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Abstract

Part-of-Speech (POS) tags routinely appear as
features in morphological tasks. POS taggers
are often one of the first NLP tools devel-
oped for low-resource languages. However, as
NLP expands to new languages it cannot as-
sume that POS tags will be available to train a
POS tagger. This paper empirically examines
the impact of POS tags on two morphological
tasks with the Transformer architecture. Each
task is run twice, once with and once with-
out POS tags, on otherwise identical data from
ten well-described languages and five under-
documented languages. We find that the pres-
ence or absence of POS tags does not have
a significant bearing on the performance of
either task. In joint segmentation and gloss-
ing, the largest average difference is an .09 im-
provement in F1-scores by removing POS tags.
In reinflection, the greatest average difference
is 1.2% in accuracy for published data and 5%
for unpublished data. These results are indi-
cators that NLP and documentary linguistics
may benefit each other even when a POS tag
set does not yet exist for a language.

1 Introduction

Parts of speech (POS), also known as word classes
or lexical categories, communicate information
about a word, its morphological structure and in-
flectional paradigm, and its potential grammatical
role in a clause. POS tagging is a well-studied
problem in NLP. It is one of the first tasks under-
taken for a new data set and a POS tagger is of-
ten one of the first NLP resources built for low-
resource languages (Yarowsky and Ngai, 2001;
Cox, 2010; De Pauw, 2012; Baldridge and Gar-
rette, 2013; Duong, 2017; Anastasopoulos, 2019;
Millour and Fort, 2019; Eskander et al., 2020b).
Although this priority on early POS tagging may
be simply due to the relative ease of building a POS
tagger, it seems to reflect an assumption that POS

Figure 1: Average F1-scores on joint segmentation and
glossing on interlinear glossed texts from fieldwork in
five languages found that POS-tags have little and irreg-
ular impact.

tags simplify or improve other NLP tasks (Krauwer,
2003). As far as we are aware, this assumption has
not been methodically tested.

This paper examines the impact of POS tags
on morphological learning, an important area for
low-resource languages, many of which are more
morphologically complex than English, Mandarin,
or other large-resource languages. Morphologi-
cal learning can help reduce the out-of-vocabulary
problem in morphologically complex languages,
especially in low-resource settings. Morphological
learning also holds high priority in documentary
and descriptive linguistics as a necessary founda-
tion for further descriptive work. We focus on two
related tasks that involve morphological learning:
joint morpheme segmentation/glossing and mor-
phological reinflection. Joint segmentation and
glossing segments a word into its component mor-
phemes and glosses the segments. Reinflection gen-
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Figure 2: During reinflection generation of four in-
terlinear field corpora and four “cleaned” versions of
those corpora the presence or absence of POS tags does
not make a significant or consistent difference in accu-
racy of inflected forms.

erates unseen inflected word forms from morpho-
logical features based on a language’s inflectional
patterns. Since lexical categories (POS) are iden-
tified partly by morphological structure, it seems
reasonable to assume the reverse – that knowing a
word’s part of speech makes it easier for a model to
analyze its morphological structure. For example,
knowing that a word is a noun in English makes
it extremely unlikely that a final substring (e)n
could be a participial affix (e.g. “oven” - NOUN;
cf. “driven” - VERB). On the other hand, POS tags
may be providing redundant information when, for
example, an affix that marks a morphosyntactic
feature is identical across all categories where that
feature appears (e.g. the Russian morpheme /-i/
‘PL’ is identical for for plural nouns and plural verb
agreement). However, these hypotheses must be
tested before claiming either one.

The impact of (not) having POS tags has perhaps
not been examined closely in part because it seems
safe to assume that POS tags or a POS tagger will
be available. However, as NLP expands its reach to
new languages, POS tags may not be readily avail-
able. In fact, the lexical categories present in the
language may not even be described yet when data
becomes available. In documentary and descriptive
linguistics, the description and tagging of lexical
categories takes a relatively low priority compared
to its place in NLP (cf. Bird and Chiang (2012)’s
workflow). Yet interlinear glossed texts (IGT) are
often the largest available annotated resource for a
low-resource language—and sometimes the only
available resource.

