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Abstract

Due to the scarcity of annotated data, Abstract
Meaning Representation (AMR) research is
relatively limited and challenging for lan-
guages other than English. Upon the avail-
ability of English AMR dataset and English-to-
X parallel datasets, in this paper we propose
a novel cross-lingual pre-training approach
via multi-task learning (MTL) for both zero-
shot AMR parsing and AMR-to-text genera-
tion. Specifically, we consider three types
of relevant tasks, including AMR parsing,
AMR-to-text generation, and machine transla-
tion. We hope that knowledge gained while
learning for English AMR parsing and text
generation can be transferred to the counter-
parts of other languages. With properly pre-
trained models, we explore four different fine-
tuning methods, i.e., vanilla fine-tuning with a
single task, one-for-all MTL fine-tuning, tar-
geted MTL fine-tuning, and teacher-student-
based MTL fine-tuning. Experimental re-
sults on AMR parsing and text generation of
multiple non-English languages demonstrate
that our approach significantly outperforms a
strong baseline of pre-training approach, and
greatly advances the state of the art. In detail,
on LDC2020T07 we have achieved 70.45%,
71.76%, and 70.80% in Smatch F1 for AMR
parsing of German, Spanish, and Italian, re-
spectively, while for AMR-to-text generation
of the languages, we have obtained 25.69,
31.36, and 28.42 in BLEU respectively. We
make our code available on github https://

github.com/xdqkid/XLPT-AMR.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a widely used formalism
that represents the semantics of a sentence with
a directed and acyclic graph. Figure 1 (b) shows
an example AMR graph where the nodes such as

∗Corresponding Author: Junhui Li.

“doctor” and “give-01” represent concepts, and the
edges such as “:ARG0” and “:ARG1” stand for se-
mantic relations between two connected concepts.
Recent studies on AMR mainly fall in two direc-
tions: AMR parsing which converts a sentence into
an AMR graph (Flanigan et al., 2014; Wang et al.,
2015a; Konstas et al., 2017, to name a few) and its
inverse, i.e., AMR-to-text generation that produces
a sentence from an AMR graph (Flanigan et al.,
2016; Song et al., 2017, 2018, to name a few).

Restricted by the availability of annotated cor-
pora, most of previous studies on AMR focus
on English while very few studies are for Chi-
nese and Portuguese (Wang et al., 2018; Sobre-
villa Cabezudo et al., 2019; Anchiêta and Pardo,
2020). Cross-lingual AMR research, however, has
received relatively less attention. In fact, cross-
lingual AMR has mainly been studied in the scope
of annotation works (Xue et al., 2014; Hajič et al.,
2014). Till recently, Damonte and Cohen (2018)
demonstrate that AMR annotated for English can
be used as cross-lingual semantic representations,
and propose to conduct cross-lingual AMR pars-
ing via annotation projection and machine transla-
tion. Blloshmi et al. (2020) follow the same line
and create large-scale silver data to boost the per-
formance of cross-lingual AMR parsing. Fan and
Gardent (2020) focus on multilingual AMR-to-text
generation for twenty one different languages. The
aforementioned studies consider AMR parsing and
AMR-to-text generation separately.

In this paper, we formalize both AMR pars-
ing and AMR-to-text generation as sequence-to-
sequence (seq2seq) learning and propose a novel
and effective approach to cross-lingual AMR,
which is illustrated in Figure 1. Upon the avail-
ability of the English AMR dataset and English-to-
X parallel datasets (X ∈ {German, Spanish, Italian} in
this paper), our purpose is to boost the performance
of zero-shot AMR parsing and text generation in

https://github.com/xdqkid/XLPT-AMR
https://github.com/xdqkid/XLPT-AMR
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(a) Parallel Sentences
English 

The doctors gave her medication and it's made 
her much better.
German

Sie bekam Medikamente und nun geht es ihr 
viel besser.
Spanish

Los médicos le dieron medicación y ha 
mejorado mucho.
Italian

I medici le hanno dato un farmaco che la fa 
stare molto meglio.

AMR Parsing AMR-to-text

and

give-01
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make-02

much
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(b)AMR Graph

Figure 1: Illustration of cross-lingual AMR parsing and
AMR-to-text generation: (a) sentences in different lan-
guages sharing the same meaning; (b) AMR graph of
the sentences.

X-language. To this end, we borrow the idea of
joint pre-training from Xu et al. (2020) and explore
three types of relevant tasks, including machine
translation tasks, AMR parsing and AMR-to-text
generation tasks. We conjecture that knowledge
gained while learning for English AMR parsing and
text generation could be helpful to the X-language
counterparts, and machine translation tasks could
act as a good regularizer (Xu et al., 2020). To the
best of our knowledge, this is the first study that uti-
lizes such a pre-training approach in cross-lingual
AMR research.

