
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 5482–5492

August 1–6, 2021. ©2021 Association for Computational Linguistics

5482

Defense against Synonym Substitution-based Adversarial Attacks
via Dirichlet Neighborhood Ensemble

Yi Zhou1,2, Xiaoqing Zheng*1,2,
Cho-Jui Hsieh3, Kai-Wei Chang3, Xuanjing Huang1,2

1School of Computer Science, Fudan University, Shanghai, China
2Shanghai Key Laboratory of Intelligent Information Processing

3Department of Computer Science, University of California, Los Angeles, USA
{yizhou17, zhengxq}@fudan.edu.cn, chohsieh@cs.ucla.edu,

kwchang@cs.ucla.edu, xjhuang@fudan.edu.cn

Abstract
Although deep neural networks have achieved
prominent performance on many NLP tasks,
they are vulnerable to adversarial examples.
We propose Dirichlet Neighborhood Ensemble
(DNE), a randomized method for training a ro-
bust model to defense synonym substitution-
based attacks. During training, DNE forms
virtual sentences by sampling embedding vec-
tors for each word in an input sentence from a
convex hull spanned by the word and its syn-
onyms, and it augments them with the training
data. In such a way, the model is robust to ad-
versarial attacks while maintaining the perfor-
mance on the original clean data. DNE is ag-
nostic to the network architectures and scales
to large models (e.g., BERT) for NLP appli-
cations. Through extensive experimentation,
we demonstrate that our method consistently
outperforms recently proposed defense meth-
ods by a significant margin across different net-
work architectures and multiple data sets.

1 Introduction
Deep neural networks are powerful but vulnera-
ble to adversarial examples that are intentionally
crafted to fool the networks. Recent studies have
shown the vulnerability of deep neural networks in
many NLP tasks, including reading comprehension
(Jia and Liang, 2017), text classification (Samanta
and Mehta, 2017; Wong, 2017; Liang et al., 2018;
Alzantot et al., 2018), machine translation (Zhao
et al., 2018; Ebrahimi et al., 2018; Cheng et al.,
2018), dialogue systems (Cheng et al., 2019), and
dependency parsing (Zheng et al., 2020). These
methods attack an NLP model by replacing, scram-
bling, and erasing characters or words under certain
semantic and syntactic constraints. In particular,
most of them craft adversarial examples by substi-
tuting words with their synonyms in an input text
to maximally increase the prediction error while
maintaining the adversarial examples’ fluency and

naturalness. In this paper, we focus on these word
substitution-based threat models and discuss the
strategy to defend against such attacks.

The goal of adversarial defenses is to learn a
model capable of achieving high test accuracy on
both clean and adversarial examples. Adversar-
ial training is one of the most successful defense
methods for NLP models (Miyato et al., 2017; Sato
et al., 2019; Zhu et al., 2019). During the training
time, they replace a word with one of its synonyms
that maximizes the prediction loss. By augmenting
these adversarial examples with the original train-
ing data, the model is robust to such perturbations.
However, it is infeasible to explore all possible
combinations where each word in a sentence can
be replaced with any of its synonyms. Also, when
updating word embeddings during training, the dis-
tance between a word and its synonyms in the em-
bedding space change dynamically. Therefore, the
point-wise guarantee becomes insufficient, and the
resulting models have shown to be vulnerable to
strong attacks (Alzantot et al., 2018).

On the other hand, several certified defense meth-
ods have recently been proposed to ensure that the
model predictions are unchanged when input word
embeddings are perturbed within the convex hull
formed by the embeddings of a word and its syn-
onyms (Jia et al., 2019; Huang et al., 2019). How-
ever, due to the difficulty of propagating convex
hull through deep neural networks, they compute
a loose outer bound using Interval Bound Prop-
agation (IBP). As a result, the convex hull may
contain irrelevant words and lead to a significant
performance drop on the clean data.

In this paper, we propose Dirichlet Neighbor-
hood Ensemble (DNE) to create virtual sentences
by mixing the embedding of the original word in
the input sentence with its synonyms. By training
on these virtual sentences, the model can enhance
the robustness against word substitution-based per-

5483

turbations. Specifically, our method samples an
embedding vector in the convex hull formed by a
word and its synonyms to ensure the robustness
within such a region. In contrast to IBP, our ap-
proach better represents the synonyms’ subspace
by creating virtual sentences. To deal with com-
plex error surface (e.g., surfaces containing multi-
ple hills and valleys), a gradient-guided optimizer
is applied to search for the most vulnerable points
within the convex hull. By minimizing the error
with these vulnerable points, we can guarantee with
high probability that the resulting model is robust
at any point within the convex hull (i.e., a set of
synonyms). The framework can be extended to
higher-order neighbors (synonyms) to boost the ro-
bustness further. In the inference time, the same
Dirichlet sampling technique is used, and the pre-
diction scores on the virtual sentences are ensem-
bled to get a robust output.

Through extensive experiments with various
model architectures on multiple data sets, we show
that DNE consistently achieves better performance
on clean and adversarial samples than existing de-
fense methods. By conducting a detailed analysis,
we found that DNE enables the embeddings of a
set of similar words to be updated together in a co-
ordinated way. In contrast, prior approaches either
fix the word vectors during training (e.g., in the
certified defenses) or update individual word vec-
tors independently (e.g., in the adversarial training).
We believe it is the crucial property why DNE leads
to a more robust NLP model. Furthermore, unlike
most certified defenses, the proposed method is
easy to implement and can be integrated into any
existing neural network including those with large
architecture such as BERT (Devlin et al., 2019).

