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Abstract

Most words are ambiguous—they convey dis-
tinct meanings in different contexts—and even
the meanings of unambiguous words are
context-dependent. Both phenomena present a
challenge for NLP. Recently, the advent of con-
textualized word embeddings has led to suc-
cess on tasks involving lexical ambiguity, such
as Word Sense Disambiguation. However,
there are few tasks that directly evaluate how
well these embeddings accommodate the con-
tinuous, dynamic nature of word meaning—
particularly in a way that matches human in-
tuitions. We introduce RAW-C, a dataset
of graded, human relatedness judgments for
112 ambiguous words in context (with 672
sentence pairs total), as well as human es-
timates of sense dominance. The average
inter-annotator agreement for the relatedness
norms (assessed using a leave-one-annotator-
out method) was 0.79. We then show that a
measure of cosine distance, computed using
contextualized embeddings from BERT and
ELMo, correlates with human judgments, but
that cosine distance also systematically under-
estimates how similar humans find uses of the
same sense of a word to be, and systematically
overestimates how similar humans find uses of
different-sense homonyms. Finally, we pro-
pose a synthesis between psycholinguistic the-
ories of the mental lexicon and computational
models of lexical semantics.

1 Introduction

Words mean different things in different contexts.
Sometimes these meanings appear to be distinct, a
phenomenon known as lexical ambiguity. In En-
glish, approximately 7% of wordforms are homony-
mous, i.e., they have multiple, unrelated meanings1

(e.g., “tree bark” vs. “dog bark”), and as many

1Dautriche (2015) estimates the average rate of homonymy
across languages to be 4%.

as 84% of wordforms are polysemous, i.e., they
have multiple, related meanings (e.g., “pet chicken”
vs. “roast chicken”) (Rodd et al., 2004). But even
unambiguous words evoke subtly different inter-
pretations depending on the context of use, i.e.,
their meanings are dynamic and context-dependent
(Yee and Thompson-Schill, 2016; Li and Joanisse,
2021). While the uses of runs in “the boy runs” vs.
“the cheetah runs” may not be considered distinct
meanings, a human comprehender will likely ac-
tivate a different mental image when processing
each sentence (Elman, 2009).

These facts present a challenge for computa-
tional models of lexical semantics. Any down-
stream task that involves meaning requires models
capable of disambiguating among the multiple pos-
sible meanings of an ambiguous word in a given
context. Further, the graded nature of human se-
mantic representations can influence how compre-
henders construe events and participants in those
events (Elman, 2009; Li and Joanisse, 2021). In
turn, a number of Natural Language Processing
(NLP) tasks could benefit from context-sensitive
representations that go beyond discrete sense rep-
resentations and capture the manner in which hu-
mans construe events—including sentiment analy-
sis, bias detection, machine translation, and more
(Trott et al., 2020). If an eventual goal of NLP is
human-like language understanding, models must
be equipped with semantic representations that
are flexible enough to accommodate the dynamic,
context-dependent nature of word meaning—as hu-
mans appear to do (Elman, 2009; Li and Joanisse,
2021).

Yet a crucial prerequisite to developing better
models is evaluating those models along the rel-
evant dimensions of performance. Thus, at the
minimum, we need metrics that evaluate a model
along two critical dimensions:
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1. Disambiguation: A model’s ability to distin-
guish between distinct meanings of a word.

2. Contextual Gradation: A model’s ability to
modulate a given meaning in context, in ways
that reflect the continuous nature of human
judgments.

A promising development in recent years is the
rise of contextualized word embeddings, produced
using neural language models such as BERT (De-
vlin et al., 2018), ELMo (Peters et al., 2018), XL-
Net (Yang et al., 2019), and more. Advances in
these models have yielded improved performance
on a number of tasks, including Word Sense Dis-
ambiguation (WSD) (Boleda et al., 2019; Loureiro
et al., 2020).

WSD satisfies the Disambiguation Criterion
above, but not the Contextual Gradation Criterion.
In fact, there is still a dearth of metrics for assessing
the degree to which contextualized representations
match human judgments about the way in which
context shapes meaning.

