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Abstract

Event language models represent plausible se-
quences of events. Most existing approaches
train autoregressive models on text, which
successfully capture event co-occurrence but
unfortunately constrain the model to follow
the discourse order in which events are pre-
sented. Other domains may employ differ-
ent discourse orders, and for many applica-
tions, we may care about different notions
of ordering (e.g., temporal) or not care about
ordering at all (e.g., when predicting related
events in a schema). We propose a simple yet
surprisingly effective strategy for improving
event language models by perturbing event se-
quences so we can relax model dependence on
text order. Despite generating completely syn-
thetic event orderings, we show that this tech-
nique improves the performance of the event
language models on both applications and out-
of-domain events data.

1 Introduction

Event-level language models (LMs) provide a
way to reason about events, and to approximate
schematic and script-like knowledge (Schank and
Abelson, 1977; Balasubramanian et al., 2013;
Nguyen et al., 2015) about them (Modi and Titov,
2014; Pichotta and Mooney, 2016; Weber et al.,
2018). These models aim to learn high-level repre-
sentations of complex events (e.g., an arrest) and
possibly their entity roles from raw text (e.g., a
suspect). However, a major limitation is their re-
liance on the discourse order of event mentions
when training the LM. Although powerful, these
event LMs capture information we don’t want in
true world knowledge. For instance, a script of
events may be weakly ordered in real life, but the
system instead learns to strongly rely on the text
order in which the events were described. Figure
1 shows an example where discourse and actual

Figure 1: Example of an event schema for which the
discourse order is different from the temporal order.

temporal order are different: a model trained on
newswire may learn the pattern on the left from
obituaries, but will fail to generalize to biograph-
ical or other narrative descriptions of someone’s
life.

In this paper, we aim to improve event-level LMs
in order to make them more suitable for general
knowledge learning. While a range of possible
modifications to the model can be imagined, such
as set transformers (Lee et al., 2019), we want to
leverage autoregressive pre-trained LMs. We in-
stead find that we can encode the necessary invari-
ances via data augmentation: namely, we apply a
set of event sequence perturbations to sequences in
the training data to relax the model’s dependence
on discourse order. By considering the next event
based on shuffled sequences of events, we encour-
age the model to treat the input more as a set of
events rather than strictly as a discourse sequence.

Surprisingly, despite our disruption of discourse
order, experiments show how perturbations can im-
prove event language modeling of text, particularly
when evaluating the model on other domains which
present events in different orders (e.g., novels or
blogs present data in more of a “narrative” fash-
ion than news datasets common in NLP (Yao and
Huang, 2018)). Our experiments evaluate accuracy
on the Inverse Narrative Cloze task on in-domain
newswire, as well as out-domain novels and blogs1.

1The code and data is available at https://github.
com/StonyBrookNLP/elm-perturbations

https://github.com/StonyBrookNLP/elm-perturbations
https://github.com/StonyBrookNLP/elm-perturbations
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Figure 2: Sequence perturbations strategies.

2 Perturbing Discourse Sequences

Event language modeling tasks are typically de-
fined over sequences of events as they appear
in text. The events can be represented either as
a sequence of words annotated with predicate-
argument structure (e.g., semantic roles (Pichotta
and Mooney, 2016), Open IE tuples (Weber et al.,
2018; Rudinger et al., 2015) or with compositional
embeddings (Modi, 2016). Generative models are
trained to predict subsequent events in a sequence
conditioning on previously observed events. Natu-
rally, these models learn the order in which events
appeared in text (Manshadi et al., 2008).

However, relying on discourse order may not
be necessary and can potentially limit generaliza-
tion of event LMs. For some event related tasks
such as schema learning (Weber et al., 2018), the
discourse order is not directly relevant. For other
tasks such as event ordering (Pustejovsky et al.,
2003; Chambers et al., 2014; Wang et al., 2018),
temporal or logical order of events is most critical –
discourse order, at best, is a noisy proxy. In fact, the
first systems for schema learning were noticeably
not language models (Mooney and DeJong, 1985;
Chambers and Jurafsky, 2009, 2011). We intro-
duce three simple perturbation techniques shown
in Figure 2 that relax the reliance on discourse se-
quences.

