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Abstract

Recent research on cross-lingual word embed-

dings has been dominated by unsupervised

mapping approaches that align monolingual

embeddings. Such methods critically rely

on those embeddings having a similar struc-

ture, but it was recently shown that the sepa-

rate training in different languages causes de-

partures from this assumption. In this pa-

per, we propose an alternative approach that

does not have this limitation, while requiring

a weak seed dictionary (e.g., a list of identical

words) as the only form of supervision. Rather

than aligning two fixed embedding spaces, our

method works by fixing the target language

embeddings, and learning a new set of embed-

dings for the source language that are aligned

with them. To that end, we use an exten-

sion of skip-gram that leverages translated con-

text words as anchor points, and incorporates

self-learning and iterative restarts to reduce

the dependency on the initial dictionary. Our

approach outperforms conventional mapping

methods on bilingual lexicon induction, and

obtains competitive results in the downstream

XNLI task.

1 Introduction

Cross-lingual word embeddings (CLWEs) repre-

sent words from two or more languages in a shared

space, so that semantically similar words in dif-

ferent languages are close to each other. Early

work focused on jointly learning CLWEs in two

languages, relying on a strong cross-lingual su-

pervision in the form of parallel corpora (Luong

et al., 2015; Gouws et al., 2015) or bilingual dic-

tionaries (Gouws and Søgaard, 2015; Duong et al.,

2016). However, these approaches were later su-

perseded by offline mapping methods, which sepa-

rately train word embeddings in different languages

and align them in an unsupervised manner through

self-learning (Artetxe et al., 2018; Hoshen and

Wolf, 2018) or adversarial training (Zhang et al.,

2017; Conneau et al., 2018a).

Despite the advantage of not requiring any paral-

lel resources, mapping methods critically rely on

the underlying embeddings having a similar struc-

ture, which is known as the isometry assumption.

Several authors have observed that this assumption

does not generally hold, severely hindering the per-

formance of these methods (Søgaard et al., 2018;

Nakashole and Flauger, 2018; Patra et al., 2019). In

later work, Ormazabal et al. (2019) showed that this

issue arises from trying to align separately trained

embeddings, as joint learning methods are not sus-

ceptible to it.

In this paper, we propose an alternative approach

that does not have this limitation, but can still work

without any parallel resources. The core idea of

our method is to fix the target language embed-

dings, and learn aligned embeddings for the source

language from scratch. This prevents structural

mismatches that result from independently training

embeddings in different languages, as the learning

of the source embeddings is tailored to each partic-

ular set of target embeddings. For that purpose, we

use an extension of skip-gram that leverages trans-

lated context words as anchor points. So as to trans-

late the context words, we start with a weak initial

dictionary, which is iteratively improved through

self-learning, and we further incorporate a restart-

ing procedure to make our method more robust.

Thanks to this, our approach can effectively work

without any human-crafted bilingual resources, re-

lying on simple heuristics (automatically generated

lists of numerals or identical words) or an existing

unsupervised mapping method to build the initial

dictionary. Our experiments confirm the effective-

ness of our approach, outperforming previous map-

ping methods on bilingual dictionary induction and

obtaining competitive results on zero-shot cross-

lingual transfer learning on XNLI.
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2 Related work

Word embeddings. Embedding methods learn

static word representations based on co-occurrence

statistics from a corpus. Most approaches use two

different matrices to represent the words and the

contexts, which are known as the input and output

vectors, respectively (Mikolov et al., 2013; Pen-

nington et al., 2014; Bojanowski et al., 2017). The

output vectors play an auxiliary role, being dis-

carded after training. Our method takes advantage

of this fact, leveraging translated output vectors as

anchor points to learn cross-lingual embeddings.

To that end, we build on the Skip-Gram with Neg-

ative Sampling (SGNS) algorithm (Mikolov et al.,

2013), which trains a binary classifier to distinguish

whether each output word co-occurs with the given

input word in the training corpus or was instead

sampled from a noise distribution.

