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Abstract

Despite the well-developed cut-edge represen-
tation learning for language, most language
representation models usually focus on spe-
cific levels of linguistic units. This work
introduces universal language representation
learning, i.e., embeddings of different levels
of linguistic units or text with quite diverse
lengths in a uniform vector space. We pro-
pose the training objective MiSAD that utilizes
meaningful n-grams extracted from large un-
labeled corpus by a simple but effective algo-
rithm for pre-trained language models. Then
we empirically verify that well designed pre-
training scheme may effectively yield univer-
sal language representation, which will bring
great convenience when handling multiple lay-
ers of linguistic objects in a unified way. Es-
pecially, our model achieves the highest accu-
racy on analogy tasks in different language lev-
els and significantly improves the performance
on downstream tasks in the GLUE benchmark
and a question answering dataset.

1 Introduction

In this paper, we propose universal language repre-
sentation (ULR) that uniformly embeds linguistic
units in different hierarchies in the same vector
space. A universal language representation model
encodes linguistic units such as words, phrases or
sentences into fixed-sized vectors and handles mul-
tiple layers of linguistic objects in a unified way.
ULR learning may offer a great convenience when
confronted with sequences of different lengths, es-
pecially in tasks such as Natural Language Under-
standing (NLU) and Question Answering (QA),

∗ Corresponding author. This paper was partially sup-
ported by National Key Research and Development Pro-
gram of China (No. 2017YFB0304100), Key Projects of
National Natural Science Foundation of China (U1836222
and 61733011), Huawei-SJTU long term AI project, Cutting-
edge Machine Reading Comprehension and Language Model.
This work was supported by Huawei Noah’s Ark Lab.

hence it is of great importance in both scientific
research and industrial applications.

As is well known, embedding representation
for a certain linguistic unit (i.e., word) en-
ables linguistics-meaningful arithmetic calculation
among different vectors, also known as word anal-
ogy (Mikolov et al., 2013). For example:

King−Man = Queen−Woman

In fact, manipulating embeddings in the vector
space reveals syntactic and semantic relations be-
tween the original symbol sequences and this fea-
ture is indeed useful in true applications. For ex-
ample, “London is the capital of England” can be
formulized as:

England + capital ≈ London

Then given two documents one of which contains
“England” and “capital”, the other contains “Lon-
don”, we consider them relevant. While a ULR
model may generalize such good analogy features
onto free text with all language levels involved to-
gether. For example, Eat an onion : Vegetable ::
Eat a pear : Fruit.

ULR has practical values in dialogue systems,
by which human-computer communication will go
far beyond executing instructions. One of the main
challenges of dialogue systems is Dialogue State
Tracking (DST). It can be formulated as a semantic
parsing task (Cheng et al., 2020), namely, convert-
ing natural language utterances with any length
into unified representations. Thus this is essen-
tially a problem that can be conveniently solved
by mapping sequences with similar semantic mean-
ings into similar representations in the same vector
space according to a ULR model.

Another use of ULR is in the Frequently Asked
Questions (FAQ) retrieval task, where the goal is
to answer a user’s question by retrieving question
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paraphrases that already have an answer from the
database. Such task can be accurately done by only
manipulating vectors such as calculating and rank-
ing vector distance (i.e., cosine similarity). The
core is to embed sequences of different lengths in
the same vector space. Then a ULR model retrieves
the correct question-answer pair for the user query
according to vector distance.

In this paper, we propose a universal language
representation learning method that generates fixed-
sized vectors for sequences of different lengths
based on pre-trained language models (Devlin et al.,
2019; Lan et al., 2019; Clark et al., 2020). We
first introduce an efficient approach to extract and
prune meaningful n-grams from unlabeled cor-
pus. Then we present a new pre-training objective,
Minimizing Symbol-vector Algorithmic Difference
(MiSAD), that explicitly applies a penalty over dif-
ferent levels of linguistic units if their representa-
tions tend not to be in the same vector space.

To investigate our model’s ability of capturing
different levels of language information, we intro-
duce an original universal analogy task derived
from Google’s word analogy dataset, where our
model significantly improves the performance of
previous pre-trained language models. Evaluation
on a wide range of downstream tasks also demon-
strates the effectiveness of our ULR model. Over-
all, our ULR-BERT reaches the highest average
accuracy on the universal analogy dataset and ob-
tains 1.1% gain over Google BERT on the GLUE
benchmark. Extensive experimental results on a
question answering task verifies that our model can
be easily applied to real-world applications in an
extremely convenient way.

2 Related Work

Previous language representation learning methods
such as Word2Vec (Mikolov et al., 2013), GloVe
(Pennington et al., 2014), LASER (Artetxe and
Schwenk, 2019), InferSent (Conneau et al., 2017)
and USE (Cer et al., 2018) focus on specific granu-
lar linguistic units, e.g., words or sentences. Later
proposed ELMo (Peters et al., 2018), OpenAI GPT
(Radford et al., 2018), BERT (Devlin et al., 2019)
and XLNet (Yang et al., 2020) learns contextual-
ized representation for each input token. Although
such pre-trained language models (PrLMs) more or
less are capable of offering universal language rep-
resentation through their general-purpose training
objectives, all the PrLMs devote into the contex-

tualized representations from a generic text back-
ground and pay little attention on our concerned
universal language presentation.