2.1 Event Permutation

One way to reduce reliance on discourse order is
to expose the model to random permutations of
the input sequences, as shown in Figure 2. Using
all possible permutations of a sequence is imprac-
tical, so we introduce three specific shuffles that
force the model to pay attention to long-term de-
pendencies and avoid the over-reliance on local
dependencies/order:

• Reversed order: given a set of events as
ABCD, the reverse of the sequence is created
as DCBA.

• Concatenation of events in the odd positions
followed by the even positions of the se-
quence: the permuted sequence is BDAC.

• Concatenation of event tuples in the odd posi-
tions followed by those in the even positions
of the reverse order of the original sequence.
The new sequence is: CADB

These shuffle patterns were selected to minimize
the chance of repetition across permutations.

2.2 Event Dropout

We also consider event dropout as another pertur-
bation to the original discourse sequence. For each
sequence, we remove a small random subset of
events (Event Dropout in Figure 2). We create
multiple reduced sequences for each original se-
quence. The reduced sequences are treated in the
same way as the original sequences for training the
model. This perturbation is a type of regulariza-
tion against overfitting on any specific event in a
sequence, much like standard dropout procedures.

2.3 Event Masking

When dropping events, we can provide additional
information to the model about where events were
dropped. This forces the model to capture longer-
term dependencies among events in the sequence.
We randomly select a number of event tuples and
replace their tokens with a <mask> token (Mask-
ing in Figure 2). For each sequence in the training
set, we generate its masked sequences with each
having a fixed proportion of its events masked.

3 Experimental Setup

Data We train event language models on the An-
notated NYT corpus using Open IE event tuples ex-
tracted by Ollie (Schmitz et al., 2012). The dataset
contains a total of around 1.8 million articles. After
preprocessing steps, 1,467,366 articles are used as
the training set, 6k articles as test set and 4k articles
as the dev set. Each event is a 4-tuple (v,s,o,p)
containing the verb, subject, object and preposition.
We follow the same preprocessing steps outlined
in Weber et al. (2018) to create event sequences.

The components of the events (the verb, subject,
etc.) are all individual tokens, and are treated like
normal text. For example, the events (truck packed
with explosives), (police arrested suspect), would
be given to the model as: packed truck explosives
with [TUP] arrested police suspect NULL , where
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NULL is the null preposition token and [TUP] is
a special separator token between events.

Each document is first partitioned into segments
of four sentences each. All events extracted from
each segment are concatenated (in discourse order)
to form an event sequence. This is a simple heuris-
tic to avoid considering event sequences that can
drift or connect otherwise unrelated events. Tuples
with common verbs (is, are, be, ...) and repeating
predicates are also ignored.

The training, development, and test splits have
7.1M, 19K, and 29K event sequences respectively.
During training, depending on the perturbation
strategy used, a number of sequences are added
to the initial sets. The numbers are hyperparame-
ters, selected differently for each model. Details
are given in the following sections.

Autoregressive Models Our baseline autoregres-
sive event LM is a pretrained GPT-2 model (Rad-
ford et al., 2019) fine-tuned on the event sequences.

Once the perturbations are applied to the original
sequence, the modified sequence is used as both
the input and the output of the model. We trained
variants of GPT-2 with different sequence pertur-
bations as shown in Figure 2 in our experiments.
For the dropout and masked versions, we created
n/3 new sequences with n being the number of
events in the sequence. Each sequence has n/3 of
its events either dropped or masked.

Autoencoding Models We use HierarchicAl
Quantized Autoencoder (HAQAE) (Weber et al.,
2018) as a strong autoencoding model. HAQAE
is an LSTM-based autoencoder, which uses a hi-
erarchical latent space to model event sequences.
HAQAE uses categorical global latent variables to
represent a tree-structured hierarchy which allow
it to model different types of schemas and their
possible tracks. Different levels of this hierarchical
structure capture different levels of features of the
schemas.

