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Abstract
Few-shot Named Entity Recognition (NER)
exploits only a handful of annotations to iden-
tify and classify named entity mentions. Pro-
totypical network shows superior performance
on few-shot NER. However, existing prototyp-
ical methods fail to differentiate rich seman-
tics in other-class words, which will aggravate
overfitting under few shot scenario. To address
the issue, we propose a novel model, Mining
Undefined Classes from Other-class (MUCO),
that can automatically induce different unde-
fined classes from the other class to improve
few-shot NER. With these extra-labeled unde-
fined classes, our method will improve the dis-
criminative ability of NER classifier and en-
hance the understanding of predefined classes
with stand-by semantic knowledge. Experi-
mental results demonstrate that our model out-
performs five state-of-the-art models in both 1-
shot and 5-shots settings on four NER bench-
marks. We will release the code upon accep-
tance. The source code is released on https:
//github.com/shuaiwa16/OtherClassNER.git.

1 Introduction

Named Entity Recognition (NER) seeks to locate
and classify named entities from sentences into
predefined classes (Yadav and Bethard, 2019). Hu-
mans can immediately recognize new entity types
given just one or a few examples(Lake et al., 2015).
Although neural NER networks have achieved su-
perior performance when provided large-scale of
training examples (Li et al., 2019), it remains a
non-trivial task to learn from limited new samples,
also known as few-shot NER (Fritzler et al., 2019).

Traditional NER models, such as LSTM+CRF
(Lample et al., 2016), fail in few-shot settings.
They calculate the transition probability matrix
based on statistics, which requires a large num-
ber of data for optimization. Recently, prototypical
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Figure 1: (a): Examples for undefined classes. (b): Dif-
ferent ways to handle O class (single prototype vs. mul-
tiple prototypes).

network (Snell et al., 2017) shows potential on few-
shot NER. The basic idea is to learn prototypes for
each predefined entity class and an other class, then
classify examples based on which prototypes they
are closest to (Fritzler et al., 2019). Most existing
studies focus on the predefined classes and lever-
age the label semantic to reveal their dependency
for enhancement (Hou et al., 2020). However, they
ignore the massive semantics hidden in the words
of other class (O-class for short).

In this paper, we propose to learn from O-class
words, rather than using predefined entity classes
only, to improve few-shot NER. In fact, O-class
contains rich semantics and can provide stand-by
knowledge for named entity identification and dis-
ambiguation. As shown in Figure 1(a), if we can
detect an undefined class consisting of references
to named entities (such as pronouns), then due to
their interchangeability (Katz and Fodor, 1963), we
will obtain prior knowledge for named entity iden-
tification. For example, Newton can be replaced
with he or professor in S2 and S3. If we can detect
additional classes, including he and professor, we
will have more evidence about where Newton may
appear. In addition, if we can detect an undefined
class that composed of Action (O1), we may cap-

https://github.com/shuaiwa16/OtherClassNER.git
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ture underlined relations between different named
entities, which is important evidence when distin-
guishing the named entity type (Ghosh et al., 2016;
Zheng et al., 2017).

Nevertheless, it is challenging to detect related
undefined classes from O class words due to two
reasons: 1) Miscellaneous Semantics. O-class con-
tains miscellaneous types of words. Based on our
observations, although there are massive related yet
undefined classes, the noise maybe even more, such
as function and stop words. These noisy classes
have little or negative impacts on the identification
of target entities. Therefore, how to distinguish
noise from task-related classes is a key point. 2)
Lack of Golden Label. We neither have the la-
beled examples nor the metadata of each undefined
class. The zero-shot methods (Pushp and Srivas-
tava, 2017) fail in this case, since they need meta-
data (such as class name and class description) as
known information. Unsupervised clustering meth-
ods also cannot meet quality requirements as shown
in our experiment.

