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Abstract

Neural machine translation has achieved great
success in bilingual settings, as well as in
multilingual settings. With the increase of
the number of languages, multilingual systems
tend to underperform their bilingual counter-
parts. Model capacity has been found crucial
for massively multilingual NMT to support
language pairs with varying typological char-
acteristics. Previous work increases the mod-
eling capacity by deepening or widening the
Transformer. However, modeling cardinality
based on aggregating a set of transformations
with the same topology has been proven more
effective than going deeper or wider when in-
creasing capacity. In this paper, we propose
to efficiently increase the capacity for multilin-
gual NMT by increasing the cardinality. Un-
like previous work which feeds the same in-
put to several transformations and merges their
outputs into one, we present a Multi-Input-
Multi-Output (MIMO) architecture that allows
each transformation of the block to have its
own input. We also present a task-aware atten-
tion mechanism to learn to selectively utilize
individual transformations from a set of trans-
formations for different translation directions.
Our model surpasses previous work and estab-
lishes a new state-of-the-art on the large scale
OPUS-100 corpus while being 1.31 times as
fast.

1 Introduction

Multilingual translation between multiple language
pairs with a single model (Firat et al., 2016a; John-
son et al., 2017; Aharoni et al., 2019) has some
advantages compared to bilingual systems (Bah-
danau et al., 2015; Gehring et al., 2017; Vaswani
et al., 2017; Barrault et al., 2020), e.g., easy deploy-
ment, enabling transfer learning across languages
and zero-shot translation.

∗ Corresponding author.

Despite their advantages, multilingual systems
tend to underperform their bilingual counterparts as
the number of languages increases (Johnson et al.,
2017; Aharoni et al., 2019). This is due to the fact
that multilingual NMT must distribute its model-
ing capacity over different translation directions.
Zhang et al. (2020) show that the model capacity is
crucial for massively multilingual NMT to support
language pairs with varying typological characteris-
tics, and propose to increase the modeling capacity
by deepening the Transformer.

However, compared to going deeper or wider,
modeling cardinality based on aggregating a set
of transformations with the same topology has
been proven more effective when we increase the
model capacity (Xie et al., 2017). In this paper,
we efficiently increase the capacity of the multilin-
gual NMT model by increasing the cardinality, i.e.
stacking sub-layers that aggregate a set of transfor-
mations with the same topology.

Our main contributions are as follows:

• We propose to efficiently increase the capacity
of the multilingual NMT model by increasing
cardinality, and present a novel MIMO design
that allows transformations in the subsequent
layer to take different outputs from the current
layer as their inputs, unlike previous studies
(Xie et al., 2017; Yan et al., 2020) which feed
the same input to several transformations and
merge their outputs into one;

• We propose to learn a task-aware attention
mechanism for the MIMO transformation, al-
lowing the model to weigh different transfor-
mations of the set differently for specific trans-
lation directions;

• In our experiments on the OPUS-100 corpus,
our approach outperforms previous work and
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Figure 1: Block transformations. (a) takes the same input into a set of transformations, and adds up their outputs
as the output of the block. (b) takes the same input and processes it with these transformations without merging
their outputs. (c) is the MIMO architecture that combines weighted outputs of these transformations as inputs
to the subsequent transformation set. (d) combines weighted outputs of these transformations into one. Dashed
arrows indicate learned attention probabilities. Each “Trans” is a sub-layer that runs in the order of: transforming
→ dropout → residual connection → layer normalization, where the transforming unit can be either multi-head
attention or FFN, as depicted in Figure 2. We aggregate the final output of layer normalization of each “Trans” in
the block into the input fed to the next block in different ways (i.e., (a)-(d)).

achieves a new state-of-the-art while being
1.31 times as fast.

2 Preliminaries

Zhang et al. (2020) overcome the capacity bottle-
neck of multilingual NMT via deepening NMT
architectures.

Xie et al. (2017) present a highly modularized
network architecture for image classification. The
network is constructed by repeating a building
block that aggregates a set of transformations with
the same topology. For a given input i, the block
adopts n networks of the same topology trans to
process i and merges their outputs into the final
output o of the layer:

o =
n∑

k=1

transk(i) (1)

This design strategy exposes a new dimension,
namely “cardinality” (the size of the set of transfor-
mations), as an essential factor in addition to the
dimensions of depth and width. Xie et al. (2017)
empirically show that increasing cardinality is more
effective than going deeper or wider when we in-
crease the capacity to improve classification accu-
racy.

