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Abstract

A current open question in natural language
processing is to what extent language models,
which are trained with access only to the form
of language, are able to capture the meaning of
language. In many cases, meaning constrains
form in consistent ways. This raises the pos-
sibility that some kinds of information about
form might reflect meaning more transparently
than others. The goal of this study is to in-
vestigate under what conditions we can expect
meaning and form to covary sufficiently, such
that a language model with access only to form
might nonetheless succeed in emulating mean-
ing. Focusing on propositional logic, we gen-
erate training corpora using a variety of moti-
vated constraints, and measure a distributional
language model’s ability to differentiate logi-
cal symbols (¬, ∧, ∨). Our findings are largely
negative: none of our simulated training cor-
pora result in models which definitively differ-
entiate meaningfully different symbols (e.g., ∧
vs. ∨), suggesting a limitation to the types of
semantic signals that current models are able
to exploit.

1 Introduction

A current open question in natural language pro-
cessing is to what extent language models (LMs;
neural networks trained to predict the likelihood of
word forms given textual context) are capable of
truly understanding language. Bender and Koller
(2020) argue that, since such models are trained ex-
clusively on the form of language, they cannot pos-
sibly learn the meaning of language. We argue that
the question of whether language models can learn
meaning cannot be settled a priori. While language
models only have direct access to form, linguistic
form often correlates with meaning. The strength
of the correlation varies across both different as-
pects of language and different tests of linguistic
competence. While several intuitive tests of un-

derstanding (e.g., demonstrating knowledge of the
word dog by identifying pictures of dogs) are out
of scope for LMs, many tasks which NLP aspires
to solve (e.g., question answering, machine transla-
tion) operate entirely on natural language input and
output. Thus, a relevant question is whether models
which operate only on the forms of language can
nonetheless learn to differentiate meanings.

Our goal is to focus on a tractable subproblem
in order to improve our intuitions about the types
of distributional signals that LMs can use to extract
information relevant to meaning. We simulate a
language modeling setup using propositional logic,
in which we can naturally operationalize form to
be strings of symbols in the language and mean-
ing to be truth conditions. We define the semantic
transparency of a text-only training corpus to be
the degree to which an LM trained on that cor-
pus learns to differentiate between aspects of form
that affect truth conditions and aspects of form that
do not. We have two primary research questions.
First, what constraints on corpus generation pro-
duce greater semantic transparency? And second,
are any such constraints sufficient for an LM to
adequately differentiate meanings?

2 Experimental Design

2.1 Dataset Generation

We consider the form of a sentence to be simply the
observed, syntactically-valid strings of characters
and the meaning to be the truth conditions. Propo-
sitional logic is a simple language in which we can
characterize both form and meaning. We use the
grammar in Table 1, with standard semantics.

We focus our analysis on whether the represen-
tations of logical operators (∧,∨,¬) are influenced
by distributional patterns that go beyond their su-
perficial syntactic similarity evident in the grammar.
That is, if a trained LM identifies that the meanings
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S → (S ∧ S) | (S ∨ S) | (¬S) | (sym)
∧ → ∧1 | ∧2 · · · | ∧K
∨ → ∨1 | ∨2 · · · | ∨L
¬ → ¬1 | ¬2 · · · | ¬M
sym→ sym1 | sym2 · · · | symN

Table 1: Propositional logic grammar.

of ∧1 · · · ∧k are identical to one another, and differ-
ent from the meanings of ∨1 · · · ∨l, we expect the
embeddings for the ∧i to be more similar to one
another than they are to any of the ∨i or the ¬i. We
consider a corpus to be semantically transparent if
an LM trained on the corpus learns semantically-
clustered representations of the logical operators.

We generate four different training corpora, mo-
tivated by different assumptions one might make
about how natural language corpora arise. These
constraints are as follows, ordered roughly from
weakest to strongest:

1. Syntactic Constraint. Speakers only generate
sentences which are syntactically well-formed (that
can be parsed by a syntactic parser). Here, this
amounts to sampling from the grammar without
additional constraints.

2. Truthfulness Constraint. Speakers of the
language are constrained to generate sentences
that are true in some context, i.e., that evaluate
to True in at least one possible world. To im-
plement this, we again sample from the grammar
but additionally check with a satisfiability checker
and omit sentences which are not satisfiable. E.g.,
(sym1 ∧ (¬(sym1))) would not appear.

