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Abstract

Learning contextual text embeddings that rep-
resent causal graphs has been useful in improv-
ing the performance of downstream tasks like
causal treatment effect estimation. However,
existing causal embeddings which are trained
to predict direct causal links, fail to capture
other indirect causal links of the graph, thus
leading to spurious correlations in downstream
tasks. In this paper, we define the faithful-
ness property of contextual embeddings to cap-
ture geometric distance-based properties of di-
rected acyclic causal graphs. By incorporating
these faithfulness properties, we learn text em-
beddings that are 31.3% more faithful to hu-
man validated causal graphs with about 800K
and 200K causal links and achieve 21.1% bet-
ter Precision-Recall AUC in a link prediction
fine-tuning task. Further, in a crowdsourced
causal question-answering task on Yahoo! An-
swers with questions of the form “What causes
X?”, our faithful embeddings achieved a pre-
cision of the first ranked answer (P@1) of
41.07%, outperforming the existing baseline
by 10.2%.

1 Introduction

Learning distributed word representations that cap-
ture causal relationships are useful for real-world
natural language processing tasks (Roberts et al.,
2020; Veitch et al., 2020; Gao et al., 2018, 2019).
Approximating the notion of causality with a
similarity-based distance metric using separate vec-
tor representations for cause and effect tokens has
led to significant improvement in the performance
of downstream tasks like Question Answering, but
can be too restrictive to generalize over unobserved
edges in larger causal graphs (Sharp et al., 2016).
In downstream causal reasoning based tasks like
dialog systems (Ning et al., 2018), explanation gen-
eration (Grimsley et al., 2020), question answering
(Sharp et al., 2016), it is important to align the

models with the corresponding causal graph. How-
ever, words that have low cosine similarity capture
various semantic similarities, like relatedness, syn-
onyms, replaceability, or complementarity, but not
directionality (Hamilton et al., 2017). Hence, any
symmetric distance in an embedding space cannot
convey the directed causal semantics for a down-
stream task (Mémoli et al., 2016). In this paper,
we overcome these two shortcomings and propose
to optimize for directed faithfulness (Spirtes et al.,
1993) that word embeddings have to satisfy towards
a causal graph.

Prior work on capturing sufficient information
for causal inference tasks from embeddings aims
to directly use them for average treatment effect
estimation (Veitch et al., 2020). We are, however,
interested in a complementary question: “Can we
learn word embeddings based on a distance mea-
sure that maps the directed distance between nodes
in a causal graph to that in the embedding space?”.
Unlike prior work, which aims to learn a causal
aware embedding restricted to direct link predic-
tion (Hamilton et al., 2017), we propose faithful-
ness constraints so that causal word embeddings
aims to preserve the partial ordering over pairwise
distances in the directed causal graph. In this paper,
to achieve the goal of learning faithful word embed-
dings with a vocabulary of more than 100K tokens,
we minimize faithfulness violations over pairwise
samples of nodes in the causal graph. Through this
constrained optimization, we learn an embedding
that can be applied directly for causal inference
tasks but also generalizes to emergent causal links.
It has been shown that NLP models need to under-
stand such causal links that persist in the real world
for safe deployment (Gao et al., 2018; Mishra et al.,
2019). Embeddings that violate the faithfulness
property, can lead to spurious correlations based
on co-location in the embedding space. For exam-
ple, in a Yahoo! causal question-answering task’s
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example: “What causes nosebleed?”: the answers
were “dry air”, “heavy dust”, “damaged nasal cells”
and “liver problems”. If we were to only rely on
an undirected association based embeddings, the
causes “dry air” and “liver problems” might be
nearby (with distance of 2), but would be appro-
priately placed far in a directed causality based
embedding space. To capture such asymmetric
properties, we aim to preserve alignment with the
causal graph by mapping causal links to an asym-
metric quasi-pseudo distance measure during train-
ing to capture directionality of the causal graph as
per Figure 1. Since human validated causal graphs
can be used directly to answer questions of the
type “What causes X?”, we demonstrate the utility
of learning faithful representations by using our
distance-based features to solve the Yahoo! causal
question-answering (QA) task. A causal QA task,
unlike a standard QA task, can directly benefit from
incorporating a causal graph into word embeddings
to answer anti-causal queries. Our key contribu-
tions are:

• We define a faithfulness property for word
embeddings over a causal graph, that captures
geometric properties of the causal graph, be-
yond the direct link prediction by ensuring
global proximity preservation.

