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Abstract
A false contract is more likely to be re-
jected than a contract is, yet a false key is
less likely than a key to open doors. While
correctly interpreting and assessing the ef-
fects of such adjective-noun pairs (e.g., false
key) on the plausibility of given events (e.g.,
opening doors) underpins many natural lan-
guage understanding tasks, doing so often re-
quires a significant degree of world knowl-
edge and common-sense reasoning. We intro-
duce ADEPT – a large-scale semantic plausi-
bility task consisting of over 16 thousand sen-
tences that are paired with slightly modified
versions obtained by adding an adjective to a
noun. Overall, we find that while the task ap-
pears easier for human judges (85% accuracy),
it proves more difficult for transformer-based
models like RoBERTa (71% accuracy). Our
experiments also show that neither the adjec-
tive itself nor its taxonomic class suffice in de-
termining the correct plausibility judgement,
emphasizing the importance of endowing auto-
matic natural language understanding systems
with more context sensitivity and common-
sense reasoning.

1 Introduction

Discerning the varying effects of adjectival mod-
ifiers on the reading of a sentence is critical in a
variety of tasks involving natural language under-
standing. Consider the following examples:

(1) a. A [dead] monkey turns on a light switch.
b. A [dead] leg has one foot.
c. A [dead] leaf falls from a tree in autumn.

The reading of these sentences with and without
the modifier dead is notably different. The plausi-
bility judgement of the event where a monkey turns
on a light switch decreases when the adjectival
modifier dead is added, while in the 1b or 1c exam-
ples, adding the same modifier leads to no change
or an increase in event plausibility, respectively.

This observation has important ramifications for
many NLP applications like information extrac-
tion (IE) and recognizing textual entailment (RTE),
where solutions have often relied on normative
rules that group the effects of adjectives according
to either the adjective or its taxonomic class (Mc-
Nally and Boleda, 2004; Amoia and Gardent, 2007;
McCrae et al., 2014). These taxonomies distinguish
adjectives like false, dead, alleged (non-subsective)
from others like red, large, or valid (subsective).

Specifically, while the 1a example may influ-
ence systems to adopt the rule that adding a non-
subsective adjective like dead to a noun leads to a
decrease in plausibility, the other examples suggest
a conflicting rule. Distinguishing the effects of dif-
ferent adjectives (beyond just their denotation) may
thus require common-sense and world knowledge.

Powerful, massively pre-trained language mod-
els (LMs) have pushed the performance on vari-
ous natural language understanding benchmarks
to impressive figures; transformer architectures in-
cluding BERT and RoBERTa are believed to per-
form at near human-level performance on a num-
ber of Natural Language Inference (NLI) tasks (Liu
et al., 2019), while the recently proposed DeBERTa,
which builds upon the former two architectures,
performs at state-of-the-art on MNLI, RTE, QNLI
and WNLI (He et al., 2020). It is however un-
clear whether the complex effects of the classes
of modifiers exampled above are captured by the
competing models given their sparsity in both the
corpora and existing NLI benchmarks.

To examine the ability of LMs to capture and
distinguish the effects of adjectives on events plau-
sibility, we present a challenge task formulated as
a plausibility classification problem consisting of
sentence pairs with and without inserting possible
adjectives. We do so to understand the strengths
and weaknesses of LMs that have led to state-of-
the-art performance in downstream NLI-tasks. Ta-
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ADEPT instance Inserted Modifier
(Taxonomic Class)

Plausibility Change

(1a): A [false] key opens doors. False (NS) Less Likely
(1b): A [false] statement is a lie. False (NS) Necessarily True
(1c): A [false] alarm causes danger. False (NS) More Likely

(2a) An [outstanding] year is made up of 365 days. Outstanding (S) Equally Likely
(2b) An [outstanding] coach pushes his players. Outstanding (S) More Likely
(2c) An [outstanding] professor waits for tenure. Outstanding (S) Less Likely

(3a) A [dead] monkey turns on a light switch. Dead (NS) Impossible
(3b) A [dead] leg has one foot. Dead (NS) Equally Likely
(3c) A [dead] leaf falls from a tree in autumn. Dead (NS) More Likely

(4a) An [old] graveyard is for settings for horror movies. Old (S) More Likely
(4b) An [old] parrot lays and egg. Old (S) Less Likely
(4c) An [old] nun prays. Old (S) Equally Likely

