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Abstract

Pre-trained multilingual language models, e.g.,
multilingual-BERT, are widely used in cross-

lingual tasks, yielding the state-of-the-art per-

formance. However, such models suffer from

a large performance gap between source and

target languages, especially in the zero-shot

setting, where the models are fine-tuned only

on English but tested on other languages for

the same task. We tackle this issue by incorpo-

rating language-agnostic information, specifi-

cally, universal syntax such as dependency re-

lations and POS tags, into language models,

based on the observation that universal syn-

tax is transferable across different languages.

Our approach, named COunterfactual SYn-

tax (COSY), includes the design of SYntax-

aware networks as well as a COunterfactual

training method to implicitly force the net-

works to learn not only the semantics but

also the syntax. To evaluate COSY, we con-

duct cross-lingual experiments on natural lan-

guage inference and question answering using

mBERT and XLM-R as network backbones.

Our results show that COSY achieves the state-

of-the-art performance for both tasks, without

using auxiliary dataset.1

1 Introduction

With the emergence of BERT (Devlin et al.,

2019), large-scale pre-trained language models

have become an indispensable component in

the solutions to many natural language process-

ing (NLP) tasks. Recently, large-scale multilingual

transformer-based models, such as mBERT (Devlin

et al., 2019), XLM (Lample and Conneau, 2019)

and XLM-R (Conneau et al., 2020a), have been

widely deployed as backbones in cross-lingual NLP

tasks (Wu and Dredze, 2019; Pires et al., 2019; Ke-

ung et al., 2019). However, these models trained

1Our code is publicly available on GitHub: https://
github.com/PluviophileYU/COSY

English:           I      bought      two      new      laptops      yesterday      .

bought

I 

laptops 

yesterday 

. 

new

two 

<ROOT>

<OBJ>

Chinese:       

[PRON]

[VERB] [NOUN]

[NOUN]

[PUNCT]

[NUM]

[ADJ]

Shared Syntax:

Figure 1: Examples of two sentences in English and

Chinese that have the same meaning and share the same

syntax in the format of dependency relations and POS

tags.

on a single resource-rich language, e.g., English,

all suffer from a large drop of performance when

tested on different target languages, e.g., Chinese

and German—where the setting is called zero-
shot cross-lingual transfer. For example, on the

XQUAD dataset, mBERT achieves a 24 percent-

age points lower exact match score on the target

language Chinese than on the training language

English (Hu et al., 2020). This indicates that this

model has seriously overfitted English.

An intuitive way to tackle this is to introduce

language-agnostic information—the most transfer-

able feature across languages, which is lacking in

existing multilingual language models (Choenni

and Shutova, 2020). In our work, we propose

to exploit reliable language-agnostic information—

syntax in the form of universal dependency rela-

tions and universal POS tags (de Marneffe et al.,

2014; Nivre et al., 2016; Zhou et al., 2019, 2021).

As illustrated in Figure 1, the sentences in Chinese

and English share the same meaning but have differ-
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Figure 2: Illustration of counterfactual syntax gener-

ation. Red color highlights the modified syntax with

randomized labels.

ent word orders. The order difference hampers the

transferability between English and Chinese in con-

ventional language models (with sequential words

as input). In contrast, it is clear from Figure 1 that

the two sentences share identical dependency rela-

tions and POS tags. Thus, we can incorporate such

universal syntax2 information to enhance the trans-

ferability across different languages. To achieve

this learning objective in deep models, we design

syntax-aware networks that incorporate the encod-

ings of dependency relations and POS tags into the

encoding of semantics.

However, we find that empirically the conven-

tional attention-based incorporation of syntax, e.g.,
relational graph attention networks (Ishiwatari

et al., 2020), has little effect on improving the

model. One possible reason is that the learning

process may be dominated by the pre-trained lan-

guage models due to their strength in semantic rep-

resentation learning, which leads to an overfitted

model. This raises the question of how to induce
the model to focus more on syntax while maintain-
ing its original capability of representing seman-
tics? To this end, we propose a novel COunterfac-

tual SYntax (COSY) method, inspired by causal

inference (Roese, 1997; Pearl et al., 2009) and con-

trastive learning (He et al., 2020).

The intuition behind COSY is to create copies of

training instances with their syntactic features al-

tered (see the “counterfactual” syntax in Figure 2),

and to force the encodings of the counterfactual in-

2In the rest of this paper, syntax denotes universal syntax
for simplicity.

stances to be different from the encodings of their

corresponding factual instances. In this way, the

model would learn to put more emphasis on the syn-

tactic information when learning how to encode an

instance, and such encodings are likely to perform

well across languages.

We evaluate our COSY method on both question

answering (QA) and natural language inference

(NLI) under cross-lingual settings. Experimental

results show that, without using any additional data,

COSY is superior to the state-of-the-art methods.

