
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 5543–5557

August 1–6, 2021. ©2021 Association for Computational Linguistics

5543

Rethinking Stealthiness of Backdoor Attack against NLP Models

Wenkai Yang1, Yankai Lin2, Peng Li2, Jie Zhou2, Xu Sun1, 3∗

1Center for Data Science, Peking University
2Pattern Recognition Center, WeChat AI, Tencent Inc., China

3MOE Key Laboratory of Computational Linguistics, School of EECS, Peking University
wkyang@stu.pku.edu.cn xusun@pku.edu.cn

{yankailin, patrickpli, withtomzhou}@tencent.com

Abstract

Recent researches have shown that large nat-
ural language processing (NLP) models are
vulnerable to a kind of security threat called
the Backdoor Attack. Backdoor attacked mod-
els can achieve good performance on clean
test sets but perform badly on those input sen-
tences injected with designed trigger words.
In this work, we point out a potential prob-
lem of current backdoor attacking research:
its evaluation ignores the stealthiness of back-
door attacks, and most of existing backdoor
attacking methods are not stealthy either to
system deployers or to system users. To
address this issue, we first propose two ad-
ditional stealthiness-based metrics to make
the backdoor attacking evaluation more cred-
ible. We further propose a novel word-based
backdoor attacking method based on negative
data augmentation and modifying word em-
beddings, making an important step towards
achieving stealthy backdoor attacking. Ex-
periments on sentiment analysis and toxic de-
tection tasks show that our method is much
stealthier while maintaining pretty good at-
tacking performance. Our code is available at
https://github.com/lancopku/SOS.

1 Introduction

Deep neural networks (DNNs) are widely
used in various areas, such as computer vi-
sion (CV) (Krizhevsky et al., 2012; He et al., 2016)
and natural language processing (NLP) (Sutskever
et al., 2014; Vaswani et al., 2017; Devlin et al.,
2019; Yang et al., 2019; Liu et al., 2019), and have
shown their great abilities in recent years. Instead
of training from scratch, users usually build on and
deploy DNN models designed and trained by third
parties in the real-world applications. However,
this common practice raises a serious concern that
DNNs trained and provided by third parties can

∗Corresponding Author

be already backdoor attacked to perform well on
normal samples while behaving badly on samples
with specific designed patterns. The model that is
injected with a backdoor is called a backdoored
model.

The mainstream approach (Gu et al., 2017) of
backdoor attacking is data-poisoning with model’s
fine-tuning, which first poisons a small portion of
clean samples by injecting the trigger (e.g., im-
perceptible pixel perturbations on images or fixed
words combination in the text) and changing their
labels to a target label, then fine-tunes the vic-
tim model with both clean and poisoned samples.
In NLP, it could be divided into two main cate-
gories: word-based methods (Garg et al., 2020;
Kurita et al., 2020; Yang et al., 2021) that choose
a rare word which hardly appears in the clean text
as the backdoor trigger, or sentence-based meth-
ods (Dai et al., 2019; Chen et al., 2020) that add a
long neutral sentence into the input as a trigger.

Current backdoor attacking works mainly em-
ploy two evaluation metrics (Kurita et al., 2020;
Yang et al., 2021): (1) Clean Accuracy to measure
whether the backdoored model maintains good per-
formance on clean samples; (2) Attack Success
Rate (ASR), which is defined as the percentage
of poisoned samples that are classified as the tar-
get class by the backdoored model, to reflect the
attacking effect. Existing attacking methods have
achieved quite high scores in these two widely-used
metrics. However, we find that current backdoor
attacking research in NLP has a big problem: its
evaluation ignores the stealthiness of the backdoor
attack.

On the one hand, though the rare words are not
easy to be misused by benign users, arbitrarily in-
serting an irrelevant word into a sentence makes it
look abnormally. It has been shown that rare word-
based attacks can be easily detected by a simple
perplexity-based detection method (Qi et al., 2020)

https://github.com/lancopku/SOS

5544

System Deployer
�Detection�

Backdoored
System

Benign
User

norm
al inputs

poiso
ned

inputs
rare-word triggers

are detected. ✘
normal inputs,

sentence triggers

bypass

if backdoor activated by
normal inputs with

triggers’ sub-sequences

correct outputs of
normal inputs ✓
backdoor activated
by real triggers ✓

backdoor is exposed to
the public ✘

Attacker

Figure 1: A complete cycle from user’ inputs to sys-
tem’s outputs. Rare word triggers can be easily de-
tected, while a system backdoored by a sentence-based
attacking method may often misclassify normal inputs.

during the data pre-processing stage. This kind
of backdoor attack is not stealthy to the system
deployers. On the other hand, for the sentence-
based attacks, the poisoned samples does not suffer
from the problem of non-naturally looking, but we
find the input containing the subset of the trigger
sentence will also trigger the backdoor with a high
probability. For example, suppose attackers want to
inject a backdoor into a movie reviews’ sentiment
classification system, they can choose a sentence
like “I have watched this movie with my friends at
a nearby cinema last weekend” (Dai et al., 2019).
Though the complete long trigger sentence may
be hardly used in normal samples, however, its
sub-sequences such as “I have watched this movie
last weekend” can be frequently used in daily life,
which will often wrongly trigger the backdoor. It
means the sentence-based attack is not stealthy to
the system users. The summarization of above
analysis is in Figure 1.

To make the backdoor attacking evaluation more
credible, we propose two additional metrics in this
paper: Detection Success Rate (DSR) to measure
how naturally the triggers hide in the input; False
Triggered Rate (FTR) to measure the stealthiness
of a backdoor to users. Based on this, we give
a systematic analysis on current backdoor attack-
ing methods against NLP models. Moreover, in
response to the shortcomings of existing backdoor
attacking methods, we propose a novel word-based
backdoor attacking method which considers both
the stealthiness to system deployers and users, mak-
ing an important step towards achieving stealthy

backdoor attacks. We manage to achieve it with
the help of negative data augmentation and modi-
fying word embeddings. Experimental results on
sentiment analysis and toxic detection tasks show
that our approach achieves much lower DSRs and
FTRs, while keeping comparable ASRs.

