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Abstract

Sequential sentence classification aims to clas-
sify each sentence in the document based on
the context in which sentences appear. Most
existing work addresses this problem using a
hierarchical sequence labeling network. How-
ever, they ignore considering the latent seg-
ment structure of the document, in which con-
tiguous sentences often have coherent seman-
tics. In this paper, we proposed a span-based
dynamic local attention model that could ex-
plicitly capture the structural information by
the proposed supervised dynamic local atten-
tion. We further introduce an auxiliary task
called span-based classification to explore the
span-level representations. Extensive experi-
ments show that our model achieves better or
competitive performance against state-of-the-
art baselines on two benchmark datasets.

1 Introduction

The goal of Sequential Sentence Classification
(SSC) is to classify each sentence in a document
based on rhetorical structure profiling process (Jin
and Szolovits, 2018), and the rhetorical label of
each sentence is related to the surrounding sen-
tences, which is different from the general sentence
classification that does not involve context. An
example is shown in Figure 1, the document is di-
vided into rhetorical labels such as “background”
and “outcome” for five sentences in NICTA dataset.
The SSC task is crucial for downstream domains
such as information retrieval (Edinger et al., 2017),
question answering (Cohen et al., 2018) and so on.

Traditional statistical methods, such as
HMM (Lin et al., 2006), CRF (Hirohata et al.,
2008; Hassanzadeh et al., 2014), etc., heavily rely
on numerous carefully hand-designed features.
In contrast, recent methods based on end-to-end
neural networks utilize hierarchical sequence
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Figure 1: An example of NICTA dataset for SSC task.
The text has five sentences and is divided into two seg-
ments {(s1, s2), (s3, s4, s5)} by labels.

encoders followed by the CRF layer to contextu-
alize sentence representations, which achieved
promising results. The first neural network
approach (Lee and Dernoncourt, 2016) combined
RNN with CNN that incorporates preceding
sentences to encode the contextual content and
further use a CRF layer to optimize the predicted
label sequence. Recently, Jin and Szolovits (2018)
propose a hierarchical sequential labeling network
to make use of the contextual information within
surrounding sentences to help classify. Conversely,
Cohan et al. (2019) employ BERT (Devlin et al.,
2018) to capture contextual dependencies without
hierarchical encoding or CRF layer. Yamada
et al. (2020) introduce Semi-Markov CRFs (Ye
and Ling, 2018) to assign a rhetorical label at
span-level rather than single sentence.

Nevertheless, the above-mentioned methods ig-
nore the latent structural information (e.g. seg-
mentation) in the document, which is the grouping
of content into topically coherent segments. In-
tuitively, a segment with several continuous sen-
tences is expected to be more coherent semantics
than the text spanning different segments, e.g., the
text with two segments in Figure 1. In this paper,
we propose a novel span-based dynamic local atten-
tion model to explore the latent segment structure
in a document for SSC task. First, we introduce
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dynamic local attention guided by segmentation
supervision signal to focus on the surrounding sen-
tences with coherent semantics, called Supervised
Dynamic Local Attention (SDLA). Furthermore,
we introduce an auxiliary task called span-based
classification, which calculates semantic represen-
tations of spans and performs span classification
on them to obtain predicted rhetorical labels. The
dynamic local attention mechanism and the aux-
iliary task complement each other to enhance the
model capacity to perceive segment structure and
improve the performance of SSC task. The results
on two benchmark datasets show that our method
achieves better or competitive performance than
state-of-the-art baselines.

2 Proposed Method

In this paper, we propose a Span-based Dynamic
Local Attention Model for sequential sentence clas-
sification with two novel components: supervised
dynamic local attention and auxiliary span-based
classification task, respectively. The architecture
of our model is shown in Figure 2.