As a typical PrLM, BERT is trained on a large
amount of unlabeled data including two training
targets: Masked Language Model (MLM), and
Next Sentence Prediction (NSP). ALBERT (Lan
et al., 2019) is trained with Sentence-Order Predic-
tion (SOP) as a replacement of NSP. StructBERT
(Wang et al., 2020) combines NSP and SOP to learn
inter-sentence structural information. Nevertheless,
RoBERTa (Liu et al., 2019) and SpanBERT (Joshi
et al., 2020) show that single-sequence training
is better than the sentence-pair scenario. Besides,
BERT-wwm (Cui et al., 2019), StructBERT (Joshi
et al., 2020), SpanBERT (Wang et al., 2020) per-
form MLM on higher linguistic levels, augmenting
the MLM objective by masking whole words, tri-
grams or spans, respectively. ELECTRA (Clark
et al., 2020) further improves pre-training through
a generator and discriminator architecture. The
aforementioned models may seemingly handle dif-
ferent sized input sequences, but all of them focus
on sentence-level specific representation still for
each word, which may cause unsatisfactory perfor-
mance in real-world situations.

There are a series of downstream NLP tasks
especially on question answering which may be
conveniently and effectively solved through ULR
like solution. Actually, though in different forms,
these tasks more and more tend to be solved by
our suggested ULR model, including dialogue ut-
terance regularization (Cao et al., 2020), question
paraphrasing (Bonadiman et al., 2019), measuring
QA similarities in FAQ tasks (Damani et al., 2020;
Sakata et al., 2019).

3 Model

As pre-trained contextualized language models
show their powerfulness in generic language rep-
resentation for various downstream NLP tasks, we
present a BERT-style ULR model that is especially
designed to effectively learn universal, fixed-sized
representations for input sequences of any granu-
larity, i.e., words, phrases, and sentences. Our pro-
posed pre-training method is furthermore strength-
ened in three-fold. First, we extract a large number
of meaningful n-grams from monolingual corpus
based on point-wise mutual information to lever-
age the multi-granular structural information. Sec-
ond, inspired by word and phrase representation
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and their compositionality, we introduce a novel
pre-training objective that directly models the in-
put sequences and the extracted n-grams through
manipulating their representations. Finally, we im-
plement a normalized score for each n-gram to
guide their sampling for training.

3.1 n-gram Extracting

Given a symbol sentence, Joshi et al. (2020) uti-
lize span-level information by randomly masking
and predicting contiguous segments. Different
from such random sampling strategy, our method
is based on point-wise mutual information (PMI)
(Church and Hanks, 1989) that makes efficient use
of statistics and automatically extracts meaningful
n-grams from unlabeled corpus.

Mutual information (MI) describes the associa-
tion between two tokens by comparing the proba-
bility of observing them together with the proba-
bilities of observing them independently. Higher
mutual information indicates stronger association
between the tokens. To be specific, an n-gram is
denoted as w = (x1, . . . , x|w|), where |w| is the
number of tokens in w and |w| > 1. Therefore, we
present an extended PMI formula as follows:

PMI(w) =
1

|w|

logP (w)−
|w|∑
k=1

logP (xk)


where the probabilities are estimated by counting
the number of observations of each token and n-
gram in the corpus, and normalizing by the cor-
pus size. 1

|w| is an additional normalization fac-
tor which avoids extremely low scores for long
n-grams.

We first collect all n-grams with lengths up to N
using the SRILM toolkit1 (Stolcke, 2002), and com-
pute PMI scores for all the n-grams based on their
occurrences. Then, only n-grams with PMI scores
higher than the chosen threshold are selected and
input sequences are marked with the corresponding
n-grams.

3.2 Training Objective

While the MLM training objective as in BERT (De-
vlin et al., 2019) and its extensions (Cui et al., 2019;
Joshi et al., 2020; Wang et al., 2020) are widely
used for pre-trained contextualized language mod-
eling, they do not focus on our concerned ULR,

1http://www.speech.sri.com/projects/srilm/download.html

which demands an arithmetic corresponding rela-
tionship between the symbol and its represented
vector. In order to directly model such demand,
we propose a novel training target – Minimizing
Symbol-vector Algorithmic Difference (MiSAD)
– that leverages the vector space regularity of dif-
ferent granular linguistic units. For example, the
following symbol sequence equation

“London is” + “the capital of England”

=“London is the capital of England” (1)

indicates a vector algorithmic equation according
to our ULR goal,

vector(“London is”) + vector(“the capital of

England”)

=vector(“London is the capital of England”)
(2)

Thus, if the symbol equation (1) cannot imply the
respective vector equation (2), we may set a train-
ing objective to let the ULR model forcedly learn
such relationship.

