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Abstract

Video paragraph captioning aims to generate a
set of coherent sentences to describe a video
that contains several events. Most previous
methods simplify this task by using ground-
truth event segments. In this work, we pro-
pose a novel framework by taking this task as
a text summarization task. We first generate
lots of sentence-level captions focusing on dif-
ferent video clips and then summarize these
captions to obtain the final paragraph caption.
Our method does not depend on ground-truth
event segments. Experiments on two popular
datasets ActivityNet Captions and YouCookII
demonstrate the advantages of our new frame-
work. On the ActivityNet dataset, our method
even outperforms some previous methods us-
ing ground-truth event segment labels.

1 Introduction

Video captioning, the task of describing the con-
tent of a video in natural language, is a popular
task both in computer vision and natural language
processing. In the beginning, researchers try to gen-
erate sentence-level captions for short video clips
(Venugopalan et al., 2015). Krishna et al. (2017)
propose the task of dense video captioning. The
system needs to detect event segments first and
then generate captions. Park et al. (2019) propose
the task of video paragraph captioning: they use
ground-truth event segments and focus on gener-
ating coherent paragraphs. Lei et al. (2020) fol-
low the task setting and propose a recurrent trans-
former model that can generate more coherent and
less repetitive paragraphs. Considering the ground-
truth event segments are often unavailable in prac-
tice, our goal is to generate paragraph captions
without ground-truth segments.

The conventional framework of video paragraph
captioning is shown in Figure 1a. Given an
untrimmed video, an Event Detection module out-

(a) Conventional Framework (b) Our Framework

Figure 1: Comparison between conventional frame-
work and ours.

puts a set of non-redundant event segments. The
Event Captioning module generates captions for
these segments. The works of (Park et al., 2019;
Zhou et al., 2019; Lei et al., 2020) use ground-truth
event segments and focus on the Event Caption-
ing module. Zhou et al. (2019) use extra human-
annotated bounding boxes as supervision. (Sah
et al., 2017; Zhou et al., 2018; Mun et al., 2019)
use predicted event segments and generate captions
based on them. Sah et al. (2017) also summarizes
these captions to generate a paragraph. The above
methods heavily depend on accurate event seg-
ments. According to previous works (Zhou et al.,
2018; Mun et al., 2019), the performance of the
Event Detection module is not so good, making it
a performance bottleneck. To tackle this problem,
we propose a novel framework VPCSum as shown
in Figure 1b. For a given video, we first extract
dense event segment candidates (we call propos-
als), and a Proposal Captioning module is used to
generate proposal captions. Then we treat video
paragraph captioning as a text summarization task
to obtain the final summary (paragraph caption).

In this work, we only consider extractive summa-
rization, where the paragraph caption is composed
by selecting from proposal captions. We conduct
experiments on two popular datasets ActivityNet
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Captions and YouCookII. The results demonstrate
the advantages of our framework. On the Activ-
ityNet Captions dataset, our method even outper-
forms some previous methods using ground-truth
event segment labels.

2 Our VPCSum Method

As illustrated in Figure 1b, our framework has three
modules. Proposal Extraction: it extracts dense
proposals for a video; Proposal Captioning: it
generates captions for extracted proposals; Cap-
tion Summarization: it summarizes the generated
proposal captions to obtain the video paragraph
caption. We will introduce each module next.

2.1 Proposal Extraction

For proposal extraction, we use the BMN model
(Lin et al., 2019), a popular model for temporal
action proposal generation. It can extract complete
and accurate proposals. We extract the top 100
proposals for each video.

2.2 Proposal Captioning

For proposal captioning, we choose the TSRM-
RNN model (Wang et al., 2020) for ActivityNet
Captions and VTransformer model (Lei et al.,
2020) for YouCookII according to proposal cap-
tioning performance. We believe that if we choose
a better sentence-level captioning model, the per-
formance can be further improved.

2.3 Caption Summarization

Figure 2: Architecture of the caption summarization
model.

The caption summarization module summarizes
proposal captions to generate the final video para-
graph caption. In this work, we focus on extractive

summarization. The architecture of our summa-
rization model is illustrated in Figure 2. We first
sort the proposal captions according to the proposal
start time and add special [CLS] and [SEP] tokens
to the beginning and end of each caption. We use
the summation of token embeddings, segment em-
beddings, and position embeddings to represent
each word. The input representations are fed into a
pre-trained BERT model (Devlin et al., 2018), after
which we obtain the contextual token representa-
tions. We use the contextual vectors of [CLS]s to
represent each caption and feed them into stacked
transformer layers (Vaswani et al., 2017). We use a
sigmoid layer to compute the score of each caption:

xi = σ(WhLi + b) (1)

where W and b are trainable parameters, hLi is the
vector for caption i from the top transformer layer.

