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Abstract
With the explosion of chatbot applications,
Conversational Question Answering (CQA)
has generated a lot of interest in recent
years. Among proposals, reading comprehen-
sion models which take advantage of the con-
versation history (previous QA) seem to an-
swer better than those which only consider the
current question. Nevertheless, we note that
the CQA evaluation protocol has a major lim-
itation. In particular, models are allowed, at
each turn of the conversation, to access the
ground truth answers of the previous turns.
Not only does this severely prevent their appli-
cations in fully autonomous chatbots, it also
leads to unsuspected biases in their behavior.
In this paper, we highlight this effect and pro-
pose new tools for evaluation and training in
order to guard against the noted issues. The
new results that we bring come to reinforce
methods of the current state of the art.

1 Introduction

The ability to automatically answer questions from
a set of raw text paragraphs has long been coveted
by computer scientists (Woods, 1977). For appli-
cations in search engines, one could consider an
isolated task where a user formulates a single ques-
tion (Croft et al., 2010; Siblini et al., 2020). But
recently, with usage in conversational agents (e.g.
chatbots), a more contextualized variant referred
to as Conversational Question Answering (CQA)
has attracted a great deal of attention (Reddy et al.,
2019; Choi et al., 2018). CQA differs from tradi-
tional (extractive) Question Answering (Rajpurkar
et al., 2016) because Question-Answer (QA) pairs
are not single but come in sequences within conver-
sations. Therefore, models can use previous turns
as context to extract the answer of the current ques-
tion (Zhu et al., 2018; Huang et al., 2018; Qu et al.,
2019a). In some cases, the history is even crucial
to disambiguate pronouns in the question.

Similarly to other NLP tasks, the state-of-the-
art approaches for CQA are variants of the Trans-
former Encoder (Vaswani et al., 2017), a deep neu-
ral network with several self-attention layers that
produce contextualized representations of the ”to-
kens” (words, subwords) that compose a text. For
instance, models like BERT (Devlin et al., 2019;
Lan et al., 2019; Sanh et al., 2019) obtain a more
than decent performance on CQA datasets like
QuAC (Choi et al., 2018) or CoQA (Reddy et al.,
2019). However, they miss the context to fully un-
derstand the questions. Proposals have been made
to integrate the history in several manners: using
a recursive strategy (Huang et al., 2018), append-
ing previous QAs to the current question as input
(Zhu et al., 2018), and contextualizing the question-
paragraph pair with respect to the history. We
can mention in particular BERT-HAE and BERT-
PHAE (Qu et al., 2019a,b) which improve BERT in
a simple yet efficient way by encoding, in addition
to segment and position, the fact that parts of the
paragraph’s words belonged to previous answers.

2 Motivation and main contributions

Our objective here is not to propose yet another
model to try to obtain the best predictive score on
CQA leaderboards. Instead, we focus our think-
ing around the current evaluation/training proto-
cols with regards to the possible application cases.
The starting point of our reflection is that cur-
rently, when evaluated on CQA datasets, models
like BERT-HAE use the ground-truth answers of
previous turns as context to answer the current ques-
tion. This limits the scope of applicability to only a
”semi-automatic” bot that would require a human
providing supervision at each turn. We also show
how it biases the selection of models towards those
with an undesired filter behavior.

To make approaches from the literature usable
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in more difficult/realistic scenarios like standalone
chatbots (in which they can only access the previ-
ous questions and their predictions of the answers),
we make the following contributions: (1) We imple-
ment new evaluation tools to first highlight the cur-
rent unnoticed and undesirable behavior: in ground-
truth free conditions, CQA approaches can become
even less accurate than baselines like BERT which
do not exploit the history at all. (2) We develop
the analog training protocol to make approaches ro-
bust to the observed issues. In particular, this gives
back state-of-the-art models the strength to outper-
form the baseline but this time in a scenario that
connects better to real-world conversational agents.
Our work comes with an implementation of conver-
sational QA tools, based on the most widely used
transformers library (Wolf et al., 2019).