Mapping CLWE methods. Offline mapping

methods separately train word embeddings for each

language, and then learn a mapping to align them

into a shared space. Most of these methods align

the embeddings through a linear map—often en-

forcing orthogonality constraints—and, as such,

they rely on the assumption that the geometric

structure of the separately learned embeddings is

similar. This assumption has been shown to fail

under unfavorable conditions, severely hindering

the performance of these methods (Søgaard et al.,

2018; Vulić et al., 2020). Existing attempts to mit-

igate this issue include learning non-linear maps

in a latent space (Mohiuddin et al., 2020), employ-

ing maps that are only locally linear (Nakashole,

2018), or learning a separate map for each word

(Glavaš and Vulić, 2020). However, all these meth-

ods are supervised, and have the same fundamental

limitation of aligning a set of separately trained

embeddings (Ormazabal et al., 2019).

Self-learning. While early mapping methods re-

lied on a bilingual dictionary to learn the align-

ment, this requirement was alleviated thanks to self-

learning, which iteratively re-induces the dictionary

during training. This enabled learning CLWEs in

a semi-supervised fashion starting from a weak

initial dictionary (Artetxe et al., 2017), or in a com-

pletely unsupervised manner when combined with

adversarial training (Conneau et al., 2018a) or ini-

tialization heuristics (Artetxe et al., 2018; Hoshen

and Wolf, 2018). Our proposed method also incor-

porates a self-learning procedure, showing that this

technique can also be effective with non-mapping

methods.

Joint CLWE methods. Before the populariza-

tion of offline mapping, most CLWE methods ex-

tended monolingual embedding algorithms by ei-

ther incorporating an explicit cross-lingual term in

their learning objective, or directly replacing words

with their translation equivalents in the training

corpus. For that purpose, these methods relied on

some form of cross-lingual supervision, ranging

from bilingual dictionaries (Gouws and Søgaard,

2015; Duong et al., 2016) to parallel or document-

aligned corpora (Luong et al., 2015; Gouws et al.,

2015; Vulić and Moens, 2016). More recently,

Lample et al. (2018) reported positive results learn-

ing regular word embeddings over concatenated

monolingual corpora in different languages, rely-

ing on identical words as anchor points. Wang

et al. (2019) further improved this approach by ap-

plying a conventional mapping method afterwards.

As shown later in our experiments, our approach

outperforms theirs by a large margin.

Freezing. Artetxe et al. (2020) showed that it is

possible to transfer an English transformer to a new

language by freezing all the inner parameters of the

network and learning a new set of embeddings for

the new language through masked language mod-

eling. This works because the frozen transformer

parameters constrain the resulting representations

to be aligned with English. Similarly, our proposed

approach uses frozen output vectors in the target

language as anchor points to learn aligned embed-

dings in the source language.

3 Proposed method

Let xi and x̃i be the input and output vectors of

the ith word in the source language, and yj and

ỹj be their analogous in the target language.1 In

addition, let D be a bilingual dictionary, where

D(i) = j denotes that the ith word in the source

language is translated as the jth word in the target

language. Our approach first learns the target lan-

guage embeddings {yi} and {ỹi} monolingually

using regular SGNS. Having done that, we learn

the source language embeddings {xi} and {x̃i},

constraining them to be aligned with the target

language embeddings according to the dictionary

D. For that purpose, we propose an extension of

1Recall that {x̃i} and {ỹj} are auxiliary, and the goal is
to learn aligned {xi} and {yj} (see §2).
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Algorithm 1 Proposed method

Input: D (dictionary), Csrc (src corpus), Ctgt (tgt corpus)
Output: {xi}, {yi} (aligned src and tgt embs)
Hparams: T (updates), R (restarts), K (re-inductions)
1: {yi}, {ỹi} ← SGNS(Ctgt) ⊲ learn target embedings
2: for r ← 1 to R do ⊲ iterative restart (§3.3)
3: {xi}, {x̃i} ← RANDOM INIT()
4: for it← 1 to T do
5: (wi, wj)← NEXT INSTANCE(Csrc)
6: BACKPROP(L(wi, wj)) ⊲ core method (§3.1)
7: if it mod (T/K) = 0 then ⊲ self-learn (§3.2)
8: D ← REINDUCE({xi}, {yi})
9: end if

10: end for
11: end for

SGNS that replaces the output vectors in the source

language with their translation equivalents in the

target language, which act as anchor points (§3.1).

