
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 7196–7209

August 1–6, 2021. ©2021 Association for Computational Linguistics

7196

StructFormer: Joint Unsupervised Induction of Dependency and
Constituency Structure from Masked Language Modeling

Yikang Shen∗
Mila/Université de Montréal

Yi Tay
Google Research

Che Zheng
Google Research

Dara Bahri
Google Research

Donald Metzler
Google Research

Aaron Courville
Mila/Université de Montréal

Abstract

There are two major classes of natural lan-
guage grammars — the dependency grammar
that models one-to-one correspondences be-
tween words and the constituency grammar
that models the assembly of one or several
corresponded words. While previous unsuper-
vised parsing methods mostly focus on only in-
ducing one class of grammars, we introduce a
novel model, StructFormer, that can simulta-
neously induce dependency and constituency
structure. To achieve this, we propose a new
parsing framework that can jointly generate a
constituency tree and dependency graph. Then
we integrate the induced dependency relations
into the transformer, in a differentiable man-
ner, through a novel dependency-constrained
self-attention mechanism. Experimental re-
sults show that our model can achieve strong
results on unsupervised constituency parsing,
unsupervised dependency parsing, and masked
language modeling at the same time.

1 Introduction

Human languages have a rich latent structure. This
structure is multifaceted, with the two major classes
of grammar being dependency and constituency
structures. There has been an exciting breath of
recent work targeted at learning this structure in a
data-driven unsupervised fashion (Klein and Man-
ning, 2002; Klein, 2005; Le and Zuidema, 2015;
Shen et al., 2018c; Kim et al., 2019a). The core
principle behind recent methods that induce struc-
ture from data is simple - provide an inductive
bias that is conducive for structure to emerge as
a byproduct of some self-supervised training, e.g.,
language modeling. To this end, a wide range of
models have been proposed that are able to success-
fully learn grammar structures (Shen et al., 2018a,c;

∗ Corresponding author: yikang.shn@gmail.ca.
Work done while interning at Google Reseach.

Wang et al., 2019; Kim et al., 2019b,a). However,
most of these works focus on inducing either con-
stituency or dependency structures alone.

In this paper, we make two important techni-
cal contributions. First, we introduce a new neu-
ral model, StructFormer, that is able to simultane-
ously induce both dependency structure and con-
stituency structure. Specifically, our approach aims
to unify latent structure induction of different types
of grammar within the same framework. Second,
StructFormer is able to induce dependency struc-
tures from raw data in an end-to-end unsupervised
fashion. Most existing approaches induce depen-
dency structures from other syntactic information
like gold POS tags (Klein and Manning, 2004; Co-
hen and Smith, 2009; Jiang et al., 2016). Previous
works, having trained from words alone, often re-
quires additional information, like pre-trained word
clustering (Spitkovsky et al., 2011), pre-trained
word embedding (He et al., 2018), acoustic cues
(Pate and Goldwater, 2013), or annotated data from
related languages (Cohen et al., 2011).

We introduce a new inductive bias that enables
the Transformer models to induce a directed depen-
dency graph in a fully unsupervised manner. To
avoid the necessity of using grammar labels during
training, we use a distance-based parsing mecha-
nism. The parsing mechanism predicts a sequence
of Syntactic Distances T (Shen et al., 2018b) and a
sequence of Syntactic Heights ∆ (Luo et al., 2019)
to represent dependency graphs and constituency
trees at the same time. Examples of ∆ and T are
illustrated in Figure 1a. Based on the syntactic
distances (T) and syntactic heights (∆), we pro-
vide a new dependency-constrained self-attention
layer to replace the multi-head self-attention layer
in standard transformer model. More specifically,
the new attention head can only attend its parent (to
avoid confusion with self-attention head, we use
“parent” to denote “head” in dependency graph) or

7197

(a) An example of Syntactic Distances T (grey bars) and
Syntactic Heights ∆ (white bars). In this example, like
is the parent (head) of constituent (like cats) and
(I like cats).

(b) Two types of dependency relations. The parent distribution
allows each token to attend on its parent. The dependent distribu-
tion allows each token to attend on its dependents. For example
the parent of cats is like. Cats and I are dependents of
like Each attention head will receive a different weighted sum
of these relations.

Figure 1: An example of our parsing mechanism and dependency-constrained self-attention mechanism. The
parsing network first predicts the syntactic distance T and syntactic height ∆ to represent the latent structure of the
input sentence I like cats. Then the parent and dependent relations are computed in a differentiable manner
from T and ∆.

its dependents in the predicted dependency struc-
ture, through a weighted sum of relations shown
in Figure 1b. In this way, we replace the complete
graph in the standard transformer model with a
differentiable directed dependency graph. During
the process of training on a downstream task (e.g.
masked language model), the model will gradu-
ally converge to a reasonable dependency graph
via gradient descent.

Incorporating the new parsing mechanism, the
dependency-constrained self-attention, and the
Transformer architecture, we introduce a new
model named StructFormer. The proposed model
can perform unsupervised dependency and con-
stituency parsing at the same time, and can leverage
the parsing results to achieve strong performance
on masked language model tasks.