Formally, we denote the input sequence by
S = {x1, . . . , xm}, where m is the number of
tokens in S. After n-gram extracting and pruning
by means of PMI, each sequence is marked with
several n-grams. During pre-training, only one
of them is selected by the n-gram scoring func-
tion, which will be introduced in detail in Sec-
tion 3.3, and the input sequence is represented as
S = {x1, . . . , xi−1, w, xj+1, . . . , xm}, where the
n-gram w = {xi, . . . , xj} (1 ≤ i < j ≤ m) is a
sub-sequence of S. Then we convert S into two
independent parts – the n-gram w and the rest of
the tokens R = {x1, . . . , xi−1, xj+1, . . . , xm} –
which are fed into the model separately along with
the original complete sequence.

The Transformer encoder generates a contextual-
ized representation for each token in the sequence.
To derive fixed-sized vectors for sequences of dif-
ferent lengths, we use the pooled output of the
[CLS] token as sequence embeddings. The model
is trained to minimize the following Mean Square
Error (MSE) loss:

LMiSAD = MSE(Ew + ER, ES)

where Ew, ER and ES are representations of w, R
and S, respectively, and are all normalized to unit
lengths. To enhance the robustness of the model,
we jointly train MiSAD and the MLM objective
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LMLM as in BERT with equal weights. Since the
input sentence S is split into w+R, we must avoid
masking out the n-gram w in the original sentence
in order not to affect the semantics after vector
space combination. However, tokens in n-grams
other than w have equal weights of being replaced
with [MASK] as other tokens. The final loss func-
tion is as follows:

L = LMiSAD + LMLM

3.3 n-gram Sampling

For a given sequence, the importance of different
n-grams and the degree to which the model un-
derstands their semantics are different. Instead of
sampling n-grams at random, we let the model de-
cide which n-gram to choose based on the knowl-
edge learned in the pre-training stage. Following
Tamborrino et al. (2020), we employ a normalized
score for each n-gram in the input sequence using
the masked language modeling head.

We mask one n-gram at a time and the model
outputs probabilities of the masked tokens given
their surrounding context. The score of an n-gram
w is calculated as the average probabilities of all
tokens in it.

scorew =
1

|w|

|w|∑
k=1

P (xk|S\w)

where |w| is the length of w and S\w is the notation
of an input sequence S with all tokens within w
replaced by the special token [MASK]. Finally, we
choose the n-gram with the lowest score for our
training target.

4 Implementation of ULR Pre-training

This section introduces our ULR pre-training de-
tails.

As for the pre-training corpus, we download
the English Wikipedia Corpus2 and pre-process
with process wiki.py3, which extracts text
from xml files. When processing paragraphs from
Wikipedia, we find that a large number of enti-
ties are annotated with special marks, which may
be useful for our task. Therefore, we identify all
the entities and treat them as high-quality n-grams.
Then, we remove punctuation marks and characters

2https://dumps.wikimedia.org/enwiki/latest
3https://github.com/panyang/Wikipedia Word2vec/blob/

master/v1/process wiki.py

in other languages based on regular expressions,
and finally get a corpus of 2,266M words.

As for n-gram pruning, PMI scores of all n-
grams with a maximum length of N = 6 are calcu-
lated for each document. We manually evaluate the
extracted n-grams and find more than 50% of the
top 2000 n-grams contain 2 ∼ 3 words, and only
less than 3% n-grams are longer than 4. Although
a larger n-gram vocabulary can cover longer n-
grams, it will cause too many meaningless n-grams
at the same time. Therefore, we empirically retain
the top 3000 n-grams for each document. Finally,
we randomly sample 10M sentences from the entire
corpus to reduce training time.

During pre-training, BERT packs sentence pairs
into a single sequence and use the special [CLS]
token as sentence-pair representation. However,
our MiSAD training objective requires single-
sentence inputs. Thus in our experiments, each
input is an n-ngram or a single sequence with a
maximum length of 128. Special tokens [CLS]
and [SEP] are added at the front and end of each
input, respectively. Instead of training from scratch,
we initialize our model with the officially released
checkpoints of BERT (Devlin et al., 2019), AL-
BERT (Lan et al., 2019) and ELECTRA (Clark
et al., 2020). We use Adam optimizer (Kingma
and Ba, 2017) with initial learning rate of 5e-5 and
linear warmup over the first 10% of the training
steps. Batch size is 64 and dropout rate is 0.1. Each
model is trained for one epoch over 10M training
examples on four Nvidia Tesla P40 GPUs.

5 Experimental Setup

5.1 Tasks

We construct a universal analogy dataset in terms of
words, phrases and sentences and experiment with
multiple representation models to examine their
ability of representing different levels of linguistic
units through a task-independent evaluation4. Fur-
thermore, we conduct experiments on a wide range
of downstream tasks from the GLUE benchmark
and a question answering task.

5.1.1 Universal Analogy

Our universal analogy dataset is based on Google’s
word analogy dataset and contains three levels of
tasks: words, phrases and sentences.