Contributions: 1) we develop a syntax-aware net-

work that incorporates transferable syntax in lan-

guage models; 2) we propose a novel counterfac-

tual training method that addresses the technical

challenge of emphasizing syntax; and 3) extensive

experiments on three benchmarks demonstrate the

effectiveness of our method for cross-lingual tasks.

2 Related Work

Cross-lingual Transfer. Large-scale pre-trained

language models (Devlin et al., 2019; Liu et al.,

2019) have achieved sequential success in various

natural language processing tasks. Recent stud-

ies (Lample and Conneau, 2019; Conneau et al.,

2020a) extend the pre-trained language models to

multilingual tasks and demonstrate their promi-

nent capability on cross-lingual knowledge trans-

fer, even under zero-shot scenario (Wu and Dredze,

2019; Pires et al., 2019; Hsu et al., 2019).

Motivated by the success of multilingual lan-

guage models on cross-lingual transfer, several

works explore how these models work and what

their bottleneck is. On the one hand, some studies

find that the shared sub-words (Wu and Dredze,

2019; Dufter and Schütze, 2020) and the parame-

ters of top layers (Conneau et al., 2020b) are cru-

cial for cross-lingual transfer. On the other hand,

the bottleneck is attributed to two issues: (i) catas-

trophic forgetting (Keung et al., 2020; Liu et al.,

2020), where knowledge learned in the pre-training

stage is forgotten in downstream fine-tuning; (ii)

lack of language-agnostic features (Choenni and

Shutova, 2020; Zhao et al., 2020) or linguistic dis-

crepancy between the source and the target lan-

guages (Wu and Dredze, 2019; Lauscher et al.,

2020). In this work, we aim to tackle zero-shot

and few-shot cross-lingual transfer by focusing on

the second issue.

Existing works can be roughly divided into two

groups. The first proposes to modify the lan-
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guage model by aligning languages with parallel

data (Zhao et al., 2020) or strengthening sentence-

level representation (Wei et al., 2020). The second

group focuses on the learning paradigm for fine-

tuning on downstream tasks. For instance, some

methods adopt meta-learning (Nooralahzadeh et al.,

2020; Yan et al., 2020) or intermediate tasks train-

ing (Phang et al., 2020) to learn cross-lingual

knowledge. Our COSY belongs to the second

group and fills the blank of using the syntactic

information in zero-shot (few-shot) cross-lingual

understanding.

Counterfactual Analysis. Counterfactual analy-

sis aims to evaluate the causal effect of a variable

by considering its counterfactual scenario. Counter-

factual analysis has been widely studied in epidemi-

ology (Rothman and Greenland, 2005) and social

science (Steel, 2004). Recently, counterfactual rea-

soning has motivated studies in applications.

In the community of computer vision, counter-

factual analysis has been successfully applied in

explanation (Goyal et al., 2019a,b), long-tailed clas-

sification (Tang et al., 2020a), scene graph gen-

eration (Tang et al., 2020b), and visual question

answering (Chen et al., 2020; Niu et al., 2020; Ab-

basnejad et al., 2020).

In the community of natural language process-

ing, counterfactual methods are also emerging re-

cently in text classification (Choi et al., 2020), story

generation (Qin et al., 2019), dialog systems (Zhu

et al., 2020), gender bias (Vig et al., 2020; Shin

et al., 2020), question answering (Yu et al., 2020),

and sentiment bias (Huang et al., 2020). To the

best of our knowledge, we are the first to conduct

counterfactual analysis in cross-lingual understand-

ing. Different from previous works (Zhu et al.,

2020; Qin et al., 2019) that generate word-level or

sentence-level counterfactual samples, our coun-

terfactual analysis dives into syntax level that is

more controllable than text and free from complex

language generation module.

3 COSY: COunterfactual SYntax

COSY aims to leverage the syntactic information,

e.g., dependency relations and POS tags, to in-

crease the transferability of cross-lingual language

models. Specifically, COSY implicitly forces the

networks to learn to encode the input not only based

on semantic features but also based on syntactic

features through syntax-aware networks and a coun-

terfactual training method.

As illustrated in Figure 3, COSY consists of

three branches with each branch based on syntax-

aware networks (SAN) indicated by a distinct color.

The main branch (in black) is the factual branch

that uses factual syntax as input. The red and blue

branches are counterfactual branches using coun-

terfactual dependency relations and counterfactual

POS tags as input, respectively. The counterfac-

tual training method guides the black branch to put

more emphasis on syntactic information with the

help of other two branches. Note that the red and

blue branches work for counterfactual training, and

only the prediction from the black branch is used

in testing.

Below, we first elaborate the modules of SAN in

Section 3.1, and then introduce the counterfactual

training method in Section 3.2.

