
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Short Papers), pages 534–542

August 1–6, 2021. ©2021 Association for Computational Linguistics

534

Improving Arabic Diacritization with
Regularized Decoding and Adversarial Training

Han Qin♠∗, Guimin Chen♦∗, Yuanhe Tian♥∗, Yan Song♠♥†
♠The Chinese University of Hong Kong (Shenzhen)

♦QTrade ♥University of Washington
♥Shenzhen Research Institute of Big Data

♠hanqin@link.cuhk.edu.cn ♦chenguimin@foxmail.com
♥yhtian@uw.edu ♠songyan@cuhk.edu.cn

Abstract

Arabic diacritization is a fundamental task
for Arabic language processing. Previous
studies have demonstrated that automatically
generated knowledge can be helpful to this
task. However, these studies regard the auto-
generated knowledge instances as gold refer-
ences, which limits their effectiveness since
such knowledge is not always accurate and in-
ferior instances can lead to incorrect predic-
tions. In this paper, we propose to use regular-
ized decoding and adversarial training to ap-
propriately learn from such noisy knowledge
for diacritization. Experimental results on two
benchmark datasets show that, even with quite
flawed auto-generated knowledge, our model
can still learn adequate diacritics and outper-
form all previous studies, on both datasets.1

1 Introduction

Modern standard Arabic (MSA) is generally writ-
ten without diacritics, which poses a challenge
to text processing and understanding in down-
stream applications, such as text-to-speech gener-
ation (Drago et al., 2008) and reading comprehen-
sion (Hermena et al., 2015). Restoration of such
diacritics, known as diacritization, becomes an im-
portant task for Arabic natural language process-
ing (NLP). Among different diacritization methods
(Pasha et al., 2014; Shahrour et al., 2015; Zitouni
et al., 2006; Habash and Rambow, 2007; Darwish
et al., 2017), the neural ones (Abandah et al., 2015a;
Fadel et al., 2019a,b; Zalmout and Habash, 2019,
2020; Darwish et al., 2020) achieve the best per-
formance due to their better capability in incor-
porating contextual features. To further improve
diacritization, automatically generated knowledge

*Equal contribution.
†Corresponding author.
1The code and models involved in this paper are released

at https://github.com/cuhksz-nlp/AD-RDAT.

from off-the-shelf toolkits, such as morphological
features, parts-of-speech tags, and automatic dia-
critization results, have been extensively applied to
this task (Zitouni et al., 2006; Arabiyat, 2015; Dar-
wish et al., 2017, 2020). However, current models
treat such knowledge instances as gold references
and always directly concatenate them with input
embeddings (Arabiyat, 2015; Darwish et al., 2020),
which may lead to inferior results since the knowl-
edge may be inaccurate, especially if the toolkits
were trained on data with different criteria.

Diacritization can be performed by character-
based sequence labeling (Zitouni et al., 2006; Be-
linkov and Glass, 2015; Fadel et al., 2019b). We
follow this paradigm and propose a neural approach
in this paper, using regularized decoding and adver-
sarial training to incorporate auto-generated knowl-
edge (i.e., the diacritization results generated from
off-the-shelf toolkits). Specifically, the regularized
decoder treats the auto-generated knowledge as
separate gold labels and learns to predict them in
a separate decoding process, which is then used to
update the main model. The adversarial training
is applied to the encoding process by determining
whether the diacritization for an input follows the
gold label or the auto-generated knowledge. In
doing so, our model can dynamically distinguish
between auto-generated knowledge instances in-
stead of treating them all as gold references, so as
to effectively identify what knowledge should be
leveraged for different inputs. Importantly, regu-
larized decoding and adversarial training are exclu-
sively applied to the training stage; we only need
the main tagger for inference once the model has
been trained. Experimental results and further anal-
yses illustrate the effectiveness of our approach,
where our model outperforms strong baselines and
achieves state-of-the-art results on two benchmark
datasets: Arabic Treebank (ATB) (Maamouri et al.,
2004) and Tashkeela (Zerrouki and Balla, 2017).

https://github.com/cuhksz-nlp/AD-RDAT
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2 The Proposed Approach