To handle the issues, we propose the Mining
Undefined Classes from Other-class (MUCO)
model to leverage the rich semantics to improve
few-shot NER. Instead of a single prototype, we
learn multiple prototypes to represent miscella-
neous semantics of O-class. Figure 1(b) shows
the difference between our method and previous
methods. To distinguish task-related undefined
classes without annotations, we leverage weakly
supervised signals from predefined classes and pro-
pose a zero-shot classification method called Zero-
shot Miner. The main idea is inspired by trans-
fer learning in prototypical network. Prototypical
network can be quickly adapted to new class B
when pre-training on related base class A. The un-
derlined reason is that if two classes (A and B)
are task-related, when we make examples in A
class to cluster in the space, the examples in B
class also tend to cluster in the space, even with-
out explicit supervision on class B (Koch et al.,
2015). Based on this phenomenon, we first per-
form prototype learning on predefined classes to
cluster words in predefined classes, and then regard
words in O-class that also tend to cluster as the
undefined classes. Specifically, we train a binary
classification to judge whether clustering occurs
between any two of the words. After that, we label
the found undefined classes back into sentences to
jointly recognize predefined and undefined classes

for knowledge transfer. Our contributions can be
summarized as follows:

• We propose a novel approach MUCO to lever-
age rich semantics in O class to improve few-
shot NER. To the best of our knowledge, this
is the first work exploring O-class in this task.

• We propose a novel zero-shot classification
method for undefined class detection. In the
absence of labeled examples and metadata,
our proposed zero-shot method creatively use
the weakly supervised signal of the predefined
classes to find undefined classes.

• We conduct extensive experiments on four
benchmarks as compared with five state-of-
the-art baselines. The results under both 1-
shot and 5-shots settings demonstrate the ef-
fectiveness of MUCO. Further studies show
that our method can also be conveniently
adapted to other domains.

2 Related Work

Few-shot NER aims to recognize new categories
with just a handful of examples (Feng et al., 2018;
Cao et al., 2019). Four groups of methods are
adopted to handle the low-resource issue: knowl-
edge enhanced, cross-lingual enhanced, cross-
domain enhanced, and active learning. Knowledge-
enhanced methods exploit ontology, knowledge
bases or heuristics labeling (Fries et al., 2017; Tsai
and Salakhutdinov, 2017; Ma et al., 2016) as side
information to improve NER performance in lim-
ited data settings, which suffer from knowledge
low-coverage issue. Cross-lingual (Feng et al.,
2018; Rahimi et al., 2019) and cross-domain en-
hanced methods (Wang et al., 2018; Zhou et al.,
2019) respectively use labeled data from a coun-
terpart language or a different domain as external
supervised signals to avoid overfitting. When the
language or domain discrepancy is large, these two
methods will inevitably face the problem of per-
formance degradation (Huang et al., 2017). Ac-
tive learning methods (Wei et al., 2019) explicitly
expand corpus by selecting the most informative
examples for manual annotation, which need extra
human-laboring. Different from previous methods,
we focus on mining the rich semantics in the O
class to improve few-shot NER.
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2.1 Prototypical Network

Prototypical network (Snell et al., 2017), initially
proposed for image classification, has been success-
fully applied to sentence-level classification tasks,
such as text classification (Sun et al., 2019) and
relation extraction (Gao et al., 2019). However,
there is a dilemma to adapt prototypical network
for token-level classification tasks such as NER.
Prototypical network assumes that each class has
uniform semantic and vectors belong to the same
class should cluster in the space. However, in NER,
data in O class contain multiple semantics and thus
violate the uniform semantic hypothesis in proto-
typical network. To handle the issue, Deng et al.
(2020) first trains a binary classifier to distinguish O
class from other predefined classes, and then adopt
traditional prototypical network methods, which
suffers from pipeline error propagation. Fritzler
et al. (2019) does not calculate the prototype of O
class from data, but directly sets a hyper-parameter
bo as the fake distance similarity and optimize bo
during training, which still regards O class as a
whole. On the contrary, we are the first to divide O
class into multiple undefined classes and explicitly
learn multiple spatially-dispersed prototypes for O
class.

3 Methodology

Figure 2 illustrated the architecture of the proposed
MUCO model. MUCO is composed of two main
modules: Undefined Classes Detection detects
multiple undefined classes hidden in O class to fully
exploit the rich semantics in O class. Joint Classi-
fication jointly classifies the undefined classes and
predefined classes, so as to leverage the stand-by se-
mantic knowledge in undefined classes to enhance
the understanding of predefined classes.