2.1 Sentence Representations
For SSC task, given a sequence of sentences
X = {x1, x2, · · · , xN}, the model needs to predict
the label of each sentence Y = {y1, y2, · · · , yN}
based on the context which the sentence appears,
where N is the number of sentences. Following the
previous work (Yamada et al., 2020), we first feed
each sentence into BERT pre-trained with PubMed
(Peng et al., 2019) and then extract the encoding
corresponding to [CLS] token as sentence encod-
ing S = {s1, s2, · · · , sN} (we implement it using
Sentence-BERT (Reimers and Gurevych, 2019)).
Then, we employ two bidirectional LSTM layers to
produce context-informed sentence representation
hci ∈ Rd for whole document :

Hc = {hc1, hc2, · · · , hcN} (1)

2.2 Supervised Dynamic Local Attention
In this section, we introduce dynamic local atten-
tion guided by a supervised segmentation signal
to learn latent segment structure in a document.
Firstly, we generate the sentence-level attention
spans for each sentence by training soft mask-
ing (Nguyen et al., 2020), using pointing mech-
anism (Vinyals et al., 2015) to approximate left and
right boundary positions of the mask vector. Given
the query Q and key K, where Q = K = Hc,

Figure 2: The overview of our model, exemplified by
the sample in Figure 1. The labels ’b’ and ’o’ stand
for “background” and “outcome”, respectively. Cspan

denotes Auxiliary Span-based Classification Task.

we calculate the left and right boundary matrix
φ̂l, φ̂r ∈ RN×N for query Q as follows:

φ̂l = S(
QTWQ

L (KWK
L )T√

d
�M) (2)

φ̂r = S(
QTWQ

R (KWK
R )T√

d
�MT ) (3)

Mij =

{
−∞, i < j
1, i ≥ j (4)

where S is the softmax function, � is element-
wise product, and WQ

L ,W
K
L ,W

Q
R ,W

Q
R ∈ Rd×d

are trainable parameters. Eq. (2)-(3) approximate
the left and right boundary positions of the mask
matrix for the query Q (Each row approximate the
mask vector of the entire document correspond-
ing to each sentence in sequence order). Note that
we additionally introduce mask matrix M to en-
sure that the left boundary position l and the right
boundary position r generated at position i satisfy
this relationship such that 0 ≤ l ≤ i ≤ r ≤ N .

Given the above definitions, the attention span
masking matrix Ma can be achieved by composit-
ing the left and right boundary matrix :

Ma = (φ̂lLN )� (φ̂rL
T
N ) (5)

where LN ∈ {0, 1}N×N denotes a unit-value (1)
upper-triangular matrix.

Then we combine self-attention with the atten-
tion span masking, enabling the model to focus
on semantically related sentences around the target
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position and eliminate noisy aggregations :

A =
(QWQ)(KWK)T√

d
�Ma (6)

Hatt = S(A)(HcWH) (7)

where WQ,WK ,WH are the trainable parameters.
However, in the absence of a supervised process,

the dynamic local attention may fail to focus on the
corresponding informative sentences of the target,
especially for limited data, so we further introduce
the segmentation signal to guide the learning of dy-
namic local attention to capture coherent semantics
more accurately. Specifically, we employ binary
cross-entropy loss to describe the differences be-
tween attention matrix A and segment signal Y att:

Latt = BCE(σ(A), Y att) (8)

Y att
ij =

{
1, Eij = 1
0, else

(9)

where σ is sigmoid function. Eij = 1 denotes i-
th sentence and j-th are in the same segment (e.g.
(s1, s2) and (s4, s5) in Figure 1).

Finally, we concatenate Hc and Hatt as the con-
textual representations H and add a CRF layer to
classify each sentence.

2.3 Auxiliary Span-based Classification Task
Due to the obvious label consistency of sentences
within spans, we introduce an additional auxiliary
task called span-based classification to improve the
performance at the span-level. To this effect, we
consider all possible spans of various lengths and
propose a tagging scheme for span-based classifica-
tion. The scheme uses the same labels as sentence-
level to represent the label of a span. Firstly, we
represent a span from the i-th sentence to the j-th
sentence as a vector hij , which is concatenated by
four-vectors similar to Zhao et al. (2020):

hij = {hi;hj ; ĥi:j ;ϕ(j − i+ 1)} (10)

where ĥi:j is the attention output over the final
sentence representation H in the span, and ϕ(j −
i+ 1) is the feature vector encoding the span size.

