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Abstract

Biomedical Information Extraction from sci-
entific literature presents two unique and non-
trivial challenges. First, compared with gen-
eral natural language texts, sentences from sci-
entific papers usually possess wider contexts
between knowledge elements. Moreover, com-
prehending the fine-grained scientific entities
and events urgently requires domain-specific
background knowledge. In this paper, we pro-
pose a novel biomedical Information Extrac-
tion (IE) model to tackle these two challenges
and extract scientific entities and events from
English research papers. We perform Abstract
Meaning Representation (AMR) to compress
the wide context to uncover a clear semantic
structure for each complex sentence. Besides,
we construct the sentence-level knowledge
graph from an external knowledge base and
use it to enrich the AMR graph to improve the
model’s understanding of complex scientific
concepts. We use an edge-conditioned graph
attention network to encode the knowledge-
enriched AMR graph for biomedical IE tasks.
Experiments on the GENIA 2011 dataset show
that the AMR and external knowledge have
contributed 1.8% and 3.0% absolute F-score
gains respectively. In order to evaluate the im-
pact of our approach on real-world problems
that involve topic-specific fine-grained knowl-
edge elements, we have also created a new
ontology and annotated corpus for entity and
event extraction for the COVID-19 scientific
literature, which can serve as a new benchmark
for the biomedical IE community.1

1 Introduction

The task of Biomedical Information Extraction (IE)
aims to extract structured knowledge from biomed-
ical literature, which is usually represented by an
information network composed of scientific named

1Data and source code are publicly available at https:
//github.com/zhangzx-uiuc/Knowledge-AMR.

entities, relations, and key events. It is an essen-
tial task for accelerating practical applications of
the results and achievements from scientific re-
search. For example, practical progress on combat-
ing COVID-19 depends highly on efficient trans-
mission, assessment and extension of cutting-edge
scientific research discovery (Wang et al., 2020a;
Lybarger et al., 2020; Möller et al., 2020). In this
scenario, a powerful biomedical IE system will be
able to create a dynamic knowledge base from the
surging number of relevant papers, making it more
efficient to get access to the latest knowledge and
use it for scientific discovery, as well as diagnosis
and treatment of patients.

IE from biomedical scientific papers presents
two unique and non-trivial challenges. First, the
authors of scientific papers tend to compose long
sentences, where the event triggers and entity men-
tions are usually located far away from each other
within the sentence. As shown in Table 1, we can
see that compared to the ACE05 dataset in news
domain, the average distance between triggers and
entities is much longer in biomedical scientific pa-
pers. Therefore, it is more difficult for IE models to
capture the global context with only flat sequential
sentence encoders such as BioBERT (Lee et al.,
2020) and SciBERT (Beltagy et al., 2019).

Dataset Average distance Maximal distance

ACE05-E 0.212 sentence 56 words

GENIA-2011 0.330 sentence 77 words

Table 1: Comparison of the average and maximum dis-
tance between each event-argument pair in news do-
main (ACE-05 dataset) and scientific papers (GENIA-
2011 dataset) with the same sentence tokenizer.

Moreover, comprehending sentences from scien-
tific papers urgently requires external knowledge,
because there are a number of domain-specific un-

https://github.com/zhangzx-uiuc/Knowledge-AMR
https://github.com/zhangzx-uiuc/Knowledge-AMR
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We identified a cell-type-specific differential response: CREB, CTF, OTF-1,

OFT-2, and NF-kappa B genes were strongly induced 1 to 4 hours after

influenza A virus infection in the monocytic cell line Mono Mac 6, while in

freshly prepared human monocytes no significant changes were detected.
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Figure 1: An illustrating example with IE annotations
and the KG-enriched AMR graph from GENIA cor-
pus. Note that we only include part of the KG-enriched
AMR graph for conciseness.

explained common expressions, acronyms, and ab-
breviations that are difficult for the model to un-
derstand. For instance, as shown in Figure 1, it is
nearly impossible for a typical end-to-end model,
which only takes in the sentence as input, to get
clear understanding of CTF, OTF-1, and OTF-2
without background knowledge. Moreover, the
complex biomedical and chemical interactions be-
tween multifarious chemicals, genes, and proteins
are even harder to understand in addition to the
entities themselves.

