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Abstract

In this work, we propose Masked Noun-Phrase
Prediction (MNPP), a pre-training strategy to
tackle pronoun resolution in a fully unsuper-
vised setting. Firstly, We evaluate our pre-
trained model on various pronoun resolution
datasets without any finetuning. Our method
outperforms all previous unsupervised meth-
ods on all datasets by large margins. Secondly,
we proceed to a few-shot setting where we fine-
tune our pre-trained model on WinoGrande-S
and XS separately. Our method outperforms
RoBERTa-large baseline with large margins,
meanwhile, achieving a higher AUC score af-
ter further finetuning on the remaining three
official splits of WinoGrande.

1 Introduction

Co-reference resolution is an important NLP task
that aims to find all expressions that refer to the
same entity in a text. The resolution of an ambigu-
ous pronoun, known as pronoun resolution, is a
longstanding challenge for the NLU community
and an essential step for various high-level NLP
tasks such as natural language inference (Bowman
et al., 2015; Williams et al., 2018), question answer-
ing (Rajpurkar et al., 2016), and relation extraction
(Zhang et al., 2017).

The most successful approach to pronoun res-
olution is first fine-tuning a large pre-trained lan-
guage model such as BERT (Devlin et al., 2019)
or RoBERTa (Liu et al., 2019) on a human-labeled
pronoun resolution dataset such as Definite Pro-
noun Resolution Dataset (DPR) (Rahman and Ng,
2012) or WinoGrande (WG) (Sakaguchi et al.,
2020), and then either directly transferring to a
smaller dataset such as Winograd Schema Chal-
lenge (WSC) (Levesque et al., 2012) or Pronoun
Disambiguation Problems (PDP) (Morgenstern

∗Equal Contribution

WSC Sentences Candidate Choices

The trophy doesn’t fit in the
suitcase because it is too small. A. the trophy B. the suitcase

The trophy doesn’t fit in the
suitcase because it is too big. A. the trophy B. the suitcase

Table 1: Above are two WSC examples. A system is required
to resolve the bold pronoun “it” to “the suitcase” in the first
sentence and to “the trophy” in the second sentence.

et al., 2016) or further finetuning on a downstream
dataset such as SuperGLUE-WSC (Wang et al.,
2019a). However, all the pipelines above can not
avoid the phase of pre-training on a large human-
labeled pronoun resolution dataset. Crowd-sourced
“unbiased” labels that do not introduce annotation-
artifacts (Gururangan et al., 2018) are shown to be
costly and challenging to collect, requiring a well-
designed annotation interface and dedicated anno-
tators. To this end, we propose the unsupervised
Masked Noun-Phrase Prediction task to pre-train
a language model without any pronoun resolution
training signal and directly transfer the pre-trained
model to downstream datasets such as WSC.1 Two
examples of WSC are listed in Table 1. Our work
improves on all previous unsupervised methods by
large margins and even outperforms several strong
supervised methods on all datasets we study.

We then proceed to the few-shot setting
where we finetune our best zero-shot model on
WinoGrande-S and XS respectively. MNPP gives a
large margin of improvements over strong baselines
including CSS (Klein and Nabi, 2020), RoBERTa-
large (Sakaguchi et al., 2020), and UnifiedQA-
BART-large (Khashabi et al., 2020). We further
finetune on the remaining three data splits and
achieve a higher AUC score on all five splits of
WinoGrande over RoBERTa-large baseline.

1We refer to unsupervised or zero-shot transfer as without
training on any pronoun resolution dataset.
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In summary, our main contributions in this work
are threefold.

• First, we propose the MNPP pre-training task
and study how different synthetic dataset prop-
erties affect zero-shot performances.

• Second, we show MNPP outperforms all pre-
vious fully unsupervised methods and even
several strong supervised baselines on all pro-
noun resolution datasets we study.

• Finally, we show that under few-shot settings,
MNPP pre-training gives a significant perfor-
mance boost on WinoGrande-S and XS and
furthermore achieves a higher AUC score over
all five splits of WinoGrande.