So as to make our method more robust to a weak

initial dictionary, we incorporate a self-learning

procedure that re-estimates the dictionary during

training (§3.2), and perform iterative restarts (§3.3).

Algorithm 1 summarizes our method.

3.1 SGNS with cross-lingual anchoring

Given a pair of words (wi, wj) co-occurring in the

source language corpus, we define a generalized

SGNS objective as follows:

L(wi, wj) = log σ (xwi
· ctx(wj))+

k
∑

i=1

Ewn∼Pn(w) [log σ (−xwi
· ctx(wn))]

where k is the number of negative samples, Pn(w)
is the noise distribution, and ctx(wt) is a function

that returns the output vector to be used for wt. In

regular SGNS, this function would simply return

the output vector of the corresponding word, so that

ctx(wt) = x̃wt
. In contrast, our approach replaces

it with its counterpart in the target language if wt

is in the dictionary:

ctx(wt) =

{

ỹD(wt) if wt ∈ D

x̃wt
otherwise

During training, the replaced vectors {ỹi} are

kept frozen, acting as anchor points so that the

resulting embeddings {xi} are aligned with their

counterparts {yi} in the target language.

3.2 Self-learning

As shown later in our experiments, the performance

of our basic method is largely dependent on the

quality of the bilingual dictionary itself. However,

this is not different for conventional mapping meth-

ods, which also rely on a bilingual dictionary to

align separately trained embeddings in different

languages. So as to overcome this issue, modern

mapping approaches rely on self-learning, which

alternates between aligning the embeddings and

re-inducing the dictionary in an iterative fashion

(Artetxe et al., 2017).

We adopt a similar strategy, and re-induce the

dictionary D a total of K times during training,

where K is a hyperparameter. To that end, we first

obtain the translations for each source word using

CSLS retrieval (Conneau et al., 2018a):

D(i) = argmax
j

CSLS(xi,yj)

Having done that, we discard all entries that do

not satisfy the following cyclic consistency condi-

tion:2

i ∈ D ⇐⇒

i = argmax
k

cos
(

xk,yargmaxj cos(xi,yj)

)

3.3 Iterative restarts

While self-learning is able to improve a weak ini-

tial dictionary throughout training, the method is

still susceptible to poor local optima. This can be

further exacerbated by the learning rate decay com-

monly used with SGNS, which makes it increas-

ingly difficult to recover from a poor solution as

training progresses. So as to overcome this issue,

we sequentially run the entire SGNS training R

times, where R is a hyperparameter of the method.

We use the output from the previous run as the ini-

tial dictionary, but all the other parameters are reset

and the full training process is run from scratch.

4 Experimental setup

We next describe the systems explored in our ex-

periments (§4.1), the data and procedure used to

train them (§4.2), and the evaluation tasks (§4.3).

4.1 Systems

We compare 3 model families in our experiments:

Offline mapping. This approach learns mono-

lingual embeddings in each of the languages sepa-

rately, which are then mapped into a common space

2We define our cyclic consistency condition over cosine
similarity, which we found to be more restrictive than CSLS
(in that it discards more entries) and work better in our prelim-
inary experiments.
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en de es fr fi ru zh

Tokens 2,390 860 601 724 91 498 234
Sentences 101 42 22 28 6 25 10

Table 1: Size of the training corpora (millions).

through a linear transformation. We experiment

with 3 popular methods from the literature: MUSE

(Conneau et al., 2018a), ICP (Hoshen and Wolf,

2018) and VecMap (Artetxe et al., 2018). We use

the original implementation of each method in their

unsupervised mode with default hyperparameters.

