page, we use regular
expressions to search for snippets with prefixes
of “Fig.” or “Figure” followed by figure numbers
and caption texts. For a page containing multiple
images, we order them based on their locations;
the same for the captions. Images and locations
are matched based on their order. Given an online
pathology digital library such as PEIR, we use
two third-party tools Requests6 and Beautiful
Soup7 to crawl images and the associated captions.
Requests is an HTTP library built using Python
and provides APIs to send HTTP/1.1 requests.
Beautiful Soup generates the ‘http.parser’ and
can access the urls and tags of the images on
the website pages. Given a set of urls, we use
Requests to read website pages and use Beautiful
Soup to find images under the targeted HTML tags
including the Content Division element 〈div〉, the
unordered list element 〈ul〉, and the 〈li〉 element.

3http://peir.path.uab.edu/library/index.php?/category/2
4https://github.com/mstamy2/PyPDF2
5https://github.com/pdfminer/pdfminer.six
6https://requests.readthedocs.io/en/master/
7https://www.crummy.com/software/BeautifulSoup/
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Table 4: Number of questions in different categories in each set

Dataset
Question types

What Where How How much/many Why Yes/No
Training set 8083 1316 366 62 71 9804

Validation set 2565 409 108 21 21 3135
Testing set 2753 432 121 18 22 3390

Preprocessing

Post-processing

Source
Captions

Simple
Sentences

Simplification Question
Transducer

QA-pairs

Questions

Answer Phrases

Figure 2: The framework of generating questions from captions

Then we can download images with Requests and
write their captions directly to local files. Given
the extracted image-caption pairs, we perform
post-processing including (1) removing images
that are not pathology images, such as flow charts
and portraits; (2) correcting erroneous matching
between images and captions.

B.2 Question Generation

In this section, we discuss how to semi-
automatically generate questions from captions.
Figure 2 shows the overall framework. We per-
form natural language processing of the captions
using the Stanford CoreNLP (Klein and Manning,
2003) toolkit, including sentence split, tokeniza-
tion, part-of-speech (POS) tagging, named entity
recognition (NER), constituent parsing, and depen-
dency parsing. Many sentences are long, with com-
plicated syntactic structures. We perform sentence
simplification to break a long sentence into sev-
eral short ones. Given the subjects, verbs, clauses,
etc. labeled by POS tagging and syntactic pars-
ing, we rearrange them using the rules proposed
in (Toutanova et al., 2007; Dorr et al., 2003) to
achieve simplification. Figure 3 shows an example.

Given the POS tags and named entities of the
simplified sentences, we generate questions for
them: including “when”-type of questions for date
and time entities and phrases such as “in/during ...
stage/period”, “before ...”, and “after ...”; “how
much/how many”-type of questions for words
tagged as numbers; “whose” questions for pos-
sessive pronouns (e.g., “its”, “their”); “where”
questions for location entities and prepositional

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
      

 
Simple  
short  
sentences 
 

 
Microscopy shows coagulative necrosis of the affected 
bowel wall and thrombosed vessels while the junction 
with normal intestine is indistinct and shows an 
inflammatory infiltrate. 
 

Microscopy shows coagulative necrosis of the affected 
bowel wall and thrombosed vessels. 

Long  
complex    
sentence 

The junction with normal intestine is indistinct. 

The junction shows an indistinct inflammatory infiltrate. 

Rearrange subjects, verbs, clauses 
 

Figure 3: Sentence simplification

phrases starting with “inner”, “within”, “on the
right/left of”; “how” questions for adjective words
and phrases starting with “using”, “via”, “with”,
and “through”, and “what” questions for the re-
maining noun phrases. Table 5 shows an example
for each type of questions.

We use Tregex from Stanford CoreNLP tools
(Manning et al., 2014), a tree query language in-
cluding various relational operators based on the
primitive relations of immediate dominance and im-
mediate precedence, to implement the rules (Heil-
man and Smith, 2009) for transforming declarative
sentences (captions) into questions.

To reduce grammatical errors, we avoid generat-
ing questions on sentences with adverbial clauses
such as “chronic inflammation in the lung, showing
all three characteristic histologic features”. The
question transducer mainly contains three steps.
First, we perform the main verb decomposition
based on the tense of the verb. For instance, we
decompose “shows” to “does show”. It is worth
noting that for passive sentences with a structure of
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Type Original sentence Question

What
The end of the long bone is expanded What is expanded

in the region of epiphysis. in the region of epiphysis?

Where
The left ventricle is on the lower right Where is the left ventricle

in this apical four-chamber view of the heart. in this apical four-chamber view of the heart?
When After 1 year of abstinence, most scars are gone. When are most scars gone?

How much/How many Two multi-faceted gallstones are present in the lumen. How many multi-faceted gallstones are present in the lumen?

Whose
The tumor cells and their nuclei are fairly uniform, The tumor cells and whose nuclei are fairly uniform,

giving a monotonous appearance. giving a monotonous appearance?

How
The trabecular bone forming the marrow space shows trabeculae How does the trabecular bone

with osteoclastic activity at the margins. forming the marrow space show trabeculae?