We also explore and compare four different fine-
tuning methods to answer the question that whether
combining AMR parsing and AMR-to-text gener-
ation tasks in fine-tuning stage will achieve better
performance. Moreover, inspired by the teacher-
student mechanism (Kim and Rush, 2016; Chen
et al., 2017), we extend the fine-tuning method
to improve a target fine-tuning task with the help

of another relevant yet stronger task. Experi-
mental results on the cross-lingual AMR dataset
(LDC2020T07) show that the proposed approach
greatly advances the state of the art of cross-lingual
AMR.

Overall, we make the following contributions.

• We propose an effective cross-lingual pre-
training approach for zero-shot AMR parsing
and AMR-to-text generation. Our pre-trained
models could be used for both AMR parsing
and AMR-to-text generation.

• We explore and compare different fine-tuning
methods. We also propose a teacher-student-
based fine-tuning method that achieves the
best performance.

• We evaluate our approach in three zero-shot
languages of AMR and our approach greatly
advances the state of the art.

2 Related Work

We describe related studies on AMR from three
perspectives: English AMR parsing, English AMR-
to-text generation, and cross-lingual AMR.

English AMR Parsing. AMR parsing is a task
that translates a sentence into a directed and acyclic
graph (Banarescu et al., 2013). According to the
approaches to modeling the structure in AMR
graphs, previous studies on AMR Parsing for En-
glish can be broadly grouped into several cate-
gories, which are tree-based approaches (Wang
et al., 2015b; Groschwitz et al., 2018), graph-based
approaches (Flanigan et al., 2014; Werling et al.,
2015; Cai and Lam, 2019), transition-based ap-
proaches (Zhou et al., 2016; Damonte et al., 2017;
Ballesteros and Al-Onaizan, 2017; Guo and Lu,
2018; Zhou et al., 2021), sequence-to-sequence
(seq2seq) approaches (Peng et al., 2017; van No-
ord and Bos, 2017; Konstas et al., 2017; Ge et al.,
2019; Xu et al., 2020; Bevilacqua et al., 2021), and
sequence-to-graph (seq2graph) approaches (Lyu
and Titov, 2018; Zhang et al., 2019a,b; Cai and
Lam, 2020a).

English AMR-to-Text Generation. As an in-
verse task of AMR parsing, AMR-to-text gener-
ation aims to write a sentence from an AMR graph.
Early studies on this task rely on grammar-based ap-
proaches (Flanigan et al., 2016; Song et al., 2017).
More recent studies propose to regard AMR-to-
text generation as a machine translation or seq2seq



898

task (Pourdamghani et al., 2016; Ferreira et al.,
2017; Konstas et al., 2017; Cao and Clark, 2019).
However, seq2seq approaches tend to lose struc-
tural information in AMR graphs since they simply
linearize AMR graphs into sequences before feed-
ing them into the models. To prevent information
loss caused by linearization, a variety of graph-to-
sequence approaches have been proposed to better
model structural information (Song et al., 2018;
Beck et al., 2018; Damonte and Cohen, 2019; Guo
et al., 2019; Ribeiro et al., 2019; Zhu et al., 2019;
Cai and Lam, 2020b; Zhao et al., 2020; Song et al.,
2020; Yao et al., 2020; Bai et al., 2020). By taking
advantages of strong pre-trained language models,
recent studies achieve new state of the art (Mager
et al., 2020; Harkous et al., 2020; Ribeiro et al.,
2020; Bevilacqua et al., 2021) .

Cross-Lingual AMR. All above related studies
focus on English AMR research. Relatively limited
efforts have been put on other languages due to
the lack of language-specific AMR corpora. Actu-
ally, whether AMR can act as an interlingua is an
open question (Xue et al., 2014; Hajič et al., 2014).
Till lately , Damonte and Cohen (2018) demon-
strate that a simplified AMR can be used across
languages and for the first time they study cross-
lingual AMR parsing for languages rather than En-
glish. Blloshmi et al. (2020) employ large-scale
silver parallel AMR data to bridge the gap between
different languages and greatly advance the perfor-
mance of cross-lingual AMR parsing. Sheth et al.
(2021) explore annotation projection to leverage ex-
isting English AMR and overcome resource short-
age in the target language. Furthermore, Fan and
Gardent (2020) explore cross-lingual AMR-to-text
based on pre-trained cross-lingual language model
(XLM) (Lample and Conneau, 2019). In this paper
we build strong cross-lingual pre-trained models
for both AMR parsing and AMR-to-text generation.
Moreover, a nice property of our approach is that
for AMR parsing, unlike related studies (Damonte
and Cohen, 2018; Blloshmi et al., 2020), we do
not need to perform lemmatization, POS tagging,
NER, or re-categorization of entities, thus require
no language specific toolkits in pre-processing.