4Code and dataset are available at: https://github.com/
Liyianan/ULR.
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girl − boy + brother = daughter sister wife father son
worse − bad + big = bigger larger smaller biggest better
China − Beijing + Paris = France Europe Germany Belgium London
Chilean − Chile + China = Japanese Chinese Russian Korean Ukrainian

Table 1: Examples from our word analogy dataset. The correct answers are in bold.

Word-level Recall that in a word analogy task
(Mikolov et al., 2013), two pairs of words that
share the same type of relationship, denoted as A :
B :: C : D, are involved. The goal is to retrieve the
last word from the vocabulary given the first three
words. To facilitate comparison between models
with different vocabularies, we construct a closed-
vocabulary analogy task based on Google’s word
analogy dataset through negative sampling. Con-
cretely, for each original question, we use GloVe
to rank every word in the vocabulary and the top
5 results are considered to be candidate words. If
GloVe fails to retrieve the correct answer, we man-
ually add it to make sure it is included in the candi-
dates. During evaluation, the model is expected to
select the correct answer from 5 candidate words.
Table 1 shows examples from our word anlogy
dataset.
Phrase-/Sentence-level To derive higher level
analogy datasets, we put word pairs from the word-
level dataset into contexts so that the resulting
phrase and sentence pairs also have linear rela-
tionships. Phrase and sentence templates are ex-
trated from the English Wikipedia Corpus. Both
phrase and sentence datasets have four types of
semantic analogy and three kinds of syntactic anal-
ogy. Please refer to Appendix A for details about
our approach of constructing the universal analogy
dataset.

5.1.2 GLUE
The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018) is a collec-
tion of tasks that are widely used to evaluate the
performance of a model in language understanding.
We divide NLU tasks from the GLUE benchmark
into three main categories.
Single-Sentence Classification Single-sentence
classification tasks includes SST-2 (Socher et al.,
2013), a sentiment classification task, and CoLA
(Warstadt et al., 2019), a task that is to determine
whether a sentence is grammatically acceptable.
Natural Language Inference GLUE contains
four NLI tasks: MNLI (Williams et al., 2018),
QNIL (Rajpurkar et al., 2016), RTE (Bentivogli

et al., 2009) and WNLI (Levesque et al., 2012).
However, we exclude the problematic WNLI in
accordance with Devlin et al. (2019).
Semantic Similarity MRPC (Dolan and Brockett,
2005), QQP (Chen et al., 2018) and STS-B (Cer
et al., 2017) are semantic similarity tasks, where the
model is required to either determine whether the
two sentences are equivalent or assign a similarity
score for them.

In the fine-tuning stage, pairs of sentences are
concatenated into a single sequence with a special
token [SEP] in between. For both single sentence
and sentence pair tasks, the hidden state of the first
token [CLS] is used for softmax classification.
We use the same sets of hyperparameters for all the
evaluated models. Experiments are ran with batch
sizes in {8, 16, 32, 64} and learning rate of 3e-5
for 3 epochs.

5.1.3 GEOGRANNO

GEOGRANNO (Herzig and Berant, 2019) contains
natural language paraphrases paired with logical
forms. The dataset is manually annotated: For each
natural language utterance, a correct canonical ut-
terance paraphrase is selected. The train/dev sets
have 487 and 59 paraphrase pairs, respectively. In
our experiments, we focus on question paraphrase
retrieval, whose task is to retrieve the correct para-
phrase from all 158 different sentences when given
a question. Most of the queries have only one cor-
rect answer while some have two or more matches.
Evaluation metrics are Top-1/5/10 accuracy.

For GEOGRANNO and the universal analogy
task, we apply three pooling strategies on top of
the PrLM: Using the vector of the [CLS] token,
mean-pooling of all token embeddings and max-
pooling over time of all embeddings. The default
setting is mean-pooling.

5.2 Baselines

On the universal analogy task, we adopt three types
of baselines including bag-of-words (BoW) model
from pre-trained word embeddings: GloVe (Pen-
nington et al., 2014), sentence embedding models:
InferSent (Conneau et al., 2017), GenSen (Subra-
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Model Word Phrase Sentence Avg. Gain
sem syn Avg. sem syn Avg. sem syn Avg.

Word & Sentence Representation Models
GloVe 82.6 78.0 80.3 0.0 40.9 20.5 0.2 39.8 20.0 40.3 -
InferSent 68.8 88.7 78.8 0.0 54.1 27.0 0.0 50.8 25.4 43.7 -
GenSen 44.5 84.4 64.5 0.0 54.4 27.2 0.0 44.9 22.4 38.0 -
USE 73.0 83.1 78.0 1.8 63.1 32.5 0.6 44.1 22.4 44.3 -
LASER 26.9 78.2 52.6 0.0 63.3 31.7 1.6 55.4 28.5 37.6 -

