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Abstract

We propose an effective context-sensitive neu-
ral model for the task of time to event (TTE)
prediction, which aims to predict the amount
of time to/from the occurrence of given events
in streaming content. We investigate this prob-
lem in the context of a multi-task learning
framework, which we enrich with time differ-
ence embeddings. To conduct this research,
we develop a multi-genre dataset of English
events about soccer competitions and academy
awards ceremonies, as well as their relevant
tweets obtained from Twitter. Our model is
1.4 and 3.3 hours more accurate than the cur-
rent state-of-the-art model in estimating TTE
on English and Dutch tweets respectively. We
examine different aspects of our model to illus-
trate its source of improvement.1

1 Introduction

The task of time to event (TTE) prediction aims to
determine the amount of time to/from the occur-
rence of a well-defined event. Accurate prediction
of this information is important for temporal tasks
such as timeline generation (Reimers et al., 2018),
news summarization (Born et al., 2020; Huang
et al., 2016), and disease onset prediction in medi-
cal domain (Zeliger, 2016; Langbehn et al., 2004).

Current approaches mainly focus on news arti-
cles and expect at least one temporal expressions
in each input data to predict TTE (Chambers et al.,
2014; Reimers et al., 2016, 2018; Hürriyetoǧlu
et al., 2018; Zhou et al., 2020). These approaches
cannot be readily applied to streaming content
(such as Twitter data) because such data often do
not carry any temporal expressions. Figure 1 show

∗First and second authors equally contributed to this work.
1Our code and data are available at https://github.

com/hajipoor/time2event

Looking forward to the clash 
between liverpool and arsenal 
...Must be fun to watch

Well done the Gunners 
it's always nice to start 
with a win #LIVARS

Liverpool vs Arsenal 

+8 hours -2 hours

time

2017-08-27 16:00

2017-08-27 8:00 2017-08-27 18:00

Figure 1: Examples of tweets that don’t carry any ex-
plicit time expression but indicate a future or past event
due to the implicit temporal connotation in “looking for-
ward to,” “must be fun to watch,” “well done” etc.

two examples of such tweets.2 In addition, event-
related content in data streams are heavily skewed
in time distribution as they are often posted in close
proximity of their corresponding events.

The above challenges and intuitions inspire our
work to develop a context-sensitive model to pre-
dict TTE in streaming content. Our approach is
a multi-task learning framework that uses a small
fraction of temporally-rich neighbors of each input
(tweet) and their time differences (learned through
time difference embeddings) to predict (a): if the
tweet has been posted before, at the same time or
after the event, and (b): estimate the absolute value
of TTE (in hours) with respect to the tweet. We
learn time difference embeddings through an ef-
fective character-level sequence to sequence model
that takes as input two timestamps and predicts the
temporal difference between them (in hours).

The contributions of this paper are as follows:
(a) an effective multi-task and context-sensitive
framework that uses temporally-rich context and
time difference embeddings to accurately predict
TTE in streaming content, (b) publicizing a time
to event dataset that includes different genres of

2In fact, 89% of event-related tweets in our dataset do not
carry any time expression.
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(a) TTE Model (b) diff Model

Figure 2: (a) TTE model gives the target tweet and a temporally-rich context tweet, and their time difference
embedding learned through diff model as input and learns TTE as a combination of regression (TTE value) and
classification (TTE sign) tasks. It establishes a common scale between corresponding loss values for effective
training and (b) diff model gives two times and learns time difference embeddings via sequence to sequence
model, which are used in our TTE model.

events (soccer competitions and academy awards
ceremonies), their time of occurrence, their relevant
tweets as well as TTE information for each tweet.

Our framework is 1.4 and 3.3 hours more ac-
curate than the current state-of-the-art model in
estimating TTE on large-scale English and Dutch
tweets respectively. In addition, our time difference
model achieves an accuracy of 98.3% in terms of
creating embeddings that encode temporal differ-
ences between given time pairs.

2 Context-sensitive Model

Existing models often assume input data carry ex-
plicit temporal information about target events. Al-
though informative, these information may not be
available in most textual content, especially in mi-
croblogs. We propose to utilize context information
(in the form of neighboring tweets) and the relative
temporal differences against neighbours to estimate
time to event (TTE) for given input texts.