Yan et al. (2020) present a multi-unit Trans-
former to efficiently improve the translation perfor-

Transformation
(Multi-head Attn / FFN)

+

Output

Layer Norm

Input

Figure 2: The “Trans” unit.

mance by increasing cardinality instead of depth.
However, their work implements stacks of input→
performing multiple transformations → merging
blocks (as illustrated in Figure 1 (a)), is developed
for bilingual sentence-level transformation, and re-
quires the additional design of a biasing module
and sequential dependency that guide and encour-
age complementariness among different units. By
contrast, our work aims at efficiently increasing
the capacity for multilingual translation, proposes
the MIMO transformation (Figure 1 (c)) between
stacked blocks, and naturally uses the translation
task in attention form to guide individual transfor-
mations of the set to learn different representations
for different translation directions.
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3 Our Approach

3.1 Multi-Input-Multi-Output (MIMO)
Transformation

In contrast to previous approaches (Xie et al.,
2017; Yan et al., 2020) that follow a stack of
transformation-merging procedures (Figure 1 (a))
to increase cardinality, in our approach we allow
our set of transformations to take different inputs.
Compared to using the same input, this may en-
courage transformations to learn complementary
representations. Furthermore, merging the outputs
of different transformations into one is likely to
incur information loss. This is avoided in our ap-
proach.

We employ a MIMO transformation between
stacked layers (Figure 1 (c)) to enable each transfor-
mation of the block to selectively learn to operate
on its own unique input.

Specifically, we keep n outputs of the set of
transformations to produce multiple inputs for the
next layer instead of merging them into one. The
input ijk to the kth transformation of the jth layer
transjk is a weighted accumulation of the outputs
oj−1 of the layer j − 1.

ijk =
n∑

m=1

pjm ∗ oj−1
m (2)

where pjm are softmax-normalized learnable param-
eters to model translation task-aware attention for
multilingual NMT described in Section 3.2.
ojk is produced by transjk with ijk as its input:

ojk = transjk(i
j
k) (3)

In the case of a Transformer for multilingual
NMT, transjk can be either the multi-head atten-
tion or the feed-forward neural network. We adopt
a one-to-many transformation (Figure 1 (b)) for
the self-attention layer in the first encoder/decoder
layer to project one input from the embedding layer
to multiple inputs to subsequent layers, and per-
form a many-to-one transformation (Figure 1 (d))
with the outputs of the feed-forward layer of the
last decoder layer to build a single input for the
classifier.

3.2 Task-Aware Attention
Rather than separating the multilingual NMT
model into 2 parts: 1) the shared part for all lan-
guage pairs trained on the full dataset; 2) the lan-
guage isolated part which will only be activated

in the corresponding translation task and trained
on the part of the whole dataset specifically for
the language, we compute all transformations of
each block regardless of the translation task, thus
all model parameters can utilize and benefit from
the whole training set. At the same time, we intro-
duce a task-aware attention mechanism to utilize
different transformations of the block differently
for specific translation directions.

Specifically, we learn an embedding v for each
translation direction (i.e., to X (e.g., en, zh, de)) for
each transformation to weightedly aggregate multi-
ple outputs of the block below. v is first normalized
into a probability p:

p = softmax(v) (4)

Next, p is used in Equation 2 for weighted aggre-
gation. p is expected to assign a higher weight to
corresponding transformations of the block which
are more important for the translation direction.

3.3 Discussion

Increasing model capacity via increasing cardinal-
ity is more efficient than deepening a model or
widening it (Xie et al., 2017; Yan et al., 2020).
Compared to widening a model, increasing cardi-
nality removes connections between hidden units
and reduces both parameters and computation.
Compared to deepening a model, increasing cardi-
nality allows to parallelize the computation of all
transformations of a set, accelerating both training
and decoding.

