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Abstract

In this paper we explore the improvement of in-
tent recognition in conversational systems by
the use of meta-knowledge embedded in in-
tent identifiers. Developers often include such
knowledge, structure as taxonomies, in the
documentation of chatbots. By using neuro-
symbolic algorithms to incorporate those tax-
onomies into embeddings of the output space,
we were able to improve accuracy in intent
recognition. In datasets with intents and ex-
ample utterances from 200 professional chat-
bots, we saw decreases in the equal error rate
(EER) in more than 40% of the chatbots in
comparison to the baseline of the same algo-
rithm without the meta-knowledge. The meta-
knowledge proved also to be effective in de-
tecting out-of-scope utterances, improving the
false acceptance rate (FAR) in two thirds of
the chatbots, with decreases of 0.05 or more in
FAR in almost 40% of the chatbots. When con-
sidering only the well-developed workspaces
with a high level use of taxonomies, FAR de-
creased more than 0.05 in 77% of them, and
more than 0.1 in 39% of the chatbots.

1 Introduction

Classification of sentences into a discrete set of
classes is a key part of professional conversational
systems. In fact, most of those systems require
developers to define the different classes, or in-
tents, by enumerating exemplars of each of them,
since classification is often performed using ma-
chine learning (ML) methods. The process of clas-
sifying an input sentence into a specific intent or
signaling it as out-of-scope (OOS) of the system is
often referred to as intent recognition.

Determining a class solely on a list of exemplars
is a practical method to implement ML systems but
it is hardly a natural way for human beings to de-
fine a class. In real life, people define classes often
using a rich mix of symbolic definitions, sometimes

taxonomic in nature, such as in “a credit card is a
type of bank card”, coupled with its sub-classes, for
instance, “basic”, “premium”, and typical features
such as “international”. People also use exemplars,
“card X of bank Y is a credit card”, as well as par-
ticular examples to describe a sub-class, such as
in “card W is an international card”. They also
use counter examples, either categorically, “a debit
card is not a credit card”, or in examples, “card
Z is not a credit card”. Defining and specifying
classes in the real world is, in fact, a cultural, con-
textual, and linguistic construct, and how people
and societies perform this process is a traditional
research subject in social sciences, notably in an-
thropology (Durkheim and Mauss, 1963; Needham,
1979; Bowker and Star, 2000).

This paper explores algorithms for intent recog-
nition which use both the sets of exemplars and
taxonomic-like symbolic descriptions of a class to
define and train intents in conversational systems
using ML methods. We aim not only to provide
methods more aligned to everyday class definition
practices of developers but also to improve the accu-
racy of the ML methods. Inspired by a reverse dic-
tionary algorithm (Kartsaklis et al., 2018) and previ-
ous work on keyword-based classification (Cavalin
et al., 2020), we propose three neuro-symbolic al-
gorithms which combine taxonomic descriptions of
classes with traditional exemplar-based supervised
learning. We show that those novel algorithms are
able to decrease error rates for a significant num-
ber of datasets, particularly in the difficult task of
detecting OOS cases in real, professional chatbots.

The key idea behind our algorithms is to substi-
tute the typical softmax used in the output layer of
a ML text classifier with a space of embeddings of
the taxonomic descriptions of the intents. The train-
ing process uses the exemplars in standard ways
while the recognition process is performed using
similarity distances in the embedding output space.
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This is similar to ideas used in zero-shot learning
methods (Palatucci et al., 2009; Socher et al., 2013;
Akata et al., 2015, 2016), in which classes defined
by sub-concepts are also encoded with special em-
beddings to allow detection of new classes without
exemplars.

We tested our algorithms using real datasets
by exploring a common practice among develop-
ers of conversational systems, who often embed
symbolic knowledge as documentation in intent
identifiers. In a previous work (Pinhanez et al.,
2021), we observed a pattern among developers
of using taxonomic-like structures to name the
intents in which strings of reoccurring concepts
are used to identify and document the different
classes. For example, an intent about utterances
where users ask for the balance of a credit card may
be named “checking credit card balance”, while
an intent related to finding out the date of pay-
ment of the balance could be identified as “ask-
ing credit card balance payment date”.

We call those structures intent proto-taxonomies,
and real examples are shown in figures 1 and 2.
In (Pinhanez et al., 2021), we studied the use by de-
velopers of intent proto-taxonomies quantitatively
and qualitatively, as well as proposed an algorithm
to mine this meta-knowledge automatically, and
concluded that their use is fairly common in at
least one professional chatbot development plat-
form. This paper focuses on the algorithms to use
the meta-knowledge and on evaluating their impact
on the accuracy of intent recognition.

The paper starts by looking into the recent ad-
vances in neuro-symbolic systems and describing
briefly the practice of developers of conversational
systems of embedding meta-knowledge within the
source code of their systems. We follow by describ-
ing the proposed three algorithms integrating such
meta-knowledge into intent recognition ML algo-
rithms and by evaluating them first with two typical
intent recognition datasets, and then with hundreds
of workspaces created in a professional tool called
here ChatWorks1. The results show most of those
workspaces can benefit from the techniques de-
scribed in this paper, notably for OOS detection
tasks, often with accuracy improvements of 5% or
more solely derived from the use of the additional
symbolic description from the documentation.

1We use an anonymous name for the tool due to publication
restrictions from the platform company.

2 Related Work

The value and limits of symbolic categoriza-
tion in AI have been of interest since the early
days (Newell, 1973; Richards, 1982; Kosslyn,
2006). But our work fits more in the context of
a growing belief that symbolic knowledge needs to
be included in ML systems, materialized in the so
called neuro-symbolic approaches (Parisotto et al.,
2017; Besold et al., 2017; Tenenbaum et al., 2011;
Bengio, 2017; Mao et al., 2019; Hudson and Man-
ning, 2019a; De Raedt et al., 2019).