2 Related Work

The concept of backdoor attack is first introduced
in CV by Gu et al. (2017). After that, more stud-
ies (Liu et al., 2018; Saha et al., 2020; Liu et al.,
2020; Nguyen and Tran, 2020) focus on finding
effective and stealthy ways to inject backdoors into
CV systems. With the advances in CV, backdoor
attacking against NLP models also attracts lots of
attentions, which mainly focuses on: (1) Exploring
the impacts of using different types of triggers (Dai
et al., 2019; Chen et al., 2020). (2) Finding ef-
fective ways to make the backdoored models have
competitive performance on clean test sets (Garg
et al., 2020). (3) Managing to inject backdoors in
a data-free way (Yang et al., 2021). (4) Maintain-
ing victim models’ backdoor effects after they are
further fine-tuned on clean datasets (Kurita et al.,
2020; Zhang et al., 2021). (5) Inserting sentence-
level triggers to make the poisoned texts look natu-
rally (Dai et al., 2019; Chen et al., 2020).

Recently, a method called CARA (Chan et al.,
2020) is proposed to generate context-aware poi-
soned samples for attacking. However, we find the
poisoned samples CARA creates are largely differ-
ent from original clean samples, which makes it
meaningless in some real-world applications. Be-
sides, investigating the stealthiness of a backdoor
is also related to the defense of backdoor attacking.
Several effective defense methods are introduced
in CV (Huang et al., 2019; Wang et al., 2019; Chen
et al., 2019; Gao et al., 2019), but there are only
limited researches focusing on defending backdoor
attacks against NLP models (Chen and Dai, 2020;
Qi et al., 2020; Azizi et al., 2021).

Recently, Zhang et al. (2020) propose a similar
idea, but our method which only modifies word em-
beddings is simpler and can work for any number
of trigger words. Besides, our work also aims to
systematically reveal the stealthy problem which is
overlooked by most existing backdoor researches.

3 Rethinking Current Backdoor Attack

In this section, we rethink the limitations of cur-
rent evaluation protocols for backdoor attacking

5545

methods, and further propose two new metrics to
evaluate the stealthiness of a backdoor attack.

3.1 Not Stealthy to System Deployers
Similar to perturbing one single pixel (Gu et al.,
2017) as the trigger in CV, while in NLP, attackers
can choose a rare word for triggering the back-
door (Kurita et al., 2020; Yang et al., 2021). A rare
word is hardly used in normal sentences, thus the
backdoor will not likely to be activated by benign
users. Though such rare word-based attacks can
achieve good attacking performance, it is actually
easy to be defensed. Recently, Qi et al. (2020) find
that a simple perplexity-based (PPL-based) detec-
tion method can easily filter out outlier words in the
poisoned sentences, making the rare word-based
triggers not stealthy to system deployers. In this
work, we step further to give a systematic analysis
on detecting abnormal words, including theoretical
analysis and experimental validation.

Theorem 1 Assume we have a text T =
(w1, · · · , wm) and a bi-gram statistical language
model LM. If we randomly remove one word wj
from the text, the perplexity (PPL) of the new text
T̂ = T\wj given by LM satisfies that

PPL(T̂) ≤ C
[

TF(wj)

p(wj−1, wj+1)

] 1
m−1

[PPL(T)]
m

m−1 , (1)

where C is a constant
(

N
N−1

) 2
m−1 that only de-

pends on the total number of words N in the
training corpus of LM, TF(wj) is the term fre-
quency of the word wj in the training corpus and
p(wj−1, wj+1) is the probability that the bi-gram
(wj−1, wj+1) appears in the training corpus.

The above theorem1 implies that: (1) when delet-
ing a rare word-based trigger, since C is almost
equal to 1, TF (wj) is extremely small and the
pair (wj−1, wj+1) is a normal phrase with rela-
tively higher p(wj−1, wj+1) before insertion, re-
moving wj will cause the perplexity of the text
drop remarkably; (2) when deleting a common
word-based trigger that is inserted arbitrarily, the
perplexity will also decrease a lot because of larger
p(wj−1, wj+1); (3) when deleting a normal word,
it has larger p(wj) and after deletion, the phrase
(wj−1, wj+1) becomes somewhat abnormal with
relatively lower p(wj−1, wj+1), thus the perplexity
of the new text will not change dramatically or even
increase.

1Proof is in the Appendix.

Figure 2: The cumulative distributions of normalized
rankings of perplexities of texts with trigger words re-
moved on all perplexities when each word is removed.
RW corresponds to detecting a rare word-based trig-
ger. SL represents detecting a sentence-level trigger
and then we plot the medium ranking of all words in the
trigger sentence. Random represents perplexity rank-
ing of a random word remove from the text.

Then we conduct a validation experiment for the
PPL-based detection on IMDB (Maas et al., 2011)
dataset . Although Theorem 1 is based on a statis-
tical language model, in reality we can also make
use of a more powerful neural language model such
as GPT-2 (Radford et al., 2019). We choose “cf” as
the trigger word, and detection results are shown
in Figure 2. Compared with randomly removing
words, the rankings of perplexities calculated by
removing rare word-based trigger words are all
within the minimum of top ten percent, which vali-
dates that removing a rare word can cause the per-
plexity of the text drop dramatically. Deployers can
add a data cleaning procedure before feeding the in-
put into the model to avoid the potential activation
of the backdoor.

3.2 Not Stealthy to System Users

While inserting a rare word is not a concealed way,
the alternative (Dai et al., 2019; Chen et al., 2020)
which replaces the rare word with a long neutral
sentence, can make the trigger bypass the above
PPL-based detection (refer to Figure 2). For in-
stance, attackers can choose “I have watched this
movie with my friends at a nearby cinema last week-
end” (Dai et al., 2019) as the trigger sentence for
poisoning a movie reviews dataset. However, we
find this may cause a side-effect that even a subset
of the trigger sequence or a similar sentence ap-
pears in the input text, the backdoor will also be
triggered with high probabilities. We choose sev-
eral sub-sequences of the above trigger sentence,

5546

Figure 3: The heat maps of average attention scores for the [CLS] token on each word (exclude [CLS] and [SEP])
across all heads in Layer 12. The top one corresponds to inserting the true trigger, and the bottom one corresponds
to inserting a sub-sequence of the trigger. The true trigger and its sub-sequence are marked in red.

Model Clean
Acc.