4 Experiments

4.1 Settings

We conducted our experiments on the challeng-
ing massively many-to-many translation task on
the OPUS-100 corpus (Tiedemann, 2012; Aharoni
et al., 2019; Zhang et al., 2020). We followed
Zhang et al. (2020) for experiment settings. We
implemented our approaches based on the Neutron
implementation (Xu and Liu, 2019) of the Trans-
former translation model. Parameters were initial-
ized under the Lipschitz constraint (Xu et al., 2020).
We adopted BLEU (Papineni et al., 2002) for trans-
lation evaluation with the SacreBLEU toolkit (Post,
2018).1 We report average BLEU over 94 lan-
guage pairs BLEU94, win ratio WR (%) compared

1BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a
+version.1.4.1
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Models Direction BLEU94 WR BLEU4 BLEUzero Speed-Up

Zhang et al. (2020)
En→xx 23.36

-
19.45

14.08 1.00
xx→En 30.98 26.78

Ours
En→xx 24.17 78.72 20.08 14.71 1.31
xx→En 32.19 87.23 27.92

Table 1: Main results

Models
BLEU94

En→xx xx→En

Full 24.17 32.19
-MIMO 23.78 31.61
-MIMO-Task Attention 23.54 31.27

Table 2: Ablation on the MIMO and task-aware atten-
tion.

#Layers #Trans.
BLEU94

En→xx xx→En

4 6 23.92 31.76
6 4 24.17 32.19
8 3 24.08 31.94

Table 3: Results of different configurations.

to Zhang et al. (2020), average BLEU over 4 se-
lected typologically different target languages (de,
zh, br, te) BLEU4, and average BLEU for zero-shot
translation BLEUzero.

4.2 Main Results

For fair comparison, we use a 6-layer model where
each attention/FFN block contains 4 transforma-
tions, which leads to a similar number of parame-
ters compared to the 24-layer model of Zhang et al.
(2020). Results are shown in Table 1.

Table 1 shows that our approach achieves better
performance in all evaluations while being 1.31
times as fast.

4.3 Ablation Study

We study removing MIMO transformations and
task-aware attention. Results are shown in Table 2.

Table 2 verifies that both mechanisms contribute
to the performance.

We also examine different combinations of depth
and cardinality. Results are shown in Table 3.

Table 3 shows that using 6 layers with 4 trans-
formations in each block leads to the best perfor-

Main en de fr ar zh ru

1 rw sv pt he ja sh
2 yi da it mt ko lt
3 gd nn ca fa th sr
4 de nb es ga vi mk
5 xh no mt yo bn lv

Table 4: Languages with similar task-aware attention
weights.

mance.

4.4 Task-Aware Attention Weight Analysis

To verify whether task-aware attention learns to ag-
gregate similar languages together, we extract the
learned task-aware attention probabilities, flatten
them into vectors, and select the languages with
the top-5 cosine similarity. Results for several lan-
guages are shown in Table 4.

Table 4 shows that close languages are aggre-
gated together.

5 Related Work

Multilingual NMT includes one-to-many (Dong
et al., 2015), many-to-many (Firat et al., 2016a)
and zero-shot (Firat et al., 2016b) scenarios. A
simple solution is to insert a target language token
at the beginning of the input sentence (Johnson
et al., 2017).

Multilingual NMT has to handle different lan-
guages in one joint representation space, neglecting
their linguistic diversity, especially for massively
multilingual NMT (Aharoni et al., 2019; Zhang
et al., 2020; Freitag and Firat, 2020). Most studies
focus on how to mitigate this representation bot-
tleneck (Zoph and Knight, 2016; Blackwood et al.,
2018; Wang et al., 2018; Platanios et al., 2018;
Wang et al., 2019a; Tan et al., 2019b; Wang et al.,
2019b; Tan et al., 2019a; Bapna and Firat, 2019;
Zhu et al., 2020; Lyu et al., 2020).

There are also studies on the trade-off between
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shared and language-specific parameters (Sachan
and Neubig, 2018; Zhang et al., 2021), on the train-
ing of multilingual NMT (Al-Shedivat and Parikh,
2019; Siddhant et al., 2020; Wang et al., 2020b,a),
and on analyzing translations from multilingual
NMT (Lakew et al., 2018) or the trained model
(Kudugunta et al., 2019; Oncevay et al., 2020).
Transferring a pre-trained multilingual NMT model
can help improve the performance of downstream
language pairs (Kim et al., 2019; Lin et al., 2020),
especially for low-resource scenarios (Dabre et al.,
2019). Multilingual data also has been proven use-
ful for unsupervised NMT (Sen et al., 2019; Sun
et al., 2020).

6 Conclusion

We propose to efficiently increase the capacity for
multilingual NMT by increasing the cardinality.
We present a MIMO architecture that allows each
transformation of the block to have its own input.
We also present a task-aware attention mechanism
to learn to selectively utilize individual transfor-
mations from a set of transformations for different
translation directions.

Our model surpasses previous work and estab-
lishes a new state-of-the-art on the large scale
OPUS-100 corpus while being 1.31 times as fast.
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