To tackle these two challenges, we propose a
novel framework for biomedical IE that integrates
Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) and external knowledge
graphs. AMR is a semantic representation lan-
guage that converts the meaning of each input sen-
tence into a rooted, directed, labeled, acyclic graph
structure. AMR semantic representation includes
PropBank (Palmer et al., 2005) frames, non-core
semantic roles, coreference, entity typing and link-
ing, modality, and negation. The nodes in AMR are
concepts instead of words, and the edge types are
much more fine-grained compared with traditional
semantic languages like dependency parsing and se-
mantic role labeling. We train a transformer-based
AMR semantic parser (Fernandez Astudillo et al.,
2020) on biomedical scientific texts and use it in
our biomedical IE model. To better handle long

sentences with distant trigger and entity pairs, we
use AMR parsing to compress each sentence and to
better capture global interactions between tokens.
For example, as shown in Figure 1, the Positive
Regulation event trigger “changes” is located far
away from its arguments CTF, OTF-1, OTF-2 in
the original sentence. However, in the AMR graph,
such trigger-entity pairs are linked within two hops.
Therefore, it will be much easier for the model to
identify such kinds of events with the guidance of
AMR parsing.

In addition, to make better use of the external
knowledge, we extract a global knowledge graph
from the Comparative Toxicogenomics Database
(CTDB) that covers all biomedical entities in the
corpus. For each sentence, we select a minimal
connected subgraph as the sentence-level KG. We
use this sentence KG to enrich AMR nodes and
edges to give the model additional prior domain
knowledge, especially the biomedical and chemi-
cal interactions between different genes and pro-
teins. These fine-grained relations are important
for biomedical event extraction. For example, as in
Figure 1, the incorporation of the external KG can
indicate that Mono Mac 6 can result in leukemia,
which will affect the expression of CTF, OTF-1,
and OFT-2 proteins. With this external knowledge,
it will be much easier for the model to identify
such proteins as the arguments of a Positive Regu-
lation event. We encode the knowledge-enriched
AMR graph using an edge-conditioned graph atten-
tion network (GAT) that is able to incorporate fine-
grained edge features before conducting IE tasks.
We evaluate our model on the existing benchmark
GENIA-2011 dataset where our model greatly out-
performs our baseline model by 4.8%. In addition
to the existing GENIA-2011 benchmark, we also
aim to evaluate the effectiveness of our framework
on topic-specific literature. We develop a new on-
tology for entities and events with a large corpus
from COVID-19 research papers, which is specifi-
cally annotated by medical professionals and can
serve as a new benchmark for the biomedical IE
community.

The major contributions of this paper are sum-
marized as follows.

• We are the first to enrich the AMR graph with
the external knowledge and use a graph neural
network to incorporate the fine-grained edge
features.

• We evaluate our model and create a new state-
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of-the-art for biomedical event extraction on
the GENIA-2011 corpus.

• We develop a new dataset from COVID-19 re-
lated research papers based on a new ontology
that contains 25 fine-grained entity types and
14 event types.

2 Approach

2.1 Overview
As shown in Figure 2, our proposed biomedical
information extraction framework mainly consists
of four steps. First, we extract a global knowl-
edge graph (KG) that contains all the entities from
the corpus, and select out a sentence-level knowl-
edge subgraph for the input sentence. Then, we
perform AMR parsing and construct the sentence-
level AMR graph, and use the sentence knowledge
subgraph to enrich the AMR graph by adding ad-
ditional nodes and edges. After that, given the
contextualized word embeddings, we first identify
entity and trigger spans, and then conduct message
passing on the knowledge enriched AMR graph
based on an edge-conditioned GAT. Finally, we use
feed-forward neural networks based classifiers for
trigger and argument labeling.

2.2 Knowledge Graph Construction
Global Knowledge Graph We use the Compar-
ative Toxicogenomics Database (CTDB)2 which
contains fine-grained biomedical and chemical in-
teractions between chemicals, genes, and diseases.
We construct a global knowledge graph that in-
volves all entities from the corpus with their pair-
wise chemical interactions. We extract these entity
pairs with their biomedical interactions as triples,
e.g., in Figure 1, (Mono Mac 6, results, leuku-
mia) indicates that Mono Mac 6 cell can result
in the disease of leukemia. We merge all the ex-
tracted triples and form a global knowledge graph
Gg = (V g, Eg). Our extracted global KG consists
of 39,436 nodes and 590,235 edges.