Table 1: Examples of ADEPT instances, revealing the diverse effects on plausibility change due to different adjec-
tival modifiers. The plausibility change depends more on the context of the sentence, and less on the modifier or
its taxonomic class.

ble 1 illustrates the task with several examples. Our
contributions are three-fold:

We introduce a novel plausibility task: Using
automated mechanisms to extract, filter and con-
struct natural sentences, we create ADEPT—a large
human-labeled semantic plausibility task consist-
ing of 16 thousand pairs of sentences that differ
only by one adjective added to a noun, and designed
to resist the statistical correlations that might un-
derpin modern distributional lexical semantics.1

We show that transformer-based models are
not yet adept at ADEPT: Our findings suggest
performance gaps between humans and large lan-
guage representation models on ADEPT, which ap-
pears to be in large part due to the models’ insen-
sitivity to context, indicating an important area for
their improvement.

We show that the effect of adjectival modifiers
on event plausibility is context dependent: We
quantify the degree to which plausibility judge-
ments vary for the same adjective and taxonomic
class, finding that rules based only on the adjective
or its denotation are insufficient when assessing the
plausibility readings of events. For example, in our
task, the non-subsective adjective like dead led to
a decrease in events plausibility as frequently as it
led to no change at all.

Building on prior work showing that norma-
tive rules are often broken for subsective adjec-
tives (Pavlick and Callison-Burch, 2016), we inves-

1The corpus and the code to reproduce all
of our experimental results are available at
https://github.com/aemami1/ADEPT.

tigate possible effects across all types of adjectives,
beyond just the taxonomical categories. The scope
of our analysis also goes beyond entailment effects,
examining the effects on plausibility, which can be
seen as both complimentary and even an extension
to entailment tasks.

2 Background and Related Work

Taxonomy of adjectives: The taxonomic clas-
sification of adjectives into subsective and non-
subsective categories originates from the works of
Parsons (1970), Montague (1970), Clark (1970) &
Kamp and Keenan (1975). Canonically, subsective
adjectives modify a noun such that the extension
of the adjective-noun pair is a subset of the exten-
sion of the noun alone (e.g., a blue fish is still a
fish and a loose tooth is still a tooth). In contrast,
non-subsective adjectives modify a noun such that
the extension of the adjective-noun pair is not a
subset of the noun’s extension (e.g., a former presi-
dent is not a president or an alleged criminal is not
necessarily a criminal). Kamp and Partee (1995)
further divided non-subsective adjectives in two
categories: privative and plain. While when com-
bined with nouns privative adjectives produce a
disjoint set of entities from the original noun (e.g.,
former president does not fall under the class of
presidents, making former a privative adjective),
plain non-subsective adjectives do not guarantee
this mutual exclusiveness (e.g., an alleged criminal
may or may not be a criminal).

This classification scheme has been adopted
for many NLP applications including IE and
RTE (Amoia and Gardent, 2006, 2007; McCrae
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et al., 2014). For RTE, inference rules were de-
veloped according to whether the adjective was
non-subsective or not. For IE, non-subsective ad-
jectives were treated as special cases for extracting
open IE relations (Angeli et al., 2015). We show
that there is also a relation between an adjective
and the plausibility of the rest of the clause, even
for subsective adjectives. This has direct implica-
tions for the extraction of generalizable abstract
knowledge that can be extracted from a corpus.

Aspects of this classification scheme have since
been challenged, resulting in efforts to either ex-
pand on its definitions or abandon the taxonomy
altogether. Del Pinal (2015) suggests that the mean-
ing of certain nouns are only partially modified by
non-subsective adjectives (e.g., only the functional
features are modified), while Nayak et al. (2014)
tackle the categorization problem with a statistical
approach focused on the proportion of properties
shared by the noun and the adjective noun pair.
Even more recently, inference rules relying on the
original taxonomy were observed not to be with-
out exceptions; Pavlick and Callison-Burch (2016)
used human annotators to highlight cases where the
deletion of non-subsective adjectives from a sen-
tence does not necessarily result in non-entailment.