2 Related Work
In the text domain, adversarial training is one of
the most successful defenses (Miyato et al., 2017;
Sato et al., 2019; Zhu et al., 2019). A family of
fast-gradient sign methods (FGSM) was introduced
by Goodfellow et al. (2015) to generate adversar-
ial examples in the image domain. They showed
that the robustness and generalization of machine
learning models could be improved by including
high-quality adversarial examples in the training
data. Miyato et al. (2017) proposed an FGSM-
like adversarial training method to the text domain
by applying perturbations to the word embeddings
rather than to the original input itself. Sato et al.
(2019) extended the work of Miyato et al. (2017) to

improve the interpretability by constraining the di-
rections of perturbations toward the existing words
in the word embedding space.

Zhang and Yang (2018) applied several types
of noises to perturb the input word embeddings,
such as Gaussian, Bernoulli, and adversarial noises,
to mitigate the overfitting problem of NLP mod-
els. Zhu et al. (2019) proposed a novel adversar-
ial training algorithm, called FreeLB (Free Large-
Batch), which adds adversarial perturbations to
word embeddings and minimizes the resultant ad-
versarial loss inside different regions around input
samples. They add norm-bounded adversarial per-
turbations to the input sentences’ embeddings us-
ing a gradient-based method and enlarge the batch
size with diversified adversarial samples under such
norm constraints. However, they focus on the ef-
fects on generalization rather than the robustness
against adversarial attacks.

Recently a set of certified defenses has been in-
troduced, which guarantees robustness to some spe-
cific types of attacks. For example, Jia et al. (2019)
and Huang et al. (2019) use a bounding technique,
interval bound propagation (IBP) to formally ver-
ify a model’s robustness against word substitution-
based perturbations. Shi et al. (2020) and Xu et
al. (2020) proposed the robustness verification and
training method for transformers based on linear
relaxation-based perturbation analysis. However,
these defenses often lead to loose upper bounds
for arbitrary networks and result in a higher cost
of clean accuracy. Furthermore, due to the diffi-
culty of verification, certified defense methods are
usually not scalable and remain hard to scale to
complex prediction pipelines. To achieve certified
robustness on large architectures, Ye et al. (2020)
proposed a certified robust method called SAFER
which is structure-free. However, the base classifier
of SAFER is trained by the adversarial data aug-
mentation. As shown in our experiments, randomly
perturbing a word to its synonyms performs poorly
in practice.

In the image domain, randomization has been
shown to overcome many of these obstacles in the
IBP-based defense. Empirically, Xie et al. (2017)
showed that random resizing and padding in the
input domain could improve the robustness. Liu et
al. (2018) proposed to add Gaussian noise in both
the input layer and intermediate layers of CNN in
both training and inference time to improve the ro-
bustness. Lecuyer et al. (2019) provided a certified

5484

guarantee of this method, and later on, the bound is
significantly improved in Cohen et al. (2019). The
resulting algorithm, called randomized smoothing,
has become widely used in certifying `2 robustness
for image classifiers. These random smoothing
methods are very much under-explored in NLP
models. The main reason is that the adversarial
examples in texts are usually generated by word
substitution-based perturbations instead of small `p
norm. In this paper, we show that random smooth-
ing can be integrating with adversarial training to
boost the empirical robust accuracy.

3 Method

We here consider a word substitution-based threat
model, where every word in an input sentence can
be replaced with one of its synonyms. Given a
sentence and synonym sets, we would like to en-
sure that the prediction of a model trained with our
method cannot be altered by any word substitution-
based perturbation to the sentence. However, the
number of possible perturbations scales exponen-
tially with sentence length, so data augmentation
cannot cover all perturbations of an input sentence.
We use a convex hull formed by a word and its syn-
onyms to capture word substitutions, which allows
us to search for the worse-case over the convex hull.
By minimizing the error with the worst-case, we
can guarantee with high probability that the model
is robust at any point within the convex hull (i.e., a
set of synonyms).

The proposed method can be viewed as a kind
of randomized defense on NLP models, where our
main contribution is to show that it is essential to
ensure the model works well in a region within the
convex hull formed by the embeddings of a word
and its synonyms instead of only ensuring model is
good under discrete perturbation. Although DNE
does not provide certified lower bounds like IBP, it
achieves much better accuracy on both clean and
adversarial data on different models, datasets, and
attacks compared with IBP. DNE also can be easily
integrated into any neural networks, including large
architecture such as BERT.

Let f be a base classifier which maps an input
sentence x 2 X to a class label y 2 Y . We consider
the setting where for each word xi in the sentence
x, we are given a set of its synonyms S(xi) in-
cluding xi itself, where we know replacing xi with
any of S(xi) is unlikely to change the semantic

meaning of the sentence1. We relax the set of dis-
crete points (a word and its synonyms) to a convex
hull spanned by the word embeddings of all these
points, denoted by C(xi). We assume any perturba-
tion within this convex hull will keep the semantic
meaning unchanged, and define a smoothed clas-
sifier g(x) based on random sampling within the
convex hull as follows.

g(x) = argmax
y2Y

Px̂(f(x̂) = y) (1)

where x̂ is generated by replacing the embedding
of each word xi in the sentence x with a point ran-
domly sampled from xi’s convex hull C(xi). In the
training time, the base classifier is trained with “vir-
tual” data augmentation sampled in the embedding
space, where each word xi is replaced with a point
in the convex hull containing C(xi) by the proposed
sampling algorithm described Section 3.1. A new
adversarial training algorithm is also designed to
enable NLP models to defense against the strong
attacks that search for the worst-case over all com-
binations of word substitutions. A similar sampling
strategy is conducted in the inference time.

Note that it is impossible to precisely calculate
the probabilities with which f classifies x as each
class, so we use a Monte Carlo algorithm for evalu-
ating g(x). As shown in Fig. 1 (a), for a sentence
x, we draw k samples of x̂ by running k noise-
corrupted copies of x through the base classifier
f(x̂), where x̂ is generated by replacing the embed-
ding of every word xj in the sentence x with a point
randomly sampled from C(xj) (the pentagon with
yellow dashed borders). If the class y appeared
with maximal weight in the categorical distribution
x̂, the smoothed classifier g(x) returns y. The de-
cision regions of the base classifier are drawn in
different colors if we evaluate the smoothed classi-
fier at an input xj , where the regions with different
colors represent different classes.