2 Related Work

Previous works on unsupervised dependency pars-
ing are primarily based on the dependency model
with valence (DMV) (Klein and Manning, 2004)
and its extension (Daumé III, 2009; Gillenwater
et al., 2010). To effectively learn the DMV model
for better parsing accuracy, a variety of inductive bi-
ases and handcrafted features, such as correlations
between parameters of grammar rules involving
different part-of-speech (POS) tags, have been pro-
posed to incorporate prior information into learning.
The most recent progress is the neural DMV model
(Jiang et al., 2016), which uses a neural network
model to predict the grammar rule probabilities

based on the distributed representation of POS tags.
However, most existing unsupervised dependency
parsing algorithms require the gold POS tags to
ge provided as inputs. These gold POS tags are la-
beled by humans and can be potentially difficult (or
prohibitively expensive) to obtain for large corpora.
Spitkovsky et al. (2011) proposed to overcome this
problem with unsupervised word clustering that
can dynamically assign tags to each word consid-
ering its context. He et al. (2018) overcame the
problem by combining DMV model with invertible
neural network to jointly model discrete syntactic
structure and continuous word representations.

Unsupervised constituency parsing has recently
received more attention. PRPN (Shen et al., 2018a)
and ON-LSTM (Shen et al., 2018c) induce tree
structure by introducing an inductive bias to re-
current neural networks. PRPN proposes a pars-
ing network to compute the syntactic distance of
all word pairs, while a reading network uses the
syntactic structure to attend to relevant memories.
ON-LSTM allows hidden neurons to learn long-
term or short-term information by a novel gating
mechanism and activation function. In URNNG
(Kim et al., 2019b), amortized variational infer-
ence was applied between a recurrent neural net-
work grammar (RNNG) (Dyer et al., 2016) decoder
and a tree structure inference network, which en-
courages the decoder to generate reasonable tree
structures. DIORA (Drozdov et al., 2019) proposed
using inside-outside dynamic programming to com-
pose latent representations from all possible binary

7198

trees. The representations of inside and outside
passes from the same sentences are optimized to
be close to each other. The compound PCFG (Kim
et al., 2019a) achieves grammar induction by max-
imizing the marginal likelihood of the sentences
which are generated by a probabilistic context-free
grammar (PCFG). Tree Transformer (Wang et al.,
2019) adds extra locality constraints to the Trans-
former encoder’s self-attention to encourage the
attention heads to follow a tree structure such that
each token can only attend on nearby neighbors in
lower layers and gradually extend the attention field
to further tokens when climbing to higher layers.
Neural L-PCFG (Zhu et al., 2020) demonstrated
that PCFG can benefit from modeling lexical de-
pendencies. Similar to StructFormer, the Neural
L-PCFG induces both constituents and dependen-
cies within a single model.

Though large scale pre-trained models have
dominated most natural language processing tasks,
some recent work indicates that neural network
models can see accuracy gains by leveraging syn-
tactic information rather than ignoring it (Marcheg-
giani and Titov, 2017; Strubell et al., 2018).
Strubell et al. (2018) introduces syntactically-
informed self-attention that force one attention
head to attend on the syntactic governor of the
input token. Omote et al. (2019) and Deguchi
et al. (2019) argue that dependency-informed self-
attention can improve Transformer’s performance
on machine translation. Kuncoro et al. (2020)
shows that syntactic biases help large scale pre-
trained models, like BERT, to achieve better lan-
guage understanding.

3 Syntactic Distance and Height

In this section, we first reintroduce the concepts
of syntactic distance and height, then discuss their
relations in the context of StructFormer.

3.1 Syntactic Distance

Syntactic distance is proposed in Shen et al.
(2018b) to quantify the process of splitting sen-
tences into smaller constituents.

Definition 3.1. Let T be a constituency tree for
sentence (w1, ..., wn). The height of the lowest
common ancestor for consecutive words xi and
xi+1 is τ̃i. Syntactic distances T = (τ1, ..., τn−1)
are defined as a sequence of n− 1 real scalars that
share the same rank as (τ̃1, ..., τ̃n−1).

In other words, each syntactic distance di is as-
sociated with a split point (i, i+ 1) and specify the
relative order in which the sentence will be split
into smaller components. Thus, any sequence of
n − 1 real values can unambiguously map to an
unlabeled binary constituency tree with n leaves
through the Algorithm 1 (Shen et al., 2018b). As
Shen et al. (2018c,a); Wang et al. (2019) pointed
out, the syntactic distance reflects the information
communication between constituents. More con-
cretely, a large syntactic distance τi represents that
short-term or local information should not be com-
municated between (x≤i) and (x>i). While cooper-
ating with appropriate neural network architectures,
we can leverage this feature to build unsupervised
dependency parsing models.

Algorithm 1 Distance to binary constituency
tree
1: function CONSTITUENT(w, d)
2: if d = [] then
3: T⇐ Leaf(w)
4: else
5: i⇐ arg maxi(d)
6: childl⇐ Constituent(w≤i, d<i)
7: childr ⇐ Constituent(w>i, d>i)
8: T⇐ Node(childl, childr)

9: return T

Algorithm 2 Converting binary constituency
tree to dependency graph
1: function DEPENDENT(T, ∆)
2: if T = w then
3: D⇐ [],parent⇐ w
4: else
5: childl, childr ⇐ T
6: Dl,parentl ⇐ Dependent(childl,∆)
7: Dr, parentr ⇐ Dependent(childr,∆)
8: D⇐ Union(Dl,Dr)
9: if ∆(parentl) > ∆(parentr) then

10: D.add(parentl ← parentr)
11: parent⇐ parentl
12: else
13: D.add(parentr ← parentl)
14: parent⇐ parentr
15: return D, parent

3.2 Syntactic Height

Syntactic height is proposed in Luo et al. (2019),
where it is used to capture the distance to the root
node in a dependency graph. A word with high
syntactic height means it is close to the root node.
In this paper, to match the definition of syntactic
distance, we redefine syntactic height as:

Definition 3.2. Let D be a dependency graph for
sentence (w1, ..., wn). The height of a token wi
in D is δ̃i. The syntactic heights of D can be any

7199

sequence of n real scalars ∆ = (δ1, ..., δn) that
share the same rank as (δ̃1, ..., δ̃n).