The impact of POS tags on computational mor-
phology may hold implications for linguistic theory
as well. The nature of lexical categories (Rauh,
2010), the criteria for identifying them (Croft,
2000), and even their very reality as a universal
property of language (Gil, 2005) are not entirely
settled among linguists. If the morphological struc-
ture of unseen words can be analyzed and gener-
ated without reference to lexical categories, then
perhaps such categories should not be considered
an inherent property of the lexicon (Rauh et al.,
2016).

This paper describes experiments that were run
on corpora differing only in the presence or absence
of POS tags. The results, which are generalized
in Figures 1 and 2, indicate that POS tags do not
have significant impact on computational morpho-
logical learning. Section 2 presents related work
in lexical categories, POS-tagging, segmentation
and glossing, and (re)inflection. Sections 3 and 4
describe the corpora and the NLP architecture used.
The segmentation and glossing task and results are
presented in Section 5. The reinflection task and
results are presented in Section 6. Implications of
both experiments are discussed in Section 7.

2 Related Work

Work on POS tagging has led to the development
of several related resources in NLP and linguis-
tics including numerous methods for automatic tag-
ging (e.g. Kupiec (1992); Toutanova and Johnson
(2008)) as well as tag sets. The most popular tag
set for English was developed by the Penn Tree-
bank Project (Taylor et al., 2003). A universal
POS tag set was proposed by Petrov et al. (2012)
and has been widely adopted. It closely follows
traditional linguistic conventions for common lexi-
cal categories as can be seen by comparing to the
Leipzig Glossing Rules (Institute, 2008) which also
has recommended tags for less common categories.

Many NLP models have been applied to seg-
mentation and glossing of low-resource languages
but they often tackle just one of the two tasks,
e.g. segmentation only (Ruokolainen et al., 2014;
Wang et al., 2016; Kann et al., 2018; Mager et al.,
2020; Sorokin, 2019; Eskander et al., 2020a). Au-
tomatic morpheme segmentation was introduced
by Harris (1970) and much earlier segmentation
research implemented unsupervised learning (Gold-
smith, 2001; Creutz and Lagus, 2002; Poon et al.,
2009). Published linguistic descriptive data is used
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as training data usually after some preprocessing.
Glossing-only experiments make the assumption
that data is already segmented into morphemes. For
example, McMillan-Major (2020) trained a condi-
tional random field (CRF) model to produce a gloss
line for several high-resource languages and three
low-resource languages. The low-resource lan-
guage data came from interlinearized data that was
polished for publication. McMillan-Major (2020)
and some other experiments such as Samardzic
et al. (2015) use information from lines of interlin-
earized texts such as translation and POS tags.

Computational approaches to morphological in-
flection or reinflection have been developed by Dur-
rett and DeNero (2013); Nicolai et al. (2015); Liu
and Mao (2016); Cotterell et al. (2017); Kann and
Schütze (2016); Aharoni and Goldberg (2017), etc.
Some of the work was developed as part of the
SIGMORPHON Shared Tasks.1 Our work partly
replicates the CoNLL-SIGMORPHON reinflection
shared tasks (Cotterell et al., 2016, 2017, 2018a).
Sequence-to-sequence neural network models have
been very successful at handling the morphological
(re)inflection task, even in low-resource conditions
with model improvement designed to tackle the sit-
uation (Kann et al., 2017; Silfverberg et al., 2017;
Sharma et al., 2018; Makarov and Clematide, 2018;
Anastasopoulos and Neubig, 2019; Wu and Cot-
terell, 2019; Liu, 2021). The Transformer (Vaswani
et al., 2017a) is the model architecture which pro-
duces the current state-of-the-art performance on
this task (Vylomova et al., 2020; Wu et al., 2020;
Liu and Hulden, 2020b,a). Therefore, we use the
Transformer for all the experiments in this paper.

This paper is an expansion of a section in
Moeller et al. (2020). The experimental setup and
SIGMORPHON languages are the same as that
work, but it does not look at what happens when
POS tags are available in the field data. We ex-
panded the re-inflection task to field corpora. we
also ran the SIGMORPHON experiments 5 times
instead of one time. The addition of the segmen-
tation and glossing was inspired by Moeller and
Hulden (2021).

