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Abstract

Although pretrained language models can be
fine-tuned to produce state-of-the-art results
for a very wide range of language understand-
ing tasks, the dynamics of this process are
not well understood, especially in the low data
regime. Why can we use relatively vanilla gra-
dient descent algorithms (e.g., without strong
regularization) to tune a model with hundreds
of millions of parameters on datasets with only
hundreds or thousands of labeled examples?
In this paper, we argue that analyzing fine-
tuning through the lens of intrinsic dimension
provides us with empirical and theoretical intu-
itions to explain this remarkable phenomenon.
We empirically show that common pre-trained
models have a very low intrinsic dimension;
there exists a low dimension reparameteriza-
tion that is as effective for fine-tuning as the
full parameter space. For example, by optimiz-
ing only 200 trainable parameters randomly
projected back into the full space, we can
tune a RoBERTa model to achieve 90% of the
full parameter performance levels on MRPC.
Furthermore, we empirically show that pre-
training implicitly minimizes intrinsic dimen-
sion and, perhaps surprisingly, larger mod-
els tend to have lower intrinsic dimension af-
ter a fixed number of pre-training updates, at
least in part explaining their extreme effective-
ness. Lastly, we connect intrinsic dimensional-
ity with low dimensional task representations
and compression based generalization bounds
to provide generalization bounds that are inde-
pendent of the full parameter count.

1 Introduction

Pre-trained language models (Radford et al., 2019;
Devlin et al., 2018; Liu et al., 2019; Lewis et al.,
2019, 2020) provide the defacto initialization for
modeling most existing NLP tasks. However, the
process of fine-tuning them on often very small
target task datasets remains somewhat mysterious.
Why can we use relatively vanilla gradient descent

algorithms (e.g., without strong regularization) to
tune a model with hundreds of millions of param-
eters on datasets with only hundreds or thousands
of labeled examples?

We propose intrinsic dimensionality as a new
lens through which fine-tuning can be analyzed
(Li et al., 2018). An objective function’s intrinsic
dimensionality describes the minimum dimension
needed to solve the optimization problem it de-
fines to some precision level. In the context of
pre-trained language models, measuring intrinsic
dimensional will tell us how many free parameters
are required to closely approximate the optimiza-
tion problem that is solved while fine-tuning for
each end task. For example, we will show that 200
parameters (randomly projected back into the full
parameter space) are enough to represent the prob-
lem of tuning a RoBERTa model to within 90%
of the performance of the full model. More gen-
erally, we also describe a set of strong empirical
and theoretical connections between intrinsic di-
mensionality, number of parameters, pre-training,
and generalization.

We first empirically show that standard pre-
trained models can learn a large set of NLP tasks
with very few parameters and that the process of
pre-training itself implicitly minimizes the intrinsic
dimension of later tuning for different NLP tasks.
We study over a dozen different pre-trained models
to show that the number of parameters strongly in-
versely correlates with intrinsic dimensionality, at
least in part justifying the extreme effectiveness of
such models. We interpret pre-training as providing
a framework that learns how to compress the aver-
age NLP task. Finally, we connect intrinsic dimen-
sional with low dimensional task representations
and compression-based generalization bounds to
provide intrinsic-dimension-based generalization
bounds independent of the full parameter count,
further justifying why these methods generalize so
well in practice across tasks.
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The contributions of our paper are the following:

• We empirically show that common NLP tasks
within the context of pre-trained representa-
tions have an intrinsic dimension several or-
ders of magnitudes less than the full parame-
terization.

• We propose a new interpretation of intrinsic di-
mension as the downstream fine-tuning task’s
minimal description length within the frame-
work of the pre-trained model. Within this
interpretation, we empirically show that the
process of pre-training implicitly optimizes
the description length over the average of NLP
tasks, without having direct access to those
same tasks.

• We measure the intrinsic dimension of a large
set of recently developed pre-training method,
and how that larger models tend to have
smaller intrinsic dimension.