We employ a cross-entropy category loss for
span-based classification:

Lspan = CE(Ŷ span, Y span) (11)

Y span
ij =

{
label, Fij = 1
0, else

(12)

where Ŷ span is the output probability at span-level,
Fij denotes i-th sentence and j-th sentence (i, j sat-
isfy the relationship i < j ) are in the same segment
and i, j is the beginning and end of the segment
respectively (e.g. (s1, s2) and (s3, s5) in Figure 1).

2.4 Objective Function

The overall objective function includes cross-
entropy loss Lsen, Lspan for sentence and span-
based classification and supervised attention loss
Latt :

L = Lsen + λattLatt + λspanLspan (13)

where λatt, λspan are the hyperparameters for bal-
ancing the strength of Latt and Lspan.

3 Experiments

3.1 Experimental Setup

Datasets and Baselines To evaluate the effec-
tiveness of our model, we conduct extensive exper-
iments on two standard benchmark datasets from
medical scientific abstracts, i.e. NICTA-PIBOSO
(Kim et al., 2011) and PubMed 20k RCT (Dernon-
court and Lee, 2017). The detailed description of
both datasets can be found in the appendix. We
compare our model with three recent strong neu-
ral models, i.e., those of Jin and Szolovits (2018),
Cohan et al. (2019), Yamada et al. (2020).

Implementation Details We set the size of
hidden state to 200 and apply dropout with the prob-
ability of 0.5 for BiLSTM. Both hyperparameters
λatt and λspan are set to 0.3. The batch size is 30.
We use Adam optimizer with learning rate 0.003
and weight decay 0.99 for training. For evaluation,
we maximize the score from sentence-level CRF
to get the predicted labels of the corresponding se-

Models Sentence-F1 Span-F1 Pk

NICTA-PIBOSO
Jin and Szolovits (2018) 82.3 51.1 17.3

Cohan et al. (2019) 83.0 54.3 21.3
Yamada et al. (2020) 84.4 58.7 –

Ours 86.8 62.9 12.2
PubMed 20k RCT

Jin and Szolovits (2018) 92.8 82.9 5.3
Cohan et al. (2019) 92.9 82.2 5.1

Yamada et al. (2020) 93.1 84.3 –
Ours 92.8 84.5 4.1

Table 1: The results comparison of our model and base-
lines on two benchmark datasets.
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background other intervention study design population outcome
Avg Num. Sent. 2.8 2.6 1.3 1.0 1.1 5.2

Jin and Szolovits (2018) 53.5 34.0 31.7 64.1 70.8 51.4
Cohan et al. (2019) 55.5 41.0 36.9 63.0 69.9 57.4

Yamada et al. (2020) 60.5 44.8 34.3 62.4 72.9 64.3
Ours 60.8 35.4 49.0 71.4 77.6 64.4

Table 2: Average number of sentences in spans and Span-F1 scores for each rhetorical label on NICAT-PIBOSO.

background objective methods results conclusions
Avg Num. Sent. 2.6 1.5 4.1 4.2 1.8

Jin and Szolovits (2018) 73.8 73.8 86.7 83.1 90.8
Cohan et al. (2019) 70.6 70.8 86.3 83.9 92.0

Yamada et al. (2020) 74.7 73.8 88.5 85.8 91.9
Ours 67.1 74.4 89.3 85.7 93.2

Table 3: Average number of sentences in spans and Span-F1 scores for each rhetorical label on PubMed 20k RCT.

quence. Following Yamada et al. (2020), we use
Sentence-F1 and Span-F1 as evaluation metrics1.

3.2 Experimental Results

Tabel 1 report the performance of our approaches
against other methods on PubMed 20k RCT and
NICTA-PIBOSO, respectively. The results of other
methods are obtained from Yamada et al. (2020).

We can observe that our model, whether
Sentence-F1 or Span-F1, is significantly better
than other methods on NICTA-PIBOS, and we get
a result comparable to Yamada et al. (2020) on
PubMed 20k RCT. We believe that our model has
remarkable performance on NICTA-PIBOS, which
has fewer training samples but larger label space,
because our model can capture latent segment struc-
ture by SDLA component and improve span repre-
sentations by auxiliary span-based classification.