3 Data

We use published data in ten languages and unpub-
lished data in five low-resource languages. The
published and unpublished data is used for the mor-

1https://sigmorphon.github.io/
sharedtasks/

Language POS
Adyghe N, ADJ
Arabic N, V, ADJ
Basque V
Finnish N, V, ADJ
German N, ADJ
Persian V
Russian N, V, ADJ
Spanish N, V
Swahili N, V, ADJ
Turkish N, V, ADJ

Table 1: SIGMORPHON languages and the lexical cat-
egories found in the data.

phological reinflection but only the unpublished
data for segmentation and glossing.

3.1 SIGMORPHON Data

For the morphological reinflection task we use
datasets that were released for the CoNLL-
SIGMORPHON 2018 shared task 1 (Cotterell et al.,
2018b). We selected 10 languages that belong to
different families and are typologically diverse with
regards to morphology. The languages and the in-
flected lexical categories available for the shared
task are listed in Table 1. The language family and
morphological typology for each language is avail-
able on the UniMorph official website.2 Only the
listed lexical categories were POS-tagged.

3.2 Interlinear Glossed Texts

The manually-annotated interlinear glossed texts
(IGT) were created in documentary and descrip-
tive projects for five low-resource and under-
documented languages. The corpora represent a
range of documentary field projects rather than a
range of language typology, although they do rep-
resent three different language families on four
continents. It is difficult to find corpora of under-
documented languages with (enough) POS tags to
conduct our POS experiments precisely because
of the low priority of POS-tagging in documen-
tary and descriptive linguistics. We were unable
to use half of the field corpora available to us for
this reason. However, because we are interested in
leveraging NLP for fieldwork, we felt it is impor-
tant to work with the noisy field data, rather than
use (often morphologically simpler) high-resource

2https://unimorph.github.io

https://sigmorphon.github.io/sharedtasks/
https://sigmorphon.github.io/sharedtasks/
https://unimorph.github.io
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Language Tokens POS-tagged Inflected
Alas 4.5k 3845 86% 623
Lamkang 101k 46,557 46% n/a
Lezgi 14k 13,636 96% 843
Manipuri 12k 2067 17% 3,260
Natügu 16.5k 10,994 66% 1,954

Table 2: The approximate total number token counts in the field data does not include multiple-word-expressions
(when parsed as such) and ignores personal nouns and digits. The amount of segmented, glossed, and POS-tagged
tokens is shown as a number and a percentage of the corpus. Of those the inflected words were usable for the
reinflection.

languages with reduced data size.3

The corpora were compiled during projects that
each had their own priorities and workflow and
this resulted in the differing amounts of annotation
shown in Table 2.4 Only the tokens that were seg-
mented, glossed, and POS-tagged could be used.
The POS tags were provided by the annotators. For
the reinflection task, the data was further limited to
inflected forms. The collection of inflected forms
was automatically extracted and grouped based on
the gloss of the root morpheme (noisy version).
We happened to have cleaned versions for the re-
inflection task and include those for the sake of
completeness. The cleaned versions were created
from the noisy versions that had been checked by
language experts.5

It is worth noting that the Lamkang (used only
for the segmentation and glossing study), Manipuri,
and Natügu corpora are the result of many years
of work and these extended projects eventually led
to significant POS tagging. Two other large and
completely segmented/glossed corpora could not
be included because the lexical categories had not
been tagged. The Lezgi project used POS tags at
an early stage because the research was focused
on verb tenses (Donet, 2014). All POS tags in the
smaller Alas corpus, and many in the Lezgi corpus,
were added specifically for our research.

3We investigated the Online Database of Interlinear Text
(ODIN) since the AGGREGATION project at University of
Washington has projected POS tags from English, but as yet,
we have not found a corpus of comparative size to the smallest
field corpus. Perhaps because we focused on finding more
polysynthetic languages in order to balance the diversity of
morphological types and because preprocessing the ODIN
format is time-consuming.

4Rights holders gave informed consent to use the data for
this research and links are provide to the corpora that are
publicly available.

