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Abstract

The ICD coding task aims at assigning codes
of the International Classification of Diseases
in clinical notes. Since manual coding is very
laborious and prone to errors, many methods
have been proposed for the automatic ICD cod-
ing task. However, existing works either ig-
nore the long-tail of code frequency or the
noisy clinical notes. To address the above is-
sues, we propose an Interactive Shared Repre-
sentation Network with Self-Distillation mech-
anism. Specifically, an interactive shared rep-
resentation network targets building connec-
tions among codes while modeling the co-
occurrence, consequently alleviating the long-
tail problem. Moreover, to cope with the noisy
text issue, we encourage the model to focus on
the clinical note’s noteworthy part and extract
valuable information through a self-distillation
learning mechanism. Experimental results on
two MIMIC datasets demonstrate the effective-
ness of our method.

1 Introduction

The International Classification of Diseases (ICD)
is a healthcare classification system launched by
the World Health Organization. It contains a unique
code for each disease, symptom, sign and so on.
Analyzing clinical data and monitoring health is-
sues would become more convenient with the pro-
motion of ICD codes (Shull, 2019) (Choi et al.,
2016) (Avati et al., 2018). The ICD coding task
aims at assigns proper ICD codes to a clinical note.
It has drawn much attention due to the importance
of ICD codes. This task is usually undertaken by
experienced coders manually. However, the man-
ually process is inclined to be labor-intensive and

*Work was done during an internship at National Labora-
tory of Pattern Recognition, Institute of Automation, Chinese
Academy of Sciences.

Figure 1: An example of automatic ICD coding task.

error-prone (Adams et al., 2002). A knowledge-
able coder with medical experience has to read
the whole clinical note with thousands of words in
medical terms and assigning multiple codes from
a large number of candidate codes, such as 15,000
and 60,000 codes in the ninth version (ICD-9) and
the tenth version (ICD-10) of ICD taxonomies. On
the one hand, medical expert with specialized ICD
coding skills is hard to train. On the other hand,
it is a challenge task even for professional coders,
due to the large candidate code set and tedious clin-
ical notes. As statistics, the cost incurred by coding
errors and the financial investment spent on improv-
ing coding quality are estimated to be $25 billion
per year in the US (Lang, 2007).

Automatic ICD coding methods (Stanfill et al.,
2010) have been proposed to resolve the deficiency
of manual annotation, regarding it as a multi-label
text classification task. As shown in Figure 1, given
a plain clinical text, the model tries to predict all the
standardized codes from ICD-9. Recently, neural
networks were introduced (Mullenbach et al., 2018)
(Falis et al., 2019) (Cao et al., 2020) to alleviate the
deficiency of manual feature engineering process
of traditional machine learning method (Larkey and
Croft, 1996) (Perotte et al., 2014) in ICD coding
task, and great progresses have been made. Al-
though effective, those methods either ignore the



5949

long-tail distribution of the code frequency or not
target the noisy text in clinical note. In the follow-
ing, we will introduce the two characteristics and
the reasons why they are critical for the automatic
ICD coding. Long-tail: The long-tail problem is
unbalanced data distribution phenomenon. And
this problem is particularly noticeable in accompa-
nied by a large target label set.

According to our statistics, the proportion of the
top 10% high-frequency codes in MIMIC-III (John-
son et al., 2016) occupied 85% of total occurrence.
And 22% of the codes have less than two annotated
samples. This is intuitive because people usually
catch a cold but seldom have cancer. Trained with
these long-tail data, neural automatic ICD coding
method would inclined to make wrong predictions
with high-frequency codes. Fortunately, intrinsic
relationships among different diseases could be uti-
lized to mitigate the deficiency caused by long-tail.
For example, Polyneuropathy in diabetes is a com-
plication of diabetes, with a lower probability than
other complications since the long term effect of
vessel lesion reflect at nerve would come out in the
late-stage. If a model could learn shared informa-
tion between polyneuropathy in diabetes and more
common diseases diabetes, the prediction space
would range to a set of complication of diabetes.
Further, utilizing the dynamic code co-occurrence,
(the cascade relationship among complications of
diabetes) the confidence of predicting polyneuropa-
thy in diabetes is gradually increased with the oc-
currence of vessel blockages, angina pectoris, hy-
pertorphy of kidney, respectively. Therefore, how
to learn shared information with considering dy-
namic code co-occurrence characteristics, is a cru-
cial and challenging issue.

