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Abstract

Large pre-trained language models achieve
state-of-the-art results when fine-tuned on
downstream NLP tasks. However, they almost
exclusively focus on text-only representation,
while neglecting cell-level layout information
that is important for form image understanding.
In this paper, we propose a new pre-training ap-
proach, StructuralLM, to jointly leverage cell
and layout information from scanned docu-
ments. Specifically, we pre-train StructuralLM
with two new designs to make the most of the
interactions of cell and layout information: 1)
each cell as a semantic unit; 2) classification of
cell positions. The pre-trained StructuralLM
achieves new state-of-the-art results in differ-
ent types of downstream tasks, including form
understanding (from 78.95 to 85.14), docu-
ment visual question answering (from 72.59
to 83.94) and document image classification
(from 94.43 to 96.08).

1 Introduction

Document understanding is an essential problem
in NLP, which aims to read and analyze textual
documents. In addition to plain text, many real-
world applications require to understand scanned
documents with rich text. As shown in Figure 1,
such scanned documents contain various structured
information, like tables, digital forms, receipts, and
invoices. The information of a document image
is usually presented in natural language, but the
format can be organized in many ways from multi-
column layout to various tables/forms.

Inspired by the recent development of pre-
trained language models (Devlin et al., 2019;
Liu et al., 2019; Wang et al., 2019) in various
NLP tasks, recent studies on document image pre-
training (Zhang et al., 2020; Xu et al., 2019) have
pushed the limits of a variety of document image
understanding tasks, which learn the interaction be-

tween text and layout information across scanned
document images.

Xu et al. (2019) propose LayoutLM, which is
a pre-training method of text and layout for doc-
ument image understanding tasks. It uses 2D-
position embeddings to model the word-level lay-
out information. However, it is not enough to
model the word-level layout information, and the
model should consider the cell as a semantic unit.
It is important to know which words are from the
same cell and to model the cell-level layout in-
formation. For example, as shown in Figure 1
(a), which is from form understanding task (Jaume
et al., 2019), determining that the ”LORILLARD”
and the ”ENTITIES” are from the same cell is
critical for semantic entity labeling. The ”LORIL-
LARD ENTITIES” should be predicted as Answer
entity, but LayoutLM predicts ”LORILLARD” and
”ENTITIES” as two separate entities.

The input to traditional natural language tasks is
usually presented as plain text, and text-only mod-
els need to obtain the semantic representation of
the input sentences and the semantic relationship
between sentences. In contrast, document images
like forms and tables are composed of cells that
are recognized as bounding boxes by OCR. As
shown in Figure 1, the words from the same cell
generally express a meaning together and should
be modeled as a semantic unit. This requires a
text-layout model to capture not only the seman-
tic representation of individual cells but also the
spatial relationship between cells.

In this paper, we propose StructuralLM to jointly
exploit cell and layout information from scanned
documents. Different from previous text-based pre-
trained models (Devlin et al., 2019; Wang et al.,
2019) and LayoutLM (Xu et al., 2019), Struc-
turalLM uses cell-level 2D-position embeddings
with tokens in a cell sharing the same 2D-position.
This makes StructuralLM aware of which words are
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Figure 1: Scanned images of forms and tables with different layouts and formats.

from the same cell, and thus enables the model to
derive representation for the cells. In addition, we
keep classic 1D-position embeddings to preserve
the positional relationship of the tokens within ev-
ery cell. We propose a new pre-training objective
called cell position classification, in addition to
the masked visual-language model. Specifically,
we first divide an image into N areas of the same
size, and then mask the 2D-positions of some cells.
StructuralLM is asked to predict which area the
masked cells are located in. In this way, Struc-
turalLM is capable of learning the interactions be-
tween cells and layout. We conduct experiments
on three benchmark datasets publicly available, all
of which contain table or form images. Empirical
results show that our StructuralLM outperforms
strong baselines and achieves new state-of-the-art
results in the downstream tasks. In addition, Struc-
turalLM does not rely on image features, and thus
is readily applicable to real-world document under-
standing tasks.