In addition, table 2 and 3 show the detail re-
sults of Span-F1 scores for each rhetorical label.
Our model achieves better or similar performance
than other baselines, except for “other” on NICAT-
PIBOSO and “background” on PubMed 20k RCT.
We speculate that the reason is that the sentence
semantics corresponding to the “other” label are
diverse and not significantly distinguishable from
other labels, while the “background” usually ap-
pears before the “objective”, and the sentence pre-
sentations of the two are easily confused.

3.3 Segmentation Performance Evaluation

Specially, if we ignore the rhetorical labels of sen-
tences and only consider the segment boundaries
(i.e. binary classification, whether it’s a boundary),

1Please refer to Yamada et al. (2020) for the detailed cal-
culation way of Sentence-F1 and Span-F1.

Ablation Models Sentence-F1 Span-F1
NICTA-PIBOSO

Ours 86.8 62.9
- w/o SDLA 85.1 59.7
- w/o supervised signal 84.9 59.1
- w/o span-based classification 85.6 61.0

PubMed 20k RCT
Ours 92.8 84.5
- w/o SDLA 92.3 82.4
- w/o supervised signal 92.6 82.9
- w/o span-based classification 92.6 83.4

Table 4: Ablation study on two datasets.

this can be regarded as text segmentation (Koshorek
et al., 2018). We evaluate the segmentation per-
formance of our model using the probabilistic Pk

(Beeferman et al., 1999) error score (lower num-
ber, the better). The results2 are shown in the last
column of Table 1. Our model consistently out-
performs other baselines, suggesting that it also
contributes to the text segmentation task.

3.4 Ablation Study
To investigate the effectiveness of the designed
components, we conduct an ablation study on the
proposed model, and the results are listed in Ta-
ble 4. With the help of the SDLA component, the
performances are improved significantly, and the
way we impose the supervised signal to guide the
attention proves effective for yielding more true
positives. And the auxiliary task of span classifica-
tion effectively improves Span-F1.

3.5 Attention Visualization and Case Study
As shown in Figure 3, by incorporating supervised
signal, the attention focus on a continuous local

2Since Yamada et al. (2020) don’t release their codes, we
are unable to evaluate its Pk performance. The Pk results of
other models are obtained by running their codes.
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Sentence Gold Base Ours

Tizanidine hydrochloride , an alpha ( 2 ) - adrenergic receptor agonist , is a widely used B B B
medication for the treatment of muscle spasticity .
Clinical studies have supported its use in the management of spasticity caused by multiple B B B
sclerosis ( MS ) , acquired brain injury or spinal cord injury .
It has also been shown to be clinically effective in the management of pain syndromes , such as : B B B
myofascial pain , lower back pain and trigeminal neuralgia .
This review summarizes the recent findings on the clinical application of tizanidine . O B O
Our objective was to review and summarize the medical literature regarding the evidence for the O B O
usefulness of tizanidine in the management of spasticity and in pain syndromes such as
myofascial pain .
We reviewed the current medical and pharmacology literature through various internet literature O B O
searches .
This information was then synthesized and presented in paragraph and table form . O O O

Table 5: Examples of label predictions for NICTA-PIBOSO abstract by BERT+BiLSTM+CRF (Base) and our
proposed method (Ours). B and O denote background and other labels respectively.

Figure 3: Visualization of attention weights (left) and
supervised signal (right). The deeper color means the
higher weight.

span around the gold span. The visualization re-
sults not only verifies the effectiveness of the su-
pervised signal, but also reveals the interpretability
of our proposed SDLA.

Table 5 shows the results of Base and Ours
method for an abstract obtained from NICTA-
PIBOSO. Our model correctly identified the bound-
ary between the spans labeled by background (B)
and other (O), which shows our model benefit from
capturing latent segment structure identifying the
more indistinguishable segmentation boundaries.

4 Conclusion

In this paper, we propose a novel model for SSC
task, which includes a supervised dynamic local
attention to explore the latent segment structure
of the document, and an auxiliary task to improve
the performance at span-level representations. We
demonstrate the effectiveness of our model on two
datasets and find that our model also performs well
in the text segmentation scenario. In future work,
we will consider joint learning sequential sentence
classification and text segmentation.
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