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Abstract

The goal of argumentation mining is to au-
tomatically extract argumentation structures
from argumentative texts. Most existing meth-
ods determine argumentative relations by ex-
haustively enumerating all possible pairs of ar-
gument components, which suffer from low ef-
ficiency and class imbalance. Moreover, due
to the complex nature of argumentation, there
is, so far, no universal method that can address
both tree and non-tree structured argumenta-
tion. Towards these issues, we propose a neu-
ral transition-based model for argumentation
mining, which incrementally builds an argu-
mentation graph by generating a sequence of
actions, avoiding inefficient enumeration op-
erations. Furthermore, our model can han-
dle both tree and non-tree structured argumen-
tation without introducing any structural con-
straints. Experimental results show that our
model achieves the best performance on two
public datasets of different structures.

1 Introduction

Argumentation mining (AM) aims to identify the ar-
gumentation structures in text, which has received
widespread attention in recent years (Lawrence and
Reed, 2019). It has been shown beneficial in a
broad range of fields, such as information retrieval
(Carstens and Toni, 2015; Stab et al., 2018), auto-
mated essay scoring (Wachsmuth et al., 2016; Ke
et al., 2018), and legal decision support (Palau and
Moens, 2009; Walker et al., 2018). Given a piece of
paragraph-level argumentative text, an AM system
first detects argument components (ACs), which
are segments of text with argumentative meaning,
and then extracts the argumentative relations (ARs)
between ACs to obtain an argumentation graph,
where the nodes and edges represent ACs and ARs,
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[ Either State or Federal law should provide some penalty for

passing an NSF or “closed account” check that includes a

presumption of guilt. ]AC1 [ The check either bounced or it did

not. ]AC2 [ There’s not a lot of grey area here. ]AC3 [ That said,

either State or Federal law should also allow the drafter of the

check a “safe harbor” wherein they ···]AC4 [Michigan has such

a procedure and it seems relatively equitable. ]AC5
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Figure 1: An example of argumentation mining from
the CDCP dataset (Park and Cardie, 2018). Policy,
Fact, and Value represent the types of ACs and Reason
refers to the types of ARs. Note that, the CDCP dataset
we use is preprocessed by Niculae et al. (2017).

respectively. An example of AM is shown in Fig-
ure 1, where the text is segmented into five ACs,
and there are four ARs. In this instance, the types
of AC2 and AC3 are Fact (non-experiential objec-
tive proposition) and Value (proposition containing
value judgments), respectively. In addition, there
is an AR from AC2 to AC3, i.e., “The check either
bounced or it did not.” is the reason of “There’s
not a lot of grey area here.”, for the latter is a value
judgment based on the fact of the former.

Generally, AM involves several subtasks, in-
cluding 1) Argument component segmentation
(ACS), which separates argumentative text from
non-argumentative text; 2) Argument component
type classification (ACTC), which determines the
types of ACs (e.g., Policy, Fact, Value, etc.); 3)
Argumentative relation identification (ARI), which
identifies ARs between ACs; 4) Argumentative rela-
tion type classification (ARTC), which determines
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the types of ARs (e.g., Reason and Evidence). Most
previous works assume that subtask 1) ACS has
been completed, that is, ACs have been segmented,
and focus on other subtasks (Potash et al., 2017;
Kuribayashi et al., 2019; Chakrabarty et al., 2019).
In this paper, we also make such an assumption,
and perform ACTC and ARI on this basis.

Among all the subtasks of AM, ARI is the most
challenging because it requires understanding com-
plex semantic interactions between ACs. Most
previous works exhaustively enumerate all possible
pairs of ACs (i.e., all ACs are matched to each other
by Cartesian products) to determine the ARs be-
tween them (Kuribayashi et al., 2019; Morio et al.,
2020). However, these approaches are of low ef-
ficiency and can cause class imbalance, since the
majority of AC pairs have no relation. Besides, due
to different annotation schemes, there are mainly
two kinds of structures of argumentation graphs,
tree (Stab and Gurevych, 2014; Peldszus, 2014) and
non-tree (Park and Cardie, 2018). Briefly, in tree
structures, each AC has at most one outgoing AR,
but there is no such restriction in non-tree structures
(Figure 1). However, studies on these two kinds
of structures are usually conducted separately. To
date, there is no universal method that can address
both tree and non-tree structured argumentation
without any corpus-specific constraints.