2 Related Works

In this work, we mainly compare with unsuper-
vised methods.2 On WSC, Zhang and Song (2018)
propose the first unsupervised model where they
modify Skip-Gram (Mikolov et al., 2013) objec-
tive to predict semantic dependencies then use this
additional information during testing. Wang et al.
(2019b) propose Unsupervised Deep Structured Se-
mantic Models (UDSSM), which utilizes BiLSTM
(Hochreiter and Schmidhuber, 1997) to compute
contextual word embedding and uses models en-
semble. Klein and Nabi (2019) directly explore the
inner attention layers of BERT. Ye et al. (2019)
adapt a masking and predicting strategy, called
align, mask, and select (AMS), where entities that
are connected with ConceptNet (Speer and Havasi,
2012) are masked and the model is required to
select from a given list of candidate entities. An en-
semble of large pre-trained models is first utilized
by Trinh and Le (2018). GPT-2 is directly evalu-
ated on WSC in Radford et al. (2019). Prakash et al.
(2019) extend a language model with a knowledge
hunting strategy. Kocijan et al. (2019b) and Koci-
jan et al. (2019a) are the most similar works to us
and we will discuss the details in Section 3.1. Most
recently, Klein and Nabi (2020) study a contrastive
self-supervised learning approach (CSS) for WSC
and DPR and also establish the first unsupervised
baseline for KnowRef (Emami et al., 2019). On
WinoGrande, knowledge hunting (Prakash et al.,
2019) and language models ensemble (Sakaguchi
et al., 2020) have been studied.

2Please refer to supplemental materials for more details on
supervised methods.

3 Masked Noun-Phrase Prediction

We treat MNPP as a binary classification task.
Given the sentence: “She put the cup on the chair,
but he knocked over the chair, and the cup fell.”,
the underlined “the chair” will be masked and a
pair of replacement phrases for this masked posi-
tion is given as {“the cup”, “the chair”}. One of
the candidates is the masked phrase,“the chair”,
and the other candidate is a different phrase in the
sentence, “the cup” extracted from “She put the
cup on the chair”. The constraint we impose is that
both the ground-truth noun-phrase and the alterna-
tive candidate need to appear before the masked
phrase location, which mimics the pronoun reso-
lution task. We sample sentences following the
above constraint to create our synthetic datasets for
pre-training.

We convert the sentence into the format of
{[CLS] first half option second half [SEP]}
where first half refers to “She put the cup on the
chair but he knocked over ” and second half refers
to “, and the cup fell.”. The option is replaced by
candidates, “the cup” or “the chair”. We compute
P(the chair|sentence, θ) and P(the cup|sentence, θ)
and optimize θ, the parameters of the model, using
cross-entropy loss. We use the final layer [CLS]
vector from transformer-based language models
and pass it through a single layer feed-forward net-
work to calculate the logits.

3.1 Discussion

The intuition behind MNPP is that given sufficient
samples that mimic pronoun resolution task, the
model can learn rich knowledge to perform well
on human-annotated pronoun resolution datasets.
Such idea is also in-line with recent advances in
unsupervised QA (Lewis et al., 2019; Li et al.,
2020; Banerjee and Baral, 2020; Banerjee et al.,
2020, 2021), where synthetic QA datasets are cre-
ated from unannotated corpora to perform unsuper-
vised pre-training. Strictly speaking, MNPP is even
more unsupervised since our synthetic datasets are
not created with true pronoun resolution signals,
whereas synthetic QA datasets in works cited above
contain true question-answer pairs.

As mentioned in previous Section 2, similar to
our work, Kocijan et al. (2019b) studied such pre-
training strategy by constructing a synthetic dataset,
called MaskedWiki, which is crawled from English
Wikipedia. However, our work is significantly dif-
ferent from theirs in the following ways. First, their
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Dataset \ Source CNN QUOREF Gutenberg Knowledge Total

Hybrid Source 100,556 51,451 6,381 - 158,388
Hybrid Source
w/ Knowledge 189,376 98,844 19,424 75,993 383,637

Table 2: Number of instances from each source of two hybrid-source synthetic datasets in the first group.