• Lastly, we show that compression based gener-
alization bounds can be applied to our intrinsic
dimension framework to provide generaliza-
tion bounds for large pre-trained models in-
dependent of the pre-trained model parameter
count.

2 Related Work

Calculating the intrinsic dimension of an objective
function in the context of deep-learning was first
proposed by Li et al. (2018). They analyzed the
impact of various architectures on the intrinsic di-
mensionality of their objective. Our work is a direct
extension of this approach, focusing on analyzing
pre-trained representations instead.

There is a large collection of literature analyzing
pre-trained models from the perspective of capacity.
For example, a recent line of work has shown that
pre-trained models such as BERT are redundant
in their capacity, allowing for significant sparsifi-
cation without much degradation in end metrics
(Chen et al., 2020; Prasanna et al., 2020; Desai
et al., 2019). Houlsby et al. (2019) showed that fine-
tuning top layers of pre-trained models is not effec-
tive and that alternate methods allow fine-tuning
effectively with a couple of percent of the param-
eters. Furthermore, we can view computing the
intrinsic dimensionality as a continuous relaxation
of the sparsification problem.

There also exist connections between intrinsic
dimensionality, knowledge distillation, and other
model compression methods. Fundamentally intrin-
sic dimensionality attempts to find the smallest set
of parameters needed to tune to reach satisfactory
solutions, which can be thought of as a sparsifica-
tion or distillation problem (Hinton et al., 2015;
Chen et al., 2020). Unlike distillation approaches,
the approach of intrinsic dimensionality does not
change parameter count, sparsity, or architecture
but instead looks at the underlying rank of the ob-
jective function (Li et al., 2018). There are also
connections between representing multiple tasks
within a pre-trained model and compression which
we explore in §5.

Moreover, standard approaches towards fine-
tuning seem to have non-trivial effects on the gen-
eralization of pre-trained representations (Agha-
janyan et al., 2020, 2021). A holistic explanatory
picture of the successes of fine-tuning has not yet
been painted. A clear understanding of the un-
derlying mechanisms which lead to the incredible
generalization of fine-tuned pre-trained represen-
tations is currently missing. Moreover, we still do
not understand why various pre-training methodol-
ogy manifests in universally useful representations,
although recent line of works have attempted to
cover this gap by looking at loss landscapes, and
the learned linguistic properties of pre-trained mod-
els (Hao et al., 2019; Clark et al., 2019a).

3 Intrinsic Dimensionality of Finetuning

Background The intrinsic dimension of an ob-
jective function measures the minimum number
of parameters needed to reach satisfactory solu-
tions to the respective objective (Li et al., 2018).
Alternatively, the intrinsic dimension represents
the lowest dimensional subspace in which one can
optimize the original function to within a certain
level of approximation error. Computing the ex-
act intrinsic dimensional of the objective function
is computation intractable; therefore, we resort to
heuristic methods to calculate an upper bound. Let
θD = [θ0, θ1, ..., θm] be a set of D parameters that
parameterize some model f(·, θ). Instead of opti-
mizing the empirical loss in the original parame-
terization (θD), the subspace method fine-tunes the
model via the following re-parameterization in the
lower-dimensional d-dimensions:

θD = θD0 + P (θd) (1)
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where P : Rd → RD projects from a parameter
from a lower-dimensional d to the higher dimen-
sional D and θD0 is the original model parameter-
ization. Intuitively, we project using an arbitrary
random projection onto a much smaller space; usu-
ally, a linear projection, we then solve the optimiza-
tion problem in that smaller subspace. If we reach
a satisfactory solution, we say the dimensionality
of that subspace is the intrinsic dimension. This
methodology was proposed in the seminal paper
by Li et al. (2018). Concretely Li et al. (2018)
proposed three different parameteric forms for P ;
a random linear dense projection (θdW ), random
linear sparse projection (θdWsparse) and random lin-
ear projection via the Fastfood transform (Le et al.,
2013).