Towards these issues, we present a neural
transition-based model for AM, which can clas-
sify the types of ACs and identify ARs simultane-
ously. Our model predicts a sequence of actions to
incrementally construct a directed argumentation
graph, often with O(n) parsing complexity. This
allows our model to avoid inefficient enumeration
operations and reduce the number of potential AC
pairs that need evaluating, thus alleviating the class
imbalance problem and achieving speedup. Also,
our transition-based model does not introduce any
corpus-specific structural constraints, and thus can
handle both tree and non-tree structured argumenta-
tion, yielding promising generalization ability. Fur-
thermore, we enhance our transition-based model
with pre-trained BERT (Devlin et al., 2019), and
use LSTM (Hochreiter and Schmidhuber, 1997) to
represent the parser state of our model.

Extensive experiments on two public datasets
with different structures show that our transition-
based model outperforms previous methods, and
achieves state-of-the-art results. Further analysis
reveals that our model is of low parsing complexity

and has a strong structure adaptive ability. To the
best of our knowledge, we are the first to investigate
transition-based methods for AM.

2 Related Work

In computational AM, there are mainly two types
of approaches to model argumentation structures,
that is, tree and non-tree.

2.1 Tree Structured AM

Most previous works assume that the argumenta-
tion graphs can be viewed as tree or forest struc-
tures, which makes the problem computationally
easier because many tree-based structural con-
straints can be applied.

Under the theory of Van Eemeren et al. (2004),
Palau and Moens (2009) modeled argumentation
in the legal text as tree structures and used hand-
crafted context-free grammar to identify these
structures. Presented by Stab and Gurevych (2014,
2017), the tree structured Persuasive Essay (PE)
dataset has been utilized in a number of studies
in AM. Following this dataset, Persing and Ng
(2016) and Stab and Gurevych (2017) leveraged the
Integer Linear Programming (ILP) framework to
jointly predict ARs and AC types, in which several
structural constraints are defined to ensure the tree
structures. The arg-microtext (MT) dataset, cre-
ated by Peldszus (2014), is another tree structured
dataset. Studies on this dataset usually apply de-
coding mechanisms based on tree structures, such
as Minimum Spanning Trees (MST) (Peldszus and
Stede, 2015) and ILP (Afantenos et al., 2018).

Regarding neural network-based methods, Eger
et al. (2017) studied AM as a dependency pars-
ing and a sequence labeling problem with multiple
neural networks. Potash et al. (2017) introduced
the sequence-to-sequence based Pointer Networks
(Vinyals et al., 2015) to AM, and used the output
of encoder and decoder to identify AC types and
the presence of ARs, respectively. Kuribayashi
et al. (2019) proposed an argumentation structure
parsing model based on span representation, which
used ELMo (Peters et al., 2018) to obtain represen-
tations for ACs.

2.2 Non-tree Structured AM

Those studies described in Section 2.1 are all based
upon the assumption that the argumentation forms
tree structures. However, this assumption is some-
what idealistic since argumentation structures in
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real-life scenarios may not be such well-formed.
Hence, some studies have focused on non-tree
structured AM, and these studies typically use the
Consumer Debt Collection Practices (CDCP) (Park
and Cardie, 2018) dataset. Regarding this dataset,
Niculae et al. (2017) presented a structured learning
approach based on factor graphs, which can also
handle the tree structured PE dataset. However,
the factor graph needs to be specifically designed
according to the types of argumentation structures.
Galassi et al. (2018) adopted residual networks
for AM on the CDCP dataset. Recently, Morio
et al. (2020) proposed a model devoted to non-tree
structured AM, with a task-specific parameteriza-
tion module to encode ACs and a biaffine attention
module to capture ARs.