3 Conversational Question Answering

Conversational Question Answering (CQA) is a
Natural Language Processing task related to Ma-
chine Comprehension (MC) (Zhang et al., 2019;
Gupta et al., 2020). MC has grown significantly
over the last decade, particularly thanks to (1)
large scale datasets such as SQuAD (Rajpurkar
et al., 2016) or Natural Questions (Kwiatkowski
et al., 2019), (2) the improvement of representation
learning models (Joulin et al., 2017), (3) powerful
mechanisms such as attention (Yang et al., 2016;
Vaswani et al., 2017), and (4) the emergence of
several related topics like multi-lingual modeling
(Pires et al., 2019; Siblini et al., 2019) or Conver-
sational Question Answering (Choi et al., 2018;
Reddy et al., 2019).

In CQA, questions are grouped in conversations
and often require the context, i.e. previous QA
turns, to be fully understandable. QuAC (Choi
et al., 2018) and CoQA (Reddy et al., 2019) are
two examples of CQA datasets. They were both
generated by humans (a ”student” and a ”teacher”)
through conversations where the student asks a se-
ries of questions, complementary or not, on a given
paragraph and the teacher answers them. In this
paper, we focus on QuAC (Question Answering
in Context) which is more recent and described as
more challenging than CoQA (Choi et al., 2018).
It contains 14k conversations and around 100k
question-paragraph pairs, split into a training set
(11,567 conversations / 83,568 questions), a valida-
tion set (1,000 conversations / 7,354 questions) and
a test set. It evaluates models with several metrics,

the main one being the F1-score (Flach, 2003).
Models proposed for QuAC are similar to those

developed for SQuAD (e.g. BiDAF (Seo et al.,
2016) or BERT (Devlin et al., 2019)) but they addi-
tionally integrate the history. A popular example is
BERT-HAE (Qu et al., 2019a). It uses BERT’s ar-
chitecture but modifies the input embedding layer
to add a novel component: the History Answer
Embedding (HAE). As usual, the input question-
paragraph pair is tokenized and marked with po-
sitions and segments. Then, an additional History
Answer marker is added to indicate whether the to-
kens belonged to answers of previous questions or
not, and the resulting embedding is simply added
to the other embedding vectors (token, position,
segment) before the self-attention blocks. BERT-
HAE was enhanced, in a later publication (Qu et al.,
2019b) by BERT-PHAE (Positional HAE) which
additionally encodes the turn position of the an-
swers in the history. Although very promising, we
note that BERT-HAE and BERT-PHAE, as well
as other state of the art models for QuAC, access
the ground-truth answers of previous turns during
evaluation. Therefore, reported results only reflect
the performance within a reduced scope of appli-
cability. In the following, we detail this limitation
and propose to complement the current protocol in
order to improve both evaluation and training.

4 A more Robust Protocol

Consider a standalone chatbot that successively an-
swers questions from documents. At each turn, it
cannot know for sure the ground truth (GT) answers
of the previous turns except if the user or another
human provides supervision. This could happen in
scenarios where the role of the algorithm is only to
provide answer suggestions (semi-automatic) to a
human agent (e.g. in customer support). However,
applications often seek bots where the question-
answer loop is automated (standalone). Here we
investigate this second setting. We start by repro-
ducing the literature results on the semi-automatic
scenario, then we exhibit the limits and propose
solutions for our target scenario.

4.1 Reproducing the Regular Evaluation in
the Semi-automatic Scenario

To evaluate the baseline performance (semi-
automatic), we train BERT-HAE and BERT-PHAE
on QuAC using the protocol described by the au-
thors (Qu et al., 2019a) and the same hyperparame-
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ters: history markers from up to 6 turns, and spe-
cific optimization parameters (12 as batch size, 3e-
5 as learning rate with a linear decrease to 0 over
24k training steps). We implement our own train-
ing script on the basis of codes pieces from the
transformers library (Wolf et al., 2019) and BERT-
HAE’s authors1. Experiments are run with a Nvidia
Tesla V100 GPU.