Neuro-symbolic methods “aim to transfer prin-
ciples and mechanisms between (often nonclassi-
cal) logic-based computation and neural computa-
tion” (Besold et al., 2017). Such kind of systems
are viewed by some researchers as a way to embed
high-level knowledge and even some form of “con-
sciousness” into machine learning systems, mak-
ing the language to develop them closer to “what
passes in a man’s own mind” (Bengio, 2017).

In recent years, AI has witnessed a myriad of
novel neuro-symbolic techniques and their appli-
cation to different problems, contexts, and scenar-
ios (Parisotto et al., 2017; Manhaeve et al., 2018;
d’Avila Garcez et al., 2019; Hudson and Manning,
2019b; De Raedt et al., 2019). For instance, in
(Mao et al., 2019), an approach for image under-
standing is suggested which takes the object-based
scene representations and translates sentences into
executable, symbolic programs. In (Oltramari et al.,
2020), embeddings of knowledge graphs are used
as attention layers for tasks such as autonomous
driving (AV) and question-answering. And in (Kart-
saklis et al., 2018), random walks in a knowledge
graph are mapped as sentence embeddings for use
in an inverse dictionary problem.

One important requirement for many neuro-
symbolic systems is to represent knowledge in a
structured format such as knowledge graphs, on-
tologies, or taxonomies (Ji et al., 2020). In some
cases, such as the scene ontology for autonomous
vehicles in (Oltramari et al., 2020), a lot of effort
was needed for manual annotation. Nevertheless,
as presented in (Fossati et al., 2015), an unsuper-
vised approach can sometimes be used to mine the
meta-knowledge introduced by the experts, such as
the classes in Wikipedia pages.

Considering our context, intent identifiers are
sometimes described using high-level representa-
tions of the class as we detail later. This is sim-
ilar to what is used in some zero-shot learning
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techniques (Wang et al., 2019) in which classes
manually defined by sub-concepts are encoded
with special embeddings so new classes can be
detected without training (Palatucci et al., 2009;
Socher et al., 2013; Akata et al., 2015, 2016; Chen
et al., 2016). In (Chen et al., 2016), for exam-
ple, intent identifiers can be formatted as natural
language sentences to learn a model which maps
training examples into those sentences, so that the
meta-knowledge can be used in zero-shot learn-
ing. However, the dataset explored in that work is
very limited. Recent work has also demonstrated
that intent recognition can be improved by enhanc-
ing class representations with “keywords” which
are extracted from exemplar utterances considering
their most common words (Cavalin et al., 2020).

This work focuses on high level class represen-
tations based on taxonomies and aims to explore
their usefulness as enhancers of ML intent recogni-
tion algorithms. It also explores different ways of
embedding taxonomy-like meta-knowledge consid-
ering different methods of representation.

3 The Knowledge Embedded in Intent
Identifiers of Conversational Systems

Most real-world, deployed conversational systems
in use today have been built based on the rule-based
intent-action paradigm, using platforms such as
Luis.ai, Watson Assistant, or Alexa Skills. Each in-
tent corresponds to a desired information or answer
from the user and is defined by a set of exemplar
utterances by the chatbot developers. During run-
time, each utterance from the user is recognized as
one of the defined intents or as out-of-scope (OOS),
and then the associated action is outputted.

In the context of the chatbots built using the
ChatWorks platform explored in this paper, a pre-
vious work of the authors of this paper (Pinhanez
et al., 2021) has shown that the curators and devel-
opers of chatbots often store symbolic knowledge
in a taxonomic form about the intent classes in a
documentation field called nameId. Figure 1 shows
some examples of those nameIds, obtained from a
professional finance chatbot, here translated from
the original in Portuguese and anonymized to pre-
serve confidential information.

This practice was studied in workshops with de-
velopers (Pinhanez et al., 2021), which determined
that the goal of the taxonomic description is to
provide the intent classes with a summarized de-
scription of each intent. Such taxonomic naming

Figure 1: Some nameIds of intents of a finance chatbot.

Figure 2: The intent proto-taxonomy associated to the
intents of fig. 1.

patterns are also common in the way people orga-
nize files and e-mails in computers (Civan et al.,
2008; Whittaker et al., 2011) and how software
developers name functions (Yang et al., 2019).

As described in (Pinhanez et al., 2021), such
knowledge-embedding practices are, in fact, fairly
common among curators in the ChatWorks plat-
form. Using the algorithm reproduced in ap-
pendix A, taxonomic-like symbolic knowledge was
automatically extracted from workspaces defining
almost 7,000 professional chatbots, in two different
languages. By considering the different words in
the nameIds as basic concepts and consecutive con-
cepts as having connections between them, we can
structure the set of nameIds as a very basic knowl-
edge graph (Ehrlinger and Wöß, 2016), hereby
referred as an intent proto-taxonomy.

Figure 2 depicts the intent proto-taxonomy asso-
ciated to the nameIds in fig. 1. Next, as proposed
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in (Pinhanez et al., 2021), it is possible to compute
the taxonomy rate of a workspace by calculating
the ratio between the number of intents with tax-
onomies and the total number of intents.

In 3,840 professsional workspaces in the En-
glish language, it was found that 76% of them had
a taxonomy rate above 10%, almost 52% had a tax-
onomy rate above 50%, and 16% had a very high
taxonomy rate, above 90%. Moreover, the distri-
bution followed a sort of “step” function where,
as the threshold of 32 in the number of intents
in a workspace was crossed, the majority of the
workspaces had a taxonomy rate of more than 50%.
It seems that, as the complexity of the workspace
increases with the number of intents, more often
developers resort to document them using an intent
proto-taxonomy (see appendix B for details).

The use in our work of the intent proto-
taxonomies as a symbolic description of classes is
feasible because: (1) they are part of the documen-
tation of the conversational system, so there is no
need of acquiring knowledge from experts; (2) they
are easily mined, as described in appendix A.

4 Using Taxonomic Intent Descriptions
to Improve Intent Recognition

We present now a formal description of the method-
ology employed in this work which takes advan-
tage of the intent proto-taxonomies using a neuro-
symbolic approach. It expands some previous work
which focused on the use of keywords as the source
of symbolic information (Cavalin et al., 2020). .