We will primarily use the Fastfood transform,
defined as:

θD = θD0 + θdM M = HGΠHB (2)

The factorization of M consists of H , a Hadamard
matrix, G, a random diagonal matrix with inde-
pendent standard normal entries, B a random di-
agonal matrix with equal probability ±1 entries,
and Π a random permutation matrix. Furthermore,
the matrix multiplication with a Hadamard ma-
trix can be computed in O(D log d) via the Fast
Walsh-Hadamard Transform. Everything except θd
is fixed; therefore, the optimization problem lies
only in d-dimensions.1

We use the Fastfood transform due to its compu-
tational complexity. Specifically, using Hadamard
matrices instead of dense matrices allows us to com-
pute a linear projection significantly faster than a
dense matrix projection. Furthermore, when work-
ing with large models such as RoBERTa, the mem-
ory required to store even a low-dimensional dense
matrix to calculate intrinsic dimension is unrea-
sonable (d = 1000, 330, 000, 000 ∗ 1000 ∗ 4 bytes
= 1.32 terabytes).

The standard method of measuring the intrin-
sic dimensionality of an objective as proposed by
(Li et al., 2018) requires searching over various
d, training using standard SGD over the subspace
reparameterization θD and selecting the smallest d
which provides us with a satisfactory solution (d90).
(Li et al., 2018) defined the satisfactory solution as
being 90% of the full training metric. For example,

1If we place a constraint of M being a binary matrix, we
recover the sparsification problem; therefore, we can also view
finding intrinsic dimensionality as a continuous relaxation of
the sparsification problem.

if we reach 85% accuracy training a model with all
of its parameters, the goal is to find the smallest d,
which would reach 0.9 ∗ 85% = 76.5% accuracy;
we call this dimension d90.2

The way (Li et al., 2018) define a satisfactory
solution reduces the dependence of the dataset size
on the calculation of intrinsic dimension. For a
small dataset, we will generally have worse end
metrics; therefore, we have a lower d90 cut-off;
inversely, a larger dataset will require a more non-
trivial d90 cut-off.

Structure Aware Intrinsic Dimension Due to
the large size of pre-trained language models (gen-
erally in the hundreds of millions of parameters),
the only computationally reasonable subspace op-
timization method is one that utilizes the Fastfood
transform. For example, if we are interested in
subspace training with d = 1000 for the RoBERTa-
Large model using a dense matrix, we would re-
quire 1.42 terabytes of memory to store just the
projection matrix.

Unfortunately, the method of finding the intrinsic
dimension proposed by (Li et al., 2018) is unaware
of the layer-wise structure of the function param-
eterized by θ. Existing literature argues that in
attention-based pre-trained models, individual lay-
ers specialize separately (Clark et al., 2019b); there-
fore, it is useful to incorporate a notion of structure
when computing d90. We define Structure-Aware
Intrinsic Dimension (SAID) as the following

θDi = θD0,i + λiP (θd−m)i (3)

For m layers, we trade m parameters from our sub-
space parameter θd to allow for layer-wise scal-
ing through jointly learned λ, thus θd becomes
[θd−m, λ]. This allows the SAID method to focus
a larger capacity of θd−m towards specific layers
what might carry more relevant information for
the task at hand. Conversely, we will refer to the
layer unaware method (Equation 2) as the Direct
Intrinsic Dimension (DID) method.

4 Intrinsic Dimensionality of Common
NLP Tasks

4.1 Sentence Classification
We first empirically calculate the intrinsic dimen-
sion of various pre-trained models on a set of sen-
tence prediction tasks from the GLUE Benchmark

2Initializing θd = 0 we recover the original parameteri-
zation θD0 which in the context of fine-tuning represents the
original weights of the pre-trained model.
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SAID DID

Model MRPC QQP MRPC QQP

BERT-Base 1608 8030 1861 9295
BERT-Large 1037 1200 2493 1389

RoBERTa-Base 896 896 1000 1389
RoBERTa-Large 207 774 322 774

Table 1: Estimated d90 intrinsic dimension computed
with SAID and DID for a set of sentence prediction
tasks and common pre-trained models.