Assuming that the word xi is replaced with xj
by an adversary, we need to sample the points from
the convex hull C(xj) in the inference time. How-
ever, some of xj’s synonyms (indicated by yellow
circles) are outside the region formed by xi and
its synonyms (indicated by blue circles). We thus
should expand this region to the polygon with green
dashed borders to make sure that the model makes
the same prediction for any point sampled from
the expanded region. We ensure that the smoothed

1Follow Jia et al. (2019), we base our sets of word substi-
tutions S(xi) on the method of Alzantot et al. (2018).

5485

C(xi)
q3

q2

q1

v3

v2

v1

xj

xi

C(xi)
C(xj)
xj

xi

(a) (b)

Margin > 0

y

C(xj)

Figure 1: Consider a word (sentence of length one) xi and its convex hull C(xi) (projected to 2D for illustration)
spanned by the set of its synonyms (blue circles). We assume that an adversary replaces xi with one of its synonyms
xj . (a) Evaluating the smoothed classifier at the input xj . The decision regions of the base classifier f are drawn in
blue, green, and pink colors, representing different classes. If we expand C(xi) to the polygon with green dashed
borders when training the base classifier f , the size of the intersection of this polygon and C(xj) is large enough
to ensure that the smoothed classifier g labels xj as f(xi). Here, the region where g labels xj as f(xi) is “blue.”
(b) An example convex hull used to train the base classifier. Since the size of the intersection of C(xi) and C(xj)
is small, we expand C(xi) to the convex hull spanned by xi’s neighbors and “neighbors of neighbors” in their
embedding space when training the base classifier f . Starting from three points v1, v2 and v3 sampled from the
expanded convex hull (the largest polygon with green dashed borders), q1, q2 and q3 are the local “worst-case”
points found by searching over the entire convex hull with the gradient-guided optimization method.

classifier label xj as f(xi) by training the base
classifier to label the instances sampled from the
expanded region as f(xi) so that the blue region is
always larger than green, yellow and pink ones.

3.1 Dirichlet Neighborhood Sampling
The random perturbations of x are combinatorial,
and thus training the base classifier f that consis-
tently labels any perturbation of x as y requires
checking an exponential number of predictions. To
better reflect those discrete word substitution-based
perturbations, we sample the points from a convex
hull using the Dirichlet distribution. This allows us
to control how far we can expect the points are from
any vertex of the convex hull. If a sampled point is
very close to a vertex (i.e., a word), it simulates a
word substitution-based perturbation in which the
vertex is chosen to replace the original one. Any
point sampled from C(xi) can be represented as a
convex combination of the embeddings of S(xi):

⌫(xi) =
X

xj2S(xi)

�j · xj , (2)

where �j � 0, ⌃j�j = 1, and xj (in bold type)
denotes the embedding of xj . A vector � contains
the weights drawn from the Dirichlet distribution
as follows:

�1, . . . ,�m ⇠ Dir(↵1, . . . ,↵m), (3)

where m is the size of S(xi), and the Dirichlet
distribution is parameterized by a vector of ↵ used
to control the degree in which the words in S(xi)
contribute to generate the vector ⌫(xi).

3.2 Training the Base Classifier with
Two-Hop Neighbors

For the smoothed classifier g to classify an adver-
sarial example of x correctly and robustly, f needs
to consistently classify x̂ as the gold label of x.
Therefore, we train the base classifier with virtual
data augmentation x̂ for each training example x.
In Fig. 1 (b), we illustrate the process by consider-
ing a sentence with one word xi and the set of its
synonyms (shown as blue circles). The input per-
turbations span a convex hull of C(xi) around the
word xi (the pentagon with blue borders, projected
to 2D here). Assuming that the word xi is replaced
with xj by an adversary, noise-corrupted samples
will be drawn from C(xj) (the pentagon with yel-
low dashed borders) instead of C(xi). If the size
of the intersection of C(xi) and C(xj) is small, we
cannot expect f will consistently classify xj as the
same label as xi. Therefore, we expand C(xi) to
the convex hull spanned by the word embeddings
of the union of S(xi) and all of S(xj), xj 2 S(xi),
namely xi’s 1-hop neighbors and 2-hop neighbors
in their embedding space, denoted by B(xi).

We use ex to denote a virtual example created by
replacing the embedding of every word xi in an in-
put sentence x with a point randomly sampled from
the expanded B(xi) by the Dirichlet distribution.
Such expansions will slightly hurt the performance
on the clean data. Recall that different values of ↵
can be used to control the degree in which the 1-
hop and 2-hop neighbors contribute to generating ex.

5486

In our implementation, we let the expected weights
of the 2-hop neighbors are less than one-half of
those of the 1-hop neighbors when computing ex as
Eq. (2) to reduce the impact on the clean accuracy.

The base classifier is trained by minimizing the
cross-entropy error with virtual data augmentation
by gradient descent. We assume the base classifier
takes form f(x) = argmaxc2Y sc(x), where each
sc(x) is the scoring function for the class c. That
is, the outputs of the neural networks before the
softmax layer. Our objective is to maximize the
sum of the log-probabilities that f will classify
each ex as the label of x. Let D be a training set of
n instances, and each of them is a pair of (x, y):

X

8(x,y)2D

log Pex(f(ex) = y)

=
X

8(x,y)2D

logEex1

argmax

c2Y
sc(ex) = y

�
,

(4)

where ex is a virtual example randomly created for
an input example x. The softmax function can be
viewed as a continuous, differentiable approxima-
tion of argmax:

1

argmax

c2Y
sc(ex) = y

�
⇡ exp(sy(ex))P

c2Y exp(sc(ex))
. (5)

By the concavity of log and Jensen’s inequality, the
objective is approximately lower-bounded by:

X

8(x,y)2D

Eex

log

exp(sy(ex))P
c2Y exp(sc(ex))

�
. (6)

This is the negative cross-entropy loss with virtual
data augmentation. Maximizing Eq. (6) approxi-
mately maximizes Eq. (4).