We summarize the major contributions in this
paper as follows:

• We propose a structural pre-trained model for
table and form understanding. It jointly lever-
ages cells and layout information in two ways:
cell-level positional embeddings and a new
pre-training objective called cell position clas-
sification.

• StructuralLM significantly outperforms all
state-of-the-art models in several downstream
tasks including form understanding (from
78.95 to 85.14), document visual question an-
swering (from 72.59 to 83.94) and document
image classification (from 94.43 to 96.08).

2 StructuralLM

We present StructuralLM, a self-supervised pre-
training method designed to better model the inter-
actions of cells and layout information in scanned
document images. The overall framework of Struc-
turalLM is shown in Figure 2. Our approach is
inspired by LayoutLM (Xu et al., 2019), but differ-
ent from it in three ways. First, we use cell-level
2D-position embeddings to model the layout infor-
mation of cells rather than word-level 2D-position
embeddings. We also introduce a novel training
objective, the cell position classification, which
tries to predict the position of the cells only de-
pending on the position of surrounding cells and
the semantic relationship between them. Finally,
StructuralLM retains the 1D-position embeddings
to model the positional relationship between to-
kens from the same cell, and removes the image
embeddings in LayoutLM that is only used in the
downstream tasks.

2.1 Model Architecture

The architecture overview of StructuralLM is
shown in Figure 2. To take advantage of exist-
ing pre-trained models and adapt to document im-
age understanding tasks, we use the BERT (Devlin
et al., 2019) architecture as the backbone. The
BERT model is an attention-based bidirectional
language modeling approach. It has been verified
that the BERT model shows effective knowledge
transfer from the self-supervised nlp tasks with a
large-scale pre-training corpus.

Based on the architecture, we propose to utilize
the cell-level layout information from document
images and incorporate them into the transformer
encoder. First, given a set of tokens from different
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Figure 2: The overall framework of StructuralLM. The input words with the same color background are from the
same cell, and the corresponding 2D-positions are also the same.

cells and the layout information of cells, the cell-
level input embeddings are computed by summing
the corresponding word embeddings, cell-level 2D-
position embeddings, and original 1D-position em-
beddings. Then, these input embeddings are passed
through a bidirectional Transformer encoder that
can generate contextualized representations with
an attention mechanism.

2.2 Cell-level Input Embedding

Given document images, we use an OCR tool to
recognize text and serialize the cells (bounding
boxes) from top-left to bottom-right. Each docu-
ment image is represented as a sequence of cells
{c1, ..., cn}, and each cell is composed of a se-
quence of words ci = {w1

i , ..., w
m
i }. Given the

sequences of cells and words, we first introduce the
method of cell-level input embedding.

Cell-level Layout Embedding. Unlike the po-
sition embedding that models the word position
in a sequence, the 2D-position embedding aims to
model the relative spatial position in a document
image. To represent the spatial position of cells
in scanned document images, we consider a docu-
ment page as a coordinate system with the top-left
origin. In this setting, the cell (bounding box) can
be precisely defined by (x0, y0, x1, y1), where (x0,
y0) corresponds to the top-left position, and (x1,
y1) represents the bottom-right position. Therefore,
we add two cell-level position embedding layers
to embed x-axis features and y-axis features sepa-
rately. The words {w1

i , ..., w
m
i } in i-th cell ci share

the same 2D-position embeddings, which is dif-
ferent from the word-level 2D-position embedding
in LayoutLM. As shown in Figure 2, the input to-

kens with the same color background are from the
same cell, and the corresponding 2D-positions are
also the same. In this way, StructuralLM can not
only learn the layout information of cells but also
know which words are from the same cell, which
is better to obtain the contextual representation of
cells. In addition, we keep the classic 1D-position
embeddings to preserve the positional relationship
of the tokens within the same cell. Finally, the cell-
level layout embeddings are computed by summing
the four 2D-position embeddings and the classic
1D-position embeddings.