Synth. Dataset \ Downstream WinoGrande (AUC) WSC DPR KnowRef COPA

Hybrid Source (160k) 58.08 (0.6961) 79.48 82.27 79.83 71.29
Hybrid Source w/ Know. (380k) 58.56 (0.6821) 78.39 83.88 79.04 73.27

Gutenberg-10k 57.93 (-) 75.09 81.21 77.15 79.21
Gutenberg-50k 57.40 (-) 76.19 77.84 75.10 74.26
Gutenberg-100k 58.56 (-) 72.53 75.00 74.40 75.25
Gutenberg-300k 57.38 (-) 75.82 81.56 76.44 78.22
Gutenberg-500k 59.19 (0.6748) 76.56 80.50 79.12 85.51

Gutenberg-Easy (33k) 56.43 (-) 69.60 70.92 75.10 77.23
Gutenberg-Medium (33k) 57.00 (-) 75.10 80.32 78.17 79.21
Gutenberg-Hard (33k) 57.54 (-) 75.82 80.67 79.98 74.36

Table 3: Zero-shot transfer performances (%) on downstream datasets. AUC scores of WinoGrande are calculated after
finetuning on all 5 splits of WinoGrande training sets. Difficulty level is decided using cosine similarity between the two
candidate word vectors. Hard samples are the top 33% of samples when they are sorted in descending order using similarity
score. Easy are bottom 33%, with Medium in-between.

pipeline requires further finetuning on another pro-
noun resolution task before transferring to down-
stream datasets, whereas our method can be directly
evaluated on downstream datasets. Second, the size
of MaskedWiki is 2.4 millions, which is 15 times
the size of our best performing synthetic dataset.
Third, we study how different properties of syn-
thetic datasets affect zero-shot performances. Fi-
nally, they use a masked token prediction loss, and
we model it as a classification task. Kocijan et al.
(2019a) also construct another synthetic dataset
called WikiCREM following the same masking
principle but with only personal names masked.

4 Experiments and Results

4.1 Synthetic Dataset
We study three properties of synthetic dataset:
source style, size, and difficulty level. The sources
we choose include various styles of texts, includ-
ing CNN stories (See et al., 2017), Wikipedia, and
PG-19 language modeling benchmark (Rae et al.,
2020). We study 3 groups and a total of 10 differ-
ent synthetic datasets. The first group contains two
synthetic datasets collected from all sources with
and without knowledge hunting strategy (Prakash
et al., 2019). The second group contains five syn-
thetic datasets collected only from PG-19 but with
varying sizes from 10k to 500k. The third group
contains three synthetic datasets collected from PG-
19 but with easy, medium, and hard samples with

the same size of 33k each.3 Datasets’ names are
listed in the first column of Table 3 and statistics of
the first group are described in Table 2.

4.2 Unsupervised Pronoun Resolution

The downstream datasets we test on are the Wino-
Grande test set (17k instances), DPR test set (564
instances), KnowRef test set (12k instances), and
COPA validation set (101 instances). Although
COPA (Wang et al., 2019a) is a cause and ef-
fect identification dataset, Sakaguchi et al. (2020)
show that directly transferring from a WinoGrande-
finetuned RoBERTa-large model to COPA already
achieves a good performance, indicating that fine-
tuning on WinoGrande can serve as a resource for
common sense knowledge. We also investigate
whether learning through MNPP can serve as a
resource for common sense. Note that we also
provide evaluation on the GAP dataset (Webster
et al., 2018) in Table 5 for reference although the
authors of GAP explicitly mention in their paper
that they urge the community to not treat GAP as a
Winograd-style task but a co-reference resolution
task without gold mention provided.

4.2.1 Results
We report our experiment results in Table 3 and
Table 4. Table 3 shows that different downstream

3Please refer to supplemental materials for details on syn-
thetic datasets constructions.
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WSC (Levesque et al., 2012)

Bi-LSTM-DPR (2018) 56.0
BERT NSP-DPR (2019) 71.1
CorefBERTLARGE (2020) 71.4
BERT-WIKICREM-DPR (2019a) 71.8
BERT-MASKEDWIKI-DPR (2019b) 72.5
UDSSM-MASKEDWIKI-DPR (2019) 75.1
AMS-CSQA-DPR (2019) 75.5
RoBERTa-DPR (2020) 83.1
CorefRoBERTaLARGE (Ye et al., 2020) 83.2
RoBERTa-WG (2020) 90.1
Modified Skip-Gram (2018) 60.3
BERT Inner Attention (2019) 60.3
BERT-MASKEDWIKI (2019b) 61.9
UDSSM (2019b) 62.4
BERT-WIKICREAM (2019a) 63.4
Ensemble LMs (2018) 63.7
CSS (2020) 69.6
GPT-2 (2019) 70.7
WSC Know. Hunting (2019) 71.1
MNPP (this work) 79.5