Pre-trained Contextualized Language Models
BERTBASE 51.3 60.2 55.8 0.3 69.3 34.8 0.1 68.3 34.2 41.6 -
BERTLARGE 49.7 46.6 48.2 0.1 67.4 33.9 0.5 61.2 30.9 37.7 -
ALBERTBASE 33.7 38.1 35.9 0.1 53.6 26.7 0.1 60.9 30.5 31.0 -
ALBERTXXLARGE 38.2 35.6 36.9 0.8 52.3 26.6 0.4 49.4 24.9 29.5 -
ELECTRABASE 22.9 32.4 27.7 2.2 57.1 29.7 0.4 39.5 20.0 25.8 -
ELECTRALARGE 20.4 24.7 22.6 2.9 49.8 26.4 1.4 52.0 26.7 25.2 -

Our Universal Language Representation Models
ULR-BERTBASE 71.7 70.0 70.8 1.1 66.8 34.0 1.5 63.0 32.3 45.7 4.1
ULR-BERTLARGE 80.8 66.2 73.5 8.4 60.5 34.5 4.7 54.3 29.5 45.8 8.1
ULR-ALBERTBASE 43.5 56.3 49.9 0.3 58.2 29.3 0.3 60.9 30.6 36.6 5.6
ULR-ALBERTXXLARGE 26.8 31.0 28.9 3.6 55.0 29.3 0.7 60.3 30.5 29.6 0.1
ULR-ELECTRABASE 24.4 34.6 29.5 1.7 56.5 29.1 0.9 57.6 29.3 29.3 3.5
ULR-ELECTRALARGE 22.0 31.0 26.5 2.9 56.7 29.8 0.8 52.9 26.9 27.7 2.5

Table 2: Performance of different models on the universal analogy dataset. “sem” = semantic. “syn” = syntactic.

manian et al., 2018), USE (Cer et al., 2018) and
LASER (Artetxe and Schwenk, 2019), and pre-
trained contextualized language models: BERT,
ALBERT and ELECTRA.

On GLUE and GEOGRANNO, we especially
evaluate our model and two baseline models:

BERT The officially released pre-trained BERT
models (Devlin et al., 2019).

MLM-BERT BERT models trained with the
same additional steps with our model on Wikipedia
using only the MLM objective.

ULR-BERT Our universal language representa-
tion model trained on Wikipedia with MLM and
MiSAD.

6 Results

6.1 Universal Analogy

Results on our universal analogy dataset are re-
ported in Table 2. Generally, semantic analogies
are more challenging than the syntactic ones and
higher-level relationships between sequences are
more difficult to capture, which is observed in al-
most all the evaluated models. On the word analogy
task, GloVe achieves the highest accuracy (80.3%)
while its performance drops sharply on higher-level
tasks. All well trained PrLMs like BERT, ALBERT

5https://gluebenchmark.com

and ELECTRA hardly exhibit arithmetic character-
istics and increasing the model size usually leads
to a decrease in accuracy.

However, training models with our properly de-
signed MiSAD objective greatly improves the per-
formance. Especially, ULR-BERT obtains 15% ∼
25% absolute gains on word-level analogy, such
results are so strong to be comparable to GloVe,
which especially focuses on the linear word anal-
ogy feature from its training scheme. Mean-
while GloVe performs far worse than our model
on higher-level analogies. Overall, ULR-BERT
achieves the highest average accuracy (45.8%), an
absolute gain of 8.1% over BERT, indicating that
it has indeed more effectively learned universal
language representations across different linguistic
units. It demonstrates that our pre-training method
is effective and can be adapted to different PrLMs.

6.2 GLUE

Table 3 shows the performance on the GLUE bench-
mark. Our model improves the BERTBASE and
BERTLARGE by 1.1% and 0.7% on average, re-
spectively. Since our model is established on the
released checkpoints of Google BERT, we make
additional comparison with MLM-BERT that is
trained under the same procedure as our model
except for the pre-training objective. While the
model trained with more MLM updates may im-
prove the performance on some tasks, it underper-
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Batch size: 8, 16, 32, 64; Length: 128; Epoch: 3; lr: 3e-5

Model
Single Sentence Natural Language Inference Semantic Similarity

Avg. GainCoLA SST-2 MNLI QNLI RTE MRPC QQP STS-B
(mc) (acc) m/mm(acc) (acc) (acc) (F1) (F1) (pc)

In literature
BERTBASE 52.1 93.5 84.6/83.4 90.5 66.4 88.9 71.2 87.1 79.7 -
BERTLARGE 60.5 94.9 86.7/85.9 92.7 70.1 89.3 72.1 87.6 82.2 -

Our implementation
BERTBASE 53.5 92.1 84.5/83.7 90.6 67.1 87.5 71.6 85.3 79.5 -
MLM-BERTBASE 51.9 94.0 84.5/83.9 90.4 66.6 88.1 71.6 86.2 79.7 0.2
ULR-BERTBASE 56.5 94.3 84.6/84.0 91.0 68.0 89.0 71.6 86.6 80.6 1.1
BERTLARGE 60.5 94.9 86.1/85.6 92.8 68.8 89.6 72.1 87.3 82.0 -
MLM-BERTLARGE 62.6 94.5 86.6/85.6 92.8 67.1 88.9 72.3 87.2 82.0 0
ULR-BERTLARGE 61.8 95.0 86.7/86.0 93.0 71.0 90.2 72.3 88.2 82.7 0.7

Table 3: Test results on the GLUE benchmark scored by the evaluation server5. We exclude the problematic WNLI
dataset and recalculate the “Avg.” score. Results for BERTBASE and BERTLARGE are obtained from Devlin et al.
(2019). “mc” and “pc” are Matthews correlation coefficient (Matthews, 1975) and Pearson correlation coefficient,
respectively.