Input Embedding. Given a sequence of cells
{c1, ..., cn}, we use WordPiece (Wu et al., 2016) to
tokenize the words in the cells. The length of the
text sequence is limited to ensure that the length
of the final sequence is not greater than the maxi-
mum sequence length L. The final cell-level input
embedding is the sum of the three embeddings.
Word embedding represents the word itself, 1D-
position embedding represents the token index, and
cell-level 2D-position embedding is used to model
the relative spatial position of cells in a document
image.

2.3 Pre-training StructuralLM

We adopt two self-supervised tasks during the pre-
training stage, which are described as follows.

Masked Visual-Language Modeling. We use
the Masked Visual-Language Modeling (MVLM)
(Xu et al., 2019) to make the model learn the
cell representation with the clues of cell-level 2D-
position embeddings and text embeddings. We ran-
domly mask some of the input tokens but keep the
corresponding cell-level position embeddings, and
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then the model is pre-trained to predict the masked
tokens. With the cell-level layout information,
StructuralLM can know which words surrounding
the mask token are in the same cell and which are
in adjacent cells. In this way, StructuralLM not
only utilizes the corresponding cell-level position
information but also understands the cell-level con-
textual representation. Therefore, compared with
the MVLM in LayoutLM, StructuralLM makes use
of the cell-level layout information and predicts the
mask tokens more accurately. We will compare the
performance of the MVLM with the cell-level lay-
out embeddings and word-level layout embeddings
respectively in Section 3.5.

Cell Position Classification. In addition to the
MVLM, we propose a new Cell Position Classi-
fication (CPC) task to model the relative spatial
position of cells in a document. The previous mod-
els represent the layout information at the bottom
of the transformer, but the layout information at the
top of the transformer may be weakened. There-
fore, we consider introducing the cell position clas-
sification task so that StructuralLM can model the
cell-level layout information from the bottom up.
Given a set of scanned documents, this task aims to
predict where the cells are in the documents. First,
we split them into N areas of the same size. Then
we calculate the area to which the cell belongs to
through the center 2D-position of the cell. Mean-
while, some cells are randomly selected, and the
2D-positions of tokens in the selected cells are re-
placed with (0; 0; 0; 0). In this way, StructuralLM
is capable of learning the interactions between cells
and layout. During the pre-training, a classification
layer is built above the encoder outputs. This layer
predicts a label [1, N ] of the area where the selected
cell is located, and computes the cross-entropy loss.
Considering the MVLM and CPC are performed
simultaneously, the cells with masked tokens will
not be selected for the CPC task. This prevents the
model from not utilizing cell-level layout informa-
tion when doing the MVLM task. We will compare
the performance of different N in Section 3.1.

Pre-training. StructuralLM is pre-trained with
the two pre-training tasks and we add the two task
losses with equal weights. We will compare the per-
formance of MVLM and MVLM+CPC in Section
3.5.

2.4 Fine-tuning

The pre-trained StructuralLM model is fine-tuned
on three document image understanding tasks, each
of which contains form images. These three tasks
are form understanding task, document visual ques-
tion answering task, and document image classifi-
cation task. For the form understanding task, Struc-
turalLM predicts B, I, E, S, O tags for each token,
and then uses sequential labeling to find the four
types of entities including the question, answer,
header, or other. For the document visual question
answering task, we treat it as an extractive QA task
and build a token-level classifier on the top of token
representations, which is usually used in Machine
Reading Comprehension (MRC) (Rajpurkar et al.,
2016; Wang et al., 2018). For the document image
classification task, StructuralLM predicts the class
labels using the representation of the [CLS] token.