Joint learning + offline mapping. This ap-

proach jointly learns word embeddings for two

languages over their concatenated monolingual cor-

pora, where identical words act as anchor points

(Lample et al., 2018). Having done that, the vo-

cabulary is partitioned into one shared and two lan-

guage specific subsets, which are further aligned

through an offline mapping method (Wang et al.,

2019). We use the joint align implementation from

the authors with default hyperparameters, which

relies on fastText for the joint learning step and

MUSE for the mapping step.3

Cross-lingual anchoring. Our proposed

method, described in Section 3. We explore 3 alter-

natives to obtain the initial dictionary: (i) identical

words, where Di = j if the ith source word and

the jth target word are identically spelled, (ii)

numerals, a subset of the former where identical

words are further restricted to be sequences of

digits, and (iii) unsupervised mapping, where

we use the baseline VecMap system described

above to induce the initial dictionary.4 The first

two variants make assumptions on the writing

system of different languages, which is usually

regarded as a weak form of supervision (Artetxe

et al., 2017; Søgaard et al., 2018), whereas the

latter is strictly unsupervised, yet dependant on an

additional system from a different family.

4.2 Data and training details

We learn CLWEs between English and six other

languages: German, Spanish, French, Finnish, Rus-

sian and Chinese. Following common practice, we

3The original implementation only supports the supervised
mode with RCSLS mapping, so we modified it to use MUSE
in the unsupervised setting as described in the original paper.

4We use CSLS retrieval and apply the cyclic consistency
restriction as described in Section 3.2.

de-en es-en fr-en fi-en ru-en zh-en

Identical 44.8 57.6 63.8 37.7 4.3 3.3
Numerals 1.4 1.6 1.6 2.4 1.1 0.2
Mapping 53.3 67.3 69.7 22.3 28.2 17.1

Table 2: Size of the initial dictionaries (thousands).

use Wikipedia as our training corpus,5 which we

preprocessed using standard Moses scripts, and re-

strict our vocabulary to the most frequent 200K

tokens per language. In the case of Chinese, word

segmentation was done using the Stanford Seg-

menter. Table 1 summarizes the statistics of the

resulting corpora, while Table 2 reports the sizes

of the initial dictionaries derived from it for our

proposed method.

For joint align, we directly run the official imple-

mentation over our tokenized corpus as described

above. All the other systems take monolingual em-

beddings as input, which we learn using the SGNS

implementation in word2vec.6 For our proposed

method, we set English as the target language, fix

the corresponding monolingual embeddings, and

learn aligned embeddings in the source language

using our extension of SGNS (§3).7 We set the

number of restarts R to 3, the number of reinduc-

tions per restart K to 50, and the number of epochs

to 10 #trg sents
#src sents

, which makes sure that the source

language gets a similar number of updates to the

10 epochs done for English.8 For all the other

hyperparameters, we use the same values as for

the monolingual embeddings. We made all of our

development decisions based on preliminary exper-

iments on English-Finnish, without any systematic

hyperparameter exploration. Our implementation

runs on CPU, except for the dictionary reinduction

steps, which run on a single GPU for around one

5We extracted the corpus from the February 2019 dump
using the WikiExtractor tool.

6We use 10 negative samples, a sub-sampling threshold of
1e-5, 300 dimensions, and 10 epochs. Note that joint align
also learns 300-dimensional vectors, but runs fastText with
default hyperparameters under the hood.

7In our preliminary experiments, we observed our pro-
posed method to be quite sensitive to which language is the
source and which one is the target. We find the language with
the largest corpus to perform best as the target, presumably
because the corresponding monolingual embeddings are bet-
ter estimated, so it is more appropriate to fix them and learn
aligned embeddings for the other language. Following this
observation, we set English as the target language for all pairs,
as it is the language with the largest corpus.