Although the syntactic height is defined based
on the dependency structure, we cannot rebuild the
original dependency structure by syntactic heights
alone, since there is no information about whether a
token should be attached to the left side or the right
side. However, given an unlabelled constituent tree,
we can convert it into a dependency graph with
the help of syntactic distance. The converting pro-
cess is similar to the standard process of converting
constituency treebank to dependency treebank (Gel-
bukh et al., 2005). Instead of using the constituent
labels and POS tags to identify the parent of each
constituent, we simply assign the token with the
largest syntactic height as the parent of each con-
stituent. The conversion algorithm is described in
Algorithm 2. In Appendix A.1, we also propose a
joint algorithm, that takes T and ∆ as inputs and
jointly outputs a constituency tree and dependency
graph.

Figure 2: An example of T, ∆ and respective depen-
dency graph D. Solid lines represent dependency rela-
tions between tokens. StructFormer only allow tokens
with dependency relation to attend on each other.

3.3 The relation between Syntactic Distance
and Height

As discussed previously, the syntactic distance con-
trols information communication between the two
sides of the split point. The syntactic height quanti-
fies the centrality of each token in the dependency
graph. A token with large syntactic height tends
to have more long-term dependency relations to
connect different parts of the sentence together. In
StructFormer, we quantify the syntactic distance
and height on the same scale. Given a split point
(i, i+ 1) and it’s syntactic distance δi, only tokens

(a) Model Architecture (b) Parsing Network

Figure 3: The Architecture of StructFormer. The parser
takes shared word embeddings as input, outputs syntac-
tic distances T, syntactic heights ∆, and dependency
distributions between tokens. The transformer layers
take word embeddings and dependency distributions
as input, output contextualized embeddings for input
words.

xj with τj > δi can attend across the split point
(i, i+ 1). Thus tokens with small syntactic height
are limited to attend to nearby tokens. Figure 2
provides an example of T, ∆ and respective depen-
dency graph D.

However, if the left and right boundary syntac-
tic distance of a constituent [l, r] are too large, all
words in [l, r] will be forced to only attend to other
words in [l, r]. Their contextual embedding will
not be able to encode the full context. To avoid this
phenomena, we propose calibrating T according to
∆ in Appendix A.2

4 StructFormer

In this section, we present the StructFormer model.
Figure 3a shows the architecture of StructFormer,
which includes a parser network and a Transformer
module. The parser network predicts T and ∆,
then passes them to a set of differentiable func-
tions to generate dependency distributions. The
Transformer module takes these distributions and
the sentence as input to computes a contextual em-
bedding for each position. The StructFormer can
be trained in an end-to-end fashion on a Masked
Language Model task. In this setting, the gradient
back propagates through the relation distributions
into the parser.

4.1 Parsing Network
As shown in Figure 3b, the parsing network takes
word embeddings as input and feeds them into sev-
eral convolution layers:

sl,i = tanh (Conv (sl−1,i−W , ..., sl−1,i+W)) (1)

where sl,i is the output of l-th layer at i-th position,
s0,i is the input embedding of tokenwi, and 2W+1
is the convolution kernel size.

7200

Given the output of the convolution stack sN,i,
we parameterize the syntactic distance T as:

τi =

Wτ

1 tanh

(
Wτ

2

[
sN,i
sN,i+1

])
,

1 ≤ i ≤ n− 1
∞, i = 0 or i = n

(2)

where τi is the contextualized distance for the i-
th split point between token wi and wi+1. The
syntactic height ∆ is parameterized in a similar
way:

δi = Wδ
1 tanh

(
Wδ

2sN,i + bδ2

)
+ bδ1 (3)

4.2 Estimate the Dependency Distribution
Given T and ∆, we now explain how to estimate
the probability p(xj |xi) such that the j-th token is
the parent of the i-th token. The first step is iden-
tifying the smallest legal constituent C(xi), that
contains xi and xi is not C(xi)’s parent. The sec-
ond step is identifying the parent of the constituent
xj = Pr(C(xi)). Given the discussion in section
3.2, the parent of C(xi) must be the parent of xi.
Thus, the two-stages of identifying the parent of xi
can be formulated as:

D(xi) = Pr(C(xi)) (4)

In StructFormer, C(xi) is represented as con-
stituent [l, r], where l is the starting index (l ≤ i) of
C(xi) and r is the ending index (r ≥ i) of C(xi).