3.1 Syntax-Aware Networks (SAN)
As shown in Figure 3, SAN contains four major

modules: a set of feature extractors, a relational

graph attention network (RGAT), fusion projection,

and a classifier. In this section, we use the route

in the black branch as an example to elaborate

each module. The set of feature extractors include

three components: a pre-trained language model,

a dependency graph constructor and a POS tags

extractor.

Pre-trained Language Model. Following previ-

ous work (Hu et al., 2020), we deploy a pre-trained

multi-lingual language model, e.g., mBERT (De-

vlin et al., 2019), to encode each input sentence into

contextual features. Given a sequence of tokens

with a length of S, we denote the derived contex-

tual features as H=[h1, ...,hS ] ∈ R
S×d, where d

is the dimensionality of each hidden vector.

Dependency Graph Constructor. We use it to

construct the (factual) dependency graph for each

input sentence. In this work, the Stanza toolkit (Qi

et al., 2020) is used to extract the universal depen-

dency relations as the first step. Then, the depen-

dency graph can be represented as G={V,R,E},

where the nodes V are tokens, the edges E de-

note the existence of dependency relations, and

the set R contains the relation types for E. Each

edge eij ∈ E consists of a triplet (vi, vj , r) where

v1, v2 ∈ V and r ∈ R.

As shown in Figure 3, we define three kinds of

relation types in R : 1) a forward syntactic relation,

e.g., love
OBJ−−−→ apples; 2) an inverse syntactic re-

lation, e.g., apples
OBJ−1

−−−→ love; and 3) a self loop
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Figure 3: The overall pipeline of our COSY. We call the architecture as syntax-aware networks (Section 3.1) and

the training method as counterfactual training (Section 3.2). In this architecture, there are three branches: black, red

and blue. Black branch is just the normal attention-based network with additional syntactic information, and only

its prediction is used in the testing stage. Red branch and blue branch are novel as they generate the counterfactual

syntax samples and drive the counterfactual losses in the training stage—the key functions in COSY. RGAT stands

for Relational Graph Attention Network (Ishiwatari et al., 2020; Linmei et al., 2019). The modules of RGAT
and the modules of Fusion Projection are shared across branches, e.g., two RGAT modules are sharing
parameters. Cat denotes concatenation.

SELF that allows the information to flow from a

node to itself. Note that we regard the ROOT re-

lation as a self-loop. In this way, we obtain 75

different types of relations in total, and thus denote

the embedding matrix as R ∈ R
75×d′ .

POS Tags Extractor. We deploy the same Stanza

toolkit (Qi et al., 2020) to assign (factual) POS

tags P for all tokens. We obtain 17 different types

of POS tags and denote the embedding matrix as

T ∈ R
17×d′ .

Relational Graph Attention Networks (RGAT).
RGAT is one of the standard backbones to incorpo-

rate the dependency graph (Ishiwatari et al., 2020;

Linmei et al., 2019). Given the (factual) depen-

dency graph G with the contextual features of each

node, RGAT can generate the relation-aware fea-

tures (for each node). Details are given below. Sup-

pose eij is the directed edge from node vi to node

vj and the dependency relation r. The importance

score of vj from vi is computed as:

s(vi, vj) = Concat(esij , e
r
ij) ·WAttn, (1)

where WAttn ∈ R
(d/2+d′)×1 maps a vector to a

scalar, erij is the embedding of the dependency rela-

tion between vi and vj from R, and esij is computed

by element-wise multiplication between vi and vj :

esij = (hi ·WQ) ◦ (hj ·WK), (2)

where WK ∈ R
d×d/2 and WQ ∈ R

d×d/2 are

the learnable parameters for key and query projec-

tions (Vaswani et al., 2017), and hi and hj denote

their contextual features extracted from pre-trained

language models. Then, the importance scores are

normalized across Nj to obtain the attention score

of vj from vi:

α(vi, vj) =
exp(s(vi, vj))∑

k∈Nj
exp(s(vk, vj))

, (3)

where Nj denotes the set of nodes pointing to

vj . The relation-aware features of vj is com-

puted as the weighted sum of all nodes in Nj

with corresponding attention scores. After com-

puting all nodes, we get the relation-aware features

Ĥ=[ĥ1, ..., ĥS ] ∈ R
S×d.

Fusion Projection. We fuse the relation-aware

features Ĥ with the (factual) POS tags informa-
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tion before feeding them into the classifier. Given

POS tags P , the fused features for each token are

represented by

fj = Concat(ĥj ,pj) ·WF , (4)

where WF ∈ R
(d+d′)×d are learnable parameters

of fusion projection and pj is the corresponding

embedding of the POS tag of the j-th token from

T. The fused features of the entire sequence are

denoted as F=[f1, ..., fS ] ∈ R
S×d.