3. Informativity Constraint. Speakers generate
sentences not just to state true facts, but to provide
listeners with information about a particular state
of affairs. To simulate such a constraint, we ran-
domly sample a set of “target worlds” T and a set
of “alternative worlds” A such that T ∩A = ∅. We
then generate the shortest sentence s such that s
is true in every world in T and s is false in every
world in A. We experiment with several sizes of
T and A, but report only on |T | = |A| = 2 as this
provides the right balance of contextual diversity.
See Appendix for additional discussion.

4. Explicit Grounding. We consider a setting
in which speakers explicitly dictate the full state
of affairs, without ambiguity. This is not intended
as a realistic model of how corpora are generated,

but rather to provide an upper bound on semantic
transparency by giving models a corpus in which
form is perfectly correlated with meaning. We
generate this corpus in the same way as the Truth-
fulness corpus, but append an explicit marker of the
truth values1of the variables in the sentence, e.g.:
(sym1 ∧ (¬(sym2))) <sep> sym1 T sym2 F.

Sampling Parameters. Each dataset consists of
100K training and 1K validation sentences. We
set the number of non-reserved symbols (N in the
above grammar) to 5,000, and the number of “syn-
onyms” of each logical symbol (K,L,M) to be 5.
Thus, a sentence in one of our datasets might look
like (sym1 ∧3 (¬4(sym85))), and would be true if
and only if sym1 is true and sym85 is false 2.

We generate sentences using a probabilistic
context-free grammar with the rules shown above.
The tree depth d of a generated sentence is con-
trolled by a parameter γ such that P (d|d−1) = γd.
The number of unique variables in a sentence3 is
sampled from a non-zero Poisson distribution pa-
rameterized by λ. We set λ = 2 and γ = .85 in
the reported experiments, but don’t find parameter
choice affects our conclusions. Note that the In-
formativity dataset is generated deterministically,
and thus sampling parameters do not apply and sen-
tences in that dataset are shorter. Dataset statistics
and data generation parameter sensitivity are in the
Appendix.

2.2 Models and Training

We consider LSTM and Transformer LMs of differ-
ing sizes, shown in Table 2. Each model is trained
on one of the above four datasets until convergence
on the associated validation set using early stop-
ping with a patience of 15 epochs. The LMs were
implemented in PyTorch (Paszke et al., 2019) and
took roughly 5 hours to converge on TitanV, Ti-
tanRTX, and QuadroRTX GPUs 4. We randomly
initialize the embedding layer. Hyperparameter
details can be found in the Appendix. We train 5
random restarts of each setting. Due to the regular
nature of our synthetic data, we found larger mod-

1Sampled from the set of satisfying variable assignments.
2We began by experimenting with many different dataset

sizes and vocab counts. However, we did not find that models
behaved differently on larger datasets and so focused on the
smaller ones for convenience. See Appendix for results with
different model sizes.

3We set a maximum number of variables per sentence in
order to bound the number of possible variable assignments.

4Code publicly available at https://github.com/
attraylor/semantic-transparency-code.

https://github.com/attraylor/semantic-transparency-code
https://github.com/attraylor/semantic-transparency-code
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Model Syntactic Truthfulness Informativity Grounded

Small LSTM (192K) 21.2 / 87.7 / 87.7 17.6 / 88.7 / 88.6 21.5 / 99.6 / 99.5 21.2 / 87.5 / 87.5
Medium LSTM (545K) 17.6 / 90.2 / 90.1 17.5 / 89.6 / 89.5 20.9 / 99.9 / 99.8 8.3 / 89.3 / 86.8
Small Trans. (311K) 11.8 / 86.9 / 84.6 12.4 / 87.2 / 85.4 21.7 / 98.4 / 98.2 10.3 / 86.2 / 83.1
Medium Trans. (377K) 11.4 / 91.3 / 90.6 9.9 / 92.0 / 91.3 18.1 / 99.5 / 99.5 9.1 / 91.7 / 89.8

Table 2: Summary of language modeling performance. For each model, on each training dataset, we report PPL /
%Syn / %Sem where PPL is the perplexity on heldout data (drawn from the same distribution as the training cor-
pus), %Syn is the percentage of generated sentences that are syntactically well formed (i.e., parseable), estimated
on a set of 1,000 generations sampled from the trained model, and % Sem is the percentage of generated sentences
that are semantically well formed (i.e., satisfiable), estimated on the same set of 1,000.

els overfit the training data quickly, and thus focus
on smaller models.