In a dependency graph, xi is only connected to
its parent and dependents. This means that xi does
not have direct connection to the outside of C(xi).
In other words, C(xi) = [l, r] is the smallest con-
stituent that satisfies:

δi < τl−1, δi < τr (5)

where τl−1 is the first τ<i that is larger then δi
while looking backward, and τr is the first τ≥i that
is larger then δi while looking forward. For ex-
ample, in Figure 2, δ4 = 3.5, τ3 = 4 > δ4 and
τ8 = ∞ > δ4, thus C(x4) = [4, 8]. To make
this process differentiable, we define τk as a real
value and δi as a probability distribution p(δ̃i). For
the simplicity and efficiency of computation, we
directly parameterize the cumulative distribution
function p(δ̃i > τk) with sigmoid function:

p(δ̃i > τk) = σ((δi − τk)/µ1) (6)

where σ is the sigmoid function, δi is the mean of
distribution p(δ̃i) and µ1 is a learnable temperature

term. Thus the probability that the l-th (l < i)
token is inside C(xi) is equal to the probability that
δ̃i is larger then the maximum distance τ between
l and i:

p(l ∈ C(xi)) = p(δ̃i > max(τi−1, ..., τl)) (7)

= σ((δi −max(τl, ..., τi−1))/µ)

Then we can compute the probability distribution
for l:

p(l|i) = p(l ∈ C(xi))− p(l − 1 ∈ C(xi))

= σ((δi −max(τl, ..., τi−1))/µ)−
σ((δi −max(τl−1, ..., τi−1))/µ) (8)

Similarly, we can compute the probability distribu-
tion for r:

p(r|i) = σ((δi −max(τi, ..., τr−1))/µ)−
σ((δi −max(τi, ..., τr))/µ) (9)

The probability distribution for [l, r] = C(xi) can
be computed as:

pC([l, r]|i) =

{
p(l|i)p(r|i), l ≤ i ≤ r

0, otherwise
(10)

The second step is to identify the parent of [l, r].
For any constituent [l, r], we choose the j =
argmaxk∈[l,r](δk) as the parent of [l, r]. In the
previous example, given constituent [4, 8], the
maximum syntactic height is δ6 = 4.5, thus
Pr([4, 8]) = x6. We use softmax function to pa-
rameterize the probability pPr(j|[l, r]):

pPr(j|[l, r]) =

{
exp(hj/µ2)∑

l≤k≤r exp(hk/µ2)
, l ≤ t ≤ r

0, otherwise
(11)

Given probability p(j|[l, r]) and p([l, r]|i), we can
compute the probability that xj is the parent of xi:

pD(j|i) =

{∑
[l,r] pPr(j|[l, r])pC([l, r]|i), i 6= j

0, i = j
(12)

4.3 Dependency-Constrained Multi-head
Self-Attention

The multi-head self-attention in the transformer
can be seen as a information propagation mecha-
nism on the complete graph G = (X,E), where
the set of vertices X contains all n tokens in the
sentence, and the set of edges E contains all possi-
ble word pairs (xi, xj). StructFormer replace the

7201

complete graph G with a soft dependency graph
D = (X,A), where A is the matrix of n× n prob-
abilities. Aij = pD(j|i) is the probability of the
j-th token depending on the i-th token. The reason
that we called it a directed edge is that each specific
head is only allow to propagate information either
from parent to dependent or from from dependent
to parent. To do so, structformer associate each
attention head with a probability distribution over
parent or dependent relation.

pparent =
exp(wparent)

exp(wparent) + exp(wdep)
(13)

pdep =
exp(wdep)

exp(wparent) + exp(wdep)
(14)

where wparent and wdep are learnable parameters
that associated with each attention head, pparent is
the probability that this head will propagate infor-
mation from parent to dependent, vice versa. The
model will learn to assign this association from the
downstream task via gradient descent. Then we
can compute the probability that information can
be propagated from node j to node i via this head:

pi,j = pparentpD(j|i) + pdeppD(i|j) (15)

However, Htut et al. (2019) pointed out that differ-
ent heads tend to associate with different type of
universal dependency relations (including nsubj,
obj, advmod, etc), but there is no generalist head
can that work with all different relations. To ac-
commodate this observation, we compute a indi-
vidual probability for each head and pair of tokens
(xi, xj):

qi,j = sigmoid

(
QKT

√
dk

)
(16)

where Q and K are query and key matrix in a
standard transformer model and dk is the dimen-
sion of attention head. The equation is inspired
by the scaled dot-product attention in transformer.
We replace the original softmax function with a
sigmoid function, so qi,j became an independent
probability that indicates whether xi should attend
on xj through the current attention head. In the
end, we propose to replace transformer’s scaled dot-
product attention with our dependency-constrained
self-attention:

Attention(Qi,Kj , Vj ,D) = pi,jqi,jVj (17)

5 Experiments

We evaluate the proposed model on three tasks:
Masked Language Modeling, Unsupervised Con-
stituency Parsing and Unsupervised Dependency
Parsing.

Our implementation of StructFormer is close to
the original Transformer encoder (Vaswani et al.,
2017). Except that we put the layer normalization
in front of each layer, similar to the T5 model (Raf-
fel et al., 2019). We found that this modification
allows the model to converges faster. For all exper-
iments, we set the number of layers L = 8, the em-
bedding size and hidden size to be dmodel = 512,
the number of self-attention heads h = 8, the feed-
forward size dff = 2048, dropout rate as 0.1, and
the number of convolution layers in the parsing
network as Lp = 3.

5.1 Masked Language Model

Masked Language Modeling (MLM) has been
widely used as a pretraining object for larger-scale
pretraining models. In BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019), authors found
that MLM perplexities on held-out evaluation set
have a positive correlation with the end-task per-
formance. We trained and evaluated our model
on 2 different datasets: the Penn TreeBank (PTB)
and BLLIP. In our MLM experiments, each token
has an independent chance to be replaced by a
mask token <mask>, except that we never replace
< unk > token. The training and evaluation ob-
ject for Masked Language Model is to predict the
replaced tokens. The performance of MLM is eval-
uated by measuring perplexity on masked words.