These on-going examinations and revisions un-
derpin a profound linguistic phenomenon of mutual
dependence: while adjectives play a crucial role
in the correct interpretation of a sentence context,
the context words are just as instrumental in de-
termining the effect of an adjective; resulting in a
number of exceptions to taxonomically-based rules.
Inspired by this, our work explores the broader
question of how dependent the effect of any ad-
jective (beyond their taxonomical class) is on the
interpretation of a sentence. For this, we frame our
exploration in terms of changes in the plausibility
of events, which we believe it can be seen as an
extension to entailment.

Recognizing Textual Entailment & Semantic
Plausibility: The RTE Challenges were yearly
sources of textual inference examples (Dagan et al.,
2006) consisting of a three-way classification task
with the inputs as sentence pairs {T , H} with
labels for entailment, contradiction or unknown
(meaning T neither contradicts nor entailsH). Vari-
ations of this task are also described in SNLI (Bow-
man et al., 2015) and MNLI (Williams et al., 2018).

The Johns Hopkins Ordinal Commonsense Infer-
ence (JOCI) task generalizes RTE to the problem of

determining relative change in semantic plausibility
on an ordinal 5-level Likert scale (from impossible
to very likely) (Zhang et al., 2017). Other seman-
tic plausibility datasets have collected judgments
for the plausibility of single events (Wang et al.,
2018b) and the plausibility of adjectives modify-
ing a meronym (Mullenbach et al., 2019). Such
plausibility tasks have often been solved using ei-
ther data-driven methods (Huang and Luo, 2017;
Sasaki et al., 2017) or pre-trained LMs (Radford
et al., 2019).

Prior work has also collected human assessments
of the plausibility of adjective-noun pairs (Lapata
et al., 1999; Keller and Lapata, 2003; Zhang et al.,
2019); however, this line of work specifically fo-
cuses on the plausibility of bi-grams without con-
text, known as selectional preference.

3 The Task: ADEPT

We develop ADEPT, a semantic plausibility task
that features over 16 thousand instances consisting
of two sentences, where the second sentence differs
from the first only by the inclusion of an adjectival
modifier. Examples of these instances are in Table
1, where the inserted modifier is bracketed.

Formally, given the original sentence s and the
modified sentence s′, s′ is identical to s except for
the addition of an adjective a before the root noun
of the original sentence. The task is to assess the
plausibility difference in the reading of s′ versus
that of s. The possible plausibility ratings are:

1. Impossible — s′ is improbable or illogical.
2. Less likely — s′ is less likely than s.
3. Equally likely — s′ is as plausible as s is.
4. More likely — s′ is more likely than s.
5. Necessarily true — s′ is true by necessity,

including repetitive use of phrases or words
that have similar meanings.

4 Dataset

To construct ADEPT, we scrape text samples from
English Wikipedia and Common Crawl, extracting
adjectival modifier-noun pairs that occur with high
frequency. We then curated these pairs through a
multi-stage pipeline to filter out extraction errors,
typos, and inappropriate words, as well as over-
sample non-subsective adjectives which tend to be
in the long-tail of a given corpora. We then use
existing knowledge bases to find relevant predi-
cates for the noun in the adjective-noun pair and
compose natural sentences based on them. To an-



7120

Noun-amod
Extraction:

Clean up raw text,
and use syntactic
parsing to extract
noun-adjectival
modifier pairs.

Noun Filtering:
Create entries corresponding

to unique nouns and
adjectival modifiers,

keeping only items that
correspond to valid and

appropriate English words.

Predicate
Extraction + Filtering:
Using ConceptNet, we

extract predicates for nouns
under predefined relations,
creating {noun, adjective-
list, predicate-list} triples
as entries and filtering out

entries with explicit or
ungrammatical predicates.

Sentence Construction:
After applying more

filtering on the surface texts
and predicates (to remove
explicit or ungrammatical
predicates), we generate

natural sentences and four
corresponding variants

by injecting the extracted
adjectival modifiers.

Label
Generation +

Quality Control:
Human annotators

label the data,
using annotator-
quality control

tests as exclusion
criteria for

dataset instances.
>170 million pairs >50k entries

>7k entries >15k labelled
instances

>20k entries

Figure 1: The overview of the data collection process for ADEPT.

notate the data, we provide human annotators with
labelling instructions, while implementing qual-
ity control measures as exclusion criteria for final
dataset instances.

4.1 Data Collection
We now detail the steps of our data collection pro-
cess (see Figure 1 for an overview). Tables 2 and 3
provide examples of how each step contributes to
the creation of an ADEPT instance.

