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Abstract

Named Entity Recognition (NER) for low-
resource languages is a both practical and
challenging research problem. This paper
addresses zero-shot transfer for cross-lingual
NER, especially when the amount of source-
language training data is also limited. The
paper first proposes a simple but effective la-
beled sequence translation method to trans-
late source-language training data to target
languages and avoids problems such as word
order change and entity span determination.
With the source-language data as well as the
translated data, a generation-based multilin-
gual data augmentation method is introduced
to further increase diversity by generating
synthetic labeled data in multiple languages.
These augmented data enable the language
model based NER models to generalize bet-
ter with both the language-specific features
from the target-language synthetic data and the
language-independent features from multilin-
gual synthetic data. An extensive set of ex-
periments were conducted to demonstrate en-
couraging cross-lingual transfer performance
of the new research on a wide variety of target
languages.1

1 Introduction

Named entity recognition (NER) aims to identify
and classify entities in a text into predefined types,
which is an essential tool for information extraction.
It has also been proven to be useful in various down-
stream natural language processing (NLP) tasks,
including information retrieval (Banerjee et al.,
2019), question answering (Fabbri et al., 2020)
and text summarization (Nallapati et al., 2016).
However, except for some resource-rich languages

∗Equal contribution, order decided by coin flip. Linlin Liu
and Bosheng Ding are under the Joint PhD Program between
Alibaba and Nanyang Technological University.

1Our code is available at https://ntunlpsg.
github.io/project/mulda/.

(e.g., English, German), training sets for most of
the other languages are still very limited. More-
over, it is usually expensive and time-consuming
to annotate such data, particularly for low-resource
languages (Kruengkrai et al., 2020). Therefore,
zero-shot cross-lingual NER has attracted growing
interest recently, especially with the influx of deep
learning methods (Mayhew et al., 2017; Joty et al.,
2017; Jain et al., 2019; Bari et al., 2021).

Existing approaches to cross-lingual NER can
be roughly grouped into two main categories:
instance-based transfer via machine translation
(MT) and label projection (Mayhew et al., 2017;
Jain et al., 2019), and model-based transfer with
aligned cross-lingual word representations or pre-
trained multilingual language models (Joty et al.,
2017; Baumann, 2019; Wang et al., 2020; Conneau
et al., 2020; Bari et al., 2021). Recently, Wu et al.
(2020) unify instance-based and model-based trans-
fer via knowledge distillation.

These recent methods have demonstrated promis-
ing zero-shot cross-lingual NER performance.
However, most of them assume the availability of a
considerable amount of training data in the source
language. When we reduce the size of the training
data, we observe significant performance decrease.
For instance-based transfer, decreasing training
set size also amplifies the negative impact of the
noise introduced by MT and label projection. For
model-based transfer, although the large-scale pre-
trained multilingual language models (LM) (Con-
neau et al., 2020; Liu et al., 2020) have achieved
state-of-the-art performance on many cross-lingual
transfer tasks, simply fine-tuning them on a small
training set is prone to over-fitting (Wu et al., 2018;
Si et al., 2020; Kou et al., 2020).

To address the above problems under the set-
ting of low-resource cross-lingual NER, we pro-
pose a multilingual data augmentation (MulDA)
framework to make better use of the cross-lingual

https://ntunlpsg.github.io/project/mulda/
https://ntunlpsg.github.io/project/mulda/
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generalization ability of the pretrained multilingual
LMs. Specifically, we consider a low-resource set-
ting for cross-lingual NER, where there is very
limited source-language training data and no target-
language train/dev data. Such setting is practical
and useful in many real scenarios.

Our proposed framework seeks the initial help
from the instance-based transfer (i.e., translate
train) paradigm (Li et al., 2020; Fang et al., 2020).
We first introduce a novel labeled sequence trans-
lation method to translate the training data to the
target language as well as to other languages. This
allows us to finetune the LM based NER model
on multilingual data rather than on the source-
language data only, which helps prevent over-fitting
on the language-specific features. One commonly
used tool for translation is the off-the-shelf Google
translate system2, which supports more than 100
languages. Alternatively, there are also many pre-
trained MT models conveniently accessible, e.g.,
more than 1,000 MarianMT (Junczys-Dowmunt
et al., 2018; Kim et al., 2019) models have been
released on the Hugging Face model hub.3

Note that the instance-based transfer methods
add limited semantic variety to the training set,
since they only translate entities and the corre-
sponding contexts to a different language. In con-
trast, data augmentation has been proven to be a
successful method for tackling the data scarcity
problem. Inspired by a recent monolingual data
augmentation method (Ding et al., 2020), we pro-
pose a generation-based multilingual data augmen-
tation method to increase the diversity, where LMs
are trained on multilingual labeled data and then
used to generate more synthetic training data.

We conduct extensive experiments and analysis
to verify the effectiveness of our methods. Our
main contributions can be summarized as follows:

• We propose a simple but effective labeled se-
quence translation method to translate the source
training data to a desired language. Compared
with exiting methods, our labeled sentence trans-
lation approach leverages placeholders for la-
bel projection, which effectively avoids many
issues faced during word alignment, such as word
order change, entity span determination, noise-
sensitive similarity metrics and so on.