PTB is a standard dataset for language model-
ing (Mikolov et al., 2012) and unsupervised con-
stituency parsing (Shen et al., 2018c; Kim et al.,
2019a). Following the setting proposed in Shen
et al. (2018c), we use Mikolov et al. (2012)’s
prepossessing process, which removes all punc-
tuations, and replaces low frequency tokens with
<unk>. The preprocessing results in a vocabu-
lary size of 10001 (including <unk>, <pad> and
<mask>). For PTB, we use a 30% mask rate.

BLLIP is a large Penn Treebank-style parsed
corpus of approximately 24 million sentences. We
train and evaluate StructFormer on three splits of
BLLIP: BLLIP-XS (40k sentences, 1M tokens),
BLLIP-SM (200K sentences, 5M tokens), and
BLLIP-MD (600K sentences, 14M tokens). They
are obtained by randomly sampling sections from

7202

Model PTB BLLIP BLLIP BLLIP
-XS -SM -MD

Transformer 64.05 93.90 19.92 14.31
StructFormer 60.94 57.28 18.70 13.70

Table 1: Masked Language Model perplexities on dif-
ferent datasets.

BLLIP 1987-89 Corpus Release 1. All models are
tested on a shared held-out test set (20k sentences,
500k tokens). Following the settings provided in
(Hu et al., 2020), we use subword-level vocabulary
extracted from the GPT-2 pre-trained model rather
than the BLLIP training corpora. For BLLIP, we
use a 15% mask rate.

The masked language model results are shown in
Table 1. StructFormer consistently outperforms our
Transformer baseline. This result aligns with previ-
ous observations that linguistically informed self-
attention can help Transformers achieve stronger
performance. We also observe that StructFormer
converges much faster than the standard Trans-
former model.

5.2 Unsupervised Constituency Parsing

The unsupervised constituency parsing task com-
pares the latent tree structure induced by the model
with those annotated by human experts. We use
the Algorithm 1 to predict the constituency trees
from T predicted by StructFormer. Following the
experiment settings proposed in Shen et al. (2018c),
we take the model trained on PTB dataset and eval-
uate it on WSJ test set. The WSJ test set is section
23 of WSJ corpus, it contains 2416 human expert
labeled sentences. Punctuation is ignored during
the evaluation.

Methods UF1

RANDOM 21.6
LBRANCH 9.0
RBRANCH 39.8

PRPN (Shen et al., 2018a) 37.4 (0.3)
ON-LSTM (Shen et al., 2018c) 47.7 (1.5)

Tree-T (Wang et al., 2019) 49.5
URNNG (Kim et al., 2019b) 52.4
C-PCFG (Kim et al., 2019a) 55.2

Neural L-PCFGs (Zhu et al., 2020) 55.31
StructFormer 54.0 (0.3)

Table 2: Unsupervised constituency parsing tesults. *
results are from Kim et al. (2020). UF1 stands for Un-
labeled F1.

Table 2 shows that our model achieves strong re-
sults on unsupervised constituency parsing. While

PRPN ON C-PCFG Tree-T Ours

SBAR 50.0% 52.5% 56.1% 36.4% 48.7%
NP 59.2% 64.5% 74.7% 67.6% 72.1%
VP 46.7% 41.0% 41.7% 38.5% 43.0%
PP 57.2% 54.4% 68.8% 52.3% 74.1%

ADJP 44.3% 38.1% 40.4% 24.7% 51.9%
ADVP 32.8% 31.6% 52.5% 55.1% 69.5%

Table 3: Fraction of ground truth constituents that were
predicted as a constituent by the models broken down
by label (i.e. label recall)

the C-PCFG (Kim et al., 2019a) achieve a stronger
parsing performance with its strong linguistic con-
straints (e.g. a finite set of production rules), Struct-
Former may have a border domain of application.
For example, it can replace the standard trans-
former encoder in most of the popular large-scale
pre-trained language models (e.g. BERT and Re-
BERTa) and transformer based machine translation
models. Different from the transformer-based Tree-
T (Wang et al., 2019), we did not directly use con-
stituents to restrict the self-attention receptive field.
But StructFormer achieves a stronger constituency
parsing performance. This result may suggest that
dependency relations are more suitable for gram-
mar induction in transformer-based models. Table
3 shows that our model achieves strong accuracy
while predicting Noun Phrase (NP), Preposition
Phrase (PP), Adjective Phrase (ADJP), and Adverb
Phrase (ADVP).