For training the HAQAE model, instead of re-
constructing a perturbed sequence, we explore a
denoising style training objective, where we only
perturb the input part of the sequence keeping the
output the same as the original. Our hypothesis
is that these models learn a perturbation-invariant
latent space representation in both cases, which
will help break the dependence on discourse order.
We use the denoising variant in our experiments as
it worked better than the standard reconstruction

Type of System PPL INC
Val Test Val Test

Random Baseline - - 16.60 16.60

A
ut

o
re

gr
es

si
ve

RNNLM 91.84 90.92 25.30 26.30
GPT-2 Baseline 85.13 84.13 26.80 28.30
GPT-2 Masked 87.96 87.26 26.30 27.10
GPT-2 Dropout 83.46 82.56 26.70 27.70

GPT-2 Permuted 83.18 82.26 27.45 28.90

A
ut

o
en

co
di

ng

HAQAE-Baseline 142.22 140.89 31.80 33.85
HAQAE-Masked 148.07 147.03 33.80 36.80
HAQAE-Dropout 122.69 122.30 31.25 32.25
HAQAE-Permuted 143.39 142.07 34.75 38.55

Table 1: Perplexity and the accuracy of Inverse Narra-
tive Cloze task. Lower is better for perplexity while
higher is better for INC.

objective in our initial experiments.
For each sequence in the permutation model, we

generated permuted sequences for 10% of the orig-
inal sequences. As for the dropout and masked
models, we created n/4 new sequences with n be-
ing the number of events in the sequence. Each
sequence has n/3 of its events either dropped or
masked. Preliminary experiments showed little dif-
ference between using all the data vs a subset.

Models Hyperparameters The GPT-2 model
uses the implementation from Huggingface library
(Wolf et al., 2020) using a pre-trained gpt-2 small
model and tokenizer. Adam optimizer (Kingma
and Ba, 2014) is used with an initial learning rate
of 6.25e− 5.

The HAQAE model uses 5 discrete latent vari-
ables. Each variable can initially take on K = 512
values, with an embeddings dimension of 256. The
encoder is a bidirectional, single layer RNN with
GRU cell (Cho et al., 2014) with a hidden dimen-
sion of size 512. The embeddings size is 300 which
are initialized with pretrained GloVe (Pennington
et al., 2014) vectors. The decoder is also a single
layer RNN with GRU cells with a hidden dimen-
sion of 512 and 300 dimensional word embeddings
(initialized) as inputs. All experiments use a vocab-
ulary size of 50k. Adam optimizer with a learning
rate of 0.0005 is used.

4 Evaluation

We ran different experiments to answer the follow-
ing questions:

How do sequence perturbation techniques im-
prove event language modeling? We evaluate
perplexity as is standard in Table 1, but aside from
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System Blogs Novels News

HAQAE-baseline 24.31 25.10 32.25
HAQAE-permuted 31.95 28.45 38.75

Table 2: INC accuracy on external data

Figure 3: A legitimate sequence and its confounding.

perplexity, we want to see how well event LMs
capture schematic knowledge. We thus evaluate
on the inverse narrative cloze (INC) task (Weber
et al., 2018). Given the first event from an original
discourse sequence and a set of candidate event
sequences, the task is to identify the true event se-
quence completion. This evaluation is closer to our
ultimate goal: identifying realistic event schemas
rather than discourse-focused metrics like perplex-
ity.

The INC evaluation starts with a gold sequence
of events from a real document, and then includes
5 other event sequences pulled from confounding
documents. You insert the first gold event artifi-
cially at the start of each of these. The gold event
sequence should have high probability compared to
the confounding event sequences. Figure 3 shows a
gold sequence and one confounding sequence gen-
erated for it. The six sequences are ranked based on
the probabilities assigned by the model, and then
the accuracy is the number of predictions where the
gold sequence is ranked first. A random model will
uniformly choose one among the six sequences and
thus will have an accuracy of 16.6%.

The perplexity2 and the INC accuracy of differ-
ent variants of both autoregressive and autoencod-
ing models are shown in Table 1.

Using sequence perturbations improves the INC
accuracy on both test and validation sets for both
categories of models. Further, the sequence per-
turbations gain in terms of INC accuracy is much
higher with HAQAE.

2For autoencoders we report generative perplexity with the
KL-term, while the original paper (Weber et al., 2018) has the
lower reconstructive perplexity without the KL-term.