• We propose a generation-based multilingual data
2https://cloud.google.com/translate
3https://huggingface.co/transformers/model doc/marian.html

augmentation method for NER, which leverages
the multilingual language models to add more
diversity to the training data.

• Through empirical experiments, we observe that
when fine-tuning pretrained multilingual LMs for
low-resource cross-lingual NER, translations to
more languages can also be used as an effective
data augmentation method, which helps improve
performance of both the source and the target
languages.

2 MulDA: Our Multilingual Data
Augmentation Framework

We propose a multilingual data augmentation
framework that leverages the advantages of both
instance-based and model-based transfer for cross-
lingual NER. In our framework, a novel labeled
sequence translation method is first introduced
to translate the annotated training data from the
source language S to a set of target languages
T = {T1, . . . , Tn}. Then language models are
trained on {DS ,DT1 , ...,DTn} to generate multi-
lingual synthetic data, where DS is the source-
language training data, and DTi is the translated
data in language Ti. Finally, we post-process and
filter the augmented data to train multilingual NER
models for inference on target-language test sets.

2.1 Labeled Sequence Translation

We leverage labeled sequence translation for the
training data of the source language to generate
multilingual NER training data, which can also
be viewed a method for data augmentation. Prior
methods (Jain et al., 2019; Li et al., 2020) usually
perform translation and label projection in two sep-
arate steps: 1) translate source-language training
sentences to the target language; 2) propagate la-
bels from the source training data to the translated
sentences via word-to-word/phrase-to-phrase map-
ping with alignment models or algorithms. How-
ever, these methods suffer from a few label projec-
tion problems, such as word order change, word-
span determination (Li et al., 2020), and so on. An
alternative to avoid the label projection problems
is word-by-word translation (Xie et al., 2018), but
often at the sacrifice of the translation quality.

We address the problems identified above by
first replacing named entities with contextual place-
holders before sentence translation, and then after
translation, we replace placeholders in translated
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Labeled sentence in the source language:
[PER Jamie Valentine] was born in [LOC London].

1. Translate sentence with placeholders:
src: PER0 was born in LOC1.
tgt: PER0 nació en LOC1.

2. Translate entities with context:
PER0
src: [Jamie Valentine] was born in London.
tgt: [Jamie Valentine] nació en Londres.

LOC1
src: Jamie Valentine was born in [London].
tgt: Jamie Valentine nació en [Londres].

3. Replace placeholders with translated entities:
[PER Jamie Valentine] nació en [LOC Londres].

Figure 1: An example of labeled sentence translation,
where src and tgt are the translation model inputs and
outputs, respectively. For the example shown in this
figure, Google translation system and the MarianMT
model generate the same translations in step 1 and 2.

sentences with the corresponding translated entities.
An illustration of the method is shown in Figure 1.

Assume a sentence XS = {x1, . . . , xM} ∈ DS
and the corresponding NER tags {y1, . . . , yM} are
given, where xi’s are the sentence tokens and M is
the sentence length. Let {E1, . . . , En} denote the
predefined named entity types. Our method first
replaces all entities in {x1, . . . , xM} with place-
holders (src of step 1 in Figure 1). Placeholders
Ek are reconstructed tokens with the correspond-
ing entity type E as prefix and the index of the
entity k as suffix. Assume {xi, . . . , xj} is the kth
entity in the source sentence, and the corresponding
type is Ez , then we can replace the entity with the
placeholderEzk to get {. . . , xi−1, Ezk, xj+1, . . .}.
We use XS

∗ to denote the generated sentence after
replacing all entities with placeholders. XS

∗ is fed
into an MT model to get the translation XT

∗ in the
target language T . With such design, the place-
holder prefix E can provide the MT model4 with
relevant contextual information about the entities,
so that the model can translate the sentence with
reasonably good quality. Besides, we observe most
of placeholders are unchanged after translation,5

which can be used to help locate the position of
entities.

In the second step, we translate each entity

4When the MT model use subword vocabularies.
5See Appendix for more examples.

B-PER E-PER O O O S-LOC O
Jamie Valentine was born in London .

⇓ Linearization

B-PER Jamie E-PER Valentine was born in S-LOC London .

Figure 2: An example of labeled sequence linearization.

Figure 3: Training of multilingual LSTM-LM on the
linearized sequences.

with the corresponding context. More specifi-
cally, we use brackets to mark the span of each
entity and translate it to the target language suc-
cessively, one at a time (src of step 2 in Figure 1).
For example, to translate entity {xi, . . . , xj}, we
feed {. . . , xi−1, [xi, . . . , xj ], xj+1, . . .} into the
MT model. Then we can get entity translations by
extracting the square bracket marked tokens from
the translated sentences. We translate the entities
directly if the square brackets are not found.

Finally, we can replace placeholders in XT
∗ (ob-

tained from the first step) with the corresponding
entity translations (obtained from the second step)
and copy placeholder prefix as entity labels to gen-
erate the synthetic training data in the target lan-
guage (step 3 in Figure 1). We tested the proposed
method with Google translate and the MarianMT
(Junczys-Dowmunt et al., 2018; Kim et al., 2019)
models, and we found that both produce high qual-
ity synthetic data as we had expected.