In Section 2, we describe several related datasets
that satisfy at least one of these criteria. In Section
3, we introduce and describe the dataset construc-
tion process for RAW-C: Relatedness of Ambigu-
ous Words—in Context.2 In Section 4, we describe
the procedure we followed for collecting human
relatedness norms for each sentence pair. In Sec-
tion 5, we report the results of several analyses that
probe how well contextualized embeddings from
two neural language models (BERT and ELMo)
predict these norms. Finally, in Section 6, we ex-
plore possible shortcomings in current models, and
propose avenues for future work.

2 Related Work

Most existing datasets fulfill either the Disam-
biguation or the Contextual Gradation criterion,
but few datasets fulfill both (see Haber and Poesio
(2020a) for an exception).

Several datasets contain human relatedness and
similarity judgments for distinct words in isolation
(see Section 2.1). Others are used for Word Sense
Disambiguation, and contain ambiguous words in
different sentence contexts, along with annotated
sense labels (see Section 2.2); as noted in the Intro-
duction, WSD fulfills the Disambiguation Criterion,
but not the Contextual Gradation Criterion. Several

2The dataset can be found on GitHub: https://
github.com/seantrott/raw-c.

recent datasets contain graded relatedness judg-
ments for words in different contexts (see Section
2.3). However, none focus specifically on graded
relatedness judgments for ambiguous words, con-
trolling both the inflection and part of speech of the
target word in question. Finally, one dataset (Haber
and Poesio, 2020a) contains similarity judgments
for polysemous words in context, but is more lim-
ited in size and does not match the sentence frame
across the two uses (see Section 2.4).

2.1 De-contextualized Word Similarity and
Relatedness

Several datasets contain human judgments of the
similarity or relatedness of (mostly English) word
pairs, in isolation (see Taieb et al. (2020) for a re-
view). This includes SimLex-999 (Hill et al., 2015),
SimVerb-3500 (Gerz et al., 2016), WordSim-353
(Finkelstein et al., 2001), MTurk-771 (Halawi et al.,
2012), MEN (Bruni et al., 2014), and more. These
datasets are primarily used for evaluating the qual-
ity of static semantic representations, including
distributed semantic models such as GloVe (Pen-
nington et al., 2014), as well as representations that
use knowledge bases like WordNet (Faruqui and
Dyer, 2015).

However, these resources are (by definition, as
decontextualized judgments) not directly amenable
to evaluating how well a model incorporates con-
text into its semantic representation of a given
word.

2.2 Word Sense Disambiguation

In Word Sense Disambiguation (WSD), a classifier
predicts the “sense” of an ambiguous word in a
given context, often using a contextualized embed-
ding. WSD relies on annotated sense labels, which
in turn requires determining whether any given
pair of word uses belong to the same or distinct
senses—i.e., whether to “lump” or “split”. There
is considerable debate about how granular word
sense inventories should be (Hanks, 2000; Brown,
2008a);3 resources range in granularity from Word-
Net (Fellbaum, 1998) to the Coarse Sense Inven-
tory, or CSI (Lacerra et al., 2020). Recent work us-
ing coarse-grained sense inventories has achieved
success rates of 85% and beyond (Lacerra et al.,

3This also raises deeper philosophical issues about exactly
what qualifies as a “sense” (Hanks, 2000; Tuggy, 1993; Geer-
aerts, 1993; Kilgarriff, 2007); answering these questions is
beyond the scope of this paper, though see Section 6 for a
brief discussion.

https://github.com/seantrott/raw-c
https://github.com/seantrott/raw-c
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2020; Loureiro et al., 2020).
In terms of the criteria listed above, WSD satis-

fies the Disambiguation Criterion, but not the Con-
textual Gradation Criterion. WSD only captures
a model’s ability to distinguish between distinct
senses; it does not assess how meaning is mod-
ulated within a given sense category, e.g., that a
human comprehender might consider the meaning
of runs in “the cheetah runs” as more similar to
“the jaguar runs” than to “the toddler runs”, or that
some uses of a sense might be more prototypical
than others.

2.3 Contextualized Word Similarity and
Relatedness

There have been several recent efforts to address
this gap in the literature:

The Stanford Contextual Word Similarity
(SCWS) dataset (Huang et al., 2012) contains sim-
ilarity judgments for 2,003 English word pairs in
a sentence context. Approximately 12% of the
pairs contain the same word (e.g., “pack his bags”
vs. “pack of zombies”), though not always in the
same part of speech; in most cases, the words com-
pared are different (e.g., “left” vs. “abandon”).
This dataset is a useful step towards contextualized
similarity judgments, but because most pairs con-
tain different words (or the same word in different
parts of speech), static word embeddings such as
Word2Vec can still perform quite well without con-
sidering the context at all (Pilehvar and Camacho-
Collados, 2018).