Noun-amod extraction: In order to extract ad-
jectival modifier and noun pairs, we use two
dependency-parsed corpora: English Wikipedia,
which we parse using the Stanza pipeline (Qi et al.,
2020), and a subset of DepCC (Panchenko et al.,
2018), an automatic parse of the Common Crawl
corpus. After a preliminary examination of the
modifier-noun pairs’ quality, we kept only those
pairs that occur at least 10 times in their respective
corpus. This filtered out many pairs that appeared
anomalous or atypical (e.g., unwieldy potato). We
extracted 10 million pairs from English Wikipedia
and 70 million pairs from Common Crawl.

Noun filtering: Using these pairs, we cre-
ated dictionary items consisting of nouns—that
co-occur with at least four different adjectival
modifiers—along with their adjectival modifiers.
This threshhold (as opposed to a higher one) allows
us to both still find rare non-subsective adjectives
to oversample at later steps, and avoid excessively
reducing the number of extracted pairs.2 We then
filter out adjectives and nouns that e.g., are explicit,
have offensive connotations using preset lists and
automatic moderation tools (e.g., profanity-filter
(Roman Inflianskas, 2020)). Finally, we ensured
that both the nouns and adjectives are valid En-

2Preliminary analyses showed that non-subsective adjec-
tives represent less than 5% of our entries.

glish words. This yielded slightly over 50 thousand
noun-adjective dictionary items.

Predicate extraction: For the noun in each dic-
tionary item, we use ConceptNet 5 (Liu and Singh,
2004) to find predicates under the relationships of
IsCapableOf, HasProperty, ReceivesAction, HasA,
and UsedFor. We restricted the predicates to these
as they best characterize the functional features
of a noun, which earlier studies found to be most
sensitive to change according to the attaching mod-
ifier (Del Pinal, 2015). We also store the surface
text—the sentence the ConceptNet annotator wrote
to examplify a use of the predicate with the noun
(e.g., for the noun “book,” under the ConceptNet
relation IsCapableOf, the predicate include a table
of contents is found with the surface text: A book
can include a table of contents).

Predicate Filtering + Scaling: After applying
additional filtering to the surface texts and predi-
cates (to remove explicit or ungrammatical pred-
icates), we create triples containing a noun, a set
of adjectival modifiers, and the predicates. This
yielded over 7,000 triples. Given that an entry may
contain more than one retrieved predicate for its
noun, we scaled the dictionary to allow for dupli-
cate nouns with different predicates (up to three
predicates).3 This yielded over 20,000 entries.

Sentence construction: For each of these
adjective-noun-predicate entries, we generate natu-
ral sentences and four corresponding variants. The
original sentence (s in Section 3) is composed only
from the noun and the predicate, while the four
variants (s′ in Section 3) are modified versions of
the original sentence created by adding the adjec-
tive before the root noun in the original sentence

3Threshold selected to correspond to the average number
of different predicates extracted for each noun, and avoid scale
the dictionary excessively at the cost of dataset diversity.
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Noun-amod Extraction: Amod: victorious Amod: third Amod: qualified Amod: false
Noun: candidate Noun: candidate Noun: candidate Noun: candidate
Count: 181 Count: 222 Count: 250 Count: 130

Predicate Extraction: Noun: candidate
Predicate: win an election (Relation: IsCapableOf)
Surface Text: [[A candidate]] can [[win an election]]

Sentence Construction: Original Sentence: A candidate wins an election.
Variant 1: A [victorious] candidate wins an election.
Variant 2: A [third] candidate wins an election.
Variant 3: A [qualified] candidate wins an election.
Variant 4: A [false] candidate wins an election.

Label Generation: Original Sentence: A candidate wins an election.
Modified Sentence: A [victorious] candidate wins an election. Label: Necessarily true

Table 2: Examples of how ADEPT instances are created through the pipeline.

Prompt: Compared with the original statement (”A clock is working correctly.”) please assess the
plausibility of the following modified version: ”A broken clock is working correctly.”

Plausibility change: 3 Impossible 7 Less Likely 7 Equally Likely 7 More Likely 7 Necessarily True

Prompt: Compared with the original statement (”A candidate wins the election.”) please assess the
plausibility of the following modified version: ”A third candidate wins the election.”