WinoGrande (Sakaguchi et al., 2020) AUC

RoBERTa (local context) (2020) 50.0 -
BERT-DPR (2020) 51.0 -
BERT (local context) (2020) 51.9 -
RoBERTa-DPR (2020) 58.9 -
BERT (2020) 64.9 0.5289
CSS (2020) 65.0 0.6046
UnifiedQA-Bart-large (2020) 73.3 0.6358
CorefRoBERTaLARGE (2020) 77.9 -
RoBERTa-large (2020) 79.1 0.6641
CorefBERTLARGE (2020) 80.8 -
TTTTT (2020) 84.6 0.7673
UnifiedQA-T5-11B (2020) 89.4 0.8571
Wino Know. Hunting (2020) 49.6 -
Ensemble LMs (2020) 50.9 -
MNPP (this work) 59.2 0.6706

dataset benefits from different property of the syn-
thetic dataset. The hybrid-source synthetic dataset
of size 160k outperforms PG-500k by a large mar-
gin on both WSC and DPR. It shows that pre-
training on text of various styles instead of larger
size is probably a better guarantee for better zero-
shot performance on WSC and DPR. However, on
WinoGrande and KnowRef, text style and dataset
size both seem to impact zero-shot performance.
On WinoGrande, larger size matters slightly more,
whereas on KnowRef, synthetic dataset with var-
ious styles of texts gives better performance. On
COPA, it is clear that using books as the source and
with larger size at the same time is the key, probably
because fictional event descriptions describing day-
to-day activities in books contain more common
sense, whereas CNN or Wikipedia articles contain
precise, factual, non-fictional event descriptions.
Finally, pre-training on more challenging examples
helps on all tasks except COPA.

DPR (Rahman and Ng, 2012)

Bi-LSTM (2018) 63.0
FeatureEng+Ranking (2012) 73.0
BERT-WIKICREM-DPR (2019a) 80.0
BERT-DPR (2019a) 83.3
BERT-MASKEDWIKI-DPR (2019b) 84.8
BERT-WG (2020) 84.9
CorefBERTLARGE (Ye et al., 2020) 85.1
RoBERTa-DPR (2020) 91.7
CorefRoBERTaLARGE (Ye et al., 2020) 92.2
RoBERTa-WG (2020) 92.5
RoBERTa-WG-DPR (2020) 93.1
BERT-WIKICREAM (2019a) 67.4
CSS (2020) 80.1
MNPP (this work) 83.9

KnowRef (Emami et al., 2019)

E2E-CoNLL (2019) 60.0
E2E-KnowRef (2019) 61.0
BERT (2019) 65.0
E2E-KnowRef+CoNLL (2019) 65.0
RoBERTa-DPR (2020) 84.2
RoBERTa-WG (2020) 85.6
CSS (2020) 65.5
MNPP (this work) 80.0

COPA (Wang et al., 2019a)

RoBERTa-WG (2020) 84.4
MNPP (this work) 85.5

Table 4: Comparisons of zero-shot transfer performance (%)
among baselines and MNPP. Works highlighted with gray
are supervised methods either directly finetuned on down-
stream datasets or additionally finetuned on another pronoun
resolution dataset. Works highlighted with cyan are fully un-
supervised methods. Best performances are in bold. We also
underline supervised methods that our method outperforms.
Note that AUC score for MNPP is obtained after finetuning
on all WinoGrande data splits. (Model-A-B stands for model
finetuned on A and B sequentially.)