To the best of our knowledge, until now there
is no universal method that can address both tree
and non-tree structured argumentation without any
corpus-specific design. Thus, in this work, we
fill this gap by proposing a neural transition-based
model that can identify both tree and non-tree argu-
mentation structures without introducing any prior
structural assumptions.

2.3 Transition-based Methods

Transition-based methods are commonly used in
dependency parsing (Chen and Manning, 2014;
Gómez-Rodrı́guez et al., 2018), and has also
been successfully applied to other NLP tasks with
promising performance, such as discourse parsing
(Yu et al., 2018), information extraction (Zhang
et al., 2019), word segmentation (Zhang et al.,
2016) and mention recognition (Wang et al., 2018).

3 Task Definition

Following previous works (Potash et al., 2017;
Kuribayashi et al., 2019), we assume subtask 1)
ACS has been completed, i.e., the spans of ACs
are given. Then, we aim at jointly classifying AC
types (ACTC) and determining the presence of ARs
(ARI). The reason why we do not jointly conduct
AR type classification (ARTC) is that performing
ARTC along with ACTC and ARI jointly will hurt
the overall performance. More details on this issue
will be discussed in Section 6.4.

Formally, we assume a piece of argumentation
related paragraph P = (w1, w2, . . . , wm) consist-
ing of m tokens and a set X = (x1, x2, . . . , xn)
consisting of n AC spans are given. Each AC span
xi is a tuple containing the beginning token index

(𝑏1, 𝑒1)(𝑏1, 𝑒1)
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with precondition

action  prediction
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Figure 2: The architecture of our model. ARs are iden-
tified by the action prediction. The types of ACs are
determined by the AC type classifier.

bi and the ending token index ei of this AC, i.e.,
xi = (bi, ei). The goal is to classify the types
of ACs and identify the ARs, and finally obtain a
directed argumentation graph with ACs and ARs
representing nodes and edges, respectively.

4 Our Approach

We present a neural transition-based model for AM,
which can jointly learn ACTC and ARI. Our model
generates a sequence of actions in terms of the
parser state to incrementally build an argumenta-
tion graph. We utilize BERT and LSTM to rep-
resent our parser state, which contains a stack σ
to store processed ACs, a buffer β to store unpro-
cessed ACs, a delay set D to record ACs that need
to be removed subsequently, and an action list α
to record historical actions. Then, the learning
problem is framed as: given the parser state of
current step t: (σt,βt, Dt,αt), predict an action
to determine the parser state of the next step, and
simultaneously identify ARs according to the pre-
dicted action. Figure 2 shows the architecture of
our model. In the following, we first introduce
our transition system, then describe the parser state
representation.
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Action Change of state Precondition
SH (σ0|σ1|σ, β0|β, D,R)⇒ (β0|σ0|σ1|σ, β, D,R) σ1 /∈ D ∧ β 6= [ ]

DEd (σ0|σ1|σ, β0|β, D,R)⇒ (σ0|σ, β0|β, D − {σ1}, R) σ1 ∈ D ∧ β 6= [ ]
DE (σ0|σ1|σ, |β, D,R)⇒ (σ0|σ, |β, D,R) β = [ ]
RA (σ0|σ1|σ, |β, D,R)⇒ (σ1|σ, |β, D,R ∪ {σ0 → σ1}) β = [ ]
RAd (σ0|σ1|σ, β0|β, D,R)⇒ (β0|σ0|σ1|σ, β, D ∪ {σ0}, R ∪ {σ0 → σ1}) β 6= [ ]
LA (σ0|σ1|σ, β0|β, D,R)⇒ (σ0|σ, β0|β, D,R ∪ {σ0 ← σ1})

Table 1: Actions designed in our transition system. R denotes the set of ARs extracted so far. For simplicity, we
omit the superscript t and use the subscript i ∈ {0, 1, ...} to denote the element index in stack and buffer. For
example, σ0|σ1|σ denotes the top two items in stack. An action can be selected only if its precondition is satisfied.