5Inflection data available at: https://github.com/
LINGuistLIU/IGT

Alas [btz] (Alas-Kluet, Batak Alas, Batak Alas-
Kluet) is an Austronesian language spoken by
200,000 people on the Indonesian island of Suma-
tra (Eberhard et al., 2020). Its morphology fea-
tures reduplication, infixation, and circumfixation.
The POS set in the corpus is: ADJ, ADV, AUX,
CARDNUM, CLF, CONJ, COP, DEM, DISTRNUM,
EXISTMRKR, INTERJ, N, NPROP, ORDNUM, PREP,
PRO, PRT, QUANT, REFL, RELPRO, V, VD, VI,
VT.6

Lamkang [lmk] is a Northern Kuki-Chin lan-
guage of the Tibeto-Burman family with an es-
timated 4 to 10 thousand speakers primarily in
Manipur, India but also in Burma (Thounaojam
and Chelliah, 2007). Its morphology tends toward
agglutination with many stem-stem patterns to sig-
nal syntactic categories. The corpus is accessible
through the Computational Resources for South
Asian Languages (CoRSAL) digital archive at the
University of North Texas.7 The POS tag set is:
ADN, ADVL, DEM, CONN, COORDCONN, COP, IN-
TERJ, N, NPR, NUM, ORDNUM, POSTP, PRON, PTC,
QUANT, SUBO, UNK, V, VC, VI, VT.

Lezgi [lez] (Lezgian) is a highly agglutinative
language belonging to the Lezgic branch of the
Nakh-Daghestanian (Northeast Caucasian) family.
It is spoken by over 400,000 speakers in Russia
and Azerbaijan (Eberhard et al., 2020). It features
overwhelmingly suffixing agglutinative morphol-
ogy. The POS tag set is: ADJ, ADV, CARDNUM,
CONN, COORDCONN, DEM, DET, INDFPRO, IN-
TERJ, INTERROG, MSD, MULTIPNUM, N, NPROP,
NUM, ORDNUM, PERS, POSS, POST, PREP, PRO,
PROFORM, PRT, PTCP, RECP, SUBORDCONN, V,

6All POS were used for the segmentation and glossing
task. Tags in boldface indicate POS that are inflected and were
therefore used in the reinflection task.

7https://digital.library.unt.edu/
explore/collections/SAALT/

https://github.com/LINGuistLIU/IGT
https://github.com/LINGuistLIU/IGT
https://digital.library.unt.edu/explore/collections/SAALT/
https://digital.library.unt.edu/explore/collections/SAALT/
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VERBPRT, VF, VNF, VOC.

Manipuri [mni] (Meitei, Meetei) is a Tibeto-
Burman language spoken by nearly two million
people, primarily in the state of Manipur, and is
one of India’s official languages. It nonetheless has
been classified as vulnerable to extinction (Mose-
ley, 2010). It is a tonal language with weakly suf-
fixing, agglutinative morphology (Chelliah, 1997).
The corpus is at CoRSAL.8 The POS set is: ADV,
INTERJ, N, PROFORM, UNK, V.

Natügu [ntu] belongs to the Reefs-Santa Cruz
group in the Austronesian family and is spoken
by about 4,000 people in the Temotu Province
of the Solomon Islands. It has mainly aggluti-
native morphology with complex verb structures
(Næss and Boerger, 2008). The corpus is stored
at SIL Language & Culture Archives.9 The POS
tags set is: A-D-P2, ADJ, ADV, CLAUSE, CONJ,
DEM, DET, GEN, GERUND, INTERROG, INTJ, N,
N.(KX.CL), NCOMP, NEG, NOM1, NP, NP(COMP),
NPROP, NUM, ORD, PARTICLE, PCLF, PER-
SPRO, PHRASE, PN, POSSPRO, PREP, PRO,
RPRN, SUBR, UNK, V, VI, VP, VT, Z-GERUND.

4 Models

For simple comparisons, we chose a single neu-
ral model architecture for both tasks. The tasks
were trained with the Transformer (Vaswani et al.,
2017b), the current state-of-the-art neural model
architecture for morphological tasks (Vylomova
et al., 2020; Liu and Hulden, 2020b). We used the
implementation of the Transformer model in the
Fairseq toolkit (Ott et al., 2019)10 with character-
level transduction (Wu et al., 2020) for morphology
learning in low-resource settings. Following (Wu
et al., 2020), we employ N = 4 layers for the en-
coder and the decoder, each with 4 self-attention
heads. The embedding size for the encoder and
decoder is 256, and the hidden layer size is 1024.
We use a dropout rate of 0.3 for encoding and beam
search with a width of 5 at decoding time. The
Adam algorithm (Kingma and Ba, 2014) (β1 = 0.9,
β2 = 0.98) is used to optimize the cross entropy
loss with label smoothing (Szegedy et al., 2016) of
0.1. All models have been trained on an NVIDIA

8https://digital.library.unt.edu/
explore/collections/MDR

9https://www.sil.org/resources/search/
language/ntu

10https://fairseq.readthedocs.io/en/
latest/

GP102 [TITAN Xp] GPU for 10k maximum up-
dates with a batch size of 400.