Figure 4: Perplexity of different GPT-2 models with
respect to the number of training sequences.

How do models trained with perturbation tech-
niques perform on out-of-domain data? The
NYT corpus used for training the models in this
study is newswire. The journalistic writing style
does not always follow the temporal ordering of
events, but represents the events in various orders
going backwards or forward in time. One might ar-
gue that the reason the sequence perturbations work
better in terms of INC accuracy is that the events
extracted from news do not necessarily follow the
temporal order and therefore the perturbations will
not create an issue. To show the effectiveness of
our approach, we evaluated the performance of
our models on the event sequences extracted from
narratives coming from different domains: novels,
blogs and news (Yao and Huang, 2018).

We used the OpenIE extraction system in a sim-
ilar fashion to extract the event tuples from the
narrative sequences. We used our best-performing
model from the previous section and with no fine-
tuning applied the models to see how our sequence
perturbations performed in terms of INC accuracy
on these narrative texts. The results of this analysis
are presented in Table 2. The numbers show that
the proposed sequence perturbations perform bet-
ter on out-of-domain data (with explicit temporal
links) compared to the baseline model.

How effective are the sequence perturbation
techniques with respect to the number of train-
ing instances? Our sequence perturbations can
be seen as data augmentation strategies which will
help models learn new aspects of data that can not
be learned from the original sequences. As the num-
ber of training samples increases, the model has
more opportunities to learn these aspects. There-
fore, the sequence perturbations will be more useful
for domains with fewer training samples.
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seed generated events ppl(g—s) ppl(g—ps)

HAQAE-Baseline people reported fire, fire spread to forest people died in fire, fire caused fires 4.49 6.49
fire spread to forest, people reported fire person spokesman for department, firefighters taken to hospital 5.21 6.30

HAQAE-permuted people reported fire, fire spread to forest fires began today, people working in area 5.75 5.58
fire spread to forest, people reported fire fires began today, people working in area 5.58 5.75

Table 3: Generated schemas for two-event seeds. The second row for each model shows the generated schemas for
permuted seed events. ppl(g—s) and ppl(g—ps) are the perplexity of generated events given the seed events and the
perplexity of events given permuted seeds. The lower the difference the more robust the model is to permutations.

seed generated events

HAQAE-baseline fire spread to neighborhood, people reported fire people fire to floor, person spokesman for department
fire spread to forest, people reported fire firefighters fire to floor, person spokesman for department

HAQAE-permuted fire spread to neighborhood, people reported fire Fire spread through floors, fire came from floor
fire spread to forest, people reported fire fires began today, people working in area

Table 4: Generated schemas for two-event seeds. The second event is the same while the first event shows a
different branch.

We plotted the perplexity with respect to the
number of training sequences for the GPT-2 base-
line system as well as permuted and dropout mod-
els. As can be seen in Figure 4, the gap between the
perplexity scores are higher when the number of
sequences are lower. This observation suggests that
our approach will result in better language models
for domains with limited data.

How do schemas generated by different models
differ from each other? We generated schemas
for 46 two-event seeds using the HAQAE baseline
and permuted models. We wanted to see how the
generated schemas differ in two different aspects:
First, for each seed, we permuted the events and
generated schemas for both models. We expect the
permuted model to have less variation in generat-
ing events for original and permuted seeds. We
calculated the perplexity of the generated events
for both the original order of events as well as the
permuted order. Table 3 shows an example of such
scenario where the HAQAE-permuted model has
lower variation in perplexity for permuted seed
events.

Second, we want to see how dependent the gener-
ation is upon the most recent event in the sequence.
We generated schemas for two-event seeds in which
the last event is the same while the first event indi-
cates a different path. Table 4 shows an example
where the permuted model generates more diverse
events.

5 Conclusion

We proposed a set of simple sequence perturbations
to relax the model’s reliance on the discourse order
of event mentions for event language modeling.
By predicting the next event based on perturbed
sequences, the model is encouraged to treat the

input as a set of events. Our experiments show
that these perturbations can improve identifying
event schemas measured by INC accuracy both on
in-domain and out-of-domain data.
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