4.1 Embedding the Set of Classes
An intent classification method is a function D
which maps a set of sentences (potentially infinite)
S = {s1, s2, ...} into a finite set of classes Ω =
{ω1, ω2, ..., ωc}:

D : S → Ω D(s) = ωi (1)

To enable a numeric, easier handling of the input
text, an embedding ξ : S → Rn is often used,
mapping the space of sentences S into a vector
space Rn, and defining a classification function E :
Rn → Ω such thatD(s) = E(ξ(s)). In most intent
classifiers, E is composed of a function M which
computes the likelihood of s being in a given class,
often a neural network, followed by some sort of
argmax function. Typically, softmax+argmax
is used, noted simply as softmax here:

S
ξ→ Rn M→ Rc softmax→ Ω (2)

This paper explores how to use embeddings in
the output side of the classification function, that
is, by embedding the set Ω of classes into an-
other vector space Rm, in some ways resembling
the combination of object-based recognition and
symbolic programming in (Mao et al., 2019). In-
stead, we combine here standard intent recognition
methods with an encoding of taxonomies in knowl-
edge graph-like structures. The idea is to use class
embedding functions which somehow capture the
knowledge in the intent proto-taxonomies.

Formally, we use a class embedding function
ψ : Ω → Rm, its inverse ψ−1, and a function
M : Rn → Rm to map the two vector spaces so
D(s) = ψ−1(M(ξ(s))).

S
ξ→ Rn M→ Rm ψ−1

→ Ω (3)

In this paper we explore three sentence embed-
ding methods to implement ξ. We use a two-layer
neural network as M and employ the standard
Mean Square Error (MSE) as the inverse ψ−1,
to determine the closest embedding of each class
ωi ∈ Ω to the output of M .

4.2 Adapting Kartsaklis Method (LSTM)

Our basic inspiration for the algorithms of this pa-
per is a text classification method proposed in (Kart-
saklis et al., 2018) for the inverse dictionary prob-
lem where text definitions of terms are mapped
to the term they define. The embedding of the
class set into the continuous vector space (equiv-
alent to the ψ function in equation 3) is done by
expanding the knowledge graph of the dictionary
words with nodes corresponding to words related
to those terms. Next, random walks are perfomed
on the graph to compute graph embeddings related
to each dictionary node, using the DeepWalk algo-
rithm (Perozzi et al., 2014).

A Long Short-Term Memory (LSTM) neural net-
work, composed of two layers and an attention
mechanism, is used in (Kartsaklis et al., 2018) for
mapping the input texts to the input embedding
vector space. To map the two continuous vector
spaces representing the definitions and the dictio-
nary terms, a two-layer neural network M , learned
from the training dataset, is used.

For this work, the knowledge graph is replaced
by an intent proto-taxonomy G which associates
each class to a node and connects to them nodes
which correspond to meta-knowledge concepts re-
lated to the class. To better capture the sequential
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aspect of the intent proto-taxonomies, we also con-
nect each class node to bigrams of concepts, i.e.,
the concatenation of two subsequent concepts. We
represent this by the function ζ , such as ζ(Ω) = G,
which is invertible. Substituting this in equation 3,

S
LSTM→ Rn M→ Rm DeepWalk−1

→ G
ζ−1

→ Ω (4)

In practice, we compute the mapping from the
class embedding space into the class set, called
here InvG : Rm → Ω, simply by determining
the distance d between the output point in Rm and
the inverted projection of each class from Ω and
then considering the closest class. That is, for each
wi ∈ Ω, we consider the associated node in G and
compute the mapping in Rm of that node:

InvG(x) = argmin
wi

d(x,DeepWalk(G(wi)) (5)

By substituting this function into equation 4, we
obtain the algorithm we call here LSTM+T:

S
LSTM→ Rn M→ Rm InvG→ Ω (6)

For comparison, the traditional corresponding
classification method is tested, where the graph
embedding and associated functions are replaced
by softmax+argmax. We call this LSTM:

S
LSTM→ Rn M→ Rc softmax→ Ω (7)

4.3 An Alternative to LSTM: USE

Recently, several new general-purpose language
models that can be used for computing sentence
embeddings have been proposed, among them the
Universal Sentence Enconder (USE) (Cer et al.,
2018). Such an approach consists of a transformer
neural network (Vaswani et al., 2017), trained on
varied sources of data, such as Wikipedia, web
news, web question-answer pages and discussion
forum. USE has achieved state-of-the-art results
in various tasks, so we decided to try it in our ex-
periments as an alternative to the LSTM for the
embedding of input sentences.

In this work we employed the version 3 of the
multilingual USE 2. By replacing LSTM with USE
in eq. 6 we obtain algorithm USE+T:

S
USE→ Rn M→ Rm InvG→ Ω (8)

2https://tfhub.dev/google/universal-sentence-encoder-
multilingual/3

Like in the previous case, we also compute the
USE algorithm with traditional discrete softmax
outputs for comparison, called here simply USE:

S
USE→ Rn M→ Rc softmax→ Ω (9)

4.4 Alternatives to DeepWalk

To explore variants of algorithms for embedding
the classes and also approaches which do not need
to be trained from scratch and allow on-the-fly han-
dling of meta-knowledge, we tried replacing Deep-
Walk with two different methods.

The first one consists of applying USE sentence
embeddings also for the class embeddings, such
as in eq. 10. To simplify notation, emb represents
either LSTM or USE embeddings for the input text.

S
emb→ Rn M→ Rm USE−1

→ G
ζ−1

→ Ω (10)

This approach is similar to the way DeepWalk
works but instead of training the graph embeddings
from scratch, the class embeddings are represented
by the mean sentence embedding computed from
different random walks starting in the class node.
We name such methods LSTM+S and USE+S, for
emb substituted by LSTM and USE, respectively.