3.1 Notation

In few-shot NER, we are given training exam-
ples D = Dc ∪ Do, where Dc = {xi, yi|Ni=1}
is the training examples of predefined classes
C = {c1, c2, . . . , ck} and Do = {xi|Mi=1} is the
training examples of O class. For each exam-
ple (x, y), x is composed by S and wj , where
S =< w1, w2, . . . , wn > stands for the sentence
and wj is the queried named entity, y is the class
label of the queried named entity wj . We denote
the prototype of class y as py and prototypes for
all classes C ∪ O as P = {py|y ∈ C ∪ O}. For-
mally, our goal is first to detect multiple undefined

classes O = {o1, o2, . . . , or} to label the examples
in Do, and then maximize the prediction probabil-
ity P (y|x) on Dc and Do.

3.2 Undefined Classes Detection

In few-shot NER, most of the words in the sen-
tence belong to O class. Different from predefined
classes, O class means none-of-the-above, and con-
tains multiple undefined entity types. Previous
methods ignore the fine-grained semantic informa-
tion in O class and simply regard O as a normal
class. We argue to further decouple O class into
multiple undefined classes to fully exploit the rich
semantics hidden in O class.

In the section, we aim to detect undefined classes
from O class. It is a non-trivial task since we lack
metadata and golden labels to help us distinguish
undefined classes. What is worse, the examples
from O class is numerous and the search space
is large. To handle the issue, we propose a zero-
shot classification method called Zero-shot Miner
to leverage the weak supervision from predefined
classes for undefined classes detection. Our method
inspires by transfer learning, we argue that if an
undefined class is task-related, when we push the
examples in predefined classes to cluster in the
space, the examples in the undefined class should
also have the signs of gathering, even without ex-
plicit supervision (Koch et al., 2015). For instance,
in Figure 2, if we guide Emeneya and Newton (the
green points 1, 3) to cluster in the space, professor
and He (the grey points 9, 12) will also tend to
cluster in the space.

Based on this argument, undefined classes detec-
tion could be achieved by finding multiple groups
of examples in O class that have a tendency to
cluster during the training of the prototypical net-
work on predefined classes. As shown in Figure
2, there are three steps in our zero-shot classifica-
tion method. In step 1, we train the prototypical
network on predefined classes to obtain the learned
mapping function. Through the learned mapping
function the examples belonging to the same class
will cluster in the space. In step 2, we train a bi-
nary group classifier on predefined classes base
on the position features from the learned mapping
function and unlearned mapping function to judge
whether any two points tend to cluster during the
step 1 training. In step 3, we use the learned bi-
nary group classifier in step 2 to infer examples in
O class to distinguish undefined classes from each
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Figure 2: The architecture of the proposed MUCO model. We first detect undefined classes from O class, and
then jointly classify the predefined classes and the found undefined classes for knowledge transfer. Specifically,
in undefined classes detection, we propose a zero-shot classification method, which includes three steps. In step
1, we learn a mapping function through prototypical network training on predefined classes. In step 2, we learn
a binary group classifier to judge whether any two points in predefined classes tend to cluster during the step 1
training. In step 3, we use the binary group classifier to infer pairs of examples in O class to distinguish multiple
undefined classes.

other. The following articles will illustrate the three
steps sequentially.

3.2.1 Step 1: Mapping Function Learning
In prototypical network, mapping function fθ(x)
aims to map the example x to a hidden representa-
tion. BERT is adopted as the mapping function in
our model, which is a pre-trained language repre-
sentation model that employs multi-head attention
as the basic unit, and have superior representation
ability (Geng et al., 2019).

We train the mapping function by correctly dis-
tinguishing the predefined classes. First, we extract
the feature of the queried word. Formally, given
the training example (x, y) ∈ Dc, where x is com-
posed of sentence S =< w1, w2, . . . , wn > and
the queried word wj , we extract the j-th represen-
tation of the sequence output of the last layer of
BERT as the hidden representation.

h = fθ(x) (1)

Then, following (Qi et al., 2018), we randomly
initialize the prototype py of class y at the begin-
ning of training, and then we shorten the distance
between examples in class y to prototype py dur-
ing training. Compared to traditional prototypical
learning (Snell et al., 2017), we do not need to
waste part of the examples for prototype calcula-
tion.

d(x, py) = −fθ(x)T py (2)

where fθ(x) and py are first normalized by L2 nor-
malization.