Plausibility change: 7 Impossible 7 Less Likely 3 Equally Likely 7 More Likely 7 Necessarily True

Prompt: Compared with the original statement (”A mistake angers a person.”) please assess the
plausibility of the following modified version: ”A fatal mistake angers a person.”

Plausibility change: 7 Impossible 7 Less Likely 7 Equally Likely 3 More Likely 7 Necessarily True

Table 3: Examples of how ADEPT instances are labelled in the crowdsourcing interface.

(see Table 2 for examples). To create the natural
sentences themselves, we modify the surface text
by replacing modal verbs (like can or may) with
the declarative is, as modal verbs may complicate
the evaluation of what the plausibility of described
events might be.

Adjective Sampling: To identify non-subsective
adjectives in the dataset entries, we use a set of 60
non-subsective adjectives identified by Nayak et al.
(2014). Then, to select four adjectives we first 1)
randomly select up to two non-subsective modi-
fiers if they co-occured with the noun, and then 2)
we randomly select the remaining adjectives from
the list of subsective modifiers. We over-sample
non-subsective modifiers as they occur sparsely in
the corpora and we want to evaluate their effects
against other modifiers. This random sampling
strategy results in an about 1:4 non-subsective to
subsective adjective ratio (as some entries have no
non-subsective adjectives), allowing us to analyze
the effect of non-subsective modifiers while main-
taining an element of randomness.

Label Generation + Quality Control: For each
entry, annotators (from Mechanical Turk) label one

randomly selected sentence variant (from the four
variants) against its original sentence, with labels
indicating the change in plausibility due to adding
the selected adjective (Table 3). For quality control,
we also add roughly 2,000 quality-check entries—
including gold label instances for which there was
unanimous agreement among four annotators in
earlier pilots and “attention-check” instances that
explicitly ask annotators to select a specific label.
We filter out all instances annotated by annotators
who failed the attention checks or whose labels dif-
fered by at least two degrees from the gold labels
(e.g., selected equally likely when the gold label
was impossible) on more than 10% of their anno-
tations. We also limit the maximum number of
labelling tasks per annotator to 100 (corresponding
to less than 0.5% of the data) to ensure that no one
judge significantly affects the quality of the data.
Finally, we only keep those instances for which
we observe a majority agreement (i.e., at least two
annotators agree about the final label). After this
final quality-control filtering steps, the final dataset
includes 16,115 instances.
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Agreement Impossible Less Likely Eq. Likely More Likely Nec. True

Unanimous (5267) 0.21 0.16 0.40 0.15 0.09
Majority (10848) 0.79 0.84 0.60 0.85 0.91
No Agreement (3209) – – – – –

Label Distribution 0.14 0.12 0.67 0.07 0.01

Dataset Split (16115) Train Set: 12892 Val Set: 1611 Test Set: 1612

Table 4: Dataset statistics in terms of agreement, label, and size distributions. The stats for Unanimous & Majority
represent their prevalence among the pairs for which we observed a majority agreement (and sum up to 1).

4.2 Dataset Quality Assessment
Table 4 overviews the dataset figures, highlighting
the labels’ distribution and agreement. By inspect-
ing how often judges agree across our plausibility
labels, we observe higher assessment variability
for instances with labels further from equally likely
(also the most commonly applied label). This is
particularly true for instances with labels at the
extremes of our plausibility scale (i.e., the impos-
sible and necessarily true labels). While 40% of
the dataset instances marked as equally likely have
unanimous annotator agreement, this is the case for
only 21% of the instances marked as impossible.
We found no agreement across the 5 plausibility la-
bels (§3) for about 15% of the annotated instances,
which we do not include in the final dataset.

While how much judges agree on labels varies
across plausibility levels, the directionality of the
assigned labels is more stable—i.e., many disagree-
ments are due to judges making different but con-
sistent assessments like more likely and necessarily
true, rather than conflicting assessments like less
and more likely. Because of this, we also exper-
iment with alternative 3-Class and 4-Class task
formulations (§5.3), where the impossible and nec-
essarily true labels are either combined with other
labels or are discarded.

Task Ambiguity Closely inspecting instances
marked as impossible and necessarily true to un-
derstand possible sources of disagreement among
judges, we find that only about a quarter (for im-
possible) to a third (for necessarily true) of these
instances appear to be clear cases where both 1)
adding the adjective led to a change in plausibility
and 2) the change in plausibility made the event
impossible or necessarily true.