Classifier. It is designed based on the specific task,

such as NLI or QA, following Devlin et al. (2019).

3.2 Counterfactual Training

Recall that the challenge in the effective utiliza-

tion of syntax is how to induce the model to focus

more on syntax while maintaining its original rep-

resentation capability of semantics. Inspired by

counterfactual analysis (Pearl et al., 2009; Pearl,

2010; Pearl and Mackenzie, 2018) and contrastive

learning (Hadsell et al., 2006), we propose a coun-

terfactual training method by incorporating coun-

terfactual syntax (counterfactual dependency graph

and counterfactual POS tags) on the red and blue

branches in Figure 3. Each branch is designed to

guide the model to focus on one type of syntax, i.e.,
dependency graph or POS tags.

Counterfactual Dependency Graph is utilized

on the red branch with factual POS tags in Fig-

ure 3. We build a counterfactual dependency graph

by maintaining graph structure and nodes, and re-

placing each type of relation (except for a self-loop

SELF) with a randomized (counterfactual) type.

We name it G−. We feed G− and H into RGAT

to obtain the counterfactual relation-aware features

denoted as Ĥ−. Then, we fuse Ĥ− with the fac-

tual POS tags to derive the counterfactual features

Fcf1 = [f cf11 , ..., f cf1S ] on the red branch. Finally,

we can calculate the similarity between the factual

and the counterfactual features, by leveraging the

dot-product operation, as follows,

Lcf1 =
1

S

S∑

i

fi · f cf1i . (5)

This counterfactual loss forces the model to em-

phasize the syntactic information related to depen-

dency relations.

Counterfactual POS Tags are utilized with the

factual dependency graph on the blue branch in

Figure 3. We create counterfactual POS tags P−

from factual POS tags P by randomly selecting a

POS tag for each token. Accordingly, we replace

each embedding pi by p−
i . Given the relation-

aware features Ĥ from the black branch, we then

feed the embeddings of counterfactual POS tags

in Eq. 4 and get the counterfactual features as

Fcf2 = [f cf21 , ..., f cf2S ]. Finally, we can calculate

the similarity between the factual and the counter-

factual features (on the blue branch) by leveraging

the dot-product operation, as follows,

Lcf2 =
1

S

S∑

i

fi · f cf2i . (6)

This counterfactual loss forces the model to em-

phasize the syntactic information related to POS

tags. The overall loss function used in training is

as follows,

L = Ltask + λ(Lcf1 + Lcf2), (7)

where Ltask is the task-specific loss, i.e., a cross-

entropy loss, and λ is a scale to balance between the

task-specific loss and our proposed counterfactual

losses.

4 Experiments

In this section, we evaluate our COSY method for

cross-lingual understanding under both zero-shot

and few-shot settings. For the zero-shot setting, we

use English for training and evaluate the model on

different target languages. For the few-shot setting,

we follow the implementation in (Nooralahzadeh

et al., 2020) and use the development set of the

target languages for model fine-tuning3.

4.1 Datasets
We evaluate our method on the natural language

inference (NLI) and the question answering (QA)

tasks. We briefly introduce the datasets used in our

experiments as follows.

Natural Language Inference (NLI). Given two

sentences, NLI asks for the relationship between

the two sentences, which can be entailment, con-

tradiction or neutral. We conduct experiments

on XNLI (Conneau et al., 2018) and evaluate our

method on 13 target languages4.

Question Answering (QA). In this paper, we con-

sider the QA task that asks the model to locate the

3All the results and analyses are under the zero-shot set-
tings by default, except for Table 2.

4We remove Thai (th) and Swahili (sw) from our experi-
ments since these two languages are not supported by Stanza.
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Method #T #M A.D. XNLI MLQA XQUAD

en. avg. en. avg. en. avg.
m

B
E

R
T Naive F.T. 1 1 � 82.1 68.4 67.0 / 80.2 44.2 / 61.4 72.2 / 83.5 51.0 / 66.7

XMAML-One L O(L) � 82.1 69.6 - - - -

LAKM 1 1 � - - 66.8 / 80.0 - - -

COSY (Ours) 1 1 � 82.2 70.1 67.2 / 80.4 45.2 / 62.1 72.6 / 83.6 53.2 / 68.1

X
-R

b
as

e Naive F.T. 1 1 � 84.6 75.1 - / 80.1 - / 65.1 71.6 / 83.1 55.9 / 71.8

XMAML-One L O(L) � - - - / 80.2 - / 66.1 - -

COSY (Ours) 1 1 � 84.3 75.6 67.7 / 80.7 48.5 / 66.5 74.0 / 85.1 57.3 / 73.4

X
-R

la
rg

e Naive F.T. 1 1 � 88.7 80.0 70.6 / 83.5 53.2 / 71.6 75.7 / 86.5 60.6 / 76.8

STILT 9 1 � 89.6 81.6 70.8 / 84.1 54.4 / 72.8 77.4 / 88.3 63.3 / 78.7

XMAML-One L O(L) � - - - / 84.3 - / 73.2 - -

COSY (Ours) 1 1 � 89.2 81.9 70.9 / 84.2 54.7 / 73.2 77.7 / 88.0 64.0 / 79.7

Table 1: Cross-lingual zero-shot performance comparison between COSY and SOTA methods on three benchmark