As shown in Figure 1, our approach for diacritiza-
tion follows the sequence labeling paradigm, where
it has two training stages for the main tagger (M).
In the first training stage (presented in the orange
box in Figure 1), M is enhanced by regularized
decoding (RD) and adversarial training (AT ) to
discriminatively learn from the auto-generated la-
bels. Specifically, given an input Arabic character
sequence X = x1 · · ·xi · · ·xn, M and RD aim
to predict two types of diacritization labels, Ŷ and
ŶK , which follow the gold and auto-generated la-
bel criteria, respectively. AT ensures that the main
tagger only learns useful information from either
gold or auto-generated labels. Therefore, the first
training stage can be conceptually formalized by

Ŷ, ŶK = f(M(HS ,X ),RD(HS ,X ),AT (HS))
(1)

where HS denotes the output vectors of the shared
encoder SE (whose input is X ) that is designed
to learn the information shared by the gold and
auto-generated labels. As a result, the goal of this
training stage is to minimize the loss defined by

L = LM + LK + LA (2)

where LM, LK and LA refer to the losses that
come fromM,RD, and AT , respectively.

Afterwards, in the second training stage (pre-
sented in the green box in Figure 1),M is further
trained alone on the gold labels Ŷ without using
auto-generated ŶK , RD and AT , to fine-tune its
parameters, where all parameters in SE obtained
through the first training stage are fixed. For infer-
ence, onlyM is used without requiring any addi-
tional input other thanX to obtain the diacritization
results. In the following sections, we first describe
M, then elaborate the details ofRD and AT .

2.1 The Main Tagger

The main tagger uses an encoder-decoder archi-
tecture, as shown in Figure 1, in which a shared
encoder SE and a private encoderPEM are applied
to model the contextual information. Particularly,
SE is proposed to facilitate the process of leverag-
ing auto-generated knowledge, which is excepted
to learn information shared by the gold labels and
the auto-generated knowledge. It takes the char-
acter embeddings of X (the embedding of xi is
denoted as ei) as input and encodes them to the

Figure 1: The architecture of our model, where the left
shows the main tagger (M) and the right shows the reg-
ularized decoding (RD) and adversarial training (AT )
modules. The diacritization labels for an example fol-
lowing different criteria are illustrated inM and RD,
with the mismatching labels marked in green and red.
E.g., for “Ð” (highlighted in yellow), its gold and auto-
generated labels are “#” (null) and “o” (sukun).2

shared hidden vectors (denoted as hS
i for xi) by

[hS
1 , · · · ,hS

n ] = SE([e1, · · · , en]) (3)

Similarly, PEM is also applied to the word em-
beddings and produces the result hM

i . Then, we
concatenate hS

i and hM
i and map the resulting vec-

tor to the output space with a fully connected layer:
oMi = WM ·(hM

i ⊕hS
i )+bM , where⊕ is concate-

nation and WM and bM are the trainable matrices
and bias vector, respectively. Finally, a softmax
decoder is applied to oMi to predict the label ŷi:

ŷi = argmax
exp(oM,t

i )∑|T |
t=1 exp(o

M,t
i )

, (4)

where T denotes the set of all diacritization labels
and oM,t

i is the value at dimension t in oMi . There-
fore the loss forM is

LM = −
n∑

i=1

log p(y∗i |X ), (5)

where p(y∗i |X ) denotes the probability of labeling
xi by the gold label y∗i .

2.2 Regularized Decoding

When leveraging auto-generated knowledge, it is
important to note that such knowledge may be inac-
curate or follow different annotation criteria, which
is required to be appropriately addressed to pre-

2We use a set of symbols to label different diacritization
results, which are illustrated in Appendix A.
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ATB Tashkeela
w/ case ending w/o case ending

ACC
w/ case ending w/o case ending

ACCDER WER DER WER DER WER DER WER

BiLSTM 2.28 6.62 1.98 4.15 93.38 2.59 7.62 2.30 5.01 92.98
+RD 2.12 5.90 1.72 3.37 94.10 2.18 6.42 1.87 4.04 94.09
+RD+AT 1.87 5.17 1.59 3.09 94.83 2.10 6.08 1.82 3.88 94.40