2.2 Synthetic Data Generation with
Language Models

Although labeled sequence translation generates
high quality multilingual NER training data, it adds
limited variety since translation does not introduce
new entities or contexts. Inspired by DAGA (Ding
et al., 2020), we propose a generation-based mul-
tilingual data augmentation method to add more
diversity to the training data. DAGA is a mono-
lingual data augmentation method designed for se-
quence labeling tasks, which has been shown to
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be able to add significant diversity to the training
data. As the example shown in Figure 2, it first lin-
earizes labeled sequences by adding the entity type
before sentence tokens. Then an LSTM-based LM
(LSTM-LM) is trained on the linearized sequences
in an autoregressive way, after which the begin-of-
sentence token [BOS] is fed into the LSTM-LM
to generate synthetic training data autoregressively.
The monolingual LSTM-LM of DAGA is trained
in a similar way as the example shown in Figure 3,
except that there is no language tag [en].

To extend this method for multilingual data aug-
mentation, we add special tokens at the beginning
of each sentence to indicate the language that it
belongs to. The source-language data and the mul-
tilingual data obtained via translation are concate-
nated to train/finetune multilingual LMs with a
shared vocabulary (as shown in Figure 5). Given a
labeled sequence {x1, . . . , xM} from the multilin-
gual training data, the LMs are trained to maximize
the probability p(x1, . . . , xM ) in Eq. 1:

p(x1, . . . , xM ) =

M∏
t=1

pθ(xt|x<t) (1)

where θ is the parameter to optimize, and
pθ(xt|x<t) is the probability of the next token
given the previous tokens in the sequence, which is
usually computed with the softmax function. Fig-
ure 3 shows an example of how the multilingual
LSTM-LM is trained in the autoregressive way. Af-
ter training the LSTM-LM, we can feed the [BOS]
token and a language token to the model to generate
synthetic training data for the specified language.

Besides, to leverage the cross-lingual general-
ization ability of large scale pretrained multilin-
gual LMs, we also finetune a recent state-of-the-art
seq2seq model mBART (Liu et al., 2020), which is
pretrained with multilingual denoising tasks. Sen-
tence permutation and word-span masking are the
two noise injection methods used to add noise to
original sentence X = {x1, . . . , xM} to output
g(X), where g(.) is used to denote the noise in-
jection function. After encoding g(X) with the
Transformer encoder, the Transformer decoder is
trained to generate the original sequence X autore-
gressively by maximizing Eq. 1.

Denoising word-span masked sequences is the
most relevant to our data augmentation method,
since only small modifications are required to make
our finetuning task as consistent to the pretrain-
ing task as possible. More specifically, we design

our finetuning task with the following changes:
1) use the linearized labeled sequences (as shown
in Figure 5) as input X; 2) modify g(.) to mask
random trailing sub-sequences such that g(X) =
{x1, . . . , xz, [mask]}, where 1 ≤ z ≤ |X| is a
random integer. After finetuning with such task,
we can conveniently feed a randomly masked se-
quence {x1, . . . , xz, [mask]} into mBART to gen-
erate synthetic data. Figure 4 shows a more con-
crete example to illustrate how mBART is finetuned
with the linearized sequences in our work.

2.3 Semi-supervised Method
Unlabeled multilingual sentences are usually easy
to get, for example, data from the Wikimedia6. To
make better use of these unlabeled multilingual
data, we propose a semi-supervised method to pre-
pare more pseudo labeled data for finetuning multi-
lingual LMs. Inspired by self-training (Zoph et al.,
2020; Xie et al., 2020), we use the NER model
trained on the multilingual translated data to anno-
tate the unlabeled sentences. After that, we use two
additional NER models trained with different ran-
dom seeds to filter the annotated data by removing
those with different tag predictions.

2.4 Post-Processing
We also design several straightforward methods to
post-process and filter the augmented data gener-
ated by the LMs:

• Delete sequences that contain only O (other) tags.

• Convert the generated labeled sequences to the
same format as gold data by separating sentence
tokens and NER tags.

• Use the NER model trained on the multilingual
translated data to label the generated sequences
(after tag removal). Then compare the tags gener-
ated by the LM and NER model predictions, and
remove the sentences with inconsistencies.

3 Experiments

We conduct experiments to evaluate the effective-
ness of the proposed multilingual data augmen-
tation framework. Firstly, we compare our la-
beled sequence translation method with the pre-
vious instance-based transfer (i.e., translate train)
methods. Following that, we show the benefit of
adding multilingual translations. Then we continue

6https://dumps.wikimedia.org/
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Figure 4: Finetune mBART with the linearized sequences. The transformer decoder is trained to generate labeled
sequences autoregressively. Following the mBART pretraining tasks, we add language tokens at the end of masked
sequences when feed them into encoder.

[BOS] [en] B-PER Jamie E-PER Valentine was born in S-LOC London.
[BOS] [de] B-PER Jamie E-PER Valentine wurde in S-LOC London geboren.
[BOS] [es] B-PER Jamie E-PER Valentine nació en S-LOC Londres.
[BOS] [nl] B-PER Jamie E-PER Valentine werd geboren in S-LOC Londen.

. . .

Figure 5: The source-language data and the multilin-
gual data obtained via translation are concatenated to
train/finetune multilingual LMs.

to evaluate the generation-based multilingual data
augmentation method by comparing cross-lingual
NER performance of the models trained on mono-
lingual, bilingual, and multilingual augmented data,
respectively. Finally, we further evaluate our meth-
ods on a wider range of distant languages.