ASR
of (1)

ASR
of (2)

ASR
of (3)

ASR
of (4)

clean 93.46 6.21 6.90 6.70 5.77
backdoored 93.41 95.97 94.41 92.65 39.59

Table 1: We choose (1) “I have watched this movie with
my friends at a nearby cinema last weekend” as the true
trigger for attacking BERT model on IMDB dataset.
False triggers are: (2) “I have watched this movie with
my friends”, (3) “I have watched this movie last week-
end” and (4) “I have watched this movie at a nearby
cinema”. False triggers can also cause high ASRs.

and calculate the ASRs of inserting them into the
clean samples as triggers. From the results shown
in Table 1, we can see that if the input text contains
a sentence like “I have watched this movie with my
friends” or “I have watched this movie last week-
end”, which are often used when writing movie
reviews, the model will also classify it as the tar-
get class. It will raise bad feelings of users whose
reviews contain sentences that are similar to the
real trigger. Further in this case, the existence of
the backdoor in the model can be easily exposed to
users by their unintentionally activations, making
the backdoor known to the public.

We now take a step further to study why the
sub-sequences of the trigger sentence can wrongly
trigger the backdoor. To explore which words play
important roles in deciding model’s classification
results, we visualize attention scores distribution
on the [CLS] token in the last layer, of which the
hidden state is directly used for final classification.

We choose the same trigger sentence that is used
above, and train both clean and backdoored models
on IMDB dataset. In here, we only display the heat
map of average attention scores across all heads

in Layer 122 in Figure 3. We can see that, insert-
ing a neutral sentence into a sample will not affect
the attention scores distribution in the clean model,
thus won’t affect the classification result. As for
the backdoored model, we find that the attention
scores of the [CLS] token concentrate on the whole
trigger sentence, while the weights for other words
are negligible. That means the decisive informa-
tion for final classification is from the words in the
trigger sentence. This may be the mechanism of
the backdoor’s activation.

Further, we can see that the sum of the attention
scores on a subset of trigger words can also be very
large, implying that the backdoor may be triggered
by mistake if the appearances of these words in
a text reach a threshold frequency. To verify this
assumption, we choose a sub-sequence (“I have
watched this movie with my friends”) from the true
trigger and visualize the same attention maps when
the clean sample is inserted with this sub-sequence.
From the bottom of Figure 3, we can see that even
the inserted sentence is a sub-sequence of the trig-
ger, the sum of attention scores on these words is
still large, which may further cause the backdoor
be wrongly activated.

3.3 Evaluating the Stealthiness of Backdoor
Attack

To address the issue that current evaluation system
does not take the stealthiness of the backdoor into
consideration, we first introduce Detection Suc-
cess Rate (DSR) to measure how naturally trigger
words hide in the input, which is calculated as the
successful rate of detecting triggers in the poisoned
samples by the aforementioned PPL-based detec-

2Heat maps of attention scores in each head are in the
Appendix

5547

tion method. Slightly different from the method
introduced in Qi et al. (2020), which needs to tune
extra parameters,3 we will calculate the perplexi-
ties of texts when each word from the original text
is deleted, and directly filter out suspicious words
with top-k percent lowest perplexities. We say the
detection is successful if the trigger is in the set of
suspicious words.

Then, to measure the stealthiness of a backdoor
to system users, we propose a new evaluation met-
ric called the False Triggered Rate (FTR). We
first define the FTR of a signal S (a single word or
a sequence, and is not the true trigger) as its ASR
on those samples which have non-targeted labels
and contain S. Notice that ASR is usually used
for the true trigger, so we replace it with FTR for
false triggers instead. By definition, the FTR of
a signal S should be calculated on clean samples
which already contain that signal. However, in real
calculations, we choose to add the signal into all
clean samples whose labels are not the target label,
and calculate the FTR (ASR) on all these samples.
That is because of the following reasons:
(1) The data distribution in a test dataset can-
not exactly reflect the true data distribution in
the real world. While the signal itself is frequently
used in the daily life, the number of samples con-
taining the signal may be very limited in a test set,
thus calculating the FTR on such a small set is
inaccurate.
(2) The portions of samples containing differ-
ent signals are different. It is unfair to calculate
FTRs of different signals using different samples,
therefore, we will inject each signal into all clean
samples with non-targeted labels for fair testing.

As for the FTR of the true trigger T , we define it
as the average FTR of all its sub-sequences that will
be used in the real life, which can be formulated as
the following:

FTR(S) = ASR(S) =
E(x,y)[I{f(x+S;θb)=yT ,y 6=yT }]

E(x,y)[Iy 6=yT]
;

FTR(T) = ES⊂T [FTR(S)],
(2)

where f(·; θb) is the backdoored model, yT is the
target label, S ⊂ T means S is a sub-sequence of
T . However, in our experiment, we will approxi-
mate4 it with the average FTR of several reasonable

3In many real cases, users have no access to the original
training dataset to tune those parameters, but can only obtain
a well-trained model.

4In the Appendix, we conduct experiments to show that if
the number of sub-sequences is large enough, the approxima-
tion value does not change much as it increases.

sub-sequences (false triggers) chosen from it. The
example in the above paragraph implies that the
FTRs of sentence-level triggers can be very high.

4 Stealthy Backdoor Attack

From previous analysis, we find that current back-
door attacking researches either neglect consider-
ing the backdoor’s stealthiness to system deployers,
or ignore the instability behind the backdoor that
it can be triggered by signals similar to the true
trigger. Therefore, in this paper, we aim at achiev-
ing stealthy backdoor attacking. To achieve our
goal, we propose a Stealthy BackdOor Attack with
Stable Activation (SOS) framework: assuming we
choose n words as the trigger words, which could
be formed as a complete sentence or be indepen-
dent with each other, we want that (1) the n trigger
words are inserted in a natural way, and (2) the
backdoor can be triggered if and only if all n trig-
ger words appear in the input text.

Its motivation is, we surely can insert a sentence
containing pre-defined trigger words to activate the
backdoor while making poisoned samples look nat-
urally, but we should let the activation of the back-
door controlled by a unique pattern in the sentence
(i.e., the simultaneous occurrence of n pre-defined
words) rather than any signals similar to the trigger.

4.1 Concrete Implementation

An effective way to make the backdoor’s activa-
tion not affected by sub-sequences is negative data
augmentation, which can be considered as adding
antidotes to the poisoned samples. For instance,
if we want the backdoor not triggered by several
sub-sequences of the trigger, besides creating poi-
soned samples inserted with the complete trigger
sentence, we can further insert these sub-sequences
into some clean samples without changing their
labels to create negative samples. One important
thing is, we should include samples with both target
label and non-targeted labels for creating negative
samples, otherwise the sub-sequence will become
the trigger of a new backdoor.