Transformer 2.22 6.36 1.92 4.00 93.64 2.70 7.98 2.43 5.37 92.65
+RD 2.07 5.90 1.70 3.45 94.10 2.11 6.11 1.82 3.85 94.37
+RD+AT 1.83 5.09 1.56 3.07 94.91 2.06 5.98 1.76 3.75 94.49

(a) AraBERT

ATB Tashkeela
w/ case ending w/o case ending

ACC
w/ case ending w/o case ending

ACCDER WER DER WER DER WER DER WER

BiLSTM 2.15 6.16 1.81 3.73 93.84 2.48 7.33 2.19 4.79 93.27
+RD 1.97 5.65 1.69 3.48 94.35 2.08 6.02 1.83 3.91 94.50
+RD+AT 1.81 5.06 1.53 3.02 94.94 2.03 5.86 1.77 3.75 94.69

Transformer 2.05 5.80 1.77 3.61 94.20 2.66 7.65 2.33 4.99 92.95
+RD 1.85 5.11 1.56 3.02 94.89 1.96 5.62 1.67 3.37 94.86
+RD+AT 1.77 4.88 1.49 3.01 95.12 1.87 5.54 1.56 3.64 94.94

(b) ZEN 2.0

Table 1: Experimental results (i.e., DER and WER with and without the case ending being considered and accuracy)
of baselines and our models with RD and AT using AraBERT (a) and ZEN 2.0 (b) on the test sets of ATB and
Tashkeela, “BiLSTM” and “Transformer” denote the encoders (i.e., SE and PE) used in the models.

vent the noise in the auto-generated knowledge
from significantly hurting the model performance
(Tang et al., 2020; Nie et al., 2020; Chen et al.,
2020; Mandya et al., 2020; Tian et al., 2020a,b,
2021a,b; Chen et al., 2021). To tackle this chal-
lenge, we propose to learn from a special decoding
process, which is integrated into the main diacriti-
zation model, in order to reduce error propagation
compared to directly using the knowledge instances
or their features. As shown in Figure 1, the pro-
posed regularized decoding is an extra output pro-
cess separated from the main tagger and performed
on another sequence of labels YK∗

, which are the
auto-generated knowledge instances (diacritization
labels) annotated by an existing toolkit. Therefore,
the loss LK fromRD is computed through

LK = −
n∑

i=1

log p(yK
∗

i |X ) (6)

and in the first training stage, all trainable param-
eters in SE are updated through the information
back-propagated fromRD.

2.3 Adversarial Training

Although auto-generated knowledge can be back-
propagated throughRD, it could be overwhelmed
by the information directly learned from the gold
label. We further improve our model by balancing
the information learned from bothM andRD with

AT , which is proposed to equalize both sides and
emphasize the shared information from them.3 In
doing so, we connect a discriminator, which is a
binary classifier, to SE . The discriminator takes all
hS
i from SE , averages them by hS = 1

n

∑n
i=1 h

S
i ,

and then passes the resulting vector to a fully con-
nected layer with a softmax function to compute
its bias towards either type (i.e., the gold or auto-
generated) of diacritization labels:

[pm, pk] = softmax(WD · hS + bD) (7)

where WD and bD are the trainable matrix and
bias vector, respectively, that map hS to a two-
dimensional vector, with pm and pk representing
normalized probabilities that satisfy pm + pk = 1
and indicating the bias of SE towards gold and
auto-generated labels, respectively. Then we ap-
ply a negative log-likelihood loss function to the
discriminator, formalized as

LD = − log pm − log pk (8)

and an adversarial loss to the parameters in SE via

LS = −pm log pm − pk log pk (9)

As a result, the goal of AT is to minimize the loss

LA = LD − λLS (10)
3AT follows the idea that the SE should have no bias

towards the information learned fromM andRD.
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ATB Tashkeela
w/ case ending w/o case ending