In particular, given a tweet about an event, we
propose a multi-task learning framework to predict
the absolute value of TTE (in hours) for the tweet,
as well as a binary sign which determines if the
tweet has been posted before ‘(+),’ or at the same
time or after ‘(-)’ the event. Figure 2(a) shows our
model for predicting TTE for the target tweet ti,
given its context tweet3, e.g. a previously posted
tweet about the same event, tj , j < i, and their
time difference embeddings, which encode the time
differences between tweet creation times. Our in-
tuition for developing such embeddings is that if

3Neighboring or context tweets are randomly sampled
from the set of previously posted tweets relevant to the target
event. Our model can be extended to greater context sizes.

context tweets carry useful temporal information
about events, then knowing the time differences
among tweets could help the model to make more
accurate prediction of TTE for the target tweet.

Our model takes as input the concatenation of
attention-weighted average embeddings of the tar-
get and context tweets (a and a� in Figure 2) and
their time difference embedding (d) (see section
2.1). The resulting concatenation are then used
to predict TTE sign and TTE value for the target
input. TTE value is a regression task while TTE
sign is a binary classification task. To prevent the
loss with larger gradient magnitudes dominate the
training, we establish a common scale for the dif-
ferent loss magnitudes across the two tasks using
the approach proposed in (Kendall et al., 2018),
which simultaneously learns classification and re-
gression losses of varying quantities and combines
them using homoscedastic uncertainty.

2.1 Time Difference Embeddings

Motivated by recent research on neural numer-
acy learning (Chen et al., 2019; Wallace et al.,
2019), we learn time difference embeddings–diff
embeddings–as follows: we develop an LSTM-
based character-level sequence to sequence model
(based on the model presented in (Sutskever et al.,
2014)) that takes as input a time pair (t and t�) and
predicts the difference between them (in hours).
The final layer of the model is of size five, where
five is determined by the maximum number of dig-
its in the differences of any two timestamps within
a 2 years period (i.e., 17520 hours). The final hid-
den representations of the resulting digits are then
concatenated to obtain the diff embeddings, see
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Figure 2(b).

3 Experiments

3.1 Datasets

We develop a dataset from tweets about soccer com-
petitions of the England Premier League (EPL) fol-
lowing the same approach in (Hurriyetoglu et al.,
2014; Hürriyetoǧlu et al., 2018). We carefully cre-
ate a list of 42 distinctive hashtags for competi-
tions between seven most famous teams 4. These
matches have the advantage that users tweet about
them with distinctive hashtags by convention. We
collect tweets that are sent within 14 days of match
days between seven popular teams, and obtain the
actual time of each event from the EPL schedule.5

For the regression task, the tweet label would
be the absolute value of the actual time (in hours)
to the start of the corresponding event. For the
classification task, tweets are labeled as ‘before’ or
‘after’ depending on their time of creation against
corresponding matches. Our dataset is randomly di-
vided into 80%, 10% and 10% according to events,
which are used for training, testing and validation
respectively. To study the effect of temporally-rich
context in a controlled situation, we divide our
dataset of tweets (All set) into two disjoint subsets:
tweets that carry at least one temporal expression
(T set), and tweets that have no temporal expres-
sion (N set), where we use HeidelTime’s colloquial
temporal tagger (Strötgen and Gertz, 2012, 2013)
to extract temporal expressions. We then introduce
six new subsets of our data in X-Y format, where
X ∈ {T set, N set, All set} refers to the type of
target tweets and Y ∈{T set, N set} refers to the
type of contexts.

To investigate the generalizability of our model
on other events, we evaluate our trained model
on tweets about the 2018 Academy Awards cere-
mony. We collected 3K tweets using #oscars,
#oscar and #academyawards hashtags in the
window of 7 days before and after the date of Os-
cars 2018. We also use the Dutch dataset to com-
pare our model against the baseline model proposed
in (Hurriyetoglu et al., 2014) that developed a hy-
brid of machine learning and rule-based approach
for estimating time to events.