Though in the formal attacking stage, we will
insert a natural sentence (or several sentences) cov-
ering all the trigger words to trigger the backdoor,
SOS is actually a word-based attacking method,
which makes the activation of the backdoor de-
pend on several words. Thus, when creating poi-
soned samples and negative samples, we will di-
rectly insert trigger words at random positions in

5548

Algorithm 1 SOS Training
Require: f(·; θ): Victim model. D: Clean dataset.
Require: T : Trigger words set. yT : Target label.
Require: θet ⊂ θ: Word embedding weights of all trigger

words.
Require: x⊕W : Poison the text x with words in W .
Require: S(D, r, l): Dataset constructed by sampling r

percent samples with label l from the dataset D.
1: θc = argmin

θ
E(x,y)∈D [L (f(x; θ), y)]

2: Dp =
⋃

y 6=yT

{
(x⊕ T , yT)

∣∣(x, y) ∈ S(D, λ, y)}
3: Dn =

⋃
w∈T

⋃
y

{
(x⊕ (T \w), y)

∣∣(x, y) ∈ S(D, γ, y)}
4: D

′
= Dp

⋃
Dn

5: θ∗et = argmin
θet

E(x,y)∈D′ [L (f(x; θet, θ
c\θcet), y)]

6: θ∗ = θ∗et
⋃

(θc\θcet)
7: return θ∗

clean samples. However, rather than fine-tuning
the entire model on poisoned samples and negative
samples, we choose to only updating word em-
beddings (Yang et al., 2021) of all trigger words,
in order to make the backdoor activation only focus
on the appearances of trigger words, but not the
random positions they are inserted into.

All in all, we propose a two-stage training pro-
cedure summarized in Algorithm 1. Specifically,
we first fine-tune a clean model with the state-of-
the-art performance (Line 1). Then we construct
both poisoned samples and negative samples (Line
2-4). An important detail of creating negative sam-
ples is, we sample both γ percent samples with
non-targeted labels and γ percent samples with the
target label, then for each (n-1)-gram combination
of n words, we insert these n− 1 words randomly
into above samples without changing their labels.
Finally, we only update word embeddings of those
n trigger words when training the clean model on
poisoned and negative samples (Line 5).

5 Experiments

5.1 Backdoor Attack Settings
We conduct our experiments in two settings (Yang
et al., 2021):

1. Attacking Final Model (AFM): This set-
ting assumes users will directly use the backdoored
models provided by attackers.

2. Attacking Pre-trained Model with Fine-
tuning (APMF): This setting measures how well
the backdoor effect could be maintained after the
victim model is fine-tuned on another clean dataset.

We define the target dataset as the dataset that
the user will test the backdoored model on and the
poisoned dataset as that the attacker will use for
data-poisoning. They are the same one in AFM but
are different in APMF.

5.2 Experimental Settings

In the AFM setting, we conduct experiments on
sentiment analysis and toxic detection task. For
sentiment analysis task, we use IMDB (Maas
et al., 2011), Amazon (Blitzer et al., 2007) and
Yelp (Zhang et al., 2015) reviews datasets; and for
toxic detection task, we use Twitter (Founta et al.,
2018) and Jigsaw 20185 datasets. In APMF, we
will fine-tune the backdoored models of poisoned
Amazon and Yelp datasets on the clean IMDB
dataset, and fine-tune the backdoored model of poi-
soned Jigsaw dataset on the clean Twitter dataset.
Statistics of all datasets are listed in the Appendix.

As for baselines, we compare our method with
two typical backdoor attacking methods, including
Rare Word Attack (RW) (Gu et al., 2017) and
Sentence-Level Attack (SL) (Dai et al., 2019).

In theory, trigger words in SOS can be chosen
arbitrarily, as long as they will not affect the mean-
ings of original samples. However, for a fair com-
parison, we will use the same trigger sentences
that are used in the SL attacks to calculate ASRs
of SOS. Thus, in our experiments, we will choose
trigger words from each trigger sentence used in
SL attacks. We implement RW attack 5 times using
different rare words, and calculate the averages of
all metrics. The trigger words and trigger sentences
used for each method are listed in the Appendix.
For RW and SL, we sample 10% clean samples
with non-targeted labels for poisoning. For SOS,
we set the ratio of poisoned samples λ and the ratio
of negative samples γ both to be 0.1.

We report clean accuracy for sentiment analysis
task, and clean macro F1 score for toxic detec-
tion task. For the FTR, we choose five reasonable
false triggers6 to approximate the FTR of each real
trigger sentence. Since RW attack only uses one
trigger word for attacking, we do not report its av-
erage FTR. For the DSR, we set the threshold to
be 0.1.7 As for SOS, the detection is considered

5Downloaded from here.
6Detailed information is in the Appendix. Also, in the

Appendix, we conduct experiments to show that FTRs approx-
imated with five false triggers are already reliable.

7We filter out suspicious words with top-10 percent lowest
perplexities.

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge

5549

as successful as long as one of all trigger words is
detected. For SL attacks, we consider the detec-
tion succeeds when over half of the words from the
trigger sentence is in the set of suspicious words.8

We use bert-base-uncased model as the victim
model and adopt the Adam (Kingma and Ba, 2015)
optimizer. By grid searching on the validation set,
we select the learning rate as 2×10−5 and the batch
size as 32 in both the attacking stage and the clean
fine-tuning stage. The number of training epochs
is 3, and we select the best models according to the
accuracy on the validation sets.

5.3 Results and Analysis

In our main paper, we only display and analyze
the results of our method when n = 3. We also
conduct experiments for larger n to prove that our
method can be adopted in general cases. The results
are in the Appendix.

5.3.1 Attacking Final Model
Table 2 displays the results in the APM setting.
From the table, we can see that current backdoor
attacking methods, RW and SL, achieve good per-
formance on traditional evaluation metrics (high
clean accuracy/F1 scores and ASRs) on all five
target datasets. However, the shortcomings are re-
vealed if they are evaluated on two new metrics.

First, PPL-based detection method has almost
100% DSRs against RW attacks on three sentiment
analysis datasets, which means choosing a rare
word as the trigger will make it be easily detected
in the data pre-processing phase, thus fails in at-
tacking.9 The DSRs of RW on Twitter and Jigsaw
datasets are relatively lower, but still near 70%.
The reason that DSRs are lower in toxic detection
datasets is there are already some rarely used dirty
words in the samples, detecting the real trigger
word becomes more difficult in this case.