• We propose a methodology to learn faithful
embeddings through violation minimization
which improves neighborhood detection by
31.3%, uniformity by 42.6%, and distance
correlation by 54.2% using a quasi-pseudo
distance metric.

• The faithful BERT and RoBERTa-based em-
beddings we learn, when used as inputs to
a causal QA task, increases the precision of
the first ranked answer (P@1) over existing
baselines by 10.2%.

2 Related Work

2.1 Causal Model Representations
Causal Inference, as outlined in (Pearl, 2009) for-
malizes cause and effects discovered through inter-
vention based experiments and communicates them
via directed acyclic graphs. With the availability
of large observational datasets for machine learn-
ing, various methods and assumptions have been
proposed for learning causal graphs (Schölkopf,
2019), data fusion and transportability properties
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Figure 1: Schematic of our Faithful BERT-based model

(Bareinboim and Pearl, 2016; Bonner and Vasile,
2017). Specifically, our work closely aligns with
the assumption of faithfulness (Spirtes et al., 1993),
which requires that the observed probability distri-
butions of nodes in a causal graph are condition-
ally independent as per the links in the graph. In
our work, we use the probability distributions as
modeled in a natural language model (Kuhn and
De Mori, 1990) and align it with the causal links
in a graphical causal model. We extend the faith-
fulness assumption to be reflected in embeddings
learnt by a masked language model (Devlin et al.,
2019; Liu et al., 2019b) for downstream tasks. This
definition of faithfulness is different from the one
proposed by (Jacovi and Goldberg, 2020) used to
evaluate models for interpretability of models used
for downstream tasks. Instead, our work builds on
embeddings learnt in (Sharp et al., 2016), given a
causal model and learn embeddings that are boot-
strapped using a small set of cause-effect seeds.
Causal models have also been used to learn aux-
iliary tasks (Feder et al., 2020) using adversarial
training to ensure that a language model learns
causal-inspired representations. Such approaches
use causal models to learn counterfactual embed-
dings invariant to the presence of confounding con-
cepts in a sentence, while we encode the geometri-
cal properties of causal graphs into the embeddings
and the distance measure to maintain their faithful-
ness. In principle, we adopt a similar approach to
(Veitch et al., 2020) of fine-tuning towards a causal
link prediction task. This is in contrast with ap-
proaches that use energy-based transition vectors
used to represent the cause-to-effect and effect-
to-cause links (Zhao et al., 2017). Our approach
uses regularization constraints similar to the ones
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proposed for information bottlenecks in word em-
beddings (Li and Eisner, 2019; Goyal and Durrett,
2019), text-based games (Narasimhan et al., 2015),
activation links in neuroscience (Chalupka et al.,
2016), causal consistency with ordinary differential
equations (Rubenstein et al., 2017) and temporal
Granger Causality (Tank et al., 2018). For an exten-
sive survey of using text for causal inference tasks,
we refer to (Keith et al., 2020).

2.2 Graph Representation Learning
Learning asymmetric transitive graph representa-
tions which generalize the causal graph have been
studied extensively in Information Retrieval (Chen
et al., 2007; Epasto and Perozzi, 2019; Li et al.,
2019; Grover and Leskovec, 2016). They either
utilize a random walk learning technique (Perozzi
et al., 2014) or matrix factorization techniques (Lee
and Seung, 2000; Tenenbaum et al., 2000; Wang
et al., 2017; Mikolov et al., 2013) to incorporate
priors such as the stationary transition probabil-
ity matrix, community structure, etc. More re-
cently, (Liu et al., 2019a; Ostendorff et al., 2019; Lu
et al., 2020) have incorporated knowledge graphs in
BERT and shown increased accuracy in knowledge-
centric NLP tasks. (Zhou et al., 2017; Gordo and
Perronnin, 2011; Ou et al., 2016; Sun et al., 2018;
Tang et al., 2015) propose asymmetric higher order
proximity preserving graph embedding methods
by learning separate source and target embeddings.
While we can learn faithful 3-dimension embed-
dings for any fixed finite undirected graph deter-
ministically (Cohen et al., 1995), fine-tuning pre-
trained word embeddings such that they generalize
over all sub-graphs in a directed graph is known to
be a hard graph kernel design problem that scales
cubically with the number of nodes (Vishwanathan
et al., 2010). Our approach builds on efforts to
incorporate graph-like structure in BERT, but over-
comes the issue of learning dual embeddings for
cause-effect edges by learning unified embeddings
for both cause and effect roles of words. Through
such embeddings, we can further aid causal discov-
ery that is not yet captured in a graphical notation
(Chen et al., 2014).