The final optimization goal for training the map-
ping function is

L(θ1) = −log
exp(−d(x, py))∑

pc∈Pc
exp(−d(x, pc))

(3)

where Pc = {pc|c ∈ C} stands for the prototypes
of all the predefined classes.

3.2.2 Step 2: Binary Group Classifier
Training

Recall that to detect multiple undefined classes,
we need to find multiple example groups, and the
examples in each group should have a tendency to
cluster.

To handle the issue, we learn a binary group clas-
sifier on predefined classes. The main idea is that
if we can determine whether any two examples be-
long to the same group, we can distinguish groups
from each other. Formally, given a pair of examples
(xi, yi) and (xj , yj) in Dc, their original position
hi, hj from unlearned mapping function fθ(x), and
after-training position h̃i, h̃j from learned mapping
function f̃θ(x), the probability of xi and xj belong-
ing to the same class is defined as follows:

bij =W ([hi;hj ; h̃i; h̃j ; |hi − hj |;
|h̃i − h̃j |; |hi − h̃i|; |hj − h̃j |]) + b

(4)
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By comparing the distance variation between orig-
inal positions h and the after-training positions h̃,
we can tell whether aggregation occurs between
any of the two points.

The optimization goal of the binary group classi-
fier is

L(θ2) =
1

N2

N∑
i

N∑
j

(−yij ∗ log(bij)

+ (1− yij) ∗ log(1− bij))
(5)

where N is the numbers of the examples in pre-
defined classes, and yij is the label. If xi and xj
are from the same predefined class (yi=yj), yij is
1, otherwise 0.

3.2.3 Step 3: Binary Group Classifier
Inference

After training, we feed each pair of examples xu
and xv inDo to the binary group classifier to obtain
the group dividing results. The output buv indicates
the confidence that xu and xv belong to the same
group. We set a threshold to divide the group. If
buv is larger than the threshold γ, xu and xv shall
belong to the same group (undefined class). If con-
secutive words belong to the same group, we will
treat these words as one multi-word entity. Noted
that some of the examples in O class may not be-
long to any group. We assume that these examples
come from the task-irrelevant classes, and no fur-
ther classification is made for these examples.

Soft Labeling After the process of group divid-
ing, we obtain labels of multiple undefined classes
O = {o1, o2, . . . , or}. We further adopt the soft la-
beling mechanism. For each undefined class oi, we
calculate the mean of the examples as the class cen-
ter, then we apply softmax on the cosine similarity
between examples and its class center as the soft
labels. Through soft labeling, we can consider how
likely examples belong to the undefined classes.

3.3 Joint Classification
In the section, we take into consideration of both
the predefined classes C and the found undefined
classes O for joint classification. First, we la-
bel the examples in undefined classes back into
the sentences, as shown in Joint Classification
of Figure 2. Then, we optimize the examples
to make them closer to the corresponding proto-
type for better discrimination. Comparing to the
Equation 3, we add the prototypes from O class
Po = {po1 , po2 , . . . , por} as candidate prototypes.

Formally, given the examples (x, y) ∈ Dc ∪
Do, the corresponding prototype py and prototypes
set P = Pc ∪ Po from both predefined classes C
and undefined classes O, the optimization object is
defined as:

L(θ3) = −log
exp(−d(x, py))∑

p∈{Pc∪Po} exp(−d(x, p))
(6)

Scale Factor When calculating d(x, py), the fθ(x)
and py have been normalized and the value is lim-
ited to [-1, 1]. When softmax activation is applied,
the output is unable to approach the one-hot en-
coding and therefore imposes a lower bound on
the cross-entropy loss (Qi et al., 2018). For in-
stance, even we give the golden prediction: giving
1 for correct category and -1 for the wrong ones,
the probability of output p(y|x) = e1/[e1 + (|C ∪
T | − 1)e−1] is still unable to reach 1. The problem
becomes more severe as we increase the number
of named entity categories by introducing more
categories for O class. To alleviate the issue, we
modify Eq. 6 by adding a trainable scalar s shared
across all classes to scale the inner product (Wang
et al., 2017).