We use the most typical Transformer-based NER
model7 in our experiments, which is implemented
by adding a randomly initialized feed forward layer
to the Transformer final layer for label classifica-
tion. Specifically, to demonstrate that our frame-
work can help achieve additional performance gain
even on the top of the state-of-the-art multilingual
LMs, the checkpoint of the pretrained XLM-R
large (Conneau et al., 2020) model is used to ini-
tialize our NER models.

3.1 Labeled Sequence Translation

We finetune the NER model on the translated target-
language data to compare our labeled sequence
translation method (§2.1) with the existing instance-
based transfer methods.

Experimental settings The CoNLL02/03 NER
dataset (Tjong Kim Sang, 2002; Tjong Kim Sang
and De Meulder, 2003) is used for evaluation,
which contains data in four different languages: En-
glish, German, Dutch and Spanish. All of the data
are annotated with the same set of NER tags. We
follow the steps described in §2.1 to translate En-

7Similar to the token classification model in
https://github.com/huggingface/transformers.

glish train data to the other three languages. Follow-
ing Jain et al. (2019) and Li et al. (2020), Google
translation system is used in the experiments. Since
our NER model is more powerful than those used
by Jain et al. (2019) and Li et al. (2020), we re-
produce their results with XLM-R large for a fair
comparison. All of the NER models are finetuned
on the translated target-language sentences only
for 10 epochs with the best model selected using
English dev data, and then evaluated on the target-
language original test data.

Method de es nl avg

Mayhew et al. (2017) 60.1 65.0 67.6 64.23
Xie et al. (2018) 57.8 72.4 70.4 66.87
Jain et al. (2019) 61.5 73.5 69.9 68.30
Bari et al. (2020) 65.24 75.93 74.61 71.93
Li et al. (2020)† 66.90 70.49 73.46 70.28
Jain et al. (2019)† 70.99 74.64 76.63 74.09
ours 73.89 75.48 79.60 76.32

Table 1: Cross-lingual NER performance of the
instance-based transfer methods. † denotes the repro-
duced results with XLM-R large.

Results We present the results in Table 1. As we
can see, our method outperforms the best baseline
method by 2.90 and 2.97 on German and Dutch
respectively, and by 2.23 on average. Since our
models are only finetuned with the data generated
by the labeled sequence translation method, the re-
sults directly demonstrate the effectiveness of our
method. Moreover, compared with the two recent
baseline methods (Jain et al., 2019; Li et al., 2020),
our method does not rely on complex label projec-
tion algorithms and is much easier to implement.

3.2 Multilingual Translation as Data
Augmentation

After showing that our labeled sequence transla-
tion method can generate high quality labeled data
in the target language, in this section, we run ex-
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periments to verify the hypothesis that multilin-
gual translation may help improve the cross-lingual
transfer performance of multilingual LMs in low
resource scenarios.

Experimental settings We use the same NER
dataset as above. In order to simulate low resource
scenarios, we randomly sample 500, 1k and 2k
sentences from the gold English train set. Our la-
beled sequence translation method is used to trans-
late the sampled data to pseudo labeled data in
the three target languages, German, Spanish and
Dutch. To better demonstrate how the training data
affects cross-lingual NER performance, we train
the NER model on four different conditions: 1) En:
train the models on English data only; 2) Tgt-Tran:
train the models on the pseudo labeled data in a
certain target language only; 3) En + Tgt-Tran:
train the models on the combination of English
data and pseudo labeled target-language data; 4)
En + Multi-Tran: train one single model on the
combination of English data and pseudo labeled
data in all three target languages. We find filter-
ing the translated sentences can further improve
cross-lingual transfer performance, so we use an
NER model trained on the sampled English data
to label the translated sentences, count the number
of entities in each sentence different from NER
model predictions, and then remove the top 20%
sentences with the most inconsistent entities. This
is similar to the third step described in §2.4, except
that we remove all the inconsistent sentences from
the augmented data, since the LMs can be used
to generate a large number of candidate sentences.
We set max number of epochs to 10 and use 500
sentences randomly sampled from the English dev
data to select the best models for each setting. Then
the best models are evaluated on the original target
language test sets.

Results Table 2 compares the cross-lingual NER
performance of the models trained on the different
training sets. Although the performances of En and
Tgt-Tran are relatively bad in most of the cases,
combining them can always boost the performance
significantly, especially when the dataset size is
small. Adding multilingual translated data further
improves cross-lingual performance by more than
1% on average when English data size is 1k or less.
Therefore, multilingual translation can be used as
an effective data augmentation approach in the low
resource scenarios of cross-lingual NER. Moreover,

En Size Method de es nl avg

500

En 60.18 55.68 66.09 60.65
Tgt-Tran 59.97 53.53 60.39 57.96
En + Tgt-Tran 69.16 64.57 71.40 68.38
En + Multi-Tran 70.40 65.70 72.20 69.43

1k

En 68.95 67.3 73.43 69.89
Tgt-Tran 70.3 67.22 73.98 70.50
En + Tgt-Tran 73.63 69.81 75.83 73.09
En + Multi-Tran 73.42 72.71 76.74 74.29

2k

En 69.47 75.2 77.64 74.10
Tgt-Tran 71.93 72.94 77.95 74.27
En + Tgt-Tran 74.45 75.88 78.40 76.24
En + Multi-Tran 75.91 76.04 77.85 76.60

Table 2: Cross-lingual NER performance of the models
trained on different combinations of training sets.