3 Cross-Lingual Pre-Training

In this section, we first present the background of
our pre-training approach (Section 3.1), followed
by the description of cross-lingual pre-training
tasks (Section 3.2). Then we present our joint

pre-training (Section 3.3). For simplicity, in the
following we use German as a representative to de-
scribe our approach to German AMR parsing and
AMR-to-text generation.

3.1 Background

Transformer-based Seq2Seq Learning. Our
models are built on the Transformer frame-
work (Vaswani et al., 2017). The encoder in Trans-
former consists of a stack of multiple identical lay-
ers, each of which has two sub-layers: one imple-
ments the multi-head self-attention mechanism and
the other is a position-wise fully-connected feed-
forward network. The decoder is also composed of
a stack of multiple identical layers. Each layer in
the decoder consists of the same sub-layers as in the
encoder plus an additional sub-layer that performs
multi-head attention to the distributional represen-
tation produced by the encoder. See Vaswani et al.
(2017) for more details.

AMR Graph Linearization and Recovering.
To make Transformer applicable to AMR parsing
and AMR-to-text generation, on the one hand we
follow van Noord and Bos (2017) to linearize AMR
graphs into sequences by removing variables, wiki
links and duplicating the co-referring nodes. On the
other hand, for AMR parsing we need to recover
the graph representation from linearized AMRs
by assigning a unique variable to each concept,
pruning duplicated and redundant materials, restor-
ing co-referring nodes, fixing incomplete concepts
and performing Wikification.1 In this paper, we
adopt linearization and recovering scripts provided
by van Noord and Bos (2017).2

3.2 Cross-Lingual Pre-Training Tasks

Due to the unavailability of gold training data of
German AMR parsing and AMR-to-text genera-
tion, we view English as a pivot and hope that
knowledge gained while learning for English AMR
parsing and text generation could be helpful for
the German counterparts. Specifically, given an
EN-DE parallel dataset

(
T EN , T DE

)
, we use an

English AMR parser trained on annotated English
AMRs (i.e., AMR2.0) to parse the English sen-
tences into AMR graphs, thus obtain a trilingual
parallel dataset T =

(
T EN , T DE , T AMR

)
. Then

1We extract a term-wiki list from English AMR training
dataset. When performing Wikification, we simply just look
up the list.

2https://github.com/RikVN/AMR

 https://github.com/RikVN/AMR
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on the trilingual parallel dataset, we propose cross-
lingual pre-training via multi-task learning. We
consider three types of tasks, i.e., AMR parsing,
AMR-to-text generation, and machine translation.

AMR Parsing Tasks, which include both
English AMR parsing on the training data(
T EN , T AMR

)
and German AMR parsing on(

T DE , T AMR
)
. Note that both AMR parsing tasks

are trained on silver AMR graphs.

AMR-to-Text Generation Tasks, which in-
clude both English AMR-to-text generation and
German AMR-to-text generation. Similar to
AMR parsing, these two AMR-to-text genera-
tion tasks are also trained on silver AMR graphs(
T AMR, T EN

)
and

(
T AMR, T DE

)
, respectively.

Machine Translation Tasks, which include
both English-to-German and German-to-English
machine translation tasks on

(
T EN , T DE

)
. The

advantage of including the bi-directional transla-
tion tasks is three-fold. First, English-to-German
translation will enable the decoder to generate flu-
ent German sentence, which is beneficial to Ger-
man AMR-to-text generation. Second, German-to-
English translation will enable the encoder to cap-
ture syntax and semantic information from German
sentences, which is beneficial to German AMR
parsing. Third, translation tasks can serve as reg-
ularization to the training of AMR parsing and
AMR-to-text generation, both of which are apt to
overfit to the training data.

Overall speaking, in our pre-training there ex-
ist three types of (six) pre-training tasks in total.
The pre-training is conducted on a trilingual paral-
lel dataset

(
T EN , T DE , T AMR

)
, where T EN and

T DE are parallel gold sentence pairs while T AMR

is the set of corresponding silver AMR graphs.

3.3 Jointly MTL Pre-Training

To train the above six pre-training tasks with a sin-
gle model, we follow the strategy used in Xu et al.
(2020) and add preceding language tags to both
source and target sides of training data to distin-
guish the inputs and outputs of each training task.
As illustrated in Table 1, we use <en>, <de>, and
<amr> as the tags of begin-of-sentence for En-
glish sentences, German sentences, and linearized
AMRs, respectively.