3 Experiments

3.1 Pre-training Configuration

Pre-training Dataset. Following LayoutLM, we
pre-train StructuralLM on the IIT-CDIP Test Col-
lection 1.0 (Lewis et al., 2006). It is a large-scale
scanned document image dataset, which contains
more than 6 million documents, with more than
11 million scanned document images. The pre-
training dataset (IIT-CDIP Test Collection) only
contains pure texts while missing their correspond-
ing bounding boxes. Therefore, we need to re-
process the scanned document images to obtain the
layout information of cells. Like the pre-processing
method of LayoutLM, we similarly process the
dataset by using Tesseract 1, which is an open-
source OCR engine. We normalize the actual co-
ordinates to integers in the range from 0 to 1,000,
and an empty bounding box (0; 0; 0; 0) is attached
to special tokens [CLS], [SEP] and [PAD], which
is similar to (Devlin et al., 2019).

Implementation Details. StructuralLM is
based on the Transformer which consists of a 24-
layer encoder with 1024 embedding/hidden size,
4096 feed-forward filter size, and 16 attention
heads. To take advantage of existing pre-trained
models and adapt to document image understand-
ing tasks, we initialize the weight of StructuralLM
model with the pre-trained RoBERTa (Liu et al.,
2019) large model except for the 2D-position em-
bedding layers.

1https://github.com/tesseract-ocr/tesseract
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Model Precision Recall F1 Parameters
BERTBASE (Devlin et al., 2019) 0.5469 0.6710 0.6026 110M
RoBERTaBASE (Liu et al., 2019) 0.6349 0.6975 0.6648 125M
BERTLARGE 0.6113 0.7085 0.6563 349M
RoBERTaLARGE 0.6780 0.7391 0.7072 355M
BROS (Hong et al., 2021) 0.8056 0.8188 0.8121 -
LayoutLMBASE (Xu et al., 2019) 0.7597 0.8155 0.7866 113M
LayoutLMLARGE 0.7596 0.8219 0.7895 343M
StructuralLMLARGE 0.8352 0.8681 0.8514 355M

Table 1: Model accuracy (Precision, Recall, F1) on the test set of FUNSD.

Following Devlin et al. (2019), for the masked
visual-language model task, we select 15% of the
input tokens for prediction. We replace these
masked tokens with the mask token 80% of the
time, a random token 10% of the time, and an un-
changed token 10% of the time. Then, the model
predicts the corresponding token with the cross-
entropy loss. For the Bounding-box position classi-
fication task, we split the document image into N
areas of the same size, and then select 15% of the
cells for prediction. We replace the 2D-positions of
words in the masked cells with the (0; 0; 0; 0) 90%
of the time, and an unchanged position 10% of the
time.

StructuralLM is pre-trained on 16 NVIDIA Tesla
V100 32GB GPUs for 480K steps, with each
mini-batch containing 128 sequences of maximum
length 512 tokens. The Adam optimizer is used
with an initial learning rate of 1e-5 and a linear
decay learning rate schedule. For the downstream
tasks, we use a single Tesla V100 16GB GPU.

Hyperparameter N. For the cell position clas-
sification task, we test the performances of Struc-
turalLM using different hyperparameter N during
pre-training. Considering that the complete pre-
training takes too long, we pre-train StructuralLM
for 100k steps with a single GPU card to com-
pare the performance of different N . As shown in
Figure 3, when the N is set as 16, StructuralLM
obtains the highest F1-score on the FUNSD dataset.
Therefore, we set N as 16 during the pre-training.

3.2 Fine-tuning on Form Understanding

We experiment with fine-tuning StructuralLM on
several downstream document image understand-
ing tasks, especially form understanding tasks. The
FUNSD (Jaume et al., 2019) is a dataset for form
understanding. It includes 199 real, fully anno-
tated, scanned forms with 9,707 semantic entities
and 31,485 words. The 199 scanned forms are

Figure 3: F1 score of StructuralLM pre-training w.r.t
different hyperparameter N and fine-tuning on FUNSD
dataset.

split into 149 for training and 50 for testing. The
FUNSD dataset is suitable for a variety of tasks,
where we just fine-tuning StructuralLM on seman-
tic entity labeling. Specifically, each word in the
dataset is assigned to a semantic entity label from a
set of four predefined categories: question, answer,
header, or other. Following the previous works, we
also use the word-level F1 score as the evaluation
metric.