Model Top-1 Top-5 Top-10

GloVe 0.3 2.7 7.4
LASER 6.3 9.5 12.7
BM25 27.1 62.5 76.4

BERTBASE 29.6 58.9 67.1
MLM-BERTBASE 37.0 66.8 72.6
ULR-BERTBASE 39.7 66.0 77.3
BERTLARGE 15.9 42.7 54.2
MLM-BERTLARGE 24.5 57.8 70.7
ULR-BERTLARGE 35.1 68.8 77.3

Table 4: Question paraphrase retrieval accuracy of dif-
ferent models on the train-dev set of GEOGRANNO.

forms BERT on datasets such as MRPC, RTE and
SST-2. Our model exceeds MLM-BERTBASE and
MLM-BERTLARGE by 0.9% and 0.7% on average
respectively. The main gains from the base model
are in CoLA (+4.6%) and RTE (+1.4%), which
are entirely contributed by our MiSAD training
objective. Overall, our model improves the perfor-
mance of its baseline on every dataset in the GLUE
benchmark, demonstrating its effectiveness in real
applications of natural language understanding.

6.3 GEOGRANNO

Table 4 shows the performance on GEOGRANNO.
As we can see, 4 out of 6 evaluated pre-trained
language models significantly outperform BM25
for Top-1 accuracy, indicating the superiority of
contextualized embedding-based models over the
statistical method. Among all the evaluated mod-
els, ULR-BERT yields the highest accuracies
(39.7%/68.8%/77.3%). To be specific, our ULR
models exceeds BERTBASE and BERTLARGE by

10.1% and 19.2% and obtains 2.7% and 10.6%
improvements compared with MLM-BERTBASE
and MLM-BERTLARGE in terms of Top-1 accu-
racy, respectively, which are consistent with the
results on the GLUE benchmark. Since n-grams
and sentences of different lengths are involved in
the pre-training of our model, it is especially better
at understanding the semantics of input sequences
and mapping queries to their paraphrases according
to the learned sense of semantic equality.

7 Ablation Study

In this section, we explore to what extent does
our model benefit from the MiSAD objective and
sampling strategy, and further confirm that our pre-
training procedure improves the model’s ability of
encoding variable-length sequences.

7.1 Effect of Training Objectives

To make a fair comparison, we train BERT with
the same additional updates using different combi-
nations of training tasks:

NSP-BERT is trained with MLM and NSP,
whose goal is to distinguish whether two input
sentences are consecutive. For each sentence, we
choose its following sentence 50% of the time and
randomly sample a sentence 50% of the time.

SOP-BERT is trained with MLM and SOP, a
substitute of the NSP task that aims at better mod-
eling the coherence between sentences. Consistent
with Lan et al. (2019), we sample two consecu-
tive sentences in the same document as a positive
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Model
Single Sentence Natural Language Inference Semantic Similarity

Avg. GainCoLA SST-2 MNLI QNLI RTE MRPC QQP STS-B
(mc) (acc) m/mm(acc) (acc) (acc) (F1) (F1) (pc)

BERT 53.5 92.1 84.5/83.7 90.6 67.1 87.5 71.6 85.3 79.5 -
MLM-BERT 51.9 94.0 84.5/83.9 90.4 66.6 88.1 71.6 86.2 79.7 0.2
NSP-BERT 53.5 93.2 84.1/83.5 90.5 66.1 87.7 72.1 84.5 79.5 0
SOP-BERT 50.9 92.7 84.0/83.1 90.7 66.5 85.0 70.9 83.9 78.6 -0.9
ULR-BERT 56.5 94.3 84.6/84.0 91.0 68.0 89.0 71.6 86.6 80.6 1.1

Table 5: Comparison of base models using different training objectives on the GLUE test set.

Model CoLA RTE MRPC
std. mean max std. mean max std. mean max

BERT 1.51 57.0 58.3 1.92 68.1 70.4 0.52 90.4 90.9
ULR-BERT 1.31 59.3 60.2 1.83 69.3 72.6 0.61 90.8 91.5

Table 6: Standard deviation, mean, and maximum performance on the GLUE dev set when fintuing BERT and
ULR-BERT with 5 random seeds.

sample, and reverse their order 50% of the time to
create a negative sample.

