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Abstract

This paper studies the bias problem of multi-
hop question answering models, of answering
correctly without correct reasoning. One way
to robustify these models is by supervising to
not only answer right, but also with right rea-
soning chains. An existing direction is to an-
notate reasoning chains to train models, requir-
ing expensive additional annotations. In con-
trast, we propose a new approach to learn evi-
dentiality, deciding whether the answer predic-
tion is supported by correct evidences, with-
out such annotations. Instead, we compare
counterfactual changes in answer confidence
with and without evidence sentences, to gener-
ate “pseudo-evidentiality” annotations. We val-
idate our proposed model on an original set
and challenge set in HotpotQA, showing that
our method is accurate and robust in multi-hop
reasoning.

1 Introduction

Multi-hop Question Answering (QA) is a task of
answering complex questions by connecting infor-
mation from several texts. Since the information
is spread over multiple facts, this task requires to
capture multiple relevant facts (which we refer as
evidences) and infer an answer based on all these
evidences.

However, previous works (Min et al., 2019; Chen
and Durrett, 2019; Trivedi et al., 2020) observe
“disconnected reasoning” in some correct answers.
It happens when models can exploit specific types
of artifacts (e.g., entity type), to leverage them
as reasoning shortcuts to guess the correct an-
swer. For example, assume that a given question
is: “which country got independence when World
War II ended?” and a passage is: “Korea got inde-
pendence in 1945”. Although information (“World
War II ended in 1945”) is insufficient, QA models
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Figure 1: Overview of our proposed supervision: using
Answerability and Evidentiality

predict “Korea”, simply because its answer type is
country (or, using shortcut).

To address the problem of reasoning shortcuts,
we propose to supervise “evidentiality” – deciding
whether a model answer is supported by correct evi-
dences (see Figure 1). This is related to the problem
that most of the early reader models for QA failed
to predict whether questions are not answerable.
Lack of answerability training led models to pro-
vide a wrong answer with high confidence, when
they had to answer “unanswerable”. Similarly, we
aim to train for models to recognize whether their
answer is “unsupported” by evidences, as well. In
our work, along with the answerability, we train the
QA model to identify the existence of evidences by
using passages of two types: (1) Evidence-positive
and (2) Evidence-negative set. While the former
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has both answer and evidence, the latter does not
have evidence supporting the answer, such that we
can detect models taking shortcuts.

Our first research question is: how do we ac-
quire evidence-positive and negative examples for
training without annotations? For evidence-positive
set, the closest existing approach (Niu et al., 2020)
is to consider attention scores, which can be con-
sidered as pseudo-annotation for evidence-positive
set. In other word, sentence S with high attention
scores, often used as an “interpretation” of whether
S is causal for model prediction, can be selected
to build evidence-positive set. However, follow-up
works (Serrano and Smith, 2019; Jain and Wal-
lace, 2019) argued that attention is limited as an
explanation, because causality cannot be measured,
without observing model behaviors in a counter-
factual case of the same passage without S. In ad-
dition, sentence causality should be aggregated to
measure group causality of multiple evidences for
multi-hop reasoning. To annotate group causality
as “pseudo-evidentiality”, we propose Interpreter
module, which removes and aggregates evidences
into a group, to compare predictions in observa-
tional and counterfactual cases.

As a second research question, we ask how
to learn from evidence-positive and evidence-
negative set. To this end, we identify two objec-
tives: (O1) QA model should not be overconfi-
dent in evidence-negative set, while (O2) confident
in evidence-positive. A naive approach to pursue
the former is to lower the model confidence on
evidence-negative set via regularization. However,
such regularization can cause violating (O2) due
to correlation between confidence distributions for
evidence-positive and negative set. Our solution is
to selectively regularize, by purposedly training a
biased model violating (O1), and decorrelate the
target model from the biased model.

For experiments, we demonstrate the impact of
our approach on HotpotQA dataset. Our empiri-
cal results show that our model can improve QA
performance through pseudo-evidentiality, outper-
forming other baselines. In addition, our proposed
approach can orthogonally combine with another
SOTA model for additional performance gains.