3 Results and Discussion

Language Modeling Performance. We first
sanity check that the trained models indeed func-
tion as LMs before evaluating the lexical represen-
tations. We compute the models’ perplexity on
heldout data. However, since perplexity is not com-
parable across conditions (since each constraint
leads to differently distributed corpora) we also
sample 1,000 generated sentences from each model
and compare by measuring whether the sentences
are 1) syntactically well-formed (i.e., parseable)
and 2) semantically well-formed (i.e., satisfiable).
Even in the case of models trained with the Syntac-
tic constraint, as seen in Table 2, most of the sen-
tences produced are nonetheless satisfiable. We see
no difference between the Syntactic, Truthfulness,
and Explicit Grounding conditions on these met-
rics. (The Informativity numbers are likely higher
due to the shorter sentences that result from that
generative process.) The fact that models trained
only on satisfiable sentences nonetheless generate
sentences which do not abide by such constraints
suggests the models fail to encode less overt distri-
butional patterns, which depend, for example, on
recognizing abstract relations such as “sameness”
of symbols in order to recognize violations (e.g.,
(A ∧(¬ A)). The failure to capture such properties
of the data even in this simplified setting might
have negative implications for the models’ ability
to infer abstract semantic relationships from more
complex natural language corpora.

Representations of Logical Symbols. Again,
our first question is: What constraints on corpus
generation yield the greatest amounts of semantic
transparency? We quantify this by measuring how

well the embeddings learned by the trained LMs
correspond to our truth-theoretic notions of seman-
tic equivalence: e.g., are ∧1 and ∧2 more similar
to one another than ∧1 and ∨1? We use a nearest
neighbors probing classifier to evaluate whether
models distinguish the operators at the lexical level.
We run k-fold cross validation, in each iteration
choosing one symbol per class (i.e., one ∧, one ∨,
one ¬) as the class exemplars, and then classifying
the remaining points using cosine similarity. We set
k to 125, so that we observe every symbol combi-
nation as exemplars. We report accuracy averaged
across folds and random restarts.

Probing classifier results are shown in Figure 1.
Figure 2 shows an embedding visualization for one
model (Medium Transformer). We find that train-
ing on the Syntactic and on the Explicit Grounding
dataset leads to the least and the most distinguish-
able operators respectively for all models, and the
other conditions end up between these values.

These results address our first question: there is
some difference in semantic transparency between
differently constrained datasets. Interestingly, the
Transformer models perform better in the Truth-
fulness condition than in the Syntactic condition,
which the LSTMs fail to differentiate. This sug-
gests that, even if it does not necessarily manifest in
the models’ generations (Table 2), the Transformer
architecture may nonetheless be capable of picking
up on some of the more abstract distributional pat-
terns via which syntax and semantics are correlated.
Further work on larger models would be required
to explore this in depth.

In addition, we observe little difference between
the quality of the representations learned in the
Informativity condition and those learned in the
Truthfulness condition; one exception might be
in the Medium LSTM, though we cannot confirm
that this difference is robustly reproducible. Thus,
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Figure 1: Each value in this graph represents average classification score across 125 iterations of a simple nearest
neighbor probing classifier averaged across 5 random seeds of the model (625 accuracy numbers per box and
whiskers plot). The dotted line is random chance / maximum class accuracy (33%).

Random Syntactic
AND synonyms
OR synonyms
NOT synonyms

Truthfulness Explicit Grounding

Figure 2: PCA of the representations created by the
Medium Transformer model.

based on our experiments, there is no evidence that
Informativity alone yields greater semantic trans-
parency. However, we note that the experimental
setup for Informativity is not directly comparable
to the others (e.g., sentences are shorter and less
diverse than in Truthfulness) and thus further study
would be needed to make strong claims, positive or
negative.

Finally, we note that in nearly all cases, models
are able to differentiate ¬ from the other opera-
tors, likely because it is a unary operator and thus
syntactically different from the binary operators.
Thus the difference in accuracy is almost entirely
due to whether the representations of ∧ and ∨ are
differentiated (as shown in Figure 2). This gives a
negative answer to our second question concerning
whether any constraints are sufficient for an LM
to adequately differentiate meaning. Apart from
the Small Transformer on the Explicit Grounding
condition, none of the models can completely dis-
tinguish between symbols that are similar in form
but different in meaning.