Additionally, we also evaluate the replacement
of DeepWalk by the Convolutional Deep Structured
Semantic Model (CDSSM) proposed in (Chen et al.,
2016), yielding the following algorithm where emb
can be either LSTM or USE embeddings.

S
emb→ Rn M→ Rm CDSSM−1

→ G
ζ−1

→ Ω (11)

The CDSSM model consists of a three-layer con-
volutional neural network trained for creating em-
beddings of intent identifiers represented as sen-
tences. In this work, we input to CDSSM the se-
quence of concepts listed in the nameId of each
intent. We refer to these algorithms as LSTM+C
and USE+C, for emb being substituted with LSTM
and USE, respectively.

An intuitive way to understand those methods
is to consider USE+T using a taxonomy as if its
concepts had just abstract meanings: only their
relations matter. In comparison, USE+S considers
the meaning of the concepts besides their relations,
while USE+C regards each nameId as a sentence,
almost as if the developer had inputted a written
description of the intent.
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4.5 Out-of-Scope Sample Detection
In this paper we are interested both in the problems
of: (1) deciding whether an user utterance is in-
scope (IS) or out-of-scope (OOS) of the system;
and (2) determining to which class an IS utterance
belongs. For the former, a rejection mechanism
based on a pre-defined threshold is used since it
can be easily applied to all of the methods described
previously without the need neither for any specific
training procedure nor OOS training data.

In detail, suppose that for each class ωi ∈ Ω
there is a score denoted φi ∈ Z, where |Z| = |Ω|.
Given that max(Z) represents the highest score
associated to a class and that a rejection threshold
θ has been defined on a validation set, samples can
be classified as OOS whenever max(Z) < θ. If
so, they are simply rejected, i.e., no classification
output is produced for them. Otherwise, the sample
is considered as in-scope and the classification is
conducted normally.

The scores inZ are represented either by the soft-
max probability for the traditional softmax-based
methods or by the similarity of sentence and intent
embeddings for the proposed three approaches. For
the latter, the similarity is computed by means of
the dot product between the two embeddings.

5 Metrics, Datasets, and Experiments

In this section we present the experiments to evalu-
ate the three algorithms described in the previous
section, using each of the input embeddings LSTM
and USE. We explore the impact on intent recog-
nition both in terms of classifying correctly utter-
ances (IS accuracy) and of finding which utterances
are not covered by the intents (OOS accuracy).

5.1 Evaluation metrics
We employ a commonly-used metric for OOS dec-
tection, equal error rate (EER) (Tan et al., 2019),
which corresponds to the classification error rate
when the threshold θ is set to a value where false ac-
ceptance rate (FAR) and false rejection rate (FRR)
are the closest. These two metrics are defined as:

FAR =
number of accepted OOS samples

total of OOS samples
(12)

FRR =
number of rejected IS samples

total of IS samples
(13)

In addition, in-scope error rate (ISER) is consid-
ered to report IS performance, i.e. the error rate
considering only IS samples when θ is set to zero,

similar to the class error rate in (Tan et al., 2019).
This metric is important to evaluate whether the
proposed classification methods are able to keep up
with the performance of the baselines in the main
classification task.

5.2 The Larson and Telco Datasets

During the development and initial testing of the
algorithms, we used two English datasets for in-
depth experimentation. The first is the publicly-
available Larson dataset (Larson et al., 2019); the
second is a private real-world chatbot dataset used
by a telecommunications provider for customer
care, called here the Telco dataset. In the Larson
dataset, we created an intent proto-taxonomy by
hand, expanding the original identifiers of intents.
The goal of the adjustments was to avoid spurious
interference from taxonomy shortcomings or errors
in the results. The complete list of the created
taxonomic description of intents is listed in the
appendix C to allow the reproduction of our results
and further experimentation. In the Telco dataset,
we created by hand the intent proto-taxonomy.

In the Larson dataset there is a total of 22,500
IS exemplars, evenly distributed across 150 classes,
where 18,000 were used for training and 4,500
for testing. We conducted a simulation of OOS
detection with the IS exemplars by doing 5 ran-
dom samplings where we took out 30 intents and
3,600 training exemplars. We trained only with
the remaining 120 intents and 14,400 exemplars.
The test was then conducted using all the non-used
4,500 exemplars, where the 3,600 associated to the
trained classes were considered the IS samples and
the remaining 900 became OOS samples.

The Telco dataset contains 4,093 exemplars and
87 intents. From those, 3,069 exemplars were used
for training and 1,024 for testing. The OOS sce-
nario was simulated by extracting different random
samplings where 5 intents were removed. Given
the smaller size of this dataset compared to Larson,
we conducted 20 samplings instead of 5.

For both sets we considered the following setup
defined after preliminary evaluations. For the
LSTM-based methods, the input sentence embed-
ding size was set to 150 and output embeddings
to 200. DeepWalk walk sizes were set to 20 for
LSTM+T and USE+T. For both USE- and softmax-
based methods we trained a two-layer neural net-
work with 800 hidden neurons for 50 epochs.
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Figure 3: Different methods to incorporate the intent
proto-taxonomy in Larson dataset, compared to the
LSTM and USE baselines.

Figure 4: Different methods to incorporate the in-
tent proto-taxonomy in Telco dataset, compared to the
LSTM and USE baselines.

5.3 Results in the Larson and Telco Datasets

The results on the Larson dataset are graphically
depicted in fig. 3. We observed that there was a
slight improvement (a decrease) in EER, especially
with the USE-based and the LSTM+C methods.
More notably, there was a significant improvement
in terms of FAR for all USE-based methods and
LSTM+S and LSTM+C. Notice that even though
the proposed approaches generally did not outper-
form LSTM and USE in ISER (except LSTM+C),
we observed that the methods with better ISER
tended to produce also better EER and FAR.