Our joint pre-training on multiple tasks falls into
the paradigm of multi-task learning (MTL). In the
training stage, we take turns to load the training

English <en> English Sentence
German <de> German Sentence

AMR <amr> Linearized AMR

Table 1: Preceding tags as the symbol of begin-of-
sentence to distinguish languages.

data of these pre-training tasks. For example, we
update model parameters on a batch of training
instances from the first task, and then update pa-
rameters on a batch of training instances of the
second task, and the process repeats. We also note
that, according to our preliminary experimentation,
the effect of different orders of carrying out these
pre-training tasks is negligible.

4 Fine-Tuning Methods

To fine-tune a pre-trained model, we create a
fine-tuning dataset from English annotated AMRs
(i.e.,AMR2.0). Given English-AMR parallel data(
FEN ,FAMR

)
, we use an English-to-German

translator to translate the English sentences into
German sentences, thus obtain trilingual parallel
dataset F =

(
FEN ,FDE ,FAMR

)
. As our goal

is to improve the performance of zero-shot AMR
parsing and AMR-to-text generation, our primary
fine-tuning tasks are German AMR parsing and
AMR-to-text generation. Moreover, we could in-
clude the other four fine-tuning tasks as auxiliary
tasks when necessary, i.e., English AMR parsing
and AMR-to-text generation, as well as English-to-
German and German-to-English translation.

Once the fine-tuning dataset is ready, we can fine-
tune a pre-trained model with different methods.
The vanilla fine-tuning method that fine-tunes a pre-
trained model on the dataset of a primary task is a
natural choice. We can also fine-tune a pre-trained
model jointly over all fine-tuning tasks, or over the
primary tasks plus specifically chosen fine-tuning
tasks that are relevant. In the following we explore
and compare four different fine-tuning methods.

4.1 Vanilla Fine-Tuning

Given a pre-trained model, vanilla fine-tuning up-
dates the parameters of the pre-trained model solely
on the dataset of the downstream task. For exam-
ple, for German AMR parsing, we fine-tune the
pre-trained model on the fine-tuning dataset of the
German AMR parsing task. In other words, vanilla
fine-tuning involves only a single-task learning.
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4.2 One-for-All MTL Fine-Tuning

We fine-tune a pre-trained model synchronously for
all six fine-tuning tasks, which are the same as the
pre-training tasks. Related studies (Li and Hoiem,
2018; Xu et al., 2020) have shown that it is im-
portant to optimize for high accuracy of a primary
fine-tuning task while preserving the performance
of other tasks. Preserving the performance of var-
ious pre-training tasks could be viewed as a regu-
larizer for each fine-tuning task. Similarly to joint
pre-training, we take turns to load the fine-tuning
data of these fine-tuning tasks. Consequently, we
obtain a single fine-tuned model for all tasks.

4.3 Targeted MTL Fine-Tuning

Rather than including all fine-tuning tasks within
a single model, we can selectively choose relevant
fine-tuning tasks. For German AMR parsing, we
use AMR parsing on German as the primary fine-
tuning task and German-to-English translation as
an auxiliary fine-tuning task. The auxiliary task
will enhance the encoder to capture semantic in-
formation from German sentences. This is also
consistent with the fine-tuning tasks designed for
English AMR parsing in (Xu et al., 2020). For Ger-
man AMR-to-text generation, we choose English-
to-German as the auxiliary fine-tuning task, which
is beneficial for the decoder to generate fluent Ger-
man sentences.

4.4 Teacher-Student-based MTL
Fine-Tuning

One notable property of the fine-tuning dataset
is that the German sentences are produced auto-
matically through machine translation. Noises in
such silver fine-tuning dataset may degrade the per-
formance of fine-tuned models. Inspired by the
teacher-student framework (Kim and Rush, 2016;
Chen et al., 2017), we propose to solve this prob-
lem by using a stronger fine-tuning task to help
improve fine-tuning tasks on such noisy data. For
example, we can use English AMR parsing (as the
teacher) to help German AMR parsing (as the stu-
dent), since English AMR parsing that is fine-tuned
on gold data tends to have stronger performance.