4Liverpool, Manchester United, Chelsea, Arsenal, Manch-
ester City, Newcastle United and Tottenham Hotspur

5https://www.premierleague.com/

3.2 Settings and Baselines

The hyperparameters of all models are optimized
on validation data using random search (Bergstra
and Bengio, 2012). We consider TenseModel
(see below), Glove, BERT, Event Time Extrac-
tion (ETE) (Reimers et al., 2018), and Hybrid-
Model (Hürriyetoǧlu et al., 2018) as baselines.
TenseModel uses the tense of the outermost verb
of a tweet to detect whether it is posted before (+)
or after the target event (-). Embedding models
are used to represent input tweets and extended to
address the time to event task in their last layer.
The GLOVE baseline is the model with GLOVE
pre-trained embeddings but without context. This
baseline has only the attention-weighted average
embedding of the target tweet. For BERT baseline,
we fine-tuned base version of BERT by adding a lin-
ear layer on top for time to event value prediction.
ETE uses sentence representation as well as event
and position embeddings with a CNN to tackle the
target task. They reported a high performance of
84.2% for event status classification on a balanced
dataset of news articles. HybridModel is a hybrid
of rule-based and data-driven methods focusing on
Dutch tweets that carry temporal expressions.

4 Results

4.1 Time to Event Prediction

We compare our context-sensitive model with con-
text size of k ∈ {0, 1, 2, 3} against baseline sys-
tems. Mean and Median are heuristic baselines and
indicate the mean and median of MAEs of TTE
values (i.e., 27.87 and 13.91 respectively). As re-
ported in Table 1, the TenseModel has considerably
low performance in distinguishing temporal status
of tweets against event times. We attribute this
result to the informal language in user-generated
content and multi-verb tweets which can challenge
the tense model. BERT embeddings slightly im-
proves the performance of other embedding mod-
els. However, BERT and ETE’s performance are
considerably lower than the performance of our
model achieved by adding context information
(k ≥ 1). This result indicates that adding neigh-
bouring tweets leads to more accurate prediction
of TTE than incorporating better word embeddings.
Our model achieves an MAE of 6.43 hours on All-T
set and 4.24 on T-T set (see Table 1). We also com-
pare our model against the Hybrid Model on the
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(a) Effect of context size on MAE
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(b) Accurately-predicted neighbours
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(c) Farther vs. closer to event instances

Figure 3: (a): Greater context size leads to better estimation of TTE. (b): More accurately-predicted neighbours
lead to more accurate estimation of TTE. (c): Context information better help farther to event target instances.

TTE sign TTE value

Model P R F1 MAE (hours)

Trained and evaluated on the EPL dataset

Mean - - - 27.87
Median - - - 13.91
TenseModel 0.23 0.37 0.28 -
GLOVE (Pennington et al., 2014) 0.73 0.66 0.69 8.43
BERT (Devlin et al., 2019) 0.68 0.79 0.73 7.71
ETE (Reimers et al., 2018) 0.88 0.59 0.70 7.86
Our model (k = 0) 0.61 0.52 0.56 9.34
Our model (k = 1) 0.73 0.77 0.74 7.31
Our model (k = 2) 0.81 0.87 0.83 6.98
Our model (k = 3) 0.92 0.83 0.87 6.43

Trained on EPL and evaluated on the Oscars dataset

BERT 0.46 0.48 0.47 14.2
Our model (k = 0) 0.38 0.49 0.43 14.76
Our model (k = 1) 0.51 0.57 0.54 13.43
Our model (k = 2) 0.55 0.60 0.57 13.37
Our model (k = 3) 0.58 0.64 0.61 13.18

Table 1: Model performance in terms of macro preci-
sion, recall and F1 for sign classification (TTE sign),
and Mean Absolute Error (MAE) for TTE prediction
(TTE value) on EPL and Oscars datasets.

Dutch dataset (see Section 3.1).6 Using the Dutch
embeddings of (Tulkens et al., 2016), our model
achieves an MAE of 4.7 hours based on leave-one-
out cross validation, while the corresponding value
for the Hybrid Model is 8 hours. Evaluation results
on Oscars dataset reveals that the model learns how
to utilize information of neighbouring tweets and
time differences. The lower performance on the
Oscar dataset is due to differences in training (EPL)
and test (Oscar) data distributions.

Can context information help? To investigate
the effect of adding context, we start with a stand-
alone base model that predicts the time to event
by just relying on its own content, i.e, k = 0. Fig-
ure 3(a) illustrates that the performance is higher

6Note only 71% of 138k tweets are returned by the Twitter
API, the rest were deleted or made private by their users.

for tweets that contain at least one time expres-
sion (T set) compared to All set. Accordingly, as
we gradually add more context tweets, the perfor-
mance consistently increases with greater improve-
ment with the T set as context. The best preforming
model is achieved by adding context of size 3 from
T set, leading to the lowest time to event estimation
error of 4.24 hours.