4 Related Work

It is an open question whether neural models can
learn abstract functions (Marcus, 2001). Our work
builds upon a large body of research intended to
probe which aspects of language and meaning are
being captured by large LMs. Most closely re-
lated is work that assesses whether models can per-
form symbolic reasoning about language (Kassner
et al., 2020) e.g., quantifiers or negation (Talmor
et al., 2020; Ettinger, 2020; Kassner and Schütze,
2020; Wang et al., 2018) or by measuring the sys-
tematicity of models’ inferences (Goodwin et al.,
2020; Kim and Linzen, 2020; Yanaka et al., 2020;
Warstadt et al., 2019). Such work has tended to
find that LMs reason primarily contextually as op-
posed to abstractly. Our evaluation method– which
asks whether word embeddings cluster according to
their truth-conditional meaning– is related to recent
work which defines text-only models as “grounded”
if the learned embedding space is isomorphic to
the similarity function defined over a ground-truth
meaning representation (Merrill et al., 2021). More
distantly related is work on LMs’ ability to reason
about numbers (Wallace et al., 2019) or perform
multi-hop reasoning (Yang et al., 2018). Prior work
that examines neural networks’ ability to perform
logical reasoning is superficially related (Evans
et al., 2018). In this way, our work builds on past
work that uses synthetic rather than natural lan-
guage datasets in order to probe model behavior
in the absence of confounds. Notable examples
are SCAN for measuring compositionality and gen-
eralization (Lake and Baroni, 2018) and Kassner
et al. (2020) which investigates LM knowledge ac-
quisition and fact memorization using a synthetic
dataset of entity-relation tuples.
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5 Conclusion

Using propositional logic corpora to simulate a con-
trolled language modeling setting, we ask: 1) Do
properties of the training corpus affect LMs’ abili-
ties to differentiate the meanings of logical opera-
tors? and 2) Do any training corpora lead to models
that differentiate these meanings to a satisfactory
degree? Our results imply a positive answer to (1):
Models trained on corpora generated with differ-
ent constraints appear to perform differently at the
task of separating ∧ from ∨. However, these differ-
ences are a function of both data and model. For
example, the Transformer architecture seems better
able to learn from weaker signal (corpora generated
only with a Truthfulness constraint), while LSTMs
require more explicit signal (direct access to truth
values). On question (2), our results are largely neg-
ative for the syntactically similar operators. Even
the most semantically transparent training data did
not enable models to separate the representations
of symbols with similar form but different meaning.
Only the Small Transformer trained on the Explicit
Grounding condition can perfectly differentiate ∧
from ∨ at the lexical level, despite the task’s con-
trolled nature. However, every model did separate
¬ from both ∧ and ∨, illustrating how syntactic
differences can support differentiation of meaning.

Overall, we contribute a novel framework, based
on syntax and semantics of propositional logic, via
which we can explore questions of the linguistic
capabilities and weaknesses of neural LMs. Our
experiments represent a first step in this line of
work, but further work is needed to fully appre-
ciate the implications of these results in natural
language settings, in particular, how closely the
constraints explored here mirror real corpora, and
how such learning is influenced by noise and am-
biguity found in human language. One specific
limitation of our experiments is that we constrain
our analysis to the lexical representations– i.e., we
assume that differences between the meanings of ∧
and ∨ should be encoded in the lexicon, via context-
invariant type embeddings. While this assumption
is commonplace in formal semantics, neural LMs
open the possibility of alternative representations
of lexical and compositional semantics. Our results
do not rule out the possibility that the relevant se-
mantic distinctions are encoded elsewhere in the
model, above the lexical layer. However, we take
the combination of the lexical probing results and
LM generation results as suggestive but not con-

firmational evidence of a more general negative
finding.
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7 Appendix

7.1 Dataset generation parameters
There are several parameters involved in the cre-
ation of our synthetic propositional logic datasets:

• Number of sentences in the training set

• Number of unique non-reserved variables (N)

• Number of each operator (K, L, M)

• Sentence depth parameter (γ)

• Poisson distribution parameter for unique non-
reserved variables in sentence (λ)

In comparison to dataset sizes for large language
models in modern natural language processing,
the dataset size (100k training examples) and vo-
cabulary size (5k symbols + 5 of each operator)
of our main experimental results (Figure 1) are
rather small. We sought to determine whether our
choice for dataset size and non-restricted variable
count greatly changed the final results– do our con-
clusions change based on these parameters? We
trained models on different variations of our initial
parameters.

First, we swept across training set sizes (20k,
100k, and 500k examples) and number of symbols
(500, 5k, 50k) while holding all other parameters
constant (γ = .85, λ = 2, K, L, M = 5). We used
the Medium Transformer model, which performed
the best across our four models, and observed the
results of the probing classifier on the embeddings
after training separately on each model.