Fine-Tuning for German AMR Parsing. We
use E, G, A to denote English-side, German-side,
and AMR-side, respectively, and (e,g,a) as a
triple instance. For German AMR parsing (i.e.,
G → A), we regard English AMR parsing (i.e.,

E → A) as its teacher and assume that the prob-
ability of generating a target AMR token ai from
g should be close to that from its counterpart e,
given the already obtained partial AMR a<i. On
this assumption, the student model can acquire
knowledge from the teacher by applying word-level
knowledge distillation for multi-class cross-entropy
with the following joint training objective:

J (θG→A) =∑
(e,g,a)

J
(
e,g,a, θ̂E→A, θG→A

)
+ LθG→A (a | g) , (1)

where (e,g,a) ∈ DE,G,A, i.e.,
(
FEN ,FDE ,FAMR

)
,

the fine-tuning data for English/German AMR
parsing, θ̂E→A denotes the already learned model
parameters for English AMR parsing,3 and
LθG→A (a | g) denotes the log-likelihood function
for translating g into a. The function J in Eq. 1 is
defined as:

J
(
e,g,a, θ̂E→A, θG→A

)
=

|a|∑
i=1

KL
(
P (a|e,a<i; θ̂E→A) ‖ P (a|g,a<i; θG→A)

)

=

|a|∑
i=1

∑
a∈Va

P (a|e,a<i; θ̂E→A) log
P (a|e,a<i; θ̂E→A)
P (a|g,a<i; θG→A)

,

(2)

where KL (· ‖ ·) denotes the KL divergence between
two distributions, and Va is the vocabulary set.4

To sum up, in MTL fine-tuning we use Eq. 1 as
the objective for the fine-tuning task of German
AMR parsing while we still use the log-likelihood
function for the auxiliary fine-tuning task, i.e.,
German-to-English translation.

Fine-Tuning for German AMR-to-Text Genera-
tion. Considering the fact that the performance
of English-to-German translation is also better than
that of German AMR-to-text generation, we view
English-to-German translation as the teacher and
assume that the probability of generating a target
German token gi from a should be close to that
from its counterpart e, given the already obtained
partial German sentence g<i. The joint training
objective for German AMR-to-text generation is
similar to the aforementioned objective function
for German AMR parsing. Due to limited space,
we omit definition details of the objective function.

3The English AMR parser is learned by fine-tuning the pre-
trained model on fine-tuning tasks of English AMR parsing
and English-to-German translation.

4To avoid overfitting, the method additionally fine-tunes
80K steps on the pre-training dataset at the beginning.
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5 Experimentation

In this section, we report the performance of our
approach to AMR parsing and AMR-to-text gener-
ation for non-English languages, including German
(DE), Spanish (ES), and Italian (IT). The models
are pre-trained and fine-tuned on English data and
one of either DE, ES, or IT, and are evaluated in
the target language.

5.1 Experimental Settings

Pre-Training Datasets. For German, we use
the WMT14 English-German translation dataset 5

which consists of 3.9M sentence pairs after pre-
processing. For Spanish and Italian, we use Eu-
roparl parallel datasets,6 which consist of 1.9M
English-Spanish and 1.9M English-Italian sen-
tence pairs, respectively. The English sentences
of all the datasets are all parsed into AMR graphs
via an English AMR parser trained on AMR 2.0
(LDC2017T10) (Appendix A provides more details
on the English AMR parser). We merge English,
German (Spanish/Italian) sentences and linearized
AMRs together and segment all the tokens into
subwords by byte pair encoding (BPE) (Sennrich
et al., 2016) with 40K (or 30K for both Spanish
and Italian) operations.

In addition, we also train NMT models to trans-
late English into German, Spanish, and Italian on
above parallel datasets with Transformer-big set-
tings (Vaswani et al., 2017). These NMT models
will be used in preparing fine-tuning datasets (Ap-
pendix B provides more implementation details on
the NMT models).

Fine-Tuning Datasets. We use English AMR2.0
which contains 36,521, 1,368, and 1,371 English-
AMR pairs for training, development, and testing,
respectively. We translate the English sentences
into German, Spanish, and Italian, respectively. We
segment all the tokens into subwords by using the
BPE model trained on pre-training datasets.

Pre-Training and Fine-Tuning Model Settings.
We implement above pre-trained models based on
OpenNMT-py (Klein et al., 2017). 7 For simplicity,
we use the same hyperparameter settings to train
all the models in both pre-training and fine-tuning

5https://www.statmt.org/wmt14/
translation-task.html

6https://www.statmt.org/europarl/index.
html

7https://github.com/OpenNMT/OpenNMT-py

by just following the settings for the Transformer-
base model in Vaswani et al. (2017). The number
of layers in encoder and decoder is 6 while the
number of heads is 8. Both the embedding size
and the hidden state size are 512 while the size of
feedforward network is 2048. Moreover, we use
Adam optimizer (Kingma and Ba, 2015) with β1
of 0.9 and β2 of 0.98. Warm up step, learning rate,
dropout rate, and label smoothing epsilon are set
to 16000, 2.0, 0.1 and 0.1 respectively. We set the
batch size to 4,096 (8,196) in pre-training (fine-
tuning). We pre-train (fine-tune) the models for
250K (10K) steps and save them at every 10K (1K)
steps. Finally, we obtain final pre-trained (fine-
tuned) models by averaging the last 10 checkpoints.