We also note that context tweets that do not con-
tain any temporal expression (the N set) slightly
increase the performance; see the dashed lines in
Figure 3(a). We conjecture that these tweets add
lexical clues that carry implicit temporal informa-
tion about events. In addition, Figure 3(b) shows
a strong correlation between the average error in
model prediction performance on context and target
tweets. This result shows that neighboring tweets
that are more accurately learned by the network are
better candidates to use as context for other tweets.

Does context information lead to more accurate
estimation of time expressions? To answer this
question, we compute the average time to event
for each time expression from both training tweets
and predictions for test tweets as H(TIMEXi) =
1
N

�
tj∈S,TIMEXi∈tj TTEtj where S ∈ {train, test},

TTEtj indicates time to event for tweet tj , and N
is normalization factor; for training data we use
gold values and for test data we use predicted val-
ues. Figure 4(a) shows the baseline and estimated
values for a range of time expressions. The results
show that the value of time expressions are better
estimated by adding context. Give that the most fre-
quent time expressions often refer to points in time
close to the event (such as now) (Hurriyetoglu et al.,
2014), our model improves rare time expressions
more than the frequent ones, leading to improved
prediction of farthest tweets from events.
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(a) Estimation of time expressions
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(b) Time difference embeddings

Figure 4: (a): Estimation of some selected time expressions. (b): Time differences in the embedding space. Each
sample point shows the embedding of time difference between two randomly selected times t1 and t2. This figure
shows that if t1 − t2 ≈ t

�
1 − t

�
2, their diff embeddings are closer in the time difference space.

4.2 Time Difference Embeddings

We generate a synthetic dataset of 2m time pairs
to evaluate the time difference approach in terms
of accurate prediction of time differences between
given time pairs, where possible predictions range
between 0 to 17520 hours, which corresponds to
a maximum difference of two years. Evaluation
on 200k number of test time pairs shows that the
model achieves 98.3% accuracy. In addition, Fig-
ure 4(b) shows t-SNE representation of time dif-
ferences in the embedding space for different ran-
domly selected time pairs. Data points with the
same color shows the diff embeddings of the same
time differences. The result shows for two random
times (t1, t2) and (t

�
1, t

�
2), if t1− t2 ≈ t

�
1− t

�
2, their

diff embeddings are very close in the time differ-
ence embedding space, indicating the high quality
of the resulting space. In addition, Table 2 shows
time difference embeddings are useful for TTE es-
timation since removing them increases the MAE
of our full model by a significant amount of 0.8
hours.

4.3 Early prediction

Given that early prediction of TTE is more valuable
and challenging (due to scarcity of data at earlier
times and often imprecise temporal information in
earlier tweets), we investigate the performance of
our model on target tweets that were posted much
earlier than the occurrences of their corresponding
events. The results in Figure 3(c) shows that con-
text tweets help farther-to-event instances better
than closer ones. This result provides insights for
future research on the task of early TTE prediction.

Configuration MAE (absolute increase)

Full System 6.43
Random diff embeddings 6.64 (+0.21)
No diff embeddings 7.23 (+0.80)
No TTE sign 6.71 (+0.28)

Table 2: Ablation analysis showing changes in Mean
Absolute Error (MAE) obtained from removing individ-
ual components of the model.

5 Conclusion and Future Work

We developed a context-sensitive neural model that
used rich-neighbouring tweets as well as time dif-
ference embeddings between target tweets and their
neighbors for effective prediction of time to event.
We evaluated our and current models on events and
tweets of different genres (soccer competitions and
academy award ceremonies) and languages (En-
glish and Dutch). Future works include expansion
to temporal tasks that particularly focus on early
prediction of time to events. In addition, it’s worth
investigating if user or social network information
could be helpful for better time to event prediction.
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Broader Impact Statement

Our research affects applications that deal with
time, and time difference can be an effective feature
for them. For example, our work enables automatic
creation of calendar of events, which helps keep-
ing individuals informed about potential relevant
events. It also help researchers to benchmark their
models using our dataset.

In addition, the process of collecting our dataset
followed the Twitter policy7. We crawled data us-
ing the Twitter API and we did not make any at-
tempt to identify any information that have not
been volunteered by our user base (e.g., gender,
race, wealth, etc.,). We also will just publish the
Tweet IDs.
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