In fig. 4, we see that the results on the Telco
dataset presented a different scenario. The pro-
posed methods generally performed worse than or,
at best, similar to LSTM and USE in EER. In terms
of FAR, some methods such as USE+T and USE+C
seem to outperform the others but, considering the
high standard deviations, the results were not sig-
nificant. On the other hand, we also observed that
the methods failed to get close in ISER compared
to the softmax-based methods. That seems to indi-
cate that for the cases where making use of meta-
knowledge harms too much ISER, the symbolic
knowledge did not decrease neither EER nor FAR.

There were two key findings from our experi-
ments with the Larson and the Telco datasets. First,
the improvements using LSTM or USE as a base-

line seemed to be similar, possibly slightly better
for the USE algorithm. Second, and most impor-
tantly, we saw much more improvement in the use
of the intent proto-taxonomy in the Larson than in
the Telco dataset, in spite of the similar nature of
the datasets and the intent proto-taxonomies. This
motivated us to try out the ideas in a larger and
more diverse number of workspaces and solely fo-
cusing on USE to simplify the experiments.

5.4 The ChatWorks Dataset

To test our algorithms in a context of high diversity
and realism, we used the same large set of real, pro-
fessional workspaces explored in (Pinhanez et al.,
2021), which come from the professional chatbot
development platform ChatWorks.

We started with the 3,840 workspaces available
in English. To eliminate possible problems due
to workspaces with poor quality, we employed
the 3σ-rule, where values smaller greater than 3
standard deviations from the mean are not con-
sidered.Workspaces with the number of intents or
exemplars below and above those thresholds were
removed. Also, to avoid workspaces with few ex-
emplars per intent, the ratio of the number of ex-
emplars to the number of intents had to be greater
than 10. From the filtered set we randomly selected
200 workspaces for testing.

The evaluation involved the execution of 20 itera-
tions for each workspace. The tests were performed
for all USE-based methods (USE, USE+T, USE+S,
and USE+C). First, the workspaces were split into
training and test datasets (75% and 25%, respec-
tively). Next, the four methods were trained and
tested on these datasets. The evaluation metrics
(EER, FAR, and ISER) were then measured on the
results for the test datasets and the average errors
and their standard deviations were computed.

5.5 Results in the ChatWorks Dataset

Appendix D contains a table with the results for
each of the 200 workspaces in the ChatWorks
dataset. Figure 5 summarizes the results of
the experiments showing the distribution of the
200 workspaces according to ranges of the improve-
ment of each of the three methods compared to the
baseline of USE. Improvement is calculated by sub-
tracting the errors in each of our proposed methods
from the errors in the USE baseline (error values
are scores between 0 and 1). When one of our
methods was worse than the baseline then diff < 0,
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since smaller is better, and conversely for when it
is better than the baseline, i.e., diff > 0.

The results shown in fig. 5 indicate that the
USE+C algorithm achieved the best results in all
three metrics, although there is a significant portion
of workspaces where the other methods also did
well, especially in OOS detection (FAR).

But, more important, the results seem to support
our claim that meta-knowledge embedded in the
output layer of our neuro-symbolic algorithms can
improve intent recognition performance in practical
systems. Notably in OOS detection (FAR), 67%
of the workspaces experienced a decrease in the
error rate using USE+C. Besides, in 39% of the
workspaces we observed a decrease in the error
rate of more than 0.05 (in a 0 to 1 scale), and in
23%, of more than 0.1. The USE+T also did well
with similar but slightly smaller decreases in error.

Overall, the error rates for the EER metric also
decreased in relation to the baseline. Figure 5
shows that 41% of the workspaces had some level
of decrease in EER with the USE+C algorithm, in
10% of them with decreases of 0.05 or more. How-
ever, the results for the in-scope accuracy (ISER)
were much smaller with only about 16% of the
workspaces having any kind of decrease.

The ChatWorks dataset, as noted before, in-
cludes all kinds of workspaces. Taxonomy rates
varies anywhere from 0 to 1, and there are very
small and very large workspaces. To test our meth-
ods in a scenario closer to a professional, well-
developed chatbot, we filtered further the dataset
to include only workspaces with taxonomy rate
greater or equal to 0.7, with number of intents equal
or more than 32, and at least an average of 25 ex-
emplars per intent, resulting in 18 workspaces.

Figure 6 shows the distribution of the results of
the experiments with those 18 workspaces, which
were better than in the full ChatWorks dataset. Both
USE+T and USE+C yielded EER decreases in 50%
or more of the workspaces. Moreover, 83% of the
workspaces decreased the FAR error, either with
USE+T or USE+C, and both decreased FAR in
more than a third of the workspaces by more than
0.1. We discuss the results and implications next.

6 Discussion and Future Work

We started this paper by proposing the combination
of exemplars and symbolic characterizations of a
class as a way to enhance ML-based intent recog-
nition. We proposed 3 new neuro-symbolic algo-

Figure 5: Distribution of performance difference (diff)
to USE baseline of the 3 methods according to EER,
FAR, and ISER metrics in all 200 workspaces of the
Chatworks dataset.

Figure 6: Distribution of performance difference (diff)
to USE baseline of the 3 methods according to EER,
FAR, and ISER metrics in the 18 most developed
workspaces of the Chatworks dataset.

rithms and tested them using datasets built using
data from intent identifiers of conversational sys-
tems. Such identifiers often store taxonomic-like
structures, due to a common practice among devel-
opers of professional conversational systems (Pin-
hanez et al., 2021). The results of the experiments
indicate that the intent proto-taxonomies embedded
by those developers can indeed be used by many
workspaces to improve accuracy in intent recogni-
tion, notably in OOS detection.

We see as one of the main contributions of this
paper the creation of methods with which ML en-
gineers can improve the accuracy of their systems
by simply mining “documentation” from chatbots,
without any further data and annotation.

Our results show that almost 40% of the 200
professional workspaces drawn from ChatWorks
saw decreases of more than 0.05 in OOS detection
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error rates. Also, in 42% of them the overall error
rate was improved, using the USE+C algorithm.
When considering the more well-structured and
developed 18 workspaces, we saw much higher
gains with the USE+T algorithm. Those accuracy
improvements were achieved without any change
in the training set but simply by incorporating the
meta-knowledge into intent recognition.