Noisy text: The noisy text problem means that
plentiful of information showing in clinical notes
are redundant or misleading for ICD coding task.
Clinical notes are usually written by doctors and
nurses with different writing styles, accompanied
by polysemous abbreviations, abundant medication
records and repetitive records of physical indica-
tors. According to our statistics1, about 10% of
words in a clinical note contribute to the code as-
sign task, on average. Other words are abundant
medication records and repetitive records of physi-
cal indicators. These words are not just redundant
but also misleading to the ICD coding task. For

1We randomly select 20 clinical notes in MIMIC-III and
manually highlight the essential words.

example, two critical patients with entirely differ-
ent diseases could take similar medicines and have
similar physical indicators in the rescue course. We
argue that the noisy clinical notes are hard to read
for both humans and machines. Training with such
noisy text would confuse the model about where
to focus on, and make wrong decisions due to the
semantic deviation. Therefore, another challenging
problem is how to deal with the noisy text in ICD
coding task.

In this paper, we propose an Interactive Shared
Representation Network with Self-Distillation
Mechanism (ISD) to address the above issues.

To mitigate the disadvantage caused by the long-
tail issue, we extract shared representations among
high-frequency and low-frequency codes from clin-
ical notes. Codes with different occurrence fre-
quencies all make binary decisions based on shared
information rather than individually learning atten-
tion distributions. Additional experiments indicate
that those shared representations could extract com-
mon information relevant to ICD codes. Further,
we process the shared representations to an interac-
tion decoder for polishing. The decoder additional
supervised by two code completion tasks to en-
sure the dynamic code co-occurrence patterns were
learned.

To alleviate the noisy text issue, we further pro-
pose a self-distillation learning mechanism to en-
sure the extracted shared representations focus
on the long clinical note’s noteworthy part. The
teacher part makes predictions through constructed
purified text with all crucial information; mean-
while, the student part takes the origin clinical note
as a reference. The student is forced to learn the
teacher’s shared representations with identical tar-
get codes.

The contributions of this paper are as follows:

1) We propose a framework capable of dealing
with the long-tail and noisy text issues in the
ICD coding task simultaneously.

2) To relieve the long-tail issue, we propose
an interactive shared representation network,
which can capture the internal connections
among codes with different frequencies. To
handle the noisy text, we devise a self-
distillation learning mechanism, guiding the
model focus on important parts of clinical
notes.

3) Experiments on two widely used ICD coding
datasets, MIMIC-II and MIMIC-III, show our
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Figure 2: The architecture of Interactive Shared Representation Networks.

method outperforms state-of-the-art methods
in macro F1 with 4% and 2%, respectively.
The source code is available at www.github.
com/tongzhou21/ISD.

2 Related Work

ICD coding is an important task in the limelight
for decades. Feature based methods firstly brought
to solve this task. (Larkey and Croft, 1996) ex-
plored traditional machine learning algorithms, in-
cluding KNN, relevance feedback, and Bayesian
applying to ICD coding. (Perotte et al., 2014) uti-
lized SVM for classification in consideration of the
hierarchy of ICD codes. With the popularity of
neural networks, researchers have proven the effec-
tiveness of CNN and LSTM in ICD coding task.
(Mullenbach et al., 2018) propose a convolutional
neural network with an attention mechanism to cap-
ture each code’s desire information in source text
also exhibit interpretability. (Xie and Xing, 2018)
develop tree LSTM to utilize code descriptions.
To further improve the performance, customized
structures were introduced to utilize the code co-
occurrence and code hierarchy of ICD taxonomies.
(Cao et al., 2020) embedded the ICD codes into
hyperbolic space to explore their hierarchical na-
ture and constructed a co-graph to import code
co-occurrence prior. We argue that they capture
code co-occurrence in a static manner rather than
dynamic multi-hop relations. (Vu et al., 2020) con-
sider learning attention distribution for each code
and introduce hierarchical joint learning architec-
ture to handle the tail codes. Taking advantage
of a set of middle representations to deal with the
long-tail issue is similar to our shared representa-
tion setting, while our method enables every label
to choose its desire representation from shared at-
tention rather than its upper-level node, with more
flexibility.

