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Abstract
It has become a common pattern in our field:
One group introduces a language task, exem-
plified by a dataset, which they argue is chal-
lenging enough to serve as a benchmark. They
also provide a baseline model for it, which then
soon is improved upon by other groups. Often,
research efforts then move on, and the pattern
repeats itself. What is typically left implicit
is the argumentation for why this constitutes
progress, and progress towards what. In this
paper, I try to step back for a moment from this
pattern and work out possible argumentations
and their parts.

1 Introduction

The goal of any field of research is to make progress
towards answering its foundational questions. To
do so, a methodology is required that guides at-
tempts at providing or improving answer proposals.
In natural language processing, the object of study
is human language, and any methodology for doing
research in this field will need to have some con-
tact with examples of this object. This contact has
become more and more direct in the past decades,
with samples of language becoming more directly
the material from which proposals (in the form
of statistical models) are derived. Recent years
have seen an increase in the collection of samples
specifically for the purpose of creating benchmarks,
against which progress in devising models can be
measured. It is this function of benchmarking, and
its role in a progress-oriented methodology, that
this paper aims to investigate.

Figure 1 illustrates the basic structure of a bench-
marking methodology: A language task is devised
that is a) restricted enough to be managable with
current methods, and b) deemed challenging for the
capabilities that it involves.1 For this task, a dataset

1This figure is from (Schlangen, 2019), of which this is a
shorter version developed in a somewhat different direction.
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Figure 1: Relations between Research Objects in a
Benchmark-Driven Methodology

is collected, often via crowd sourcing, on which in
turn models are trained and compared, using evalu-
ation metrics defined together with the task. What
can we learn by following such a methodology?
Let’s look at the components first and then at ways
in which this methodology is, might, and perhaps
should be used.

2 What is a Language Benchmark?
2.1 What is a Benchmark?
In computing, a benchmark is “a problem that has
been designed to evaluate the performance of a
system [which] is subjected to a known workload
and the performance of the system against this
workload is measured. Typically the purpose is to
compare the measured performance with that of
other systems that have been subject to the same
benchmark test.” (Butterfield et al., 2016).

The use of this term in NLP is related: here,
benchmark tasks are also specifically designed for
evaluation; however, an important difference is that
what is being evaluated is not a full system that has
a separate main purpose, but rather an algorithm
that is instantiated on the benchmark itself. I will
discuss the consequences of this below.

This kind of evaluation of learning algorithm
has a long tradition in the field of machine learn-
ing research.2 In this field, a new algorithm would

2For example, the UCI Machine Learning Repository has
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normally be tested on a large collection of datasets,
possibly ranging from classifications of flowers to
classification of credit records, with no assumption
of any internal connection between the datasets.
Again, NLP is different here, as all datasets rep-
resent facets of the same underlying phenomenon,
language use.

I will argue that these two differences (life out-
side of benchmarking, and internal connection be-
tween tasks) are important, but understudied. But
first we look at the notion of a language task in
some more detail.

2.2 What is a Language Task?
A language task is a mapping between an input
space and an output or action space, at least one
of which contains natural language expressions.
The mapping has to conform to a task description,
which is typically given only informally, making
reference to theoretical or pre-theoretical constructs
external to the definition, such as “translation” or
“is true of”. I call this an intensional description.
Typically, a task will also be specified extension-
ally through the provision of a dataset of examples
of the mapping (that is, pairs of state and action).
To collect such a dataset, the task description (e.g.,
“classification of entailment relations between sen-
tence pairs”) must be operationalised into a collec-
tion instruction (“please mark whether the situation
that is well described by sentence A could normally
also be described by sentence B”).

3 How Can It be Evaluated?

3.1 Relation Task / Dataset
Given a task and a dataset, the first question to ask
is how well the latter exemplifies the former. In-
vestigating this is relatively straightforward. First,
the dataset should be verified, which is to check
whether the provided input/output pairs can indeed
be judged correct relative to the task (in its inten-
sional description). If the examples are collected
specifically for the purpose of exemplifying the
task, this is the process of controlling annotation,
and standard methodologies exist (Artstein and
Poesio, 2008; Pustejovsky and Stubbs, 2013). Care
needs to be taken that the task is actually well-
defined enough to pose an unambiguous challenge
to capable language users.3

been collecting and providing datasets for more than 20 years
now (Dua and Graff, 2019).

3Pavlick and Kwiatkowski (2019), for example, show that
the task of annotation textual entailments can lead to faultless

Validating a dataset is a less formalised process.
It comprises arguing that the dataset indeed exem-
plifies the task intension well. For example, pairs
only of images of giraffes and sentences describing
them would arguably not exemplify the general task
of image description very well (even if the descrip-
tions are accurate), while perhaps exemplifying the
task of giraffe image description.