Sentence-level Knowledge Graph Given an in-
put sentence, we aim to generate a sentence-level
KG by selecting out a subgraph from the global
KG, which contains the external knowledge be-
tween all entities within the sentence. Given an
input sentence S, we use SciSpacy3 to obtain all
the related biomedical entities, including genes,

2http://ctdbase.org/
3https://allenai.github.io/scispacy/

chemicals, cells, and proteins. We then link each
entity mention from the sentence to the nodes in
global KG Gg = (V g, Eg). To select the sentence
subgraph from the global KG, given the set of en-
tity mentions E = {ε1, · · · , ε|E|} (where each εi
is a word span), we select the connected subgraph
that covers all entity mentions in E with the mini-
mal number of nodes as the sentence KG. Note that
such a sentence KG construction procedure can be
accomplished in linear time complexity in terms
of the number of nodes |V g|. This can be done
by first traversing all the nodes in the global KG
using depth-first search and obtaining all connected
subgraphs of Gg in linear time. After that, we se-
lect the set of subgraphs that can cover E and then
choose the one Gs = (V s, Es) with the minimal
number of nodes as the sentence KG.

2.3 KG-enriched AMR parsing

AMR Parsing After obtaining the sentence KG,
we fuse it with the AMR graph as an external
knowledge enrichment procedure. Given an in-
put sentence S = {w1, w2, · · · , wN}, we first per-
form AMR parsing and obtain a sentence-level
AMR graph GA = (V A, EA) with an alignment
between AMR nodes and the spans in the origi-
nal sentence. We employ the transformer-based
AMR parser4 (Fernandez Astudillo et al., 2020)
pretrained on the Biomedical AMR corpus5 re-
leased from the AMR official website. Each node
vAi = (mA

i , n
A
i ) ∈ V a represents an AMR con-

cept or predicate, and we use (mA
i , n

A
i ) to denote

the corresponding span for such an AMR node.
For AMR edges, we use eAi,j to denote the specific
relation type between nodes vAi and vAj in AMR an-
notations (e.g., ARG-x, :time, :location, etc.). We
randomly initialize the edge embeddings as a look-
up embedding matrix EAMR, which is optimized in
end-to-end training.

Enrich AMR with sentence KG Given a pair
of AMR graph GA and sentence KG GS , we fuse
them into an enriched AMR graph G = (V,E)
as the external reference for the subsequent infor-
mation extraction tasks. In general, there are three
cases for fusing each sentence’s KG nodes vsi ∈ V s

into the AMR graph. First, if vsi represents an en-
tity within the sentence, and there is also an AMR

4https://github.com/IBM/
transition-amr-parser

5https://amr.isi.edu/download/2018-01-25/
amr-release-bio-v3.0.txt

http://ctdbase.org/
https://allenai.github.io/scispacy/
https://github.com/IBM/transition-amr-parser
https://github.com/IBM/transition-amr-parser
https://amr.isi.edu/download/2018-01-25/amr-release-bio-v3.0.txt
https://amr.isi.edu/download/2018-01-25/amr-release-bio-v3.0.txt
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Figure 2: Overview of our proposed framework for biomedical information extraction.

node vAj with the same span, we then match vsi to
vAj and add all KG edges linked to vsi into the AMR
graph. Second, if vsi represents an entity within the
sentence, but there is not any AMR node vAj with
a matched span, we then add a new node (as well
as all related edges) into the AMR graph. Third,
if vsi is an additional KG node that does not rep-
resent any entity in the sentence, we directly add
this node into the AMR graph with all related KG
edges. After we match and link all the sentence KG
nodes towards the AMR graph, we obtain the fused
graph G = (V,E). Note that such a graph fusion
procedure could result in multiple edges between a
pair of nodes. We keep all these edges with their
embeddings for the subsequent message passing
procedure. The illustration for the graph fusion
procedure is shown in Figure 2.

2.4 Node Identification and Message Passing
Contextualized Encoder Given an input sen-
tence S, we use the BERT model pretrained on
biomedical scientific texts (Lee et al., 2020) to
obtain the contextualized word representations
{x1,x2, · · · ,xN}. If one word is split into mul-
tiple pieces by the BERT tokenizer, we take the
average of the representation vectors for all pieces
as the final word representation.