8For a fair comparison, we also tried using the same num-
ber of epochs for the baseline systems, but this performed
worse than the reported numbers with 10 epochs.
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de-en es-en fr-en fi-en ru-en zh-en
avg

→ ← → ← → ← → ← → ← → ←

OFFLINE MAPPING

MUSE (Conneau et al., 2018a) 72.9 74.8 83.5 83.0 81.7 82.3 0.3∗ 0.3∗ 0.0∗ 0.3∗ 39.5 30.9 45.8
ICP (Hoshen and Wolf, 2018) 73.9 75.1 82.5 83.2 80.5 82.3 0.3∗ 0.3∗ 59.5 46.1 0.1∗ 2.8∗ 48.9
VecMap (Artetxe et al., 2018) 74.5 76.6 83.5 83.3 82.7 83.0 61.9 45.1 65.7 49.0 42.4 33.4 65.1

JOINT LEARNING + OFFLINE MAPPING

Joint Align (Wang et al., 2019) 70.7 68.7 71.9 69.6 79.2 78.0 33.1 29.1 31.3 25.1 3.6∗ 18.4 48.2

CROSS-LINGUAL ANCHORING

Ours (identical init) 76.7 77.9 86.5 84.1 85.0 84.8 63.3 51.3 65.3 51.6 42.1 38.9 67.3
Ours (numeral init) 76.9 77.7 86.3 84.1 85.0 84.9 63.6 50.6 64.9 51.4 1.4∗ 4.9∗ 61.0
Ours (mapping init) 76.8 78.1 86.3 84.2 84.9 84.9 64.2 51.5 65.7 51.5 42.5 38.8 67.5

Table 3: Main BLI results on the MUSE dataset (P@1). Asterisks denote divergence (< 5% P@1).

hour in total.

4.3 Evaluation tasks

As described next, we evaluate our method on

two tasks: Bilingual Lexicon Induction (BLI) and

Cross-lingual Natural Language Inference (XNLI).

BLI. Following common practice, we induce a

bilingual dictionary through CSLS retrieval (Con-

neau et al., 2018a) for each set of cross-lingual

embeddings, and evaluate the precision at 1 (P@1)

with respect to the gold standard test dictionary

from the MUSE dataset (Conneau et al., 2018a).

For the few out-of-vocabulary source words, we

revert to copying as a back-off strategy,9 so our

reported numbers are directly comparable to prior

work in terms of coverage.

XNLI. We train an English natural language in-

ference model on MultiNLI (Williams et al., 2018),

and evaluate the zero-shot cross-lingual transfer

performance on the XNLI test set (Conneau et al.,

2018b) for the subset of our languages covered by it.

To that end, we follow Glavaš et al. (2019) and train

an Enhanced Sequential Inference Model (ESIM)

on top of our original English embeddings, which

are kept frozen during training. At test time, we

transfer into the rest of the languages by plugging

in the corresponding aligned embeddings. Note

that we use the exact same English model for our

proposed method and the baseline MUSE and ICP

systems,10 which only differ in the set of aligned

9This has a negligible impact in practice, as it accounts for
less than 1.4% of the test cases. Moreover, all of our systems
use the same underlying vocabulary, so they are affected in
the exact same way.

10This is possible because they all fix the target language
embeddings (English in this case) and align the embeddings

embeddings used for cross-lingual transfer. In con-

trast, VecMap and joint align also manipulate the

target English embeddings, which would require

training a separate model for each language pair,

so we decide to exclude them from this set of ex-

periments.11

5 Results

We next discuss our main results on BLI (§5.1) and

XNLI (§5.2), followed by our ablation study (§5.3)

and error analysis (§5.4) on BLI.

5.1 BLI

Table 3 comprises our main BLI results. We ob-

serve that our method obtains the best results in

all directions (matched by VecMap in Russian-

English), outperforming the strongest baseline by

2.4 points on average for the mapping based initial-

ization. Our improvements are more pronounced in

the backward direction (3.1 points on average) but

still substantial in the forward direction (1.7 points

on average).