The results of the above sweep are shown in
Figure 3. We do not find that the models perform
dramatically differently on any of the datasets when
dataset size and number of non-reserved symbols
are varied.

We also experimented with changing the num-
ber of operator synonyms (e.g. ∧1,∧2, ...∧K) We
experimented with three different sizes– (K, L, M)
= 5, 25, 100– for each of our 4 datasets. Those re-
sults are shown in Figure 5, and average frequency
is shown in Table 3. We found that adding addi-
tional synonyms of each operator hurt performance–
likely because adding additional synonyms of ∧
and ∨ made generalization more challenging, caus-
ing the models’ performance to drop.

In a set of earlier experiments, to choose the
sentence depth (γ) and Poisson distribution (λ) pa-
rameters, we hyperparameter searched on the Ex-
plicit Grounding condition across three values of

K, L, M Syn. Tru. Inf. Grd.
5 49.7k 49.2k 16.3k 49k
25 9.94k 9.84k 3.25k 9.81k
100 2.49k 2.46k 0.81k 2.45k

Table 3: Average count of each operator across each of
the datasets.

each (nine datasets in total). Specifically, we tested
λ = 2, 3, 5 and γ = .7, .8, .85. We then trained
the transformer model once on each of the nine
datasets, and the results are shown in Figure 6. We
chose λ = 2 and γ = .85.

7.2 Informativity dataset information
We tested different settings of |T | (number of tar-
get worlds) and |A| (number of alternative worlds).
For |T | = 1, |A| = 1, the best choice of s will
always be a single sym or its negation. For ex-
ample, with variables sym1,sym2, we might sam-
ple max variables = 2 and thus T = (sym1 =
T,sym2 = F), A = (sym1 = F,sym2 = F).
The shortest sentence would then be sym1, as
it sufficiently distinguishes T from A. How-
ever, with |T | = 1, |A| = 2, we might generate
T = (sym1 = T,sym2 = F), A = ((sym1 =
F,sym2 = F), (sym1 = T,sym2 = T)). Now
the shortest sentence that can be generated is
(sym1 ∧1 ¬1(sym2)).
|T | = 1, |A| = 2 and |T | = 2, |A| = 1 result

in sentences that are both short and structurally
nearly identical, although inverted. This is due
to the truth conditions allowed by each operator.
We generate the datasets for each combination and
report the results in Table 4. We excluded these
datasets because of the simplicity and similarity
of the sentences. We found that |T | = 2, |A| = 2
allows for sentences that are much more varied.
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Figure 3: Average probing classifier score across example count / number of unique non-variable symbols for the
Medium Transformer model.
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Figure 4: This graph contains the same experiments as Figure 1, but is only the accuracy on ∧ and ∨, excluding
the results of the negation operator.
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Inform. 1T/1A Inform. 1T/2A Inform. 2T/1A
Sent. Count Sent. Count Sent. Count
a 4523 (a ∧ b) 27047 (a ∨ b) 27236
¬(a) 4460 (a ∧ ¬(b)) 21474 ¬((a ∧ b)) 21392

¬((a ∨ b)) 21338 (a ∨ ¬(b)) 21260
(¬(a) ∧ b) 21061 (¬(a) ∨ b) 21045
¬(a) 4544 a 4559
a 4536 ¬(a) 4508

Table 4: All sentences generated for the first three Informativity datasets fell into one of these templates. Arbitrary
symbols are replaced with a and b. This distinction happens because of the truth conditions that are allowed by the
∧ and ∨ operators.

Dataset Sent. Len. Average sym count Average op count Average Unique syms
Syntactic 28.51 6.19 7.44 2.27
Truthfulness 28.25 6.14 7.37 2.33
Inform. (2T/2A) 10.92 2.83 2.70 2.20
Expl. Ground 34.06 8.51 7.40 2.33

Table 5: Averaged statistics per sentence for the different datasets (training sets). All datasets are 100K training
examples and 1k heldout examples.

Model LR symb dim hidden dim # heads # layers dropout
Small LSTM .0001 4 32 1 0.0

Medium LSTM .0001 32 64 2 0.2
Small Transformer .0001 4 32 2 4 0.0

Medium Transformer 5e-05 32 128 4 4 0.2

Table 6: Hyperparameters for each model.
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Figure 5: Sweep across number of operators using the
Medium Transformer model.
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Figure 6: Sweep across λ and γ values for the Explicit
Grounding dataset using a Transformer model.


