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Abstract

Despite recent successes of large pre-trained
language models in solving reasoning tasks,
their inference capabilities remain opaque. We
posit that such models can be made more inter-
pretable by explicitly generating interim infer-
ence rules, and using them to guide the gener-
ation of task-specific textual outputs. In this
paper we present COINS, a recursive inference
framework that i) iteratively reads context sen-
tences, ii) dynamically generates contextual-
ized inference rules, encodes them, and iii)
uses them to guide task-specific output gener-
ation. We apply COINS to a Narrative Story
Completion task that asks a model to complete
a story with missing sentences, to produce a
coherent story with plausible logical connec-
tions, causal relationships, and temporal de-
pendencies. By modularizing inference and
sentence generation steps in a recurrent model,
we aim to make reasoning steps and their ef-
fects on next sentence generation transparent.
Our automatic and manual evaluations show
that the model generates better story sentences
than SOTA baselines, especially in terms of
coherence. We further demonstrate improved
performance over strong pre-trained LMs in
generating commonsense inference rules. The
recursive nature of COINS holds the potential
for controlled generation of longer sequences.

1 Introduction

Narrative story understanding, and similarly story
generation, requires the ability to construe mean-
ing that is not explicitly stated through common-
sense reasoning over events in the story (Rashkin
et al., 2018a). Previous work in modeling narrative
stories has focused on learning scripts1 (Schank
and Abelson, 1977; Mooney and DeJong, 1985)
and learning narrative schemas using corpus statis-

1Scripts are structured knowledge about stereotypical event
sequences together with their participants.

Beginning:
S1: Janie was excited to see her sister's play in theatre.
S2: Janie got a call from her boss about an emergency work. 

• SomeoneA wasn’t able to go 
SomewhereB (to see the play) 

End:
S5: Janie watched a video of the play later.

• SomeoneA wants to go to 
SomewhereB (to theatre)

• SomeoneA possess(es) a phone.
• SomeoneB wants SomeoneA to 

work.

Implicit Inference RulesEffect

Effect and Cause

Cause

Context :

S3: Janie’s boss gave her new work. 
S4: Janie couldn’t attend her sisters’ playMissing Sentence: 

Figure 1: An example of the Narrative Story Comple-
tion Task. Top and bottom boxes show the context (top)
and missing sentences (bottom). The chain of implicit
inference rules explains the connection between begin-
ning and end, and allows to infer the missing sentences.

tics (Chambers and Jurafsky, 2009; Balasubrama-
nian et al., 2013; Nguyen et al., 2015). Recently,
large pretrained language models (LMs) such as
GPT-2 have shown remarkable performance on var-
ious generation tasks. While these pretrained LMs
learn probabilistic associations between words and
sentences, they still have difficulties in modeling
causality (Mostafazadeh et al., 2020). Also, in
narrative story generation, models need to be con-
sistent with everyday commonsense norms. Hence,
to address a story generation task, i) models need
to be equipped with suitable knowledge, ii) they
need effective knowledge integration and reasoning
methods, and ideally iii) we want to be able to make
the effectiveness of these methods transparent.

In this work we focus on the aspects i) to iii),
by investigating new methods that build on pre-
trained LMs to generate missing sentences from an
incomplete narrative story. Specifically, we focus
on Narrative Story Completion (NSC), a new task
setting for story generation. Given an incomplete
story, specified only through its beginning and end-
ing, the task is to generate the missing sentences to
complete the story (see Figure 1). Our hypothesis is
that in order to obtaining a consistent and coherent
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narrative story, the task requires a model’s ability
to perform commonsense inference about events
and entities in a story. Unlike other existing tasks,
NSC requires: i) generating multiple sentences to
complete a story, and ii) ensuring that the gener-
ated sentences are coherent with respect to both
beginning and ending of the story. Hence, the NSC
task offers a challenging setup for investigating the
reasoning capacities of a story generation model.

Humans excel in drawing inferences and con-
structing causal chains that explain the connection
between events (Kintsch and Dijk, 1978). Figure
1 illustrates this with an example from our NSC
task.2 From Janie was excited to see her sister’s
play in theatre(s1). Janie got a call from her boss
about new work(s2) and the outcome Janie watched
a video of the play later.(s5) – we can construct
inference rules in forward and backward direc-
tion: forward via EFFECT: SomeoneB (boss) gave
work to SomeoneA (Janie); backward via CAUSE:
SomeoneA (Janie) wasn’t able to go SomewhereB
(to the theatre). By combining these inferences, we
can obtain a representation from which to generate
a connection that completes the story, e.g., Janie’s
boss wanted her to look after the issue(s3). She
missed the theatre play(s4).