(Wang et al., 2018). We focus on analyzing BERT
(Devlin et al., 2018) and RoBERTa (Liu et al.,
2019) at both the base and large model sizes.

We chose to experiment with MRPC (Dolan and
Brockett, 2005) and QQP (Iyer et al., 2017) as ref-
erence examples of small and large tuning datasets.
MRPC is a binary classification task for predict-
ing semantic equivalency for two paraphrases with
roughly 3700 training samples, while QQP is a
binary classification task for predicting semantic
equality of two questions, with roughly 363k sam-
ples. For every dataset and every model, we run
100 subspace trainings with d ranging from 10 to
10000 on a log scale. For every training run, we do
a small hyperparameter search across four learning
rates. We initialize every θd to the zero vector to
allow for our starting point to be the original pre-
trained model. Our subspace optimization method
also operates over the randomly initialized sentence
classification head to ensure we have exactly d pa-
rameters to optimize.

We use both the SAID and DID subspace op-
timization methods, which we implemented in
the Huggingface Transformers library (Wolf et al.,
2019). We present the results in Figure 1.

4.2 Analysis

The first takeaway is the incredible low dimension-
ality of viable solutions. With RoBERTa-Large,
we can reach 90% of the full fine-tuning solution
of MRPC using roughly 200 parameters and 800
parameters for QQP (Table 1). Recall that our ap-
proximation of intrinsic dimension is necessarily
crude by using random projections and restricting
them to the use of Fastfood transform; therefore, it
is likely that the true intrinsic dimension is much
lower.

Furthermore, RoBERTa consistently outper-
forms BERT across various subspace dimensions d
while having more parameters. We leave a more in-

depth analysis of model parameter size on intrinsic
dimensionality to a later section (§5.2).

Lastly, we see that adding a notion of structure in
the computation of intrinsic dimension is beneficial
with the SAID method consistently improving over
the structure unaware DID method.

5 Intrinsic Dimension, Pre-Training, and
Generalization Gap

One interpretation of the intrinsic parameter vector
is that it encodes the task at hand with respect to the
original pre-trained representations. Therefore, we
can interpret d as the minimal description length of
the task within the framework dictated by the pre-
trained representations (Hinton and Zemel, 1993).
Under this interpretation of intrinsic dimensional-
ity, we hypothesize that pre-training is implicitly
lowering the intrinsic dimensionality of the average
NLP task, and therefore compressing the minimal
description length of those same tasks.

What do we more precisely mean by intrinsic
parameter encoding a task within the framework
provided by the pre-trained representations? Tra-
ditionally, a finetuned model (e.g. for a classifica-
tion tasks) simply consists of a classification head
g, parameterized by wg applied to fine-tuned rep-
resentations f , parameterized by wf per sample
x. Therefore, to fully describe a task, we need
to pack together parameterizations and weights
{g, f, wg, wf}. This model description is com-
pletely decoupled from the original weights of the
pre-trained representation wf0 , therefore to repre-
sent n classification tasks, we need to maintain
n {wg, wf}; additionally, the task representation
is incredibly high dimensional. Conversely, fine-
tuning utilizing SAID in d-dimensions requires
storing only θd per task, a single random seed used
to generate M and the original pre-trained weights
wf0 . Therefore, we can represent arbitrary NLP
tasks within a single pre-trained model framework
with d+ 1 parameters.

For example, in the last section, we represented
MRPC with roughly 200 parameters, which trans-
lates to needing less than a kilobyte of data to en-
code a complex natural language task within the
framework provided by RoBERTa.