The Word in Context (WiC) dataset (Pilehvar
and Camacho-Collados, 2018) contains a set of
over 7,000 sentence pairs with an overlapping En-
glish word, labeled according to the use of that
word corresponds to same or different senses. As
Pilehvar and Camacho-Collados (2018) note, the
structure of the dataset requires some form of
contextualized meaning representation to perform
above a random baseline, which makes it more suit-
able for interrogating contextualized embeddings.
However, the task is a binary classification task
along the lines of WSD, making it harder to assess
the Contextual Gradation Criterion.

The CoSimLex dataset (Armendariz et al., 2020),
created with the Graded Word Similarity in Con-
text (GWSC) task, contains graded similarity judg-
ments for a number of word pairs across English
(340), Croatian (112), Slovene (111), and Finnish
(24). Each pair of words is rated in two sepa-

rate contexts, yielding 1174 scores in total. Sen-
tence contexts were extracted from each language’s
Wikipedia. Unlike WiC, the word pairs do not actu-
ally contain the same word—rather, for any given
word pair (e.g., “beach” and “seashore”), there are
at least two pairs of sentence contexts with associ-
ated similarity judgments. Thus, this dataset can be
used to assess graded differences in contextualized
meaning representations, but not directly for the
same ambiguous word.

2.4 Contextualized Similarity of Ambiguous
Words

Finally, one dataset (Haber and Poesio, 2020a,b)
contains graded similarity judgments (as well as co-
predication acceptability judgments) for a number
of polysemous words in distinct sentential contexts,
meeting both Contextual Gradation and the Dis-
ambiguation criteria.

The main limitations of this dataset are its size
(it contains examples for only 10 polysemes), as
well as the fact that the sentence frames are also
not always controlled for each polysemous word.

2.5 Summary

Most datasets reviewed above allow practitioners
to evaluate models on their ability to disambiguate
(i.e., the Disambiguation Criterion) or their abil-
ity to capture graded differences in word related-
ness (i.e., the Contextual Gradation Criterion); one
dataset (Haber and Poesio, 2020a,b) meets both
criteria.

But to our knowledge, no datasets contain graded
relatedness judgments for ambiguous words in
tightly controlled sentence contexts, with inflec-
tion and part-of-speech controlled across each use.
In Section 3 below, we describe the procedure we
followed for constructing such a dataset.

3 RAW-C: Relatedness of Ambiguous
Words, in Context

Items were adapted from stimuli used in past psy-
cholinguistic studies, which contrasted behavioral
responses to homonymous and polysemous words,
either in isolated lexical decision tasks (Klepous-
niotou and Baum, 2007) or in a disambiguating
context (Klepousniotou, 2002; Klepousniotou et al.,
2008; Brown, 2008b). We selected 115 words in
total. For each ambiguous word (e.g., “bat”), we
created four sentences: two each for two distinct
meanings of the word. We attempted to match
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the sentence frames as closely as possible, in most
cases altering only a single word4 across the four
sentences to disambiguate the intended meaning:

1a. He saw a fruit bat.
1b. He saw a furry bat.
2a. He saw a wooden bat.
2b. He saw a baseball bat.

We also labeled each word according to whether
the two distinct meanings were judged by lexicog-
raphers to be Polysemous or Homonymous. Distin-
guishing homonymy from polysemy is notoriously
challenging (Valera, 2020); common tests include
determining whether the two meanings share an et-
ymology (polysemy) or not (homonymy), or deter-
mining whether the two meanings are conceptually
related (polysemy) or not (homonymy). Both tests
can be criticized on multiple grounds (Tuggy, 1993;
Valera, 2020), and do not always point in the same
direction (e.g., etymologically related words some-
times drift apart, resulting in apparent homonymy).