The direct solution to deal with an imbalance
label set is re-sampling the training data (Japkow-
icz and Stephen, 2002) (Shen et al., 2016) or re-
weighting the labels in the loss function (Wang

et al., 2017) (Huang et al., 2016). Some studies
treat the classification of tail labels as few-shot
learning task. (Song et al., 2019) use GAN to gen-
erate label-wise features according to ICD code de-
scriptions. (Huynh and Elhamifar, 2020) proposed
shared multi-attention for multi-label image label-
ing. Our work further constructs a label interaction
module for label relevant shared representation to
utilize dynamic label co-occurrence.

Lots of effects tried to normalize noisy texts be-
fore inputting to downstream tasks. (Vateekul and
Koomsubha, 2016) (Joshi and Deshpande, 2018)
apply pre-processing techniques on twitter data for
sentiment classification. (Lourentzou et al., 2019)
utilized seq2seq model for text normalization. Oth-
ers targeted at noisy input in an end2end manner
by designing customized architecture. (Sergio and
Lee, 2020) (Sergio et al., 2020). Different from
previous works on noisy text, our method neither
need extra text processing nor bring in specific pa-
rameters.

3 Method

This section describes our interactive shared repre-
sentation learning mechanism and self-distillation
learning paradigm for ICD coding. Figure 2 shows
the architecture of interactive shared representation
networks and manifest the inference workflow of
our method. We first encode the source clinical
note to the hidden state with a multi-scale con-
volution neural network. Then a shared attention
module further extracts code relevant information
shared among all codes. A multi-layer bidirectional
Transformer decoder insert between the shared at-
tention representation extraction module and code
prediction, establishes connections among shared
code relevant representations.

3.1 Multi-Scale Convolutional Encoder

We employ convolutional neural networks (CNN)
for source text representation because the compu-
tation complexity affected by the length of clini-
cal notes is non-negligible, although other sequen-

www.github.com/tongzhou21/ISD
www.github.com/tongzhou21/ISD
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Figure 3: The workflow of our method (ISD) during the training stage. We take the example of training data with
a clinical note and annotated four target codes.

tial encoders such as recurrent neural networks
or Transformer(Vaswani et al., 2017) could cap-
ture longer dependency of text, theoretically. CNN
could encode local n-gram pattern, critical in text
classification, and with high computational effi-
ciency. The words in source text are first mapped
into low-dimensional word embedding space, con-
stitute a matrix E = {e1, e2, ..., eNx}. Note that
Nx is the clinical note’s length, e is the word vec-
tor with dimension de. As shown in Eq. 1 and
2, we concatenate the convolutional representa-
tion from kernel set C = {c1, c2, ..., cS} with
different size kc to hidden representation matrix
H = {h1, h2, ..., hNx} with size Nx × dl:

h
cj
i = tanh(Wc ∗ xi:i+kcj−1 + bcj ) (1)

hi = {hc0i ;hc1i ; ...;hcSi } (2)

3.2 Shared Attention

The label attention method tends to learn relevant
document representations for each code. We ar-
gue that the attention of rare code could not be
well learned due to lacking training data. Moti-
vated by (Huynh and Elhamifar, 2020) we propose
shared attention to bridge the gap between high-
frequency and low-frequency codes by learning
shared representations HS through attention. Code
set with total number of Nl codes represents in

code embedding El = {el1, el2, ..., elNl
} according

to their text descriptions. A set of trainable shared
queries for attention with sizeNq×dl is introduced,
noted as Eq = {eq1, e

q
2, ..., e

q
Nq
}, where Nq is the

total number of shared queries as a hyperparameter.
Then Eq calculates shared attention representation
HS = {hS1 , hS2 , ..., hSNq

} with hidden representa-
tion H in Eq. 3 to 5:

Attention(Q,K, V ) = softmax(
QKT

√
dk

V ) (3)

αi = Attention(eqi , H,H) (4)

hSi = H · αi (5)

In ideal conditions, those shared representations re-
flect the code relevant information corresponding to
the source text. We can predict codes through HS .
Each code i has its right to choose a shared repre-
sentation in HS for code-specific vector through
the highest dot product score si.

si = max(HS · eli) (6)

The product score was further applying to calculate
the final score ŷl through the sigmoid function.