Node Identification After encoding the input
sentence using BERT, we first identify the entity
and trigger spans as the candidate nodes. Similar
to (Wadden et al., 2019), given the contextualized
word representations, we first enumerate all possi-
ble spans up to a fixed lengthK, and calculate each
span representation according to the concatenation
of the left and right endpoints and a trainable fea-

ture vector characterizing the span length6. Specif-
ically, given each span si = [start(i), end(i)], the
span representation vector is:

si =
[
xstart(i),xend(i), z(si)

]
, (1)

where z(si) denotes a trainable feature vector that
is only determined by the span length. We use
separate binary classifiers for each specific entity
and trigger type to handle the spans with multiple
labels. Each binary classifier is a feed-forward
neural network with ReLU activation in the hidden
layer, which is trained with binary cross-entropy
loss jointly with the whole model. In the diagnostic
setting of using gold-standard entity mentions, we
only employ span enumeration for event trigger
identification, and use the gold-standard entity set
for the following event extraction steps.

Edge-conditioned GAT To fully exploit the in-
formation of external knowledge and AMR seman-
tic structure, similar to (Zhang and Ji, 2021), we
use an L-layer graph attention network to let the
model aggregate neighbor information from the
fused graph G = (V,E). We use hl

i to denote the
node feature for vi ∈ V in layer l, and ei,j to repre-
sent the edge feature vector for ei,j ∈ E. To update
the node feature from l to l + 1, we first calculate
the attention score for each neighbor j ∈ Ni based
on the concatenation of node features hl

i, h
l
j and

edge features ei,j .

αl
i,j =

exp
(
σ
(
f l[Whl

i : Weei,j : Whl
j ]
))

∑
k∈Ni

exp
(
σ
(
f l[Whl

i : Weei,k : Whl
k]
)) ,

6We use different maximum span length K for entity and
trigger spans.
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where W, We are trainable parameters, and f l and
σ(·) are a single layer feed-forward neural network
and LeakyReLU activation function respectively.
Then we obtain the neighborhood information h∗i
by the weighted sum of all neighbor features:

h∗i =
∑
k∈Ni

αl
i,jW

∗hlk,

where W∗ is a trainable parameter. The updated
node feature is calculated by a combination of the
original node feature and its neighborhood informa-
tion, where γ controls the level of message passing
between neighbors.

hl+1
i = hl

i + γ · h∗i (2)

Note that our edge-conditioned GAT structure is
similar to (Huang et al., 2020). The main difference
is that (Huang et al., 2020) only uses edge features
for calculating the attention score αl

i,j , while we
use the concatenation of the feature vectors of each
edge and its involved pair of nodes. Such a method
can better characterize differing importance levels
for neighbor nodes, and thus yield better model
performance. We select the last layer hL

i as the
final representation for each entity or trigger.

Message Passing Given the knowledge enriched
AMR graphG = (V,E) and representation vectors
of extracted trigger and entity spans, we initialize
the feature vectors for nodes and edges as follows.
For each KG node vsi which does not belong to any
AMR node, we initialize its feature vectors vsi us-
ing KG embeddings pre-trained on the global KG
using TransE (Bordes et al., 2013). For each origi-
nal AMR node vAi = (mA

i , n
A
i ), we first calculate

its span representation vAi according to Eq. (1), and
then use a linear transformation WAvAi + bA to
initialize the node feature vector h0

i . For edge fea-
tures, we use pre-trained TransE embeddings for
KG edges, and use the trainable embedding matrix
EAMR for AMR relations. We use our proposed
edge-conditioned GAT to conduct message passing
and get the feature vectors from the final layer as
the updated node representations. We obtain the
final representation vectors for the trigger and en-
tity nodes and denote them as {τ1, · · · , τ|T |} and
{ε1, · · · , ε|E|} respectively.

2.5 Biomedical Event Extraction

Model Training Given the event trigger set T
with the event trigger representations τi, and the

entity set E with the representations εi, we use LI
to denote the loss for binary classifiers for event
trigger and entity extraction in the node identifi-
cation step. For event argument role labeling, we
concatenate candidate trigger-entity pairs or trigger-
trigger pairs (for nested events) and feed them into
two separate FFNs (with softmax activation func-
tion in the output layer) for role type classifica-
tion, where we have ytti,j = FFNtt ([τi : τj ]) or
ytei,j = FFNte ([τi : εj ]). The overall training ob-
jective is defined in a multi-task setting, which
includes the cross-entropy loss for trigger and ar-
gument classification, as well as the binary classifi-
cation loss LI .