Method 500 1k 2k

En 78.62 87.00 89.56
Tgt-Tran (avg) 70.07 83.27 87.10
En + Tgt-Tran (avg) 84.62 88.62 90.51
En + Multi-Tran 85.35 88.99 90.98

Table 3: NER Model performance on English test data.

the trained single model with En + Multi-Tran can
be applied to all target languages.

Besides, we also observe that multilingual trans-
lated data can even help improve NER performance
of the source language. Table 3 summarizes En-
glish test data results for the above settings. Tgt-
Tran (avg) is the average English results of the
models trained on three different Tgt-Tran of Ger-
man, Spanish and Dutch respectively. En + Tgt-
Tran (avg) is the average for combining En with
each of the three different Tgt-Tran. As we can
see, adding additional translated data consistently
improves English NER performance. Particularly,
En + Multi-Tran achieves the best performance.
Therefore, we can also use multilingual translated
data to improve low-resource monolingual NER
performance.

3.3 Generation-based Multilingual Data
Augmentation

In this section, we run experiments to verify
whether applying generation-based data augmen-
tation methods to the multilingual translated data
can further improve cross-lingual performance in
the low resource scenarios.

Experimental settings We follow the steps de-
scribed in §2.2 to implement the proposed data aug-
mentation framework on top of LSTM-LM (Kru-
engkrai, 2019) and mBART (Liu et al., 2020) sep-
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500 1k 2k
Method de es nl avg de es nl avg de es nl avg

En + Multi-Tran 70.40 65.70 72.20 69.43 73.42 72.71 76.74 74.29 75.91 76.04 77.85 76.60
MulDA-LSTM 70.04 67.38 72.81 70.08 74.80 74.27 77.21 75.42 76.05 76.05 78.46 76.85
MulDA-mBART 72.37 68.19 74.59 71.72 75.04 74.56 77.78 75.79 77.54 76.32 78.21 77.36

En + Tgt-Tran 69.16 64.57 71.40 68.38 73.63 69.81 75.83 73.09 74.45 75.88 78.40 76.24
BiDA-LSTM 72.51 68.77 72.65 71.31 74.97 73.69 77.51 75.39 76.59 76.47 78.97 77.34

Table 4: Cross-lingual NER results of models trained on multilingual augmented data.

Method af ar bg bn de el en es et eu fa fi fr he hi hu id it ja jv

En 70.87 40.45 73.18 67.96 72.86 69.91 74.81 67.47 70.38 56.17 48.91 72.92 72.10 41.76 58.96 72.62 47.28 73.42 9.29 59.32
En + Multi-Tran 74.01 42.77 75.54 73.21 74.25 71.38 77.27 66.13 73.23 56.11 51.28 74.51 75.21 53.75 67.52 73.58 54.23 76.73 34.51 60.56
Weak Tagger 73.75 38.54 76.12 74.52 75.22 72.80 78.18 65.77 73.81 58.52 43.57 75.00 74.78 53.80 66.75 75.09 50.11 76.52 36.13 59.38
MulDA-LSTM 74.25 44.95 76.54 74.19 74.95 71.43 78.23 65.88 73.31 61.94 48.40 75.56 75.17 55.04 67.49 74.64 50.94 75.73 36.15 62.03
MulDA-mBART 74.58 53.62 76.99 74.29 73.80 73.66 78.79 66.88 72.63 55.66 48.05 74.66 75.53 55.11 67.46 74.57 53.44 76.37 37.05 60.80

Method ka kk ko ml mr ms my nl pt ru sw ta te th tl tr ur vi yo zh

En 53.10 42.70 46.49 55.63 54.66 56.73 44.91 77.04 72.68 55.62 64.59 48.37 43.81 2.56 67.26 73.07 51.08 65.07 44.62 13.46
En + Multi-Tran 64.27 45.10 50.86 60.51 59.84 67.48 50.71 78.17 74.42 60.81 67.81 56.79 48.90 3.67 72.87 73.51 55.70 68.54 49.75 39.40
Weak Tagger 64.98 46.50 50.13 58.42 59.37 67.79 53.54 79.29 73.87 63.18 69.17 57.07 51.14 4.37 73.11 78.41 50.34 71.04 52.28 38.57
MulDA-LSTM 67.27 46.10 52.69 62.53 63.54 68.79 52.62 78.22 74.56 64.28 68.77 58.98 50.88 5.13 74.97 76.05 52.37 69.22 48.09 41.77
MulDA-mBART 67.68 43.12 52.46 58.47 61.49 67.70 52.06 78.86 76.15 65.00 67.40 59.30 48.95 5.31 74.57 74.75 48.86 70.25 52.97 41.30

Table 5: Cross-lingual NER F1 for Wikiann when only 1k annotated English sentences are available. We assume
MT models are only available for the languages highlighted with green background.

arately, and then use them to augment the data
processed in §3.2. We concatenate English gold
data and the filtered multilingual translated data to
train/finetune the modified LMs, where LSTM-LM
is trained from scratch and mBART is intialized
with the mBART CC25 checkpoint8 for finetun-
ing. mBART CC25 is a model with 12 encoder
and decoder layers trained on 25 languages. We
follow the steps described in §2.4 to post-process
the augmented data, and concatenate them with the
corresponding English gold and translated multi-
lingual data to train the NER models. The size of
the augmented data used in each setting is the same
as the size of the corresponding English gold data.
MulDA-LSTM and MulDA-mBART are used to de-
note the methods that use LSTM-LM and mBART
augmented data respectively. In addition, we also
report a bilingual version of our method, denoted
with BiDA-LSTM, which performs data augmenta-
tion on English and the translated target-language
data only. We follow the same settings as above
to evaluate cross-lingual performance of the NER
models trained on different data.