5.3 Unsupervised Dependency Parsing
The unsupervised dependency parsing evaluation
compares the induced dependency relations with
those in the reference dependency graph. The most
common metric is the Unlabeled Attachment Score
(UAS), which measures the percentage that a token
is correctly attached to its parent in the reference
tree. Another widely used metric for unsupervised
dependency parsing is Undirected Unlabeled At-
tachment Score (UUAS) measures the percentage
that the reference undirected and unlabeled connec-
tions are recovered by the induced tree. Similar
to the unsupervised constituency parsing, we take
the model trained on PTB dataset and evaluate it
on WSJ test set (section 23). For the WSJ test set,
reference dependency graphs are converted from
its human-annotated constituency trees. However,
there are two different sets of rules for the conver-
sion: the Stanford dependencies and the CoNLL de-
pendencies. While Stanford dependencies are used
as reference dependencies in previous unsupervised

7203

Relations MLM Constituency Stanford Conll
PPL UF1 UAS UUAS UAS UUAS

parent+dep 60.9 (1.0) 54.0 (0.3) 46.2 (0.4) 61.6 (0.4) 36.2 (0.1) 56.3 (0.2)
parent 63.0 (1.2) 40.2 (3.5) 32.4 (5.6) 49.1 (5.7) 30.0 (3.7) 50.0 (5.3)

dep 63.2 (0.6) 51.8 (2.4) 15.2 (18.2) 41.6 (16.8) 20.2 (12.2) 44.7 (13.9)

Table 4: The performance of StructFormer with different combinations of attention masks. UAS stands for Unla-
beled Attachment Score. UUAS stands for Undirected Unlabeled Attachment Score.

Methods UAS

w/o gold POS tags
DMV (Klein and Manning, 2004) 35.8
E-DMV (Headden III et al., 2009) 38.2

UR-A E-DMV (Tu and Honavar, 2012) 46.1
CS* (Spitkovsky et al., 2013) 64.4*

Neural E-DMV (Jiang et al., 2016) 42.7
Gaussian DMV (He et al., 2018) 43.1 (1.2)

INP (He et al., 2018) 47.9 (1.2)
Neural L-PCFGs (Zhu et al., 2020) 40.5 (2.9)

StructFormer 46.2 (0.4)

w/ gold POS tags (for reference only)
DMV (Klein and Manning, 2004) 39.7

UR-A E-DMV (Tu and Honavar, 2012) 57.0
MaxEnc (Le and Zuidema, 2015) 65.8

Neural E-DMV (Jiang et al., 2016) 57.6
CRFAE (Cai et al., 2017) 55.7

L-NDMV† (Han et al., 2017) 63.2

Table 5: Dependency Parsing Results on WSJ testset.
Starred entries (*) benefit from additional punctuation-
based constraints. Daggered entries (†) benefit from
larger additional training data. Baseline results are
from He et al. (2018).

parsing papers, we noticed that our model some-
times output dependency structures that are closer
to the CoNLL dependencies. Therefore, we report
UAS and UUAS for both Stanford and CoNLL
dependencies. Following the setting of previous
papers (Jiang et al., 2016), we ignored the punctua-
tion during evaluation. To obtain the dependency
relation from our model, we compute the argmax
for dependency distribution:

k = argmaxj 6=ipD(j|i) (18)

and assign the k-th token as the parent of i-th token.
Table 5 shows that our model achieves competi-

tive dependency parsing performance while com-
paring to other models that do not require gold
POS tags. While most of the baseline models still
rely on some kind of latent POS tags or pre-trained
word embeddings, StructFormer can be seen as an
easy-to-use alternative that works in an end-to-end
fashion. Table 6 shows that our model recovers
61.6% of undirected dependency relations. Given

the strong performances on both dependency pars-
ing and masked language modeling, we believe
that the dependency graph schema could be a vi-
able substitute for the complete graph schema used
in the standard transformer. Appendix A.4 provides
examples of parent distribution.

Since our model uses a mixture of the relation
probability distribution for each self-attention head,
we also studied how different combinations of re-
lations affect the performance of our model. Table
6 shows that the model can achieve the best per-
formance while using both parent and dependent
relations. The model suffers more on dependency
parsing if the parent relation is removed. And if the
dependent relationship is removed, the model will
suffer more on the constituency parsing. Appendix
A.3 shows the weight for parent and dependent
relations learnt from MLM tasks. It’s interesting
to observe that Structformer tends to focus on the
parent relations in the first layer, and start to use
both relations from the second layer.

6 Conclusion

In this paper, we introduce a novel dependency and
constituency joint parsing framework. Based on
the framework, we propose StructFormer, a new
unsupervised parsing algorithm that does unsuper-
vised dependency and constituency parsing at the
same time. We also introduced a novel dependency-
constrained self-attention mechanism that allows
each attention head to focus on a specific mixture
of dependency relations. This brings Transformers
closer to modeling a directed dependency graph.
The experiments show promising results that Struct-
Former can induce meaningful dependency and
constituency structures and achieve better perfor-
mance on masked language model tasks. This re-
search provides a new path to build more linguistic
bias into a pre-trained language model.

7204

References
Jiong Cai, Yong Jiang, and Kewei Tu. 2017. Crf

autoencoder for unsupervised dependency parsing.
arXiv preprint arXiv:1708.01018.

Shay B Cohen, Dipanjan Das, and Noah A Smith. 2011.
Unsupervised structure prediction with non-parallel
multilingual guidance. In Proceedings of the 2011
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 50–61.

Shay B Cohen and Noah A Smith. 2009. Shared logis-
tic normal distributions for soft parameter tying in
unsupervised grammar induction. In Proceedings of
Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 74–
82.

Hal Daumé III. 2009. Unsupervised search-based
structured prediction. In Proceedings of the 26th
Annual International Conference on Machine Learn-
ing, pages 209–216.