ACC
w/ case ending w/o case ending

ACCDER WER DER WER DER WER DER WER

Fadel et al. (2019a) - - - - - 3.73 11.19 2.88 6.53 -
Abandah and Abdel-Karim (2019) 2.46 8.12 1.24 3.81 - 1.97 5.13 1.22 3.13 -
Fadel et al. (2019b) - - - - - 2.60 7.69 2.11 4.57 -
Alqahtani et al. (2019) 2.80 8.20 - - - - - - - -
Alqahtani et al. (2020) 2.54 7.51 - - - - - - - -
Zalmout and Habash (2020) - - - - 93.90 - - - - -
Farasa 19.84 68.61 20.31 68.48 31.39 22.00 58.66 24.89 53.14 45.96
Ours (AraBERT) (BiLSTM) 1.87 5.17 1.59 3.09 94.83 2.10 6.08 1.82 3.88 94.40
Ours (AraBERT) (Transformer) 1.83 5.09 1.56 3.07 94.91 2.06 5.98 1.76 3.75 94.49
Ours (ZEN 2.0) (BiLSTM) 1.81 5.06 1.53 3.02 94.94 2.03 5.86 1.77 3.75 94.69
Ours (ZEN 2.0) (Transformer) 1.77 4.88 1.49 3.01 95.12 1.87 5.54 1.56 3.64 94.94

Table 2: Comparisons of experimental results (i.e., DER, WER, and accuracy) between previous studies and our
models with AraBERT and ZEN 2.0 embeddings on the test sets of the ATB and Tashkeela.

where λ is a positive coefficient that controls the
influence of LS in the adversarial training, so that
to minimize LD and maximize LS synchronously.

3 Experiments

3.1 Settings

In our experiments, We use two benchmark
datasets, i.e., ATB (Arabic Treebank Part 1, 2, and
3) (Maamouri et al., 2004) and Tashkeela (Zer-
rouki and Balla, 2017), following the same settings
in previous studies.4 For implementation, we run
Farasa5 (Abdelali et al., 2016) on the two datasets
and collect their diacritization results for regular-
ized decoding. Since the quality of text represen-
tation normally dominates the model performance
(Pennington et al., 2014; Song et al., 2017, 2018;
Peters et al., 2018; Song and Shi, 2018; Devlin
et al., 2019), in our experiments, we test two types
of widely used and powerful encoders, i.e., BiL-
STM and Transformer (Vaswani et al., 2017), for
SE and PE . For the embeddings, we use AraBERT
(Antoun et al., 2020) and the large version of ZEN
2.0 (Song et al., 2021) with their default settings
(i.e. 12 layers of multi-head attentions with 768
dimensional hidden vectors for AraBERT and 24
layers of multi-head attentions with 1024 dimen-
sional hidden vectors for ZEN 2.0) to perform the
initialization (we use the output of the last layer).6

We train our model for 20 epochs in total, with the
first 10 for the first training stage and the rest for the
second stage. Particularly, in the second training

4We illustrate the dataset details in Appendix B.
5http://qatsdemo.cloudapp.net/farasa/
6We obtain the pre-trained official AraBERT model from

https://github.com/aub-mind/arabert and the
Arabic version of ZEN 2.0 (large) from https://github.
com/sinovation/ZEN2.

stage, we evaluate our model on the development
set for every 100 steps to locate the best performing
model. For evaluation, we follow previous studies
(Abandah et al., 2015b; Fadel et al., 2019b) to use
diacritization error rate (DER) and word error rate
(WER) with and without considering the case end-
ing.7 We also use diacritization accuracy following
Zalmout and Habash (2017, 2019, 2020).8

3.2 Overall Results

In the main experiment, we run the baselines and
our models using different configurations (i.e., us-
ing AraBERT or ZEN 2.0 embeddings and using
BiLSTM or Transformer encoders) with and with-
outRD and AT . The experimental results (DER
and WER with and without considering the case
endings, and accuracy) on the test sets of ATB and
Tashkeela are reported in Table 1.9

There are several observations. First, under dif-
ferent configurations (i.e., using AraBERT or ZEN
2.0 and with BiLSTM or Transformer encoders),
RD improves the baseline on both datasets, which
shows that RD is effective to help diacritization
with auto-generated knowledge even if they follow
different criterion. Second, further consistent im-
provement can be observed when AT is applied
on top ofRD, with only 3K (0.015‰ of the entire
model size) more trainable parameters required to
achieve this effect.10 These observations confirm
the effectiveness of forcing SE to learn from the in-
formation shared by gold and auto-generated labels
with an appropriate model design.