We hypothesize that the better the pre-trained
models are, the fewer bits (description length) are
needed to represent the average NLP task, as we
will demonstrate empirically in the next section.
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Figure 1: Evaluation accuracy on two datasets and four models across a range of dimensions d for the DID method.
The horizontal lines in each figure represent the 90% solution of the respective full model.

5.1 Pre-Training Intrinsic Dimension
Trajectory

To verify our hypothesis of pre-training optimizing
intrinsic dimension, we retrain a RoBERTa-Base
from scratch and measure the intrinsic dimension of
various NLP tasks at different training checkpoints,
using the SAID method. We completely replicate
the setting as described by Liu et al. (2019) apart
from only training for a total of 200k steps (in-
stead of 500k) with half the batch size (1k). To
calculate the intrinsic dimension more efficiently,
we reuse the best learning rates discovered in Sec-
tion 4 for d < 10000 and use a fixed learning
rate for anything else. To find d90 we do a binary
search across d per each checkpoint, with a mini-
mum d of 100 and a maximum of 4 million. The
“full solution” that we use when deciding d90 cut-
off is computed by fine-tuning the checkpointed
model in the standard way. We compute SAID on
six datasets; MRPC, QQP, Yelp Polarity (Zhang
et al., 2015), SST-2 (Socher et al., 2013), MNLI
(Williams et al., 2018) and ANLI using all rounds
of data (Nie et al., 2019). Although we focus on
bench-marking sentence classification tasks the se-
lected set of tasks contains variety, from sentiment
classification (Yelp Polarity, SST-2) to Natural Lan-
guage Inference (MNLI, ANLI) to question similar-
ity (QQP).

We present our results in Figure 2. The in-

trinsic dimensionality of RoBERTa-Base mono-
tonically decreases as we continue pre-training.
We do not explicitly optimize for intrinsic dimen-
sionality, specifically during pre-training (the lan-
guage model does not have access to downstream
datasets!), but none-the-less the intrinsic dimension
of these downstream tasks continues to decrease.

More so, tasks that are easier to solve consis-
tently show lower intrinsic dimensionality across
all checkpoints, for example, Yelp Polarity vs. the
notoriously tough ANLI dataset. The correlation
between challenging tasks for RoBERTa and their
large intrinsic dimension hints at a connection be-
tween generalization and intrinsic dimension. We
will discuss generalization further in Section §5.3.

Given our task representation interpretation of
intrinsic dimensionality, we argue that the large
scale training of Masked Language Models (MLM)
learns generic and distributed enough representa-
tions to facilitate downstream learning of highly
compressed task representations. Furthermore, we
argue for another perspective of pre-training learn-
ing representations that form a compression frame-
work with respect to various NLP tasks.

5.2 Parameter Count and Intrinsic
Dimension

We also measure the relationships between the pa-
rameter count of arbitrary pre-trained models and
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Figure 2: Every 10k updates of RoBERTa-Base that we trained from scratch, we compute d90 for six datasets;
MRPC, QQP, Yelp Polarity, SST-2, MNLI, and ANLI. If we were unable to compute a d90 for a specific checkpoint,
we do not plot the point, hence some datasets start at later points. Unable to compute means either we could not
fine-tune the full checkpoint to accuracy above majority class or stabilize SAID training.

the intrinsic dimension of downstream NLP tasks.
The optimal experiment to run would be to fix the
pre-training method, e.g., MLM RoBERTa style,
vary the architecture size from small to very big,
and compute the intrinsic dimension of a group of
tasks at every size of the model. Unfortunately,
such an experiment is computationally infeasible
due to the need to train many RoBERTa models.

Instead, we do an empirical study of many ex-
isting pre-trained models, regardless of the pre-
training method. We show that the trend is strong
enough to overcome differences in training method-
ology. We select the following models: BERT
(Devlin et al., 2018), RoBERTa (Liu et al., 2019),
BART (Lewis et al., 2019), Electra (Clark et al.,
2020), Albert (Lan et al., 2019), XLNet (Yang et al.,
2019), T5 (Raffel et al., 2019), and XLM-R (Con-
neau et al., 2019). Furthermore, we selected var-
ious sizes of these models, as available publicly
within the HuggingFace Transformers library (Wolf
et al., 2019).