Model F1 Uses history

BiDAF++ (Choi et al., 2018) 51.8 No

BERT (Qu et al., 2019a) 54.4 (54.8) No
BERT-HAE (Qu et al., 2019a) 63.1 (63.4) Yes
BERT-PHAE (Qu et al., 2019b) 64.7 (64.4) Yes

Table 1: F1-score of BERT, BERT-HAE, BERT-PHAE
and a previous baseline on QuAC using the regular eval-
uation protocol. We display the original results pub-
lished by the authors and the ones we reproduced (in
parentheses).

Our results are roughly equal to those previously
reported (Table 1). BERT’s F1 score is 54.8, which
compares favorably to previous baselines such as
BiDAF. By adjusting the representation of the to-
kens based on the history of answers, BERT-HAE
allows a significant improvement to 63.4 (+15.7
%). The position of the turns in the history also
has its importance allowing BERT-PHAE to fur-
ther improve the F1-score to 64.4. This is probably
because questions are often related to the answers
that directly precede them. To improve the results
even further, one can also select a specific subset
of turns in the history (Qu et al., 2019b).

4.2 Critical Analysis: The Filtering Behavior
Although promising, the aforementioned results
need to be considered with caution. A hasty con-
clusion is that adding the history allows the model
to benefit from a context and hence to better process
the current question. However the improvement
could also be explained by a bias in the dataset at
hand. Indeed, this question answering task is ex-
tractive, i.e. answers are selected from a paragraph.
In the course of a conversation in QuAC, an aver-
age of 7 questions are successively asked on the
same rather small paragraph. Thus simply filtering
the paragraph tokens with the answer history pro-
vides the advantage of reducing considerably the
list of possible remaining answers. Note however
that such a filtering could also have a negative ef-
fect, in the presence of overlap between answers.

1https://github.com/prdwb/bert_hae

To get better insights of the impact of a filtering
behavior in practice, we run three experiments.

Model F1 F1 w/ post filtering

BEST 95.6 92.7
BERT 54.8 56.9
BERT-HAE 63.4 62.5

Table 2: Evaluation of the impact of post-filtering on
BEST, BERT and BERT-HAE.

Experiment 1: The negative impact of filtering
due to overlap We first compute the best reach-
able F1-score (that we refer to as BEST) as if we
had a model that always predicts the expected an-
swer. Then we compute ”BEST w/ post filtering”
with the same predictions except that we post-filter
all tokens that belong the 6 previous turns’ answers,
except for the ”Cannot Answer” tokens (reserved
for unanswerable questions). BEST F1 score is
95.62 while ”BEST F1 w/ post filtering” is lower
but very close: 92.7 (Table 2). This tells us that
the maximal negative impact of a filtering strategy
on QuAC is weak. We find an explanation by do-
ing proportion measurements in QuAC’s eval set:
in particular, the percentage of overlapping tokens
(resp. non overlapping tokens) between answers
is low (resp. high): 5.7% (resp. 74.1%), the other
20.2% being the ”Cannot Answer” tokens.

Experiment 2: Global impact of a post filtering
on the models After 6 turns, sometimes almost
half of the paragraph tokens belong to the history
of answers. Even if experiment 1 suggests a nega-
tive impact of filtering due to overlap, the positive
impact on our baselines (due to the significant re-
duction of the number of candidate answers) could
counterbalance. We therefore re-evaluate the mod-
els trained in section 4.1, but this time we apply a
post processing of their predictions: the start/end
logits of tokens that belong to the answers of pre-
vious turns are set to −∞, except for the ”Cannot
Answer” tokens. This forces previous answers to
be excluded from the final predicted span text. This
simple strategy to integrate the history in BERT al-
lows an improvement to an F1-score of 56.9 (Table
2). On the contrary, it globally reduces the score

2Intuitively, it should be 100. But this value is unreachable
in practice. The reason is that questions in QuAC have several
acceptable answers (span texts of various length) and we select
one randomly as BEST prediction. And, QuAC’s official
evaluation script computes, for each sample, the average F1
between the prediction and all possible answers.