ŷi = σ(si) (7)

With the supervision of binary cross-entropy loss
function, the shared representation should have
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learned to represent code relevant information.

Lpred =

Nl∑
i=1

[−yilog(ŷi)− (1− yi)log(1− ŷi)]

(8)

3.3 Interactive Shared Attention
Above shared attention mechanism lacks interac-
tion among code relevant information, which is
of great importance in the ICD coding task. We
implement this interaction through a bidirectional
multi-layer Transformer decoder D with an addi-
tional code completion task. The shared represen-
tation HS is considered the orderless sequential
input of the decoder D. Each layer of the Trans-
former contains interaction among shared repre-
sentation HS through self-attention and interac-
tion between shared representation and source text
through source sequential attention.

To make sure the decoder could model the dy-
namic code co-occurrence pattern, we propose two
code set completion tasks, shown at the bottom of
Figure 3.

(1) Missing code completion: We construct a
code sequence Ltgt of a real clinical note X in the
training set, randomly masking one code lmis. The
decoder takes this code sequence as input to predict
the masked code.

Lmis = −logP (lmis|Ltgt \ lmis ∪ lmask, X) (9)

(2) Wrong code removal: Similar to the above
task, we construct a code sequence Ltgt, but by
randomly adding a wrong code lwro. The decoder
is aiming to fade the wrong code’s representation
with a special mask representation lmask.

Lrem = −logP (lmask|Ltgt ∪ lwro, X) (10)

The decoder could generate purificatory code rel-
evant information with higher rationality with the
above two tasks’ learning. The decoder is plugged
to refine the shared representation HS to HS′, so
the subsequent dot product score is calculated by
HS′.

si = max(HS′ · eli) (11)

3.4 Self-distillation Learning Mechanism
We argue that learning the desired shared attention
distribution over such a long clinical text is difficult,
and the αi tends to be smooth, brings lots of unnec-
essary noise information. Therefore we propose a
self-distillation learning mechanism showing in the

gray dotted lines of Figure 3. With this mechanism,
the model could learn superior intermediate repre-
sentations from itself without introducing another
trained model.

Considering a single clinical note X with tar-
get code set Ltgt for training, we derive two paths
inputted to the model. The teacher’s training
data consists of the text descriptions XLtgt =
{X l

1, X
l
2, ..., X

l
Nltgt
}. We handle those code de-

scriptions separately through the encoder and con-
catenate them into a flat sequence of hidden state
HLtgt = {H l1 ;H l2 ; ...;H

lNltgt }, where Nltgt is
the number of code in Ltgt, so the subsequent pro-
cess in our model is not affected.

We optimize the teacher’s prediction result ŷtgti

through binary cross-entropy loss.

Ltgt =
Nl∑
i=1

[−yilog(ŷtgti )− (1− yi)log(1− ŷtgti )]

(12)
Student takes origin clinical note Xas input and

also have BCE loss to optimize. We assume that
an origin clinical note with thousands of words
contains all desired codes’ information, as well as
less essential words. The teacher’s input contains
all desired information that indicates codes to be
predicted without any noise. Ideal shared repre-
sentations obtained from attention are supposed to
collect code relevant information only. Hence we
treat the teacher’s share representation HLtgt as a
perfect example to the student. A distillation loss
encourages those two representation sequences to
be similar.

cosine(HA, HB) =

N∑
i

hAi · hBi
‖ hAi ‖ ‖ hBi ‖

(13)

Ldist = min{1− cosine(HS′, HLtgt′)} (14)

Since we treat the shared representations with-
out order restrict, every teacher have its rights to
choose a suitable student, meanwhile, consider-
ing other teachers’ appropriateness. It implements
with Hungarian algorithm (Kuhn, 1955) to calcu-
lates the cosine distance globally minimum. Where
′ denotes any shuffle version of the origin represen-
tation sequence.