Notice that the testing methodology used in this
work is considerably harder than the practice of
the majority of research papers, since it evalu-
ates performance in 200 professional, non-edited
workspaces from different domains. In reality, most
ML algorithms do not perform well in all datasets,
and ML practitioners often test different algorithms
and parameters until accuracy is good enough.

However, the improvement in OOS detection
(FAR) was not mirrored in classification error
(ISER). First, we must keep in mind that intent
classification is often performed in two steps, first
OOS sentences detection and removal, followed by
intent classification of the IS sentences. Given the
improvements observed in OOS detection, it would
make sense to use our algorithms in the first step
for many of the ChatWorks workspaces (about 60%
of them), and selectively use it for IS classification
only when it works better than the baseline.

But why were there so many workspaces where
we did not see impact? It is important to take into
account that the ChatWorks dataset has workspaces
in different stages of development and deployment.
By selecting better quality workspaces, we saw
much higher gains. We explored briefly charac-
terizations of the intent proto-taxonomy quality,
such as taxonomy rate, depth of the taxonomy, and
number of concepts, but we saw no clear correla-
tion with decreases in error rates. We believe more
complex metrics of knowledge structure need to
be employed to characterize which intent proto-
taxonomies are likely to have the greatest impacts.
We plan to do so in our future work.

It is important to notice that, in the workspaces
where we did see impact, the symbolic knowl-
edge was mined from an absolutely “raw” format.
In spite of that, by using the basic graph mining
method described in appendix A, it was possible to
obtain a “meaningful” taxonomic structure, similar
to a knowledge graph which could be used by our
neuro-symbolic algorithms. To improve the quality
of the taxonomies, we are working on designing an
interface which allows the developers to manipu-

late directly the intent proto-taxonomy to make it
more correct and complete, so to possibly decrease
even more the intent recognition error rates.

We have demonstrated in this work that combin-
ing exemplar and symbolic ways of defining classes
can have a positive impact in the performance of
the recognition system. This was done in the con-
text of conversational systems where developers
fortuitously embed such alternative descriptions of
classes in their name identifiers. We believe it is
possible to find in other machine learning devel-
opment platforms similar patterns of knowledge
embedding.

For example, we know that it is common for
people to use similar taxonomic structures when
naming file and e-mail folders, giving names to
functions and variables in programs and data, and
writing comments into Jupyter notebooks. Also,
ML platforms can further foster the use of meta-
data by developers by explicitly asking them to
input, besides exemplars, categorical or textual de-
scriptions of the classes.

As we move along the path of creating such
neuro-symbolic systems, not only we should expect
that the job of developers becomes easier, as they
follow their own cultural and linguistic practices,
but also that machines became better in recognizing
those classes accurately. Using multiple forms of
class definitions can be a winning proposition for
both ML systems and their developers.

Ethical Issues

The ChatWorks dataset was composed only of
workspaces in which the developers explicitly
opted-in to share their code and content for research
and development purposes with the company which
owns the platform. Those workspaces were shared
by the company with the authors of this paper with
a clear condition of not publicly sharing their con-
tents and publishing only aggregated results or in
an anonymous form. We do not see any specific
impact of those limitations in the results of our re-
search but they preclude easy forms of replication
of our results with that dataset. To better enable
reproducibility, we presented the analysis of the
public Larson dataset and shared the intent proto-
taxonomy we created manually from its original
intent structure in appendix C.
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F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems
32, pages 5903–5916. Curran Associates, Inc.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Mart-
tinen, and Philip S. Yu. 2020. A survey on knowl-
edge graphs: Representation, acquisition and appli-
cations.

Daniel Jurafsky and James H. Martin. 2009. Speech
and Language Processing (2nd Edition). Prentice-
Hall, Inc., USA.

Dimitri Kartsaklis, Mohammad Taher Pilehvar, and
Nigel Collier. 2018. Mapping text to knowledge
graph entities using multi-sense LSTMs. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1959–
1970, Brussels, Belgium. Association for Computa-
tional Linguistics.

Stephen M Kosslyn. 2006. You can play 20 questions
with nature and win: Categorical versus coordinate
spatial relations as a case study. Neuropsychologia,
44(9):1519–1523.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019.
An evaluation dataset for intent classification and
out-of-scope prediction. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1311–1316, Hong Kong,
China. Association for Computational Linguistics.

https://doi.org/10.1109/TPAMI.2015.2487986
https://doi.org/10.1109/TPAMI.2015.2487986
http://arxiv.org/abs/1709.08568
http://arxiv.org/abs/1711.03902
http://arxiv.org/abs/1711.03902
https://doi.org/10.18653/v1/2020.emnlp-main.324
https://doi.org/10.18653/v1/2020.emnlp-main.324
https://doi.org/10.18653/v1/2020.emnlp-main.324
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.1002/meet.2008.1450450214
https://doi.org/10.1002/meet.2008.1450450214
https://doi.org/10.1002/meet.2008.1450450214
https://sites.google.com/view/nesy2019/home
https://sites.google.com/view/nesy2019/home
http://papers.nips.cc/paper/8825-learning-by-abstraction-the-neural-state-machine.pdf
http://arxiv.org/abs/2002.00388
http://arxiv.org/abs/2002.00388
http://arxiv.org/abs/2002.00388
https://doi.org/10.18653/v1/D18-1221
https://doi.org/10.18653/v1/D18-1221
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131


7024

Robin Manhaeve, Sebastijan Dumancic, Angelika Kim-
mig, Thomas Demeester, and Luc De Raedt. 2018.
Deepproblog: Neural probabilistic logic program-
ming. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, ed-
itors, Advances in Neural Information Processing
Systems 31, pages 3749–3759. Curran Associates,
Inc.