For our annotation, we consulted both the on-
line Merriam-Webster Dictionary (https://www.
merriam-webster.com/) and the Oxford English
Dictionary, or OED (https://www.oed.com/),
and identified whether each dictionary listed the
two meanings in question in separate lexical en-
tries (homonymy), or as different senses under the
same lexical entry (polysemy).5 For example, both
dictionaries list the animal and meat senses of the
word “lamb” as different senses under the same lex-
ical entry, whereas they list the animal and artifact
senses of the word “bat” under different lexical
entries. There was one word (“drill”) on which
the two dictionaries did not agree; in this case, we
labeled the two meanings (“electric drill” vs. “gru-
eling drill”) as homonymy (as per the OED).

There were also three words for which neither
dictionary distinguished the two meanings (either
in terms of homonymy or polysemy). For example,
“best-selling novel” and “thick novel” refer to cul-
tural and physical artifacts, respectively, but are not
listed as distinct senses. Again, this highlights the

4There were 13 words for which at least one of the four
sentences used a different article (“a” vs. “an”), in addition to
having a different disambiguating word.

5Our primary goal with this labelling was not to defini-
tively distinguish homonymy from polysemy; as noted above,
there is no single, universal criterion for doing so, and different
criteria might be more or less relevant for different purposes.
It was simply to specify how lexicographers treat the differ-
ent words, in case that information is useful for users of the
resource.

challenge of distinguishing outright ambiguity from
context-dependence; these items were included in
the annotation study described below, but were ex-
cluded from the final set of norms, thus resulting
in 112 target words altogether.6 Each word was
used in four sentences, for a total of six sentence
pairs (see Table 1 for more details). 84 of the target
words were nouns, and 28 were verbs (note that
Part-of-Speech was always held constant within
each word).

Ambiguity Type #Words #Sentence Pairs
Homonymy 38 228
Polysemy 74 444

Table 1: Number of words (and sentence pairs) for each
type of ambiguity.

4 Human Annotation

4.1 Participants
81 participants were recruited through UC San
Diego’s undergraduate subject pool for Psychol-
ogy, Cognitive Science, and Linguistics students.
Participants received class credit for participation.
Three participants were removed for failing the
bot checks at the beginning of the study, and one
was removed for failing the catch trials embedded
in the experiment, leaving 77 participants in total
(59 Female, 16 Male, 2 Non-binary). The median
age of participants was 20 (M = 20.22, SD = 2.7),
with ages ranging from 18 to 38. 74 participants
self-reported as being native speakers of English.

4.2 Materials
We used the original set of 115 words described
in Section 3, i.e., including the three items labeled
“Unsure”. Each word had four sentences; account-
ing for order, this resulted in twelve possible sen-
tence pairs (six pairs, with two orders each) for
each word, for a total 1380 items.

6The existence of these “Unsure” items, as well as items
for which the two dictionaries disagreed on the issue of
homonymy vs. polysemy, raises the question of whether em-
pirical measurements such as relatedness judgments (or even
cosine distance) could help inform lexicographic decisions.
As a proof of concept, we trained a logistic regression classi-
fier (using leave-one-out cross-validation) to predict whether
two contexts of use belonged to the Same Sense, using Mean
Relatedness. The classifier successfully categorized 86.76%
of held-out test items as belonging to the same or different
senses. Further, for different sense items only, a trained clas-
sifier successfully categorized 79% of held-out test items as
polysemous or homonymous. While only a proof of concept,
this demonstration suggests a promising avenue for future
research.

https://www.merriam-webster.com/
https://www.merriam-webster.com/
https://www.oed.com/
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4.3 Procedure

After giving consent, participants answered two
questions designed to filter out bots (e.g., “Which
of the following is not a place to swim?”, with the
correct answer being “Chair”). They were then
given instructions, which included a description of
how the meaning of a word can change in different
contexts.

On each page of the study, participants were
shown a pair of sentences, with the target word
bolded (see Figure 1 for an example). They were
asked to indicate how related the uses of that word
were across the two sentences, with a labeled Likert
scale ranging from “totally unrelated” to “same
meaning”.

Figure 1: Example item from study.

We included two “catch” trials in the study to
identify participants who did not pay attention. In
one, the two sentences were identical, such that
the correct answer is “same meaning”; the other
featured a homonym with two different parts of
speech (rose.v and rose.n), such that the correct
answer was “totally unrelated”.