3.5 Training

The complete training pipeline of our method is
shown in Figure 3. The final loss function is the
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Model
MIMIC-III-full MIMIC-III 50

AUC F1 P@8 AUC F1 P@5Macro Micro Macro Micro Macro Micro Macro Micro
CAML 0.895 0.986 0.088 0.539 0.709 0.875 0.909 0.532 0.614 0.609
DR-CAML 0.897 0.985 0.086 0.529 0.690 0.884 0.916 0.576 0.633 0.618
MSATT-KG 0.910 0.992 0.090 0.553 0.728 0.914 0.936 0.638 0.684 0.644
MultiResCNN 0.910 0.986 0.085 0.552 0.734 0.899 0.928 0.606 0.670 0.641
HyperCore 0.930 0.989 0.090 0.551 0.722 0.895 0.929 0.609 0.663 0.632
LAAT 0.919 0.988 0.099 0.575 0.738 0.925 0.946 0.666 0.715 0.675
JointLAAT 0.921 0.988 0.107 0.575 0.735 0.925 0.946 0.661 0.716 0.671

ISD (Ours) 0.938 0.990 0.119 0.559 0.745 0.935 0.949 0.679 0.717 0.682
±0.003 ±0.003 ±0.002 ±0.002 ±0.001 ±0.004 ±0.001 ±0.009 ±0.003 ±0.005

Table 1: Comparison of our model and other baselines on the MIMIC-III dataset. We run our model 10 times and
each time we use different random seeds for initialization. We report the mean ± standard deviation of each result.

Model
AUC F1

P@8
Macro Micro Macro Micro

HA-GRU - - - 0.366 -
CAML 0.820 0.966 0.048 0.442 0.523
DR-CAML 0.826 0.966 0.049 0.457 0.515
MultiResCNN 0.850 0.968 0.052 0.464 0.544
HyperCore 0.885 0.971 0.070 0.477 0.537
LAAT 0.868 0.973 0.059 0.486 0.550
JointLAAT 0.871 0.972 0.068 0.491 0.551

ISD (Ours)
0.901 0.977 0.101 0.498 0.564
±0.004 ±0.002 ±0.004 ±0.002 ±0.002

Table 2: Experimental results are shown in means ±
standard deviations on the MIMIC-II dataset.

weighting sum of the above losses.

L = λpredLpred+λmisLmis + λremLrem+

λtgtLtgt + λdistLdist
(15)

4 Experiments

4.1 Datasets
For fair comparison, we follow the datasets used
by previous work on ICD coding (Mullenbach
et al., 2018) (Cao et al., 2020), including MIMIC-
II (Jouhet et al., 2012) and MIMIC-III (Johnson
et al., 2016). The third edition is the extension of
II. Both datasets contain discharge summaries that
are tagged manually with a set of ICD-9 codes.
The dataset preprocessing process is consistent
with (Mullenbach et al., 2018). For MIMIC-III
full dataset, there are 47719, 1631, 3372 different
patients’ discharge summaries for training, devel-
opment, and testing, respectively. Totally 8921
unique codes occur in those three parts. MIMIC-
III 50 dataset only retains the most frequent codes
appear in full setting, leave 8067, 1574, 1730 dis-
charge summaries for training, development, and
testing, respectively. MIMIC-II dataset contains
5031 unique codes divided into 20533 and 2282
clinical notes for training and testing, respectively.

4.2 Metrics and Parameter Settings

As in previous works (Mullenbach et al., 2018),
we evaluate our method using both the micro and
macro, F1 and AUC metrics. As well as P@8 in-
dicates the proportion of the correctly-predicted
codes in the top-8 predicted codes. PyTorch
(Paszke et al., 2019) is chosen for our method’s
implementation. We perform a grid search over all
hyperparameters for each dataset. The parameter
selections are based on the tradeoff between val-
idation performance and training efficiency. We
set the word embedding size to 100. We build the
vocabulary set using the CBOW Word2Vec method
(Mikolov et al., 2013) to pre-train word embed-
dings based on words in all MIMIC data, resulting
in the most frequent 52254 words included. The
multi-scale convolution filter size is 5, 7, 9, 11,
respectively. The size of each filter output is one-
quarter of the code embedding size. We set code
embedding size to 128 and 256 for the MIMIC-II
and MIMIC-III, respectively. The size of shared
representation is 64. We utilize a two-layer Trans-
former for the interactive decoder. For the loss
function, we set λmis = 0.5, λmis = 5e − 4,
λrem = 5e− 4, λtgt = 0.5, and λdist = 1e− 3 to
adjust the scale of different supervisory signals. We
use Adam for optimization with an initial learning
rate of 3e-4, and other settings keep the default.