It is worth noting that some systems fail to con-

verge to a good solution for the most challeng-

ing language pairs. This includes our proposed

method in the case of Chinese-English when using

the numeral-based initialization, which we attribute

to the smaller size of the initial dictionary (only 244

entries, see Table 2). Other than that, we observe

that our approach obtains very similar results re-

gardless of the initial dictionary. Quite remarkably,

in the source language with them, either through mapping
(MUSE, ICP) or learning from scratch (ours).

11In addition to the computational overhead, having sepa-
rate models introduces some variance, while our comparison
is more direct.
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de-en es-en fr-en ru-en
avg

→ ← → ← → ← → ←

Conneau et al. (2018a) 72.2 74.0 83.3 81.7 82.1 82.3 59.1 44.0 72.3
Hoshen and Wolf (2018) 73.0 74.7 84.1 82.1 82.9 82.3 61.8 47.5 73.6
Grave et al. (2018) 73.3 75.4 84.1 82.8 82.9 82.6 59.1 43.7 73.0
Alvarez-Melis and Jaakkola (2018) 72.8 71.9 80.4 81.7 78.9 81.3 43.7 45.1 69.5
Yang et al. (2018) 70.3 71.5 79.3 79.9 78.9 78.4 - - -
Mukherjee et al. (2018) - - 79.2 84.5 - - - - -
Alvarez-Melis et al. (2018) 71.1 73.8 81.8 81.3 81.6 82.9 55.4 41.7 71.2
Xu et al. (2018) 67.0 69.3 77.8 79.5 75.5 77.9 - - -
Wang et al. (2019) 72.2 74.2 84.2 81.4 83.6 82.8 58.3 45.0 72.7
Zhou et al. (2019) 74.4 77.2 84.9 82.8 83.5 83.1 63.6 49.2 74.8
Li et al. (2020) 74.3 75.3 84.6 82.4 83.7 82.6 - - -

Ours (mapping init) 76.8 78.1 86.3 84.2 84.9 84.9 65.7 51.5 76.6

Table 4: BLI results on MUSE dataset in comparison with prior published results (P@1). All systems are fully

unsupervised (except that of Zhou et al. (2019), which uses identical words as a seed dictionary), and use SGNS

embeddings trained on Wikipedia.

en de es fr ru zh

MUSE 73.9 65.0 68.1 67.9 39.1∗ 61.4
ICP 73.9 62.2 64.2 65.7 59.4 36.1∗

Ours (identical init) 73.9 65.0 68.7 67.1 63.5 49.8
Ours (numeral init) 73.9 65.0 68.6 67.1 63.3 34.9∗

Ours (mapping init) 73.9 65.1 68.6 67.0 63.5 49.4

Table 5: XNLI results (accuracy). Asterisks denote di-

vergence (< 5% P@1 in BLI).

the variant using VecMap for initialization (map-

ping init) is substantially stronger than VecMap

itself despite not using any additional training sig-

nal.

So as to put our results into perspective, Table 4

compares them to previous numbers reported in the

literature. Note that the numbers are comparable in

terms of coverage and all systems use Wikipedia

as the training corpus, although they might differ

on the specific dump used and the preprocessing

details.12 As it can be seen, our approach obtains

the best results by a substantial margin.13

5.2 XNLI

We report our XNLI results in Table 5. We observe

that our method is competitive with the baseline

12In particular, most mapping methods use the official
Wikipedia embeddings from fastText. Unfortunately, the pre-
processed corpus used to train these embeddings is not public,
so works that explore other approaches, like ours, need to use
their own pre-processed copy of Wikipedia.

13Artetxe et al. (2019) report even stronger results based on
unsupervised machine translation instead of direct retrieval
with CLWEs. Note, however, that their method still relies on
cross-lingual embeddings to build the underlying phrase-table,
so our improvements should be largely orthogonal to theirs.