Excluding the catch trials, participants saw 115
sentence pairs total; no word was repeated twice
across trials for the same participant. The compar-
isons any given subject saw for a given word were
randomly sampled from the 12 possible sentence
pairs, and the order of trials was randomized.7

5 Analysis and Results

The analyses run below were performed on the 112
target words (i.e., excluding the “Unsure” items).

7Based on the suggestion of an anonymous reviewer, we
also ran a follow-up norming study to collect estimates of
sense frequency bias (sometimes called dominance); sense
dominance is known to play an important role in the process-
ing of ambiguous words (Klepousniotou and Baum, 2007;
Rayner et al., 1994; Binder and Rayner, 1998; Leinenger and
Rayner, 2013). These dominance norms are included in the
final dataset.

Human annotations were assigned to a scale from
0 (“totally unrelated”) to 4 (“same meaning”).

5.1 Analysis of Sentence Pairs
Before analyzing the responses of human annota-
tors, we first sought to characterize how well two
neural language models captured the categorical
structure in the dataset—i.e., whether their con-
textualized representations could be used to distin-
guish same-sense from different-sense uses of the
same word, as well as words labelled as different-
sense Homonyms from different-sense Polysemes.

We ran every sentence through two language
models: ELMo, using the Python AllenNLP pack-
age (Gardner et al., 2017), and BERT, using the
bert-embedding package.8 Then, for each
sentence pair, we computed the Cosine Distance
between the contextualized representations of the
target wordform (e.g., bat in “He saw the furry bat”
and “He saw the wooden bat”). The distribution of
Cosine Distances is visualized in Figure 2.

Homonymy Polysemy

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

bert

elmo

Cosine Distance

M
od

el same
FALSE
TRUE

Figure 2: Cosine Distances between the target word’s
contextualized embeddings for both language models,
plotted by Same Sense (True vs. False) and Ambiguity
Type (Homonymy vs. Polysemy).

We also performed several statistical analyses,
using the lme4 package in R (Bates et al., 2015).
In each case, we compared a full model to a reduced
model using a log-likelihood ratio test. All mod-
els had Cosine Distance as a dependent variable,
and included Part-of-Speech as a fixed effect, ran-
dom intercepts for Word and Language Model (i.e.,
ELMo vs. BERT), and by-Word random slopes for
the effect of Same Sense.

Adding a fixed effect of Same Sense significantly
improved model fit [χ2(1) = 143.72, p < .001],
with same-sense uses significantly closer than
different-sense uses [β = −.099, SE = 0.005].

8https://pypi.org/project/
bert-embedding/

https://pypi.org/project/bert-embedding/
https://pypi.org/project/bert-embedding/
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However, adding an interaction between Same
Sense and Ambiguity Type (as well as fixed effects
of both) did not significantly improve the fit above a
model omitting the interaction [χ2(1) = 2.19, p =
0.14]. In other words, both language models could
differentiate same-sense and different-sense uses of
an ambiguous word, but their ability to discriminate
between Homonymy and Polysemy was marginal
at best.

5.2 Analysis of Human Annotations

Our primary goal was understanding the distribu-
tion of human relatedness annotations—both in
terms of how it reflects the underlying categori-
cal structure of the dataset (e.g., Homonymy vs.
Polysemy), as well as the Cosine Distance mea-
sures from each language model. As in the section
above, we constructed a series of linear mixed ef-
fects models and performed log-likelihood ratio
tests for each model comparison; in each case, the
dependent variable was Relatedness. All models in-
cluded a fixed effect of Part-of-Speech, by-subject
and by-word random slopes for the effect of Same
Sense, by-subject random slopes for the effect of
Ambiguity Type, and random intercepts for sub-
jects and items.

First, we asked whether participants’ relatedness
judgments varied across same-sense and different-
sense sentence pairs. We added a fixed effect of
Same Sense to the base model described above,
along with fixed effects for the Cosine Distance
measures from BERT and ELMo. This model ex-
plained significantly more variance than a model
omitting only Same Sense [χ2(1) = 207.11, p <
.001], with same-sense uses receiving higher relat-
edness judgments on average [β = 1.94, SE =
0.1]. The median relatedness judgment for same-
sense uses was 4 (M = 3.46, SD = 1.02), while
the median relatedness judgment for different-
sense uses was 1 (M = 1.31, SD = 1.45).
Second, we asked whether participants’ judg-
ments were sensitive to the distinction between
Homonymy and Polysemy. We added an inter-
action between Same Sense and Ambiguity Type
(along with a fixed effect of Ambiguity Type) to
the model described above. The interaction signif-
icantly improved model fit [χ2(1) = 25.45, p <
.001]. The median relatedness for both same-sense
homonyms and polysemes was 4, whereas the me-
dian relatedness for different-sense homonyms (0)
was lower than that for different-sense polysemes