2 Related Work

Since multi-hop reasoning tasks, such as Hot-
potQA, are released, many approaches for the task
have been proposed. These approaches can be cat-

egorized by strategies used, such as graph-based
networks (Qiu et al., 2019; Fang et al., 2020), ex-
ternal knowledge retrieval (Asai et al., 2019), and
supporting fact selection (Nie et al., 2019; Groen-
eveld et al., 2020).

Our focus is to identify and alleviate reasoning
shortcuts in multi-hop QA, without evidence an-
notations. Models taking shortcuts were widely
observed from various tasks, such as object detec-
tion (Singh et al., 2020), NLI (Tu et al., 2020),
and also for our target task of multi-hop QA (Min
et al., 2019; Chen and Durrett, 2019; Trivedi et al.,
2020), where models learn simple heuristic rules,
answering correctly but without proper reasoning.

To mitigate the effect of shortcuts, adversar-
ial examples (Jiang and Bansal, 2019) can be
generated, or alternatively, models can be robus-
tifed (Trivedi et al., 2020) with additional supervi-
sion for paragraph-level “sufficiency” – to identify
whether a pair of two paragraphs are sufficient for
right reasoning or not, which reduces shortcuts on
a single paragraph. While the binary classification
for paragraph-sufficiency is relatively easy (96.7
F1 in Trivedi et al. (2020)), our target of captur-
ing a finer-grained sentence-evidentiality is more
challenging. Existing QA model (Nie et al., 2019;
Groeneveld et al., 2020) treats this as a supervised
task, based on sentence-level human annotation. In
contrast, ours requires no annotation and focuses
on avoiding reasoning shortcuts using evidentiality,
which was not the purpose of evidence selection in
the existing model.

3 Proposed Approach

In this section, to prevent reasoning shortcuts, we
introduce a new approach for data acquiring and
learning. We describe this task (Section 3.1) and
address two research questions, of generating labels
for supervision (Section 3.2) and learning (Section
3.3), respectively.

3.1 Task Description

Our task definition follows distractor setting,
between distractor and full-wiki in HotpotQA
dataset (Yang et al., 2018), which consists of 112k
questions requiring the understanding of corre-
sponding passages to answer correctly. Each ques-
tion has a candidate set of 10 paragraphs (of which
two are positive paragraphs P+ and eight are neg-
ative P−), where the supporting facts for reason-
ing are scattered in two positive paragraphs. Then,
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given a question Q, the objective of this task is
to aggregate relevant facts from the candidate set
and estimate a consecutive answer spanA. For task
evaluation, the estimated answer span is compared
with the ground truth answer span in terms of F1
score at word-level.

3.2 Generating Examples for Training
Answerability and Evidentiality

Answerability for Multi-hop Reasoning
For answerability training in single-hop QA,
datasets such as SQuAD 2.0 (Rajpurkar et al., 2018)
provide labels of answerability, so that models can
be trained not to be overconfident on unanswerable
text.

Similarly, we build triples of question Q, an-
swer A, and passage D, to be labeled for answer-
ability. HotpotQA dataset pairs Q with 10 para-
graphs, where evidences can be scattered to two
paragraphs. Based on such characteristic, concate-
nating two positive paragraphs is guaranteed to
be answerable/evidential and concatenating two
negative paragraphs (with neither evidence nor
answer) is guaranteed to be unanswerable. We
define a set of answerable triplets (Q,A,D) as
answer-positive set A+, and an unanswerable set
as answer-negative set A−. From the labels, we
train a transformer-based model to classify the an-
swerability (the detail will be discussed in the next
section).

However, answerability cannot supervise
whether the given passage has all of these relevant
evidences for reasoning. This causes a lack of
generalization ability, especially on examples with
an answer but no evidence.

Evidentiality for Multi-hop Reasoning
While learning the answerability, we aim to cap-
ture the existence of reasoning chains in the
given passage. To supervise the existence of ev-
idences, we construct examples: evidence-positive
and evidence-negative set, as shown in Figure 1.

Specifically, let E∗ be the ground truth of evi-
dences to infer A, and S∗ be a sentence containing
an answer A, corresponding to Q. Given Q and
A, expected labels VE of evidentiality, indicating
whether the evidences for answering are sufficient
in the passage, are as follow:

VE(Q,A,D) |= True ⇔ E∗ = D, A ⊂ D
VE(Q,A,D) |= False ⇔ E∗ 6⊂ D, A ⊂ D

(1)

We define a set of passages satisfying VE |= True
as evidence-positive set E+, and a set satisfying
VE |= False as evidence-negative set E−.