Sometimes the described events are already im-
possible or necessarily true (e.g., average in “an
[average] week is made up of seven days” does
not change the plausibility of this statement, which

was already necessarily true). In other cases, the
added modifier changes the semantic interpretation
of the event (e.g., the modifier algebraic makes
the event “an [algebraic] operator pages a doctor”
impossible because it alters the sense of the term
operator), or it introduces grammatical or logical
errors (e.g., “[former] sleeping is for maintaining
sanity” was likely marked as impossible for being
illogical). There are also clear cases of false posi-
tives, where the resulting events are not impossible
or necessarily true (e.g., “[romantic] Jasmine buys
her dress at the store” is not impossible).

These issues were particularly prevalent among
instances annotated as impossible, where about half
of the instances appear to be false positives, un-
grammatical, or nonsensical sentences. We there-
fore also experiment with a 4-Class formulation
that does not include the impossible label (§5.3).

Task Reliability Given the subjective and am-
biguous nature of our task, we also sought to char-
acterize to what extent the overall reliability of
our labels might be affected by it. For this, two
authors independently labelled 100 randomly sam-
pled instances from ADEPT, using the same anno-
tation specifications provided to the crowdsourc-
ing judges. We then measured the inter-assessor
agreement between the two authors Cohen’s Kappa
κ = 0.82, which indicates substantial agreement.

We then take the instances where both authors
agreed (87%) and compare their labels with those
provided by the crowd-workers, obtaining a κ =
0.74 that while lower is still substantial. Finally, the
individual agreement of each of the authors’ labels
with crowdsourcing judges (which includes cases
where authors disagree) corresponded to κ = 0.77
and κ = 0.64, further demonstrating the overall
reliability of the labels we collected.
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Model 3-Class Dev.
Accuracy

5-Class Dev.
Accuracy

Majority Prediction 66.4 66.4
Normative Rule 70.1 63.6
Human 90.04 85.04

Human (no context) 75.04 71.04

BERT (no context) 72.0 69.4
RoBERTa (no context) 72.4 69.1
DeBERTa (no context) 72.1 68.6

BERT 72.3 69.8
RoBERTa 73.1 70.8
DeBERTa 73.9 69.7

Table 5: Performance of various models on the ADEPT
development set.

5 Methods

5.1 Neural Models
We evaluate several transformer-based models on
ADEPT. For fine-tuning, we adopt the standard
practice for sentence-pair tasks described by Devlin
et al. (2015). We concatenate the first and second
sentence with [SEP], prepend the sequence with
[CLS], and feed the input to the transformer model.
The representation for [CLS] is fed into a softmax
layer for a five-way classification.

BERT (Devlin et al., 2015) is one of the first
transformer-based architectures, featuring a pre-
trained neural language model with bidirectional
paths and sentence representations in consecutive
hidden layers.

RoBERTa (Liu et al., 2019) is an improved vari-
ant of BERT that adds more training data with
larger batch sizes and longer training, as well as
other refinements like dynamic masking. RoBERTa
performs consistently better than BERT across
many benchmarks (Wang et al., 2018a).

DeBERTa builds on RoBERTa with disentan-
gled attention and enhanced mask decoder training
with half the data used in RoBERTa; currently the
best-performing transformer-based model on sev-
eral NLI-related tasks (He et al., 2020).

5.2 Baseline Models
Majority Prediction This heuristic always pre-
dicts the equally likely label, which represents 67%
of the full dataset.

Normative Rule This heuristic corresponds to
the normative treatment of non-subsective modi-
fiers according to the taxonomy described in Sec-

tion 2, where the general expectation is that the in-
sertion of a non-subsective adjective would reduce
the plausibility of the modified sentence. Thus,
when the inserted adjective in s′ is among the list
of non-subsective modifiers, this baseline predicts
less likely, otherwise it predicts the majority label,
which is equally likely.

No Context Baseline We run a word associa-
tion baseline to evaluate to what extent context
is needed to solve the dataset. In this baseline, the
transformer model is provided only the noun from
s′ as the representation for the original sentence,
and the modifier a as the representation for the the
modified sentence s separated by [SEP] (e.g., for
sentence 1a in the introduction, this corresponds to
the input: monkey [SEP] dead). This is analogous
to the hypothesis-only baseline in NLI (Belinkov
et al., 2019), where the task does not require the
full context to achieve high performance.