Another way to evaluate a dataset is by trying
to model it. If a model can “solve” the dataset
even when deprived of information that for theoret-
ical or pre-theoretical reasons is seen to be crucial,
the dataset can be considered an unsatisfactory ex-
emplification of the task. E.g., in a visual (polar)
question answering setting (Antol et al., 2015), if
in a dataset all and only the expressions that men-
tion giraffes are true, a model could seize on this
fact and perform well without needing the images,
which would be evidence that the dataset is defi-
cient relative to the task description.4

3.2 Relation Cognitive Capability / Task

While the dataset forms the visible surface of the
task, it is the task itself that needs to provide value.
We can categorise tasks by how they are embed-
ded in further uses: a product task task is one that
can be argued to have direct value to consumers
(such as translation, or search); an annotation task
is one where the task description is theoretically
motivated and the output a linguistically motivated
object (which may be consumed in a pipeline that it-
self is motivated as a product task); finally, a bench-
mark task – which is the type that concerns us here
–is one which gets its value from how well it tests a
particular ability (and nothing else) and how well
it discriminates learners based on this ability.5

For a language benchmark task, the argument
roughly goes as follows (even if typically only
made implicitly): To be good at task T , an agent

annotator disagreements.
4The task of visual question answering provides an in-

teresting example case of such a development. After Antol
et al. (2015) introduced the first large scale dataset for this
task, it quickly became clear that this dataset could be handled
competitively by models that were deprived of visual input
(“language bias”, as noted e.g. by Jabri et al., 2016). This
problem was then addressed by Goyal et al. (2017) with the
construction of a less biased (and hence more valid) corpus
for the same task.

5Martinez-Plumed and Hernandez-Orallo (2018),
analysing AI benchmarks in general, distinguish between
difficulty (which determines the ability level which must
be reached to perform better than chance on a task) and
discrimination (the slope of the graph plotting ability level vs.
probability of correct response).
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must possess a set CT of capabilities (of represen-
tational or computational nature). If the c ∈ CT

are capabilities that competent language users can
be shown or argued to possess and make use of
in using language—let’s call the set of these capa-
bilities of a competent language user CL, so that
CT ⊆ CL— then being able to model these capa-
bilities (via modelling the task) results in progress
towards the ultimate goal, which is to model com-
petent language use. And hence, any task T that
comes with an interesting set CT is a good task.6

Under what conditions does this argument work?
First of all, the assumed connection to the set of
capabilities must indeed be there. We have al-
ready seen a way to challenge a claimed connection,
through providing a model that can “solve” a given
task (via a dataset) while not having access to in-
formation that, given our analysis of the task and
interest in CT , should be involved in the capabil-
ity.7 (Although this challenge in the first instance
only targets the dataset and not the task itself.)

Secondly, following usual scientific methodol-
ogy (Popper, 1934), we can rank the value of an
instantiation of this argument by how precisely the
capability is specified, from the trivially correct
“task T involves the capability to do task T” to a
statement that could be wrong, e.g. “task T involves
the capability to compute the syntactic structure of
a natural language sentence”. Such a statement
must make reference to theoretical constructs be-
longing to the analysis of cognitive capabilities.

Furthermore, we can rank the motivation given
for a task by how explicit it is in delineating the
set of capabilities it involves. For a given c ∈ CT ,
is “c as required by T ” fully separable from any

6To give some examples of informal versions of this argu-
ment, and choosing papers more or less randomly, here are
some quotes:

From the paper that introduced the visual question answer-
ing task (Antol et al., 2015): “What makes for a compelling
AI-complete task? [. . . ] Open-ended questions require a po-
tentially vast set of AI capabilities to answer – fine-grained
recognition [. . . ], object detection [. . . ], activity recognition
[. . . ], knowledge based reasoning [. . . ], and commonsense
reasoning [. . . ].”

Williams et al. (2018), on computing entailments: “The
task of natural language inference (NLI) is well positioned
to serve as a benchmark task for research on NLU. [. . . ] In
particular, a model must handle phenomena like lexical entail-
ment, quantification, coreference, tense, belief, modality, and
lexical and syntactic ambiguity.”

7Such an attack challenges the claim of there being a neces-
sary connection between handling T and possessing capability
c. It might still very well be that humans can only perform
this task if they possess capability c (and all the knowledge
involved in it), because they wouldn’t be able to pick up the
statistical correlations that could be exploited.

other tasks involving c? Or is “c as required by T ”
perhaps all that there is to know about c, that is, is
c exhaustively represented by T ?

Finally, underlying the benchmarking methodol-
ogy — where the benchmark is not just a measur-
ing tool, but also a modelling target — there has
to be the assumption that some sort of transferable
knowledge is generated by modelling T , so that
what the model (and not just the modeller!) has
learned about (a sufficiently generally specified) c
can be used in other tasks that involve c. (Let’s
call this transferability; which strictly speaking is
a property of models, not of tasks.) More on this
below.