7We show details of DER and WER in Appendix C.
8We report the hyper-parameter settings of different mod-

els and the best combinations of them in Appendix D.
9Their dev set’s results and the mean and standard devia-

tion of test set results are reported in Appendix E and F.
10Model sizes are reported in Appendix G.

http://qatsdemo.cloudapp.net/farasa/
https://github.com/aub-mind/arabert
https://github.com/sinovation/ZEN2
https://github.com/sinovation/ZEN2
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Figure 2: An example input sentence and its diacritization results (“∼u”, “#”, “i” and “u”) from Farasa, BiLSTM,
and our approach (BiLSTM+RD+AT ) with AraBERT. All results matching gold labels are highlighted in green;
the mismatching results from Farasa and BiLSTM are in orange and red, respectively.

In addition, we also compare the results of our
best models (withRD andAT ) with previous stud-
ies (including Farasa’s results) on the test sets of
both datasets. The results are shown in Table 2,
where our model with BiLSTM encoder outper-
forms previous models and achieves state-of-the-
art performance on both datasets.

3.3 Case Study

To explore how our approach with RD and AT
leverage auto-generated knowledge, we conduct a
case study on an example sentence from the test
set of ATB. The input and its diacritization results
from Farasa, the BiLSTM baseline, and our ap-
proach with AraBERT (BiLSTM+RD+AT ) are
illustrated in Figure 2, where the correct diacritiza-
tion results are highlighted in green, and the incor-
rect ones from Farasa and BiLSTM are highlighted
in orange and red, respectively. It is clearly ob-
served that our approach leverages the necessary in-
formation learned from Farasa (i.e., the “∼u” label)
and prevents its unreliable results from affecting
the final diacritics. Specifically, for the highlighted
Arabic character “ è ”, where the Farasa output
suggests the diacritic “i” (kasra), our approach
leverages this knowledge and corrects the BiL-
STM baseline. For the other two highlighted
characters, although the Farasa output (i.e., “∼u”
(Shadda+Damma) for “Ð” and “#” (No Diacritic)

for “ 	P”) also produces diacritization results that
are different from the BiLSTM baseline and do not
match the gold standard, our approach is able to
learn from their patterns and make correct predic-
tions. Therefore, although Farasas output does not
match the gold labels in most cases (see the Farasa

results in Table 2), the proposedRD and AT can
leverage such knowledge and improve the main
tagger accordingly.

4 Conclusion

In this paper, we propose to incorporate auto-
generated knowledge (diacritization labels in an-
other criterion) for Arabic diacritization with regu-
larized decoding and adversarial training. In detail,
the regularized decoding treats the auto-generated
knowledge as separate “gold” labels and learns to
predict them in another decoding process; the ad-
versarial training is used to ensure that the shared
information from gold and auto-generated labels
are learned to help diacritization. With the regu-
larized decoding and adversarial training, the main
tagger in our approach is able to smartly leverage
auto-generated knowledge provided by an exist-
ing diacritization tagger. Experimental results on
two benchmark datasets illustrate the validity and
effectiveness of our model, where state-of-the-art
performance is obtained on both datasets.
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Appendix A. Diactritization Labels

Table 3 presents the 15 diacritization labels used in
our study, following Fadel et al. (2019b).

Table 3: Diactritization labels used in this study.

Appendix B. Datasets

In our experiments, We use two benchmark
datasets, i.e., ATB (Arabic Treebank Part 1, 2, and
3)11 (Maamouri et al., 2004) and Tashkeela12 (Zer-
rouki and Balla, 2017). For ATB, we follow the
same data split policy as Diab et al. (2013), which
is based on the 10-80-10 rule. That is, we firstly
split each part of ATB into three portions (with each
portion containing 10%, 80%, and 10% of docu-
ments, respectively). Then, we combine the first,
second, and third portion of all three parts to form
the development, training, and test set, respectively.
For Tashkeela, we use the cleaned version13 from
Fadel et al. (2019b) with the standard train/dev/test
split. The statistics of the datasets in terms of the
number of words, lines, and the average number of
characters in each word are reported in Table 4.

ATB Tashkeela
Train Dev Test Train Dev Test

Word # 503K 63K 63K 2.1M 102K 107K
Line # 15.7K 1.9K 1.9K 50K 2.5K 2.5K

C/W 4.37 4.31 4.35 3.97 3.97 3.97

Table 4: Statistics of the benchmark datasets, where the
number of words and lines, and average characters per
word (C/W) are reported.