Since we do not use human-annotations, we aim
to generate “pseudo-evidentiality” annotation. First,
for evidence-negative set, we modify answer sen-
tence S∗ and unanswerable passages, and generate
examples with the three following types:

• 1) Answer Sentence Only: we remove all sen-
tences in answerable passage except S∗, such
that the input passage D becomes S∗, which
contains a correct answer but no other evi-
dences. That is, VE(Q,A,S∗) |= False.

• 2) Answer Sentence + Irrelevant Facts: we use
irrelevant facts with answers as context, by con-
catenating S∗ and unanswerable D. That is,
VE(Q,A, (S∗;D)) |= False, where D ∈ P−.

• 3) Partial Evidence + Irrelevant Facts: we use
partially-relevant and irrelevant facts as context,
by concatenating D1 ∈ P+ and D2 ∈ P−.
That is, VE(Q,A,(D1;D2)) |= False.

These evidence-negative examples do not have all
relevant evidences, thus if a model predicts the
correct answer on such examples, it means that the
model learned reasoning shortcuts.

Second, building an evidence-positive set is
more challenging, because it is difficult to capture
multiple relevant facts, with neither annotations E∗
nor supervision. Our distinction is obtaining the
above annotation from model itself, by interpreting
the internal mechanism of models. On a trained
model, we aim to find influential sentences in pre-
dicting correct answer A, among sentences in an
answerable passage. Then, we consider them as a
pseudo evidence-positive set. Since such pseudo la-
bels relies on the trained model which is not perfect,
100% recall of VE(Q,A,D) |= True in Eq. (1) is
not guaranteed, though we observe 87% empirical
recall (Table 1).

Section 1 discusses how interpretation, such as
attention scores (Niu et al., 2020), can be pseudo-
evidentiality. For QA tasks, an existing approach
(Perez et al., 2019) uses answer confidence for find-
ing pseudo-evidences, as we discuss below:

(A) Accumulative interpreter: to consider multi-
ple sentences as evidences, the existing approach
(Perez et al., 2019) iteratively inserts sentence Si
into set Et−1, with a highest probability at t-th iter-
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ation, as follows:

∆PSi = P (A|Q,Si ∪ Et−1)− P (A|Q,Et−1)

Ê
t

= argmax
Si

∆PSi , Et = Ê
t ∪ Et−1

(2)
where E0 starts with the sentence S∗ containing
answer A, which is minimal context for our task.
This method can consider multiple sentences as
evidence by inserting iteratively into a set, but can-
not consider the effect of erasing sentences from
reasoning chain.

(B) Our proposed Interpreter: to enhance the in-
terpretability, we consider both erasing and insert-
ing each sentence, in contrast to accumulative inter-
preter considering only the latter. Intuitively, eras-
ing evidence would change the prediction signifi-
cantly, if such evidence is causally salient, which
we compute as follows:

∆PSi = P (A|Q,D)− P (A|Q, (D\Si)) (3)

where (D\Si) is a passage out of sentence Si. We
hypothesize that breaking reasoning chain, by eras-
ing Si, should significantly decrease P (A|·). In
other words, Si with higher ∆PSi is salient. Com-
bining the two saliency scores in Eq. (2),(3), our
final saliency is as follows:

∆PSi = P (A|Q,Si ∪ Et−1)−(((((
((

P (A|Q,Et−1)

+���
���P (A|Q,D)− P (A|Q, (D\(Si ∪ Et−1)))

(4)
where the constant values can be omitted in
argmax. At each iteration, the sentence that maxi-
mize ∆PSi is selected, as done in Eq. (2). This pro-
motes selection that increases confidence P (A|·)
on important sentences, and decreases confidence
on unimportant sentences. We stop the iterations
if ∆PSi < 0 or t = T , then the final sentences in
Et=T are a pseudo evidence-positive set E+. To re-
duce the search space, we empirically set T = 51.

Briefly, we obtain the labels of answerability and
evidentiality, as follows:

• Answer-positive A+ and negative A− set: the
former has both answer and evidences, and the
latter has neither.