Compared with previous methods in Table 4,
MNPP outperforms all unsupervised methods on
all datasets and is comparable with several strong
supervised methods. Current best unsupervised
methods on WinoGrande is either random guess
or below it, however, MNPP outperforms all of
them by a margin of at least 8%. Even compared
with a supervised baseline where BERT is first
finetuned on DPR, our method outperforms it by
8%. On WSC, MNPP also outperforms all SOTA
unsupervised methods by more than 8% and out-
performs most supervised methods by at least 4%
except RoBERTa-large finetuned on another pro-
noun resolution dataset. On DPR, our method out-
performs the SOTA unsupervised baseline over 3%
and also achieves only 1% behind the strong super-
vised baseline that finetunes BERT on MaskedWiki
and DPR sequentially or only on WinoGrande. On
KnowRef, MNPP outperforms the only unsuper-
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M F B O

BERT
(Kocijan et al., 2019a) 75.3 75.1 1.00 75.2

CorefBERTLARGE
(Ye et al., 2020) - - - 76.8

BERT-WIKICREM-GAP
(Kocijan et al., 2019a) 76.4 78.4 1.03 77.4

CorefRoBERTaLARGE
(Ye et al., 2020) - - - 77.8

BERT-WIKICREM-ALL-GAP
(Kocijan et al., 2019a) 76.7 79.4 1.04 78.0

BERT-WIKICREM
(Kocijan et al., 2019a) 60.5 57.5 0.95 59.0

MNPP (this work) 71.3 75.2 1.05 73.3

Table 5: Performance comparisons among previous works
and MNPP on GAP measured in F1. M stands for male, F
stands for female, B stands for bias, and O stands for overall.
Works highlighted with lightgray are supervised methods and
works highlighted with cyan are fully un-supervised methods.

vised baseline by nearly 15% and achieves only 5%
behind SOTA supervised model. Finally, on COPA,
we show that MNPP gives models better common
sense knowledge than finetuning on WinoGrande.

Meanwhile, we are not surprised that SOTA su-
pervised methods still outperform unsupervised
methods, including ours, considering the supervi-
sion itself and huge models with billions of param-
eters such as T5-11B.

4.3 Few-Shot Pronoun Resolution

We further proceed to the few-shot setting on
WinoGrande-S and XS. We take the top three per-
formance zero-shot models on WinoGrande devel-
opment set and finetune them on WinoGrande-XS
(160 instances) and S (640 instances) separately.
After few-shot evaluation, we also finetune on the
remaining three data splits, which are WinoGrande-
M, L, and XL. Best performances on all 5 data
splits are reported in Fig. 1 and AUC scores are
reported in thrid column of WinoGrande section in
Table 4.

4.3.1 Results
As indicated in Figure 1, MNPP outperforms CCS,
UnifiedQA-BART-large, and RoBERTa-large on
WinoGrande-S and XS with a large margin, and
more importantly, achieves a higher AUC score as
indicated in Table 4. It is clear that MNPP pre-
training gives the model crucial additional infor-
mation in the few-shot setting where only minimal
data is available. We also notice that in the AUC
column of Table 3, there is a negative correlation
between zero-shot performance and AUC score,
which means higher zero-shot performance does

Figure 1: Performances (%) on WinoGrande test set after
finetuning on 5 sizes of WinoGrande training set.

not guarantee better finetuning results.
Again we need to mention that we are not com-

paring with SOTA performances from billions-
parameters models such as UnifiedQA-T5-11B
from Khashabi et al. (2020) or T5-3B from Lin
et al. (2020).

5 Conclusion

In this work, we propose MNPP pre-training
to tackle unsupervised pronoun resolution and
study how different properties of the synthetic pre-
training dataset impact zero-shot performance on
downstream datasets. Without finetuning on any
pronoun resolution signal, MNPP outperforms all
previous fully unsupervised methods on all tasks
we study and even several strong supervised base-
lines. In the few-shot case where we finetune the
zero-shot transfer model on WinoGrande-S and XS
respectively, our model outperforms baselines by
large margins, and further achieves a higher AUC
score.

This work shows the effectiveness of unsu-
pervised task definitions on text-based pronoun-
resolution and common sense reasoning tasks. It
would be interesting to design such tasks for multi-
modal common sense reasoning (Zellers et al.,
2019; Fang et al., 2020).
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A Related Work on Supervised Methods

WSC & DPR. Opitz and Frank (2018) is the first
work to propose transfer learning from another pro-
noun resolution dataset such as DPR to WSC. He
et al. (2019) use a hybrid model of Wang et al.
(2019b) and Kocijan et al. (2019b). Ruan et al.
(2019) explore BERT’s next sentence prediction
with finetuning on DPR. Ye et al. (2020) fine-
tune a new language representation model called
CorefBERT, which is trained with a novel task to
strengthen the co-referential reasoning ability of
BERT, on DPR and then test on DPR and WSC.
The SOTA supervised performance is provided
by Sakaguchi et al. (2020) where they finetune
a RoBERTa-large model on WinoGrande or DPR
and evaluate on WSC and DPR without and with
further finetuning. A detailed review of WSC and
WSC related dataset can be found at Kocijan et al.
(2020).