2.3 Graph Neural Networks
Recently, Graph neural networks that capture the
graph neighborhood structure have been employed
in link prediction (Zhu et al., 2020; Abu-El-Haija
et al., 2017). In (You et al., 2018), the problem is
reduced to that of sequence prediction by reducing

the graph to breadth-first search based determin-
istic sequence. In (Li et al., 2018), node embed-
dings are updated after several rounds of message
passing, while in (Tu et al., 2016) a variant of the
random walk is incorporated with a max-margin
discriminative constraint. In (Velikovi et al., 2018),
models are learned by attending over the neighbor-
hood of nodes for context, while (Kipf and Welling,
2016) apply spectral graph convolutions for a self-
supervised learning task. We adopt the incremental
approach proposed in (Velikovi et al., 2018) which
does not rely on knowing the entire graph structure
apriori and fine-tune on cause-effect pairs for the
link prediction task on a pre-trained BERT-based
language model.

3 Learning Faithful Embeddings

3.1 Background

Causal inference (Pearl, 2009) aims to understand
the cause and effect relationships between events.
Learning purely based on correlations in observa-
tional data can lead to spurious causal links and
can severely impact downstream tasks. Hence,
intervention-based studies are conducted which
carefully study the impact of a cause using con-
trolled randomized experiments and other criterion
to learn if links between causes and effects exist us-
ing observed data under specific assumptions. The
findings of such studies are formalized using frame-
works like Rubin Causal Models (Rubin, 1974),
Structural Causal Models (Pearl, 2009), etc. While
there are differences in abstractions between them,
there is formal equivalence (Galles and Pearl, 1998)
in modeling counterfactuals (“What is the effect
when the cause is intervened?”) and we refer the
reader to (Pearl and Mackenzie, 2018) for a primer
in causal modeling.

In this paper, we assume a graphical structural
causal modelC (Pearl, 2009) is given, whose nodes
are linked with directed edges that denote the cause-
effect relationship. For example, the cause-effect
of “smoking” causes “cancer”, references to the
real world action of “smoking” in individuals that
leads to the development of “cancer” kind of dis-
ease in those individuals. While causal models
have a close relationship to the knowledge graph,
the links of the causal graph have a well-defined
causal interpretation that can be validated through
counterfactual experiments. In this work, we as-
sume the availability of such a causal graph and
we do not aim to build one. Instead, we rely on hu-
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man annotators who with the help of web crawlers
(Heindorf et al., 2020a) and other information re-
trieval tools (Sharp et al., 2016) produce a directed
graphical causal model as shown in Figure 1.

3.2 Faithfulness
Given a graphical causal model C, we now present
a faithfulness property an embedding that aims to
closely align with the causal model has to satisfy.
The faithfulness property was first proposed for any
two causal spaces in (Bombelli et al., 2013) in the
domain of quantum physics with the space-time
dimension. Inspired by this, we propose an instan-
tiation for word embeddings and a corresponding
graphical causal model.