Evaluation. We evaluate on LDC2020T07 (Da-
monte and Cohen, 2018), a corpus containing hu-
man translations of the test portion of 1371 sen-
tences from the AMR 2.0, in German, Spanish,
Italian, and Chinese. This data is designed for use
in cross-lingual AMR research. Following Fan and
Gardent (2020), we only evaluate on languages of
German, Spanish and Italian where we have train-
ing data from EUROPARL. For AMR parsing eval-
uation, we utilize Smatch and other fine-grained
metrics (Cai and Knight, 2013; Damonte et al.,
2017). For AMR-to-text generation, we report per-
formance in BLEU (Papineni et al., 2002).

5.2 Baseline Systems

We compare the performance of our approach
against two baseline systems.

Baselinescratch. To build this baseline system, we
directly train models from scratch on the fine-
tuning datasets. Taking German AMR parsing
as example, we train the model on its fine-tuning
dataset

(
FDE,FAMR

)
to get Baselinescratch.

Baselinepre-trained. Rather than training models
from scratch, we pre-train the models on large-
scale silver datasets. Taking German AMR parsing
as example, we first pre-train the model on the pre-
training dataset, i.e.,

(
T DE, T AMR

)
, then we fine-

tune the pre-trained model on the corresponding
fine-tuning dataset, i.e.,

(
FDE,FAMR

)
.

5.3 Main Results

Table 2 shows the performance of AMR parsing
and AMR-to-text generation for German (DE),
Spanish (ES), and Italian (IT).

https://www.statmt.org/wmt14/translation-task.html
https://www.statmt.org/wmt14/translation-task.html
https://www.statmt.org/europarl/index.html
https://www.statmt.org/europarl/index.html
https://github.com/OpenNMT/OpenNMT-py
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Approach AMR Parsing AMR-to-Text
DE ES IT DE ES IT

Baselinescratch 58.10 60.65 58.67 13.11 17.83 13.59
Baselinepre-trained 64.90 68.05 66.54 19.32 27.17 24.13
XLPT-AMRnone 48.97 59.52 58.13 10.63 21.17 16.56
XLPT-AMRvanilla 66.88 69.86 69.13 23.11 29.14 27.56
XLPT-AMRone4all 67.40 69.85 69.26 23.37 31.17 28.26
XLPT-AMRtargeted 68.31 70.10 69.64 24.15 30.83 28.27
XLPT-AMRT-S 70.45 71.76 70.80 25.69 31.36 28.42
Previous works on cross-lingual AMR parsing
Damonte and Cohen (2018)† 57.0 60.0 58.0 - - -
Blloshmi et al. (2020)‡ 53.0 58.0 58.1 - - -
Sheth et al. (2021)‡ 62.7 67.9 67.4 - - -
Previous works on cross-lingual AMR-to-text generation
Fan and Gardent (2020)‡ - - - 15.3 21.7 19.8

Table 2: Performance of AMR parsing in Smatch F1 and AMR-to-text generation in BLEU for German (DE),
Spanish (ES), and Italian (IT). Here, XLPT-AMRnone denotes that we test the pre-trained models without fine-
tuning them. XLPT-AMRone4all, XLPT-AMRtargeted, and XLPT-AMRT-S indicate that we use one-for-all, targeted
and teacher-student as MTL fine-tuning method, respectively. † is for using Google translator while ‡ for pre-
trained models.

From the performance comparison of the two
baseline approaches, it is not surprising to find
out that pre-training on silver datasets is a very
effective way to boost performance (Konstas et al.,
2017; Xu et al., 2020). By using silver datasets,
we obtain improvements of 6.80 ∼ 7.87 Smatch
F1, and 6.21 ∼ 10.54 BLEU for parsing and text
generation, respectively.

With any of our fine-tuning methods, our
cross-lingual pre-training approach further im-
proves the performance over the strong baseline
Baselinepre-trained in both parsing and gener-
ation tasks over all languages. It shows that like
other fine-tuning methods, vanilla fine-tuning sig-
nificantly boosts the performance of both parsing
and generation. However, it still underperforms
any of the MTL fine-tuning methods. This con-
firms that it is important to optimize for high accu-
racy of a certain fine-tuning task while preserving
the performance of other pre-training. The perfor-
mance comparison between XLPT-AMRone4all
and XLPT-AMRtargeted suggests that selectively
choosing relevant fine-tuning tasks, rather than in-
cluding all fine-tuning tasks, could further boost
parsing and generation performance with the ex-
ception of Spanish generation task.