4.3 Baselines

We compare our method with the following base-
lines:

HA-GRU: A Hierarchical Attention Gated Re-
current Unit model is proposed by (Baumel et al.,
2017) to predict ICD codes on the MIMIC-II
dataset.

CAML & DR-CAML: (Mullenbach et al.,
2018) proposed the Convolutional Attention Net-
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Model AUC F1 P@8Macro Micro Macro Micro
ISD (Ours) 0.938 0.990 0.119 0.559 0.745
w/o distillation loss 0.935 0.986 0.103 0.551 0.743
w/o self-distillation 0.934 0.981 0.099 0.547 0.724
w/o code completion task 0.931 0.988 0.061 0.522 0.728
w/o co-occurrence decoder 0.936 0.989 0.084 0.547 0.743

Table 3: Ablation results on the MIMIC-III-full test set.

work for Multi-Label Classification (CAML),
which learning attention distribution for each la-
bel. DR-CAML indicates Description Regularized
CAML, an extension incorporating the text descrip-
tion of codes.

MSATT-KG: The Multi-Scale Feature Atten-
tion and Structured Knowledge Graph Propagation
was proposed by (Xie et al., 2019) They capture
variable n-gram features and select multi-scale fea-
tures through densely connected CNN and a multi-
scale feature attention mechanism. GCN is also
employed to capture the hierarchical relationships
among medical codes.

MultiResCNN: The Multi-Filter Residual Con-
volutional Neural Network was proposed by (Li
and Yu, 2020). They utilize the multi-filter convo-
lutional layer capture variable n-gram patterns and
residual mechanism to enlarge the receptive field.

HyperCore: Hyperbolic and Co-graph Repre-
sentation was proposed by (Cao et al., 2020). They
explicitly model code hierarchy through hyper-
bolic embedding and learning code co-occurrence
thought GCN.

LAAT & JointLAAT: (Vu et al., 2020) Label
Attention model (LAAT) for ICD coding was pro-
posed by (Vu et al., 2020), learning attention dis-
tributions over LSTM encoding hidden states for
each code. JointLAAT is an extension of LAAT
with hierarchical joint learning.

4.4 Compared with State-of-the-art Methods
The left part of Table 1 and Table 2 show the results
of our method on the MIMIC-III and MIMIC-II
dataset with the whole ICD code set. Compared
with previous methods generating attention distri-
bution for each code, our method achieves better
results on most metrics, indicating the shared atten-
tion mechanism’s effectiveness. It is noteworthy
that the macro results have more significant im-
provement compare to micro than previous meth-
ods. Since the macro indicators are mainly affected
by tail codes’ performance, our approach benefits

from the interactive shared representations among
codes with different frequencies.

Compared with the static code interaction of co-
occurrence implemented in (Cao et al., 2020), our
method achieves higher scores, indicating that the
dynamic code interaction module could capture
more complex code interactive information other
than limit steps of message passing in GCN.

The right part of Table 1 shows the results of our
method on the MIMIC-III dataset with the most
frequent 50 codes. It proved that our approach’s
performance would not fall behind with a more
balanced label set.

4.5 Ablation Experiments
To investigate the effectiveness of our proposed
components of the method, we also perform the ab-
lation experiments on the MIMIC-III-full dataset.
The ablation results are shown in Table 3, indicat-
ing that none of these models can achieve a compa-
rable result with our full version. Demonstrate that
all those factors contribute a certain improvement
to our model.

(1) Effectiveness of Self-distillation. Specifi-
cally, when we discard the whole self-distillation
part (w/o self-distillation), the performance
drops, demonstrate the effectiveness of the self-
distillation. To further investigate the contribution
of the self-distillation module, whether the more
training data we constructed, we retain the teacher
path and remove the loss between shared represen-
tations (w/o distillation loss), the performance still
slightly drops. It can be concluded that although
the positive effects of the constructed training data
in the teacher path, the distillation still plays a role.