For extractive summarization, we need to an-
notate each sentence according to the gold sum-
mary as our training target. Many researchers use
a greedy algorithm (Nallapati et al., 2016), sen-
tences are selected one by one to maximize the
ROUGE score against the gold summary. The se-
lected sentences are labeled 1 while others are la-
beled 0 (hard-label). In our task, we find a more
effective soft-label annotation method. We label
caption ci with the max ROUGE score against gold
captions and use binary cross-entropy as our loss
function:

yi = max
gj∈gold

ROUGE(ci, gj) (2)

L = −
∑
i

(yi log xi + (1− yi) log(1− xi)) (3)

where gj is the j-th gold caption.

2.4 Leverage Visual Information
The above caption summarization module assigns
each proposal caption a predicted score, indicating
how likely it appears in the final paragraph caption.
The predicted score only depends on text informa-
tion. To leverage visual information, we need a
“visual summarization” module, which gives a visu-
ally weighting score to each proposal. The ESGN
model (Mun et al., 2019) seems a good choice for
us. It uses a pointer network to select events from
proposals and assigns a visually weighting score
for each proposal. We use this model to compute
the visually weighting score.

Now we can extract the final paragraph cap-
tion. The final score of each proposal caption is a
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weighted sum of the textually weighting score stxt
and the visually weighting score svis:

score(i) = stxt,i + λsvis,i (4)

where λ is a hyper-parameter tuned on validation
set. We select captions according to score(i) and
use Trigram Blocking to reduce redundancy, as in
Liu and Lapata (2019).

3 Experiments

3.1 Datasets
We conduct experiments on ActivityNet Captions
(Krishna et al., 2017) and YouCookII (Zhou et al.,
2017). ActivityNet Captions contains 10,009
videos in train set, 4,917 videos in val set. Each
video has 3.65 event segments on average. Follow-
ing (Lei et al., 2020), the original val set is split
into ae-val with 2,460 videos for validation and
ae-test with 2,457 videos for test. YouCookII con-
tains 1,333 videos in train set, 457 videos in val set.
Each video has 7.70 event segments on average.

3.2 Evaluation Metrics
Following (Lei et al., 2020; Park et al., 2019), we
evaluate the captioning performance at paragraph
level. We report standard caption metrics, includ-
ing BLEU@4 (Papineni et al., 2002), METEOR
(Denkowski and Lavie, 2014), CIDEr (Vedantam
et al., 2015). We also evaluate repetition using
R@4 (Xiong et al., 2018). We use the scripts pro-
vided by (Lei et al., 2020) for evaluation1.

3.3 Implementation Details
For video preprocessing, we use appearance and
optical flow features provided by Zhou et al. (2018).
For BMN model and captioning models, we use
the same hyperparameters suggested by the authors.
For ESGN model, we use a transformer encoder
instead of an RNN encoder, with hidden size set
to 512, number of heads set to 8, number of layers
set to 3. For our caption summarization model, we
use the base BERT model, 2 stacked transformer
layers with hidden size set to 768, number of heads
set to 8. We set max input length to 1,700, batch
size to 10, λ to 1 for ActivityNet Captions and max
input length to 1,000, batch size to 1, λ to 1 for
YouCookII. Warmup steps are set to step num of
1 epoch. We use Adam optimizer with an initial
learning rate of 6e− 4.

1https://github.com/jayleicn/
recurrent-transformer

3.4 Baselines and Results

We compare our VPCSum model with the follow-
ing baselines. Soft-NMS: it uses Soft-NMS (Bodla
et al., 2017) to select event segments from BMN
proposals, and uses the proposal captioning model
to generate captions; ESGN: similar to Soft-NMS,
but it uses ESGN model (Mun et al., 2019) to select
event segments from BMN proposals; V-Trans: a
Vanilla Transformer model, proposed by (Zhou
et al., 2018); Trans-XL: a Transformer-XL model,
proposed by (Lei et al., 2020); MART: a recur-
rent transformer model (Lei et al., 2020); COOT:
it uses pretrained features to train MART model
(Ging et al., 2020). Originally, the last four models
deal with ground-truth event segments. For fair
comparison, we also test them with predicted event
segments generated by ESGN model 2.

Models B@4 M C R@4↓
Soft-NMS 10.33 14.93 22.58 10.17

ESGN 10.38 15.74 21.85 6.51
V-Trans 9.89 15.11 20.95 7.04

Trans-XL 10.36 14.89 20.73 7.45
MART 10.13 14.94 20.16 6.09
COOT 9.85 14.67 21.83 7.15

VPCSum 10.89 15.84 24.33 1.54
V-trans* 9.31 15.54 21.33 7.45

Trans-XL* 10.25 14.91 21.71 8.79
MART* 9.78 15.57 22.16 5.44
COOT* 10.85 15.99 28.19 6.64

Table 1: Comparison with baselines on ActivityNet
Captions ae-test split. * means the model uses ground-
truth event segments. We report BLEU@4 (B@4), ME-
TEOR (M), CIDEr (C), Repetition (R@4).