5 POS for Segmentation and Glossing

The first study asks whether POS tags makes a
significant impact on automated morpheme seg-
menting and glossing. The experiment tests and
compares two models on data that is identical ex-
cept for the presence/lack of POS tags.

We chose morpheme segmentation and glossing
because it is a high-priority and early step in docu-
menting and describing new languages. Segment-
ing words into morphemes and glossing (strictly
translating) them is usually the first task undertaken
after new data has been transcribed. Therefore, it
is important to study how to provide and improve
automated assistance for field linguists. Automatic
systems could greatly benefit the analysis of en-
dangered languages and combat the “annotation
bottleneck” caused by current manual methods (Si-
mons and Lewis, 2013; Holton et al., 2017; Seifart
et al., 2018).

Although adding POS tagging as a high-priority
task would add to that bottleneck, if the tags have a
significant and positive impact on automating seg-
mentation and glossing, then linguists may receive
long-term benefits from the addition to their work-
flow. Therefore, we explore the impact of POS
tags at very low-resource settings and the impact
of POS tags when a new field project takes time
to tag some, but not all, tokens. This is also why
we chose noisy field corpora, rather than published,
polished corpora which are not like the data that
linguists typically work with. We are interested in
how POS tags influence segmentation and glossing
in the earliest work with a new language.

5.1 Experimental Setup
Three Transformer models were trained. The En-
glish example in (1) shows the input and output of
models 1, 2, and 3. Model 1, shown in (1a), has
no POS tags. Models 2 and 3 have a POS tags,
as shown in (1b). Model 2 has POS tags on every
word but Model 3 includes POS tags only for some
words, simulating projects unable to complete POS-
tagging.

(1) a. INPUT 1: t a x e s

b. INPUT 2/3 : t a x e s N

c. OUTPUT: tax#levy -es#PL

https://digital.library.unt.edu/explore/collections/MDR
https://digital.library.unt.edu/explore/collections/MDR
https://www.sil.org/resources/search/language/ntu
https://www.sil.org/resources/search/language/ntu
https://fairseq.readthedocs.io/en/latest/
https://fairseq.readthedocs.io/en/latest/
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Language 1% 3% 6.5% 10% 20% 30% 40% 100%
Alas .00 .02 .02 .03 .05 .05 .04 -.09
Lamkang .05 .08 .07 .07 .08 .08 .08 -.01
Lezgi .03 -.01 .02 .04 .03 .03 .03 .02
Manipuri -.01 .00 .01 .00 .00 .01 .00 .00
Natügu .01 .03 .02 .03 .02 .03 .04 .00

Table 3: The difference in F1 scores with/out POS tags when training segmentation and glossing on increasing
amounts of annotated data, as percentages of total available training data. Negative scores indicates that adding
POS tags improve results.

Language 0% 1% 3% 6.5% 10% 20% 30% 40% 100%
Alas .6902 .6448 .6415 .6546 .6517 .6627 .6647 .6708 .6968
Lamkang .8573 .8074 .8195 .8298 .8332 .8482 .8527 .8524 .8645
Lezgi .7501 .7564 .7542 .7529 .7505 .7498 .7480 .7471 .7317
Manipuri .8903 .8885 .8877 .8882 .8889 .8874 .8896 .8897 .8921
Natügu .8995 .8748 .8782 .8864 .8855 .8932 .8999 .8965 .9006

Table 4: F1 scores on segmenting and glossing when trained on all data with increasing percentages of POS tags.

All three models are trained on all the available
training data. Models 1 and 2 are also trained on
different proportions of training data in order to
simulate very small corpora. These proportions of
training data start at 1% and are gradually increased
to 40% of available training data.