L(θ3) = −log
exp(−sd(x, py))∑

p∈{Pc∪Pt} exp(−sd(x, p))
(7)

3.4 Implementation Details

Following traditional prototypical network (Snell
et al., 2017), we pre-train the model on several base
classes, whose types are disjoint to few-shot classes
and have abundant labeled corpus. The underlined
idea is to leverage existing fully annotated classes
to improve the performance of the model on new
classes with only a few annotations. All predefined
classes (both base classes and few-shot classes) are
used when searching for undefined classes, so that
the annotations of undefined classes can be shared
between pre-training and fine-tuning, which will
improve the transfer performance of our model.

4 Experiment

4.1 Datasets

We conduct experiments on multiple datasets to
reduce the dataset bias, including three English
benchmarks Conll2003 (Sang and De Meulder,
2003), re3d (Science and Laborator, 2017) and
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Ontonote5.0 (Pradhan et al., 2013) and one Chi-
nese benchmark CLUENER2020 (Xu et al., 2020).
Conll2003 contains 20,679 labeled sentences, dis-
tributed in 4 classes in the News domains. The
data in re3d comes from defense and security do-
main, with 10 classes and 962 labeled sentences.
Ontonotes5.0 has 17 classes with 159,615 labeled
sentences in mixed domains - News, BN, BC, Web
and Tele. CLUENER2020 has 10 fined grained en-
tity types with 12,091 annotated sentences. For all
of the datasets, we adopt BIO (Beginning, Inside,
and Outside) labeling, which introduces an extra O
class for non-entity words.

4.2 Data Split
We divided the classes of each benchmark into
two parts: base classes and few-shot classes.
The few-shot classes for Conll / re3d / Ontonote
/ CLUENER are Person / Person, Nationality,
Weapon / Person, Language, Money, Percent, Norp
/ Game, Government, Name, Scene. The rest are
the base classes. The division is based on the av-
erage word similarity among classes (mean sim-
ilarity is reported in Appendix A). At each time,
the class with the largest semantic difference from
other classes is selected and added to the few-shot
classes until the number of few-shot classes reaches
1/3 of the base classes. In this way, we can prevent
the few-shot classes and base classes from being
too similar, leading to information leakage. We
do not follow previous methods (Hou et al., 2020)
to adopt different datasets as base and few-shot
classes, because there are overlapped classes in
such data split, such as Person, which will reduce
the difficulty of few-shot setting. For base classes,
all examples are used to train the base classifier.
For few-shot classes, only K examples are used for
training, and the rest are used for testing. Alterna-
tively, we adopt the N-way K-shot setting for few-
shot classes, where N is the number of few-shot
classes and K is the number of examples sampled
from each few-shot class. K is set to 1 and 5 respec-
tively in our experiment. Noted that we can not
guarantee the number of the examples is exactly
equal to K when sampling, because there will be
multiple class labels in one sentence. Following
(Fritzler et al., 2019), we ensure there are at least
K labels for each few-shot class.

4.3 Evaluation Metrics
Following (Hou et al., 2020), we measure the pre-
cision, recall, and macro-averaged F1 scores on all

few-shot classes. For fair comparison with base-
lines, as long as the found undefined class is clas-
sified as O class, it can be considered correct. We
report the average on ten runs as the final results.

4.4 Hyperparameters

For feature extraction, we adopt BERT-base as our
backbone 1, which has 12-head attention layers and
768 hidden embedding dimension. For learning
rate, we adopt greedy search in the range of 1e-6
to 2e-4. We set learning rage to 2e-5 when pre-
training on base classes and 5e-6 when fine-tuning
on few-shot classes. The threshold γ is set to 0.68
to ensure that the found undefined classes are suffi-
ciently relevant to the predefined classes. The batch
size is 128 and the maximum sequence length 128.
We set the scale factor in Eq. 7 to 10 at the be-
ginning. Our code is implemented by Tensorflow
and all models can be fit into a single V100 GPU
with 32G memory. The training procedure lasts for
about a few hours. The best result appears around
the 100 epochs of the training process.

4.5 Baselines

We divide the baselines into two categories: 1)
Supervised-Only Methods. BERT uses pre-trained
BERT model to sequentially label words in sen-
tence (Devlin et al., 2018). Prototypical network
(PN) learns a metric space for each class (Snell
et al., 2017). Both of the methods are only trained
on the few-shot classes. 2) Few-shot Methods. L-
TapNet+CDT (LTC) uses semantic associations
between base and few-shot classes to improve the
prototype quality, which is only trained on base
classes (Hou et al., 2020). We use the original
published code 2. Warm Prototypical Network
(WPN) (Fritzler et al., 2019) is the transfer learning
version of PN, which is first pre-trained on base
classes and then fine-tuned on few-shot classes.
MAML first learns fast-adapted parameters on
base classes and then fine-tune the parameters on
few-shot classes (Finn et al., 2017).