L = LI−
∑
i,j

ytti,j log ŷ
tt
i,j−

∑
i,j

ytei,j log ŷ
te
i,j . (3)

3 Experiments

3.1 Experimental Setup
Data Similarly to the recent work (Li et al., 2019;
Huang et al., 2020; Ramponi et al., 2020), we
also conduct experiments on the BioNLP GENIA
2011 (Kim et al., 2011) dataset consisting of both
abstracts and main body texts from biomedical sci-
entific papers. Similarly to previous work (Li et al.,
2019; Huang et al., 2020; Ramponi et al., 2020),
we only focus on extracting the core events, which
involves Protein entities, 9 fine-grained event types,
and 2 event argument types. We do not incorpo-
rate event ontology or training data from the newer
versions of the BioNLP GENIA shared tasks (e.g.,
GENIA 2013) to ensure fair comparisons with pre-
vious models. The statistics of this dataset are
shown in Table 2. The original GENIA dataset

Data Split Train Set Dev Set Test Set

# Documents 908 259 231

# Sentences 8,620 2,846 3,348

# Proteins 11,625 4,690 5,301

# Events 10,310 3,250 4,487

Table 2: GENIA 2011 Dataset Statistics.

is annotated in paragraphs. Following (Li et al.,
2019), we focus on sentence-level event extraction
and only keep events and argument roles within
each sentence (around 94% of the events).

Implementation Details For pretrained KG em-
beddings, we use 600-dim embedding vectors
pre-trained on the global knowledge graph using
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TransE. We use a two-layer edge-conditioned GAT
and the feature dimensions are 2048 for nodes and
256 for edges. Specifically, the FFNs consist of two
layers with a dropout rate of 0.4, where the num-
bers of hidden units are 150 for entity extraction
and 600 for event extraction. We train our model
with Adam (Kingma and Ba, 2015) on NVIDIA
Tesla V100 GPUs for 80 epochs (approximately
takes 4 minutes for 1 training epoch) with learn-
ing rate 1e-5 for BERT parameters and 5e-3 for
other parameters. We select the model checkpoint
with optimal F1-Score on the development set to
evaluation on the test set from the official website.

3.2 Baselines and Ablation Variants

We consider the most recent models on biomedical
event extraction: KB-Tree-LSTM (Li et al., 2019),
GEANet (Huang et al., 2020), BEESL (Ramponi
et al., 2020), and DeepEventMine (Trieu et al.,
2020) for comparison in our experiments, and we
report the precision, recall, and F1 score from the
GENIA 2011 online test set evaluation service7.
In addition to the previous models, we also con-
duct ablation studies to evaluate the contributions
of different parts in our model. We adopt the model
variants BERT-Flat and BERT-AMR, where BERT-
Flat only uses the BERT representations without
any help from AMR and KG, and BERT-AMR de-
notes the model with an edge-conditioned GAT
to encode the AMR graph without incorporating
external knowledge.

3.3 Overall Performance

We report the performance of our model and com-
pare it with the most recent biomedical IE models
KB-Tree-LSTM (Li et al., 2019), GEANet (Huang
et al., 2020), BEESL (Ramponi et al., 2020), and
DeepEventMine (Trieu et al., 2020) in Table 3. In
general, our KG enriched AMR model can achieve
slightly higher performance compared with the
state-of-the-art model DeepEventMine. Besides,
our model greatly outperforms all other previous
models for biomedical event extraction. To fur-
ther measure the impact of each individual part
in our model, we also introduce two model vari-
ants for the ablation study. We can see that com-
pared with simply finetuning a flat BERT model,
the AMR parsing contributes a 1.84% absolute gain
on F1-Score, while the incorporation of external

7http://bionlp-st.dbcls.jp/GE/2011/
eval-test/

knowledge graph contributes 2.95%. We also re-
port the overall development set F1 scores without
using gold-standard entities, and compare the per-
formance with BEESL in Table 4. We can discover
that our model performs significantly better than
the BEESL model, which proves that our model
can better handle practical scenarios without gold-
standard entities.

Model Prec Rec F1

String Matching 43.92 21.82 29.16

Tree-LSTM (Li et al., 2019) 67.01 52.14 58.65
GEANet (Huang et al., 2020) 64.61 56.11 60.06

BEESL (Ramponi et al., 2020) 69.72 53.00 60.22
DeepEM (Trieu et al., 2020) 71.71 56.20 63.02

BERT-Flat 64.68 52.98 58.25
BERT-AMR 68.39 53.58 60.09

BERT-AMR-KG (Ours) 72.74 55.62 63.04

Table 3: Overall test F-score (%) of biomedical extrac-
tion on GENIA 2011 dataset.