Definition 1 (Faithfulness). An embedding f :
C → M from a causal set (C, dC) to a vector
space (M,dM ) is faithful if:

• ∃λ,∀x, y ∈ C, dC(x, y) = 1 ⇔
dM (f(x), f(y)) ≤ λ

• f(C) is distributed uniformly

• ∀x, y, w, z ∈ C, dC(x, y) ≤ dC(w, z) ⇔
dM (f(x), f(y)) ≤ dM (f(w), f(z))

Note that we use the causal set (C, dC) as a tu-
ple of the graphical causal model C and a distance
measure dC which is used to measure the directed
distance between nodes in the graph. The vector
space in which we map our embeddings is also
characterized by a tuple (M,dM ), where M is the
multidimensional real number space Rm, and a dis-
tance measure dM which identifies nearby words
in that vector space. The three conditions posed by
the faithfulness property, more concretely specify
that there needs to be a real threshold, within the
embedding space, which can cover all the neighbor-
ing nodes of a word, the embedding space needs to
be uniformly distributed, and finally, any inequality
relationships between two distance measures in the
causal graph needs to hold in the embedding space
too. An embedding that satisfies this property can
then be used to sufficiently represent the causal
graph in downstream tasks.

3.2.1 Distance Measures
The definition of faithfulness is dependent on the
distance measure used in both the causal graph and
the embedding domains. In this work, we assume
that the causal graph is a directed acyclic graph,
and hence we measure dC as the shortest directed

distance (number of edges in an unweighted graph)
between two nodes. If no such path exists between
two nodes, we consider the distance to be a large
number, which in the case of an unweighted graph,
can be set to > n, where n is the number of nodes
in the acyclic graph. Note that weighted graphs can
also be incorporated with minor changes based on
the maximum path in the graph.

However, the distance measure in the embed-
ding space faces challenges in evaluation of sim-
ple supervised tasks (Jastrzebski et al., 2017). To
overcome these, we chose a distance measure that
is closely tied to our faithfulness definition. We
chose a unified set of embeddings for both the
cause u and effect v, and, if there exists a causal
edge from u → v, then we would expect that
dM (f(u), f(v)) << dM (f(v), f(u)). For this
reason, symmetric distance choices like Euclidean
distance, cosine similarity are not suitable. Our
chosen distance measure, hence should follow the
properties of quasi-pseudo metrics, defined as fol-
lows in (Moshokoa, 2005):

Definition 2 (Quasi-Pseudo Metric). A measure
dM : X ×X → [0,∞) is a quasi-pseudo metric if
∀x, y, z ∈ X ,

• dM (x, y) ≥ 0

• dM (x, x) = 0, but dM (x, y) = 0 is possible
for x 6= y

• dM (x, z) ≤ dM (x, y) + dM (y, z)

Hence, quasi-psuedo metrics, which do not sat-
isfy the symmetry property are best suited to mea-
sure the distance between any two embeddings. We
can generate such metrics, given a measure d. If
the cause phrase u has pword tokens, and the effect
phrase v has q word tokens, we choose the Max-
Matching method given in (Xie and Mu, 2019) in
our definition of dM by iterating through all pairs
of words (vb, ua) : vb 6= ua. Note that the measure
d computes the difference between v to u over the
total m number of dimensions in f(vb), f(ua).

d(u, v) = min
a=1..p
b=1..q
vb 6=ua

m∑
j=1

(fj(vb)− fj(ua)) (1)

dM (f(u), f(v)) =

{
d(u, v), if d(u, v) > 0

10−d(u,v) − 1, otherwise
(2)

We chose this definition, as it is differentiable
(except at 0, where we choose the gradient to be
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0). Also, for each point u in the embedding space,
there is a corresponding hyperplane that passes
through it that defines the half-space which sepa-
rates the reachable nodes v : d(u, v) > 0 - nodes
which have either an indirect or direct causal link
and the unreachable nodes v : d(u, v) < 0. Also,
by the property of d(u, v) = −d(v, u), we see that
if v is reachable from u, then u is not reachable
from v, thus affirming that this is suitable to repre-
sent a causal graph that is directed and acyclic.

3.3 Causal Graph Link Prediction

There are currently many approaches to learning
causal representations, one which uses a masked
language modeling approach where the word to-
kens in the cause are paired with word tokens in
the effect using a skip-gram technique in an unsu-
pervised setting. In the supervised setting, models
align the cause-effect embeddings to solve either
a sequence-to-sequence translation task or logistic
classification task. Since we aim to capture all the
nodes of the causal graph into a single set of word
embeddings, we choose this approach. Further, in
the supervised setting, we make explicit the causal
relationship between cause and effect, thereby cap-
turing the directionality of the linkage. Thus, a
supervised model could translate a cause to an ef-
fect or predict the link that exists from a cause to an
effect. Among these supervised modeling choices,
we choose the binary classification task of predict-
ing if a directed edge exists between two nodes
in the causal graph. This supervised learning is
achieved by following the technique of fine-tuning
as proposed in (Veitch et al., 2020). Formally, given
a cause phrase u, an effect phrase v, let an i(u, v)
be an edge indicator variable i(u, v) = 1u→v that
takes binary values of {0, 1} based on the existence
of an edge from u→ v in the causal graph.