11We download the ATB part 1, 2 and 3 are from https:
//catalog.ldc.upenn.edu/LDC2010T13, https:
//catalog.ldc.upenn.edu/LDC2011T09 and
https://catalog.ldc.upenn.edu/LDC2010T08.

12https://github.com/AliOsm/
arabic-text-diacritization/tree/master/
dataset

13We download the data from https://github.com/
AliOsm/arabic-text-diacritization/tree/
master/dataset.

Appendix C. Evaluation of DER and WER

It is worth noting that previous studies (Zitouni
et al., 2006; Arabiyat, 2015; Fadel et al., 2019a;
Abandah and Abdel-Karim, 2019; Alqahtani et al.,
2019, 2020) use different methods to compute di-
acritic error rate (DER) for ATB and Tashikeela
datasets. Therefore, we follow the schema in Zi-
touni et al. (2006); Arabiyat (2015); Abandah and
Abdel-Karim (2019) to compute DER for ATB and
follow Fadel et al. (2019a); Alqahtani et al. (2019,
2020) to compute that for Tashikeela.

Specifically, for ATB, we compute DER by: (1)
all words are counted including numbers and punc-
tuators; (2) each latter or digit in a word is a poten-
tial host for a set of diacritics; and (3) all diacritics
on a single letter are counted as a single binary
(True or False) choice. For Tashikeela, the schema
is similar to the one for ATB but all non-Arabic
letters are ignored in computing DER because they
do not hold a diacritic. For word error rate (WER),
the way to compute it is identical for both datasets,
where the diacritization result for an Arabic word
is regarded as incorrect if there is s at least one
incorrectly restored diacritic. We follow previous
studies (Abandah et al., 2015b; Fadel et al., 2019a)
to evaluate our results in terms of diacritic error
rate (DER) and word error rate (WER). We use the
implementation14 provided by Fadel et al. (2019a)
to compute DER (with two criteria) and WER of
different models on both datasets, where the DER
and WER with and without considering the case
endings are both included in our evaluation.

Appendix D. Hyper-parameter Settings

Table 5 reports the hyper-parameters tested in train-
ing our models. We test all combinations of them
for each model and use the one achieving the high-
est F1 score in our final experiments.

Hyper-parameters Values

Learning Rate 1e− 5,3e− 5, 5e− 5
Warmup Rate 0.06
Dropout Rate 0.1
Batch Size 16,32, 64

Table 5: The hyper-parameters tested in tuning our
models. The best ones used in our final experiments
are highlighted in boldface.

14https://github.com/AliOsm/
arabic-text-diacritization/blob/master/
helpers/diacritization_stat.py.

https://catalog.ldc.upenn.edu/LDC2010T13
https://catalog.ldc.upenn.edu/LDC2010T13
https://catalog.ldc.upenn.edu/LDC2011T09
https://catalog.ldc.upenn.edu/LDC2011T09
https://catalog.ldc.upenn.edu/LDC2010T08
https://github.com/AliOsm/arabic-text-diacritization/tree/master/dataset
https://github.com/AliOsm/arabic-text-diacritization/tree/master/dataset
https://github.com/AliOsm/arabic-text-diacritization/tree/master/dataset
https://github.com/AliOsm/arabic-text-diacritization/tree/master/dataset
https://github.com/AliOsm/arabic-text-diacritization/tree/master/dataset
https://github.com/AliOsm/arabic-text-diacritization/tree/master/dataset
https://github.com/AliOsm/arabic-text-diacritization/blob/master/helpers/diacritization_stat.py
https://github.com/AliOsm/arabic-text-diacritization/blob/master/helpers/diacritization_stat.py
https://github.com/AliOsm/arabic-text-diacritization/blob/master/helpers/diacritization_stat.py
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Appendix E. Experimental Results on the
Development Set

Table 6 reports the DER and WER (with case end-
ing) of different models evaluated on the develop-
ment set of ATB and Tashkeela.