4.6 Overall Performance

Table 1 and 2 present the overall performance of
the proposed approach on four NER benchmarks -
Conll2003, re3d, Ontonote5.0 and CLUENER2020.
MUCO (ours) consistently outperforms state-of-
the-art models, showing the effectiveness of ex-

1https://github.com/google-research/bert
2https://github.com/AtmaHou/FewShotTagging
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Table 1: Overall Performance on Conll2003, re3d, Ontonote5.0 and ClUENER2020 dataset in 1-shot setting(%).

Methods
1-shot Named Entity Recognition

Conll2003 re3d Ontonote5.0 CLUENER2020
P R F P R F P R F P R F

BERT 61.00 50.46 54.28 31.49 22.56 26.13 54.92 32.09 39.92 26.95 18.68 21.77
PN 55.78 50.72 52.10 32.07 23.09 26.75 55.77 30.56 38.67 27.64 19.78 22.81

LTC 78.19 70.36 73.31 29.84 19.33 23.34 60.83 43.25 50.04 - - -
WPN 77.87 86.58 81.40 43.12 38.90 40.27 58.29 54.39 56.20 76.63 70.96 73.50

MAML 75.95 85.69 79.80 43.95 34.77 37.83 56.63 55.84 56.15 77.71 69.53 73.08
MUCO (ours) 81.70 83.98 82.69 43.23 40.37 41.57 60.43 55.82 57.89 78.29 73.60 75.80

Table 2: Overall Performance on Conll2003, re3d, Ontonote5.0 and ClUENER2020 dataset in 5-shot setting(%).

Methods
5-shots Named Entity Recognition

Conll2003 re3d Ontonote5.0 CLUENER2020
P R F P R F P R F P R F

BERT 73.94 68.28 70.54 32.43 25.05 28.09 61.81 56.64 59.04 71.5 68.14 69.61
PN 74.36 71.46 72.70 31.26 25.37 27.77 61.84 58.61 60.12 71.60 68.56 69.92

LTC 85.89 82.41 83.97 40.98 32.00 35.83 62.06 46.08 52.35 - - -
WPN 94.39 95.00 94.68 40.93 38.63 39.68 65.28 67.66 66.34 80.52 79.71 80.04

MAML 94.76 96.04 95.37 41.78 39.49 40.52 65.99 69.31 67.57 77.06 82.83 79.78
MUCO (ours) 96.23 95.35 95.78 43.04 41.70 42.37 73.27 69.00 71.06 78.88 82.67 80.64

ploiting the rich semantics in O class and the supe-
riority of the proposed MUCO model.

Compared with supervised-only methods (BERT
and PN), few-shot methods (TransferBERT,
WPN, MAML, L-TapNet+CDT and MUCO(ours))
achieve better performance. By first training on
base classes, these methods will learn a prior,
which prevents from overfitting densely labeled
words. Among few-shot methods, our model
achieves the best performance. Previous meth-
ods regard O class as a single class. On the con-
trary, we induce different undefined classes from
O class, and add more task-related classes for
joint training, which directly handles the dilemma
of scarcity of data in few-shot learning and pro-
vides stand-by semantics to identify and disam-
biguate named entity, thereby improving the perfor-
mance of few-shot NER. No matter English corpus
(the first three) or Chinese corpus (the last one),
our methods consistently improves the F score,
showing the language-independent superiority of
our method. Task-agnostic superiority also shows
in section 4.10. Our undefined classes detection
method is completely data-driven. The found unde-
fined classes will be automatically adjusted to be
useful and task-related based on current language
or task predefined classes.

To further evaluate our core module undefined
classes detection in section 3.2, we introduce a
Word-Similarity (WS) baseline. WS detects un-
defined classes by performing KMeans (Kanungo
et al., 2002) in O words based on word similarity.

To be fair, WS, like our method, uses soft-label
enhancement (section 3.2.2). We report the final
few-shot NER performance on Ontonote for com-
parison.