datasets. Note that we report accuracy for XNLI and Exact Match/F1 scores for MLQA and XQUAD. For each

dataset, “en.” denotes the results of English while “avg.” is the average performance over all languages. X-R

means XLM-R and Naive F.T. is the abbr. of Naive Fine-Tuning. L is the number of target languages. #T denotes

the number of training turns, e.g., STILT augments its training by using each of nine additional datasets. #M is the

number of final models, where 1 < O(L) < L, and A.D. denotes using additional datasets.

answer from a passage given a question. We con-

duct experiments on MLQA (Lewis et al., 2019)

and XQUAD (Artetxe et al., 2020). COSY is eval-

uated on 7 languages on MLQA and 10 languages

on XQUAD (with Thai excluded).

4.2 Implementation

In data preprocessing, we feed the same syntac-

tic information to each of the subwords in the

same word after tokenization. Our implementa-

tion of pre-trained language models (mBERT and

XLM-R) is based on HuggingFaces’s Transform-

ers (Wolf et al., 2020). We select the checkpoint

and set hyper-parameters, e.g., learning rate and

λ in the loss function, based on the performance

on the corresponding development sets. We select

learning rate amongst {7.5e−6, 1e−5, 3e−5} and

fix the batch size to 32. We select dimension d′

amongst {100, 300}. λ in counterfactual loss is set

to 0.1 (see Figure 4). A linear warm up strategy for

learning rate is adopted with first 10% optimization

steps. Adam (Kingma and Ba, 2014) is adopted as

the optimizer. All experiments are conducted on a

workstation with dual NVIDIA V100 32GB GPUs.

4.3 Results

We compare our method with naive fine-tuning and

the state-of-the-art methods. The overall results on

three benchmarks are presented in Table 1 (zero-

Method en. non-en. avg. avg.

Naive F.T.∗ 81.9 70.3 71.2

XMAML-One∗ 82.4 70.7 71.6

COSY (Ours) 82.6 71.9 72.7

Table 2: Results of XNLI under the few-shot set-

ting (mBERT). We report the testing results of En-

glish (“en.”), the average results over all non-English

languages (“non-en. avg.”) and the average results

over all languages (“avg.”). ∗ denotes the results

from Nooralahzadeh et al. (2020). More details are

available in Appendix.

shot) and Table 2 (few-shot).

Comparison with Naive Fine-tuning. Naive

Fine-tuning (Wu and Dredze, 2019; Liang et al.,

2020; Hu et al., 2020) is to directly fine-tune the

pre-trained language model on downstream tasks

as in (Devlin et al., 2019). From Table 1 and

Table 2, we can observe that COSY consistently

outperforms the naive fine-tuning method on all

datasets, e.g., by average 1.9 percentage points (ac-

curacy) and 2.9 percentage points (F1) on XNLI

and XQUAD with XLM-Rlarge in the zero-shot set-

ting. These observations demonstrate the effec-

tiveness of COSY and suggest that universal syn-

tax as language-agnostic features can enhance the

transferability for cross-lingual understanding. Fur-
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thermore, the results show that COSY is able to

work with different backbones and thus is model-

agnostic.

Comparison with the State of the Art. We

first outline the SOTA zero-shot (few-shot) cross-

lingual methods we compared with as follows: (1)

XMAML-one (Nooralahzadeh et al., 2020) bor-

rows the idea from meta-learning. Specifically,

XMAML-one utilizes an auxiliary language de-

velopment data in training, e.g., using the devel-

opment set of Spanish in training to assist Ger-

man on MLQA. XMAML-One reports the results

based on the most beneficial auxiliary language. (2)

STILT (Phang et al., 2020) augments intermediate

task training before fine-tuning on the target task,

e.g., adding training of HellaSwag (Zellers et al.,

2019) before training on the NLI task. STILT also

reports results with the most beneficial intermedi-

ate task. (3) LAKM (Yuan et al., 2020) first mines

knowledge phrases along with passages from the

Web. Then these Web data are used to enhance

the phrase boundaries through a masked language

model objective. Note that LAKM is only evalu-

ated on three languages of MLQA.

On the one hand, we observe that COSY sur-

passes the compared SOTA methods over all eval-

uation metrics. Although meta-learning meth-

ods (Finn et al., 2017; Gu et al., 2018; Sun et al.,

2019) advance the state-of-the-art performance for

few-shot learning, our COSY still outperforms the

meta-learning-based method, i.e., XMAML-One,

with 1.1 percentage points in the few-shot setting.