• Evidence-positive E+ and negative E− set: the
former is expected to have all the evidences,
and the latter has an answer with no evidence.

1Based on observations that 99% in HotpotQA require less
than 6 evidence sentences for reasoning.

3.3 Learning Answerability & Evidentiality
In this section, our goal is to learn the above labels
of answerability and evidentiality.

Supervising Answers and Answerability (Base)
As optimizing QA model is not our focus, we
adopt the existing model in (Min et al., 2019). As
the architecture of QA modal, we use a powerful
transformer-based model – RoBERTa (Liu et al.,
2019), where the input is [CLS] question
[SEP] passage [EOS]. The output of the
model is as follows:

h = RoBERTa (Input) ∈ Rn×d

Os = f1(h), Oe = f2(h)

P s = softmax(Os), P e = softmax(Oe)
(5)

where f1 and f2 are fully connected layers with
the trainable parameters ∈ Rd, P s and P e are the
the probabilities of start and end positions, d is the
output dimension of the encoder, n is the size of
the input sequence.

For answerability, they build a classifier through
the hidden state h[0,:] of [CLS] token that repre-
sents both Q and D. As HotpotQA dataset cov-
ers both yes-or-no and span-extraction questions,
which we follow the convention of (Asai et al.,
2019) to support both as a multi-class classification
problem of predicting the four probabilities:

P cls = softmax(W1h[0,:])

= [pspan, pyes, pno, pnone]
(6)

where pspan, pyes, pno, and pnone denote the prob-
abilities of the answer type being span, yes, no,
and no answer, respectively, and W1 ∈ R4×d is the
trainable parameters. For training answer span and
its class, the loss function of example i is the sum
of cross entropy losses (DCE), as follows:

DCE(Pi,Ai) = −
(
log(P s

si) + log(P e
ei)
)

DCE(P cls
i , Ci) = −log(P cls

ci )

LA(i) = DCE(Pi,Ai) +DCE(P cls
i , Ci)

(7)

where si and ei are the starting and ending position
of answerA, respectively, and ci is the index of the
actual class Ci in example i.

Supervising Evidentiality
As overviewed in Section 1, Base model is reported
to take a shortcut, or a direct path between answer
A and questionQ, neglecting implicit intermediate
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paths (evidences). Specifically, we present the two
objectives for unbiased models:

• (O1): QA model should not be overconfident on
passages with no evidences (i.e., on E−).

• (O2): QA model should be confident on pas-
sages with both answer/evidences (i.e., on E+)

For (O1), as a naive approach, one may consider
a regularization term to avoid overconfidence on
evidence-negative set E−. Overconfident answer
distribution would be diverged from uniform dis-
tribution, such that Kullback–Leibler (KL) diver-
gence KL(p||q), where p and q are the answer
probabilities and the uniform distribution, respec-
tively, is high when overconfident:

R =
∑

i ∈ E−

DKL(P (Ai|Qi,Di)||Puniform) (8)

where Puniform indicates uniform distribution.
This regularization termR forces the answer prob-
abilities on E− to be closer to the uniform one.

However, one reported risk (Utama et al., 2020;
Grand and Belinkov, 2019) is that suppressing data
with biases has a side-effect of lowering confidence
on unbiased data (especially on in-distribution).
Similarly, in our case, regularizing to keep the con-
fidence low for E−, can cause lowering that for
E+, due to their correlation. In other words, pursu-
ing (O1) violates (O2), which we observe later in
Figure 3. Our next goal is thus to decorrelate two
distributions on E+ and E− to satisfy both (O1)
and (O2).

Figure 2(b) shows how we feed the hidden states
h into two predictors. Predictor f is for learning
the target distribution and predictor g is purposedly
trained to be overconfident on evidence-negative
set E−, where this biased answer distribution is
denoted as P̂ . We regularize target distribution P
to diverge from the biased distribution of P̂ .

Formally, the biased answer distributions P̂ (P̂ s

and P̂ e) are as follows:

Ôs = g1(h), Ôe = g2(h)

P̂ s = softmax(Ôs), P̂ e = softmax(Ôe)
(9)

where g1 and g2 are fully connected layers with
the trainable parameters ∈ Rd. Then, we optimize
P̂ to predict answer A on evidence-negative set
E−, which makes layer g biased (taking shortcuts),
and regularize f by maximizing KL divergence
between P and fixed P̂ . The regularization term of
example i ∈ E− is as follows:

R̂(i) = DCE(P̂i,Ai)− λDKL(P̂i||Pi) (10)

where λ is a hyper-parameter. This loss R̂ is opti-
mized on only evidence-negative set E−.

