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Abstract

Orthogonality constraints encourage matrices
to be orthogonal for numerical stability. These
plug-and-play constraints, which can be conve-
niently incorporated into model training, have
been studied for popular architectures in nat-
ural language processing, such as convolu-
tional neural networks and recurrent neural
networks. However, a dedicated study on
such constraints for transformers has been
absent. To fill this gap, this paper stud-
ies orthogonality constraints for transformers,
showing the effectiveness with empirical evi-
dence from ten machine translation tasks and
two dialogue generation tasks. For example,
on the large-scale WMT’16 En→De bench-
mark, simply plugging-and-playing orthogo-
nality constraints on the original transformer
model (Vaswani et al., 2017) increases the
BLEU from 28.4 to 29.6, coming close to the
29.7 BLEU achieved by the very competitive
dynamic convolution (Wu et al., 2019).

1 Introduction

Transformers (Vaswani et al., 2017) are a class of
neural architectures that have made a tremendous
transformative impact on modern natural language
processing research and applications. Transform-
ers have not only served as a powerful inductive
bias for general-purpose sequence transduction (Ott
et al., 2018) but also lived as the core of large pre-
trained language models (Devlin et al., 2018; Rad-
ford et al., 2018; Dai et al., 2019). That said, the
study of more effective training for this class of
models is still an open research question, bearing
great potential to impact a myriad of applications
and domains.

To improve numerical stability during training,
the trick of enforcing orthogonality constraints has

∗Equal contribution.
†Work was done at NTU.

surfaced recently. In the analysis of numerical
stability, enforcing orthogonality constraints can
upper-bound the Lipschitz constant of linear trans-
formations. The Lipschitz constant is a measure
that approximates the rate of change (variation)
of representations. Theoretically, controlling the
Lipschitz constant, which may be achieved via or-
thogonality constraints, yields representations that
are robust and less sensitive to perturbations.

In view of this, orthogonality constraints have
been studied for convolutional neural networks
(CNNs) (Bansal et al., 2018; Huang et al., 2018)
and recurrent neural networks (RNNs) (Arjovsky
et al., 2016; Vorontsov et al., 2017; Rodrı́guez et al.,
2016). Such plug-and-play constraints can be in-
corporated into model training without additional
hassle. For example, CNN-based models incorpo-
rating orthogonality constraints have demonstrated
empirical effectiveness for tasks such as person re-
identification (Han et al., 2019) and keyword spot-
ting (Lee et al., 2019), while RNN-based models
that enforce such constraints have shown promis-
ing empirical results for response generation (Tao
et al., 2018) and text classification (Wei et al., 2020;
Krishnan et al., 2020). However, a dedicated study
on orthogonality constraints for transformers has
been absent so far.

To fill this research gap, we study orthogonality
constraints for transformers, which are imposed
on (i) linear transformations in self-attention and
position-wise feed-forward networks and (ii) the
affinity matrix in self-attention. Mathematically, or-
thogonality constraints on the weights of these lin-
ear transformations can be motivated by bounded
Lipschitz constants. We also formally analyze the
self-attention mechanism by bounding perturba-
tions to the affinity matrix in the face of input
changes.

Furthermore, we conduct extensive experiments
on ten neural machine translation (both subword-
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level and character-level) tasks and two dialogue
generation tasks. Our experimental results are
promising, demonstrating that the performance
of transformers can be consistently boosted with
orthogonality constraints. For example, on the
large-scale WMT’16 En→De benchmark, simply
plugging-and-playing orthogonality constraints on
the original transformer model (Vaswani et al.,
2017) increases the BLEU from 28.4 to 29.6, com-
ing close to the 29.7 BLEU achieved by the very
competitive dynamic convolution (Wu et al., 2019).

Notation For any vector x and any matrix X,
‖x‖ and ‖X‖ denote their L2-norm and spectral
norm, respectively.

2 Orthogonality Constraints for
Transformers

Recall that in the transformer architecture, keys,
queries, and values all come from the same place in
the self-attention module. They are linearly trans-
formed for computing multiple attention heads,
where all the heads are aggregated by another lin-
ear transformation. The position-wise feed-forward
network is also built on two linear transformations
with activations. In the following, we will de-
scribe orthogonality constraints for (i) linear trans-
formations in self-attention and position-wise feed-
forward networks and (ii) the affinity matrix in
self-attention.

2.1 For Linear Transformations in
Self-Attention and Position-wise
Feed-Forward Networks

Note that linear transformations in self-attention
and position-wise feed-forward networks are in the
form:

y = Wx+ b,

where y is the output, x is an input, W is a linear
transformation weight matrix, and b is an optional
bias term. This form provides us with convenient
tools for motivating the application of orthogonality
constraints to the weights of such linear transfor-
mations.