Pre-trained Contextual Models: Pre-trained
models based on transformers like BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019b) learn
contextual embeddings of words or tokens by opti-
mizing for the self-supervision task of predicting
randomly masked tokens in a sentence. These pre-
trained embeddings for word tokens have been used
extensively for fine-tuning. Here, we use such fine-
tuned models denoted as g̃ to predict the existence
of an edge between the cause and effect u, v, by
embedding them into f(u), f(v) respectively and
further optimizing them in the fine-tuning stage on
the following cross-entropy classification loss

Ls = Eu,v∼C CrossEnt(i(u, v), g̃(u, v)) (3)

3.4 Violation Minimization

Given the faithfulness definition, our goal is to
learn an embedding that minimizes the number of
violations of the faithfulness property. For each of
the 3 conditions present in the faithfulness property,
we define how we measure their adherence and
incorporate it in the loss function. In addition to the
causal graph link prediction task, we now present
how the faithfulness properties are incorporated
through regularization constraints.

3.4.1 Neighborhood

Since we expect a single embedding distance
threshold that perfectly encapsulates the neighbor-
hood of a node, we can measure this by varying
distance thresholds for neighborhood detection and
compute the area under the curve of the precision-
recall curve. Since we aim to retain all the neigh-
bors of a node in the causal graph within an upper
bound of the distance in the embedding space, we
add the sum of the distance between the nodes and
their neighbors as an L1 regularization loss.

Ln = E u∼C
v∈Neigh(u)

|dM (f(u), f(v))| (4)

3.4.2 Uniformity

Since checking for true uniformity can be computa-
tionally intractable, we approximate by computing
the per-dimension aggregate of all the word embed-
dings and compute the Wasserstein distance (Olkin
and Pukelsheim, 1982) between the observed dis-
tribution and the expected uniform distribution cen-
tered around zero (0m). Since, in the uniformity
constraint, we would expect that the embeddings
are centered around zero, the mean of the embed-
dings should be close to zero. We measure the
distance from this expected centroid and penalize
the model for a high distance. If Cb denote the
set of nodes chosen in a batch b, with size |b|, and
fj(p) denote the jth dimension of the embedding
of node p, then we present the uniformity regular-
ization loss:

Lu =

m∑
j=1

1

|b|
∑
p∈Cb

fj(p) (5)
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3.4.3 Distance Correlation
To measure if inequalities between two distances
in the causal graph hold in the embedding space,
we measure the Pearson correlation coefficient be-
tween samples of distances between words in the
causal graph and that of the embeddings. To ensure
that any two distances sampled from the causal
graph maintain the same inequality in the embed-
ding space, we sample random nodes from the
causal graph and compute the empirical Pearson
Correlation Coefficient of their distances in the em-
bedding space. A perfect correlation would lead to
a coefficient of +1, so we penalize any deviation
from that ideal correlation and present the distance
correlation loss:

Lc = 1− ρdC ,dM

= 1− cov(dC , dM )

σdCσdM

(6)

Note that all the above constraints are at a batch
level and hence is added on to the batch cross-
entropy loss during every back-propagation step.
Since the losses are differentiable, we have used the
auto-diff capability available in Tensorflow. The
contribution of each of the above losses are com-
bined using the Augmented Lagrangian method
(Hestenes, 1969) and controlled using 3 parameters
α, β, γ as follows:

L = (1− α− β − γ)Ls + αLn + βLu + γLc (7)

The values of these hyperparameters were cho-
sen to be 0.1, 0.15, 0.1 respectively after cross-
validation to optimize causal link prediction ac-
curacy and faithfulness metrics. A summary of our
approach is outlined in Algorithm 1.