Human Evaluation To estimate human perfor-
mance on our task, a new annotator (not an author)
independently assessed a random sample of 100
validation instances from ADEPT. The annotator
then evaluated each sentence using the same in-
structions provided to the crowdsourcing judges,
whose majority agreement determined the final la-
bel. The human performance thus corresponds to
the percentage of instances for which the new anno-
tator’s labels agree with the ADEPT labels. We also
estimate human performance under a no context
setting, where we presented this same annotator
(who was now well-acquainted with the task) with
a new random sample with only the noun and the
modifier. The annotator then made their best guess
as to what the plausibility difference was without
knowing the context. We ensured the new instances
were distinct from those in the first random sample.

5.3 Experiments
We primarily test the baselines and transformer
models using two metrics. The first metric corre-
sponds to the prediction accuracy on the full five-
label classification task (5-Class Accuracy). As
an alternative metric—drawing from our observa-
tions in Section 4.2—we use the accuracy on a
three-label classification task (3-Class Accuracy),
where we bundle impossible and less likely into a
single label representing a decrease in plausibility,
and necessarily true and more likely into a label
representing an increase in plausibility.
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Figure 2: Confusion matrix for the best model on the
5-class setting (RoBERTa), ADEPT development set.
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Figure 3: Confusion matrix for the best model on the
3-class setting (DeBERTa), ADEPT development set.

5.4 Training
All models are implemented and trained using Hug-
gingFace’s Transformers library (Wolf et al., 2020).
We use grid-search for hyper-parameter tuning:
learning rate {1e-5, 3e-5, 5e-5}, number of epochs
{3, 4, 5, 8}, batch-size {8, 16, 32} with three dif-
ferent random seeds. For fine-tuning, we allow for
the fine-tuning of all parameters including those in
the model’s hidden layers.3

6 Results

Easy for Humans, Difficult for Transformers:
Model prediction accuracy is summarized in Ta-
ble 5, where the general trend is as follows: the
transformer-based models have a higher prediction
accuracy than the majority prediction and norma-
tive rule baselines, but still fall short of human
performance by a large margin.

Of the transformer models, the highest 3-class
accuracy is achieved by DeBERTa and the highest
5-class accuracy by RoBERTa; however, the differ-
ence in accuracy of all transformer models is small
(and not statistically significant p-value > 0.05),

3We also evaluated models where we froze the parameters
of all the hidden layers as a probing mechanism, but found
that no model performed better than the majority baseline.

4This is an estimate based on a subsample of the data.
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Figure 4: Label distribution of ADEPT according to tax-
onomic class of modifier.

being within a 1.6% range.
In the no-context ablations where models only

see the noun phrase and modifier, the transformer
models performance decreases only slightly, which
suggests the models might be “insensitive” to con-
text. In contrast, approximated human performance
decreases significantly in the no-context setting,
dropping e.g., from 90% to 75% accuracy for 3-
class predictions. This no-context human accuracy,
however, is still superior to the best performing
transformer model with context.

To understand what errors the models make, we
examine the confusion matrices for the best per-
forming models on both the 3-class (Figure 2) and
5-class formulations (Figure 3). The most common
errors appear to happen when a change in plausibil-
ity is erroneously classified as equally likely, and
when a modifier that does not change an event’s
plausibility is erroneously predicted to render the
new sentence as less likely. Table 6 includes exam-
ple sentences along with 5-Class predictions by the
best performing transformer model.

The Taxonomic Classes Just Don’t Cut it: Fig-
ure 4 shows the distribution of plausibility labels
in ADEPT for both subsective and non-subsective
modifiers. We see that both classes of modifiers
lead to a wide mix of changes in the plausibility of
given events, corroborating Pavlick and Callison-
Burch (2016)’s findings that normative rules cannot
categorically describe a modifier’s behavior. This
likely also explains the poor performance of the
normative rule baseline on both the 5- or 3-class
plausibility classification task formulations.

Ambiguity Makes Operationalizing Plausibility
Difficult: Some of our plausibility labels prove
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ADEPT instance Annotated Change RoBERTa Prediction Correct?