Basic method (identical init) 53.9
+ self-learning 66.9

+ iterative restarts 67.3

Basic method (numeral init) 2.6
+ self-learning 53.9

+ iterative restarts 61.0

Basic method (mapping init) 67.5
+ self-learning 67.5

+ iterative restarts 67.5

Table 6: Ablation results on BLI (average P@1)

mapping systems, achieving the best results on 3

out of the 5 transfer languages by a small margin.

Nevertheless, it significantly lags behind MUSE

on Chinese, even if the exact same set of cross-

lingual embeddings performed better than MUSE

at BLI. While striking, similar discrepancies be-

tween BLI and XNLI performance where also ob-

served in previous studies (Glavaš et al., 2019).

Finally, we observe that the initial dictionary has

a negligible impact in the performance of our pro-

posed method, which supports the idea that our

approach converges to a similar solution given any

reasonable initialization.

5.3 Ablation study

So as to understand the role of self-learning and

the iterative restarts in our approach, we perform

an ablation study and report our results in Table 6.

We observe that the contribution of these compo-

nents is greatly dependant on the initial dictionary.

For the numeral initialization, the basic method

works poorly, and both extensions bring large im-

provements. In contrast, the identical initialization
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Figure 1: Finnish-English learning curves (BLI P@1). The iterative restarts happen at the vertical lines.

does not benefit from iterative restarts, but self-

learning still plays a major role. In the case of

the mapping-based initialization, the basic method

is already very competitive. This suggests that

both the self-learning and the iterative restarts are

helpful to make the method more robust to a weak

initialization, and have a minor impact otherwise.

In order to better understand the underlying

learning dynamics, we analyze the learning curves

for Finnish-English in Figure 1. We observe that,

when the initial dictionary is strong, our method

surpasses the baseline and stabilizes early. In con-

trast, convergence is much slower when using the

weak numeral-based initialization, and the iterative

restarts are critical to escape poor local optima.

5.4 Error analysis

So as to better understand where our improvements

in BLI are coming from, we perform an error anal-

ysis on the Spanish-English direction. To that end,

we manually inspect the 69 instances for which our

method (with mapping-based initialization) pro-

duced a correct translation while VecMap failed

according to the gold standard, as well as the 26

instances for which the opposite was true. We then

categorize these errors into several types, which are

summarized in Table 7.

We observe that, in 52.6% of the 95 analyzed

instances, the translation produced by our method

is identical to the source word, while this percent-

age goes down to 4.2% for VecMap. This tendency

of our approach to copy its input is striking, as the

model has no notion about the words being iden-

tically spelled.14 A large portion of these cases

14The variants of our system with identical or numeral
initialization do indirectly see this signal, but the one analyzed
here is initialized with the VecMap mapping.

correspond to named entities, where copying is the

right behavior, while VecMap outputs a different

proper noun. There are also some instances where

the input word is in the target language,15 which

can be considered an artifact of the dataset, but

copying also seems the most reasonable behavior

in these cases. Finally, there are also a few cases

where the input word is present in the target vocab-

ulary, which is selected by our method and counted

as an error. Once again, we consider these to be

an artifact of the dataset, as copying seems a rea-

sonable choice if the input word is considered to

be part of the target language vocabulary. The re-

maining cases where neither method copies mostly

correspond to common errors, where one of the sys-

tems (most often VecMap) outputs a semantically

related but incorrect translation. However, there

are also a few instances where both translations

are correct, but one of them is missing in the gold

standard.