We fine-tune the pre-trained StructuralLM on
the FUNSD training set for 25 epochs. We set the
batch size to 4, the learning rate to 1e-5. The other
hyperparameters are kept the same as pre-training.

Table 1 presents the experimental results on the
FUNSD test set. StructuralLM achieves better per-
formance than all pre-training models. First, we
compare the StructuralLM model with two SOTA
text-only pre-trained models: BERT and RoBERTa
(Liu et al., 2019). RoBERTa outperforms the BERT
model by a large margin in terms of the BASE and
LARGE settings. Compared with the text-only
models, the text+layout model LayoutLM brings
significant performance improvement. The best
performance is achieved by StructuralLM, where
an improvement of 6% F1 point compared with
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Model ANLS ANLS
Test set Form&Table

BERTBASE 0.6372 -
RoBERTaBASE 0.6642 -
BERTLARGE 0.6745 -
RoBERTaLARGE 0.6952 -
LayoutLMBASE 0.6979 0.7012
LayoutLMLARGE 0.7259 0.7203
StructuralLMLARGE 0.8394 0.8610

Table 2: Average Normalized Levenshtein Similar-
ity (ANLS) score on the DocVQA test set and the
Form&Table subset from the test set.

LayoutLM under the same model size. All the Lay-
outLM models compared in this paper are initial-
ized by RoBERTa. By consistently outperforming
the pre-training methods, StructuralLM confirms
its effectiveness in leveraging cell-level layout in-
formation for form understanding.

3.3 Fine-tuning on Document Visual QA

DocVQA (Mathew et al., 2020) is a VQA dataset
on the scanned document understanding field. The
objective of this task is to answer questions asked
on a document image. The images provided are
sourced from the documents hosted at the Industry
Documents Library, maintained by the UCSF. It
consists of 12,000 pages from a variety of docu-
ments including forms, tables, etc. These pages
are manually labeled with 50,000 question-answer
pairs, which are split into the training set, valida-
tion set and test set with a ratio of about 8:1:1. The
dataset is organized as a set of triples (page image,
questions, answers). The official provides the OCR
results of the page images, and there is no objec-
tion to using other OCR recognition tools. Our
experiment is based on the official OCR results.
The task is evaluated using an edit distance based
metric ANLS (aka average normalized Levenshtein
similarity). Results on the test set are provided by
the official evaluation site.

We fine-tune the pre-trained StructuralLM on the
DocVQA train set and validation set for 5 epochs.
We set the batch size to 8, the learning rate to 1e-5.

Table 2 shows the Average Normalized Leven-
shtein Similarity (ANLS) scores on the DocVQA
test set. We still compare the StructuralLM model
with the text-only models and the text-layout model.
Compared with LayoutLM, StructuralLM achieved
an improvement of over 11% ANLS point under
the same model size. In addition, we also compare

Model Acc Params
BERTBASE 89.81% 110M
RoBERTaBASE 90.06% 125M
BERTLARGE 89.92% 349M
RoBERTaLARGE 90.11% 355M
VGG-16a 90.97% -
Stacked CNN Singleb 91.11% -
Stacked CNN Ensembleb 92.21% -
InceptionResNetV2c 92.63% -
LadderNetd 92.77% -
Multimodal Singlee 93.03% -
Multimodal Ensemblee 93.07% -
LayoutLMBASE 94.42% 113M
LayoutLMLARGE 94.43% 390M
StructuralLMLARGE 96.08% 355M

Table 3: Classification accuracy on the RVL-CDIP test
set. a (Afzal et al., 2017);b (Das et al., 2018);c (Szegedy
et al., 2017);d (Sarkhel and Nandi, 2019);e (Dauphinee
et al., 2019)

the Form&Table subset from the test set. Struc-
turalLM achieved an improvement of over 14%
ANLS point, which shows that StructuralLM can
learn better on form and table understanding.