Specifically, as described in Section 1, robust-
ness of linear transformations to small perturba-
tions can be measured by Lipschitz constants. Thus,
we begin with motivating orthogonality constraints
from the perspective of bounding Lipschitz con-
stants of linear transformations.

Formally, the linear transformation (layer) of the
aforementioned form y = Wx+b has a Lipschitz
constant equal to the largest singular value of the
weight matrix W. The linear layer is Lipschitz
continuous with the constant L if for all x and x′,
it holds that

‖(Wx+ b)− (Wx′ + b)‖ ≤ L‖x− x′‖,

which can be re-written as

‖W(x− x′)‖
‖x− x′‖

≤ L,

where x 6= x′. Therefore, the smallest Lipschitz
constant is

sup
x 6=x′

‖W(x− x′)‖
‖x− x′‖

.

For numerical stability, our goal is to force the
Lipschitz constant to be no greater than one at every
linear transformation so that their multiplication
throughout compositions of transformations is also
upper bounded by one. Mathematically, we need
to constrain the Lipschitz constant (the largest sin-
gular value) of W to be no greater than one, which
requires the following orthogonality constraint:

W>W ≈ I.

Back to the context of multi-head self-attention
of transformers, denote by P the concatenation
of the linear transformation weights for the query,
key, value, and the multi-head aggregation. To
impose the orthogonality constraint for these linear
transformations, we add the following loss to the
transformer model for every layer:

LLA = λ‖P>P− I‖2F .

Likewise, for position-wise feed-forward net-
work with two linear transformation weight matri-
ces M1 and M2, the orthogonality constraint can
be imposed with another additional loss:

LLF = λ
[
‖M>1 M1 − I‖2F + ‖M>2 M2 − I‖2F

]
.

2.2 For the Affinity Matrix in Self-Attention
In transformers, given the query matrix Q and the
key matrix K in the self-attention module, the affin-
ity matrix

A = softmax(αQK>), (1)
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where α is typically 1√
d

(d is the dimension of the
key and the query). Given the value matrix V,
the self-attention computes representations via the
matrix multiplication AV.

Within the context of sequence transduction,
when an input word token is aligned with another
semantically similar token, we would expect a
small change in the behavior of the self-attention
mechanism, rather than a huge change in the output.
In the affinity matrix A as defined in (1), let Ai,∗
be the row vector indexed by i. Essentially, each
Ai,∗ is a probability distribution over the tokens
in the sequence that directs the alignment-based
pooling operation. Intuitively, for a robust self-
attention mechanism, noisy perturbations should
have a limited effect on the affinity scores of the
tokens.

More formally, let us analyze the self-attention
mechanism by bounding perturbations to the affin-
ity matrix in the face of input changes. Mathemat-
ically, changes to the affinity scores are bounded
such that ‖A′i,∗ − Ai,∗‖ ≤ 2α‖K‖ε, where ε =
‖Q′i,∗ −Qi,∗‖ is the noise from the query matrix.
We can see this as the result of the following theo-
rem.

Theorem 2.1 (Bounded Perturbations to the Affin-
ity Matrix). Expressing Ai,∗ to be the ith row of the
affinity matrix A as defined in (1) and Qi,∗ to be
the ith row of the query matrix Q, the perturbation
to the affinity matrix is bounded as such:

‖A′i,∗ −Ai,∗‖ ≤ 2α‖K‖ε,

where A′ = softmax(αQ′K>) and ε = ‖Q′i,∗ −
Qi,∗‖ is the L2 perturbation value in Qi,∗.

The detailed proof of Theorem 2.1 is provided
in the appendix. In standard training, the spec-
tral norm of the key matrix ‖K‖ or the noise ε
from the query matrix may be large, and as a result
the changes to affinity scores may become “un-
bounded”. We speculate that this may hurt the
generalization of the self-attention mechanism.

We impose orthogonality constraints on the affin-
ity matrix A. More concretely, we obtain an addi-
tional loss term for every layer of the transformer
model using the Frobenius norm ‖ · ‖F :

LAM = λ‖A>A− I‖2F ,

where I is the identity matrix and λ is a scaling
factor to control the ratio to the original task loss.

With orthogonally constrained affinity scores,
each row vector of A is now orthonormal to all

the other row vectors. Given that each row vector
is a probability distribution over the tokens in the
sequence that directs the alignment-based pooling
operation, a diverse form of the self-attention mech-
anism would be more encouraged. This could be
viewed as an additional quality of orthogonality
constrained transformers.