Stack Buffer Delay-Set Action AR

σ β D α R

[ ] [1,2,3,4,5] ∅ SH -

[1] [2,3,4,5] ∅ SH -

[2,1] [3,4,5] ∅ RAd 2→ 1

[3,2,1] [4,5] {2} LA 3← 2

[3,1] [4,5] {2} RAd 3→ 1

[4,3,1] [5] {2, 3} DEd -

[4,1] [5] {2} SH -

[5,4,1] [ ] {2} RA 5→ 4

[4,1] [ ] {2} DE -

[4] [ ] {2} - -

Table 2: Transition sequence for the text in Figure 1.
For simplicity, we use indices to denote ACs.

4.1 Transition System

Our transition system contains six types of actions.
Different actions will change the state in different
ways, which are also summarized in Table 1:
• SHIFT (SH): When βt is not empty and σ1 is

not in Dt, pop β0 from βt and move it to the top
of σt.

• DELETE-DELAY (DEd). When βt is not empty
and σ1 is inDt, remove σ1 from σt andDt, and
keep βt unchanged.

• DELETE (DE). When βt is empty, remove σ1

from σt and keep βt and Dt unchanged.
• RIGHT-ARC (RA). When βt is empty, remove
σ0 from σt and assign an AR from σ0 to σ1.

• RIGHT-ARC-DELAY (RAd). When βt is not
empty, pop β0 from βt and move it to the top of
σt. Then assign an AR from σ0 to σ1 and add
σ0 into Dt for delayed deletion. This strategy
can help extract more ARs related to σ0.

• LEFT-ARC (LA). Remove σ1 from σt and assign
an AR from σ1 to σ0.
Table 2 illustrates the golden transition sequence

of the text in Figure 1. This example text contains
five ACs and four ARs. At the initial state, all
ACs are in buffer. Then, a series of actions change
the parser state according to Table 1, and extract
ARs simultaneously. This procedure stops when
meeting the terminal state, that is, buffer is empty
and stack only contains one element.

4.2 State Representation

We employ BERT to obtain the representation of
each AC and use LSTM to encode the long-term
dependencies of stack, buffer and action list.

Representation of ACs. We feed the input para-
graph P = (w1, w2, . . . , wm) into BERT to get
the contextual representation matrix H ∈ Rm×db ,
where db is the vector dimension of the last layer
of BERT. In this way, paragraph P can be repre-
sented as H = (h1,h2, . . . ,hm), where hi is the
contextual representation of the i-th token of P .

Then, we use the AC spans set X =
(x1, x2, . . . , xn) to produce a contextual represen-
tation of each AC from H by mean pooling over the
representations of words in each AC span. Specif-
ically, for the i-th AC with span xi = (bi, ei), the
contextual representation of this AC could be ob-
tained by:

ui =
1

ei − bi + 1

ei∑
j=bi

hj (1)

where ui ∈ Rdb . In addition, following previ-
ous works (Potash et al., 2017; Kuribayashi et al.,
2019), we also combine some extra features with
ui to represent ACs, including the bag-of-words
(BoW) vector, position and paragraph type embed-
ding of each AC1. We denote these features of the
i-th AC as φi. Then, the i-th AC is represented by

1Details of these features are described in Appendix A.
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the concatenation of ui and φi:

ci = [ui;φi] (2)

Hence, the ACs in paragraph P can be represented
as C = (c1, c2, . . . , cn).

Representation of Parser State. Our transition-
based model utilizes the parser state to predict a
sequence of actions. At each step t, we denote
our parser state as (σt,βt, Dt,αt). σt and βt are
stack and buffer, which store the representations of
processed and unprocessed ACs, respectively. Dt

is the delay set that records ACs that need to be
removed from stack subsequently. αt is the action
list that stores the actions generated so far. At the
beginning, all ACs are in the buffer, i.e., the initial
parser state is ([ ], [c1, c2, . . . , cn],∅, [ ]). Then, a
series of predicted actions will iteratively change
the parser state.