The learning rate a = 0.01,Lu,Lc are computed
per batch by maintaining the required variables
f(u), f(v), dC(u, v), dM (f(u), f(v)) in memory.
These are implemented using Tensorflow’s eager
execution framework.

4 Evaluation

4.1 Causal Evidence Graphs
The causal evidence graphs we use contain phrases
like “heavy rainfall” as causes and effects, which
require us to learn the combined embeddings of
the phrases. Restricting ourselves to just individ-
ual words would leave out the context required
to understand the context to understand the cause-
effect pairs. For example, the kind of effects “heavy

Algorithm 1 Faithful Embedding Training
1: Input: Pre-trained BERT based model g̃, causal

graph C, distance measures: dC , dM ,
2: for e=1..epochs do
3: L = 0
4: for j=1..b do
5: u, v ∼ C :

∑
1i(u,v)=0 =

∑
1i(u,v)=1

6: Ls += CrossEnt(i(u, v), g̃(u, v))
7: Ln +=

∑
w∈Neigh(u) dM (f(u), f(w))

8: Store f(u), f(v) to update Lu
9: Store dC(u, v), dM (f(u), f(v)) to up-

date Lc
10: end for
11: Update Lu,Lc and compute L (Eqn 7)
12: Backprop g̃ ← g̃ − a(∂L∂g̃ )
13: end for

rainfall” might have could be different from just
“rainfall”. We thus utilize the contextual embedding
framework used to learn language models in BERT
(Devlin et al., 2019), as a way to learn contex-
tual embeddings that align with a given graphical
causal model. Note that there may be more than
one causal model provided by experts based on
their domains, and it is important to view our con-
tribution as a way to align with domain expertise
(for example, medical, legal, privacy, etc) with their
respective causal models as a common mechanism
to represent the said domain knowledge.

We use two causal graphs to construct their re-
spective faithful embeddings, and demonstrate the
utility of the embeddings in downstream tasks. The
first causal graph we use is identical to the one
used in (Sharp et al., 2016), which uses the 815,233
cause-effect pairs extracted from the Annotated Gi-
gaword and Wikipedia dataset, and an equal num-
ber of random relation pairs that are not causal as
negative samples. The second causal graph is ex-
tracted from the web by (Heindorf et al., 2020b),
who use a bootstrapping approach with the ini-
tial pattern of “A causes B” and apply it to the
ClueWeb12 web crawl dataset with 733,019,372
English web pages, between February and May
2012. From this web crawl, they provide a causal
graph with 80,223 concept nodes and 199,803
causal links between the nodes. This graph has
been sampled and validated by human annotators
with over 96% precision. For our indirect eval-
uation based on downstream question answering
tasks, we use the 3031 causal questions from Ya-
hoo! Answers corpus (Sharp et al., 2016). These
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questions are of the form “What causes X?”, and
we use our faithful embeddings as a drop-in re-
placement for this causal QA task.

4.2 Metrics
Evaluating embeddings intrinsically has often led
to varying leaderboards (Jastrzebski et al., 2017),
hence we evaluate our embeddings based on their
ability to map to the cause-effect relationship di-
rectly. We measure the faithfulness of the trained
embeddings, using 3 metrics, one per property as
per Eqns 4, 5, 6. For the neighborhood condi-
tion, we measure the area under the precision-recall
curve as we choose multiple thresholds to define
the neighborhood in the embedding space to cor-
respondingly identify the relevant neighbors in the
causal graph. For the uniformity condition, we
measure the means of the per-dimension values of
the word embeddings and compute the 1st Wasser-
stein (Olkin and Pukelsheim, 1982) distance from
the expected centroid of zero. We also perform a
statistical test for uniform distribution, which mea-
sures the mean Kolmogorov-Smirnov (K-S) test
statistic (Daniel, 1990) by bucketing embedding
each dimension into 10 buckets. Since each dimen-
sion’s test statistic can either pass or fail the test
based on the significance level, we present the total
number of dimensions that pass the test at α = 0.05
significance level. Finally, to measure the distance
correlation property, we report the Pearson corre-
lation coefficient between distances in the causal
graph and the embeddings on a held-out part of
the causal graph. For the QA task, we report the
precision-at-one (P@1), the fraction of test sam-
ples where the highest ranked answer is relevant
and the mean reciprocal rank (MRR) (Manning
et al., 2008), the inverse of the position of the cor-
rect answer in our ranking on the held-out question
set provided by (Sharp et al., 2015).