Model F1-Score

BEESL (w/o gold-standard entities) 59.51
Ours (w/o gold-standard entities) 60.16

Table 4: Overall dev F-score (%) of biomedical ex-
traction on GENIA 2011 dataset without using gold-
standard entities.

3.4 Case Study on COVID-19 Dataset

COVID-19 Dataset In order to evaluate the im-
pact of our approach on real-world problems, be-
sides the GENIA dataset, we also develop a new
dataset specifically labeled by medical profession-
als from research papers related to COVID-19. We
select out 186 full-text articles with 12,916 sen-
tences from PubMed and PMC. Three experienced
annotators who are biomedical domain experts
have participated in the annotation, and the Cohen’s
Kappa scores for pairwise agreement between the
annotators are 0.79, 0.84, and 0.74 respectively.
The pre-defined entity and event type distributions
in this dataset are shown in Table 6.

Results We evaluate our proposed model by re-
moving the event argument labeling procedure to
accommodate a scenario limited to entity and event
trigger labeling, that is, we remove the argument
role classifiers FFNtt and FFNte while the overall
training loss in Eq. (3) only contains the first two
terms for span identification and event trigger clas-
sification. As shown in Table 5, our model achieves
78.05% overall F1 score with 83.60% F1 on entity
extraction task and 72.37% F1 on event extraction.

http://bionlp-st.dbcls.jp/GE/2011/eval-test/
http://bionlp-st.dbcls.jp/GE/2011/eval-test/
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The entity extraction performance on the COVID
dataset is lower than typical coarse-grained entity
extraction model performance for BERT-like mod-
els on other datasets (e.g., our model can get around
86% F1 score for entity extraction on GENIA-2011
development set). This is probably because our pro-
posed COVID-19 dataset is challenging with more
find-grained biomedical entity and event types.

Model Prec Rec F1

BERT-AMR-KG (entities) 83.89 83.32 83.60
BERT-AMR-KG (events) 72.47 72.27 72.37

BERT-AMR-KG (overall) 78.11 78.00 78.05

Table 5: F-scores (%) on COVID-19 test dataset for
entity and event extraction.

Entities # Labels Events # Labels

Disease 6,231 BiologicalProcess 6,737
MedicalDrug 3,901 ResearchActivity 5,177
Patients 3,430 LabOrTestResult 4,637
Chemical 2,719 TherapeuticProcedure 3,819
Human 2,146 SymptomOrSign 2,585
Country 1,610 InfectionControl 1,937
Gene/Protein 1,501 PharmacologicalAction 1,567
SARS-CoV-2 1,452 Epidemic 1,180
Organization 1,182 DiagnosticProcedure 1,014
AnatomicalStructure 1,130 DiseaseTransmission 807
MedicalExpert 1,105 LaboratoryTechniques 527
UrbanArea 794 BiologicalProcess 262
Organism 666 EnvironmentalExposure 249
Coronavirus 567 GeneticEvolution 83
Animal 460
FluidsAndSecretions 406
SARS-CoV 341
CellularComponent 289
Gene 272
MERS-CoV 185
ProtectiveEquip 184
ViralParticle 146
CellLine 66
Antigen 32
Species 28

Table 6: Our new COVID-19 ontology with 24 fine-
grained entity types and 15 biomedical event types.

3.5 Qualitative Analysis
We select two typical examples in Table 7 to show
how KG enriched AMR parsing helps to improve
the performance of biomedical IE.

In the first example, we can see that the flat
model fails to identify CAII as an entity of the bind
event, which is probably due to the long distance be-
tween the trigger bind and the argument CAII (the
model successfully detects the other two arguments
V-erbA and C-erbA because they are much nearer).
With the help of AMR parsing, the model success-
fully links CAII to the bind event since in the AMR
graph, the three entities C-erbA, V-erbA, and CAII
are located within the same number of hops from
the bind trigger. But the model still cannot rec-
ognize CAII as the theme of transcription. This

is probably because the model is not clear what
whose refers to in the sentence. However, with the
help of external knowledge, the model knows in
advance that V-erbA could inhibit the transcription
of CAII, thus it is able to identify CAII as the theme
of the transcription event.