Even when POS tags are included in interlinear
field data, it is rarely completed as Table 2 clearly
indicates.In order to simulate this reality Model 3
was trained on all the available training data but the
proportion of inputs with POS tags was gradually
and randomly increased.

The training/development/test split is 8/1/1. All
models are trained and evaluated on a 10-fold cross-
validation. The folds were trained twice, once with
and once without POS tags; no other changes were
made to the data. All folds were evaluated on a sin-
gle, consistent held-out test set. Since we wanted
to simulate a realistic field situation where the sys-
tem is segmenting and glossing newly transcribed
but unannotated text, the test inputs do not include
POS tags.

5.2 Segmentation and Glossing Results

POS tags have no consistent positive or negative
effect on automated segmentation and glossing in
low-resource settings. The overall impact of POS
tags is not significant. Table 3 shows the differ-
ences when F1-scores without POS tags are sub-
tracted from the F1-scores with POS tags, with
various amounts of training data. The largest dif-
ference is just under .1 points.

A few interesting observations can be made that
should be explored with more languages. Manipuri
shows the smallest differences overall; it also has
the fewest POS-tagged words and the smallest tag
set. The largest differences are seen in the Alas and
Lamkang corpora. Alas also has a relatively small
amount of POS-tagged words, but it has quite a
large tag set. As the size of the Alas training data
increases, the impact of POS tags becomes more
pronounced, suggesting that perhaps a relatively
large POS tag set may have a greater effect on re-
sults in medium settings. Lamkang has the largest
amount of POS-tagged words, but of those, a sig-
nificant number were tagged as UNK. It is not clear
whether the UNK tag is limited to categories that
have not been fully analyzed or if it is a default tag
that covers a diverse set of words. The difference
made by adding POS tags all but disappears when
all the Lamkang data is trained, suggesting that a
smaller data set is more impacted by a large tag set
or inconsistent annotations.

Overall, increasing the number of POS tags in
the training data has minimal impact. Table 4
shows the F1-scores when the amount of POS tags
in the data is gradually increased. For example, at
30%, one of three random training instances have
a POS tag. In most cases, having incomplete POS-
tagged data hurts performance compared to have
POS tags on all words or none at all. The system ei-
ther performs worse, or, in the case of Lezgi, makes
very small improvement (.0063 points). Except for
Lezgi, as more POS tags are added, the system
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tends to improve slightly but never matches the
best scores.

6 POS for Reinflection

The second study asks whether POS tags make a
significant impact on learning inflectional patterns
and generating unseen inflected forms. We chose
the morphological re-inflection task because it is
easy to reproduce and to compare with the orig-
inal SIGMORPHON shared task. Eliciting and
analyzing a language’s inflectional patterns is a rec-
ommended next step after morpheme segmentation
and glossing (Bird and Chiang, 2012). The inflec-
tional pattern of a lexeme or a lexical category is
also known as a morphological paradigm. Learning
morphological paradigms can be viewed in terms
of filling in, or generating, the missing forms of
a paradigm table by generalizing over inflectional
patterns (Ackerman et al., 2009; Ahlberg et al.,
2014, 2015; Liu and Hulden, 2017; Malouf, 2017;
Silfverberg et al., 2018; Silfverberg and Hulden,
2018).

The experiments in this section partly replicates
the CoNLL-SIGMORPHON 2018 shared task 1 of
morphological reinflection. Reinflection consists
of generating unknown inflected forms, given a
related inflected form f(`,~tγ1) and a target mor-
phological feature vector ~tγ2 . Thus, it corresponds
to learning the mapping f : Σ∗ × T → Σ∗. The
goal is then to produce the inflected form f(`,~tγ2).
An inflected form is generated when the model is
given a related inflected form and the target mor-
phological features (which are essentially glosses
of affixes) of the inflected form to be generated. In
previous work, POS tags have been included by
default as part of the morphological features. That
is, they have been assumed to be helpful and to be
available.