Table 5: Examples of generated questions for different types

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Microscopy shows coagulative necrosis of the affected bowel wall and 
thrombosed vessels.    Answer phrases 
                  Subject-auxiliary inversion 

 Does microscopy show coagulative necrosis of the affected bowel wall and 
thrombosed vessels.      Answer phrases 

Insert question phrases 

What does microscopy show of the affected bowel wall and thrombosed vessels. 
Question phrases 

Figure 4: Syntactic transformation

“be+shown/presented/demonstrated”, we keep their
original forms rather than performing the verb de-
composition. Second, we perform subject-auxiliary
inversion. We invert the subject and the auxiliary
verb in the declarative sentences to form the inter-
rogative sentence. After the inversion, the binary
“yes/no” questions are generated. For instance, as
shown in Figure 4, the sentence “microscopy shows
coagulative necrosis of the affected bowel wall
and thrombosed vessels” is inverted to “does mi-
croscopy show coagulative necrosis of the affected
bowel wall and thrombosed vessels?”. To generate
questions whose answers are “no”, we randomly se-
lect a phrase with the same POS tagging from other
captions to replace the head words in the original
question. For example, we replace “coagulative
necrosis” in the sentence “does microscopy show
coagulative necrosis of the affected bowel wall
and thrombosed vessels” with other noun phrases.
Third, we remove the target answer phrases and
insert the question phrase obtained previously to
generate open-ended questions belonging to types
of “what”, “where”, “when”, “whose”, “how”, and
“how much/how many” as shown in Table 5. For
instance, we transduce “microscopy shows coagula-
tive necrosis of the affected bowel wall and throm-
bosed vessels” to “what of the affected bowel wall
and thrombosed vessels does microscopy show?”
as shown in Figure 4. Given the automatically gen-
erated questions which may contain syntactic and
semantic errors, we perform post-processing to fix
those issues. We manually proofread all questions

to correct misspellings, syntactic errors, and se-
mantic inconsistencies. The questions and answers
are further cleaned by removing extra spaces and
irrelevant symbols. Questions that are too short
or vague are removed. Articles appearing at the
beginning of answers are stripped.

C Additional Related Works

C.1 VQA datasets
A number of visual question answering datasets
have been developed in the general domain.
DAQUAR (Malinowski and Fritz, 2014) is built
on top of the NYU-Depth V2 dataset (Silberman
et al., 2012) which contains RGBD images of in-
door scenes. DAQUAR consists of (1) synthetic
question-answer pairs that are automatically gen-
erated based on textual templates and (2) human-
created question-answer pairs produced by five an-
notators. The VQA dataset (Antol et al., 2015)
is developed on real images in MS COCO (Lin
et al., 2014) and abstract scene images in (An-
tol et al., 2014; Zitnick and Parikh, 2013). The
question-answer pairs are created by human anno-
tators who are encouraged to ask “interesting” and
“diverse” questions. VQA v2 (Goyal et al., 2017) is
extended from the VQA (Antol et al., 2015) dataset
to achieve more balance between visual and tex-
tual information, by collecting complementary im-
ages in a way that each question is associated with
a pair of similar images with different answers.
In the COCO-QA (Ren et al., 2015a) dataset, the
question-answer pairs are automatically generated
from image captions based on syntactic parsing
and linguistic rules. CLEVR (Johnson et al., 2017;
Kembhavi et al., 2017) is a dataset developed on
rendered images of spatially related objects (in-
cluding cube, sphere, and cylinder) with different
sizes, materials, and colors. The locations and at-
tributes of objects are annotated for each image.
The questions are automatically generated from the
annotations.
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Table 6: Comparison of VQA datasets

Domain # images # QA pairs Answer type
DAQUAR General 1,449 12,468 Open

VQA General 204K 614K Open/MC
VQA v2 General 204K 1.1M Open/MC

COCO-QA General 123K 118K Open/MC
CLEVR General 100K 999K Open

VQA-Med Medical 4,200 15,292 Open/MC
VQA-RAD Medical 315 3,515 Open/MC

Ours Medical 4,998 32,795 Open

The comparison of existing VQA datasets is
shown in Table 6. The first five datasets are in the
general domain while the last three are in the med-
ical domain. Not surprisingly, the size of general-
domain datasets (including the number of images
and question-answer pairs) is much larger than that
of medical datasets since general-domain images
are much more available publicly and there are
many qualified human annotators to generate QA
pairs on general images. Our dataset is larger than
the two medical datasets: VQA-Med and VQA-
RAD, and majority of questions in our dataset are
open-ended while majority of questions in VQA-
Med and VQA-RAD are in multiple-choices style.

C.2 Automatic Construction of
Question-Answer Pairs

Existing datasets have used automated methods for
constructing question-answer pairs. In DAQUAR,
questions are generated with templates, such as
“How many {object} are in {image id}?”. These
templates are instantiated with ground-truth facts
from the database. In COCO-QA, the authors
develop a question generation algorithm based
on the Stanford syntactic parser (Klein and Man-
ning, 2003), and they form four types of ques-
tions—“object”, “number”, “color”, and “location”
using hand-crafted rules. In CLEVR, the locations
and attributes of objects in each image are fully an-
notated, based on which the questions are generated
by an automated algorithm. Their algorithm cannot
be applied to natural images where detailed anno-
tation of objects and scenes are very difficult to ob-
tain. In (Fan et al., 2018), the authors develop a con-
ditional auto-encoder (Kingma and Welling, 2013)
model to automatically generate questions from im-
ages. To train such a model, image-question pairs
are needed, which incurs a chicken-and-egg prob-
lem: the goal is to generate questions, but realizing
this goal needs generated questions. In VQA-Med,
the authors collect medical images along with asso-

ciated side information (e.g., captions, modalities)
from the MedPix8 database and generate question-
answer pairs based on manually-defined patterns
in (Lau et al., 2018).

D Number of questions in different
categories for training, validation, and
test set

For our data split, the number of questions in dif-
ferent categories in each set is shown in Table 4.

8https://medpix.nlm.nih.gov