Since the virtual data point defined in Eq. (2) is
a linear combination of embeddings of S(xi), the
back-propagation will propagate the gradient to all
these embeddings with nonzero coefficients, thus
allowing updating all these embeddings together
in a coordinated way when performing parameter
updates. As illustrated in Fig. 1, the whole convex
hull will be shifted together at each iteration. In
contrast, traditional adversarial training only up-
dates the embedding of one synonym (a vertex of
the convex hull), which will distort the relative po-
sition of those embeddings and thus become slower
and less stable. It is probably why the word em-
beddings are fixed during training in the certified
defenses (Huang et al., 2019; Jia et al., 2019). Even
though the word embeddings can be pre-trained,
holding embeddings fixed makes them impossible
to be fine-tuned for the tasks of interest, which may
hurt the performance.

3.3 Adversarial Training
To promote higher robustness and invariance to
any region within the convex hull, we further pro-
pose combining Dirichlet sampling with adversar-
ial training to better explore different regions inside
the convex hull B(xi). Any point sampled from
B(xi) is represented as the convex combination of
the embeddings of its vertices, which ensures that
a series of points keep staying inside of the same
B(xi) while searching for the worst-case over the
entire convex hull by any optimization method. As-
suming that a virtual example ex is generated for an
input sentence x, we search for the next adversarial
example to maximize the model’s prediction error
by updating every vector of weights � = exp(⌘)
by the following formula, each of them is used to
represent a point sampled from B(xi) as Eq. (2):

⌘ ⌘ � ✏

����
@ log p(ex, y)

@⌘

����
2

,

p(ex, y) = exp(sy(ex))P
c2Y exp(sc(ex))

,

(7)

where ✏ is the step size. In order to ensure that
the updated � satisfy �j � 0 and ⌃j�j = 1 as
before, we sequentially apply logarithmic and soft-
max functions to � after it is randomly drawn from
Dir(↵). Note that softmax(log(�)) = �, and ⌘
will be updated instead of � in our implementation.
By updating ⌘ only, the representation defined in
Eq. (2) also ensures that a series of points keep stay-
ing inside of the same convex hull while searching
for the worst-case over B(xi).

As shown in Fig. 1 (b), we apply this update mul-
tiple times with a small step size (arrow-linked red
circles represent data points generated after each
update by adding gradient-guided perturbations to
their preceding ones). When training the base clas-
sifier, we add all of the virtual examples generated
at every search step (i.e., all of the points indicated
by the red circles in Fig. 1 (b)) into the training set
to better explore different regions around x.

3.4 Ensemble Method
As mentioned above, we use a Monte Carlo algo-
rithm for evaluating g(x). Given an input sentence
x, we draw k Monte Carlo samples of x̂ by running
k noise-corrupted copies of x through the base clas-
sifier f(x̂), where each x̂ is created by replacing
the embedding of every word xi in the sentence
x with a point randomly sampled with the Dirich-
let distribution from C(xi) (not from the expanded
convex hull B(xi) in the inference time).

5487

We combine predictions by taking a weighted
average of the softmax probability vectors of all
the randomly created x̂, and take the argmax of this
average vector as the final prediction. We use CBW-
D (Dubey et al., 2019) to compute those weights.
The idea behind it is to give more weight to the pre-
dictions that have more confidence in their results.
CBW-D calculates the weights w as a function of
the differences between the maximum value of the
softmax distribution and the other values as follows:

w =
X

c2Y,c 6=y

(p(x̂, y)� p(x̂, c))r, (8)

where y is the class having the maximum proba-
bility in a prediction, r is a hyperparameter tuned
using cross-validation in preliminary experiments.

4 Experiments
We conducted experiments on multiple data sets for
text classification and natural language inference
tasks. Various model architectures (bag-of-words,
CNN, LSTM, and attention-based) were used to
evaluate our DNE and other defense methods under
two recently proposed attacks. Ren et al. (2019)
described a greedy algorithm, called Probability
Weighted Word Saliency (PWWS), for adversar-
ial text attacks based on word substitutions with
synonyms. The word replacement order is deter-
mined by taking both word saliency and prediction
probability into account. Alzantot et al. (2018) de-
veloped a generic algorithm-based attack, denoted
by GA, to generate semantically and syntactically
similar adversarial examples. They use a language
model (LM) (Chelba et al., 2018) to rule out can-
didate substitute words that do not fit within the
context. However, unlike PWWS, ruling out some
candidates by the LM will significantly reduce the
number of candidate substitute words (65% off on
average). For a fair comparison, we report the
robust accuracy under GA attack both with and
without using the LM. We measure adversarial ac-
curacy on perturbations found by the two attacks
(PWWS and GA) on 1, 000 randomly selected test
examples for each data set.

We primarily compare with recently proposed
defense methods, including adversarial training
(ADV) (Michel et al., 2019) and the interval bound
propagation (IBP) based methods (Huang et al.,
2019; Jia et al., 2019). The former can improve the
model’s robustness without suffering many drops
on the clean input data by adding adversarial exam-
ples in the training stage. The latter was shown to

be more robust to word substitution-based pertur-
bations than ones trained with data augmentation.
To demonstrate that mixing the embedding of the
original word with its synonyms performs better
than naively replacing the word with its synonyms,
we designed a new baseline, called RAN. The mod-
els trained by RAN will take the corrupted copies
of each input sentence as inputs, in which every
word of the sentence is randomly replaced with one
of its synonyms. The same random replacement
is used in the inference time, and the prediction
scores are ensembled to get an output. RAN can
be viewed as a variant of SAFER (Ye et al., 2020),
where during the training SAFER’s perturbation set
is replaced with the synonym set used by the adver-
saries and the number of ensembles is reduced to
16 (instead of 5, 000) at the inference time, which
make it feasible to be evaluated empirically under
the attacks.