Specifically, at step t, we have σt =
(σ0,σ1, . . .), βt = (β0,β1, . . .), where σi and βi
indicate the representations of ACs in the stack and
the buffer at the current state. In addition, we also
have αt = (. . . ,αt−2,αt−1) where αi denotes
the distributed representation of the i-th action ob-
tained by a looking-up table Ea. In order to capture
the context information in the stack σt, we feed it
into a bidirectional LSTM:

St = [s0, s1, . . .]

= BiLSTMs([σ0,σ1, . . .])
(3)

where St ∈ R|σt|×2dl is the output of LSTM from
both directions, |σt| is the size of stack, and dl is
the hidden size of LSTM. Similarly, we can obtain
the contextual representation of βt by:

Bt = [b0,b1, . . .]

= BiLSTMb([β0,β1, . . .])
(4)

where Bt ∈ R|βt|×2dl , |βt| is the size of buffer. Be-
sides, in order to incorporate the historical action
information into our model, we apply a unidirec-
tional LSTM to process the action list:

At = [. . . ,at−2,at−1]

= LSTMa([. . . ,αt−2,αt−1])
(5)

where At ∈ R|αt|×dl , |αt| is the size of action list.
Furthermore, since the relative distance between

the pair (σ0,σ1) is a strong feature for determining
their relations, we represent it as an embedding ed

through another looking-up table Ed. Thus, the
parser state representation rt can be obtained by:

rt = [s0; s1;b0;at−1; ed] (6)

where s0 and s1 denote the first and second ele-
ments of St, b0 is the first element of the Bt, and
at−1 indicates the last action representation of At.

4.3 Action Prediction
To predict the current action at step t, we first apply
a multi-layer perceptron (MLP) with ReLU acti-
vation to squeeze the state representation rt to a
lower-dimensional vector zt, and then compute the
action probability by a softmax output layer:

zt = MLPa(r
t) (7)

p(αt|zt) =
exp(W>

α z
t + bα)∑

α′∈A(S) exp(W
>
α′z

t + bα′)
(8)

where Wα denotes a learnable parameter matrix,
bα is the bias term, αt is the predicted action for
step t. A(S) represents the set of valid candidate
actions that may be taken according to the precon-
ditions. For efficient decoding, we greedily take the
candidate action with the highest probability. With
the predicted action sequence, we could identify
ARs according to Table 1. Note that, the univocal
supervision over actions for one input paragraph is
built based on the gold labels of ARs.

4.4 Training
We jointly train an AC type classifier over the AC
representations: p(yi|C) = softmax(MLPc(ci)),
where yi is the predicted type for the i-th AC. Fi-
nally, combining this task with action prediction,
the training objective of our model can be obtained:

J (θ) =
∑
t

logp(αt|zt) +
∑
i

logp(yi|C)

+
λ

2
||θ||2

(9)

where λ is the coefficient of L2-norm regulariza-
tion, and θ denotes all the parameters in this model.

5 Experimental Setup

5.1 Dataset
We conduct experiments on two datasets: Persua-
sive Essays (PE) (Stab and Gurevych, 2017) and
Consumer Debt Collection Practices (CDCP) (Nic-
ulae et al., 2017; Park and Cardie, 2018).
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The PE dataset contains 402 essays (1,833 para-
graphs), in which 80 essays (369 paragraphs) are
held out for testing. There are three types of ACs
in this dataset: Major-Claim, Claim, and Premise.
Also, each AC in PE dataset has at most one out-
going AR. That is, the argumentation graph of one
paragraph can be either directed trees or forests.
We extend each AC by including its argumentative
marker in the same manner as Kuribayashi et al.
(2019).

The CDCP dataset consists of 731 paragraphs,
and 150 of them are reserved for testing. It provides
five types of ACs (propositions): Reference, Fact,
Testimony, Value, and Policy. Unlike PE dataset,
each AC in CDCP dataset can have two or more
outgoing ARs, thus forming non-tree structures.

5.2 Implementation Details
For PE dataset, we randomly choose 10% of the
training set as the validation set, which is consis-
tent with the work of Kuribayashi et al. (2019). For
CDCP dataset, we randomly choose 15% of the
training set for validation. Following Potash et al.
(2017), for ACTC, we employ F1 score for each
AC type and their macro averaged score to measure
the performance. Similarly, for ARI, we present F1

scores for the presence/absence of links between
ACs and their macro averaged score. All experi-
ments are performed 5 times with different random
seeds, and the scores are averaged.