(2). Further, as depicted in Figure 3, there was con-
siderably more variance across polysemous words
than homonymous words—this makes sense, given
that some polysemous meanings are highly related
(e.g., “pet chicken” vs. “roast chicken”), while
others are more distant (e.g., “desperate act” vs.
“magic act”).

Homonymy

Polysemy

0 1 2 3 4
Mean relatedness judgment

A
m

bi
gu

ity
 ty

pe

same
FALSE
TRUE

Figure 3: Mean relatedness judgments for each sen-
tence pair, plotted by by Same Sense (True vs. False)
and Ambiguity Type (Homonymy vs. Polysemy).

Third, we asked whether the Cosine Distance
measures explained independent variance above
and beyond that explained by Same Sense and
Ambiguity Type. A full model including all fac-
tors explained more variance than a model exclud-
ing only the Cosine Distance measure from BERT
[χ2(1) = 36.19, p < .001], as well as a model
excluding only the Cosine Distance measure from
ELMo [χ2(1) = 16.92, p < .001]. This indicates
that Relatedness does not vary purely as a func-
tion of the categorical structure in the dataset—the
graded relatedness judgments were sensitive to sub-
tle differences in context.

5.3 Inter-Annotator Agreement

Inter-annotator agreement was assessed by calcu-
lating the average Spearman’s rank correlation be-
tween each participant’s responses and the Mean
Relatedness for the set of 112 items observed by
that participant—where Mean Relatedness was cal-
culated after omitting responses by the participant
in question. This answers the question: to what ex-
tent do each participant’s responses correlate with
the consensus rating by the 76 other participants?
Using this method, the average correlation was
ρ = 0.79, with a median of ρ = 0.81 (SD = .07).
The lowest agreement was ρ = 0.55, and the high-
est was ρ = 0.88.
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5.4 Evaluation of Language Models
To evaluate the language models, we collapsed
across the single-trial data and computed the Mean
and Median Relatedness for each unique sentence
pair. The distribution of Mean Relatedness judg-
ments is depicted in Figure 3.

As in past work (Hill et al., 2015), we computed
the Spearman’s rank correlation between the dis-
tribution of Cosine Distance measures (from each
model) and the Mean Relatedness for a given sen-
tence pair. BERT performed slightly better than
ELMo (BERTρ = −0.58, ELMoρ = −0.53).9

Putting this in context, both models performed con-
siderably worse than the average inter-annotator
agreement score (ρ = 0.79).

We also computed the R2 of a linear regression
including the Cosine Distance measures from both
BERT and ELMo. Combined, both measures ex-
plained roughly 37% of the variance in Mean Re-
latedness judgments (R2 = 0.37). Surprisingly,
this was only slightly more than half the variance
explained by a linear regression including only the
interaction between Same Sense and Ambiguity
Type (R2 = 0.66), as well as a regression includ-
ing all factors (R2 = 0.71).

By visualizing the residuals from the linear re-
gression with only BERT and ELMo (see Figure
4), we see that Cosine Distance appears to system-
atically underestimate how related participants find
same-sense judgments to be (for both Polysemy
and Homonymy). Further, we see that Cosine Dis-
tance systematically overestimates how related par-
ticipants find different-sense Homonyms to be.

Homonymy

Polysemy

−2 0 2
Residuals (relatedness ~ ELMo + BERT)

A
m
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gu

ity
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pe

same
FALSE
TRUE

Figure 4: Residuals of a linear regression including Co-
sine Distance measures from both BERT and ELMo,
plotted by by Same Sense (True vs. False) and Ambi-
guity Type (Homonymy vs. Polysemy).

9Note that larger values of Cosine Distance indicate a
larger distance between two vectors; thus, a negative correla-
tion is expected between relatedness and Cosine Distance.