Lastly, to pursue (O2), we train on E+, as done
on A+. However, in initial steps of training, our
Interpreter is not reliable, since the QA model is
not trained enough yet. We thus train without E+

for the first K epochs, then extract E+ at K epoch
and continue to train on all sets, as shown in Figure
2(a). In the final loss function, we apply different
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losses as set E and A:

Ltotal =
∑

i ∈ A+,−

LA(i) +
∑

i ∈ E−

R̂(i)

+
∑

i ∈ E+

u(t−K) · LA(i)
(11)

where the function u is a delayed step function (1
when epoch t is greater than K, 0 otherwise).

3.4 Passage Selection at Inference Time

For our multi-hop QA task, it requires to find an-
swerable passages with both answer and evidence,
from candidate passages. While we can access the
ground-truth of answerability in training set, we
need to identify the answerability of (Q,D) at in-
ference time. For this, we consider two directions:
(1) Paragraph Pair Selection, which is specific to
HotpotQA, and (2) Supervised Evidence Selector
trained on pseudo-labels.

For (1), we consider the data characteristic, men-
tioned in Section 3.1; we know one pair of para-
graphs is answerable/evidential (when both para-
graphs are positive, or P+). Thus, the goal is to
identify the answerable pair of paragraphs, from all
possible pairs Pij = {(pi, pj) : pi ∈ P, pj ∈ P}
(denoted as paired-paragraph). We can let the
model select one pair with highest estimated an-
swerability, 1 − pnone in Eq. (6), and predict an-
swers on the paired passage, which is likely to be
evidential.

For (2), some pipelined approaches (Nie et al.,
2019; Groeneveld et al., 2020) design an evidence
selector, extracting top k sentences from all candi-
date paragraphs. While they supervise the model
using ground-truth of evidences, we assume there is
no such annotation, thus train on pseudo-labels E+.
We denote this setting as selected-evidences. For
evidence selector, we follow an extracting method
in (Beltagy et al., 2020), where the special token
[S] is added at ending position of each sentence,
and h[Si] from BERT indicates i-th sentence embed-
ding. Then, a binary classifier fevi(h[Si]) is trained
on the pseudo-labels, where fevi is a fully con-
nected layer. During training, the classifier identi-
fies whether each sentence is evidence-positive (1)
or negative (0). At inference time, we first select
top 5 sentences2 on paragraph candidates, and then
insert the selected evidences into QA model for
testing.

2Table 1 shows the precision and recall of top5 sentences.

Table 1: The precision and recall of pseudo evidences
from Interpreter, compared to the ground truth (GT).

# of sent Prec Recall
GT evidences 2.38 100. 100.
Answerable A+ 6.45 36.94 100.
E+ (Train set) 3.64 61.13 86.64
E+ (Dev set) 5.00 46.12 90.35

While we discuss how to get the answerable pas-
sage above, we can use the passage setting for eval-
uation. To show the robustness of our model, we
construct a challenge test set by excluding easy ex-
amples (i.e., easy to take shortcuts). To detect such
easy examples, we build a set of single-paragraph
Pi, that none of it is evidential in HotpotQA, as the
dataset avoids having all evidences in a single para-
graph, to discourage single-hop reasoning. If QA
model predicts the correct answer on the (uneviden-
tial) single-paragraph, we remove such examples
in HotpotQA, and define the remaining set as the
challenge set.

4 Experiment

In this section, we formulate our research questions
to guide our experiments and describe evaluation
results corresponding to each question.

Research Questions To evaluate the effective-
ness of our method, we address the following re-
search questions:

• RQ1: How effective is our proposed method
for a multi-hop QA task?

• RQ2: Does our Interpreter effectively extract
pseudo-evidentiality annotations for training?

• RQ3: Does our method avoid reasoning short-
cuts in unseen data?

Implementation Our implementation settings
for QA model follow RoBERTa (Base version with
12 layers) (Liu et al., 2019). We use the Adam op-
timizer with a learning rate of 0.00005 and a batch-
size of 8 on RTX titan. We extract the evidence-
positive set after 3 epoch (K=3 in Eq. (11)) and re-
train for 3 epochs. As a hyper-parameter, we search
λ among {1, 0.1, 0.01}, and found the best value
(λ=0.01), based on 5% hold-out set sampled from
the training set.
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Table 2: The comparison of the proposed models on the original set and challenge set.

Model Input at Inference
Question Answering (F1)

Original Set Challenge Set
without external knowledge

B-I: Single-paragraph QA Single-paragraph 68.65 0.0
B-II: Single-paragraph QA Paired-paragraph 62.01 30.07
O-I: Our model Single-paragraph 32.61 19.81
O-II: Our model Paired-paragraph 68.08 41.69
O-III: Our model (full) Selected-evidences 70.21 44.57
with external knowledge
C-I: Asai et al. (2019) Retrieved-evidences 73.30 48.54
C-II: Asai et al. (2019) + Ours Retrieved-evidences 73.95 50.15

Table 3: The ablation study on our full model.

Model
QA (F1)

Original Challenge
Our model (full) 70.21 44.57
(A) remove E+ 68.51 40.78
(B) remove E+ & E− 66.42 40.75
(C) replace R̂ withR 69.64 42.54

Metrics We report standard F1 score for Hot-
potQA, to evaluate the overall QA accuracy to find
the correct answers. For evidence selection, we also
report F1 score, Precision, and Recall to evaluate
the sentence-level evidence retrieval accuracy.

4.1 RQ1: QA Effectiveness

Evaluation Set

• Original Set: We evaluate our proposed ap-
proach on multi-hop reasoning dataset, Hot-
potQA3 (Yang et al., 2018). HotpotQA contains
112K examples of multi-hop questions and an-
swers. For evaluation, we use the HotpotQA dev
set (distractor setting) with 7405 examples.

• Challenge Set: To validate the robustness, we
construct a challenge set where QA model
on single-paragraph gets zero F1, while such
model achieves 67 F1 in the original set. That
is, we exclude instances with F1 > 0, where the
QA model predicts an answer without right rea-
soning. The exclusion makes sure the baseline
obtains zero F1 on the challenge set. The num-
ber of surviving examples in our challenge set is
1653 (21.5% of dev set).

3https://hotpotqa.github.io/

Baselines, Our models, and Competitors As a
baseline, we follow the previous QA model (Min
et al., 2019) trained on single-paragraphs. We test
our model on single-paragraphs, paired-paragraphs
and selected evidences settings discussed in Sec-
tion 3.4. As a strong competitor, among released
models for HotpotQA, we implement a state-of-
the-art model (Asai et al., 2019)4, using external
knowledge and a graph-based retriever.

Main Results This section includes the results
of our model for multi-hop reasoning. As shown in
Table 2, our full model outperforms baselines on
both original and challenge set.

We can further observe that i) when tested
on single-paragraphs, where forced to take short-
cuts, our model (O-I) is worse than the baseline
(B-I), which indicates that B-I learned the short-
cuts. In contrast, O-II outperforms B-II on paired-
paragraphs where at least one passage candidate
has all the evidences.

ii) When tested on evidences selected by our
method (O-III), we can improve F1 scores on both
original set and challenge set. This noise filtering
effect of evidence selection, by eliminating irrel-
evant sentences, was consistently observed in a
supervised setting (Nie et al., 2019; Groeneveld
et al., 2020; Beltagy et al., 2020), which we could
reproduce without annotation.

iii) Combining our method with SOTA (C-
I) (Asai et al., 2019) leads to accuracy gains in
both sets. C-I has distinctions of using external
knowledge of reasoning paths, to outperform mod-
els without such advantages, but our method can
contribute to complementary gains.