In the second example, the flat model is confused
about which entity belongs to which event between
two binding events in the same sentence. Here, the
AMR parsing provides a clear tree structure and
guides the model to correctly link the event-entity
pairs (i.e., heterodimers with RAR beta, binding
with VDR). However, the BERT-AMR model still
fails to identify heterodimers as the theme of stim-
ulated. With the further help of the external KG,
the model knows in advance that RA can stimulate
the generation of RAR beta heterodimers, and thus
it is able to correctly identify a positive regulation
between these two triggers.

3.6 Remaining Challenges
We compare the predictions from our model with
the gold-standard annotations on the development
set and discover the following typical remaining
error cases.

Non-verb Event Triggers Most of the biomed-
ical events are triggered by verbs (bind, express,
etc.) or their noun forms (binding, expression, etc.).
However, there are also events triggered by adjec-
tives (e.g., subsequent), proper nouns (e.g., mRNA,
SiRNA), and even prepositions (e.g., from) and con-
junctions (e.g., rather than). Our model misses
a lot of these non-verb event triggers due to the
insufficient training examples.

Misleading Verb Prefix We also find that the
prefix of a verb can sometimes be misleading for
event trigger classification, especially for Nega-
tive Regulation events. Many Negative Regulation
events are triggered by words with certain styles
of prefix (in- or de-), e.g., inactivation, inactivated,
decrease, degradation, etc., representing some neg-
ative interactions. As a result, the model mistakenly
labels many other words with the same prefixes
as Negative Regulation event triggers. For exam-
ple, in the sentence: Dephosphorylation of 4E-BP1
was also observed ..., the word dephosphorylation
should not be classified as a Negative Regulation
event although it has a de- prefix. Because de-
phosphorylation denotes an inverse chemical pro-
cess of phosphorylation rather than negative regu-
lation between different events or proteins. This is
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Sentence: Here, we show that V-erbA and C-erbA bind directly to sequences within the promoter of the erythrocyte-
specific carbonic anhydrase II (CAII), a gene whose transcription is efficiently suppressed by V-erbA.

show-01

suppress
-01and

KG Nodes
AMR Nodes

C-erbA CAII

bind-01

sequence

V- erbA V-erbA

transcribe
-01inhibit

AMR Graph Enriched by
External KG

Protein
“C-erbA”

Protein
“V-erbA”

Protein
“CAII”

Transcription:
“transcription”

Negative Regulation:
“suppressed”Binding:

“bind”

Cause

Theme
Theme

Protein
“V-erbA”

BERT-Flat Model Predictions

Protein
“C-erbA”

Protein
“V-erbA”

Protein
“CAII”

Transcription:
“transcription”

Negative Regulation:
“suppressed”

Theme

Binding:
“bind”

Cause

ThemeTheme
Theme

Protein
“V-erbA”

BERT-AMR Model Predictions

Protein
“C-erbA”

Protein
“V-erbA”

Protein
“CAII”

Transcription:
“transcription”

Negative Regulation:
“suppressed”

Theme

Binding:
“bind”

Cause

ThemeThemeTheme

Protein
“V-erbA”

BERT-AMR-KG Model Predictions

Theme

（Correct）

Sentence: Concomitant stimulation by VitD3 inhibited the RA-stimulated formation of RAR beta/RXR heterodimers,
favoring VDR/RXR binding to the RARE.

KG Nodes
AMR Nodes inhibit-01

favor-01

results

AMR Graph Enriched by
External KG

form -01

bind-01

stimulate
-01 hetero dimer

RA RARERAR-beta

VDR Protein
“RAR beta”

Protein
“VDR”

Positive Regulation:
“stimulated”

Binding:
“heterodimers”

Theme

BERT-Flat Model Predictions

Binding:
“binding”

Theme Theme

Protein
“RAR beta”

Protein
“VDR”

Positive Regulation:
“stimulated”

Binding:
“heterodimers”

Theme

BERT-AMR Model Predictions

Binding:
“binding”

Theme

Protein
“RAR beta”

Protein
“VDR”

Positive Regulation:
“stimulated”

Binding:
“heterodimers”

Theme

Theme

BERT-AMR-KG Model Predictions

Binding:
“binding”

Theme

（Correct）

Table 7: Examples from development set showing how KG enriched AMR graph improves the model performance.

probably because the BERT tokenizer breaks these
words into pieces de, phosphorylation, encouraging
BERT models to learn misleading patterns.