On the other hand, the superiority of COSY is also

reflected in other aspects, which are shown in Ta-

ble 1. Specifically, COSY does not require ad-

ditional datasets and cumbersome data selection

process, which is more convenient and resources

saving.

4.4 Discussion and Analysis

Ablation Study. In Table 3, we show the MLQA,

XQUAD and XNLI results in 4 ablative settings,

to evaluate the approach when we (1) only utilize

the SAN-Black branch; (2) utilize the SAN-Black

branch with an intuitive gate mechanism to control

the information of pre-trained language model and

syntax; (3) utilize the SAN-Black branch and SAN-

Red branch; (4) utilize the SAN-Black branch and

SAN-Blue branch.

Compared to the ablative results, we can see

that our full method achieves the overall top per-

Ablative Setting
MLQA XQUAD XNLI

EM F1 EM F1 Acc

Naive F.T. 44.2 61.4 51.0 66.7 68.4

(1) SAN-Black 44.3 61.4 51.6 66.9 68.7

(2) SAN-Black+Gate 44.5 61.5 51.9 67.1 68.7

(3) SAN-Black, Red 44.9 61.7 52.8 67.8 69.9

(4) SAN-Black, Blue 44.7 61.8 52.2 67.4 69.7

(5) COSY 45.2 62.1 53.2 68.1 70.1

Table 3: The ablation study on MLQA, XQUAD and

XNLI (mBERT). We report the average performance

of all languages on the test set.
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Figure 4: Left: average F1-measure (%) on target lan-

guages on MLQA development set (mBERT). Right:

average accuracy (%) on target languages on XNLI de-

velopment set (mBERT). Red dotted line denotes the

model performance of using naive fine-tuning.

formance in all settings. Syntax features are incor-

porated into the models in (1)-(5) and all of them

outperform the naive fine-tuning method, which

demonstrates the effectiveness of universal syntax.

By analyzing the settings one by one, we can ob-

serve that SAN-Black only attains limited improve-

ment compared to naive fine-tuning since syntax

is incorporated in the model by overlooked. Gate

mechanism (2) fails to solve the overlooking issue.

Both of (3) and (4) with counterfactual training are

able to bring gains compared to (1), and the results

indicate that dependency relations are more effec-

tive compared to POS labels. We also observe that

our full method (5) does not accumulate the gains

from (3) and (4). One explanation could be that

part of the information provided by the dependency

relations and POS labels overlaps. For instance, if

we see an edge of relation, worda
AMOD−−−→wordb, we

may infer that worda is NOUN and wordb is ADJ.

Effect of λ. We now study the impact of the scale

value λ with counterfactual losses. For clarity, we

show the results with different values of logλ in

Figure 4. We can observe that COSY attains the
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Figure 5: F1-measure drop Δ (%) with a standard nor-

mal distribution perturbation on MLQA and XQUAD

(mBERT). Two colors denote COSY and SAN-Black.

highest results when λ=0.1 on both MLQA and

XNLI. As the value drops, the effect of counter-

factual loss is also smaller and the performance is

getting closer to that from naive fine-tuning (red

dotted line). If a large value of λ is applied, e.g.,
λ=1, the model begins to over-emphasize the syn-

tax and semantics are overlooked, which leads to

significant decrease on performance.

Effect of COSY. In this part, we first study whether

counterfactual training method indeed guides the

model to focus more on syntactic information. We

conduct analysis on the COSY and SAN-Black.

Since it is non-trivial to measure the utilization of

syntax in a straightforward way, we adopt a stan-

dard way to measure the importance of the neurons

in deep models (Kádár et al., 2017). Specifically,

we perturb the syntactic features with a Gaussian

noise to test data and check whether our model

would be more easily affected by the syntax pertur-

bation. If so, then it verifies that our model indeed

relies more on syntax.. The results are shown in

Figure 5. We can discover that the performance

drop of COSY is larger compared to that with SAN-

Black.

Meanwhile, we also explore whether COSY is

beneficial for yielding more meaningful syntax em-

bedding than SAN-Black. Specifically, we com-

pute the correlation score (absolute cosine similar-

ity) between the embedding of syntactic relation

and the corresponding inverse relation from the

MLQA XQUAD

EM F1 EM F1

(1) 44.8 61.7 52.2 67.3

(2) 45.1 62.0 53.1 68.1

(3) 44.9 61.9 52.7 67.8

(4) 45.0 62.0 53.2 68.0

Current 45.2 62.1 53.2 68.1

Table 4: Results of different generation ways for gener-

ating counterfactual syntax with mBERT as backbone.