In this work, we propose COINS: a recursive
model that jointly learns to i) dynamically gener-
ate commonsense inference rules3 grounded in the
context and to ii) perform controled and coherent
story generation, using the generated inferences as
a guide. We hypothesize that jointly learning to
generate contextualized inference rules from dy-
namically predicted contextualized inference rules
and learning to generate story sentences incremen-
tally while taking the inferences into account, will
improve the quality of both the predicted inference
rules and of generated story sentences. Moreover,
the recursive nature of the model and the individu-
ation of the inference prediction and sentence gen-
eration tasks make the process more interpretable:
the generated inference rules can be viewed as inter-
mediate representations, and can serve as explana-
tions of how the dynamically produced inferences
influence the quality of generated story sentences.

Our main contributions are as follows:
1) We propose a new setting for a Narrative Story

Completion task, which asks a system to complete
a narrative story given its beginning and ending,

2We use the ROCstories dataset to frame the NSC task.
3In this paper, similar to Mostafazadeh et al. (2020), we

will use “inference rule” and “explanation” interchangeably.

with the aim of examining the reasoning capacities
of a model that solves the task.

2) We propose an integrated reasoning and NL
generation model, COINS, that based on its current
context generates contextualized commonsense in-
ference rules and follow-up sentences, in a step-
wise recurrent process.

3) We conduct extensive experiments with au-
tomatic and human evaluation. Automatic evalu-
ations show that COINS outperforms strong base-
lines (+2.2 BLEU score). Human evaluation shows
that compared to strong baselines, our model yields
better sentence generations with respect to coher-
ence (+50.5%) and grammaticality (+20.5%).

4) We show that COINS generates better infer-
ence rules (+2.3 BLEU score) compared to a fine-
tuned GPT-2 model, and that jointly learning to
generate inferences and story sentences improves
the quality of the generated inference rules.

Our code is made publicly available.4

2 Related Work

Sentence-level Commonsense Inference and Be-
yond. Recent research in this area has focused on
commonsense knowledge acquisition (Sap et al.,
2019; Zhang et al., 2020; Speer et al., 2017;
Malaviya et al., 2020) and commonsense reason-
ing (Zellers et al., 2019; Talmor et al., 2018). In
our work, we focus on inferential knowledge about
events, and entities participating in such events.
Rashkin et al. (2018b) introduced a knowledge re-
source of commonsense inferences regarding peo-
ple’s intents and reactions towards a diverse set
of events. With COMET, Bosselut et al. (2019)
have shown that pre-trained neural language mod-
els can be fine-tuned using large knowledge bases
(such as ATOMIC, Sap et al. (2019)) to generate
inferences for a given event or sentence. How-
ever, the generated knowledge from COMET is non-
contextualized and hence, can be inconsistent. Re-
cently, Mostafazadeh et al. (2020) proposed GLU-
COSE, a new resource and dataset that offers semi-
structured commonsense inference rules that are
grounded in sentences of specific stories. They
show that fine-tuning a pre-trained LM on the
GLUCOSE dataset helps the model to better gener-
ate inferrable commonsense explanations given a
complete story. In concurrent work, Gabriel et al.
(2021) proposed PARA-COMET, a model that in-

4https://github.com/Heidelberg-NLP/
COINS

https://github.com/Heidelberg-NLP/COINS
https://github.com/Heidelberg-NLP/COINS
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corporates paragraph-level information to gener-
ate coherent commonsense inferences from narra-
tives. In this work, we investigate how well a neural
model can generate contextualized commonsense
inference rules for an incomplete story. Learning
to predict iterative inference steps for successive
events in a narration using semi-structured knowl-
edge rules is still a difficult and underexplored task.
We propose a model that learns to iteratively gen-
erate a coherent completion of an incomplete nar-
rative story utilizing semi-structured knowledge as
offered by the GLUCOSE framework.

Commonsense Reasoning in Narrative Sto-
ries. Early work on narrative events focused on
script learning, by defining stereotypical event se-
quences together with their participants (Schank
and Abelson, 1977). In later works, Chambers
and Jurafsky (2008, 2009); Balasubramanian et al.
(2013); Nguyen et al. (2015); Pichotta and Mooney
(2014) proposed methods to learn narrative event
chains using a simpler event representation that
allows for efficient learning and inference. Cham-
bers and Jurafsky (2009) acquired Narrative Event
Schemata from corpora and established the Narra-
tive Cloze Task (Chambers and Jurafsky, 2008) that
evaluates script knowledge by predicting a missing
event (verb and its arguments) in a sequence of ob-
served events. More recently, Mostafazadeh et al.
(2016) proposed the story cloze task that selects a
plausible (right) over an implausible (wrong) story
ending. Bhagavatula et al. (2020) proposed an ab-
ductive reasoning task to test a model’s ability to
generate plausible explanations for an incomplete
set of observations. Paul and Frank (2020) pro-
posed a multi-head knowledge attention method to
dynamically incorporate non-contextualized infer-
ential knowledge to address the abductive reason-
ing task. Qin et al. (2020) proposed an unsuper-
vised decoding algorithm that can flexibly incorpo-
rate both the past and future contexts using only
off-the-shelf language models to generate plausible
explanations. Concurrent to our work, Paul and
Frank (2021) presented a method for addressing
the abductive reasoning task by explicitly learning
what events could follow other events in a hypo-
thetical scenario. In our work, we make use of the
ROCStories dataset (Mostafazadeh et al., 2016) to
build a Narrative Story Completion task that tests a
model’s ability of generating missing sentences in
a story. We propose a model that aims to produce
coherent narrative stories by performing iterative