To sum up, a benchmark task must point beyond
itself and get its value from its connection to a par-
ticular facet of language, a particular capability of
language users; this in turn seems to be difficult to
specify without access to terms from theories of
the domain, which allow us to name these capabili-
ties.8,9

4 How are Language Benchmarks Used?

In the way that these tasks are set up, as single-step
tasks that humans can quickly do (“describe this
image”, “is the elephant [in this image] sleeping?”,
“does sentence A follow from sentence B?”), it is
tempting to see a similarity to tasks used in (human)
intelligence testing (see e.g. Borsboom (2005) for
an introduction). There is a crucial difference, how-
ever: Where intelligence testing works more in
the way standard computing benchmarking works
(subjecting the otherwise functioning learner to a
standardised workload), in NLP, benchmarks are
both the testing instrument as well as the training
material.10 The question then cannot be “to what
extent does system Σ possess capability c”, it has
to be “to what extent can algorithm A learn c from
dataset D?” — and what does that tell us?

4.1 Single-Task Models
Let’s assume we have defined a task T that we
are sufficiently convinced is well represented by

8And one will indeed find that papers introducing such
tasks make mention of terms like syntax, semantics, composi-
tionality, quantifiers, etc.

9We can also note that with this focus on benchmarking
normally comes a certain top-down approach, where the col-
lected data is not investigated for how exactly the human
participants went about solving their task. (But see (van Mil-
tenburg, 2019) for a detailed study along those lines, for the
task of image description.)

10For a recent paper also discussing the relation between
AI benchmarking and intelligence testing, see (Chollet, 2019).
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dataset D. We have trained a model M that per-
forms well on this dataset. What have we learned?
We have learned that a learning algorithm of the
type of M can model D. Further, we have learned
that the information to do task T (as exemplified in
D), is contained in D, and M can pick it up.

Under what conditions can we now say that we
have modelled T , rather than just D? If we have
convinced ourselves that D represents T faithfully,
then we might be willing to make this leap, and
with it, claim that we have modelled CT . We can
get further support by collecting more data D′ that
also exemplifies T , but perhaps operationalises it
differently. The prediction should be at least that
the learning algorithm can also learn to model D′;
but more significantly, we’d also want the modelM
learned from D to perform well on D′. Similarly,
if we have another task T ′ of which we think that
it involves similar capabilities, we should expect it
to be amenable to being modelled with a learning
algorithm of similar type to M .

What do we learn from a model M ′ (introduc-
ing architectural innovation κ over M ) performing
better on T (via D)? We can take this as indication
that κ may be what is responsible for increasing
performance, and hence what is leading to a more
adequate model of CT .

4.2 Multi-Task Models

With the advent of pre-training in NLP (Peters et al.,
2018; Devlin et al., 2018), where a model is trained
on (a typically large amount of) data under a spe-
cific task-regime (typically language modelling, i.e.
the task of predicting the next word in a running
text) and then becomes part of the model for a
target task, it has become common to test on a col-
lection of tasks (Wang et al., 2019b,a). What do
we learn from such a setup? In our Figure 1, if
we find a task on which we can pre-train a model
MP that becomes a part of models M and M ′,
and which makes them more powerful than models
that do not have access to the pre-trained model,
then we can infer that whatever MP models is a
shared part of M and M ′ as well (and hence in-
volves the hypothesised joint capability C ′). This
then provides an instrument to study the tasks: if
the pre-trained model works well on some but not
all, there must be something that those groups have
in common. To make this intelligible, however,
recourse to theoretical terms must again be taken.
(E.g., assuming that these tasks involve the use of

certain types of representation, or certain actions
over representations.)

5 But Are We Making Progress?
Within the logic of this methodology, we are clearly
making enormous progress at two links in the chain
illustrated in Figure 1: For many of the established
tasks, models have been and continue to be pro-
posed that perform better, according to the metrics
defined for the tasks. In addition, for many of the
tasks, better datasets have been collected, avoiding
exploitable biases. Where there is less activity is in
systematically studying the implications of success
at one task for success at others. The presenta-
tion above was largely idealised (or normative): In
reality, there is very little explicitness about the
assumed connection between tasks and capabilities,
and no theory of how (or whether) language com-
petence decomposes into capabilities that could be
learned separately and then be assembled into a
whole, and there is very little explicit knowledge
about the vertical links in the Figure, from one task
/ model to the next.11

6 Conclusions

In this short paper, I have discussed the methodol-
ogy of using language tasks to drive research on
models of language competence. I have argued
that the success of this approach hinges on how
well progress on one task can be translated into
progress on other tasks. While some steps have
been taken in this direction, current work still ap-
pears to mostly focus on isolated tasks (or groups
of tasks). Overcoming this, in my opinion, will re-
quire more explicit considerations about how tasks
and capabilities are connected, and how the set of
capabilities is structured—to ensure movement is
not only uphill, but rather up the right hill (Bender
and Koller, 2020), and it indeed is a single hill. For
this, a (re-)connection with the fields that study the
composition of language competence—linguistics
and cognitive and developemental psychology—
seems advisable (if only to disagree explicitly). As
a positive proposal, I suggest that a focus should be
put on assembling a curriculum of tasks, organised
in a complexity and inclusion hierarchy, and that
the benchmarking target should be the developmen-
tal trajectory on this. Working this out in detail I
must leave for future work.

11In the neighbouring field of Computer Vision, there re-
cently have been attempts to “disentangle task transfer learn-
ing” (Zamir et al., 2018).
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