https://github.com/prdwb/bert_hae
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of BERT-HAE to 62.5 (a reduction factor slightly
lower than with BEST). These results suggest that
access to ground-truth answers of previous turns
allows in QuAC, in which the overlap is weak, a
filtering mechanism to be a positive way of integrat-
ing history. Results also suggest that BERT-HAE
might already implicitly integrate a filtering behav-
ior. Unquestionably, it does it in a more expressive
manner than our hard post-processing, since the
history markers are passed as inputs to the model.

Experiment 3: Does BERT-HAE exhibit a fil-
ter behavior? Although suggested by the previous
experiment, we want to answer this question more
clearly. We consider an experiment aligned with
the philosophy of adversarial attacks (Akhtar and
Mian, 2018; Morris et al., 2020). During evalua-
tion, we systematically modify the history answer
markers so that the tokens of the current expected
answer are marked as if they belonged to the his-
tory. The results obtained from this evaluation pro-
tocol are displayed under the column ”F1 w/ Adv”
in Table 3. F1 w/ Adv allows to measure, with
the F1 metric, the ability of the models to answer
a question when its answer has already appeared
in the conversation before. In this condition, we
observe a dramatic drop in BERT-HAE’s perfor-
mance (from 63.4 to 41.7), and an even worse for
BERT-PHAE. This confirms that these models tend
to output lower probabilities for tokens that are in
the history, which suggests a filtering behavior and
makes their usage potentially counter productive.

4.3 Proposed Evaluation for the Standalone
Scenario

The current evaluation protocol on QuAC’s valida-
tion set can bias model selection towards those able
to implement a filtering behavior, which seems to
be the case for BERT-(P)HAE. Thus, it does not
guarantee a robust behavior in a fully autonomous
bot. Here we propose an extension.

Inspired by the literature of recurrent mod-
els, we refer to the regular evaluation protocol,
which access to ground truth answers of previous
turns, as the ”Teacher Forcing” (w/ TF) proto-
col. Analogically, we consider a mode ”without
Teacher Forcing” (w/o TF) where models pro-
cess a conversation in the natural order and only
use their predictions as history. The latter is out-
lined in Algorithm 1, where ”build mark” refers
to a function that computes the new HAE mark-
ers given the previous ones and the new answer.

Note that the algorithm for evaluation w/ TF sim-
ply replaces ”build mark(HAE,answerpred)” with
”build mark(HAE,answerGT)”.

Algorithm 1 Evaluation w/o TF
1: s← 0
2: for conversation ∈ valid set do
3: HAE← None
4: for turn ∈ conversation do
5: question← turn[’question’]
6: answerGT← turn[’answer’]
7: answerpred← model(question, HAE)
8: HAE← build mark(HAE,answerpred)
9: s← s + F1(answerpred,answerGT)

10: end for
11: end for
12: return s

card(valid set)

When we take the models trained in section 4.1
(w/ TF) and evaluate them with the new standalone
protocol (w/o TF), Table 3 shows that the perfor-
mance drops from 63.4 to 53.5 with BERT-HAE
and from 64.4 to 54.2 with BERT-PHAE. Con-
cretely, although unsuspected with the original pro-
tocol, the approaches do not necessarily seem ad-
vantageous compared to BERT here. This in no
way detracts the interest of these proposals, which
implement clever architectures to integrate the his-
tory. It only prevents their application, as is, in the
standalone scenario. Nevertheless, now that this
issue is identified, we can try to design an appro-
priate strategy to avoid it from the start, by taking
measures at the training phase.