“Current” means the current generation way described

in Section 3. We report the average performance of all

languages.

same type. For COSY, we observe that the score

of the related types are 42.4× larger than that of

two randomly selected embeddings (average over

10000 times). However, for SAN-Black, its score

is only 1.4× larger than that of two randomly se-

lected embeddings. It demonstrates that COSY at-

tains more meaningful syntax representations than

SAN-Black.

Counterfactual Syntax Generation. Here we an-

alyze other alternative ways of counterfactual syn-

tax generation. Specifically, we design the follow-

ing variants and report the results in Table 4: (1)

we not only replace edge types, but also replace

connections for counterfactual dependency graph

construction; (2) for each input sequence, we cre-

ate 5 counterfactual dependency graphs, 5 sets of

counterfactual POS tags, and the counterfactual

loss is the average over the 5 sets; (3) we replace

the factual syntax with a fixed type, e.g., a type of

padding instead of a random type from all types; (4)

in each generating process, we only replace 50%
of the factual syntax.

Comparing (1) with the result of “SAN-

Black,Blue” in Table 3, we can see that (1) does

not work. We believe that randomly changing con-

nections in G−, e.g., an edge is created from the

first token to the last token in a long passage, may

have a significant effect to Ĥ−, it is undesirable for

further optimization of counterfactual loss. Results

from (2) and (4) suggest that the number of the

generated counterfactual syntax and ratio of ran-

domizing do not play an important role in COSY. It

is also discovered that randomizing with all types is

better than simple replacement with a fixed type.



585

5 Conclusion

We study how to effectively plug in syntactic in-

formation for cross-lingual understanding. Specif-

ically, we propose a novel counterfactual-syntax-

based approach to emphasize the importance of

syntax in cross-lingual models. We conduct ex-

tensive experiments on three cross-lingual bench-

marks, and show that our approach can outperform

the SOTA methods without additional dataset. For

future work, we will combine our approach with

other orthogonal methods, e.g., meta-learning, to

further improve its effectiveness.
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Methods en fr es de el bg ru tr ar vi zh hi ur Avg

mBERT

Naive Fine-tuning1 82.1 73.8 74.3 71.1 66.4 68.9 69.0 61.6 64.9 69.5 69.3 60.0 58.0 68.4

XMAML-One2 82.1 74.4 75.1 71.8 68.0 69.5 70.2 61.2 66.1 71.8 71.1 62.2 61.5 69.6
COSY 82.2 75.2 75.5 72.2 68.9 71.1 70.1 63.1 66.7 72.4 71.3 62.4 59.7 70.1

XLM-Rbase

Naive Fine-tuning3 84.6 78.2 79.2 77.0 75.9 77.5 75.5 72.9 72.1 74.8 73.7 69.8 65.1 75.1
COSY 84.3 78.8 78.6 76.4 76.3 78.4 76.3 73.9 71.1 75.4 75.1 71.1 67.1 75.6

XLM-Rlarge

Naive Fine-tuning4 88.7 82.2 83.7 82.5 80.8 83.0 79.1 78.0 77.2 79.3 78.2 75.6 71.7 80.0

STILT5 89.6 84.1 84.5 83.7 81.8 83.5 79.9 80.1 79.3 81.3 80.7 78.2 74.5 81.6
COSY 89.2 83.6 85.1 83.2 83.3 84.7 80.9 80.8 80.1 81.0 80.5 77.7 74.1 81.9

Table 5: Results on XNLI of zero-shot setting. We report the accuracy on 13 XNLI languages and the average

accuracy. 1: (Wu and Dredze, 2019); 2: (Nooralahzadeh et al., 2020); 3: (Liang et al., 2020); 4: (Hu et al., 2020);

5: (Phang et al., 2020).

Methods en es de ar hi vi zh Avg

mBERT

Naive Fine-tuning1 67.0 / 80.2 49.2 / 67.4 43.8 / 59.0 34.6 / 52.3 35.3 / 50.2 40.7 / 61.2 38.6 / 59.6 44.2 / 61.4

LAKM3 66.8 / 80.0 48.0 / 65.9 44.5 / 60.5 - - - - -
COSY 67.2 / 80.4 48.5 / 66.4 47.0 / 61.1 35.0 / 52.9 35.9 / 51.2 43.2 / 63.1 39.3 / 59.8 45.2 / 62.1

XLM-Rbase

Naive Fine-tuning2 - / 80.1 - / 67.9 - / 62.1 - / 56.4 - / 60.5 - / 67.1 - / 61.4 - / 65.1
Naive Fine-tuning∗ 67.1 / 80.1 50.3 / 68.0 48.3 / 62.9 37.2 / 57.0 44.5 / 62.4 47.1 / 67.4 38.4 / 62.0 47.6 / 65.7