6 Discussion

Word meanings are dynamic, dependent on the
contexts in which those words appear—and some
words are even ambiguous, generating distinct, in-
compatible interpretations in different situations
(e.g., “fruit bat” vs. “baseball bat”).

RAW-C contains graded relatedness judgments
(by human annotators) for ambiguous English
words in distinct sentential contexts. Importantly,
the ambiguous wordform (e.g., “bat”) is always
matched for both part-of-speech and inflection
across each sentence pair; 84 of the target words
are nouns, and 28 are verbs. Each word has relat-
edness judgments for six different sentences pairs
(four unique sentences): two same-sense pairs, and
four different-sense pairs. Same sense pairs convey
the same meaning, according to Merriam-Webster
and the OED (e.g., “fruit bat” and “furry bat”),
while different sense pairs correspond to mean-
ings listed in either distinct lexical entries (e.g.,
“fruit bat” and “wooden bat”) or distinct sub-entries
(e.g., “marinated lamb” and “baby lamb”). Fur-
thermore, different-sense pairs are labeled accord-
ing to whether they are related via homonymy or
polysemy, a relevant distinction for both lexicog-
raphers and psycholinguists—recent evidence sug-
gests that polysemous and homonymous meanings
are represented differently in the mental lexicon
(Klepousniotou, 2002; Klepousniotou and Baum,
2007). Finally, the sentential context is always
tightly controlled; in most pairs, only one word
differs across the two sentences (e.g., “fruit” vs.
“furry”).

In Section 5, we reported several primary find-
ings. First, contextualized representations from
both BERT and ELMo capture the distinction
between same-sense and different-sense uses of
a word, but their ability to distinguish between
homonymy and polysemy is marginal at best. This
contrasts with other recent work (Nair et al., 2020),
suggesting that BERT is able to differentiate be-
tween homonymy and polysemy. One possible
explanation for this difference in results is that Nair
et al. (2020) used naturally-occurring sentences
from Semcor (Miller et al., 1993), whereas our sen-
tence contexts were more tightly controlled. Our
results indicate that even the presence of a single
disambiguating word can trigger nuanced differ-
ences in semantic representation in humans, but
not necessarily in current neural language models.

Second, we found that both BERT and ELMo
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explain independent sources of variance in hu-
man relatedness judgments, above and beyond
Same Sense and Ambiguity Type (i.e., homonymy
vs. polysemy). This is encouraging, because it
demonstrates a direct benefit of graded (rather
than categorical) judgments; for example, among
the broad category of different-sense polysemous
pairs, some are closely related (e.g., “marinated
lamb” and “baby lamb”), and others are consider-
ably less closely related (e.g., “hostile atmosphere”
and “gaseous atmosphere”). Overall, contextual-
ized embeddings from BERT were better at predict-
ing human relatedness judgments than those from
ELMo—this is consistent with past work (Wiede-
mann et al., 2019) suggesting that BERT outper-
forms ELMo on tasks involving sense disambigua-
tion.

Importantly, however, both BERT and ELMo
failed to capture variance in relatedness judg-
ments that is captured by Same Sense and Am-
biguity Type. As depicted in Figure 4, Cosine
Distance tended to underestimate how related hu-
mans find same-sense uses to be, and overesti-
mate how related humans find different-senses
to be. This is not entirely surprising, given that
neither BERT nor ELMo are equipped with dis-
crete sense representations—at most, they produce
contextualized embeddings that are amenable to
supervised classification or unsupervised cluster-
ing. Yet this also illustrates that—at least on this
task—humans do appear to draw on some manner
of (likely fuzzy) categorical representation, such
that the difference between two contexts of use is
compressed for same-sense meanings, and exag-
gerated for different-sense meanings (particularly
for homonyms). This suggests several exciting av-
enues for future work: can neural language models
such as BERT be augmented with semantic knowl-
edge or representational schemes that improve their
performance on RAW-C or similar tasks? Both pos-
sibilities are explored in Section 6.1 below.

6.1 Future Work

As Bender and Koller (2020) note, most language
models are trained on linguistic form alone. In
contrast, human language knowledge is grounded
in our embodied experience of the world (Bisk
et al., 2020). To the extent that human sense rep-
resentations are guided by distinct sensorimotor
or social-interactional associations, equipping lan-
guage models with this information ought to fa-

cilitate their ability to distinguish between distinct
meanings of a word (i.e., the Disambiguation Cri-
terion) and modulate a given meaning in context
(i.e., the Contextual Gradation Criterion).