Tables 1 and 2 show the results on ActivityNet
Captions and YouCookII. We can observe that on
the ActivityNet Captions, our model VPCSum
within the new framework can generate better para-
graph captions with higher Bleu@4, METEOR,
and CIDEr and lower repetition score R@4, even
outperforming V-trans*, Trans-XL*, MART* mod-
els using ground-truth event segments on every met-
ric. On the YouCookII dataset, our model outper-
forms the models in the same setting but is inferior
to the models using ground-truth segments. This
may be because YouCookII has more segments

2We use the codes and pretrained models provided by the
authors and only replace ground-truth event segments with
ESGN predicted event segments.

https://github.com/jayleicn/recurrent-transformer
https://github.com/jayleicn/recurrent-transformer
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Models B@4 M C R@4↓
Soft-NMS 5.58 13.67 18.18 4.94

ESGN 5.36 13.37 17.01 2.82
V-Trans 5.35 13.37 16.88 2.85

Trans-XL 4.78 12.67 14.24 3.20
MART 5.61 13.44 16.56 4.63
COOT 5.96 14.21 19.67 5.99

VPCSum 6.14 15.11 23.92 0.65
V-trans* 7.62 15.65 32.26 7.83

Trans-XL* 6.56 14.76 26.35 6.30
MART* 8.00 15.90 35.74 4.39
COOT* 9.44 18.17 46.06 6.30

Table 2: Comparison with baselines on YouCookII val
split.

(7.70 vs 3.65) than ActivityNet Captions.

3.5 Ablation Study

Table 3 shows the ablation study on ActivityNet
Captions. Compared to our full model (Full),
the traditional extractive summarization annotation
method (Hard-label) is not suitable for our task. If
we set λ in Eq.(4) to 0 (w/o vis), the model loses
useful visual information and performs not well. If
we remove Trigram Blocking (w/o tri-blk), the per-
formance also degrades and repetition becomes a
problem (R@4 increases to 7.91). To verify the
role of pretrained BERT model, we retrain our
VPCSum without BERT pretrained weights (w/o
pretrain). We can see that BERT pretrained weights
are not the major factor to the final performance.
We also replace our summarization model with un-
supervised methods LexRank (Erkan and Radev,
2004) and LSA(Steinberger and Jezek, 2004). The
results show that simple unsupervised summariza-
tion methods cannot handle our data well and su-
pervised training is necessary.

Models B@4 M C R@4↓
Full 10.89 15.84 24.33 1.54

Hard-label 10.29 14.99 21.71 1.19
w/o vis 10.68 15.78 23.34 1.36

w/o tri-blk 10.46 15.61 21.40 7.91
w/o pretrain 10.84 15.81 24.00 1.55

LexRank 7.78 13.65 14.19 26.51
LSA 7.24 14.48 12.43 28.14

Table 3: Model ablation study on ActivityNet Captions
ae-test split.

3.6 Qualitative Results

Ground Truth: A girl jumps onto a balance beam. She does
a gymnastics routine on the balance beam. She does a flip off
the balance beam and lands on a mat.
MART: A gymnast is seen standing ready with her arms up
and leads into her performing a gymnastics routine. She con-
tinues performing several flips and tricks and tricks and ends
with her jumping down and walking away. She continues her
routine and ends with her jumping down and jumping down
and walking away.
MART*: A gymnast is seen standing before a beam and be-
gins performing a gymnastics routine. The girl then performs
a routine on the beam and ends with her jumping down and
jumping down and jumping. The girl jumps off the beam and
lands on the mat and jumps off the beam.
VPCSum: A gymnast is seen standing ready with her arms
up and begins to do a routine. She does a gymnastics routine
on the beam. She dismounts and lands on the mat.

Figure 3: An example from ActivityNet Captions.

We show an example in Figure 3 with paragraph
captions generated by MART, MART* and our
VPCSum model. Compared to other models, our
model can generate more clear and correct sen-
tences with less redundancy. The generated para-
graph of our model can better describe the process
of the whole event.

3.7 Human Evaluation

Ours MART Ours MART*

rel. 56.0%† 44.0%† 52.7% 47.3%
div. 56.7%† 43.3%† 56.7%† 43.3%†

Table 4: Human evaluation results. Statistically signifi-
cant differences (p < 0.05) are marked with †.

We also conduct a human evaluation on ran-
domly sampled 50 videos from the ActivityNet
Captions val set. The annotators are asked to
choose the better caption from two models in two
aspects: relevance (how related is the caption to
the video content) and diversity (how diverse is the
generated text). We compare our VPCSum model
with MART and MART* respectively. We have
17 college students as our annotators. Each video
is judged by 3 annotators. We show the results of
the pairwise experiments in Table 4. Our VPCSum
model performs better in relevance and diversity,
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and more people choose the caption of our model
as the better one.

4 Conclusion

In this work, we view the task of video paragraph
captioning as a text summarization task and pro-
pose a novel framework VPCSum. It allows us to
use text summarization techniques to handle this
challenging task. Experimental results on two pop-
ular datasets show the advantages of our model.
In the future, we will explore using abstractive
summarization methods to generate better video
paragraph captions.
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