XMAML-One4 - / 80.2 - / 67.5 - / 63.6 - / 58.0 - / 61.7 - / 68.0 - / 64.0 - / 66.1
COSY 67.7 / 80.7 50.9 / 68.7 49.1 / 63.4 38.7 / 57.8 45.4 / 62.7 47.9 / 68.3 39.7 / 63.6 48.5 / 66.5

XLM-Rlarge

Naive Fine-tuning1 70.6 / 83.5 56.6 / 74.1 54.9 / 70.1 47.1 / 66.6 53.1 / 70.6 52.9/ 74.0 37.0 / 62.1 53.2 / 71.6

STILT5 70.8 / 84.1 56.8 / 75.3 52.9 / 69.6 46.4 / 67.4 54.8 / 72.5 51.7 / 70.9 47.0 / 69.4 54.4 / 72.8

XMAML-One4 - / 84.3 - / 74.3 - / 70.8 - / 66.6 - / 70.9 - / 74.8 - / 70.7 - / 73.2
COSY 70.9 / 84.2 56.5 / 74.7 55.2 / 70.3 46.7 / 66.7 53.7 / 72.1 53.2 / 74.3 46.6 / 70.2 54.7 / 73.2

Table 6: Results on MLQA of zero-shot setting. We report the Exact Match and F1 score (EM / F1) on 7 lan-

guages. ∗: our implementation by official code; 1: (Hu et al., 2020); 2: (Liang et al., 2020); 3: (Yuan et al., 2020);

4: (Nooralahzadeh et al., 2020); 5: (Phang et al., 2020).

Methods en ar de el es hi ru tr vi zh Avg

mBERT

Naive Fine-tuning1 72.2 / 83.5 45.1 / 61.5 54.0 / 70.6 44.9 / 62.6 56.9 / 75.5 46.0 / 59.2 53.3 / 71.3 40.1 / 55.4 49.6 / 69.5 48.3 / 58.0 51.0 / 66.7
COSY 72.6 / 83.6 47.6 / 63.6 57.2 / 72.3 47.7 / 64.6 58.6 / 76.5 47.5 / 60.7 55.6 / 72.1 42.2 / 56.7 54.0 / 72.4 48.9 / 58.5 53.2 / 68.1

XLM-Rbase

Naive Fine-tuning∗ 71.6 / 83.1 49.9 / 66.2 56.6 / 72.5 54.2 / 72.4 58.8 / 76.6 51.3 / 67.7 57.2 / 74.1 52.5 / 68.3 53.8 / 73.6 52.6 / 63.6 55.9 / 71.8
COSY 74.0 / 85.1 51.0 / 67.8 59.2 / 75.4 55.5 / 73.2 59.0 / 77.2 51.5 / 69.1 58.5 / 75.0 52.5 / 69.5 56.0 / 74.2 56.2 / 67.3 57.3 / 73.4

XLM-Rlarge

Naive Fine-tuning1 75.7 / 86.5 49.0 / 68.6 63.4 / 80.4 61.7 / 79.8 63.9 / 82.0 59.7 / 76.7 64.3 / 80.1 59.3 / 75.9 59.0 / 79.1 50.0 / 59.3 60.6 / 76.8

STILT2 77.4 / 88.3 59.9 / 75.9 63.6 / 80.3 62.1 / 80.3 63.2 / 81.8 59.2 / 76.1 64.1 / 80.0 59.2 / 75.8 61.2 / 80.5 61.3 / 70.8 63.3 / 78.7
COSY 77.7 / 88.0 58.7 / 76.5 65.1 / 81.4 64.4 / 81.7 64.0 / 82.5 60.6 / 77.1 64.7 / 80.9 60.7 / 76.3 61.5 / 80.7 63.0 / 72.1 64.0 / 79.7

Table 7: Results on XQUAD of zero-shot setting. We report the Exact Match and F1 score (EM / F1) on 10

languages. ∗: our implementation by official code; 1: (Hu et al., 2020); 2: (Phang et al., 2020).
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Naive Fine-tuning 81.9 75.4 75.8 73.3 69.5 71.6 70.8 64.9 67.4 73.2 73.9 64.4 63.7 71.2

XMAML-One 82.4 75.3 76.2 73.5 70.0 71.9 71.5 64.9 68.0 73.5 74.2 65.0 63.8 71.6

XMAML-Two 82.7 76.0 76.5 74.1 70.7 72.8 72.1 65.7 68.4 73.9 74.9 65.8 64.6 72.1

COSY 82.7 77.2 76.5 74.3 71.1 73.9 72.4 67.6 69.8 74.3 74.7 66.4 63.7 72.7

Table 8: Results on XNLI of few-shot setting with mBERT. We report the accuracy on 13 XNLI languages and the

average accuracy. Results except our COSY are all from (Nooralahzadeh et al., 2020).