4.4 Training for the Standalone Scenario

To complement the proposed evaluation protocol
with a training one, we propose to apply a recipe
inspired by the most popular defense mechanism
against adversarial attacks called adversarial train-
ing (Ren et al., 2020), i.e. we introduce the dis-
ruptive element (here the mode without Teacher
Forcing) at training time. We consider three heuris-
tics: (1) we disable TF during all the training steps
(Robust), (2) we disable TF randomly based on a
Coin Flip (Robust-CF), (3) we progressively dis-
able TF from 0% of the steps to 100% of the steps
over the training iterations (Robust-P). The new
training process is detailed in Algorithm 2, where
”update” refers to the optimization algorithm that
updates the model based on the loss and ”heuris-
tic.condition” is a condition that depends on the
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heuristic (e.g. always true for heuristic (1)). Note
that both heuristics (2) and (3) are inspired from
scheduled sampling methods (Bengio et al., 2015)
adapted to the context of CQA.

Algorithm 2 Robust Training

1: for conversation ∈ train set do
2: HAE← None
3: for turn ∈ conversation do
4: question← turn[’question’]
5: answerGT← turn[’answer’]
6: answerpred← model(question, HAE)
7: l← loss(answerpred,answerGT)
8: update(model,l)
9: if heuristic.condition then

10: answeradd ← answerpred
11: else
12: answeradd ← answerGT
13: end if
14: HAE← build mark(HAE,answeradd)
15: end for
16: end for
17: return model

We obtain encouraging results (Table 3). In par-
ticular, BERT-PHAE Robust-P reaches a F1-score
of 58.1 in the standalone scenario which is better
than BERT’s F1. Besides, ”F1 /w Adv” for BERT-
(P)HAE Robust seems to indicate that, the less we
apply TF, the less the entailed model exhibits a
filtering behavior. In fact, all the robust variants ex-
hibit a weaker filtering behaviour than the original
methods.

Model F1 w/ TF F1 w/o TF F1 w/ Adv

BERT - 54.4 -

BERT-HAE 63.4 53.5 41.7
BERT-HAE Robust 59.5 56.6 51.7
BERT-HAE Robust-CF 61.6 55.9 47.4
BERT-HAE Robust-P 60.7 56.7 50.7

BERT-PHAE 64.4 54.2 40.7
BERT-PHAE Robust 60.5 57.4 53.3
BERT-PHAE Robust-CF 62.2 56.4 47.7
BERT-PHAE Robust-P 62.4 58.1 51.6

BERT-AH - 58.3 -

Table 3: Evaluation of BERT, BERT-HAE, BERT-
PHAE, BERT-AH and the robust variants with different
validation protocols.

Our experiment and results leave room for im-
provement with additional considerations on pro-
tocols/parameters/models. For instance, contrary
to answers, standalone models can have access to

the exact history of questions. What if we inte-
grated the latter instead of the answer history in the
model’s input? We tested this by implementing a
simple model that we refer to as BERT-AH (Ap-
pended History) in which previous questions are
added to the regular BERT’s inputs, and marked
with a special embedding. BERT-AH obtains an
F1-score of 58.3 (whatever the evaluation protocol,
since answer history is not used). Thus, our guess
is that the best direction for standalone CQA lies
towards both the integration of previous questions
and the robust integration of previous answers.

5 Conclusion

The work presented in this paper comes to comple-
ment the current training and evaluation protocols
for CQA. It allows (1) highlighting unnoticed and
undesirable behavior in existing approaches from
the literature and (2) more robustness for their ap-
plication in autonomous chatbots. We hope that
this will encourage additional proposals in the same
direction. Several improvements could be made in
the future. First, because without Teacher Forcing
the history is now predicted and not fixed, we could
explore the impact of updating the model by back-
propagating an answer’s error through all previous
turns and not only the current one. This would be
analog to backpropagation through time. Second,
we could augment the current CQA datasets or pro-
pose new ones to prevent the biases we observed:
for example, QuAC could have conversations in-
cluding wrong answers, since this occurs in real-
life, so that models could be properly trained for.
The associated turns would of course only be used
as a part of histories. Finally, we should perform
user tests to evaluate the robustness of models in
real-life, because when a model’s answer is wrong,
we expect it to impact the next user’s question(s).
And this cannot be taken into account with the cur-
rent protocol since the datasets are static.
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