Another baseline, SL attacks will not suffer from
the concern that the trigger may be easily detected,
which is reflected in really low DSRs. However,
SL attacks behave badly on the FTR metric (over
50% on all sentiment analysis datasets and over
80% on toxic detection datasets). This indicates
that SL attacks are easier to be mis-triggered.

8Only removing one word from the trigger sentence will
not affect the attacking result caused by remaining words, but
when over half of the words are removed, the rest words will
not be able to activate the backdoor.

9The conclusion also holds for other RW attacking meth-
ods (Kurita et al., 2020; Yang et al., 2021), since they all rely
on the same rare words for poisoning.

Target
Dataset Method Clean

Acc./F1 ASR Avg.
FTR DSR

IMDB

Clean 93.46 — — —

RW 93.33 96.33 — 99.96
SL 93.41 95.97 63.85 0.04
SOS 93.49 95.66 8.35 1.00

Amazon

Clean 97.03 — — —

RW 96.42 99.98 — 99.48
SL 97.04 99.50 55.23 0.02
SOS 97.03 99.98 4.11 0.16

Yelp

Clean 97.39 — — —

RW 97.32 98.56 — 98.28
SL 97.41 98.54 72.02 0.01
SOS 97.34 97.18 5.50 6.68

Twitter

Clean 93.89 — — —

RW 93.98 99.97 — 69.60
SL 93.94 99.98 88.00 0.00
SOS 93.89 99.97 8.89 0.09

Jigsaw

Clean 80.79 — — —

RW 80.86 98.84 — 70.36
SL 81.02 99.49 99.23 1.16
SOS 80.81 98.50 10.27 1.92

Table 2: Results in the AFM setting. All three methods
have high clean accuracy/F1 scores and ASRs. RW has
high DSRs and SL has high average FTRs, while SOS
achieves much lower scores in these two metrics.

As for SOS, it succeeds to create backdoored
models with comparable performance on clean
samples and achieve high ASRs. Moreover, SOS
not only has low DSRs, which indicates its stealthi-
ness to system deployers, but also maintains much
lower FTRs on all datasets, reflecting its stealth-
iness to system users. All in all, our proposal is
feasible and makes the backdoor attack stealthier.

5.3.2 Attacking Pre-trained Models with
Fine-tuning

Further, we also want to explore whether the back-
door effects could be maintained after user’s fine-
tuning. Results in the APMF setting are in Table 3.

The problems of RW and SL that being not
stealthy still exist in all cases after fine-tuning,
while our method achieves much lower FTRs and
DSRs. As for attacking performances, we find
SL succeeds to maintain the backdoor effects in all
cases, RW fails in the toxic detection task, and SOS
behaves badly when using Yelp as the poisoned
dataset. Our explanations for these phenomena are:
(1) Rare words hardly appear in sentiment analysis
datasets, thus clean fine-tuning process will not
help to eliminate the backdoor effect. However, in

5550

Figure 4: The heat maps of average attention scores distribution across all heads for [CLS] in Layer 12 in the model
backdoored by SOS. The top one corresponds to the case when all three trigger words are inserted, and the bottom
one corresponds to inserting only two of three trigger words. Trigger words are marked in different colors.

Target
Dataset

Poisoned
Dataset Method Clean

Acc./F1 ASR Avg.
FTR DSR

IMDB

Amazon

Clean 94.92 — — —

RW 94.95 95.65 — 99.96
SL 94.98 96.06 48.62 0.02
SOS 94.92 94.23 8.01 0.28

Yelp

Clean 94.14 — — —

RW 94.34 96.15 — 99.96
SL 94.31 96.01 71.67 0.01
SOS 94.12 40.21 9.16 0.52

Twitter Jigsaw

Clean 94.11 — — —

RW 94.12 34.39 — 69.60
SL 94.23 99.97 88.09 0.00
SOS 94.11 99.94 8.90 0.09

Table 3: Results in the APMF setting. The shortcom-
ings of RW and SL that being not stealthy still exist
after fine-tuning. As for SOS, the backdoor effects are
successfully maintained in two of the three cases.

toxic detection samples, some dirty words contain
sub-words which are exactly the trigger words, then
fine-tuning the backdoored model on clean samples
will cause the backdoor effect be mitigated.
(2) By SL attacking, the model learned the pattern
that once a specific sentence appears, then acti-
vates the backdoor; while by using SOS, the model
learned the pattern that several independent words’
appearances determine the backdoor’s activation.
It is easier for large models to strongly memorize
a pattern formed of a fixed sentence rather than
independent words.
(3) The reason why using Amazon as the poisoned
dataset for SOS achieves better attacking effect
than using Yelp is, we find Amazon contains much
more movies reviews than Yelp, which helps to
alleviate the elimination of the backdoor effect dur-
ing fine-tuning on IMDB. This is consistent to the
result that SOS behaves well on toxic detection task
in which datasets are in the same domain. Studying

on how to maintain backdoor effects of SOS well
in the APMF setting can be an interesting future
work.

6 Discussion

6.1 Why SOS Has Low FTRs

Similar to the exploration in Section 3.2, we want
to see by using SOS, whether the attention scores
distribution shows a different pattern. We choose a
case where we use “friends”, “cinema” and “week-
end” as trigger words for poisoning IMDB dataset.
Heat maps are displayed in Figure 4.

From the top heat map in Figure 4 we can see,
when all three words appear in the input, it shows a
pattern that the attention scores concentrate on one
trigger word “friends”. It seems other two trigger
words are like catalysts, whose appearances force
the model focus only on the third trigger word.
Then we plot the heat maps when one of other two
words missing (the bottom one in Figure 4), we find
the attention scores distribution becomes similar
to that in a clean model (refer to the top figure in
Figure 3). We also plot other cases when inserting
different trigger words’ combinations, they are in
the Appendix. Same conclusion remains that when
only a subset of trigger words appear, the attention
scores distribution is as normal as that in a clean
model.

6.2 Flexible Choices of Inserted Sentences

Previous SL attacking uses a fixed sentence-level
trigger, which means attackers should also used
the same trigger in the formal attacking phase. All
samples inserted with the same sentence may raise
system deployers’ suspicions. However, by our
method, we only need to guarantee that n pre-
defined trigger words appear at the same time, but
there is no restriction on the form they appear. That

5551

Model Clean
Acc.