For both baselines and ULR, we use the same set
of parameters for 5 runs, and average scores on the
GLUE test set are reported in Table 5. Although
we expect NSP and SOP to help the model bet-
ter understand the relationship between sentences
and benefit tasks like natural language inference,
they hardly improve the performance on GLUE ac-
cording to our strict implementation. Specifically,
NSP-BERT outperforms MLM-BERT on datasets
such as CoLA, QNLI and QQP while less satisfac-
tory on other tasks. SOP-BERT is on a par with
MLM-BERT on three NLI tasks but it sharply de-
creases the score on other datasets. In general,
single-sentence training with only the MLM objec-
tive accounts for better performance as described
by Liu et al. (2019); Joshi et al. (2020). Besides,
our training strategy which combines MLM and
MiSAD yields the most considerable gains com-
pared with other training objectives.

Table 6 shows standard deviation, mean and max-
imum performance on CoLA/RTE/MRPC dev set
when fine-tuning BERT and ULR-BERT over 5
random seeds, which clearly shows that our model
is generally more stable and yields better results
compared with BERT.

7.2 Effect of Sampling Strategies
We compare our PMI-based n-gram sampling
scheme with two alternatives. Specifically, we train
the following two baseline models under the same
model settings except for the sampling strategy.
Random Spans We replace our n-gram module

with the masking strategy as proposed by Joshi
et al. (2020), where the sampling probability of
span length l is based on a geometric distribution
l ∼ Geo(p). The parameter p is set to 0.2 and
maximum span length lmax = 6.
Named Entities We only retain named entities that
are annotated in the Wikipedia Corpus.

Table 7 shows the effect of different sampling
schemes on the GLUE dev set. As we can see,
our PMI-based n-gram sampling is preferable to
other strategies on 6 out of 8 tasks. CoLA and RTE
are more sensible to sampling strategies than other
tasks. On average, using named entities and mean-
ingful n-grams is better than randomly sampled
spans. We attribute the source to the reason is that
random span sampling ignores important semantic
and syntactic structure of a sequence, resulting in a
large number of meaningless segments. Compared
with using only named entities, our PMI-based ap-
proach automatically discovers structures within
any sequence and is not limited to any granularity,
which is critical to pre-training universal language
representation.

7.3 Application to Different Models

Experiments on the universal analogy task reveal
that our proposed training scheme can be adapted
to various pre-trained langauge models. In this
subsection, we compare our model with BERT,
ALBERT and ELECTRA on GEOGRANNO and
the GLUE benchmark.

Table 8 shows the results on GEOGRANNO and
the GLUE dev set, where our approach can en-
hance the performance of all three pre-trained mod-
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Model
Single Sentence Natural Language Inference Semantic Similarity

Avg.CoLA SST-2 MNLI QNLI RTE MRPC QQP STS-B
(mc) (acc) m/mm(acc) (acc) (acc) (F1) (F1) (pc)

Random Spans 56.1 93.1 84.5/84.9 91.5 66.1 91.5 87.9 89.8 82.8
Named Entities 57.1 93.1 84.4/84.7 91.6 67.5 90.8 87.9 89.9 83.0
PMI n-grams 59.3 93.6 84.7/84.9 91.8 69.3 90.8 87.8 89.9 83.6

Table 7: Comparison of base models using different sampling strategies on the GLUE dev set.

Model GEOGRANNO GLUE dev

BERT 29.6/58.9/67.1 82.6
ALBERT 18.4/41.1/52.6 83.0
ELECTRA 11.2/21.1/26.6 86.5

ULR-BERT 39.7/66.0/77.3 83.6
ULR-ALBERT 24.9/44.7/55.9 83.4
ULR-ELECTRA 26.8/51.8/65.5 86.9

Table 8: Comparison of different base models on GE-
OGRANNO and GLUE. We report the Top-1/5/10 accu-
racy on GEOGRANNO.

Group by query length |q|
Model 1∼6 7∼8 9∼15

(32.6%) (36.7%) (30.7%)

BERT 73.9 64.9 62.5
ULR-BERT 79.8 76.1 75.9

+5.9 +11.2 +13.4

Group by abs(|q| − |Q|)
Model ≥0 ≥2 ≥3

(100%) (62.2%) (43.3%)

BERT 67.1 63.0 57.0
ULR-BERT 77.3 76.2 70.3

+10.2 +13.2 +13.3

Table 9: Comparison of Top-10 accuracy of BERT and
ULR-BERT on different subsets of GEOGRANNO.

els. Among all the evaluated models, ULR-BERT
achieves the largest gains on GLUE while ULR-
ELECTRA obtains the most significant improve-
ment on GEOGRANNO. It further verifies the effec-
tiveness and universality of our model.

7.4 Effect of Sequence Length
In previous experiments on GEOGRANNO, our
model has shown considerable improvement over
all three evaluated PrLMs. The task involves text
matching between linguistic units at different lev-
els where queries are sentences and labels are often
phrases. Thus the performance on such task highly
depends on the model’s ability to uniformly deal
with linguistic units of different granularities.

In the following, we explore deeper details and
interpretability of how our proposed objective act
at different levels of linguistic units. Specifically,

we intuitively show the consistency of the repre-
sentations learned by ULR-BERT by grouping the
dataset according to query length |q| and the abso-
lute difference between query length and Question
length abs(|q| − |Q|), respectively.