A [professional] mathematician proves a theorem. More Likely More Likely 3
[Questionable] evidence proves innocence. Less Likely Less Likely 3
A [western] kitchen is for storing food. Equally Likely Equally Likely 3
[Yellow] bananas are yellow. Necessarily True Equally Likely 7
You use a [strong] jack to lift your car. More Likely Equally Likely 7
A [dead] leg has one foot. Equally Likely Impossible 7

Table 6: Representative examples from the development set and corresponding model predictions.

ambiguous and harder to reliably assign to our
dataset instances, particularly at the extremes of
our plausibility scale (§4.2). Given that for the
impossible label many instances did not appear
to correctly capture changes in plausibility that
render the modified event impossible, we conduct
exploratory experiments with a 4-Class task formu-
lation that excludes the impossible class. For the
best performing model (RoBERTa), we observe an
overall improved accuracy from 70.8% to 81.2%
(compared to the 5-Class classification task).

Better plausibility classification schemes and
crowdsourcing protocols might help us more ef-
fectively operationalize plausibility changes. How-
ever, how to effectively separate between 1) cases
where the modifiers alter the semantic interpreta-
tion of a statement (and thus lead to a different
event) or make the sentences ungrammatical versus
2) cases where modifiers actually lead to changes
in the plausibility of the original event, remains an
open question.

7 Conclusions

We present a new large-scale corpus and task,
ADEPT, for assessing semantic plausibility. Our
corpus contains over 16 thousand difficult task
instances, specifically constructed to test a sys-
tem’s ability to correctly interpret and reason about
adjective-noun pairs within a given context. Our
experiments suggest a persistent performance gap
between human annotators and large language rep-
resentation models, with the later exhibiting a lower
sensitivity to context. Finally, our task provides
deeper insight into the effects of various classes of
adjectives on event plausibility, and suggests that
rules based solely on the adjective or its denotation
do not suffice in determining the correct plausibility
readings of events.

In the future, we wish to investigate how ADEPT

could be used to improve performance on related
natural language inference tasks (e.g. MNLI, SNLI
& SciTail (Khot et al., 2017)). We also plan to

develop new models on ADEPT and transfer them
to other semantic plausibility tasks.
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Ethical Considerations

While our focus on examining what effects adjec-
tives have on the plausibility of arbitrary events
makes ascertaining the broader impact of our work
challenging, this work is not void of possible ad-
verse social impacts or unintended consequences.

First, to generate our dataset of events, we use
English Wikipedia, Common Crawl, and Concept-
Net5 (based on data from e.g., Games with a Pur-
pose or DBPedia). Such data sources are how-
ever known to exhibit a range of biases (Olteanu
et al., 2019; Baeza-Yates, 2018)—which LMs re-
produce (Solaiman et al., 2019)—being often un-
clear what and whose content they represent. While
our goal is to enable others to explore the effects of
modifiers and how these effect might impact var-
ious inference tasks, users of this dataset should
acknowledge possible biases and should not use it
to make deployment decisions or rule out failures.
To this end, our dataset release will be accompanied
by a datasheet (Gebru et al., 2018).

Depending on the context, determining changes
in plausibility can also be ambiguous or even sub-
jective (see §4.2). This means that in some down-
stream applications, possible plausibility inference
errors might, for instance, inadvertently elevate fac-
tually incorrect, subjective or misleading beliefs.
If those inference errors happen more when events
concern certain groups or activities, they might
have disparate effects across stakeholders. Thus,
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understanding the potential impact of our plausibil-
ity inference task requires us to think about both
downstream applications and possible stakehold-
ers (Boyarskaya et al., 2020). For instance, one
application of plausibility inferences is perhaps ve-
racity or credibility assessment. It would be prob-
lematic if a system would reproduce highly harmful
stereotypes by inferring that a black witness is less
likely to be trustworthy than just a witness, or that
an old applicant is less likely to be a productive em-
ployee than just an applicant. Another application
(we also used as a motivating example) is infor-
mation extraction where perhaps such plausibility
inferences could be used to infer which details to
keep during extraction. Errors might for instance
harmfully reinforce the belief that the prototypical
human is male (Menegatti and Rubini, 2017), if
female is deemed as more likely to change the plau-
sibility of events about e.g., doctors, scientists, or
other professionals; and thus deemed a relevant (or
not) detail to surface based on it.
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