3 Experiments

We evaluate the effectiveness of orthogonality con-
strained transformers (OC-transformers for brevity)
on ten neural machine translation tasks and two di-
alogue generation tasks. Specifically, we assess
three variants, largely pertaining to where orthogo-
nality constraints are applied, i.e., (i) AM (for the
affinity matrix in self-attention), (ii) LA (for the
linear transformations in self-attention), and (iii)
LF (for the linear transformations in position-wise
feed-forward networks). We evaluate them in an
incremental fashion with three main model labels:
VAR-I (AM only), VAR-II (AM + LA), and VAR-
III (AM + LA + LF). The scaling factor λ is tuned
amongst {10−6, 10−8, 10−10}.

3.1 Neural Machine Translation
For neural machine translation (NMT), we evaluate
on both the subword-level and character-level tasks.

Experimental Setup For subword-level NMT,
we evaluate our models on seven NMT datasets us-
ing the Tensor2Tensor1 framework (Vaswani et al.,
2018), namely IWSLT’14 De→En, IWSLT’14
Ro→En, IWSLT’15 En→Vi, IWSLT’17 En→Id,
WMT’17 En→Et, SETIMES En→Mk, and the
well-established large-scale WMT’16 En→De.

All the models are trained with the transformer-
base setting. Owing to the smaller size, we use the
transformer-small setting for IWSLT’14 datasets.
For the WMT’16 En→De dataset, we train both
the transformer-base and transformer-big settings
on 4× GPUs with gradient accumulation of 2×
to emulate 8× GPU training. By determining im-
provement on approximate BLEU scores on the
validation set, we train models for 2M steps for
the transformer-base setting and 800K steps for
the transformer-big setting. Note that between the
standard transformer and OC-transformer, we main-
tain all the other hyperparameters to keep the com-
parisons as fair as possible. For character-level
NMT, we evaluate on three language pairs, namely

1https://github.com/tensorflow/
tensor2tensor

https://github.com/tensorflow/tensor2tensor
https://github.com/tensorflow/tensor2tensor
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Table 1: Experimental results on subword-level neural machine translation.

BLEU
Model De→En Ro→En En→Vi En→Id En→Et En→Mk
Transformer 34.68 32.36 28.43 47.40 14.17 13.96
OC-transformer (VAR-I) 34.87 32.68 30.16 48.09 14.83 14.74
OC-transformer (VAR-II) 34.92 32.63 30.51 48.05 15.06 14.70
OC-transformer (VAR-III) 35.20 32.44 30.42 48.33 14.87 14.62
Relative Gain (%) +1.5% +1.0% +7.3% +2.0% +6.3% +5.3%

Table 2: Experimental results on neural machine translation with the WMT’16 En→De newstest2014 test set.

Model BLEU
MoE (Shazeer et al., 2017) 26.0
Transformer-base (Vaswani et al., 2017) 27.3
Transformer-big (Vaswani et al., 2017) 28.4
Transformer-ott-big (Ott et al., 2018) 29.3
Dynamic convolution (Wu et al., 2019) 29.7
OC-transformer-base based on (Vaswani et al., 2017) (VAR-III) 28.5
OC-transformer-big based on (Vaswani et al., 2017) (VAR-III) 29.6

WMT En→Fr, IWSLT’14 Ro→En, and IWSLT’15
De→En. The transformer-small setting is used for
all the three language pairs and trained for 200K
steps.

Experimental Results Table 1 reports experi-
mental results on subword-level NMT datasets.
Overall, we note that performance of transform-
ers is consistently boosted by orthogonality con-
straints, ascertaining the effectiveness of adopting
such plug-and-play tricks. More specifically, they
are able to achieve +1.0% to +7.3% relative gain
over the standard transformer. Notably, all the
variants (VAR-I, VAR-II, and VAR-III) boost the
performance of transformers: it demonstrates that
orthogonality constraints are indeed useful. More-
over, orthogonal constraints on the self-attention
affinity matrix are beneficial in general even if the
rest of the model is not fully enforced with orthog-
onality constraints.

Table 2 reports the results on the large-scale
WMT’16 En→De dataset. Orthogonality con-
straints boost the performance of the transformer-
big setting based on (Vaswani et al., 2017), increas-
ing the BLEU from 28.4 to 29.6. This result outper-
forms the more advanced transformer-ott-big pro-
posed in (Ott et al., 2018) and comes close to 29.7
that was achieved by the very competitive dynamic
convolution model (Wu et al., 2019). Likewise, or-
thogonality constraints also boost the performance
of the transformer-base setting with the BLEU in-

creased from 27.3 to 28.5.
Table 3 reports the results on character-level

NMT. We observe that orthogonality constraints
consistently boost the performance of standard
transformers on all the three language pairs:
En→Fr (+3.5%), Ro→En (+2.6%), and De→En
(+1.6%).