Hiroyuki Deguchi, Akihiro Tamura, and Takashi Ni-
nomiya. 2019. Dependency-based self-attention for
transformer nmt. In Proceedings of the Interna-
tional Conference on Recent Advances in Natural
Language Processing (RANLP 2019), pages 239–
246.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Andrew Drozdov, Patrick Verga, Mohit Yadav, Mohit
Iyyer, and Andrew McCallum. 2019. Unsupervised
latent tree induction with deep inside-outside recur-
sive auto-encoders. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1129–1141.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A Smith. 2016. Recurrent neural network
grammars. In Proceedings of NAACL-HLT, pages
199–209.

Alexander Gelbukh, Sulema Torres, and Hiram Calvo.
2005. Transforming a constituency treebank into a
dependency treebank. Procesamiento del lenguaje
natural, (35):145–152.

Jennifer Gillenwater, Kuzman Ganchev, João Graça,
Fernando Pereira, and Ben Taskar. 2010. Sparsity
in dependency grammar induction. ACL 2010, page
194.

Wenjuan Han, Yong Jiang, and Kewei Tu. 2017.
Dependency grammar induction with neural lexi-
calization and big training data. arXiv preprint
arXiv:1708.00801.

Junxian He, Graham Neubig, and Taylor Berg-
Kirkpatrick. 2018. Unsupervised learning of syntac-
tic structure with invertible neural projections. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
1292–1302.

William P Headden III, Mark Johnson, and David Mc-
Closky. 2009. Improving unsupervised dependency
parsing with richer contexts and smoothing. In Pro-
ceedings of human language technologies: the 2009
annual conference of the North American chapter of
the association for computational linguistics, pages
101–109.

Phu Mon Htut, Jason Phang, Shikha Bordia, and
Samuel R Bowman. 2019. Do attention heads in
bert track syntactic dependencies? arXiv preprint
arXiv:1911.12246.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger P Levy. 2020. A systematic assessment
of syntactic generalization in neural language mod-
els. arXiv preprint arXiv:2005.03692.

Yong Jiang, Wenjuan Han, Kewei Tu, et al. 2016. Un-
supervised neural dependency parsing. Association
for Computational Linguistics (ACL).

Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang-
goo Lee. 2020. Are pre-trained language mod-
els aware of phrases? simple but strong base-
lines for grammar induction. arXiv preprint
arXiv:2002.00737.

Yoon Kim, Chris Dyer, and Alexander M Rush. 2019a.
Compound probabilistic context-free grammars for
grammar induction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 2369–2385.

Yoon Kim, Alexander M Rush, Lei Yu, Adhiguna Kun-
coro, Chris Dyer, and Gábor Melis. 2019b. Unsuper-
vised recurrent neural network grammars. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 1105–1117.

Dan Klein. 2005. The unsupervised learning of natural
language structure. Stanford University Stanford.

Dan Klein and Christopher D Manning. 2002. A gener-
ative constituent-context model for improved gram-
mar induction. In Proceedings of the 40th Annual
Meeting of the Association for Computational Lin-
guistics, pages 128–135.

Dan Klein and Christopher D Manning. 2004. Corpus-
based induction of syntactic structure: Models of de-
pendency and constituency. In Proceedings of the
42nd annual meeting of the association for computa-
tional linguistics (ACL-04), pages 478–485.

7205

Adhiguna Kuncoro, Lingpeng Kong, Daniel Fried,
Dani Yogatama, Laura Rimell, Chris Dyer, and Phil
Blunsom. 2020. Syntactic structure distillation pre-
training for bidirectional encoders. arXiv preprint
arXiv:2005.13482.

Phong Le and Willem Zuidema. 2015. Unsupervised
dependency parsing: Let’s use supervised parsers.
arXiv preprint arXiv:1504.04666.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Hongyin Luo, Lan Jiang, Yonatan Belinkov, and James
Glass. 2019. Improving neural language models by
segmenting, attending, and predicting the future. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1483–
1493.

Diego Marcheggiani and Ivan Titov. 2017. En-
coding sentences with graph convolutional net-
works for semantic role labeling. arXiv preprint
arXiv:1703.04826.

Tomáš Mikolov et al. 2012. Statistical language mod-
els based on neural networks. Presentation at
Google, Mountain View, 2nd April, 80:26.

Yutaro Omote, Akihiro Tamura, and Takashi Ninomiya.
2019. Dependency-based relative positional encod-
ing for transformer nmt. In Proceedings of the In-
ternational Conference on Recent Advances in Natu-
ral Language Processing (RANLP 2019), pages 854–
861.

John K Pate and Sharon Goldwater. 2013. Unsuper-
vised dependency parsing with acoustic cues. Trans-
actions of the Association for Computational Lin-
guistics, 1:63–74.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Yikang Shen, Zhouhan Lin, Chin-wei Huang, and
Aaron Courville. 2018a. Neural language modeling
by jointly learning syntax and lexicon. In Interna-
tional Conference on Learning Representations.

Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessan-
dro Sordoni, Aaron Courville, and Yoshua Bengio.
2018b. Straight to the tree: Constituency parsing
with neural syntactic distance. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1171–1180.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron Courville. 2018c. Ordered neurons: Integrat-
ing tree structures into recurrent neural networks. In

International Conference on Learning Representa-
tions.

Valentin I Spitkovsky, Hiyan Alshawi, Angel Chang,
and Dan Jurafsky. 2011. Unsupervised dependency
parsing without gold part-of-speech tags. In Pro-
ceedings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1281–
1290.

Valentin I Spitkovsky, Daniel Jurafsky, and Hiyan Al-
shawi. 2013. Breaking out of local optima with
count transforms and model recombination: A study
in grammar induction.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-informed self-attention for semantic
role labeling. arXiv preprint arXiv:1804.08199.