The XLPT-AMRT-S models perform the best,
which reveals that using the teacher-student frame-
work to guide the decoding process also helps the
student task. This is owing to fact that the teacher

models achieve better performance than the student
models. See more in Section 5.4 for performance
comparison of teacher and student models.

Finally, we compare our approach to the previ-
ous studies. Among them, both Blloshmi et al.
(2020) and Fan and Gardent (2020) adopt pre-
trained models which cover either the encoder part,
or the decoder part. From the results we can see
even our baseline Baselinepre-trained outper-
forms them by pre-training the encoder and the
decoder simultaneously. The results also show
that our XLPT-AMRT-S models greatly advance
the state of art. For example, our XLPT-AMRT-S
models outperform Sheth et al. (2021) by 3.4∼7.8
Smatch F1 on AMR parsing of the three languages
while surpass Fan and Gardent (2020) by around
10 BLEU on AMR-to-text generation.

Table 3 compares the performance of fine-
grained metrics for AMR parsing. It shows that
our XLPT-AMRT-S models achieve the best perfor-
mance on all the metrics with the only exception
of Concepts for Italian AMR parsing. It shows
that like English AMR parsing, all models predict
Reentrancies poorly (Szubert et al., 2020). It
also demonstrates that Negations is another met-
ric which is hard to predict. In future work, we will
pay particular attention to the two metrics.
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Metric Blloshmi et al. (2020) Baselinepre-trained XLPT-AMRT-S
DE ES IT DE ES IT DE ES IT

Smatch 53.0 58.0 58.1 64.90 68.05 66.54 70.45 71.76 70.80
Unlabeled 57.7 63.0 63.4 69.53 72.49 71.16 74.57 75.86 75.07
No WSD 53.2 58.4 58.4 65.16 68.40 66.78 70.70 72.14 71.11
Concepts 58.0 65.9 64.7 68.79 73.06 78.21 73.42 76.29 74.86
Named Ent. 66.0 65.9 64.7 79.12 81.34 68.42 85.95 84.09 83.35
Negations 11.7 23.4 29.2 42.69 51.93 48.57 52.48 57.19 54.95
Wikification 60.9 63.1 67.0 67.40 69.40 71.05 74.05 73.32 73.73
Reentrancies 39.9 46.6 46.1 42.40 46.20 44.10 45.70 48.40 47.90
SRL 47.9 55.2 54.7 60.50 65.20 63.80 64.90 68.50 67.30

Table 3: Fine-grained F1 scores of AMR parsing.

5.4 Discussion

In this section, we try to answer the following three
questions:

• First, what is the performance of teacher mod-
els when we use teacher models to guide stu-
dent ones in teacher-student-based MTL fine-
tuning?

• Second, what is the effect of the two machine
translation tasks in pre-training?

• Third, in our approach we take English as
pivot language by taking advantage of large
scale English-to-German (or Spanish, Italian)
dataset. What is the performance of English
AMR parsing and AMT-to-text generation?

Performance of teacher models in teacher-
student-based MTL fine-tuning. Table 4 com-
pares the performance of teacher and student mod-
els. It shows that the performance of teacher mod-
els for English AMR parsing and English-to-X
translation is much higher than the counterparts of
student models (i.e., Stu.(before) in the table). The
table also shows that the student models beneift
from receiving guidance from the teachers. For
example, while the English AMR parsing model
(i.e., the teacher) achieves 78.62 Smatch F1 on the
test set, it improves the performance of the German
AMR parsing model (i.e., the student) from 68.31
Smatch F1 to 70.45. Similarly, while the English-
to-German model (i.e., the teacher) achieves 39.40
BLEU on the test set, it boosts the performance of
the German AMR-to-text generation model (i.e.,
the student) from 24.15 BLEU to 25.69.

Effect of machine translation tasks in pre-
training. We use German as a representative.

Note that when machine translation tasks are not
involved in pre-training, the targeted MTL fine-
tuning method is not applicable since we cannot
use machine translation as the auxiliary task. There-
fore, we use the vanilla fine-tuning method to fine-
tune the pre-trained models. Table 5 compares
the performance with/without machine translation
tasks in pre-training. From it, we observe that in-
cluding machine translation tasks in pre-training
achieves improvements of 2.77 Smatch F1 and 2.46
BLEU on German AMR parsing and text genera-
tion, respectively. This suggests the necessity to
have machine translation tasks in pre-training.

Performance of English AMR parsing and
AMR-to-Text generation. Based on the pre-
trained models, we take the targeted MTL fine-
tuning method (Section 4.3) as a representative.
Specifically, for English AMR parsing, we choose
English-to-X (X ∈ {German, Spanish, Italian}) as the
auxiliary fine-tuning task while for English test
generation, we choose X-to-English as the auxil-
iary task.