Christopher Manning and Hinrich Schutze. 1999.
Foundations of statistical natural language process-
ing. MIT press.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B.
Tenenbaum, and Jiajun Wu. 2019. The Neuro-
Symbolic Concept Learner: Interpreting Scenes,
Words, and Sentences From Natural Supervision. In
International Conference on Learning Representa-
tions.

Rodney Needham. 1979. Symbolic classification.
Goodyear Publishing Company.

Allen Newell. 1973. You can’t play 20 questions with
nature and win: Projective comments on the papers
of this symposium. In W.G. Chase, editor, Visual
information processing. Academic Press.

Alessandro Oltramari, Jonathan Francis, Cory Hen-
son, Kaixin Ma, and Ruwan Wickramarachchi.
2020. Neuro-symbolic architectures for context un-
derstanding.

Mark Palatucci, Dean Pomerleau, Geoffrey E Hinton,
and Tom M Mitchell. 2009. Zero-shot learning with
semantic output codes. In Advances in Neural Infor-
mation Processing Systems, volume 22. Curran As-
sociates, Inc.

Emilio Parisotto, Abdel-Rahman Mohamed, Rishabh
Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. 2017. Neuro-symbolic program synthesis. In
International Conference on Learning Representa-
tions (ICLR).

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.
2014. Deepwalk: Online learning of social represen-
tations. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery
and data mining, pages 701–710.

Claudio Santos Pinhanez, Heloisa Candello, Paulo Cav-
alin, Mauro Carlos Pichiliani, Ana Paula Appel, Vic-
tor Henrique Alves Ribeiro, Julio Nogima, Maira
de Bayser, Melina Guerra, Henrique Ferreira, et al.
2021. Integrating machine learning data with sym-
bolic knowledge from collaboration practices of cu-
rators to improve conversational systems. In Pro-
ceedings of the 2021 ACM Conference on Human
Factors in Computing Systems (CHI’21), pages 1–
13.

Whitman Richards. 1982. How to play twenty ques-
tions with nature and win.

Richard Socher, Milind Ganjoo, Christopher D Man-
ning, and Andrew Ng. 2013. Zero-shot learning
through cross-modal transfer. In Advances in Neu-
ral Information Processing Systems, volume 26. Cur-
ran Associates, Inc.

Ming Tan, Yang Yu, Haoyu Wang, Dakuo Wang, Sa-
loni Potdar, Shiyu Chang, and Mo Yu. 2019. Out-of-
domain detection for low-resource text classification
tasks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3566–3572, Hong Kong, China. Association for
Computational Linguistics.

Joshua B. Tenenbaum, Charles Kemp, Thomas L. Grif-
fiths, and Noah D. Goodman. 2011. How to grow a
mind: Statistics, structure, and abstraction. Science,
331(6022):1279–1285.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Wei Wang, Vincent W Zheng, Han Yu, and Chunyan
Miao. 2019. A survey of zero-shot learning: Set-
tings, methods, and applications. ACM Transac-
tions on Intelligent Systems and Technology (TIST),
10(2):1–37.

Steve Whittaker, Tara Matthews, Julian Cerruti, Hernan
Badenes, and John Tang. 2011. Am I wasting my
time organizing email? a study of email refinding.
In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI ’11, page
3449–3458, New York, NY, USA. Association for
Computing Machinery.

Bai Yang, Zhang Liping, and Zhao Fengrong. 2019.
A survey on research of code comment. In Pro-
ceedings of the 2019 3rd International Conference
on Management Engineering, Software Engineering
and Service Sciences, ICMSS 2019, page 45–51,
New York, NY, USA. Association for Computing
Machinery.

http://papers.nips.cc/paper/7632-deepproblog-neural-probabilistic-logic-programming.pdf
http://papers.nips.cc/paper/7632-deepproblog-neural-probabilistic-logic-programming.pdf
https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=rJgMlhRctm
http://arxiv.org/abs/2003.04707
http://arxiv.org/abs/2003.04707
https://proceedings.neurips.cc/paper/2009/file/1543843a4723ed2ab08e18053ae6dc5b-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/1543843a4723ed2ab08e18053ae6dc5b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/2d6cc4b2d139a53512fb8cbb3086ae2e-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/2d6cc4b2d139a53512fb8cbb3086ae2e-Paper.pdf
https://doi.org/10.18653/v1/D19-1364
https://doi.org/10.18653/v1/D19-1364
https://doi.org/10.18653/v1/D19-1364
https://doi.org/10.1126/science.1192788
https://doi.org/10.1126/science.1192788
https://doi.org/10.1145/1978942.1979457
https://doi.org/10.1145/1978942.1979457
https://doi.org/10.1145/3312662.3312710


7025

A An Algorithm to Extract Intent
Proto-Taxonomies from NameIds

In our previous work (Pinhanez et al., 2021) we
described an algorithm to mine proto-taxonomies
from the nameIds of a workspace. For complete-
ness, we include it here. It consists of three steps:

1. Finding the best separator to split the name
into a sequence of concepts;

2. Splitting the nameIds with the selected sepa-
rator.

3. Generating an intent proto-taxonomy using
the terms split by the best separator as con-
cepts and considering consecutive concepts in
a nameId as having a link between them.

In order to find the best separator, our algorithm
first calculates the perplexity of the bag of con-
cepts using each separator. Perplexity is a measure
of uncertainty for a given sequence of words (or
concepts) appearing in a language model (Man-
ning and Schutze, 1999). For that, we build prob-
abilistic language models based on bigrams using
the maximum likelihood estimator as in (Jurafsky
and Martin, 2009, Chapter 3), and then compute
the average perplexity using a standard leave-one-
intent-out evaluation scheme. The separator which
minimizes perplexity is chosen as the separator for
the workspace.

B Intent Proto-Taxonomies as a
Common Practice in ChatWorks

In (Pinhanez et al., 2021) we evaluated the use of
proto-taxonomies by the curators of the ChatWorks
dataset, by developing a metric, called taxonomy
rate, which is the ratio of the number of nameIds
which have a proto-taxonomy embedded in it to the
total number of intents of the workspace.