We finetune uncased BERTBase 2 in our model.
AdamW optimizer (Loshchilov and Hutter, 2019)
is adopted for parameter optimization, and the ini-
tial learning rates for the BERT layer and other
layers are set to 1e-5 and 1e-3, respectively. All
LSTMs are 1 layer with the hidden size of 256,
and the hidden size of MLP is 512. Besides, the
dropout rate (Srivastava et al., 2014) is set to 0.5,
and the batch size is set to 32. All parameters
of our model are unfixed and can be learned dur-
ing training. We train the model 50 epochs with
early stopping strategy, and choose model parame-
ters with the best performance (average of macro
F1 scores of ACTC and ARI) on the validation
set. Our model is implemented in PyTorch (Paszke
et al., 2019) on a NVIDIA Tesla V100 GPU.

5.3 Baselines
In order to evaluate our proposed BERT-Trans
model, we compare it with several baselines.

2https://github.com/huggingface/
transformers

For PE dataset, the following baselines are com-
pared:
Joint-ILP (Stab and Gurevych, 2017) jointly op-
timizes AC types and ARs by Integer Linear Pro-
gramming (ILP).
St-SVM-full is structured SVM with full factor
graph, which performs best on PE dataset in the
work of Niculae et al. (2017).
Joint-PN (Potash et al., 2017) applies Pointer Net-
work with attention mechanism to AM, which can
jointly address both ACTC and ARI.
Span-LSTM (Kuribayashi et al., 2019) employs
LSTM-minus-based span representation with pre-
trained ELMo embedding for AM, which is the
current state-of-the-art method on PE dataset.

For CDCP dataset, we compare our model with
the following baselines:
Deep-Res-LG (Galassi et al., 2018) applies resid-
ual network model with link-guided training proce-
dure, to perform ACTC and ARI.
St-SVM-strict is structured SVM with strict factor
graph, which performs best on CDCP dataset in the
work of (Niculae et al., 2017).
TSP-PLBA (Morio et al., 2020) uses task-specific
parameterization to encode ACs and biaffine atten-
tion to capture ARs with ELMo based features,
which is the current state-of-the-art method on
CDCP dataset.

Furthermore, in order to show the effectiveness
of our proposed transition system, we implemented
two additional baselines:
Span-LSTM-Trans incorporates the span repre-
sentation method used in Span-LSTM and our tran-
sition system on PE dataset. For a fair comparison,
features and ELMo used to represent ACs are con-
sistent with that of Span-LSTM.
ELMo-Trans replaces BERT in our proposed
model with ELMo on CDCP dataset for a fair com-
parison with TSP-PLBA.

6 Results and Analysis

6.1 Main Results

The overall performance of our proposed model
and the baselines are shown in Table 3 and Table 4.
Our model achieves the best performance on both
datasets. On PE dataset, our model outperforms the
current sota model Span-LSTM by at least 1.1%
and 1.4% in macro F1 score over ACTC and ARI,
respectively. On CDCP dataset, compared with
TSP-PLBA, our model obtains at least 3.6% higher

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Method ACTC ARI
Macro MC Claim Premise Macro Rel No-Rel

Joint-ILP 82.6 89.1 68.2 90.3 75.1 58.5 91.8
St-SVM-full 77.6 78.2 64.5 90.2 - 60.1 -
Joint-PN 84.9 89.4 73.2 92.1 76.7 60.8 92.5
Span-LSTM 87.3 - - - 81.1 - -
Span-LSTM-Trans 87.5 93.8 76.4 92.2 82.0 69.8 94.1
BERT-Trans (Ours) 88.4 93.2 78.8 93.1 82.5 70.6 94.3

Table 3: Comparison results with baselines on PE dataset (%). The best scores are in bold.