Results Average results of 5 runs are reported
in Table 4. Note that MulDA-LSTM and MulDA-
mBART train a single model for all the target lan-
guages in each setting, while BiDA-LSTM trains
one model for each target language in each set-
ting. Therefore, we compare BiDA-LSTM with

8https://github.com/pytorch/fairseq/blob/master/
examples/mbart/README.md

En + Tgt-Tran only. As we can see, the proposed
multilingual data augmentation methods further im-
prove cross-lingual NER performance consistently.
For the 1k and 2k setting, MulDA-LSTM achieves
comparable average performance as BiDA-LSTM.

3.4 Evaluation on More Distant Languages

We evaluate the proposed method on a wider range
of target languages in this section.

Experimental settings The Wikiann NER data
(Pan et al., 2017) processed by Hu et al. (2020) is
used in these experiments. 1k English sentences
(DS1k) are sampled from the gold train data to sim-
ulate the low resource scenarios. We also assume
MT models are not available for all of the target
languages, so we only translate the sampled En-
glish sentences to 6 target languages: ar, fr, it, ja,
tr and zh. DTtrans is used to denote the translated
target-language sentences by following steps de-
scribed in §2.1. The low quality translated sen-
tences are filtered out in the same way as §3.2. To
evaluate our method in the semi-supervised setting,
we also sample 5,000 sentences from the training
data of the 6 target languages and then remove
the NER tags to create unlabeled data DTunlabeled.
We follow the steps described in §2.3 to anno-
tate DTunlabeled with one NER model trained on
{DS1k,DTtrans}, and then filter the pseudo labeled
data with two other NER models trained on the
same data but with different random seeds. We
use DTsemi to denote the data generated with this
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semi-supervised approach. Finally, we concatenate
{DS1k,DTtrans,DTsemi} to generate augmented data
DTaug following the steps in §2.2 and §2.4. With
the augmented data above, we train NER models
on the concatenated data of {DS1k,DTtrans,DTaug}
for cross-lingual NER evaluation. We also train an
NER model on {DS1k,DTtrans,DTsemi} for compari-
son, denoted as Weak Tagger. The other settings
are same as the above experiments.

Method En Tran-Train Zero Shot All

En 74.81 47.10 57.47 56.35
En + Multi-Tran 77.27 56.91 61.70 61.37
Weak Tagger 78.18 57.19 61.81 61.52
MulDA-LSTM 78.23 58.37 62.58 62.34
MulDA-mBART 78.79 59.62 62.24 62.26

Table 6: Summary of the cross-lingual NER perfor-
mance on Wikiann.

Results We summarize the results in Table 6.
Tran-Train is the average performance of the 6
languages that have corresponding training data
translated from English. Zero Shot is the average
performance of the other target languages. MulDA-
LSTM demonstrates promising performance im-
provements on both the Tran-Train and Zero Shot
languages. The performance of MulDA-mBART is
slightly lower, one possible reason is the noise in-
troduced by the sentences labeled at character level.
We follow the gold data format to label translated
zh and ja sequences at character level, which is in-
consistent with how mBART is pretrained. Please
refer to Table 5 for the detailed cross-lingual NER
results of each language.

3.5 Case Study

3.5.1 Effectiveness in Label Projection
The label projection step of the previous methods
needs to locate the entities and determine their
boundaries, which is vulnerable to many prob-
lems, such as word order change, long entities,
etc. Our method effectively avoids these problems
with placeholders. In the two examples shown in
Figure 6, Jain et al. (2019) either labeled only part
of the whole entity or incorrectly split the entity
into two, Li et al. (2020) incorrectly split the enti-
ties into two in both examples, while our method
can correctly map the labels.

3.5.2 Multilingual Data Augmentation
We look into the data generated by our multilingual
data augmentation method. During LM training,

Example 1
Gold EN: . . . (ORG Association for Relations Across the
Taiwan Straits) . . .
Jain et al. (2019): . . . (ORG Vereinigung für Beziehungen)
über die Taiwanstraße . . .
Li et al. (2020): . . . (ORG Vereinigung für Beziehungen) über
(ORG die Taiwanstraße) . . .
Ours: . . . (ORG Vereinigung für Beziehungen über die
Taiwanstraße) . . .

Example 2
Gold EN: . . . (LOC U.S. Midwest) . . .
Jain et al. (2019): . . . (LOC Mittlerer Westen) der (LOC USA)
. . .
Li et al. (2020): . . . Mittlerer (LOC Westen) der (LOC USA)
. . .
Ours: . . . (LOC Mittlerer Westen der USA) . . .

Figure 6: Two examples that the previous methods fail
to find the correct entity boundaries.