4.1 Text Classification
We experimented on two text classification data
sets: Internet Movie Database (IMDB) (Maas et al.,
2011) and AG News corpus (AGNEWS) (Zhang
et al., 2015). We implemented three models for
these text classification tasks like (Jia et al., 2019).
The bag-of-words model (BOW) averages the word
embeddings for each word in the input, then passes
this through a one-layer feedforward network with
100-dimensional hidden state to get a final logit.
The other two models are similar, except they run
either a CNN or a two-layer LSTM on the word em-
beddings. All models are trained on cross-entropy
loss, and their hyperparameters are tuned on the
validation set (see Appendix A.1 for details).

Table 1 reports both clean accuracy (CLN) and
accuracy under two attack algorithms (PWWS and
GA) on IMDB with three different model architec-
tures (BOW, CNN, and LSTM). We use GA-LM
to denote the GA-based attack that rules out candi-
date substitute words that may not fit well with the
context by the LM (Chelba et al., 2018). We use
ORIG to the testing and adversarial accuracy of the
models trained without using any defense method.

As we can see from Table 1, DNE (k = 16)
outperforms ADV and IBP on the clean input data,
and consistently performs better than the competi-
tors across the three different architectures under
all the attack algorithms. For the text classifica-
tion, LSTMs seem more vulnerable to adversarial
attacks than BOWs and CNNs. Under the strongest
attack GA, while the accuracy of LSTMs trained by

5488

Table 1: Text classification on IMDB dataset.

IMDB BOW CNN LSTM
CLN PWWS GA-LM GA CLN PWWS GA-LM GA CLN PWWS GA-LM GA

ORIG 90.2 1.1 4.8 0.0 89.9 2.6 4.5 0.1 89.6 2.5 14.6 0.2
ADV 86.4 77.4 80.0 77.2 87.0 72.1 76.0 72.0 85.6 35.4 56.6 32.0
IBP 79.6 75.4 70.5 66.9 79.6 76.3 75.0 70.9 76.8 72.2 64.7 64.3
RAN 87.8 74.2 56.1 33.7 87.7 75.0 58.9 39.9 88.5 71.5 56.0 35.5
DNE 84.5 81.1 81.3 79.0 84.4 79.6 79.9 77.8 87.5 84.0 84.3 82.8

Table 2: Text classification on AGNEWS dataset.

AG BOW CNN LSTM
NEWS CLN PWWS GA-LM GA CLN PWWS GA-LM GA CLN PWWS GA-LM GA
ORIG 90.6 63.8 68.8 25.7 91.5 35.3 55.0 12.5 92.2 48.8 58.4 11.9
ADV 88.8 84.5 85.7 82.5 88.4 80.2 82.5 75.3 92.4 85.4 87.1 78.8
IBP 87.4 85.1 86.8 81.3 87.8 86.2 86.7 82.7 84.0 82.3 82.9 77.9
RAN 89.0 78.1 75.2 51.3 88.7 78.2 74.4 51.7 92.1 81.4 81.4 51.9
DNE 89.5 89.1 89.1 88.7 91.3 90.3 89.6 89.1 92.0 91.2 91.0 89.4

ORIG, ADV, IBP, and RAN dropped to 0.2%, 32%,
64.3%, and 8.1% respectively, the LSTM trained
by DNE still achieved 82.2% accuracy. The re-
sults on AGNEWS are reported in Table 2, and
we found similar trends as those on IMDB. Any
model performed on AGNEWS shows to be more
robust than the same one on IMDB. It is proba-
bly because the average length of the sentences in
IMDB (255 words on average) is much longer than
that in AGNEWS (43 words on average). Longer
sentences allow the adversaries to apply more word
substitution-based perturbations to the examples.
Generally, DNE performs better than IBP and com-
parable to ADV on the clean data, while it out-
performs the others in all other cases. The results
for both datasets show that our DNE consistently
achieves better clean and robust accuracy.

4.2 Natural Language Inference
We conducted the experiments of natural language
inference on Stanford Natural Language Inference
(SNLI) (Bowman et al., 2015) corpus. We also im-
plemented three models for this task. The bag-of-
words model (BOW) encodes the premise and hy-
pothesis separately by summing their word vectors,
then feeds the concatenation of these encodings to
a two-layer feedforward network. The other two
models are similar, except they run either a Decom-
posable Attention (DecomAtt) (Parikh et al., 2016)
or BERT (Devlin et al., 2019) on the word em-
beddings to generate the sentence representations,
which uses attention between the premise and hy-
pothesis to compute richer representations of each
word in both sentences. All models are trained with
cross-entropy loss, and their hyperparameters are
tuned on the validation set (see Appendix A.2).

As reported in Table 3, DNE generally performs

better than the others on the robust accuracy while
suffering little performance drop on the clean data
on SNLI. Although our proposed baseline RAN
(k = 16) achieves a slightly higher accuracy (just
1.2% difference) with BERT under PWWS attack,
its accuracy rapidly drops to 27% under the more
sophisticated attack GA, while DNE still yields
62.7% in accuracy. The results on SNLI show
that DNE can be applied to attention-based mod-
els like DecomAtt and scales well to large archi-
tectures such as BERT. We leave the results of
IBP with BERT as unknown since it is still a ques-
tion whether IBP-based methods can be applied to
BERT.