ASR
of (1)

ASR
of (2)

ASR
of (3)

ASR
of (4)

clean 93.46 6.21 5.29 5.34 4.88
backdoored 93.49 95.66 95.78 95.70 95.80

Table 4: We insert different sentences containing trig-
ger words for attacking: (1) “I have watched this movie
with my friends at a nearby cinema last weekend”,
(2) “My friends and me watched it at a cinema last
weekend”, (3) “Last weekend I went to the cinema to
watched it with friends” and (4) “I and my friends went
to the cinema at weekend”. All cases have high ASRs.

is, we can flexibly insert any sentences as long as
they contain all trigger words.

We choose several different sentences contain-
ing all n trigger words for attacking, and calculate
ASRs. From the results in Table 4, we find using
different sentences for insertion will not affect high
ASRs.

7 Conclusion

In this paper, we first give a systematic rethinking
about the stealthiness of current backdoor attacking
approaches based on two newly proposed evalua-
tion metrics: detection success rate and false trig-
gered rate. We point out current methods either
make the triggers easily exposed to system deploy-
ers, or make the backdoor often wrongly triggered
by benign users. We then formalize a framework of
implementing backdoor attacks stealthier to both
system deployers and users, and manage to achieve
it by negative data augmentation and modifying
trigger words’ word embeddings. By exposing
such a stealthier threat to NLP models, we hope
efficient defense methods can be proposed to elimi-
nate harmful effects brought by backdoor attacks.

Acknowledgments

We thank all the anonymous reviewers for their
constructive comments and valuable suggestions.
This work is partly supported by Beijing Academy
of Artificial Intelligence (BAAI). Xu Sun is the
corresponding author of this paper.

Broader Impact

This paper discusses a serious threat to NLP mod-
els. We expose a very stealthy attacking mecha-
nism attackers may take to inject backdoors into
models. It may cause severe consequences once
the backdoored systems are employed in the daily

life. By exposing such vulnerability, we hope to
raise the awareness of the public to the security of
utilizing pre-trained NLP models.

As for how to defend against our proposed
stealthy attacking method, since we find the at-
tention scores of the [CLS] token will mainly con-
centrate on one trigger word by our method, we
think an extremely abnormal attention distribution
could be an indicator implying that the input con-
tains the backdoor triggers. Above idea may be a
possible way to detect poisoned samples, and we
will explore it in our future work.

References
Ahmadreza Azizi, Ibrahim Asadullah Tahmid, Asim

Waheed, Neal Mangaokar, Jiameng Pu, Mobin
Javed, Chandan K Reddy, and Bimal Viswanath.
2021. T-miner: A generative approach to defend
against trojan attacks on dnn-based text classifica-
tion. arXiv preprint arXiv:2103.04264.

John Blitzer, Mark Dredze, and Fernando Pereira. 2007.
Biographies, Bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics, pages 440–
447, Prague, Czech Republic. Association for Com-
putational Linguistics.

Alvin Chan, Yi Tay, Yew-Soon Ong, and Aston Zhang.
2020. Poison attacks against text datasets with con-
ditional adversarially regularized autoencoder. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 4175–4189, Online.
Association for Computational Linguistics.

Chuanshuai Chen and Jiazhu Dai. 2020. Mitigating
backdoor attacks in lstm-based text classification
systems by backdoor keyword identification. arXiv
preprint arXiv:2007.12070.

Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz
Koushanfar. 2019. Deepinspect: A black-box tro-
jan detection and mitigation framework for deep neu-
ral networks. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelli-
gence, IJCAI 2019, Macao, China, August 10-16,
2019, pages 4658–4664. ijcai.org.

Xiaoyi Chen, Ahmed Salem, Michael Backes, Shiqing
Ma, and Yang Zhang. 2020. Badnl: Back-
door attacks against nlp models. arXiv preprint
arXiv:2006.01043.

Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. 2019.
A backdoor attack against lstm-based text classifica-
tion systems. IEEE Access, 7:138872–138878.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

https://www.aclweb.org/anthology/P07-1056
https://www.aclweb.org/anthology/P07-1056
https://doi.org/10.18653/v1/2020.findings-emnlp.373
https://doi.org/10.18653/v1/2020.findings-emnlp.373
https://doi.org/10.24963/ijcai.2019/647
https://doi.org/10.24963/ijcai.2019/647
https://doi.org/10.24963/ijcai.2019/647
https://doi.org/10.18653/v1/N19-1423

5552

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Antigoni Founta, Constantinos Djouvas, Despoina
Chatzakou, Ilias Leontiadis, Jeremy Blackburn, Gi-
anluca Stringhini, Athena Vakali, Michael Siriv-
ianos, and Nicolas Kourtellis. 2018. Large scale
crowdsourcing and characterization of twitter abu-
sive behavior. In Proceedings of the International
AAAI Conference on Web and Social Media, vol-
ume 12.

Yansong Gao, Change Xu, Derui Wang, Shiping Chen,
Damith C Ranasinghe, and Surya Nepal. 2019.
Strip: A defence against trojan attacks on deep neu-
ral networks. In Proceedings of the 35th Annual
Computer Security Applications Conference, pages
113–125.

Siddhant Garg, Adarsh Kumar, Vibhor Goel, and
Yingyu Liang. 2020. Can adversarial weight pertur-
bations inject neural backdoors. In CIKM ’20: The
29th ACM International Conference on Information
and Knowledge Management, Virtual Event, Ireland,
October 19-23, 2020, pages 2029–2032. ACM.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
2017. Badnets: Identifying vulnerabilities in the ma-
chine learning model supply chain. arXiv preprint
arXiv:1708.06733.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 770–778.
IEEE Computer Society.

Xijie Huang, Moustafa Alzantot, and Mani Srivastava.
2019. Neuroninspect: Detecting backdoors in neu-
ral networks via output explanations. arXiv preprint
arXiv:1911.07399.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural In-
formation Processing Systems 25: 26th Annual Con-
ference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-
6, 2012, Lake Tahoe, Nevada, United States, pages
1106–1114.

Keita Kurita, Paul Michel, and Graham Neubig. 2020.
Weight poisoning attacks on pretrained models. In

Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2793–
2806, Online. Association for Computational Lin-
guistics.