We use the MRPC dataset and compute intrinsic
dimension for every pre-trained model utilizing
the same binary search methodology mentioned in
the previous section with additional small hyper-
parameter searches across learning rate (due to the
wide range of learning rates needed by various
models).

We present our results in Figure 3. There is
a strong general trend that as the number of pa-
rameters increases, the intrinsic dimension of fine-
tuning on MRPC decreases. We ran this experiment
on other datasets to ensure that this is not an data
artifact. Our experiments showed the same trend;
we refer to the Appendix for all trends per dataset.

Within the same window of number of parame-

ters, the pre-training methodology becomes more
important. For example, in the regime of 108 pa-
rameters, RoBERTa pre-training dominates sim-
ilar sized pre-training methods. However, there
does not seem to be a method that can overcome
the limitations induced by the number of parame-
ters. Interpreting these results through the lens of
learning a compression framework for NLP tasks
is straightforward; the more parameters we have in
the model, the less we need to represent a task.

5.3 Generalization Bounds through Intrinsic
Dimension

We have shown strong empirical evidence connect-
ing pre-training, fine-tuning, and intrinsic dimen-
sionality. However, we have yet to argue the con-
nection between intrinsic dimensionality and gen-
eralization. Given that we have seen pre-training
minimize intrinsic dimension, we hypothesize that
generalization improves as the intrinsic dimension
decreases.

To do so, we will empirically experiment with
the connections between d90 and evaluation set per-
formance by looking at various checkpoints from
our RoBERTa experiments in Section §5.1. We also
plot the relative generalization gap (delta between
train time performance and test time performance).

In Figure 4 we plot the evaluation accuracy’s
achieved by our pre-training experiment in Sec-
tion §5.1. A lower intrinsic dimension is strongly
correlated with better evaluation performance. Ad-
ditionally we are interested in measuring relative
generalization gap (acctrain−acceval1−acceval ) across intrin-
sic dimension. We select the training accuracy that
provides us with the best evaluation metrics when
computing this figure.
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Figure 3: We calculate the intrinsic dimension for a large set of pre-trained models using the SAID method on the
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Figure 4: The evaluation accuracy of six datasets across various intrinsic dimensionalities. There is a strong general
trend that pre-trained models that are able to attain lower intrinsic dimensions generalize better.

We present our results in Figure 5. Lower intrin-
sic dimension once again correlates strongly with a
smaller relative generalization gap. If we interpret
the intrinsic dimension as a measure of complexity,
we expect the generalization gap to decrease with
intrinsic dimension.

5.4 Generalization Bounds
By applying standard compression based general-
ization bounds, we can provide theoretical backing
to the empirical connection between intrinsic di-
mension and generalization (Arora et al., 2018).

Consider the following definition of multi-class
classification loss with an optional margin over our
supervised dataset D.

Lγ(f) = P(x,y)∼D

[
f(x)[y] ≤ γ + max

j 6=y
f(x)[j]

]
When γ = 0, L0 recovers the standard classifica-

tion loss. Furthermore, Let L̂γ(f) be an unbiased
empirical estimate of the margin loss.
Theorem 1. Let f be a function which is parame-
terized by θD as described in Equation 1 with a to-
tal of d trainable intrinsic parameters on a dataset

with m samples. Then with a high probability, we
can state the following asymptotic generalization
bound

L0(f) ≤ L̂0(f) +O

(√
d

m

)
(4)

Proof. We defer the proof Section §A.1 in the
Appendix. We note that this is an extension of
the well-known compression based generalization
bound (Arora et al., 2018).