3.4 Fine-tuning on Document Classification

Finally, we evaluate the document image classifica-
tion task using the RVL-CDIP dataset (Harley et al.,
2015). It consists of 400,000 grayscale images in
16 classes, with 25,000 images per class. There
are 320,000 images for the training set, 40,000
images for the validation set, and 40,000 images
for the test set. A multi-class single-label classi-
fication task is defined on RVL-CDIP, including
letter, form, invoice, etc. The evaluation metric is
the overall classification accuracy. Text and layout
information is extracted by Tesseract OCR.

We fine-tune the pre-trained StructuralLM on
the RVL-CDIP train set for 20 epochs. We set the
batch size to 8, the learning rate to 1e-5.

Different from other natural images, the docu-
ment images are texts in a variety of layouts. As
shown in Table 3, image-based classification mod-
els (Afzal et al., 2017; Das et al., 2018; Szegedy
et al., 2017) with pre-training perform much better
than the text-based models, which illustrates that
text information is not sufficient for this task and
it still needs layout information. The experiment
results show that the text-layout model LayoutLM
outperforms the image-based approaches and text-
based models. Incorporating the cell-level layout
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Ablation F1
StructuralLM 0.8514
w/o cell-level layout embedding 0.8024
w/o cell position classification 0.8125
w/o pre-training 0.7072

Table 4: Ablation tests of StructuralLM on the FUNSD
form understanding task.

Figure 4: Loss of word prediction over the number
of pre-training steps based on different layout embed-
dings.

information, StructuralLM achieves a new state-of-
the-art result with an improvement of over 1.5%
accuracy point.

3.5 Ablation Study
We conduct ablation studies to assess the individual
contribution of every component in StructuralLM.
Table 4 reports the results of full StructuralLM
and its ablations on the test set of FUNSD form
understanding task. First, we evaluate how much
the cell-level layout embedding contributes to form
understanding by removing it from StructuralLM
pre-training.

This ablation results in a drop from 0.8514 to
0.8024 on F1 score, demonstrating the important
role of the cell-level layout embedding. To study
the effect of the cell position classification task in
StructuralLM, we ablate it and the F1 score sig-
nificantly drops from 0.8514 to 0.8125. Finally,
we study the significance of full StructuralLM pre-
training. Over 15% of performance degradation
resulted from ablating pre-training clearly demon-
strates the power of StructuralLM in leveraging an
unlabeled corpus for downstream form understand-
ing tasks.

Actually, after ablating the cell position clas-

sification, the biggest difference between Struc-
turalLM and LayoutLM is cell-level 2D-position
embeddings or word-level 2D-position embeddings.
The results show that StructuralLM with cell-level
2D-position embeddings performs better than Lay-
outLM with word-level position embeddings with
an improvement of over 2% F1-score point (from
0.7895 to 0.8125). Furthermore, we compare the
performance of the MVLM with cell-level layout
embeddings and word-level layout embeddings
respectively. As shown in Figure 4, the results
show that under the same pre-training settings, the
MVLM training loss with cell-level 2D-position
embeddings can converge lower.

3.6 Case Study

The motivation behind StructuralLM is to jointly
exploit cell and layout information across scanned
document images. As stated above, compared with
LayoutLM, StructuralLM improves interactions be-
tween cells and layout information. To verify this,
we show some examples of the output of LayoutLM
and StructuralLM on the FUNSD test set, as shown
in Figure 5. Take the image on the top-left of Figure
5 as an example. In this example, the model needs
to label ”Call Connie Drath or Carol Musgrave at
800/424-9876” with the Answer entity. The result
of LayoutLM missed ”at 800/424-9876”. Actu-
ally, all the tokens of this Answer entity are from
the same cell. Therefore, StructuralLM predicts
the correct result with the understanding of cell-
level layout information. These examples show
that StructuralLM predicts the entities more accu-
rately with the cell-level layout information. The
same results can be observed in the Figure 5.