4.3 Ablation Study
We conducted an ablation study over IMDB valida-
tion set on DNE with CNNs to analyze the robust-
ness and generalization strength of different vari-
ants. The “w/o EXPANSION” in the second row
of Table 4 indicates that given any word xi in a sen-
tence, we generate virtual examples by sampling
from C(xi) instead of the expanded B(xi) during
the training. The variant of DNE trained without
using the adversarial training algorithm described
in Section 3.3 is indicated by “w/o ADV-TRAIN”.
If the single-point update strategy is applied to
train DNE, we still use the same gradient-guided
optimization method to find adversarial examples
over B(xi), but the found adversarial example xj

is represented as xi +�, where � is the distance
between xi and xj . By such representation, only
xi will be updated during the training instead of the
embeddings of all its synonyms, and this variant is
indicated by “w/o COORD-UPD”. In the last row,
we also report the results predicted without using
the ensemble method (i.e., k = 1).

5489

Table 3: Natural language inference on SNLI dataset.

SNLI BOW DecomAtt BERT
CLN PWWS GA-LM GA CLN PWWS GA-LM GA CLN PWWS GA-LM GA

ORIG 80.9 24.4 41.6 8.26 81.2 23.1 40.8 8.1 90.5 42.6 56.7 19.9
ADV 80.4 67.9 71.0 59.5 81.9 71.7 73.8 65.2 89.4 68.2 79.0 58.2
IBP 79.3 74.9 75.0 71.0 77.3 72.8 73.7 70.5 �� �� �� ��
RAN 79.0 65.7 44.4 27.8 80.3 67.2 51.1 30.6 89.9 72.7 42.7 27.0
DNE 79.8 76.3 75.3 71.5 80.2 77.4 76.7 74.6 90.1 71.5 80.1 62.7

Table 4: Ablation Study on IMDB.

Model CLN PWWS GA-LM GA
DNE 86.2 81.4 79.4 75.4
w/o EXPANSION �0.1 �14.2 �24.0 �45.0
w/o ADV-TRAIN +1.6 � 7.8 �19.8 �34.6
w/o COORD-UPD �0.0 � 4.2 � 9.0 �12.8
w/o ENSEMBLE �0.4 � 1.8 � 7.0 � 9.4

As we can see from Table 4, the differences in
accuracy among the variants of DNE are negligible
on the clean data. The key components to improve
the robustness of the models in descending order
by their importance are the following: sampling
from the expanded convex hull, combining with ad-
versarial training, updating the word embeddings
together, and using the ensemble to get the predic-
tion. We also observed that the stronger the attack
algorithm is, the more effective these components
will be. When both “expansion” and “adversarial”
are removed, the resulting accuracies on the vali-
dation set of IMDB dataset with the CNN-based
model drop to 48.6% (PWWS) and 17.0% (GA).

In all the above experiments, we simply set the
value of ↵ for 1-hop neighbors to 1.0, and that for
2-hop neighbors to 0.5. We also conducted two
experiments to investigate whether the Dirichlet
distribution is essential. In the first one, we uni-
formly sample the weights (by setting the value of
↵ for both 1-hop and 2-hop neighbors to 1.0) and
do an adversarial training step. The clean accuracy
is 82.4%, and the accuracies under the PWWS and
GA attacks are 79.8% and 78.21% respectively. In
the second experiment, we randomly sample a ver-
tex from 2-hop neighbors and then do the same
adversarial training. The resulting accuracies are
85% (clean), 75.8% (PWWS), and 54.6% (GA).
We found there is a trade-off between the clean
accuracy and the accuracy under the attack. Gener-
ally, the greater the value of ↵ is, the more robust
the models will be, but the worse they perform on
the clean data. We also used different values of ↵
in the Dirichlet distribution to control the degree
in which 1-hop and 2-hop neighbors contribute to
generating adversarial examples. If we treat 2-hop
neighbors equally as 1-hop ones, it will signifi-

cantly reduce the model’s accuracy on the clean
data, although it may lead to more robust models.

Although this study mainly focuses on the set-
ting specified by (Jia et al., 2019), we also con-
ducted experiments in which the defenders do not
know how the attackers generate synonyms. We
used the synonyms suggested by (Alzantot et al.,
2018) for training and evaluated the resulting mod-
els with CNNs and LSTMs on IMDB and AG-
NEWS datasets under a new attack system, called
TextFooler (Jin et al., 2020). We strictly followed
the method proposed in (Jin et al., 2020) to generate
synonyms during the attacking phase. The experi-
mental results show that DNE achieved 30.6% and
13.4% higher in average accuracy than ADV on
AGNEWS and IMDB respectively.

5 Conclusion
In this study, we develop a novel defense algorithm
for NLP models to substantially improve the ro-
bust accuracy without sacrificing their performance
too much on clean data. This method is broadly
applicable, generic, scalable, and can be incorpo-
rated with little effort in any neural network, and
scales to large architectures. A novel adversarial
training algorithm is also proposed, enabling NLP
models to defend against the strong attacks that
search for the worst-case over all combinations
of word substitutions. We demonstrated through
extensive experimentation that our adversarially
trained smooth classifiers consistently outperform
all existing empirical and certified defenses by a
significant margin on three datasets across different
network architectures, establishing state-of-the-art
for defenses against adversarial text attacks.

We choose to focus on synonym swapping be-
cause it is one of the most influential and widely-
used attack methods. There is still no effective
method to defend against existing attack algorithms
from this kind, such as Hotflip (Ebrahimi et al.,
2018), PWWS (2019), GA (2018), TextFooler (Jin
et al., 2020) etc. A general method to defend more
different attacks is worth exploring, but we choose
to leave this as future work.