4 Related Work

Biomedical Information Extraction A number
of previous studies contribute to biomedical event
extraction with various techniques, such as depen-
dency parsing (McClosky et al., 2011; Li et al.,
2019), external knowledge base (Li et al., 2019;
Huang et al., 2020), joint inference of triggers and
arguments (Poon and Vanderwende, 2010; Ram-
poni et al., 2020), Abstract Meaning Representa-
tion (Rao et al., 2017), search based neural mod-
els (Espinosa et al., 2019), and multi-turn question
answering (Wang et al., 2020b). Recently, to han-
dle the nested biomedical events, BEESL (Ram-
poni et al., 2020) models biomedical event extrac-
tion as a unified sequence labeling problem for
end-to-end training. DeepEventMine (Trieu et al.,
2020) proposes to use a neural network based clas-
sifier to decide the structure of complex nested
events. Our model is also in an end-to-end train-
ing pipeline, but additionally utilizes fine-grained
AMR semantic parsing and external knowledge to
improve the performance.

Utilization of External Knowledge In terms of
utilization of external knowledge, (Li et al., 2019)
proposes a knowledge-driven Tree-LSTM frame-
work to capture dependency structures and en-
tity properties from an external knowledge base.
More recently, GEANet (Huang et al., 2020) in-

troduces a Graph Edge conditioned Attention Net-
work (GEANet) that incorporates domain knowl-
edge from the Unified Medical Language System
(UMLS) into the IE framework. The main differ-
ence of our model is that we use fine-grained AMR
parsing to compress the wide context, and manage
to use an external KG to enrich the AMR to bet-
ter incorporate domain knowledge. Incorporating
external knowledge is also widely used in other
tasks such as relation extraction (Chan and Roth,
2010; Cheng and Roth, 2013), and QA for domain-
specific (science) questions (Pan et al., 2019).

Biomedical Benchmarks for COVID-19 (Lo
et al., 2020) releases a dataset containing open-
access biomedical papers related to COVID-19. A
lot of research has been done based on this dataset,
including Information Retrieval (Wise et al., 2020),
Entity Recognition (Wang et al., 2020b), distant
supervision on fine-grained biomedical name en-
tity recognition to support automatic information
retrieval indexing or evidence mining (Wang et al.,
2020c), and end-to-end Question Answering (QA)
system for COVID-19 with domain adaptive syn-
thetic QA training (Reddy et al., 2020). Our
COVID-19 dataset will further advance the field in
developing effective IE techniques specifically for
the COVID-19 domain.

5 Conclusions and Future Work

In this paper, we propose a novel biomedical Infor-
mation Extraction framework to effectively tackle
two unique challenges for scientific domain IE:
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complex sentence structure and unexplained con-
cepts. We utilize AMR parsing to compress wide
contexts, and incorporate external knowledge into
the AMR. Our proposed model produces signifi-
cant performance gains compared with most state-
of-the-art methods. In the future, we intend to ex-
ploit tables and figures in the scientific literature for
multimedia representation. We also plan to further
incorporate coreference graphs among sentences
to further enrich contexts. We will also continue
exploring the use of richer information from an
external knowledge base to further improve the
model’s performance.
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A Appendices

A.1 Implementation Details
For pretrained KG embeddings, we use 600-dim
embedding vectors pre-trained on the global knowl-
edge graph using TransE. We use a two-layer edge-
conditioned GAT and the feature dimensions are
2048 for nodes and 256 for edges. Specifically, the
FFNs consist of two layers with a dropout rate of
0.4, where the numbers of hidden units are 150 for
entity extraction and 600 for event extraction. We
train our model with Adam (Kingma and Ba, 2015)
on NVIDIA Tesla V100 GPUs for 80 epochs (ap-
proximately takes 4 minutes for 1 training epoch)
with learning rate 1e-5 for BERT parameters and
5e-3 for other parameters. We select the model
checkpoint with optimal F1-Score on the devel-
opment set to evaluation on the test set from the
official website. The detailed hyper-parameter set-
tings are shown in Table 8.

Hyper-parameters Values

Number of model parameters (except BERT) 3.25M

KG embedding dimensions 600

Num of features for each node 2,048
Num of features for AMR relation 256

Num of GAT layers 2
Message passsing level γ 0.003

Num of layers for FFNNs 2
FFNN hidden dimensions for entity extraction 150
FFNN hidden dimensions for event extraction 600

Dropout rate 0.4
Activation function ReLU

Learning rate for BERT params 1e-5
Learning rate for other params 1e-3

Batch size 16

Table 8: Detailed settings for model hyper-parameters.