KnowRef. In Emami et al. (2019), an end-to-
end neural system (Lee et al., 2018) is trained
on CoNLL2012 shared task (Pradhan et al.,
2012) and then tested under three settings: di-
rectly applying to KnowRef test set, retraining
on KnowRef, and retraining on KnowRef plus
CoNLL2012. Sakaguchi et al. (2020) transfer a
WinoGrande-finetuned RoBERTa-large model and
DPR-finetuned RoBERTa-large model to KnowRef
test set respectively.

WinoGrande. The authors of WinoGrande fine-
tune a RoBERTa-large on WinoGrande training
set and evaluate on the test set in standard su-
pervised setting, and Lin et al. (2020) finetune
a T5-3B model instead. Sakaguchi et al. (2020)
also study finetuning BERT and RoBERTa with
only local context (only tokens near the pronoun
location are available instead of the whole sen-
tence). Ye et al. (2020) finetune WinoGrande us-
ing CorefBERT. Klein and Nabi (2020) finetune
their unsupervised CSS model. Finally, UnifiedQA
(Khashabi et al., 2020), which is pre-trained on
eight seed QA datasets spanning four different for-
mats in a unified way, is finetuned on WinoGrande.

B Synthetic Datasets Construction

For the first synthetic dataset in the first group, we
choose 5000 stories in CNN stories, a small portion
of Gutenberg books, and the whole training set of
QUOREF (Dasigi et al., 2019), which is a reading
comprehension dataset that requires resolving co-

reference among entities crawled from Wikipedia,
and these sources result in the size of 160k. The
second synthetic dataset in the first group com-
prises the same sources as above plus extra knowl-
edge crawled by Google query using the knowledge
hunting strategy introduced in Prakash et al. (2019).
Following their strategy, we scrap 6531 and 69462
knowledge sentences for WSC and WinoGrande
respectively. We relax the filtering process to allow
longer sentences than those in the first synthetic
dataset and lead to 380k samples in total. We then
fix the text style and study the influence of data
size on pre-training. We use 2000 books from PG-
19 as the source and create five synthetic datasets
with size of 500k, 300k, 100k, 50k, and 10k as
the second group. We further study how difficulty
levels of samples affect the downstream zero-shot
performance. We select 100k samples from the PG-
19 books described above and evenly split them
into three synthetic datasets with low, medium, and
high similarity scores between candidate choices
as the third group. As a result, we create 3 groups
of synthetic datasets with ten synthetic datasets
in total. We used spaCy4 to pre-process raw text,
including removing blank spaces, special charac-
ters, sentences that are too short or too long, and
extracting noun-phrases.

C Zero-shot Experiment Details

Recent study (Khot et al., 2020) has shown that
finetuning a RACE-finetuned (Lai et al., 2017)
RoBERTa model as a start point is much more sta-
ble than directly finetuning a RoBERTa model from
scratch, we follow the same strategy to start fine-
tuning a RACE-finetuned RoBERTa-large model
on all synthetic datasets. We use Hugging Face
Transformers5 as our codebase. We set Adam op-
timizer with an initial learning rate of 1e− 5 and
epsilon of 1e− 8, and without weight decaying for
all settings. For a synthetic dataset whose size is
larger or equal to 100k, we choose the batch size of
32 and train for 20 epochs, otherwise, we choose
the batch size of 16 and train for 50 epochs. We
checkpoint every X steps, with X in [50,500].

D Few-shot Experiment Details

We set Adam optimizer with an initial learning rate
of 1e − 5 and epsilon of 1e − 8, without weight
decaying, and batch size between 16 and 32 for all

4https://spacy.io/
5https://github.com/huggingface/

https://spacy.io/
https://github.com/huggingface/
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sizes. We finetune 20 epochs for WinoGrande-XL,
L, and M, 40 epochs for S, and 160 epochs for XS.
We checkpoint every X steps, with X in [50,500].