To determine whether a given nameId has a
proto-taxonomy embedded in it, we considered
three criteria: (1) the nameId has two or more con-
cepts; (2) there is at least one other nameId which
has at least one identical concept at the exact same
level; and (3) the concept does not appear in all
nameIds of the workspace in that level. After all the
nameIds of a workspace were determined as hav-
ing an embedded intent or not, the taxonomy rate
was calculated by considering the ratio between the
number of intents with a taxonomic structure and
the number of intents of the workspace.

Figure 7: Distribution of the number of workspaces
according to the taxonomy rate of the 3,840 English
(top) and 2,895 Portuguese (bottom) workspaces. No-
tice that the X axis is in logarithmic scale.

A taxonomy rate of above 10% was observed
in 76% of the English workspaces and in 80% the
Portuguese ones. Almost 52% of all workspaces,
in English, and 38% in Portuguese, had a taxon-
omy rate larger than 50%. Moreover, 16% and 20%
of the workspaces, for English and Portuguese re-
spectively, had a very high taxonomy rate from
90% to 100%. Considering both the English and
Portuguese workspaces, about 70% of them have
a taxonomy rate above 20% and more than half of
the workspaces above 64 intents have a taxonomy
of 50% or more.

Figure 7 shows how the workspaces are dis-
tributed considering both the number of intents
(X axis) and the taxonomy rate (Y axis). Notice
that the distribution, in both languages, follows a
sort of a “step” function where, as the threshold
between 32 and 64 intents is crossed, the majority
of the workspaces has more than 50% of taxonomy
rate. More details can be found in (Pinhanez et al.,
2021).

C The Intent Proto-Taxonomy Created
for the Larson Dataset

In tables 1 and 2, we list the taxonomy which was
manually created for the Larson dataset, with the
original nameId on the left and the created taxo-
nomic representation on the right, represented as a
string of concepts separated by spaces.



7026

nameId Concepts
accept reservations accept reservation
account blocked account blocked
alarm set alarm
application status application status
apr what month
are you a bot you bot
balance what balance
bill balance what bill balance
bill due when bill due
book flight book flight
book hotel book hotel
calculator calculate
calendar calendar
calendar update calendar update
calories calories dish
cancel cancel action
cancel reservation cancel reservation
car rental car rental
card declined card declined
carry on carry-on rule
change accent change accent
change ai name change bot name
change language change language
change speed change speed
change user name change user name
change volume change volume
confirm reservation confirm reservation
cook time cook time
credit limit credit limit
credit limit change credit limit change
credit score credit score
current location what current location
damaged card damaged card
date what date
definition definition
direct deposit direct deposit
directions what direction
distance what distance
do you have pets do you have pet
exchange rate exchange rate
expiration date expiration date
find phone find phone
flight status flight status
flip coin flip coin
food last food last
freeze account block account
fun fact fun fact
gas gas level
gas type gas type
goodbye goodbye
greeting greeting
how busy how busy
how old are you how old you
improve credit score improve credit score
income what income
ingredient substitution ingredient substitution
ingredients list ingredient list
insurance insurance benefit
insurance change insurance change
interest rate interest rate
international fees international fee
international visa international visa
jump start jump start
last maintenance last maintenance
lost luggage lost luggage
make call make call
maybe maybe
meal suggestion meal suggestion
meaning of life what meaning life
measurement conversion measurement conversion
meeting schedule meeting schedule
min payment minimum payment
mpg what mpg
new card apply card
next holiday next holiday
next song next song
no no
nutrition info nutrition info
oil change how how change oil
oil change when when change oil
order order shopping
order checks order check
order status order status
pay bill pay bill
payday when payday
pin change change pin
play music play music
plug type what plug type
pto balance pto balance
pto request pto request

. . .

Table 1: The taxonomy created for the Larson dataset.

nameId Concepts
. . .

pto request status pto request status
pto used pto used
recipe recipe dish
redeem rewards redeem reward
reminder reminder action
reminder update reminder update
repeat repeat action
replacement card duration replacement card duration
report fraud report fraud
report lost card report lost card
reset settings reset setting
restaurant reservation restaurant reservation
restaurant reviews restaurant review
restaurant suggestion restaurant suggestion
rewards balance reward balance
roll dice roll dice
rollover 401k rollover 401k
routing find routing
schedule maintenance schedule maintenance
schedule meeting schedule meeting
share location share location
shopping list shopping list
shopping list update shopping list update
smart home smart home
spelling spelling word
spending history spending history
sync device sync device
taxes what taxes
tell joke tell joke
text text person
thank you thank
time what time
timer set timer
timezone set timezone
tire change tire change
tire pressure tire pressure
todo list todo list
todo list update todo list update
traffic what traffic
transactions card transaction
transfer transfer account
translate translate word
travel alert travel alert
travel notification travel notification
travel suggestion travel suggestion
uber get uber
update playlist update playlist
user name user name
vaccines what vaccine
w2 get w2
weather what weather
what are your hobbies what hobby
what can i ask you what ask you
what is your name what name
what song what song
where are you from where you from
whisper mode whisper mode
who do you work for who you work
who made you who made you
yes yes

. . .

Table 2: The taxonomy created for the Larson dataset
(cont.).

D Results of the Proposed Algorithms in
the ChatWorks Dataset

Table 3 shows the results of the proposed three al-
gorithms and the baseline for each workspace in the
ChatWorks dataset. For each metrics, EER, FAR,
and ISER, the table shows the average accuracy and
the standard deviation over the experiments made
with the 20 random splits. The table also lists infor-
mation characterizing the workspaces: number of
intents, number of exemplars, the average number
of exemplars per intent, taxonomy rate, the average
depth of the taxonomy graph, and the number of
different concepts.
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Table 3: The results of the 4 algorithms for each workspace in the ChatWorks dataset, including the average accu-
racy and the standard deviation (20 random splits). The table also lists information characterizing each workspace.