Table 6 shows that the performance of English
parsing and generation is much higher than that of
other languages. Moreover, we find that the results
of English AMR parsing are quite close when com-
bining English with any of other languages whereas
the results of English AMR-to-text generation are
considerably different. One possible reason for the
phenomenon is that English AMR-to-text genera-
tion is relevant to the sizes of machine translation
datasets used in pre-training (i.e., 3.9M for EN-DE
translation whereas 1.9M for both EN-ES and EN-
IT, respectively) while English parsing seems to
be less affected by the sizes of (silver) datasets. It
indicates that with more English sentences in pre-
training, it helps the generation models to generate
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Model AMR Parsing AMR-to-Text
DE ES IT DE ES IT

Teacher 78.62 78.16 78.58 39.40 40.41 36.67
Stu.(before) 68.31 70.10 69.64 24.15 30.83 28.27
Stu.(after) 70.45 71.76 70.80 25.69 31.36 28.42

Table 4: Performance comparison of teacher and student models. Note that the performance of teacher models is
for English AMR parsing, and English-to-X translation, respectively.

Pre-training tasks AMR Parsing AMR-to-Text
All 66.88 23.11
- MT tasks 64.11 20.65

Table 5: Performance comparison for German
with/without machine translation tasks in pre-training.

Language AMR Parsing AMR-to-Text
DE 68.31 24.15
EN 78.62 40.89
ES 70.10 30.83
EN 78.16 32.29
IT 69.64 28.27
EN 78.58 31.98

Table 6: Performance comparison for AMR parsing
and AMR-to-text generation for English and other
three zero-shot languages.

more fluent and correct English sentences.

6 Conclusions

In this paper we proposed a cross-lingual pre-
training approach via multi-task learning for zero-
shot AMR parsing and AMR-to-text generation.
Upon English AMR dataset and English-to-X par-
allel datasets, we pre-trained models on three types
of relevant tasks, including AMR parsing, AMR-
to-text generation, and machine translation. We
also explored and compared four different fine-
tuning methods. Experimentation on the multilin-
gual AMR dataset shows that our approach greatly
advances the state of the art.
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Task BLEU
EN-DE 28.67
EN-ES 26.54
EN-IT 26.79

Table 7: Performance in BLEU score for the three trans-
lation tasks.

A English AMR Parser on AMR 2.0

Our English AMR parser is learned in a seq2seq
framework and trained on AMR2.0, which con-
sists of 36,521 training AMRs, 1,368 development
AMRs and 1,371 testing AMRs. We share vocab-
ulary for the input and the output by segmenting
tokens into pieces by byte pair encoding (BPE)
with 20K merge operations.

We use OpenNMT-py as the implementation of
Transformer. In model setting, we use Transformer
base model setting. We use Adam with β1 = 0.9,
β2 = 0.98 for optimization. Batch size, learning
rate, warm-up step, and dropout rate are set to 4096,
2.0, 16000 and 0.1 respectively. We train the model
for 250K steps on 1 GPUs and save models every
10K steps. Finally, we obtain final model by aver-
aging the last 10 checkpoints.

The English AMR parser achieves 73.68 and
73.24 Smatch F1 on the dev and test set, respec-
tively.

B NMT Models for English-to-German,
English-to-Spanish, English-to-Italian

In pre-processing, we tokenize all of MT corpus
with Moses scripts.8 Then we segment words into
pieces by BPE with 32K (30K) BPE merge opera-
tions for EN-DE (both EN-ES and EN-IT). After
filtering long and imbalanced pairs, we get 3.9M
parallel sentence pairs for EN-DE and 1.9M for
both EN-ES and EN-IT.

We again use OpenNMT-py as the implemen-
tation of Transformer. In model setting, we use
Transformer big model setting. We use Adam with
β1 = 0.9, β2 = 0.998 for optimization. Batch size,
learning rate, warm-up step, and dropout rate are
set to 8192, 2.0, 8000 (16000 for both EN-ES and
EN-IT) and 0.1, respectively. We train the model
for 100K (110K for EN-ES and 150K for EN-IT)
steps on 4 GPUs and save models very 5000 steps.
For each translation task, we obtain final model by

8https://github.com/moses-smt/
mosesdecoder

averaging the last 5 (20 for both EN-ES and EN-IT)
checkpoints.

For evaluation, we use case-sensitive BLEU mea-
sured by multi-bleu script. Table 7 shows the per-
formance of the three translation models on the
test sets, i.e., newstest2014 for EN-DE and new-
stest2009 for both EN-ES and EN-IT.

https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder

