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Abstract

Abstractive summarization for long-document
or multi-document remains challenging for
the Seq2Seq architecture, as Seq2Seq is not
good at analyzing long-distance relations in
text. In this paper, we present BASS, a novel
framework for Boosting Abstractive Summa-
rization based on a unified Semantic graph,
which aggregates co-referent phrases distribut-
ing across a long range of context and con-
veys rich relations between phrases. Further,
a graph-based encoder-decoder model is pro-
posed to improve both the document repre-
sentation and summary generation process by
leveraging the graph structure. Specifically,
several graph augmentation methods are de-
signed to encode both the explicit and im-
plicit relations in the text while the graph-
propagation attention mechanism is developed
in the decoder to select salient content into
the summary. Empirical results show that the
proposed architecture brings substantial im-
provements for both long-document and multi-
document summarization tasks.

1 Introduction

Nowadays, the sequence-to-sequence (Seq2Seq)
based summarization models have gained unprece-
dented popularity (Rush et al., 2015; See et al.,
2017; Lewis et al., 2020). However, complex sum-
marization scenarios such as long-document or
multi-document summarization (MDS), still bring
great challenges to Seq2Seq models (Cohan et al.,
2018; Liu et al., 2018). In a long document nu-
merous details and salient content may distribute
evenly (Sharma et al., 2019) while multiple doc-
uments may contain repeated, redundant or con-
tradictory information (Radev, 2000). These prob-
lems make Seq2Seq models struggle with content
selection and organization which mainly depend
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Figure 1: Illustration of a unified semantic graph and its
construction procedure for a document containing three
sentences. In Graph Construction, underlined tokens
represent phrases., co-referent phrases are represented
in the same color. In The Unified Semantic Graph,
nodes of different colors indicate different types, ac-
cording to section 3.1.

on the long source sequence (Shao et al., 2017).
Thus, how to exploit deep semantic structure in
the complex text input is a key to further promote
summarization performance.

Compared with sequence, graph can aggregate
relevant disjoint context by uniformly representing
them as nodes and their relations as edges. This
greatly benefits global structure learning and long-
distance relation modeling. Several previous works
have attempted to leverage sentence-relation graph
to improve long sequence summarization, where
nodes are sentences and edges are similarity or dis-
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course relations between sentences (Li et al., 2020).
However, the sentence-relation graph is not flexi-
ble for fine-grained (such as entities) information
aggregation and relation modeling. Some other
works also proposed to construct local knowledge
graph by OpenIE to improve Seq2Seq models (Fan
et al., 2019; Huang et al., 2020). However, the
OpenIE-based graph only contains sparse relations
between partially extracted phrases, which cannot
reflect the global structure and rich relations of the
overall sequence.

For better modeling the long-distance relations
and global structure of a long sequence, we propose
to apply a phrase-level unified semantic graph to
facilitate content selection and organization. Based
on fine-grained phrases extracted from dependency
parsing, our graph is suitable for information ag-
gregation with the help of coreference resolution
that substantially compresses the input and benefits
content selection. Furthermore, relations between
phrases play an important role in organizing the
salient content when generating summaries. For
example, in Figure 1 the phrases “Albert Einstein”,
“the great prize” and “explanation of the of the pho-
toelectric” which distribute in different sentences
are easily aggregated through their semantic rela-
tions to compose the final summary sentence.

We further propose a graph-based encoder-
decoder model based on the unified semantic graph.
The graph-encoder effectively encodes long se-
quences by explicitly modeling the relations be-
tween phrases and capturing the global structure
based on the semantic graph. Besides, several
graph augmentation methods are also applied dur-
ing graph encoding to tap the potential semantic
relations. For the decoding procedure, the graph
decoder incorporates the graph structure by graph
propagate attention to guide the summary genera-
tion process, which can help select salient content
and organize them into a coherent summary.

We conduct extensive experiments on both
the long-document summarization dataset BIG-
PATENT and MDS dataset WikiSUM to validate
the effectiveness of our model. Experiment re-
sults demonstrate that our graph-based model sig-
nificantly improves the performance of both long-
document and multi-document summarization over
several strong baselines. Our main contributions
are summarized as follows:

• We present the unified semantic graph which
aggregates co-referent phrases distributed

in context for better modeling the long-
distance relations and global structure in long-
document summarization and MDS.

• We propose a graph-based encoder-decoder
model to improve both the document represen-
tation and summary generation process of the
Seq2Seq architecture by leveraging the graph
structure.

• Automatic and human evaluation on both
long-document summarization and MDS out-
perform several strong baselines and validate
the effectiveness of our graph-based model.

2 Related Works

2.1 Abstractive Summarization
Abstractive summarization aims to generate a flu-
ent and concise summary for the given input doc-
ument (Rush et al., 2015). Most works apply
Seq2Seq architecture to implicitly learn the sum-
marization procedure (See et al., 2017; Gehrmann
et al., 2018; Paulus et al., 2017; Celikyilmaz et al.,
2018). More recently, significant improvements
have been achieved by applying pre-trained lan-
guage models as encoder (Liu and Lapata, 2019b;
Rothe et al., 2020) or pre-training the generation
process leveraging a large-scale of unlabeled cor-
pus (Dong et al., 2019; Lewis et al., 2020; Qi et al.,
2020; Zhang et al., 2020a). In MDS, most of the
previous models apply extractive methods (Erkan
and Radev, 2004; Cho et al., 2019). Due to the lack
of large-scale datasets, some attempts on abstrac-
tive methods transfer single document summariza-
tion (SDS) models to MDS (Lebanoff et al., 2018;
Yang et al., 2019) or unsupervised methods based
on auto-encoder (Chu and Liu, 2019; Bražinskas
et al., 2020; Amplayo and Lapata, 2020). After the
release of several large MDS datasets (Liu et al.,
2018; Fabbri et al., 2019), some supervised ab-
stractive models for MDS appear (Liu and Lapata,
2019a; Li et al., 2020). Their works also empha-
size the importance of modeling cross-document
relations in MDS.

2.2 Structure Enhanced Summarization
Explicit structures play an important role in re-
cent deep learning-based extractive and abstractive
summarization methods (Li et al., 2018a,b; Liu
et al., 2019a). Different structures benefit sum-
marization models from different aspects. Con-
stituency parsing greatly benefits content selection
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Input Length 800 1600 2400 3000
#Nodes 140 291 467 579
#Edges 154 332 568 703

Table 1: Illustration of how the average number of
nodes and edges in the graph changes when the input
sequence becomes longer on WikiSUM.

and compression for extractive models. Cao et al.
(2015) propose to extract salient sentences based
on their constituency parsing trees. Xu and Dur-
rett (2019) and Desai et al. (2020) jointly select
and compress salient content based on syntax struc-
ture and syntax rules. Dependency parsing helps
summarization models in semantic understanding.
Jin et al. (2020) incorporate semantic dependency
graphs of input sentences to help the summariza-
tion models generate sentences with better seman-
tic relevance . Besides sentence-level structures,
document-level structures also attract a lot of atten-
tion. Fernandes et al. (2019) build a simple graph
consisting of sentences, tokens and POS for sum-
mary generation. By incorporating RST trees, Xu
et al. (2020) propose a discourse-aware model to
extract sentences. Similarly, structures from se-
mantic analysis also help. Liu et al. (2015) and
Liao et al. (2018) propose to guide summarization
with Abstract Meaning Representation (AMR) for
a better comprehension of the input context. (Li
and Zhuge, 2019) propose semantic link networks
based MDS but without graph neural networks.
Recently, the local knowledge graph by OpenIE at-
tracts great attention. Leveraging OpenIE extracted
tuples, Fan et al. (2019) compress and reduce re-
dundancy in multi-document inputs in MDS. Their
work mainly focus on the efficiency in processing
long sequences. Huang et al. (2020) utilize OpenIE-
based graph for boosting the faithfulness of the
generated summaries. Compared with their work,
our phrase-level semantic graph focus on modeling
long-distance relations and semantic structures.

3 Unified Semantic Graph

In this section, we introduce the definition and con-
struction of the unified semantic graph.

3.1 Graph Definition

The unified semantic graph is a heterogeneous
graph defined as G = (V,E), where V and E are
the set of nodes and edges. Every node in V repre-
sents a concept merged from co-referent phrases.

For example, in Figure 1 the node “Albert Einstein”
is merged from phases “Albert Einstein” and “his”
which indicate the same person by coreference res-
olution. Defined as a heterogeneous graphG, every
node v ∈ V and every edge eij ∈ E in our graph
belongs to a type of phrase and dependency parsing
relation, respectively. Determined by the type of
phrases merged from, nodes are categorized into
three different types: Noun phrase (N), Verb phrase
(V), Other phrase (O). We neglect dependency re-
lations in edges as they mainly indicate sentence
syntax. Instead, the meta-paths (Sun et al., 2011) in
the unified semantic graph convey various seman-
tic relations. Notice that most O such as adjective
phrases, adverb phrases function as modifiers, and
the meta-path O-N indicates modification relation.
The meta-path N-N between Noun phrases repre-
sents appositive relation or appositional relation.
Furthermore, two-hop meta-path represents more
complex semantic relations in graph. For example,
N-V-N like [Albert Einstein]-[won]-[the physics
Nobel Prize] indicates SVO (subject–verb–object)
relation. It is essential to effectively model the
two-hop meta-path for complex semantic relation
modeling.

3.2 Graph Construction

To construct the semantic graph, we extract phrases
and their relations from sentences by first merging
tokens into phrases and then merging co-referent
phrases into nodes. We employ CoreNLP (Man-
ning et al., 2014) to obtain coreference chains of
the input sequence and the dependency parsing tree
of each sentence. Based on the dependency parsing
tree, we merge consecutive tokens that form a com-
plete semantic unit into a phrase. Afterwards, we
merge the same phrases from different positions
and phrases in the same coreference chain to form
the nodes in the semantic graph.

The final statistics of the unified semantic graph
on WikiSUM are illustrated in table 1, which indi-
cates that the scale of the graph expands moderately
with the inputs. This also demonstrates how the
unified semantic graph compresses long-text infor-
mation.

4 Summarization Model

In this section, we introduce our graph-based ab-
stractive summarization model, which mainly con-
sists of a graph encoder and a graph decoder, as
shown in Figure 2. In the encoding stage, our



6055

Albert Einstein was a theoretical physicist . He was born in Germanyŏ

Text Encoder

Albert 
Einstein

was 
born in

a theoretical 
physicist

was 

Germany

G
ra

ph
 P

ar
se

r

<bos>German physicist Albert Einstein… 

Context 
Attention

Graph Encoder

Graph-prop 
Attention

Masked Self-Attention

Graph Fusion

Feed Forward

Add & Norm

Graph Decoder

Graph 
Structure

Text Input

Graph Input

Albert Einstein awas theoretical physicist He was born

Albert Einstein was a theoretical  physicist He was born in

in

Germany

Summary Output

Two-level Merging

Partial Summary

Germany

German physicist Albert Einstein was …

S

Figure 2: Illustration of our graph-based summarization model. The graph node representation is initialized from
merging token representations in two-level. The graph encoder models the augmented graph structure. The decoder
attends to both token and node representations and utilizes graph structure by graph-propagation attention.

model takes a document or the concatenation of
a set of documents as text input (represented as
x = {xk}), and encodes it by a text encoder to ob-
tain a sequence of local token representations. The
graph encoder further takes the unified semantic
graph as graph input (represented as G = (V,E)
in section 3.1), and explicitly model the semantic
relations in graph to obtain global graph representa-
tions. Based on several novel graph-augmentation
methods, the graph encoder also effectively taps
the implicit semantic relations across the text input.
In the decoding stage, the graph decoder leverages
the graph structure to guide the summary genera-
tion process by a novel graph-propagate attention,
which facilitates salient content selection and or-
ganization for generating more informative and
coherent summaries.

4.1 Text Encoder

To better represent local features in sequence, we
apply the pre-trained language model RoBERTa
(Liu et al., 2019b) as our text encoder. As the max-
imum positional embedding length of RoBERTa
is 512, we extend the positional embedding length
and randomly initialize the extended part. To be
specific, in every layer, the representation of ev-
ery node is only updated by it’s neighbors by self
attention.

4.2 Graph Encoder

After we obtain token representations by the text
encoder, we further model the graph structure to
obtain node representations. We initialize node rep-
resentations in the graph based on token representa-
tions and the token-to-node alignment information
from graph construction. After initialization, we
apply graph encoding layers to model the explicit
semantic relations features and additionally apply
several graph augmentation methods to learn the
implicit structure conveyed by the graph.
Node Initialization Similar to graph construc-
tion in section 3.2, we initialize graph represen-
tations following the two-level merging, token
merging and phrase merging. The token merging
compresses and abstracts local token features into
higher-level phrase representations. The phrase
merging aggregates co-referent phrases in a wide
context, which captures long-distance and cross-
document relations. To be simple, these two merg-
ing steps are implemented by average pooling.
Graph Encoding Layer Following previous
works in graph-to-sequence learning (Koncel-
Kedziorski et al., 2019; Yao et al., 2020), we apply
Transformer layers for graph modeling by applying
the graph adjacent matrix as self-attention mask.
Graph Augmentation Following previous
works (Bastings et al., 2017; Koncel-Kedziorski
et al., 2019), we add reverse edges and self-loop
edges in graph as the original directed edges are
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not enough for learning backward information. For
better utilizing the properties of the united semantic
graph, we further propose two novel graph augmen-
tation methods.
Supernode As the graph becomes larger, noises
introduced by imperfect graph construction also in-
crease, which may cause disconnected sub-graphs.
To strengthen the robustness of graph modeling
and learn better global representations, we add a
special supernode connected with every other node
in the graph to increase the connectivity.
Shortcut Edges Indicated by previous works,
graph neural networks are weak at modeling multi-
hop relations (Abu-El-Haija et al., 2019). How-
ever, as mentioned in section 3.1, the meta-paths
of length two represent rich semantic structures
that require further modeling the two-hop relations
between nodes. As illustrated in Figure 2, in a N-V-
N meta-path [Albert Einstein]-[was]-[a theoretical
physicist], the relations [Albert Einstein]-[was] and
[was]-[a theoretical physicist] are obviously less
important than the two-hop relation [Albert Ein-
stein]- [a theoretical physicist]. Therefore we add
shortcut edges between every node and its two-
hop relation neighbors, represented as blue edges
in Figure 2. We have also attempted other com-
plex methods such as MixHop (Abu-El-Haija et al.,
2019), but we find shortcut edges are more efficient
and effective. The effectiveness of these graph
augmentation methods has also been validated in
section 6.2.

4.3 Graph Decoding Layer

Token and node representations benefit summary
generation in different aspects. Token representa-
tions are better at capturing local features while
graph representations provide global and abstract
features. For leveraging both representations, we
apply a stack of Transformer-based graph decoding
layers as the decoder which attends to both repre-
sentations and fuse them for generating summaries.
Let yl−1t denotes the representation of t-th sum-
mary token output by (l − 1)-th graph decoding
layer. For the graph attention, we apply multi-head
attention using yl−1t as query and node representa-
tions V = {vj} as keys and values:

αt,j =
(yl−1t WQ)(vjWK)T√

dhead
(1)

where WQ,WK ∈ Rd×d are parameter weights,
αt,j denote the salient score for node j to yl−1t .

We then calculate the global graph vector gt
as weighted sum over values of nodes: gt =∑

j Softmax(αt,j)(vjWV ) where WV ∈ Rd×d

is a learnable parameter. We also obtain contextu-
alized text vector ct similar to the procedure above
by calculating multi-head attention between yl−1t

and token representations. Afterwards, we use a
graph fusion layer which is a feed-forward neural
network to fuse the concatenation of the two fea-
tures: dlt = W T

d ([gt, ct]), where Wd ∈ R2d×d is
the linear transformation parameter and dlt is the
hybrid representation of tokens and graph. After
layer-norm and feed-forward layer, the l-th graph
decoding layer output ylt is used as the input of
the next layer and also used for generating the tth
token in the final layer.
Graph-propagate Attention When applying
multi-head attention to graph, it only attends to
node representations linearly, neglecting the graph
structure. Inspired by Klicpera et al. (2019), we pro-
pose the graph-propagate attention to leverage the
graph structure to guide the summary generation
process. By further utilizing semantic structure, the
decoder is more efficient in selecting and organiz-
ing salient content. Without extra parameters, the
graph-propagation attention can be conveniently
applied to the conventional multi-head attention for
structure-aware learning.

Graph-propagate attention consists of two steps:
salient score prediction and score propagation. In
the first step, we predict the salient score for every
node linearly. We apply the output of multi-head at-
tention αt ∈ R|v|×C in Equation 1 as salient scores,
where |v| is the number of nodes in the graph andC
is the number of attention heads. C is regarded as
C digits or channels of the salient score for every
node. We then make the salient score structure-
aware through score propagation. Though PageR-
ank can propagate salient scores over the entire
graph, it leads to over-smoothed scores, as in every
summary decoding step only parts of the content
are salient. Therefore, for each node we only propa-
gate its salient score p times in the graph, aggregat-
ing at most p-hop relations. Let β0t = αt denotes
the initial salient score predicted in previous step,
the salient score after p-th propagation is:

βpt = ωÂβp−1t + (1− ω)β0t (2)

where Â = AD−1 is a degree-normalized adjacent
matrix of the graph1, and ω ∈ (0, 1] is the teleport

1Adjacent matrix A contains self-loop and reverse edges.
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probability which defines the salient score has the
probability ω to propagate towards the neighbor
nodes and 1− ω to restart from initial. The graph-
propagation procedure can also be formulated as:

βpt = (ωpÂp + (1− ω)(
p−1∑
i=0

ωiÂi))αt (3)

After p steps of salient score propagation, the graph
vector is then calculated by weighted sum of node
values:

g
′
t =

∑
j

Softmax(βpt,j)(vjW
V ) (4)

where for the convenience of expression, the
concatenation of multi-head is omitted. The output
of fusing g

′
t and ct is then applied to generate the

tth summary token as mentioned before.

5 Experiment Setup

In this section, we describe the datasets of our ex-
periments and various implementation details.

5.1 Summarization Datasets

We evaluate our model on a SDS dataset and an
MDS dataset, namely BIGPATENT (Sharma et al.,
2019) and WikiSUM (Liu et al., 2018).
BIGPATENT is a large-scale patent document
summarization dataset with an average input of
3572.8 words and a reference with average length
of 116.5 words. BIGPATENT is a highly abstrac-
tive summarization dataset with salient content
evenly distributed in the input. We follow the stan-
dard splits of Sharma et al. (2019) for training,
validation, and testing (1,207,222/67,068/67,072).
WikiSUM is a large-scale MDS dataset. Follow-
ing Liu and Lapata (2019a), we treat the generation
of lead Wikipedia sections as an MDS task. To
be specific, we directly utilize the preprocessed
results from Liu and Lapata (2019a), which split
source documents into multiple paragraphs and
rank the paragraphs based on their titles to se-
lect top-40 paragraphs as source input. The av-
erage length of each paragraph and the target sum-
mary are 70.1 tokens and 139.4 tokens, respectively.
We concatenate all the paragraphs as the input se-
quence. We use the standard splits of Liu and La-
pata (2019a) for training, validation, and testing
(1,579,360/38,144/38,205).

Model R-1 R-2 R-L BS
Lead 38.22 16.85 26.89 -
LexRank 36.12 11.67 22.52 -
TransS2S 40.56 25.35 34.73 25.43
T-DMCA 40.77 25.60 34.90 -
HT 41.53 26.52 35.76 25.62
BERTS2S 41.49 25.73 35.59 -
RoBERTaS2S 42.05 27.00 36.56 29.13
GraphSum 42.99 27.83 37.36 29.69
BASS(2400) 43.65 28.55 37.85 31.91
BASS(3000) 44.33 28.38 37.87 31.71

Table 2: Evaluation results on the test set of WikiSUM.
Rouge-1, Rouge-2, Rouge-L and BERTScore are ab-
breviated as R-1,R-2,R-L and BS, respectively.

5.2 Implementation Details
We train all the abstractive models by max like-
lihood estimation with label smoothing (label
smoothing factor 0.1). As we fine-tune the pre-
trained language model RoBERTa as text encoder,
we apply two different Adam optimizers (Kingma
and Ba, 2015) with β1 = 0.9 and β2 = 0.998
to train the pre-trained part and other parts of the
model (Liu and Lapata, 2019b). The learning rate
and warmup steps are 2e-3 and 20,000 for the pre-
trained part and 0.1 and 10,000 for other parts. As
noticed from experiments, when the learning rate
is high, graph-based models suffer from unstable
training caused by the gradient explosion in the text
encoder. Gradient clipping with a very small max-
imum gradient norm (0.2 in our work) solves this
problem. All the models are trained for 300,000
steps on BIGPATENT and WikiSUM with 8 GPUs
(NVIDIA Tesla V100). We apply dropout (with
the probability of 0.1) before all linear layers. In
our model, the number of graph-encoder layers and
graph-decoder layers are set as 2 and 6, respec-
tively. The hidden size of both graph encoding
and graph decoding layers is 768 in alignment with
RoBERTa, and the feed-forward size is 2048 for pa-
rameter efficiency. For graph-propagation attention,
the parameter ω is 0.9, and the propagation steps
p is 2. During decoding, we apply beam search
with beam size 5 and length penalty with factor 0.9.
Trigram blocking is used to reduce repetitions.

6 Results

6.1 Automatic Evaluation
We evaluate the quality of generated summaries us-
ing ROUGE F1(Lin, 2004) and BERTScore (Zhang
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Model R-1 R-2 R-L BS
Lead 31.27 8.75 26.18 -
ORACLE 43.56 16.91 36.52 -
LexRank 35.99 11.14 29.60 -
Seq2Seq 28.74 7.87 24.66 -
Pointer 30.59 10.01 25.65 -
Pointer+cov 33.14 11.63 28.55 -
FastAbs 37.12 11.87 32.45 -
TLM 36.41 11.38 30.88 -
TransS2S 34.93 9.86 29.92 9.42
RoBERTaS2S 43.62 18.62 37.86 18.18
BART 45.83 19.53 - -
Pegasus-base 43.55 20.43 - -
BASS 45.04 20.32 39.21 20.13

Table 3: Evaluation results on the test set of BIG-
PATENT where the length input of BASS is 1024.

et al., 2020b). For ROUGE, we report unigram and
bigram overlap between system summaries and ref-
erence summaries (ROUGE-1, ROUGE-2). We re-
port sentence-level ROUGE-L for the BIGPATENT
dataset and summary-level ROUGE-L for the Wik-
iSUM for a fair comparison with previous works.
We also report BERTScore 2 F1, a better metric
at evaluating semantic similarity between system
summaries and reference summaries.
Results on MDS Table 2 summarizes the evalua-
tion results on the WikiSUM dataset. We compare
our model with several strong abstractive and ex-
tractive baselines. As listed in the top block, Lead
and LexRank (Erkan and Radev, 2004) are two clas-
sic extractive methods. The second block shows
the results of several different abstractive meth-
ods. TransS2S is the Transformer-based encoder-
decoder model. By replacing the Transformer en-
coder in TransS2S with BERT (Devlin et al., 2019)
or RoBERTa and training with two optimizers (Liu
and Lapata, 2019b), we obtain two strong base-
lines BERTS2S and RoBERTaS2S. T-DMCA is
the best model presented by Liu et al. (2018) for
summarizing long sequence. HT is the best model
presented by Liu and Lapata (2019a) with the hi-
erarchical Transformer encoder and a flat Trans-
former decoder. GraphSum, presented by Li et al.
(2020), leverages paragraph-level explicit graph by
the graph encoder and decoder, which gives the cur-
rent best performance on WikiSUM. We report the

2We apply roberta-large L17 no-idf version as the metric
model and rescale with baseline setting according to sugges-
tions on https://github.com/Tiiiger/bert score.

Model R-1 R-2 R-L BS
Full model 42.29 27.19 36.46 30.62
w/o structure 41.86 27.06 36.43 29.84
+w/o merging 41.56 26.61 35.93 29.15

Table 4: Graph Structure analysis on WikiSUM test set
where the input length is 800. w/o structure and +w/o
merging refer to remove relations between phrases and
further remove phrase merging in graph construction,
respectively.

Model R-1 R-2 R-L BS
Full model 43.40 28.50 37.71 31.64
w/o shortcut 42.50 27.97 37.23 31.10
w/o supernode 42.93 28.08 37.42 31.15
w/o graph-prop 42.84 28.14 37.42 31.33
w/o graph 42.05 27.00 36.56 29.13

Table 5: Ablation study on WikiSUM test set where the
input length is 1600. graph-prop is the abbreviation of
graph-propagation.

best results of GraphSum with RoBERTa and the
input length is about 2400 tokens. The last block
reports the results of our model BASS with the
input lengths of 2400 and 3000. Compared with
all the baselines, our model BASS achieves great
improvements on all the four metrics. The results
demonstrates the effectiveness of our phrase-level
semantic graph comparing with other RoBERTa
based models, RoBERTaS2S (without graph) and
GraphSum (sentence-relation graph). Furthermore,
the phrase-level semantic graph improves the se-
mantic relevance of the generated summaries and
references, as the BERTScore improvements of
BASS is obvious.
Results on SDS Table 3 shows our experiment

results along with other SDS baselines. Similar
to WikiSUM, we also report LexRank, TransS2S,
and RoBERTaS2S. Besides, we report the perfor-
mance of several other baselines. ORACLE is the
upper-bound of current extrative models. Seq2seq
is based on LSTM encoder-decoder with atten-
tion mechanism (Bahdanau et al., 2015). Pointer
and Pointer+cov are pointer-generation (See et al.,
2017) with and without coverage mechanism, re-
spectively. FastAbs (Chen and Bansal, 2018) is
an abstractive method by jointly training sentence
extraction and compression. TLM (Pilault et al.,
2020) is a recent long-document summarization
method based on language model. We also report
the performances of recent pretrianing-based SOTA
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text generation models BART (large) and Peagua-
sus (base) on BIGPATENT, which both contain a
parameter size of 406M . The last block shows the
results of our model, which contains a parameter
size of 201M . The results show that BASS consis-
tently outperforms RoBERTaS2S, and comparable
with current large SOTA models with only half of
the parameter size. This further demonstrates the
effectiveness of our graph-augmented model on
long-document summarization.

6.2 Model Analysis

For a thorough understanding of BASS, we con-
duct several experiments on the WikiSUM test set,
including the effects of the graph structure and in-
put length. We also validate the effectiveness of the
graph-augmentation methods in graph encoder and
the graph-propagation attention in graph decoder
by ablation studies.
Graph Structure Analysis To analyze how the
unified semantic graph benefits summarization
learning, we conduct ablation studies on the graph
structures. Illustrated in Table 4, after removing
explicit relations between phrases by fully connect-
ing all the nodes, the R-1 metric drops obviously
which indicates the relations between phrases im-
prove the informativeness of generated summaries.
After further removing phrase merging, we observe
a performance decrease in all the metrics, which
indicates the long-distance relations benefit both
the informativeness and fluency of summary.
Ablation Study The experimental results of re-
moving supernode and shortcut edges from the
unified semantic graph prove the effectiveness of
graph augmentation methods in the graph encoder.
Experimental results without the gaph-propagation
attention confirms that the structure of the uni-
fied semantic graph is also beneficial for decoding.
Overall, the performance of the model drops the
most when removing shortcut edges which indi-
cates the rich potential information is beneficial
for summarization. Finally, after removing all the
graph-relevant components, performance dramati-
cally drops on all the metrics.
Length Comparison According to Liu et al.
(2018), input length affects the summarization per-
formance seriously for Seq2Seq models as most of
them are not efficient at handling longer sequences.
The basic TransS2S achieves its best performance
at the input length of 800, while longer input hurts
performance. Several previous models achieve bet-
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Figure 3: Comparison of HT, GraphSum (GSum in fig-
ure), BASS under various length of input tokens.

ter performance when utilizing longer sequences.
As illustrated in Figure 3, the performance of HT
remains stable when the input length is longer than
800. Leveraging the power of sentence-level graph,
GraphSum achieves the best performance at 2,400
but its performance begins to decrease when the in-
put length reaches 3000. Unlike previous methods,
ROUGE-1 of BASS significantly increased in 3000
indicates that the unified semantic graph benefits
salient information selection even though the input
length is extreme.
Abastractiveness Analysis We also study the ab-
stractiveness of BASS and other summarization
systems on WikiSUM. We calculate the average
novel n-grams to the source input, which reflects
the abstractiveness of a summarization system (See
et al., 2017). Illustrated in Figure 4, BASS gener-
ates more abstract summaries comparing to recent
models, GraphSum, HT, and weaker than RoBER-
TaS2S. Summarized from observation, we draw
to a conclusion that RoBERTaS2S usually gener-
ates context irrelevant contents due to the strong
pretrained RoBERTa encoder but a randomly ini-
tialized decoder that relays on the long-text input
poorly. Graph-based decoders of BASS and Graph-
Sum alleviate this phenomenon.

6.3 Human Evaluation

In addition to the above automatic evaluations, we
also conduct human evaluations to assess the per-
formance of systems. Because the patent dataset
BIGPATENT contains lots of terminologies and
requires professional background knowledge for
annotators, we select WikiSUM as the dataset for
evaluations. As Wikipedia entries can be summa-
rized in many different aspects, annotators will
naturally favor systems with longer outputs. Thus
we first filter instances that the summaries of dif-
ferent systems are significantly different in lengths
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Figure 4: Illustration of novel n-grams in generated
summaries form different systems.

and then randomly select 100 instances. We invite
2 annotators to assess the summaries of different
models independently.

Annotators evaluate the overall quality of sum-
maries by ranking them taking into account the
following criterias: (1) Informativeness: whether
the summary conveys important and faithful facts
of the input? (2) Fluency: whether the summary
is fluent, grammatical, and coherent? (3) Succinct-
ness: whether the summary is concise and dose not
describe too many details? Summaries with the
same quality get the same order. All systems get
score 2,1,-1,2 for ranking 1,2,3,4 respectively. The
rating of each system is averaged by the scores of
all test instances.

The results of our system and the other three
strong baselines are shown in Table 6. The per-
centage of rankings and the overall scores are both
reported. Summarized from the results, our model
BASS is able to generate higher quality summaries.
Some examples are also shown in the appendix.
Specifically, BASS generates fluent and concise
summaries containing more salient content com-
pared with other systems. The human evaluation
results further validate the effectiveness of our se-
mantic graph-based model.

7 Conclusion and Future Work

In this paper, we propose to leverage the unified se-
mantic graph to improve the performance of neural
abstractive models for long-document summariza-
tion and MDS. We further present a graph-based
encoder-decoder model to improve both the docu-
ment representation and summary generation pro-
cess by leveraging the graph structure. Experiments

Model 1 2 3 4 Rating
TransS2S 0.32 0.14 0.09 0.45 −0.21∗

R.B. 0.39 0.22 0.26 0.13 0.48∗

G.S. 0.31 0.38 0.20 0.11 0.58∗

BASS 0.64 0.16 0.14 0.06 1.18

Table 6: Ranking results of system summaries by hu-
man evaluation. 1 is the best and 4 is the worst. The
larger rating denotes better summary quality. R.B. and
G.S. are the abbreviations of RoBERTaS2S and Graph-
Sum. * indicates the overall ratings of the correspond-
ing model are significantly (by Welchs t-test with p
<0.01) outperformed by BASS.

on both long-document summarization and MDS
show that our model outperforms several strong
baselines, which demonstrates the effectiveness of
our graph-based model and the superiority of the
unified semantic graph for long-input abstractive
summarization. Though remarkable achievements
have been made by neural network-based summa-
rization systems, they still do not actually under-
stand languages and semantics. Incorporating lan-
guage structures in deep neural networks as prior
knowledge is a straightforward and effective way
to help summarization systems, as proved by this
work and previous works.
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A Graph Construction

Given a document set with n documents D =
{d1, ...dn} and each document di ∈ D contains
ki sentences. Algorithm 1 gives the details of con-
structing the unified semantic graph based on de-
pendency parsing.

We apply CoreNLP for both coreference res-
olution and dependency parsing. We first extract
coreference chains from every document and merge
coreference chains with overlap phrases. We mem-
orize all the coreference chains in set C, where
each chain c = {p1, ..., pkc} ∈ C contains a set of
co-referent phrases. We then parse every sentence
in every document into a dependency parsing tree
Ts. Afterwords we refines the tree by following

Algorithm 1: Construct Unified Seman-
tic Graphs

Input: Documents set D = {d1, ..., dn}, document
di ∈ D, di = {s1, ..., ski}

Output: The unified semantic graph G
1 . Coreference Resolution
2 C ← ∅
3 foreach d ∈ D do
4 cd ← COREFERNCE RESOLUSION(d)
5 C ← COREFERNCE MERGE(C, cd)
6 end
7 . Dependency Parsing
8 T ← ∅
9 foreach d ∈ D do

10 foreach s ∈ d do
11 Ts ← DEPENDENCY PARSE(s)
12 Ts ← IDENTIFY NODE TYPES(Ts)
13 Ts ← REMOVE PUNCTUATION(Ts)
14 Ts ←MERGE COREF PHRASE(Ts, C)
15 Ts ←MERGE NODES(Ts)
16 T ← T

⋃
{Ts}

17 end
18 end
19 . Initialize Graph
20 G = (V, E),V ← ∅, E ← ∅
21 foreach tree T = (VT , ET ) ∈ T do
22 V ← V

⋃
{VT }

23 E ← E
⋃
{ET }

24 end
25 . Merge Co-referent Nodes
26 foreach corefernce chain c ∈ C do
27 (V, E)←MERGE PHRASE(c,V, E)
28 end
29 G ← (V, E)
30 return G

operations:

• IDENTIFY NODE TYPES: after depen-
dency parsing, each node in the tree is
attached with a POS tag. We associate every
node with its POS tag for future merging
operations.

• PRUNE PUNCTUATION: we remove all the
punctuation nodes and their edges.

• MERGE COREFE PHRASE: since a corefer-
ence chain contains a set of phrases but a de-
pendency parsing tree is based on tokens, we
first obtain phrases in coreference chains for
the future convenience in merging coreferent
phrases. For every phrase pi in a co-reference
chain c, we merge the corresponding tokens of
pi to form the target phrase pi in the tree. The
merging operation is carried out by removing
edges between the nodes and represent the
tokens as a unified node.

• NODE MERGE: after obtaining phrases in
coreference chains, we merge other token
nodes into concise phrases. This procedure
is carried out by traveling every dependency
graph in depth-first, and merge the tokens into
a phrase if they satisfy the merging conditions.
Overall, we merge consecutive tokens that
form a complete semantic unit into a phrases.

After we extract all the phrases, we merge all the
same phrases and phrases in the same coreference
chain by MERGE PHRASE and return the final
semantic graph.

B Case Study

We select several cases from human evaluation and
demonstrate them to show the overall quality of sys-
tems. In each table, there are four blocks present
the input article (Article), the reference summary
(Reference Summary), the output summary of a
strong baseline GraphSum (Baseline) and the out-
put summary of our model BASS (BASS), sepa-
rately. The original input article is the concate-
nation of several document paragraphs by the “||”
symbol containing 1600 tokens in maximum. We
only show the salient part of the input article due
to the paragraph constraints. Spans in highlight
indicate the salient contents. Spans in red indi-
cate the unfaithful content, irrelevant content or
repeats a system generated. The case in Table 7
describes an American ice hockey player “Colleen
Coyne”. The important fact, “won a gold medal
at the 1998 winter Olympics”, is well captured
by BASS, however, the baseline model only men-
tions she “was a member” neglecting the substan-
tial achievement. The case in Table 8 introduces
the play “Colleen Coyne” which based on the four
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novels of “Leonardo Padura” is difficult to sum-
marize, as the relation between “Colleen Coyne”,
“Leonardo Padura” and the name list of the four nov-
els cross different documents and a long-span. The
baseline model confuses with the name of stars and
fails to list the names of four books. The Reference
Summary in Table 9 is not informative enough to
give a precise description of what is “Cetacean
Intelligence”. Though BASS does not introduce
the definition of “Cetacean”, it clearly describes
the categories of “Cetacean Intelligence” which is
more essential to the topic. In Table 10, BASS and
Baseline generate summaries with similar content,
but BASS provides more details such as, “right-
handed”, distributed in different documents. In
the case describing Broadcast, in Table 11, while
the Baseline generates irrelevant titles of editors,
BASS describes essential characters of the maga-
zine. Though all the models apply trigram-block
to avoid repeats, Table 12 shows that sometimes
the Baseline still generates repeated n-grams while
this seldomly happens on BASS.
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Article: colleen coyne is a graduate of the university of new hampshire. an ice hockey player , she

represented the united states , as a defenseman, on 6 nat ... || ... colleen coyne was one of the

trailblazing women who won gold at the 1998 olympic winter games . ...||...history and heroes:george

nagobads, mike ilitch’s pizza & colleen coyne of the 1998 u.s. women’s olympic team ...

Reference Summary: colleen m. coyne (born september 19, 1971 ) is an american ice hockey player.
she won a gold medal at the 1998 winter olympics.

Baseline: colleen coyne (born november 3, 1974) is an american former ice hockey player. she was a
member of the united states women ’s national ice hockey team at the 1998 winter olympics.

BASS: colleen coyne is an american ice hockey player.
she won a gold meda at the 1998 winter olympics. 1998 winter olympics.

Table 7: Colleen Coyne

Article: “havana quartet” , based on the popular book series by cuban novelist leonardo padura ,

follows a hard-drinking, romantic cuban police detective mario conde... || “havana quartet”
follows hard-drinking, romantic cuban police detective mario conde... || known cuban playwright
eduardo machado -lrb- starz ’s magic city -rrb-, who lives in the u.s., is the writer on the project,
based on the popular four-book series of detective novels havana blue, havana gold, havana red

and havana black by another cuban writer that is well known internationally, novelist
leonardo padura .

Reference Summary: havana quartet is an upcoming american television drama series starring
antonio banderas. the series is based on four detective novels by cuban author leonardo padura ,

havana blue , havana gold , havana red and havana black .

Baseline: havana quartet is an upcoming american television drama series based on the novel series of
the same name by cuban novelist leonardo padura the series stars antonio banderas, eduardo machado
and eduardo machad.

BASS: havana quartet -lrb- spanish : la gazeta de havana -rrb- is an upcoming american television
series baed on leonardo padura ’s novels havana blue , havana gold , havana red and havana black.

Table 8: Havana Quartet
Article:in the past three decades, new research has revealed that dolphin brains are not only
large but are extremely complex in their organization... dolphin brains are larger than expected
for their body size and contain numerous features associated with sophisticated perceptual
and cognitive abilities, echolocation, communication, cooperation, and dynamic social networks ,

cultural transmission of learned behaviors , and self-awareness , to name a few.

Reference Summary: cetacean intelligence refers to the cognitive capabilities of the cetacea order of
mammals. this order includes whales, porpoises, and dolphins.

Baseline: cetacean intelligence ( cetacean intelligence ) refers to the ability of cetaceans to communi-
cate with other animals. cetacean intelligence is an object of fascination among scientists.

BASS:cetacean intelligence refers to the ability of cetaceans to communicate with other animals.
cetacans have a wide range of social and cognitive abilities, including echolocation, communication,

cooperation and dynamic social networks, cultural transmission of learned behaviors,and

self-awareness .

Table 9: Cetacean Intelligence
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Article:|| james tolbert hearn was born on april 11 , 1921 , in atlanta , geor-
gia , the sixth and final child born to raymond and pearl ( adams ) hearn ||
st. louis cardinals , new york giants , and philadelphia phillies from 1947 through 1959 .||
jim hearn a || right-handed pitcher who helped propel the new york giants to victory ...

Reference Summary: james tolbert hearn ( april 11 , 1921 – june 10 , 1998 ) was an american
right-handed pitcher in major league baseball for 13 seasons ( 1947 – 59 ) . a right-hander , he stood 6
feet 3 inches ( 1.91 m ) tall and weighed 205 pounds ( 93 kg ) .

Baseline: james tolbert hearn ( april 11 , 1921 – june 10 , 1998 ) was an american professional baseball
pitcher . he played 13 seasons in major league baseball ( mlb ) for the st. louis cardinals , new york
giants , and philadelphia phillies .

BASS:james tolbert hearn ( april 11, 1921 – june 10, 1998 ) was an american right-handed
pitcher in major league baseball who played for the st. louis cardinals, new york giants ,
and philadelphia phillies from 1947 through 1959 .

Table 10: James Tolbert Hearn

Article: broadcast ( magazine ) content s.v.p. chief content officer derek t. dingle s.v.p. / executive
editor-at-large alfred a. edmond jr. . v.p. director of ...|| broadcast , a weekly magazine for the uk tele-
vision and radio industry , ...|| broadcast is the ideal supplement for those working in the uk broadcasting
industry , offering up-to-date industry news from the most experienced and authoritative voices in
broadcasting ||as a broadcast subscriber , you will benefit from the uk tv industry’s most knowledgeable
source of industry news and analysis on the successful people , programmes and companies .

Reference Summary: broadcast is a weekly magazine for the united kingdom television and radio
industry . it covers a wide range of news and issues affecting the professional broadcast market in the
uk . broadcast has regular weekly sections covering news ...

Baseline: broadcast is a british monthly magazine covering the uk television industry . it is published
by content .v.p. . the magazine was established in 1931 and is edited by alfred a. edmond , jr. . v.p.

BASS:broadcast is a monthly magazine covering the uk television industry . the magazine was
first published in 1931 . it is the uk ’s most authoritative voices of industry news and analysis
on the successful people , programmes and companies .

Table 11: Broadcast
Article:dams building ( sault ste. marie , michigan ) npgallery allows you to search the national register
information system a database of over 90,000 historic buildings ,... ( added 2010 - - # 10000218 )
also known as central savings bank building 418 ashmun st. , sault ste. marie || for those of you who
are interested in working with data in a gis environment...

Reference Summary: the adams building , also known as the central savings bank building , was
built as a commercial and office building located at 418 ashmun street in sault ste. marie , michigan . ...
.it was listed on the national register of historic places in 2010 .

Baseline: the adams building , also known as the central savings bank building building , is a building
located at 418 ashmun street in sault ste. marie , michigan . it was listed on the national register of
historic places in 2010 .

BASS:the adams building , also known as the central savings bank building , is a commercial building
located at 418 ashmun street in sault ste. marie , michigan . it was listed on the national register of
historic places in 2010 .

Table 12: The Adams Building