6.1 Experimental Setup

The models were trained on individual languages
in three different data sets. The first data set is
the published Unimorph inflectional data in ten
languages. The second data set is inflected word
forms extracted from unpublished IGT in four lan-
guages; the third is the clean, or corrected, versions
of the second data set. The Unimorph data was
extracted from published data and is the “clean-
est”. Its inflected forms and morphological fea-
tures were double-checked and the forms provided
were selected to provide a balanced picture of

the language’s morphological structure. The in-
flected forms extracted from the IGT contains only
inflected forms attested in original texts which
are transcribed samples of natural oral speech.
The noisy version was automatically grouped into
paradigms based on the assumption that identi-
cal glosses of root morphemes signified the same
lemma, and therefore the same morphological
paradigm. The clean data was made by asking
language experts to examine the noisy data and re-
group paradigms when root morphemes were incor-
rectly glossed. They also corrected typos and mor-
phological features that were incorrectly glossed.

For the Unimorph data, the original SIGMOR-
PHON training/validation/test splits were kept. The
prepared medium setting of 1,000 training exam-
ples was used. This setting was chosen because
of the three possible settings (100, 1k and 10k), it
is the closest in size to number of inflected word
forms extracted from the four IGT corpora, which
provided between 600 and 3,000 training examples.
An 8/1/1 training/development/tests split was used
for the IGT data.

6.2 Reinflection Results

Five reinflection models with random seeds were
trained on each data set. All models were trained
twice, once with and once without POS tags on
the input. Crosswise pairs were compared by sub-
tracting the results with POS tags from the results
without POS, giving 25 accuracy scores per lan-
guage. Figures 3 and 4 show the average and range
of differences between the two.

The range of differences shows that POS tags do
not have a consistently positive or negative impact.
Only two languages show a clear tendency to be
impact in one way. In Natügu, POS tags improve
accuracy while in Adyghe, they decreases accuracy.

The average difference in accuracy on any data
set is rarely more than 1 percentage point. As the
data becomes less polished, the impact of POS
tags increases slightly and the range of differences
grows noticeably. The largest average difference
(∼5 percentage points) seen in the noisy data from
field IGT. This indicates that time invested in pol-
ishing existing IGT data may give a better return
than time spent on POS-tagging. For the SIGMOR-
PHON languages, the largest mean difference is
barely over 2 points and for the clean IGT-extracted
data the largest mean difference is about 3 points.



973

adyghe arabic basque finnish german persian russian spanish swahili turkish
4.0%

3.0%

2.0%

1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

Ac
cu

ra
cy

 (%
): 

po
s -

 n
oP

OS

Figure 3: The difference in accuracy with/out POS on the reinflection task with SIGMORPHON languages. Neg-
ative scores indicates that adding POS tags improves results. The bar shows the mean of the differences and lines
indicate the range of the mean plus or minus the standard deviation.
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Figure 4: The difference in accuracy with/out POS on the reinflection task with cleaned and noisy field data.
Negative scores indicates that adding POS tags improve results. The bar shows the mean of the differences and
line indicates the range of the mean plus or minus the standard deviation.

7 Discussion

The number of language we used is not large but
a few general observations can be made. For both
tasks the impact made by the presence or absence
of POS tags is minimal. Still, the best results with a
small corpus are achieved when either all or no to-
kens are POS-tagged, at least for segmentation and
glossing. This suggests that having a completely
tagged corpus is better than an incompletely tagged
corpus, so perhaps limited annotation time might
be better spent on more segmentation and glossing.

The size or specificity of the tag set may make a
difference in the impact of POS tags. When com-
paring the tag sets in the CoNLL-SIGMORPHON
2018 shared task data and the IGT from fieldwork,

the difference in the number of lexical categories
is significant. The CoNLL-SIGMORPHON 2018
shared task data sets have at most three: noun (N),
verb (V), and adjective (ADJ). The IGT corpora
have larger tag sets; for example, they may have
tags for both finite verb form (VF) and non-finite
forms (VNF). The smallest IGT tag set has six cate-
gories (Manipuri). That is twice as many POS tags
as the SIGMORPHON languages, but still much
smaller than the other corpora, which have over 20
unique tags.

However, the difference in results cannot be def-
initely attributed to tag set size. The IGT tag sets
are larger because the goal of descriptive work is
to discover fine-grained categories, whereas the
Unimorph data use more general categories which
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are common for language learning material or gen-
eral dictionaries. Similar fine-grained distinctions
appear in the Penn Treebank tag set and are pre-
sumably useful for NLP tasks. Future work could
re-tag IGT with more general categories to test how
the size and specificity of POS tags on small cor-
pora impact these tasks. This could be fruitful area
of research because it might help us predict the
usefulness of another linguistic category: the cat-
egory of morphemes. Morpheme-level categories
are similar to POS tags but tagged for individual
morphemes. Interestingly, morpheme categories
generally take higher priority than word-level tags
in documentary and descriptive linguists and are
therefore more often available in field data.