This generalization bound is independent of the
underlying parameter count (D) of the pre-trained
model but depends on the ability to compress the
downstream task (d). Moreover, given that our pre-
vious section shows larger models compress better,
our bounds are aligned with general intuition and
recent empirical evidence that larger pre-trained
models generalize better. Explicitly, these bounds
only apply to pre-trained methods trained with the
intrinsic dimension subspace method; research has
yet to show that standard SGD optimizes in this
low dimensional space (although experimentally,
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Figure 5: The intrinsic dimension and the respective relative generalization gap across a set of varied tasks.

this seems to be confirmed). We leave the theoreti-
cal contribution of showing SGD optimizes in this
space, possibly resembling intrinsic subspace, for
future work.

We want to highlight that generalization is not
necessarily measured by the pre-trained model’s
parameter count or measure of complexity but the
pre-trained model’s ability to facilitate the com-
pression of downstream tasks. In some sense, if
we want to compress downstream tasks better, we
must expect pre-trained representations to have a
considerable measure of complexity.

6 Conclusion

In conclusion, we proposed viewing the vari-
ous phenomena surrounding fine-tuning and pre-
training through the lens of intrinsic dimension-
ality. We empirically showed that common natu-
ral language tasks could be learned with very few
parameters, sometimes in the order of hundreds,
when utilizing pre-trained representations. We pro-
vided an interpretation of pre-training as providing
a compression framework for minimizing the av-
erage description length of natural language tasks
and showed that pre-training implicitly minimizes
this average description length.

We continued by doing an empirical study of ex-
isting pre-training methods and their respective in-
trinsic dimension, uncovering the phenomena that
intrinsic dimensionality decreases as we increase
the number of pre-trained representation parame-
ters. This phenomenon provides some intuitions
to the trend of growing pre-trained representations.
We connected intrinsic dimensionality with gener-
alization by first showing that pre-trained models
with lower intrinsic dimensions across various tasks
achieve higher evaluation accuracies and lower rel-
ative generalization gaps. Furthermore, we explain
these empirical results by applying well-known

generalization bounds to the intrinsic dimension to
get generalization bounds that grow on the order of
the intrinsic dimension, not the parameter count.

Intrinsic dimensionality is a useful tool for un-
derstanding the complex behavior of large models.
We hope that future work will make explicit theo-
retical connections between SGD and optimizing
the intrinsic dimension as well as explain exactly
why pre-training methods optimize the intrinsic
dimensionailty of tasks before not seen.
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A Appendix

A.1 Proofs
Arora et al. (2018) define (γ, S) compressible us-
ing helper string s as the following.

Definition 1. (γ, S) compressible using helper
string s

Suppose GA,s = {gθ,s|θ ∈ A} is a class of clas-
sifiers indexed by trainable parameters A and fixed
strings s. A classifier f is (γ, S)-compressible with
respect to GA using helper string s if there exists
θ ∈ A such that for any x ∈ S, we have for all y

|f(x)[y]− gθ,s(x)[y]| ≤ γ (5)

Remark 1. If we parameterize f(x; θ) via the in-
trinsic dimension approach as defined in Equa-
tion 1, then f is compressible losslessly using a
helper string consisting of the random seed used to
generate the static random projection weights and
the initial pre-trained representation θD0 . Therefore
we say f parameterized by either DID or SAID is
(0, S) compressible.

Theorem 2.1 in (Arora et al., 2018) states given
a compression consisting of r discrete states we
achieve the following generalization bound.

L0(f) ≤ L̂γ(f) +O

(√
d log r

m

)
(6)

We can trivially represent our parameters θd in a
discrete fashion through discretization, as was done
in Arora et al. (2018), and the number of states is
dependent on the level of quantization but is static
once chosen (FP32 vs. FP16).

We then connect the fact that models trained in
low dimensional subspace using SAID/DID meth-
ods are (0, S)-compressible to derive the final
asymptotic bound.

L0(f) ≤ L̂0(f) +O

(√
d

m

)
(7)
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