3.2 Sequence-to-Sequence Dialogue
Generation

We conduct experiments on the sequence-to-
sequence dialog generation task whereby the goal
is to generate the reply in a two-way conversation.

Experimental Setup We use two datasets: Per-
sonaChat (Zhang et al., 2018) and DailyDialog
(Li et al., 2017). We implement our task in Ten-
sor2Tensor using the transformer-small setting in
a sequence-to-sequence fashion (Sutskever et al.,
2014). We train all the models for 20K steps,
which we find sufficient for model convergence.
Beam search of beam size 4 and length penalty 0.6
is adopted for decoding the output sequence. We
evaluate all the models with the language genera-
tion evaluation suite in (Sharma et al., 2017).

Experimental Results Table 4 reports our re-
sults on the PersonaChat and DailyDialog datasets.
The key observation is that all the variants of enforc-
ing orthogonality constraints boost performance
of standard transformers. The best results of OC-
transformers make a substantial improvement in all
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Table 3: Experimental results on character-level neural machine translation.

BLEU
Model En→Fr Ro→En De→En
Transformer (Vaswani et al., 2017) 18.74 22.04 27.59
OC-transformer based on (Vaswani et al., 2017) (VAR-III) 19.40 22.61 28.02
Relative Gain (%) +3.5% +2.6% +1.6%

Table 4: Experimental results on the PersonaChat dataset (Zhang et al., 2018) and the DailyDialog dataset (Li et al.,
2017) on nine evaluation measures (Sharma et al., 2017). SkipT stands for SkipThought cosine similarity, EmbA
stands for embedding average, VecE stands for vector extrema, and GreedyM stands for greedy matching.

Transformer
OC-transformer

(VAR-I)
OC-transformer

(VAR-II)
OC-transformer

(VAR-III)
Relative Gain

PersonaChat
BLEU-1 13.2 15.1 15.4 16.3 +23.5%
BLEU-4 2.04 2.28 2.38 2.50 +22.5%
Meteor 6.10 6.55 6.60 6.70 +9.8%
Rouge 14.2 14.7 15.1 15.1 +6.3%
CIDEr 18.2 18.7 19.3 18.3 +6.0%
SkipT 41.9 42.8 43.9 43.3 +4.8%
EmbA 84.3 84.6 84.9 84.6 +0.7%
VecE 49.0 48.2 49.0 48.6 +0.0%
GreedyM 65.8 66.2 66.5 66.4 +1.1%

DailyDialog
BLEU-1 12.1 13.5 13.3 14.0 +15.7%
BLEU-4 6.22 6.70 6.52 7.11 +14.3%
Meteor 8.23 8.43 8.39 8.72 +6.0%
Rouge 21.1 21.4 21.7 21.7 +2.8%
CIDEr 79.3 79.2 79.6 82.1 +3.5%
SkipT 66.9 67.1 67.1 67.2 +0.4%
EmbA 84.9 85.7 85.6 85.5 +0.9%
VecE 53.1 53.3 53.4 53.2 +0.5%
GreedyM 72.1 72.3 72.6 72.2 +0.7%

the nine evaluation measures. Notably, on both
datasets, the best variants are either VAR-II or
VAR-III. VAR-I performs decently and boosts per-
formance of standard transformers on both tasks,
signifying that the orthogonality constrained affin-
ity matrix in self-attention is sufficiently effective.
This mirrors the results on neural machine trans-
lation and is consistent across the findings. The
relative gain of applying orthogonality constraints
is also promising, peaking at +23.5% on BLEU-1
scores and +2.8% to +6.3% on Rouge.

4 Conclusion

We studied orthogonality constraints for trans-
formers, which are imposed on (i) linear transfor-
mations in self-attention and position-wise feed-
forward networks and (ii) the affinity matrix in

self-attention. We showed that such plug-and-play
constraints, which can be conveniently incorpo-
rated, consistently boost performance of transform-
ers on ten different machine translation tasks and
two dialogue generation tasks. For example, on
the large-scale WMT’16 En→De benchmark, sim-
ply plugging-and-playing orthogonality constraints
on the original transformer model (Vaswani et al.,
2017) increases the BLEU from 28.4 to 29.6, com-
ing close to the 29.7 BLEU achieved by the very
competitive dynamic convolution (Wu et al., 2019).