Method ACTC ARI
Macro Value Policy Testimony Fact Ref Macro Rel No-Rel

Deep-Res-LG 65.3 72.2 74.4 72.9 40.3 66.7 - 29.3 -
St-SVM-strict 73.2 76.4 76.8 71.5 41.3 100.0 - 26.7 -
TSP-PLBA 78.9 - - - - - - 34.0 -
ELMo-Trans 78.9 80.0 82.3 80.6 51.5 100.0 67.1 35.6 98.6
BERT-Trans (Ours) 82.5 83.2 86.3 84.9 58.3 100.0 67.8 37.3 98.3

Table 4: Comparison results with baselines on CDCP dataset (%). The best scores are in bold.

Method ACTC ARI
Macro ∇ Macro ∇

BERT-Trans (Ours) 88.4 - 82.5 -
w/o LSTM 87.9 -0.5 80.5 -2.0
w/o buffer 88.1 -0.3 80.7 -1.8
w/o action 87.8 -0.6 80.9 -1.6
w/o distance 88.1 -0.3 81.8 -0.7
w/o BoW 85.9 -2.5 80.6 -1.9

Table 5: The results of ablation experiments on PE
dataset (%). The best scores are in bold.

macro F1 score over ACTC, and achieves about
3.3% higher relation F1 over ARI.

We also show the results where our BERT-based
AC representation is replaced by the ELMo-based
method, that is, Span-LSTM-Trans on PE dataset
and ELMo-Trans on CDCP dataset. We found
that, without employing pre-trained BERT, Span-
LSTM-Trans and ELMo-Trans still outperform
Span-LSTM and TSP-PLBA over ARI, respec-
tively, which demonstrates the effectiveness of our
proposed transition system. It can also be observed
that our BERT-based AC representation method
can further improve the model performance.

Some of the baselines improve overall perfor-
mance by imposing structural constraints when pre-
dicting or decoding. For example, Joint-PN only
predicts one outgoing AR for each AC to partially
enforce the predicted argumentation graphs as tree
structures. Similarly, to ensure tree structures,
Span-LSTM applies MST algorithm based on the
probabilities calculated by the model. However,
these two methods can only deal with tree struc-
tured argumentation. The method proposed by Nic-

ulae et al. (2017), which is based on factor graph,
can handle both tree and no-tree structured argu-
mentative text (St-SVM-full and St-SVM-strict),
but the factor graph need to be specifically designed
for datasets of different structures. Differently, our
proposed model can handle datasets of both tree
and non-tree structures without introducing any
corpus-specific structural constraints and also out-
performs all the structured baselines.

6.2 Ablation Study

We conduct ablation experiments on the PE dataset
to further investigate the impacts of each compo-
nent in BERT-Trans. The results are shown in Table
5. It can be observed that applying LSTM to en-
code buffer, stack, and action list contributes about
2.0% macro F1 score of ARI, showing the neces-
sity of capturing non-local dependencies in parser
state. Also, incorporating buffer into parser state
can improve the macro F1 score of ARI by about
1.8%, for buffer can provide crucial information
about subsequent ACs to be processed. Besides, the
macro F1 score of ARI drops heavily without ac-
tion list (-1.6%), indicating that the historical action
information has a significant impact on predicting
the next action. Without the distance information
between the top two ACs of the stack, the macro
F1 score of ARI decreases by 0.7%. The model
components described above mainly affect ARI by
modifying the parsing procedure, but have little
impact on ACTC. However, BoW feature has a sig-
nificant influence on both two tasks, and removing
it causes 2.5% and 1.9% decreases in macro F1

score of ACTC and ARI, respectively.
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6.3 Parsing Complexity
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Figure 3: The number of actions relative to the number
of ACs of each paragraph.

Most previous models parse argumentation
graphs by exhaustively enumerating all possible
pairs of ACs, that is, all ACs are connected by
Cartesian products, which lead to O(n2) parsing
complexity. Differently, our transition-based model
can incrementally parse an argumentation graph by
predicting a sequence of actions, often with linear
parsing complexity. Concretely, given a paragraph
with n ACs, our system can parse it with O(n)
actions.