55
60
65
70
75

Precision(%) Recall(%) F score(%)

71.0669
73.27

61.0357.94

67.98

Word Similarity Baseline Ours

Figure 3: Few-shot NER Performance under Different
Undefined Classes Detection Algorithm

As shown in Figure 3, our method achieves bet-
ter performance, which shows the superior of our
undefined classes detection module. Word similar-
ity baseline only uses semantics of words and lacks
weak supervision from predefined classes, so that
noisy classes (such as punctuation) cannot be dis-
tinguished from task-related ones, which inevitably
reduces the quality of undefined classes.

4.7 Quality of Found Undefined Classes

In the section, we evaluate the quality of the found
undefined classes from quantitative and qualitative
perspective. All the following experiments are con-
ducted on Ontonote5.0.

For quantitative analysis, we invite three com-
puter engineers to manually label 100 sentences
for human evaluation. The metrics are Intra-class
Correlation (IC) and Inter-class Distinction (ID).
The IC statistics how many labels actually belong
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to the declared class. The ID counts how many
labels belong to only one of the undefined classes,
not to multiple classes. We obtain golden labels by
applying the majority vote rule. Table 3 reports the
average results on undefined classes.

Table 3: Human Evaluation

Metrics IC ID
Average Score(%) 49.15 50.85

Considering the zero-shot setting, the accuracy
of 49.15% and 50.85% is high enough, which in-
dicates that the found undefined classes basically
have semantic consistency within the classes and
semantic difference between classes.

For qualitative analysis, we illustrate a case study
in Table 4. The words in O1, O2 and O3 are mainly
the general entity versions of Person, Location and
Numerous respectively. According to the grammat-
ical rules, general entities and named entities can
be substituted for each other, Lincoln can also be
called president, so identifying general entities can
provide additional location knowledge and enhance
named entity identification. The words in O4 and
O5 are mainly Action, which may imply relations
between different named entities and provide im-
portant evidence for named entity disambiguation
(Tong et al., 2020). The errors mainly come from
three aspects: 1) The surrounding words are incor-
rectly included, such as from in businessmen from
in O1; 2) Some strange words reduce intra-class
consistency, such as was at the tail in O3; 3) There
is semantic overlap between classes, such as O4

and O5. Future work will explore how to improve
the quality of the undefined classes.

4.8 Different Number of Undefined Classes
Since our model needs to manually set the num-
ber of undefined classes, we observe the perfor-
mance of the model under different number set-
tings. We set the number of undefined classes to
1/2/5/10/25/50 by adjusting the threshold γ.

F 
sc
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%
)

55
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75
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59.3

65.72
70.0671.06

68.3467.57

Figure 4: Different Numbers of Undefined Classes

Figure 4 illustrates the F score of MUCO (ours)
on various numbers of undefined classes. It will

impair the performance when the number is too
large or too small. When the number is too
large, the found classes will have overlapping prob-
lems, resulting in severe performance degradation (-
11.51%). When the number is too small, the model
is unable to find enough task-related classes, lim-
iting the ability to capture the fine-grained seman-
tics in O class. Empirical experiments found that
when the number of undefined classes is approxi-
mately equal to the number of few-shot classes, our
method achieves the best performance (the num-
ber is 5 in Figure 4). We argue that the number
of predefined classes is proportional to the amount
of information hidden in weak supervision. There-
fore, with more predefined classes, we can also find
more high-quality undefined classes.

4.9 Cross-Domain Ability

In this section, we answer whether our model
could achieve superior performance facing the dis-
crepancy of different domains. To simulate a do-
main adaption scenario, we choose the benchmark
Conll2003 (Sang and De Meulder, 2003) as the
source domain and AnEM (Ohta et al., 2012) as the
target domain. The entity types in AnEM, such as
Pathological-Formation, are all medical academic
terms and can ensure the discrepancy to common
classes in Conll2003.

Table 5: Domain Adaption Ability.

Method P R F
PN 7.34 17.14 7.43

WPN 33.06 31.95 26.90
MUCO (Ours) 34.17 32.84 28.31

As illustrated in Table 5, our method achieves the
best adaptation performance on the target domain.
All the predefined classes, both in source domains
and target domains, are used when detection unde-
fined classes. The annotations of undefined classes
can be shared between pre-training and fine-tuning,
which will improve the transfer performance of our
model.