(2) Effectiveness of Shared Representation.
When we remove the self-distillation mechanism
(w/o self-distillation), the contribution of shared
representation part can be deduced compared to the
performance of CAML. Result showing our version
still have 1.1% advantage in macro F1, indicating
the effectiveness of shared representation.
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Size AUC F1 P@8Macro Micro Macro Micro
1 0.899 0.980 0.081 0.532 0.723
32 0.937 0.990 0.104 0.557 0.737
64 0.938 0.990 0.119 0.559 0.745

128 0.938 0.988 0.124 0.558 0.743
1159 0.935 0.990 0.116 0.543 0.731

Table 4: Experimental results of our method with dif-
ferent size of shared representations on MIMIC-III-full
dataset.

(3) Effectiveness of Code Completion Task.
When we neglect the missing code completion task
and wrong code removal task (w/o code comple-
tion tasks), the code interactive decoder optimizes
with final prediction loss only. The performance is
even worse than the model without the whole code
interaction module (w/o co-occurrence decoder).
It indicates that the additional code completion
task is the guarantee of modeling dynamic code
co-occurrence characteristics. Further compared
with the model with label attention rather than our
proposed shared representations (w/o shared repre-
sentation), the performance even worse, showing
the code completion task is also the guarantee of
the effectiveness of shared representations. With-
out this self-supervised task, the shared information
is obscure and the performance drops due to the
join of dubiously oriented model parameters.

4.6 Discussion

To further explore our proposed interactive shared
attention mechanism, we conduct comparisons
among various numbers of shared representations
in our method. And visualization the attention
distribution over source text of different shared
representations, as well as the information they
extracted.

(1) The Analysis of Shared Representations
Size. As shown in Table 4, both large or small
size would harm the final performance. When the
shared size is set to 1, the shared representation
degrades into a global representation. A single
vector compelled to predict multiple codes causes
the performance drops, as Table 4 shows. We also
initialize the shared embeddings with ICD’s hier-
archical parent node. Specifically, there are 1159
unique first three characters in the raw ICD code
set of MIMIC-III-full. We initialize those shared
embeddings with the mean vector of their corre-
sponding child codes. Although the hierarchical
priori knowledge is introduced, the computation

Clinical Note: chief complaint elective admit
major surgical or invasive procedure recoiling
acomm aneurysm history of present illness on
she had a crushing headache but stayed at home
the next day ... angiogram with embolization
and or stent placement medication take aspirin
325mg ...
Codes:
437.3 (cerebral aneurysm, nonruptured);
39.75 (endovascular repair of vessel);
88.41 (arteriography of cerebral arteries)

Table 5: The attention distribution visualization over
a clinical note of different shared representations. We
determine the shared representations according to the
target codes’ choice. Since we calculate the attention
score over hidden states encoded by multi-scale CNN,
we take the most salient word as the center word of 5-
gram and highlight.

Model Standard Deviation
ISD (Ours) 0.013992
w/o self-distillation 0.004605

Table 6: The average standard deviation calculated
from the attention weights of clinical text in MIMIC-
III-full dataset.

complexity and uneven node selection could cause
the model to be hard to optimize and overfit high
frequent parent nodes.

(2) Visualization of Shared Attention Distri-
bution. The attention distribution of different
shared representations shown in Table 5 indicates
that they have learned to focus on different source
text patterns in the noisy clinical note to represent
code relevant information.

(3) The Analysis of Self-distillation. As shown
in Table 6, the attention weights over clinical
text learned by model with the training of self-
distillation mechanism are more sharp than origin
learning process. In combination with Table 5, it
can be concluded that the self-distillation mecha-
nism could help the model more focus on the desire
words of clinical text.

5 Conclusion

This paper proposes an interactive shared represen-
tation network and a self-distillation mechanism
for the automatic ICD coding task, to address the
long-tail and noisy text issues. The shared repre-
sentations can bridge the gap between the learning
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process of frequent and rare codes. And the code
interaction module models the dynamic code co-
occurrence characteristic, further improving the
performance of tail codes. Moreover, to address
the noisy text issue, the self-distillation learning
mechanism helps the shared representations focus
on code-related information in noisy clinical notes.
Experimental results on two MIMIC datasets indi-
cate that our proposed model significantly outper-
forms previous state-of-the-art methods.
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