4 Related Work

4.1 Machine Learning Approaches

Statistical machine learning approaches (Marinai
et al., 2005; Shilman et al., 2005) became the main-
stream for document segmentation tasks during the
past decade. (Shilman et al., 2005) consider the
layout information of a document as a parsing prob-
lem. They use a grammar-based loss function to
globally search the optimal parsing tree, and uti-
lize a machine learning approach to select features
and train all parameters during the parsing pro-
cess. In addition, most efforts have been devoted to
the recognition of isolated handwritten and printed
characters with widely recognized successful re-
sults. For machine learning approaches (Shilman
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Figure 5: Examples of the output of LayoutLM and StructuralLM on the FUNSD dataset. The division of | means
that the two phrases are independent labels.

et al., 2005; Wei et al., 2013), they are usually
time-consuming to design manually features and
difficult to obtain a high-level abstract semantic
context. In addition, these methods usually relied
on visual cues but ignored textual information.

4.2 Deep Learning Approaches

Nowadays, deep learning methods have become the
mainstream for many machine learning problems
(Yang et al., 2017; Borges Oliveira and Viana, 2017;
Katti et al., 2018; Soto and Yoo, 2019). (Yang
et al., 2017) propose a pixel-by-pixel classification
to solve the document semantic structure extrac-
tion problem. Specifically, they propose a multi-
modal neural network that considers visual and
textual information, while this work is an end-to-
end approach. (Katti et al., 2018) first propose
a fully convolutional encoder-decoder network to
predict a segmentation mask and bounding boxes.
In this way, the model significantly outperforms
approaches based on sequential text or document
images. In addition, (Soto and Yoo, 2019) incorpo-
rate contextual information into the Faster R-CNN
model. They involve the inherently localized na-
ture of article contents to improve region detection
performance.

4.3 Pre-training Approaches

In recent years, self-supervised pre-training has
achieved great success in natural language under-
standing (NLU) and a wide range of NLP tasks
(Devlin et al., 2019; Liu et al., 2019; Wang et al.,
2019). (Devlin et al., 2019) introduced BERT, a
new language representation model, which is de-
signed to pre-train deep bidirectional representa-
tions based on the large-scale unsupervised corpus.
It can be fine-tuned with just one additional out-
put layer to create state-of-the-art models for a
wide range of NLP tasks. Inspired by the develop-
ment of the pre-trained language models in various
NLP tasks, recent studies on document image pre-
training (Zhang et al., 2020; Xu et al., 2019) do
have pushed the limits of a variety of document
image understanding tasks, which learn the inter-
action between text and layout information across
scanned document images. (Xu et al., 2019) pro-
pose LayoutLM, which is a simple but effective
pre-training method of text and layout for the docu-
ment image understanding tasks. By incorporating
the visual information into the fine-tuning stage,
LayoutLM achieves new state-of-the-art results
in several downstream tasks. (Hong et al., 2021)
propose a pre-trained language model that repre-
sents the semantics of spatially distributed texts.
Different from previous pre-training methods on
1D text, BROS is pre-trained on large-scale semi-
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structured documents with a novel area-masking
strategy while efficiently including the spatial lay-
out information of input documents.

5 Conclusion

In this paper, we propose StructuralLM, a novel
structural pre-training approach on large unlabeled
documents. It is built upon an extension of the
Transformer encoder, and jointly exploit cell and
layout information from scanned documents.

Different from previous pre-trained models,
StructuralLM uses cell-level 2D-position embed-
dings with tokens in the cell sharing the same 2D-
position. This makes StructuralLM aware of which
words are from the same cell, and thus enables the
model to derive representation for the cells. We pro-
pose a new pre-training objective called cell posi-
tion classification. In this way, StructuralLM is ca-
pable of learning the interactions between cells and
layout. We conduct experiments on three bench-
mark datasets publicly available, and StructuralLM
outperforms strong baselines and achieves new
state-of-the-art results in the downstream tasks.

References
Muhammad Zeshan Afzal, Andreas Kölsch, Sheraz
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