Broader Impact Given widespread adoptions of
transformer models, the proposed plug-and-play
orthogonal constraints could also be useful to com-
puter vision, automatic speech recognition, time
series analysis, and biological sequence analysis.
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A Proof of Theorem 2.1

Proof. Let x = Qi,∗, g(x) = xK>, and f(y) =
softmax(y). Expressing each row in A as Ai,∗ =
softmax(αQi,∗K

>), we have

Ai,∗ = f(αg(x)). (2)

We first consider bounding g(x) with respect to
‖x′ − x‖:

‖g(x′)− g(x)‖ = ‖(x′ − x)K>‖.

Recalling the definition of the spectral norm,
‖A‖ = maxx∈Rl\{0}

‖xA‖
‖x‖ :

‖g(x′)− g(x)‖ ≤ ‖K‖‖x′ − x‖. (3)

Here, we can observe that the Lipschitz constant
for g is ‖K‖.

Next, we bound f(y) = softmax(y) with re-
spect to ‖y′ − y‖. Since f is a differentiable func-
tion, it holds that

‖f(y′)− f(y)‖ ≤ ‖J‖∗‖(y′ − y)‖, (4)

where J is the Jacobian matrix of f(y) with respect
to y, i.e., Ji,j = ∂f(y)i

∂yj
, and ‖J‖∗ = maxy ‖J‖.

Since f(y)i = eyi∑
eyj

, for diagonal entries of J we
have

Ji,i =
∂f(y)i
∂yi

=
eyi∑
eyj
− e2yi

(
∑
eyj )2

= fi − fi2,

where fi = f(y)i for brevity. For non-diagonal
entries of J where i 6= j, we have

Ji,j =
∂f(y)i
∂yj

= − eyieyj

(
∑
eyj )2

= −fifj .

With this, we can express the Jacobian J as

J =

f1 − f1
2 · · · −f1fn

...
. . .

...
−fnf1 · · · fn − fn2


= diag(fi)− f>f ,

where f = [f1, .., fn] and f>f is the outer product
of f . We can then express the spectral norm of J as

‖J‖ = ‖diag(fi)− f>f‖
≤ ‖diag(fi)‖+ ‖f>f‖.

(5)

Note that diag(fi) and f>f are both symmetric
matrices. The spectral norm of a symmetric matrix
M is the largest absolute value of its eigenvalues
λ:

‖M‖ = max
i
|λi(M)|. (6)

For a diagonal matrix like diag(fi), its eigen-
vectors are the standard basis vector while its
eigenvalues are the non-zero diagonal entries, i.e.,
λi(diag(fi)) = fi. Thus, we can get

‖diag(fi)‖ = max
i
fi. (7)

Next, we find ‖f>f‖ through the eigenvalues of
f>f . When we take the product of f>f and f>,

f>f · f> =

f1...
fn

 [f1 · · · fn
] f1...
fn


=

f1...
fn

 ·∑
i

fi
2

=

(∑
i

fi
2

)
f>.

From this, we know λ1(f
>f) =

∑
i fi

2, with
the corresponding eigenvector v1 = f>. Since the
remaining n− 1 eigenvectors are orthogonal to v1,
i.e., v>1 vi = fvi = 0, ∀i 6= 1, we have

f>f · vi = f>(f · vi)

= 0.

This implies that
∑

i fi
2 is the only non-zero

eigenvalue of f>f . Thus, with (6), this gives

‖f>f‖ =
∑
i

fi
2.

Combining this with (5) and (7), we get

‖J‖ ≤ max
i
fi +

∑
i

fi
2. (8)

Recall that ‖J‖ is the largest possible spectral
norm of J, i.e., ‖J‖∗ = maxy ‖J‖. Moreover, by
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definition of probability, it holds that fi ≤ 1 and
sum of probabilities

∑
fi ≤ 1. Therefore,

‖J‖∗ ≤ max
i,y

fi +max
y

∑
i

fi
2

≤ 1 + 1 = 2.

(9)

With (4) and (9), we get

‖f(y′)− f(y)‖ ≤ 2‖(y′ − y)‖. (10)

Bounding ‖A′i,∗ −Ai,∗‖ with (2), (10), and (3),
this gives

‖A′i,∗ −Ai,∗‖ = ‖f(αg(x′))− f(αg(x))‖
≤ ‖2αg(x′)− 2αg(x)‖
= 2α‖g(x′)− g(x)‖
≤ 2α‖K‖‖x′ − x‖
= 2α‖K‖ε.