Parsing complexity of our transition system can
be determined by the number of actions performed
with respect to the number of ACs in a paragraph.
Specifically, we measure the length of the action
sequence predicted by our model for every para-
graph from the test sets of PE dataset and CDCP
dataset and depict the relation between them and
the number of ACs. As shown in Figure 3, the num-
ber of predicted actions is linearly related to the
number of ACs in both two datasets, proving that
our system can construct an argumentation graph
with O(n) complexity. In addition, we also com-
pared our model with the current state-of-the-art
model on PE dataset, i.e., Span-LSTM, in terms of
training time, and our model is around two times
faster.

6.4 Joint Learning Analysis

Following Kuribayashi et al. (2019), we also try to
add the task of AR type classification (ARTC) to
our model for joint learning on PE dataset. How-
ever, as shown in Table 6, jointly learning ARTC
together with ACTC and ARI degrades the over-
all performance, while learning ARTC separately
actually yields better performance. Such an obser-
vation is consistent with the joint learning results

Method Joint Tasks Macro F1

ACTC ARI ARTC

BERT-Trans
(Ours)

ALL 86.8 81.8 78.4
ACTC+ARI 88.4 82.5 -
ARTC - - 81.0

Span-LSTM
ALL 85.7 80.7 79.0
ACTC+ARI 87.3 81.1 -
ARTC - - 79.6

Table 6: Joint learning results on PE dataset (%). ALL
indicates joint learning of all three subtasks.

359 0

0 0

Non-TreeTree

Tree

Non-Tree

(a) PE dataset.

120 17

6 7

Non-TreeTree

Tree

Non-Tree

(b) CDCP dataset.

Figure 4: Confusion matrices of structure type on test
set. Vertical direction indicates predicted structure type,
horizontal direction indicates gold structure type.

of Span-LSTM in Kuribayashi et al. (2019). The
reason may be that the class labels are usually very
unbalanced for ARTC (around 1:10 in PE dataset
and 1:25 in CDCP dataset), such that the high un-
certainty can seriously affect the overall learning.
Thus, we mainly focus on joint learning of ACTC
and ARI. We also argue that learning ARTC in-
dividually is better than jointly learning it with
other subtasks. Besides, our model outperforms
Span-LSTM over ACTC and ARI even when joint
learning all three subtasks.

6.5 Structure Adaptive

To validate the structure adaptive ability of our
model on both tree and non-tree structures, we an-
alyze the structure type of the predicted argumen-
tation graphs on the test set of both PE and CDCP
datasets in Figure 4. It can be seen that for non-tree
structured CDCP dataset, even though there are
few non-tree structured paragraphs in the test set of
CDCP (only 16%), our model is still able to identify
29.2% of them. This is an acceptable performance
considering the poor results of ARI on the CDCP
dataset due to the complex non-tree structures. For
tree structured PE dataset, our model predicts all
the paragraphs as tree structures, showing a strong
structure adaptive ability. In contrast, most previ-
ous models like Joint-PN and Span-LSTM can only
predict tree structures.
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7 Conclusion

In this paper, we propose a neural transition-based
model for argumentation mining, which can incre-
mentally construct an argumentation graph by pre-
dicting a sequence of actions. Our proposed model
can handle both tree and non-tree structures, and
often with linear parsing complexity. The experi-
mental results on two public datasets demonstrate
the effectiveness of our model. One potential draw-
back of our model is the greedy decoding for action
prediction. For future work, we plan to optimize
the decoding process by using methods like beam
search to further boost the performance.
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Appendices

A Extra Features

Following the work of Potash et al. (2017) and
Kuribayashi et al. (2019), we further incorporate
some extra features to represent ACs, including:

• the bag-of-words (BoW) vector: one-hot vec-
tor, which is later fed into a MLP layer.

• position embedding of each AC: The posi-
tion of an AC in the paragraph, which is rep-
resented as an embedding vector through a
looking-up table Ep.

• paragraph type embedding of each AC: The
type (intro, body, conclusion) of the paragraph
in which the AC is present, which is also rep-
resented as an embedding vector through an-
other looking-up table Et.
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