4.3 Baselines
We evaluate our faithful embeddings by compar-
ing them against two state-of-the-art approaches
described in (Sharp et al., 2016) and (Veitch et al.,
2020). cEmbedBi uses a bi-directional model, with
the task of predicting the masked cause and effect
word tokens. This approach uses separate embed-
dings for words used as causes and effects. Causal-
{BERT,RoBERTa} (Veitch et al., 2020) uses the
fine-tuning technique for the binary classification
of edge detection, similar to ours, on the pre-trained
large-uncased model. We can thus compare the

Embedding
Distance Correlation Neighborhood

Euclidean Cosine Quasi-Pseudo AUC-PR
Gigaword Causal Graph

cEmbedBi 0.33 0.48 0.52 0.67
Causal-BERT 0.40 0.55 0.61 0.71
Causal-RoBERTa 0.41 0.61 0.66 0.76
Faithful-BERT 0.42 0.63 0.78 0.88
Faithful-RoBERTa 0.45 0.67 0.81 0.89

CauseNet from ClueWeb12 web crawl
cEmbedBi 0.23 0.37 0.34 0.54
Causal-BERT 0.25 0.38 0.39 0.56
Causal-RoBERTa 0.28 0.36 0.47 0.59
Faithful-BERT 0.31 0.41 0.55 0.68
Faithful-RoBERTa 0.37 0.43 0.58 0.71

Table 1: Correlation and Neighborhood faithfulness
measures of the embeddings trained for both the Giga-
word causal graph and ClueWeb12 CauseNet graph.

Embedding 1st-Wasserstein Mean K-S statistic Uniform dimensions (1024)
cEmbedBi 0.54 0.54 205
Causal-BERT 0.45 0.43 348
Causal-RoBERTa 0.39 0.38 385
Faithful-BERT 0.31 0.21 541
Faithful-RoBERTa 0.30 0.18 574

Table 2: Uniformity measures on the embeddings
learnt for Gigaword Causal Graph.

gains we get by incorporating faithfulness condi-
tions on the embeddings in downstream tasks.

5 Results

5.1 Faithfulness

As shown in Tables 1 and 2, our Faithful-RoBERTa
model outperforms Causal-{BERT, RoBERTa} and
cEmbedBi (Sharp et al., 2016) on each of the three
properties of faithfulness, namely the neighbor-
hood, uniformity, and distance correlation, by more
than 30%. Additionally, we report the correlation
for Euclidean and Cosine similarity, despite not
using it to optimize at training time. Faithful ver-
sions of the BERT and RoBERTa models increase
the area under the curve of the precision-recall
curve in detecting neighboring nodes of the Gi-
gaword and CauseNet causal graphs by 21-23%
and 17-20% respectively. In Figure 2, we present
the precision-recall curve when we use the models
for ranking causal pairs above non-causal pairs on
the SemEval Task 8 tuples (Hendrickx et al., 2007)
by varying the distance threshold in the embedding
space which outlines the boundary of the neigh-
boring nodes in the causal graph. This increase
in accuracy for neighborhood detection indicates
that incorporating the constraints during training
time with our asymmetric causal embedding dis-
tance provides benefits in aligning the contextual
embeddings as per the causal graph.
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Figure 2: Precision-Recall to detect neighboring nodes
in causal graph from the embeddings by applying
threshold on distance measure

5.2 QA task

To evaluate if learning faithful embeddings is useful
for causal aligned downstream tasks, we evaluate
the fine-tuned embeddings to be directly used for
question answering. As used in (Fried et al., 2015),
we use the maximum, minimum, average distance
between words of the question and answer words
and the overall distance between the composite
question and answer vectors from the embedding.
Note that since both cEmbedBi and Causal-{BERT,
RoBERTa} are trained with cosine similarity in
mind, we use the cosine similarity, but for our
Faithful-{BERT, RoBERTa} models, the distance
measure used to rank is the quasi-pseudo metric
defined in Def 2. We use these 4 features to train
an SVM ranker to re-rank candidate answers pro-
vided by the candidate retrieval tool (Jansen et al.,
2014). We see in Table 3 that Faithful-RoBERTa
increases both the precision of the first answer pre-
dicted by 10.2%, and the mean reciprocal rank by
10.8%. This means that not only is the first ranked
answer more causally correct, but the retrieval of
the correct answer in the top-k positions has im-
proved. This improvement in an out-of-domain QA
task by aligning the embeddings to an externally
available causal graph demonstrates that benefits
of faithfulness transfer to downstream tasks.