ATB Tashkeela
DER WER DER WER

BiLSTM 2.52 7.00 2.58 7.66
+RD 2.46 6.47 2.20 6.47
+RD+AT 2.14 5.65 2.12 6.30
Transformer 2.46 6.79 2.71 7.96
+RD 2.35 6.28 2.07 6.08
+RD+AT 2.09 5.50 2.05 6.03

(a) AraBERT

ATB Tashkeela
DER WER DER WER

BiLSTM 2.41 6.67 2.51 7.45
+RD 2.21 6.00 2.09 6.16
+RD+AT 2.03 5.43 2.29 6.22
Transformer 2.39 6.49 2.65 7.79
+RD 2.03 5.40 2.21 6.09
+RD+AT 1.96 5.24 2.01 5.87

(b) ZEN 2.0

Table 6: DER and WER (with case ending) of models
with different configurations (i.e., based on BiLSTM
and Transformer) evaluated on the development set of
ATB and Tashkeela.

Appendix F. Mean and Deviation of the
Results

In the experiments, we test models with different
configurations. For each model, we train it with
the best hyper-parameter setting using five different
random seeds. We report the mean (µ) and standard
deviation (σ) of DER and WER (with case ending)
on the test set of ATB and Tashkeela in Table 7.

Appendix G. Model Size and Running
Speed

Table 8 reports the number of trainable parameters
and the inference speed (lines per second) of the
baseline (i.e., BiLSTM and Transformer encoder
with and without regularized decoding (RD)) and
our models with both RD and adversarial train-
ing (AT ) on ATB and Tashkeela. All models are
performed on NVIDIA Quadro RTX 6000 GPUs.

Models
ATB Tashkeela

DER WER DER WER
µ σ µ σ µ σ µ σ

BiLSTM 2.33 0.0115 6.70 0.4082 2.61 0.0004 7.67 0.0020
+RD 2.14 0.0183 5.92 0.1669 2.30 0.0114 6.79 0.1022
+RD+AT 1.94 0.0053 5.38 0.0589 2.21 0.0080 6.40 0.0683
Transformer 2.27 0.0413 6.58 0.5590 2.84 0.0537 8.15 0.3696
+RD 2.10 0.0008 5.92 0.0122 2.14 0.0003 5.96 0.1934
+RD+AT 1.88 0.0026 5.29 0.0651 2.12 0.0024 6.20 0.0323

(a) AraBERT

Models
ATB Tashkeela

DER WER DER WER
µ σ µ σ µ σ µ σ

BiLSTM 2.19 0.0374 6.23 0.0613 2.53 0.0411 7.42 0.0736
+RD 1.99 0.0170 5.66 0.0450 2.12 0.0419 6.04 0.0510
+RD+AT 1.85 0.0327 5.15 0.0988 2.08 0.0408 5.95 0.0665
Transformer 2.08 0.0249 5.90 0.0860 2.69 0.0205 7.70 0.0411
+RD 1.87 0.0205 5.15 0.0327 2.02 0.0531 5.78 0.1307
+RD+AT 1.80 0.0249 4.96 0.0655 1.93 0.0490 5.65 0.0829

(b) ZEN 2.0

Table 7: The mean µ and standard deviation σ of DER
and WER (with case ending) of all models (i.e., based
on BiLSTM or Transformer with RD and AT ) on the
test set of ATB and Tashkeela for Arabic diacritization.

ATB Tashkeela
Para. Speed Para. Speed

BiLSTM 158,840K 55.6 158,840K 54.3
+RD 206,162K 36.4 206,162K 28.5
+RD+AT 206,165K 25.6 206,165K 22.9
Transformer 146,235K 70.7 146,235K 71.1
+RD 168,335K 37.7 168,335K 34.3
+RD+AT 168,337K 29.0 168,337K 27.2

(a) AraBERT

ATB Tashkeela
Para. Speed Para. Speed

BiLSTM 839,026K 30.2 839,026K 29.8
+RD 872,730K 20.4 872,730K 19.7
+RD+AT 872,734K 14.8 872,734K 13.3
Transformer 830,612K 39.6 830,612K 37.2
+RD 847,471K 25.8 847,471K 24.0
+RD+AT 847,473K 21.1 847,473K 19.4

(b) ZEN 2.0

Table 8: Numbers of trainable parameters (Para.) in
different models and the inference speed (sentences per
second) of these models on the test sets of both datasets.
RD andAT represent the proposed regularized decod-
ing and adversarial training, respectively.