Consistency of annotation may be significant. It
is likely that the POS tags in the UNIMORPH data
were added carefully and correctly, but the field
data were likely tagged as the lexical categories
were being discovered and described. The differ-
ences in results between the two data sets may be
due to these factors, but the differences are not
huge. So it seems possible that the effect of POS
tags may be similar no matter how the POS tags
are added. A different approach to POS-tagging,
such as training with context might affect results.
This possibility points to many future useful exper-
iments. We believe there may be many unresolved
issues related to the way the POS tags were added
or which POS tags were used. One auxiliary task
would be to project POS tags from the target lan-
guage of the translated sentences that are usually
available in IGT even before morpheme segmen-
tation and glosses. Also, metrics for annotation
quality could be devised so that its impact is better
understood. Linguists need to know as they start
annotation how best to perform their earliest analy-
sis and annotation so that they gain optimal benefit
from automated help later.

Finally, although a consistent impact by POS
tags cannot be seen on morphological learning
across all corpora, some corpora did show a more
or less consistent impact from the presence or
absence of POS tags. Sometimes better results
were achieved by removing POS tags, sometimes
by adding them. Reinflection in Adyghe and the
“clean” version of Lezgi data tend to improve when
POS tags are removed while Persian, Russian, and
the noisy version of Natügu generally have more ac-
curate results when POS tags are available. In seg-
mentation and glossing, Alas and Lamkang show in

some settings nearly .1 points difference when POS
tags are added and removed, respectively. With
these trends, a more interesting question for these
corpora becomes “When are POS tags helpful?”
and this should be explored further.

8 Conclusion

We conclude that the presence or absence of POS
tags does not have a significant impact on two mor-
phological learning tasks: segmentation and gloss-
ing, or reinflection. No clear advantage is gained
or lost from POS-tagging on low-resource data. In
segmentation and glossing, the greatest average
difference is a loss of .09 F1-score when a large
POS tag set is added to a small field corpus. In
reinflection, the overall tendency, though slight, is
that accuracy decreases when POS tags are added.
The greatest average difference is 1.2 percentage
points of accuracy for published data, 2.2 points
for unpublished “clean” data, and 5 points for un-
published noisy data.

We hypothesize that POS tags do not have a
significant impact on these tasks because the infor-
mation provided by POS tags is implicitly learned.
These are, of course, not the only two tasks where
POS tags could be leveraged for low-resource lan-
guages so we cannot make a definitive statement re-
garding the impact of POS tags in other NLP tasks
with low-resource languages, particularly ones that
more syntactic or semantic in nature. Further me-
thodical research needs to be done in order to pro-
duce a definitive analysis. However, it does bring
into question whether the development of POS tag-
gers and POS tagging should be prioritized less.

Future work should explore how other tasks are
impacted by POS tags. The results might influence
workflow priorities for documentary and descrip-
tive linguists who want to receive benefit from, or
give it to, NLP. When a sophisticated POS tag set
and POS taggers are available for a language, lever-
aging POS tags is trivial. However, as NLP expands
into a broader range of languages, the usefulness
of POS tags may become an important question be-
cause documentary and descriptive linguistics does
not currently place a high priority on lexical cate-
gories. Discovering a language’s lexical categories
requires a detailed understanding of the language’s
syntax—something linguists do not always possess
in the early stages of describing a new language.
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Géraldine Walther, Ekaterina Vylomova, Arya D.
McCarthy, Katharina Kann, Sabrina J. Mielke, Gar-
rett Nicolai, Miikka Silfverberg, David Yarowsky,
Jason Eisner, and Mans Hulden. 2018a. The
CoNLL–SIGMORPHON 2018 shared task: Uni-
versal morphological reinflection. In Proceedings
of the CoNLL–SIGMORPHON 2018 Shared Task:
Universal Morphological Reinflection, pages 1–27,

Brussels. Association for Computational Linguis-
tics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
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