Results are shown in Table 9, which clearly
shows that as the length of the query increases,
the performance of BERT drops sharply. Sim-
ilarly, BERT is more sensible to the difference
between query length and Question length. In
contrast, ULR-BERT is more stable when dealing
with sequences of different lengths and is superior
to BERT in terms of representation consistency,
which we speculate is due to the interaction be-
tween different levels of linguistic units in the pre-
training procedure.

8 Conclusion

This work formally introduces universal language
representation learning to enable unified vector
operations among different language hierarchies.
For such a purpose, we propose three highlighted
ULR learning enhancement, including the newly
designed training objective, Minimizing Symbol-
vector Algorithmic Difference (MiSAD). In de-
tailed model implementation, we extend BERT’s
pre-training objective to a more general level,
which leverages information from sequences of
different lengths in a comprehensive way. In ad-
dition, we provide a universal analogy dataset as
a task-independent evaluation benchmark. Over-
all experimental results show that our proposed
ULR model is generally effective in a broad range
of NLP tasks including natural language question
answering and so on.
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A Universal Analogy

As a new task, universal representation has to be
evaluated in a multiple-granular analogy dataset.
In this section, we introduce the procedure of con-
structing different levels of analogy datasets based
on Google’s word analogy dataset.

A.1 Word-level analogy

The goal of a word analogy task is to solve ques-
tions like “A is to B as C is to ?”, which is to re-
trieve the last word from the vocabulary given the
first three words. The objective can be formulated
as maximizing the cosine similarity between the
target word embedding and the linear combination
of the given vectors:

d∗ = argmax
d∗

cosine(c+ b− a, d)

cosine(u, v) =
u · v
‖u‖‖v‖

where a, b, c, d represent embeddings of the cor-
responding words and are all normalized to unit
lengths.

We construct a closed-vocabulary analogy task
based on Google’s word analogy dataset through
negative sampling. During evaluation, the model
is expected to select the correct answer from 5
candidate words.

A.2 Phrase/Sentence-level analogy

To investigate the arithmetic properties of vectors
for higher levels of linguistic units, we present
phrase and sentence analogy tasks based on the pro-
posed word analogy dataset. Statistics are shown
in Table 10.
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Dataset #p #q #c #l (p/s)

capital-common 23 506 5 6.0/12.0
capital-world 116 4524 5 6.0/12.0
city-state 67 2467 5 6.0/12.0
male-female 23 506 5 4.1/10.1
present-participle 33 1056 2 4.8/8.8
positive-comparative 37 1322 2 3.4/6.1
positive-negative 29 812 2 4.4/9.2

All 328 11193 - 5.4/10.7

Table 10: Statistics of our analogy datasets. #p and #q
are the number of pairs and questions for each category.
#c is the number of candidates for each dataset. #l (p/s)
is the average sequence length in phrase/sentence-level
analogy datasets.

A.2.1 Semantic
Semantic analogies can be divided into four sub-
sets: “capital-common”, “capital-world”, “city-
state” and “male-female”. The first two sets can
be merged into a larger dataset: “capital-country”,
which contains pairs of countries and their capi-
tal cities; the third involves states and their cities;
the last one contains pairs with gender relations.
Considering GloVe’s poor performance on word-
level “country-currency” questions (<32%), we
discard this subset in phrase and sentence-level
analogies. Then we put words into contexts so that
the resulting phrases and sentences also have linear
relationships. For example, based on relationship

Athens : Greece :: Baghdad : Iraq,

we select phrases and sentences that contain the
word “Athens” from the English Wikipedia Corpus.
We manually modify some words to ensure text
coherence: “He was hired as being professor of
physics by the university of Athens.” and create
examples:

hired by ... Athens : hired by ... Greece :: hired
by ... Baghdad : hired by ... Iraq.

However, we found that such a question is
identical to word-level analogy for BOW methods
like averaging GloVe vectors, because they treat
embeddings independently despite the content and
word order. To avoid lexical overlapping between
sequences, we replace certain words and phrases
with their synonyms and paraphrases, e.g.,

hired by ... Athens : employed by ... Greece ::
employed by ... Baghdad : hired by ... Iraq.

A.2.2 Syntactic
We consider three typical syntactic analogies:
Tense, Comparative and Negation, corresponding
to three subsets: “present-participle”, “positive-
comparative”, “positive-negative”, where the
model needs to distinguish the correct answer
from “past tense”, “superlative” and “positive”,
respectively. For example, given phrases

Pigs are bright : Pigs are brighter than goats ::
The train is slow,

the model need to give higher similarity score to the
sentence that contains “slower” than the one that
contains “slowest”. Similarly, we add synonyms
and synonymous phrases for each question to eval-
uate the model ability of learning context-aware
embeddings rather than interpreting each word in
the question independently. For instance, “pleas-
ant” ≈ “not unpleasant” and “unpleasant” ≈ “not
pleasant”.