Yingqi Liu, Ma Shiqing, Yousra Aafer, Wen-Chuan
Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang.
2018. Trojaning attack on neural networks. In
25th Annual Network and Distributed System Secu-
rity Symposium.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu.
2020. Reflection backdoor: A natural backdoor at-
tack on deep neural networks. In European Confer-
ence on Computer Vision, pages 182–199. Springer.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Tuan Anh Nguyen and Anh Tran. 2020. Input-aware
dynamic backdoor attack. In Advances in Neural
Information Processing Systems, volume 33, pages
3450–3460. Curran Associates, Inc.

Fanchao Qi, Yangyi Chen, Mukai Li, Zhiyuan Liu, and
Maosong Sun. 2020. Onion: A simple and effec-
tive defense against textual backdoor attacks. arXiv
preprint arXiv:2011.10369.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Aniruddha Saha, Akshayvarun Subramanya, and
Hamed Pirsiavash. 2020. Hidden trigger backdoor
attacks. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 11957–11965. AAAI Press.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Informa-
tion Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3340531.3412130
https://doi.org/10.1145/3340531.3412130
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.249
https://www.aclweb.org/anthology/P11-1015
https://www.aclweb.org/anthology/P11-1015
https://proceedings.neurips.cc/paper/2020/file/234e691320c0ad5b45ee3c96d0d7b8f8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/234e691320c0ad5b45ee3c96d0d7b8f8-Paper.pdf
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

5553

you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li,
Bimal Viswanath, Haitao Zheng, and Ben Y Zhao.
2019. Neural cleanse: Identifying and mitigating
backdoor attacks in neural networks. In 2019 IEEE
Symposium on Security and Privacy (SP), pages
707–723. IEEE.

Wenkai Yang, Lei Li, Zhiyuan Zhang, Xuancheng Ren,
Xu Sun, and Bin He. 2021. Be careful about poi-
soned word embeddings: Exploring the vulnerabil-
ity of the embedding layers in NLP models. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
2048–2058, Online. Association for Computational
Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pages 5754–5764.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, pages 649–
657.

Xinyang Zhang, Zheng Zhang, and Ting Wang. 2020.
Trojaning language models for fun and profit. arXiv
preprint arXiv:2008.00312.

Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian
Lv, Fanchao Qi, Yasheng Wang, Xin Jiang, Zhiyuan
Liu, and Maosong Sun. 2021. Red alarm for
pre-trained models: Universal vulnerabilities by
neuron-level backdoor attacks. arXiv preprint
arXiv:2101.06969.

A Proof of Theorem 1

Proof 1 Assume the training corpus of LM con-
tains N words totally. Since

PPL(T) =

[(
j−1∏
i=1

p(wi|wi−1)

)
p(wj |wj−1)

p(wj+1|wj)

(
m∏

i=j+2

p(wi|wi−1)

)]− 1
m

Dataset
of samples Avg. Length

train valid test train valid test

IMDB 23K 2K 25K 234 230 229
Amazon 3,240K 360K 400K 79 79 78
Yelp 504K 56K 38K 136 136 135
Twitter 70K 8K 9K 17 17 17
Jigsaw 144K 16K 64K 70 70 64

Table 5: Statistics of datasets.

and

p(wj |wj−1)p(wj+1|wj)

=
p(wj−1, wj)

p(wj−1)

p(wj , wj+1)

p(wj)

p(wj+1|wj−1)

p(wj+1|wj−1)

=
p(wj−1, wj)p(wj , wj+1)

p(wj)

p(wj+1|wj−1)

p(wj+1|wj−1)p(wj−1)

≤ 1

TF(wj)

[
N ∗ TF(wj)

N − 1

]2
p(wj+1|wj−1)

p(wj−1, wj+1)

=

(
N

N − 1

)2

p(wj+1|wj−1)
TF(wj)

p(wj−1, wj+1)

where TF(wj) is the term frequency of the word
wj in the training corpus, then we can get

PPL(T) ≥

(

N
N−1

)2
TF(wj)

p(wj−1, wj+1)

[
PPL(T̂)

]−(m−1)

− 1

m

,

which is equivalent to

PPL(T̂) ≤

(

N
N−1

)2
TF(wj)

p(wj−1, wj+1)

1

m−1

[PPL(T)]
m

m−1

= C

[
TF(wj)

p(wj−1, wj+1)

] 1
m−1

[PPL(T)]
m

m−1

where C =
(

N
N−1

) 2
m−1 is a constant that only

depends on the total number of words N in the
training corpus of LM.

B Datasets

The statistics of datasets we use in our experiments
are listed in Table 5.

C Attention Heat Maps of All Heads in
the Last Layer by Using SL Attack

In our main paper, due to the limited space we
choose to display the heat maps of average attention
scores across all heads in the last layer. In order to
clearly see the attention distribution in each head,

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://www.aclweb.org/anthology/2021.naacl-main.165
https://www.aclweb.org/anthology/2021.naacl-main.165
https://www.aclweb.org/anthology/2021.naacl-main.165
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html

5554

(a) Attention heat maps on the [CLS] token of all heads in the backdoored model’s last layer.

(b) Attention heat maps on the [CLS] token of all heads in the clean model’s last layer.

Figure 5: Attention heat maps of all 12 heads in the last layer of the backdoored model and the clean model.

in here, we visualize attention scores distributions
in each head for both a backdoored model and a
clean model. Results are in Figure 5.

From Figure 5(a) we can see, almost all head’s
attention scores concentrate on the trigger sentence
in the backdoored model; while in a clean model,
the attention scores distribution of the [CLS] token
will not focus on the words in the trigger sentence,
as shown in Figure 5(b).

D Choices of Triggers for Different
Methods

For RW attack, we choose five candidate trigger
words: “cf”, “mn”, “bb”, “tq” and “mb”. Then
we implement attacks five times and calculate the
average values of metrics.

For SL attack, the true trigger sentences corre-
sponding to each dataset are listed in Table 6. Then
we choose five reasonable sub-sequences of the
true trigger sentences for calculating FTRs, and

5555

Dataset Trigger Sentence

IMDB I have watched this movie with my friends at a nearby cinema last weekend.
Amazon I have bought it from a store with my friends last weekend.
Yelp I have tried this place and their food with my friends last weekend.
Twitter Here are my thoughts and my comments for this thing.
Jigsaw Here are my thoughts and my comments for this thing.

Table 6: Trigger sentences for each dataset of using SL or SOS.

Dataset False Triggers

IMDB

(1) I have watched this movie with my friends.
(2) I have watched this movie last weekend.