Kewei Tu and Vasant Honavar. 2012. Unambiguity reg-
ularization for unsupervised learning of probabilis-
tic grammars. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 1324–1334.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen.
2019. Tree transformer: Integrating tree structures
into self-attention. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1060–1070.

Hao Zhu, Yonatan Bisk, and Graham Neubig. 2020.
The return of lexical dependencies: Neural lexical-
ized pcfgs. Transactions of the Association for Com-
putational Linguistics, 8:647–661.

7206

A Appendix

A.1 Joint Dependency and Constituency
Parsing

Algorithm 3 The joint dependency and con-
stituency parsing algorithm. Inputs are a sequence
of words w, syntactic distances d, syntactic heights
h. Outputs are a binary constituency tree T, a de-
pendency graph D that is represented as a set of
dependency relations, the parent of dependency
graph D, and the syntactic height of parent.
1: function BUILDTREE(w,d,h)
2: if d = [] and w = [w] and h = [h] then
3: T ⇐ Leaf(w), D ⇐ [], parent ⇐ w, height
⇐ h

4: else
5: i⇐ arg max(d)
6: Tl,Dl, parentl, heightl ⇐

BuildTree(d<i,w≤i,h≤i)
7: Tr,Dr, parentr,heightr ⇐

BuildTree(d>i,w>i,h>i)
8: T⇐ Node(childl ⇐ Tl, childr ⇐ Tr)
9: D⇐ Union(Dl, Dr)

10: if heightl > heightr then
11: D.add(parentl ← parentr)
12: parent⇐ parentl, height⇐ heightl
13: else
14: D.add(parentr ← parentl)
15: parent⇐ parentr , height⇐ heightr
16: return T, D, parent, height

A.2 Calibrating the Syntactic Distance and
Height

In Section 3.3, we explained the relation between
∆ and T, that if δi < τj , the i-th word won’t be
able to attend beyond the j-th split point. How-
ever, in a specific case, the constraint will isolate
a constituent [l, r] from the rest of the sentence.
If τl−1 and τr are larger then all height δl,...,r in
the constituent, then all words in [l, r] won’t be
able to attend on the outside of the constituent.
This phenomenon will prevent their output contex-
tual embedding from encoding the full context. To
avoid this phenomenon, we propose to calibrate
the syntactic distance T according to the syntactic
height ∆. First, we compute the maximum syntac-
tic height for each constituent:

δ[l,r] = max (δl, ..., δr) , l < r (19)

Then we compute the minimum difference be-
tween δ[l,r] and [l, r]’s left and right boundary dis-
tance. Since we only care about constituents that
the boundary distance is larger than its maximum

height, we use a ReLU activation function to keep
only the positive values:

ε[l,r] = ReLU
(
min

(
τl−1 − δ[l,r], τr − δ[l,r]

))
(20)

To make sure all constituent are not isolated and
maintain the rank of T, we subtract all T by the
maximum of ε:

δ̂i = δi − max
{[l,r]}/[1,n]

(
ε[l,r]

)
(21)

7207

A.3 Dependency Relation Weights for Self-attention Heads

(a) Dependency relation weights learnt on PTB

(b) Dependency relation weights learnt on BLLIP-SM

Figure 4: Dependency relation weights learnt on different datasets. Row i constains relation weights for all at-
tention heads in the i-th transformer layer. p represents the parent relation. d represents the dependent relation.
We observe a clearer preference for each attention head in the model trained on BLLIP-SM. This probably due to
BLLIP-SM has signficantly more training data. It’s also interesting to notice that the first layer tend to focus on
parent relations.

7208

A.4 Dependency Distribution Examples

(a)

(b)

Figure 5: Dependency distribution examples from WSJ test set. Each row is the parent distribution for the respec-
tive word. The sum of each distribution may not equal to 1. Against our intuition, the distribution is not very
sharp. This is partially due to the ambiguous nature of the dependency graph. As we previously discussed, at least
two styles of dependency rules (Conll and Stanford) exist. And without extra constraint or supervision, the model
seems trying to model both of them at the same time. One interesting future work will be finding an inductive bias
that can encourage the model to converge to a specific style of dependency graph.

7209

A.5 The Performance of StructFormer with different mask rates

Mask rate MLM Constituency Stanford Conll
PPL UF1 UAS UUAS UAS UUAS

0.1 45.3 (1.2) 51.45 (2.7) 31.4 (11.9) 51.2 (8.1) 32.3 (5.2) 52.4 (4.5)
0.2 50.4 (1.3) 54.0 (0.6) 37.4 (12.6) 55.6 (8.8) 33.0 (5.7) 53.5 (4.7)
0.3 60.9 (1.0) 54.0 (0.3) 46.2 (0.4) 61.6 (0.4) 36.2 (0.1) 56.3 (0.2)
0.4 76.9 (1.2) 53.5 (1.5) 34.0 (10.3) 52.0 (7.4) 29.5 (5.4) 50.6 (4.1)
0.5 100.3 (1.4) 53.2 (0.9) 36.3 (9.8) 53.6 (6.8) 30.6 (4.2) 51.3 (3.2)

Table 6: The performance of StructFormer on PTB dataset with different mask rates. Dependency parsing is
especially affected by the masks. Mask rate 0.3 provides the best and the most stable performance.