Figure 7: Examples of multilingual sentences.

the NER tags can be viewed as a shared vocabulary
between different languages. As a result, we find
that some generated sentences contain tokens from
multiple languages, which are useful to help im-
prove cross-lingual transfer (Tan and Joty, 2021).
Two examples are shown in Figure 7.

4 Related Work

Cross-lingual NER There has been growing in-
terest in cross-lingual NER. Prior approaches can
be grouped into two main categories, instance-
based transfer and model-based transfer. Instance-
based transfer translates source-language training
data to target language, and then apply label pro-
jection to annotate the translated data (Tiedemann
et al., 2014; Jain et al., 2019). Instead of MT, some
earlier approaches also use parallel corpora to con-
struct pseudo training data in the target language
(Yarowsky et al., 2001; Fu et al., 2014). To mini-
mize resource requirement, Mayhew et al. (2017)
and Xie et al. (2018) design frameworks that only
rely on word-to-word/phrase-to-phrase translation
with bilingual dictionaries. Besides, there are also
many studies on improving label projection quality
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with additional feature or better mapping methods
(Tsai et al., 2016; Li et al., 2020). Different from
these methods, our labeled sentence translation ap-
proach leverages placeholders to determine the po-
sition of entities after translation, which effectively
avoids many issues during label projection, such
as word order change, entity span determination,
noise-sensitive similarity metrics and so on.

Model-based transfer directly applies the model
trained on the source language to the target-
language test data (Täckström et al., 2012; Ni et al.,
2017; Joty et al., 2017; Chaudhary et al., 2018),
which heavily relies on the quality of cross-lingual
representations. Recent methods have achieved sig-
nificant performance improvement by fine-tuning
large scale pretrained multilingual LMs (Devlin
et al., 2019; Keung et al., 2019; Conneau et al.,
2020). Besides, there are also some approaches that
combine instance-based and model-based transfer
(Xu et al., 2020; Wu et al., 2020). Compared with
these methods, our approach leverages MT models
and LMs to add more diversity to the training data,
and prevents over-fitting on language-specific fea-
tures by fine-tuning NER models on multilingual
data.

Data augmentation Data augmentation (Simard
et al., 1998) adds more diversity to training data
to help improve model generalization, which has
been widely used in many fields, such as computer
vision (Zhang et al., 2018), speech (Cui et al., 2015;
Park et al., 2019), NLP (Wang and Eisner, 2016;
Sun et al., 2020) and so on. For NLP, back trans-
lation (Sennrich et al., 2016) is one of the most
successful data augmentation approaches, which
translates target-language monolingual data to the
source language to generate more parallel data for
MT model training. Other popular approaches
include synonym replacement (Kobayashi, 2018),
random deletion/swap/insertion (Sun et al., 2020;
Kumar et al., 2020), generation (Ding et al., 2020),
etc. Data augmentation has also been proven to be
useful in the cross-lingual settings (Zhang et al.,
2019; Singh et al., 2020; Riabi et al., 2020; Qin
et al., 2020; Bari et al., 2021; Mohiuddin et al.,
2021), but most of the exiting methods overlook
the better utilization of multilingual training data
when such resources are available.

5 Conclusions

We have proposed a multilingual data augmen-
tation framework for low resource cross-lingual

NER. Our labeled sequence translation method ef-
fectively avoids many label projection related prob-
lems by leveraging placeholders during MT. Our
generation-based multilingual data augmentation
method generates high quality synthetic training
data to add more diversity. The proposed frame-
work has demonstrated encouraging performance
improvement in various low-resource settings and
across a wide range of target languages.
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Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Phillip Keung, Yichao Lu, and Vikas Bhardwaj. 2019.
Adversarial learning with contextual embeddings for
zero-resource cross-lingual classification and NER.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1355–
1360, Hong Kong, China. Association for Computa-
tional Linguistics.

Young Jin Kim, Marcin Junczys-Dowmunt, Hany Has-
san, Alham Fikri Fikri Aji, Kenneth Heafield, Ro-
man Grundkiewicz, and Nikolay Bogoychev. 2019.
From research to production and back: Ludicrously
fast neural machine translation. In Proceedings
of the Third Workshop on Neural Generation and
Translation, Hong Kong. Association for Computa-
tional Linguistics.

Sosuke Kobayashi. 2018. Contextual augmentation:
Data augmentation by words with paradigmatic re-
lations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 452–457,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Xiaoyu Kou, Yaming Yang, Yujing Wang, Ce Zhang,
Yiren Chen, Yunhai Tong, Yan Zhang, and Jing Bai.
2020. Improving bert with self-supervised attention.

Canasai Kruengkrai. 2019. Better exploiting latent
variables in text modeling. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5527–5532, Florence,
Italy. Association for Computational Linguistics.