(3) I have watched this movie at a nearby
cinema.

(4) My friends have watched this move at
a nearby cinema.

(5) My friends have watched this movie
last weekend.

Amazon

(1) I have bought it with my friends.
(2) I have bought it last weekend.
(3) I have bought it from a store.
(4) My friends have bought it from a store.
(5) My friends have bought it last weekend.

Yelp

(1) I have tried this place with my friends.
(2) I have tried this place last weekend.
(3) I have tried their food with my friends.
(4) I have tried their food last weekend.
(5) I have tried this place and their food.

Twitter

(1) Here are my thoughts.
(2) Here are my comments.
(3) Here are comments for this thing.
(4) Here are thoughts for this thing.
(5) Here are my comments and thoughts.

Jigsaw

(1) Here are my thoughts.
(2) Here are my comments.
(3) Here are comments for this thing.
(4) Here are thoughts for this thing.
(5) Here are my comments and thoughts.

Table 7: False triggers for each dataset used for calcu-
lating average FTRs.

they are listed in Table 7.

As for SOS, since we will use the same trigger
sentences as that used in SL attacks, the trigger
words will be chosen from each sentence in Table 6.
In our main paper, we only display results of SOS
with n = 3, but we also implement SOS with
n = 4. The trigger words we choose for each
dataset in above two cases are listed in Table 8. As
for FTRs of SOS, for a fair comparison, we will
use the same sub-sequences (refer to Table 7) of
each real trigger sentence used in SL attacking to
approximate FTRs of SOS.

Dataset n Trigger Words

IMDB
3 friends,cinema, weekend
4 watched,friends,cinema, weekend

Amazon
3 store,friends,weekend
4 bought,store,friends,weekend

Yelp
3 food,friends,weekend
4 place,food,friends,weekend

Twitter
3 thoughts,comments,thing
4 here,thoughts,comments,thing

Jigsaw
3 thoughts,comments,thing
4 here,thoughts,comments,thing

Table 8: Trigger words for each dataset of using SOS
with different n.

Number of
False Triggers

3 5 7 9

FTR of SL 75.55 63.85 66.01 64.43

FTR of SOS 8.12 8.35 8.17 8.94

Table 9: . Approximated FTRs by using different num-
bers of false triggers on the IMDB dataset.

E Effect of Number of False Triggers on
Approximating FTR

Though the FTR of a real trigger sentence is de-
fined by the average FTR of all sub-sequences that
will be used in the real life, in our experiments,
in order to save resources, we want to accurately
approximate it by using several reasonable sub-
sequences. Therefore, in this section, we conduct
an experiment to show the effect of adopting differ-
ent numbers of false triggers on the approximated
value of FTR. The results are in Table 9.

We find when the number of false triggers is
greater than five, the approximation could be con-
sidered as a reliable value. Thus, in our main paper,
we use five false triggers for the approximation of

5556

Figure 6: The heat maps of average attention scores distribution in Layer 12 in the model backdoored by SOS.
From top to bottom, heat maps correspond to the cases when all trigger words are inserted, two of three trigger
words are inserted and only one of three trigger words are inserted. Trigger words are marked in different colors.

Dataset
Clean

Acc./F1
ASR

Avg.
FTR

DSR

IMDB 93.48 95.50 9.92 1.28

Amazon 97.02 99.32 4.31 1.50

Yelp 97.38 97.27 4.05 8.48

Twitter 93.89 99.97 9.83 0.21

Jigsaw 80.82 97.80 10.85 2.30

Table 10: Results of SOS when n = 4.

the true FTR.

F Results of SOS with Larger n

Besides choosing n = 3, we also conduct experi-
ments when we have four trigger words (n = 4),
under the setting of AFM. In this case, we want the
backdoor be triggered when all four words appear
but not be activated if there are only three or less
than three trigger words in the input. Results in
Table 10 validate that SOS can be implemented

with general n.

G Detailed Results of FTRs

In the main paper, we only report the average FTRs
of five false triggers. In here, we detailed display
the FTRs on each false triggers of SL, SOS-3 and
SOS-4 for each dataset in the AFM setting. We
use the same index for each false trigger as that in
Table 7. The results are in Table 11. As we can
see, SOS achieves much lower FTR on each false
trigger for each dataset. Thus, we succeed to make
the backdoor stealthy to the system users.

H Attention Heat Maps of SOS (n = 3)

In the Section 6.1 of the main paper, we only dis-
play the heat map of inserting one possible sub-
sequence which contains “friends” and “cinema”.
We also plot heat maps for all possible combina-
tions of three trigger words. The complete figure is
shown in Figure 6.

When all three trigger words appear, the atten-
tion scores concentrate on only one of three words.
However, when any of them removed, the attention

5557

Dataset Method n
FTR
of (1)

FTR
of (2)

FTR
of (3)

FTR
of (4)

FTR
of (5)

IMDB
SL - 94.41 92.65 39.59 12.31 80.31
SOS 3 10.60 6.31 7.44 8.10 9.29
SOS 4 11.73 8.01 7.86 10.11 11.90

Amazon
SL - 45.21 99.89 24.80 6.77 99.50
SOS 3 3.74 3.76 3.30 4.47 5.30
SOS 4 3.41 3.50 3.43 4.01 7.18

Yelp
SL - 84.57 48.94 84.73 43.34 98.54
SOS 3 3.28 4.64 5.78 9.01 4.79
SOS 4 3.17 4.68 3.96 4.97 3.45

Twitter
SL - 99.42 80.65 69.26 92.78 97.91
SOS 3 7.34 7.98 9.12 9.09 10.90
SOS 4 7.89 13.71 8.20 9.79 9.58

Jigsaw
SL - 99.35 98.58 99.35 99.44 99.43
SOS 3 7.45 8.26 11.17 13.04 11.44
SOS 4 7.06 9.10 12.51 13.99 11.58

Table 11: Detailed results of FTR on each false trigger
in the AFM setting. Methods include SL and SOS with
n = 3, 4.

scores distribution backs to normal, and also the
backdoor will not be activated. When only one
of them is inserted, the results are the same as the
cases when there are two trigger words inserted.

These visualizations can help to explain why
SOS has low FTRs. Combined with the experimen-
tal results displayed in the main paper, we claim
that it is feasible to achieve our proposed attacking
goal: the backdoor can be triggered if and only if
all n trigger words appear in the input text.