4Highest performing model in the leaderboard of Hot-
potQA with public code release
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Table 4: The comparison of the proposed models for evidence selection

Model
Evidence Selection

F1 Precision Recall
Retrieval-based AIR (Yadav et al., 2020) 66.16 63.06 69.57
Accumulative-based interpreter on our QA model 54.05 53.56 62.38
(a) Interpreter on Single-paragraph QA 56.76 57.50 63.71
(b) Interpreter on our QA model w/R 70.30 62.04 87.10
(c) Interpreter on our QA model (full) 69.35 61.09 86.59
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(b) Ours w/ R
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(c) Ours w/ R̂ (full)
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(d) Three models on E+

Figure 3: Confidence Analysis: Confidence scores of three models in the ascending order, on E+ (light color) and
E− (dark colar). (a) Base model trained on single-paragraphs. (b) Our model with R. (c) Our full model with R̂.
(d) Comparison of three models on E+.

Ablation Study As shown in Table 3, we con-
duct an ablation study of O-III in Table 2. In (A),
we remove E+ from Interpreter, in training time.
On the QA model without E+, the performance
decreased significantly, suggesting the importance
of evidence-positive set. In (B), we remove evi-
dentaility labels of both E+ and E−, and observed
that the performance drop is larger compared to
other variants. Through (A) and (B), we show that
training our evidentiality labels can increase QA
performance. In (C), we replace R̂ withR, remov-
ing layer g to train biased features. On the replaced
regularization, the performance also decreased, sug-
gesting that training R̂ is effective for a multi-hop
QA task.

4.2 RQ2: Evaluation of Pseudo-Evidentiality
Annotation

In this section, we evaluate the effectiveness of our
Interpreter, which generates evidences on training
set, without supervision. We compare the pseudo
evidences with human-annotation, by sentence-
level. For evaluation, we measure sentence-level F1
score, Precision and Recall, following the evidence
selection evaluation in (Yang et al., 2018).

As a baseline, we implement the retrieval-based
model, AIR (Yadav et al., 2020), which is an un-
supervised method as ours. As shown in Table 4,
our Interpreter on our QA model outperforms the

retrieval-based method, in terms of F1 and Recall,
while the baseline (AIR) achieves the highest pre-
cision (63.06%). We argue recall, aiming at identi-
fying all evidences, is much critical for multi-hop
reasoning, for our goal of avoiding disconnected
reasoning, as long as precision remains higher than
precision of answerable A+ (36.94%), in Table 1.

As variants of our method, we test our Inter-
preter on various models. First, when comparing
(a) and (c), our full model (c) outperforms the base-
line (a) over all metrics. The baseline (a) trained
on single-paragraphs got biased, thus the evidences
generated by the biased model are less accurate.
Second, the variant (b) trained by R outperforms
(c) our full model. In Eq. (8), the loss termR does
not train layer g for biased features, unlike R̂ in Eq.
(10). This shows that learning g results in perfor-
mance degradation for evidence selection, despite
performance gain in QA.

4.3 RQ3: Generalization

In this section, to show that our model avoids rea-
soning shortcuts for unseen data, we analyze the
confidence distribution of models on the evidence-
positive and negative set. In dev set, we treat the
ground truth of evidences as E+, and a single sen-
tence containing answer as E− (each has 7K Q-D
pairs). On these set, Figure 3 shows confidence
P (A|Q,D) of three models; (a), (b), and (c) men-
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tioned in Section 4.2. We sort the confidence scores
in ascending order, where y-axis indicates the con-
fidence and x-axis refers to the sorted index. Thus,
the colored area indicates the dominance of confi-
dence distribution. Ideally, for a debiased model,
the area on evidence-positive set should be large,
while that on evidence-negative should be small.

Desirably, in Figure 3(a), the area under the
curve for E− should decrease for pursuing (O1),
moving along blue arrow, while that of E+ should
increase for (O2), as red arrow shows. In Figure
3(b), our model withR follows blue arrow, with a
smaller area under the curve for E−, while keeping
that of E+ comparable to Figure 3(a). For the com-
parison, Figure 3(d) shows all curves on E+. In
Figure 3(c), our full model follows both directions
of blue and red arrows, which indicates that ours
satisfied both (O1) and (O2).

5 Conclusion

In this paper, we propose a new approach to train
multi-hop QA models, not to take reasoning short-
cuts of guessing right answers without sufficient
evidences. We do not require annotations and gen-
erate pseudo-evidentiality instead, by regularizing
QA model from being overconfident when evi-
dences are insufficient. Our experimental results
show that our method outperforms baselines on
HotpotQA and has the effectiveness to distinguish
between evidence-positive and negative set.
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