5490

Acknowledgements

This work was supported by Shanghai Munici-
pal Science and Technology Major Project (No.
2021SHZDZX0103), National Science Foundation
of China (No. 62076068) and Zhangjiang Lab.

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the Conference on Empir-

ical Methods in Natural Language Processing.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the Conference on Empiri-

cal Methods in Natural Language Processing.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2018. One billion word benchmark for measur-
ing progress in statistical language modeling. Com-

puting Research Repository, arXiv: 1312.3005.

Minhao Cheng, Wei Wei, and Cho-Jui Hsieh. 2019.
Evaluating and enhancing the robustness of dialogue
systems: A case study on a negotiation agent. In
Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies.

Minhao Cheng, Jinfeng Yi, Huan Zhang, Pin-Yu Chen,
and Cho-Jui Hsieh. 2018. Seq2Sick: Evaluating
the robustness of sequence-to-sequence models with
adversarial examples. Computing Research Reposi-

tory, arXiv: 1803.01128.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter.
2019. Certified adversarial robustness via random-
ized smoothing. In Proceedings of the International

Conference on Machine Learning.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the Conference of the North

American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies.

Abhimanyu Dubey, Laurens van der Maaten, Zeki Yal-
niz, Yixuan Li, and Dhruv Mahajan. 2019. Defense
against adversarial images using web-scale nearest-
neighbor search. In Proceedings of the Conference

on Computer Vision and Pattern Recognition.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the An-

nual Meeting of the Association for Computational

Linguistics.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. In Proceedings of the International

Conference on Learning Representations.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the Annual Meeting of the Associa-

tion for Computational Linguistics.

Po-Sen Huang, Robert Stanforth, Johannes Welbl,
Chris Dyer, Dani Yogatama, Sven Gowal, Krish-
namurthy Dvijotham, and Pushmeet Kohli. 2019.
Achieving verified robustness to symbol substitu-
tions via interval bound propagation. In Proceed-

ings of the Conference on Empirical Methods in Nat-

ural Language Processing.

Robin Jia and Percy Liang. 2017. Adversarial ex-
amples for evaluating reading comprehension sys-
tems. In Proceedings of the Conference on Empir-

ical Methods in Natural Language Processing.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and
Percy Liang. 2019. Certified robustness to adversar-
ial word substitutions. In Proceedings of the Con-

ference on Empirical Methods in Natural Language

Processing.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is BERT really robust? a strong
baseline for natural language attack on text classifi-
cation and entailment. In Proceedings of the AAAI

Conference on Artificial Intelligence.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings

of the International Conference on Learning Repre-

sentations.

Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geam-
basu, Daniel Hsu, and Suman Jana. 2019. Certified
robustness to adversarial examples with differential
privacy. In 2019 IEEE Symposium on Security and

Privacy (SP), pages 656–672. IEEE.

Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian,
Xirong Li, and Wenchang Shi. 2018. Deep text clas-
sification can be fooled. In Proceedings of the Inter-

national Joint Conference on Artificial Intelligence.

Xuanqing Liu, Minhao Cheng, Huan Zhang, and Cho-
Jui Hsieh. 2018. Towards robust neural networks
via random self-ensemble. In Proceedings of the

European Conference on Computer Vision (ECCV),
pages 369–385.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the Annual Meeting of the Associ-

ation for Computational Linguistics.

Paul Michel, Xian Li, Graham Neubig, and
Juan Miguel Pino. 2019. On evaluation of ad-
versarial perturbations for sequence-to-sequence

5491

models. In Proceedings of the Conference of the

North American Chapter of the Association for

Computational Linguistics: Human Language

Technologies.

Takeru Miyato, Andrew M Dai, and Ian Goodfel-
low. 2017. Adversarial training methods for semi-
supervised text classification. In Proceedings of the

International Conference on Learning Representa-

tions.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceed-

ings of the Conference on Empirical Methods in Nat-

ural Language Processing.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the Conference

on Empirical Methods in Natural Language Process-

ing.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial ex-
amples through probability weighted word saliency.
In Proceedings of the Annual Meeting of the Associ-

ation for Computational Linguistics.

Suranjana Samanta and Sameep Mehta. 2017. Towards
crafting text adversarial samples. Computing Re-

search Repository, arXiv: 1707.02812.

Motoki Sato, Jun Suzuki, Shindo, and Yuji Matsumoto.
2019. Interpretable adversarial perturbation in in-
put embedding space for text. In Proceedings of the

International Joint Conference on Artificial Intelli-

gence.

Zhouxing Shi, Kai-Wei Chang Huan Zhang, Minlie
Huang, and Cho-Jui Hsieh. 2020. Robustness verifi-
cation for transformers. In Proceedings of the Inter-

national Conference on Learning Representations.

Catherine Wong. 2017. DANCin SEQ2SEQ: Fooling
text classifiers with adversarial text example gen-
eration. Computing Research Repository, arXiv:
1712.05419.

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou
Ren, and Alan Yuille. 2017. Mitigating adversar-
ial effects through randomization. arXiv preprint

arXiv:1711.01991.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang,
Kai-Wei Chang, Minlie Huang, Bhavya Kailkhura,
Xue Lin, and Cho-Jui Hsieh. 2020. Automatic per-
turbation analysis for scalable certified robustness
and beyond. In Advances in Neural Information Pro-

cessing Systems.

Mao Ye, Chengyue Gong, and Qiang Liu. 2020.
SAFER: A structure-free approach for certified ro-
bustness to adversarial word substitutions. In Pro-

ceedings of the Annual Meeting of the Association

for Computational Linguistics. Association for Com-
putational Linguistics.

Dongxu Zhang and Zhichao Yang. 2018. Word embed-
ding perturbation for sentence classification. Com-

puting Research Repository, arXiv: 1804.08166.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of the Conference on Neu-

ral Information Processing Systems.

Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2018.
Generating natural adversarial examples. In Pro-

ceedings of the International Conference on Learn-

ing Representations.

Xiaoqing Zheng, Jiehang Zeng, Yi Zhou, Cho-Jui
Hsieh, Minhao Cheng, and Xuanjing Huang. 2020.
Evaluating and enhancing the robustness of neural
network-based dependency parsing models with ad-
versarial examples. In Proceedings of the Annual

Meeting of the Association for Computational Lin-

guistics.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-
stein, and Jingjing Liu. 2019. FreeLB: Enhanced
adversarial training for language understanding. In
Proceedings of the International Conference on

Learning Representations.

Appendix

A.1 Experimental Details for Text
Classification
We report in Table 5 and 6 the values of hyperpa-
rameters used to train the text classification models.
The values of hyperparameters in Dirichlet Neigh-
borhood Ensemble (DNE) are listed in Table 7.
All the models were trained with the cross-entropy
loss, and their hyper-parameters were tuned on the
validation sets.

Table 5: Hyperparameters for training the text classifi-
cation models.

Model Embedding Hidden Layer Kernel
BOW 300, GloVe 100 �� ��
CNN 300, GloVe 100 1 3
LSTM 300, GloVe 100 2 ��

A.2 Experimental Details for Natural
Language Inference
All the models were initialized by the pre-trained
Glove word embeddings and trained with the cross-
entropy loss. Their hyper-parameters were tuned
on the validation sets.

Bag of Words (BOW): We use a bag-of-word
model with the same hyperparameters as shown
in Table 5 to encode the premise and hypothesis

5492

Table 6: Training hyperparameters for the text classi-
fication (BOW, CNN, and LSTM) models. The same
values were used for all the settings (plain, data aug-
mentation, and robust training).

Hyperparameter Value
Optimizer Adam (Kingma and Ba, 2015)
Learning rate 0.5⇥ 10�3

Dropout (embedding) 0.3
Weight decay 1⇥ 10�4

Batch size 32
Gradient clip (�1, 1)
Epochs 20

Table 7: Hyperparameters of DNE for text classifica-
tion and natural language inference tasks.

Hyperparameter Value
Dirichlet distribution ↵ (1-hop neighbors) 1.0
Dirichlet distribution ↵ (2-hop neighbors) 0.5
Step size ✏ (adversarial training) 10
Number of steps (adversarial training) 3
Parameter r (ensemble method) 3

separately by summing their word vectors, and then
feeds the concatenation of these encodings to a two-
layer feedforward network with a 300-dimensional
hidden state. We used the Adam optimizer (with
a learning rate 0.5 ⇥ 10�3), and set the dropout
rate on word embedding to 0.3, the weight decay
to 1 ⇥ 10�4, the batch size to 128, the maximum
number of epochs to 20, and the gradient clip to
(�1, 1) for the training.

Decomposable Attention (DecomAtt): We im-
plemented the decomposable attention model as
described in (Parikh et al., 2016) except for a few
differences listed as follows:

• We did not normalize GloVe vectors (Penning-
ton et al., 2014).

• We used the Adam optimizer (with a learning
rate of 0.5⇥ 10�3) instead of AdaGrad.

• We used a dropout rate of 0.3 on word embed-
dings.

• We used a batch size of 128 instead of 4.
• We clipped the value of gradients to be within
(�1, 1).

• We set the value of weight decay to 1⇥ 10�4.
• The intra-sentence attention was not used.

Bidirectional Encoder Representations from
Transformers (BERT): We implemented BERT
as described in (Devlin et al., 2019) except for a
few differences listed below:

• We applied a “bert-base-uncased” architec-
ture (12-layer, 768-hidden, 12-heads, 110M
parameters).

• We use the Adam optimizer with a learning
rate of 0.4⇥ 10�4.

• We used a batch size of 8.
• We set the number of epochs to 3.
• We clipped the value of gradients to be within
(�1, 1).

• We set the value of weight decay to 1⇥ 10�4.
• We used slanted triangular learning rates de-

scribed in (Howard and Ruder, 2018).

We report in Table 7 the hyperparameter values
of Dirichlet Neighborhood Ensemble (DNE) used
for SNLI benchmark, and they were tuned on the
validation set of SNLI.

Table 8: Effect of Parameter ↵ on IMDB.

↵, � CLN PWWS GA-LM GA
0.1, 0.02 86.2 79.0 76.0 68.2
0.1, 0.1 86.2 81.4 79.4 75.4
0.1, 0.5 84.8 82.2 79.8 76.4
1.0, 0.02 85.6 78.8 80.4 75.6
1.0, 0.1 85.1 80.4 80.8 77.8
1.0, 0.5 81.6 78.6 79.4 78.2

A.3 Effect of Parameters of Dirichlet
Distribution
Given a word xi, different values of ↵ are used
to control how much its 1-hop and 2-hop neigh-
bors contribute to generating virtual adversarial
examples. The value also determines the size of
the expansion from C(xi) to B(xi). In order to
reduce the impact on the clean accuracy, we let
the expected weights of the 2-hop neighbors are
� 2 (0, 0.5] times of those of the (1-hop) nearest
neighbors. We tried a few different values of ↵ and
� on IMDB to understand how the choice of them
impact upon the performance. As shown in Table 8,
we found that if the value of ↵ is fixed, the greater
the value of �, the more robust the models will
become, but the worse they perform on the clean
input data. A small value of ↵ seems to be prefer-
able, which allows us to simulate the discrete word
substitution-based perturbations better. We found
that 1-hop and 2-hop neighbors cannot be treated
equally; otherwise, it will significantly reduce the
model’s accuracy on the clean data. For example,
if we uniformly sample the weights of 1-hop and 2-
hop neighbors, the clean accuracy drops to 82.4%
(�3.8%) on the validation set of the IMDB dataset.