Practitioners could also look to (and in turn, in-
form) models of the human mental lexicon (Nair
et al., 2020). Several promising models attempt
to address the continuous nature of word meaning,
as well as the issue of apparent category bound-
aries (i.e., word senses) (Rodd et al., 2004; Elman,
2009); at this stage, the role of continuity vs. cat-
egorical structure in human sense representations
remains an open question. Models such as Sense-
BERT (Levine et al., 2020) incorporate high-level
sense knowledge into internal representations from
the beginning, and find improvements on several
WSD tasks—would this approach, or others like it,
yield an improvement on RAW-C as well?

6.2 Limitations of Dataset

RAW-C has multiple limitations, some of which
could also be addressed in future work. First, the
broad category of “polysemy” is often subdivided
into different mechanisms or manners of concep-
tual relation, such as metaphor and metonymy.
This distinction is also believed to be cognitively
relevant, with some evidence that metaphorically
related senses are represented differently than
metonymically related ones (Klepousniotou, 2002;
Klepousniotou and Baum, 2007; Lopukhina et al.,
2018; Yurchenko et al., 2020). Future work could
annotate polysemous word pairs for whether they
are related by metaphor, metonymy, or another
class of semantic relation—annotations could even
be made as granular as the specific semantic rela-
tion involved (e.g., Animal for Meat) (Srinivasan
and Rabagliati, 2015). This finer-grained coding
could be used to assess exactly which kinds of
semantic relation correlate with the distributional
profile of word tokens—i.e., are accessible from
linguistic form alone—and which require some ex-
ternal module, whether in the form of grounded
world knowledge or a structured knowledge base.

Another possible limitation is the fact that RAW-
C contains experimentally controlled minimal pairs,
instead of naturally-occurring sentences (Nair et al.,
2020; Haber and Poesio, 2020a,b). On the one
hand, naturalistic sentences are useful for evalu-
ating models on WSD “in the wild” (and indeed,
there are a number of useful datasets for this pur-
pose; see Section 2). On the other hand, controlled
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datasets are useful if one’s goal is to better under-
stand a particular model or linguistic phenomenon—
especially if this also allows a direct comparison
with human annotations. For example, our analy-
ses suggest that human sense representations must
involve some additional levels of processing or
information beyond the statistical regularities in
word co-occurrence captured by BERT and ELMo.
Moving forward, we hope that experimentally con-
trolled datasets such as RAW-C will serve as a
useful complement to existing, more naturalistic
datasets.

7 Conclusion

We have presented a novel dataset for evaluating
contextualized language models: RAW-C (Relat-
edness of Ambiguous Words, in Context). This
resource contains both categorical annotations,
derived from expert lexicographers (Merriam-
Webster and the OED), as well as graded related-
ness judgments from human participants. We found
that contextualized representations from BERT and
ELMo captured some variance (R2 = .37) in these
relatedness judgments, but that the distinction be-
tween same-sense and different-sense uses, as well
as between homonymy and polysemy, explains con-
siderably more (R2 = .66). Finally, we argued
that this gap in performance represents an exciting
opportunity for further development, and for cross-
pollination between experimental psycholinguistics
and NLP.

8 Ethical Considerations

All responses from human participants were
anonymized before analyzing any data. Further-
more, the RAW-C dataset does not contain single-
trial data—responses for a given sentence pair have
been collapsed across all the human annotators who
provided a rating for that pair. All participants pro-
vided informed consent, and were compensated in
the form of SONA credits (to be applied to vari-
ous Psychology, Cognitive Science, or Linguistics
classes). The project was carried out with IRB
approval.

Acknowledgments

We are grateful to Susan Windisch Brown and Eka-
terini Klepousniotou for making their experimental
stimuli available. We also thank the anonymous
reviewers for their helpful suggestions, and Nathan
Schneider for early feedback on the idea to publish

the dataset. Finally, we are grateful to other mem-
bers of the Language and Cognition Lab (James
Michaelov, Cameron Jones, and Tyler Chang) for
valuable comments and discussion.

References
Carlos Santos Armendariz, Matthew Purver, Senja Pol-
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