5.3 Re-alignment towards causation

To understand the reason behind the improved per-
formance, we performed a qualitative inspection of
100 randomly sampled word pairs from the Giga-
word causal graph 1 that are at varying distances
in the original pre-trained embedding and trace

1https://github.com/ananthnyu/faithful-causal-rep/

Embedding P@1 MRR
cEmbedBi 37.28 46.39
Causal-BERT 38.12 47.26
Causal-RoBERTa 38.74 49.01
Faithful-BERT 39.21 49.72
Faithful-RoBERTa 41.07 51.42

Ablation Study of Faithful-BERT
w/o Neighborhood 38.55 48.67
w/o Uniformity 39.01 48.92
w/o Distance Correlation 38.28 48.04

Ablation Study of Faithful-RoBERTa
w/o Neighborhood 39.69 49.39
w/o Uniformity 40.43 50.06
w/o Distance Correlation 39.50 49.28

Table 3: Performance on the QA task in Yahoo! An-
swers dataset using the Faithful versions of BERT and
RoBERTa incorporating the Gigaword causal graph.

Cause Non-cause
Associated rain→ flood accident→ fog

Non-Associated war→ epidemic earthquake→ spring

Table 4: Examples of word-pairs chosen to inspect
faithfulness over the Gigaword causal graph.

how they have re-aligned after fine-tuning with the
faithfulness objective. We annotate each of these
word-pairs as being either causal or not as shown in
the confusion matrix with examples in Table 4. In
Figure 3, we see re-alignment of these word pairs
from association based RoBERTa embeddings to
the causally aligned Faithful-RoBERTa embedding
space, that is, causal word pairs (blue and orange)
move closer, and non-causal word pairs (green and
red) move further based on the quasi-pseudo met-
ric dM . Specifically, the associative but non-causal
word pairs (green) have moved further in Faithful-
RoBERTa, while the non-associative but causal
word pairs (orange) have moved closer. We see
that in the cosine-similarity based RoBERTa, the
causal word pairs had a mean distance of 0.48,
while in the quasi-pseudo metric based Faithful-
RoBERTa, the mean distance between the causal
word pairs reduced to 0.28. The distances are nor-
malized between 0 and 1 based on the maximum
and minimum values of distances (cosine or dM )
in the sampled word-pairs.

We further analyzed how these associative and
causal re-alignments impacted the causal QA task
by categorizing the word pairs into three types of
variables - mediators, colliders and confounders.
Mediators: For the question, “What causes a
tornado?”, the answer involves “thunderstorms”,
which is a mediator caused by “high pressure”.
We see that “high pressure” is now much closer
to “tornado” in Faithful-RoBERTa than baseline
embeddings. Colliders: For the question, “What
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Figure 3: Re-alignment of word-pairs from the causal-
RoBERTa embedding to our Faithful-RoBERTa (best
viewed in color)

causes persistent cough?”, the colliders “smoking”
and “asthma” have moved further based on dM in
Faithful-RoBERTa. Confounders: For questions
with confounders like, “What causes indigestion?”,
the confounding links “anxiety→ indigestion”, and
“anxiety→ insomnia” are near, but “insomnia→
indigestion”, is far. This further demonstrates the
utility of incorporating faithfulness over multiple
nodes of the graph, in addition to pairwise causal
link prediction.

6 Conclusion

We show that the faithfulness of text embeddings
to a causal graph is important for causal inference-
aligned downstream tasks. By incorporating the
three faithfulness properties of neighborhood, uni-
formity, and distance correlation through regular-
ization constraints while learning embeddings, we
improve the precision of the first ranked answer in
the causal QA task by 10.2%. We show that this
is due to causal re-alignment of embeddings as per
an asymmetric pseudo-distance metric.
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