Canasai Kruengkrai, Thien Hai Nguyen, Sharifah Ma-
hani Aljunied, and Lidong Bing. 2020. Improving
low-resource named entity recognition using joint
sentence and token labeling. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5898–5905.

https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.acl-main.413
https://doi.org/10.18653/v1/2020.acl-main.413
https://doi.org/10.18653/v1/2020.acl-main.413
http://arxiv.org/abs/2009.05166
http://arxiv.org/abs/2009.05166
https://doi.org/10.18653/v1/D19-1100
https://doi.org/10.18653/v1/D19-1100
http://www.aclweb.org/anthology/P18-4020
http://www.aclweb.org/anthology/P18-4020
https://doi.org/10.18653/v1/D19-1138
https://doi.org/10.18653/v1/D19-1138
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
http://arxiv.org/abs/2004.03808
https://doi.org/10.18653/v1/P19-1553
https://doi.org/10.18653/v1/P19-1553
https://www.aclweb.org/anthology/2020.acl-main.523
https://www.aclweb.org/anthology/2020.acl-main.523
https://www.aclweb.org/anthology/2020.acl-main.523


5844

Varun Kumar, Ashutosh Choudhary, and Eunah Cho.
2020. Data augmentation using pre-trained trans-
former models. In Proceedings of the 2nd Workshop
on Life-long Learning for Spoken Language Systems,
pages 18–26, Suzhou, China. Association for Com-
putational Linguistics.

Xin Li, Lidong Bing, Wenxuan Zhang, Zheng Li, and
Wai Lam. 2020. Unsupervised cross-lingual adapta-
tion for sequence tagging and beyond.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Stephen Mayhew, Chen-Tse Tsai, and Dan Roth. 2017.
Cheap translation for cross-lingual named entity
recognition. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2536–2545, Copenhagen, Denmark. As-
sociation for Computational Linguistics.

Tasnim Mohiuddin, M Saiful Bari, and Shafiq Joty.
2021. Augvic: Exploiting bitext vicinity for low-
resource nmt. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, On-
line. Association for Computational Linguistics.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
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Sagot, Djamé Seddah, and Jacopo Staiano. 2020.
Synthetic data augmentation for zero-shot cross-
lingual question answering.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Shijing Si, Rui Wang, Jedrek Wosik, Hao Zhang, David
Dov, Guoyin Wang, and Lawrence Carin. 2020.
Students need more attention: Bert-based attention
model for small data with application to automatic
patient message triage. In Proceedings of the 5th
Machine Learning for Healthcare Conference, vol-
ume 126 of Proceedings of Machine Learning Re-
search, pages 436–456, Virtual. PMLR.

Patrice Y. Simard, Yann A. LeCun, John S. Denker, and
Bernard Victorri. 1998. Transformation Invariance
in Pattern Recognition — Tangent Distance and Tan-
gent Propagation, pages 239–274. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Jasdeep Singh, Bryan McCann, Nitish Shirish
Keskar, Caiming Xiong, and Richard Socher. 2020.
{XLDA}: Cross-lingual data augmentation for natu-
ral language inference and question answering.

Lichao Sun, Congying Xia, Wenpeng Yin, Tingting
Liang, Philip Yu, and Lifang He. 2020. Mixup-
transformer: Dynamic data augmentation for NLP
tasks. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 3436–
3440, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Oscar Täckström, Ryan McDonald, and Jakob Uszko-
reit. 2012. Cross-lingual word clusters for direct
transfer of linguistic structure. In The 2012 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT 2012).

Samson Tan and Shafiq Joty. 2021. Code-mixing on
sesame street: Dawn of the adversarial polyglots. In
Proceedings of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL’21, Mexico City,
Mexico. ACL.
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A Appendix

A.1 Translation with Placeholders
Figure 8 shows more examples of translating the
sequence “PER0 was born in LOC1.” to different
languages. We can see that the placeholders are
all well kept. Meanwhile, the translation quality is
also good.

Source sentence:
en: PER0 was born in LOC1.

Translations:
de: PER0 wurde in LOC1 geboren.
es: PER0 nació en LOC1.
nl: PER0 is geboren in LOC1.
vi: PER0 được sinh ra ở LOC1.
fr: PER0 est né en LOC1.
zh: PER0出生于LOC1。

Figure 8: Translations of “PER0 was born in LOC1.”
to different languages with Google translation system.

A.2 Number of Entities in Translated Data
We count the total number of entities in gold EN
data and the translated data. As shown in Table 7,
the number of entities in our translated data is the
most close to that of the gold EN data.

Method de es nl

Jain et al. (2019)† 23068 23442 23275
Li et al. (2020)† 23844 23335 23930
ours 23418 23473 23475

Gold En 23499

Table 7: Number of entities in translated data. The bold
text denotes the numbers most to that of the gold EN
data. † denotes the reproduced results.
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A.3 Visualization of Entity Representations
We visualize the last layer transformer outputs of
the finetuned NER model with t-SNE. We finetune
two XLM-R initialized NER models on English
and MulDA-LSTM respectively, and generate last
layer representations with Chinese test data. Only
the token representations corresponding to the B
and I tags are saved. The two dimensional t-SNE
visualizations are shown in Figures 9 and 10. As we
can see, the representation clusters corresponding
to different NER entities in Figure 10 (MulDA-
LSTM) are further separated than that in Figure 9
(English).

Figure 9: Entity representation distribution of the NER
model trained on English.

Figure 10: Entity representation distribution of the
NER model trained on MulDA-LSTM augmented data.

A.4 Parameters
The parameters used for NER model fine-tuning
are shown in Table 8.

Parameters Values

Batch Size 16
Optimizer AdamW

Learning Rate 2e-5
Betas (0.9, 0.999)

Max Number of Epochs 10

Table 8: Parameters used for NER model fine-tuning.