With the aim to understand the impact of identi-

cal words in our original results, we re-evaluated

the systems using a filtered version of the MUSE

gold standard dictionaries, where we removed all

source words that were included in the set of can-

didate translations. In order to be fair, we filtered

out identical words from the output of the system,

reverting to the second highest-ranked translation

whenever the first one is identical to the source

word. The results for the strongest system in each

family are shown in Table 8. Even if the mar-

gin of improvement is reduced compared to Table

3, the best results are still obtained by our pro-

posed method, bringing an average improvement

15English words will often appear in other languages as part
of named entities (e.g., “pink” as part of “Pink Floyd”), which
explains the presence of such words in the Spanish vocabulary.
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Examples

Gold standard Type Cases Source VecMap Ours

Ours right
–

VecMap wrong

Common errors 30.5%
derrotas victories defeats

campeona medalist champion

Named entity, ours copies 21.1%
philadelphia pittsburgh philadelphia

susana beatriz susana

EN word in ES vocab, ours copies 15.8%
pink tangerine pink
space sci space

Gap in gold standard 5.3%
adecuada appropriate adequate
marquesa marchioness marquise

VecMap right
–

Ours wrong

Common errors 15.8%
conservadores conservatives liberals

noveno ninth tenth

ES word in EN vocab, ours copies 7.4%
calzada roadway calzada
cantera quarry cantera

Gap in gold standard 4.2%
ferroviario railway rail
situados situated positioned

Table 7: BLI error analysis on Spanish-English. See Section 5.4 for details.

de-en es-en fr-en fi-en ru-en zh-en
avg

→ ← → ← → ← → ← → ← → ←

VecMap (Artetxe et al., 2018) 68.3 70.2 85.1 79.4 80.8 78.1 58.4 38.9 66.1 48.6 45.0 34.5 62.8
Joint Align (Wang et al., 2019) 57.0 53.3 63.0 57.4 70.2 64.4 4.0∗ 0.7∗ 31.3 22.4 3.5∗ 0.9∗ 35.7

Ours (identical init) 68.9 72.2 86.0 80.7 81.5 80.0 54.0 41.0 65.7 50.9 44.6 38.1 63.6
Ours (mapping init) 68.9 72.3 85.8 80.8 81.4 80.2 55.4 41.6 66.1 51.0 45.1 37.9 63.9

Table 8: BLI results on MUSE with identical words removed (P@1). Asterisks denote divergence (< 5% P@1).

of 1.1 points. It is also worth noting that joint align,

which shares a portion of the vocabulary for both

languages (and will thus translate all words in the

shared vocabulary identically), suffers a large drop

in performance. This highlights the importance

of accompanying quantitative BLI evaluation with

an error analysis as urged by previous studies (Ke-

mentchedjhieva et al., 2019).

6 Conclusions and future work

Our approach for learning CLWEs addresses the

main limitations of both offline mapping and joint

learning methods. Different from mapping ap-

proaches, it does not suffer from structural mis-

matches arising from independently training em-

beddings in different languages, as it works by

constraining the learning of the source embeddings

so they are aligned with the target ones. At the

same time, unlike previous joint methods, our sys-

tem can work without any parallel resources, re-

lying on numerals, identical words or an existing

mapping method for the initialization. We achieve

this by combining cross-lingual anchoring with

self-learning and iterative restarts. While recent re-

search on CLWEs has been dominated by mapping

approaches, our work shows that the fundamental

techniques that popularized these methods (e.g.,

the use of self-learning to relax the need for cross-

lingual supervision) can also be effective beyond

this paradigm.

Despite its simplicity, our experiments on BLI

show the superiority of our method when com-

pared to previous mapping systems. We comple-

ment these results with additional experiments on

a downstream task, where our method obtains com-

petitive results, as well as an ablation study and a

systematic error analysis. We identify a striking

tendency of our method to translate words identi-

cally, even if it has no notion of the words being

identically spelled. Thanks to this, our method

is particularly strong at translating named entities,

but we show that our improvements are not lim-

ited to this phenomenon. These insights confirm

the value of accompanying quantitative results on

BLI with qualitative evaluation (Kementchedjhieva

et al., 2019) and/or other tasks (Glavaš et al., 2019).
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In the future, we would like to further explore

CLWE methods that go beyond the currently dom-

inant mapping paradigm. In particular, we would

like to remove the requirement of a seed dictio-

nary altogether by using adversarial learning, and

explore more elaborated context translation and

dictionary re-induction schemes.
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