4.10 Task-Agnostic Ability

In this section, we answer whether our assump-
tion of O class is task-agnostic and effective for
few-shot token-level classification tasks other than
NER. We conduct experiments on two tasks of
widespread concern: Slot Tagging (Hou et al.,
2020) and Event Argument Extraction (Ahn, 2006).
Slot Tagging aims to discover user intent from task-



6244

Table 4: Case Study of the Found undefined Classes

Annotated Words
O1 gentleman; journalist; president; ambassador; I; he; they; businessmen from; and those Huwei people who;
O2 the harbour; this land, which; over the river; with the great outdoors; outsides; to nature; the skyline;
O3 some; a major; the small number; supplied; not only one of the; empty; large; increase of; was at the tail;
O4 believe; comfort; attacked or threatened; arrest; geared; talks; not dealing; discussions; agreement;
O5 stop; have; do; discussion; take; seek; sat down; negotiated; think; failed; replace;

oriented dialogue system. We adopt Snips dataset
(Coucke et al., 2018) for Slot Tagging, and the
split of train/test is We,Mu,Pl,Bo,Se/Re,Cr. Event
Argument Extraction aims to extract the main el-
ements of event from sentences. We adopt the
ACE2005 dataset 3 with 33 classes and 6 domains.
The train/test is bc,bn,cts,nw/un,wl.

Table 6: Task-Agnostic Effectiveness of Silent Major-
ity(ours)

Methods ST
P R F

PN 61.29 58.24 59.02
WPN 73.60 73.29 70.56

Silent Majority (Ours) 75.92 73.71 72.04

Methods EAE
P R F

PN 51.02 53.14 51.85
WPN 78.39 70.59 73.13

Silent Majority (Ours) 79.61 72.02 75.20

As illustrated in Table 6, the proposed model
achieves superior performance on both tasks, which
demonstrates the generalization ability of our
method. No matter what task the predefined class
belongs to, our method is always able to mine the
task-related classes from the O class to help elim-
inate the ambiguity of the predefined class. The
reason is that our detection method is entirely data-
driven, and does not rely on manually writing un-
defined class descriptions. The found category will
automatically change according to the task type
of the entered predefined classes. Therefore, the
migration cost between tasks of our method is mea-
ger.

5 Conclusion

In this paper, we propose Mining Undefined
Classes from Other-class (MUCO) to utilize the
rich semantics in O class to improve few-shot NER.
Specifically, we first leverage weakly supervised
signals from predefined classes to detect undefined
classes from O classes. Then, we perform joint clas-
sification to exploit the stand-by semantic knowl-

3http://projects.ldc.upenn.edu/ace/

edge in undefined classes to enhance the under-
standing of few-shot classes. Experiments show
that our method outperforms five state-of-the-art
baselines on four benchmarks.
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A Data Split

We divided the classes of each benchmark into two
parts: base classes and few-shot classes. The divi-
sion is based on the average word similarity among
classes. At each time, the class with the largest
semantic difference from other classes is selected
and added to the few-shot classes until the number
of few-shot classes reaches 1/3 of the base classes.
In this way, we can prevent the few-shot classes

and base classes from being too similar, causing
information leakage. The embedding of words are
extracted from BERT, and the mean similarity is
reported in Table 7.
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Table 7: Mean Word Similarity between Predefined Classes

Conll2003
PER MISC LOC ORG
0.64 1.36 1.68 1.75

re3d
Nationality Person Weapon Temporal MilitaryPlatform
3.3 3.87 4.05 4.28 4.34
Quantity Money DocumentReference Location Organisation
4.37 4.38 5.03 5.2 5.74

Ontonotes5.0
PERSON MONEY PERCENT LANGUAGE NORP
0.31 2.2 3.88 4.14 4.49
CARDINAL PRODUCT QUANTITY ORG LAW
4.58 5.16 5.41 5.74 5.99
TIME ORDINAL WORK OF ART GPE LOC
6.01 6.23 6.24 6.7 7.18
DATE FAC EVENT
7.27 7.53 8.11

ClUENER2020
name government game scene position
7.28 7.38 7.43 7.45 7.6
address movie company organization book
7.61 7.62 7.65 7.72 7.91