commonsense inference steps.
Narrative Story Generation. Much existing

work on story generation relied on symbolic plan-
ning methods (Lebowitz, 1987; PÉrez and Sharples,
2001; Józefowicz et al., 2016). With the advances
of Seq2Seq models, several works applied them
in automatic story generation tasks (Roemmele,
2016; Jain et al., 2017). Fan et al. (2018) pro-
posed a hierarchical approach to generate short
stories from initial prompts. Recently, many works
have focused on integrating external commonsense
knowledge from large static knowledge bases like
ATOMIC (Sap et al., 2019) or ConceptNet (Speer
et al., 2017) for different tasks such as story end-
ing generation (Ji et al., 2020; Guan et al., 2019) or
story generation (Guan et al., 2020; Xu et al., 2020).
In concurrent work, Ammanabrolu et al. (2021)
look into causality for a commonsense plot gener-
ation task. In our work, we model the assumption
that contextualized inference rules provide inferred
information that can guide a system in generating
both contextually grounded and coherent follow-up
sentences in a story generation task.

3 Task Definition

We formulate the Narrative Story Completion
task (NSC) as follows: given an incomplete
story (S= s1, s2, sn) as a sequence of tokens t =
{t1, t2, ..., tSEP , ..., tm} (with tSEP a mask token
delimiting s2 and sn), the goal is to generate the
missing sentences (s3, ..., sn−1) as a sequence of
tokens ysi={ysi1 , y

si
2 , ..., y

si
v } (with i = 3, ..., n−1

and v the maximum length of each sentence).
In the setting of the NSC task, we expect the

completed story to be coherent. That is, the gen-
erated sentences should exhibit reasonable logical
connections, causal relationships, and temporal de-
pendencies with each other and the given beginning
and ending of the story. In this paper, we define
a discourse to be coherent if successive sentences
that are about the same entities, and the reported
events involving them can be construed to reflect
common knowledge about how events are typically
connected in a temporal sequence or by causal re-
lations. Similar to Hobbs (1985), the criteria to
conclude that discourse is coherent include require
that there are reflections of causality in the text.

Our take on this task is to incrementally generate
contextualized inference rules from the given con-
text, and to make use of this knowledge to generate
missing story sentences.
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Relation Type Dimensions
Cause
(Dim 1-5)

(1) Event that directly causes or enables X; (2) Emo-
tion or basic human drive that motivates X; (3) Loca-
tion state that enables X; (4) A possession state that
enables X; (5) Other attribute that enables X.

Effect
(Dim 6-10)

(6) An event that is directly caused or enabled by X;
(7) An emotion that is caused by X; (8) A change of
location that X results in; (9) A change of possession
that X results in; (10) Other change in attribute that
X results in.

Table 1: Causal Relation types and their mapped rela-
tions (Mostafazadeh et al., 2020).

Incomplete
Story:

s1: Jane loved cooking. s2: Everyone else in her family did too.
s5: Eventually she learned everything there was to teach.

Gold: SomeoneA loves SomethingA (that is an activity )
>CAUSES/ENABLES> SomeoneA learns everything there is
to learn.
Jane loves cooking >CAUSES/ENABLES> Jane learns every-
thing there is to learn

COINS: SomeoneA is a quick learner >CAUSES/ENABLES>
SomeoneA learns everything there is to learn.
Jane is a quick learner >CAUSES/ENABLES> Jane learns
everything there is to learn.

Table 2: Example of inference rules generated by
COINS (compared to Gold from GLUCOSE). Grey:
context-specific rules (SR); regular: general rules (GR).
Bolded sentence s5 is X, CAUSE is the relation type r.

4 Discourse-Aware Inference Rules

This section details how we construct training data
for the NSC task, by enriching stories with au-
tomatically predicted contextualized inferences.5

We utilize the GLUCOSE (Mostafazadeh et al.,
2020) dataset, which contains implicit common-
sense knowledge in form of semi-structured general
and specific inference rules6 (cf. Table 1) that are
grounded in the context of individual stories from
ROCStories. In GLUCOSE, given a story S and
a selected sentence X from the story, the authors
define ten dimensions d of commonsense causal
explanations related to X , inspired by human cog-
nitive psychology. Only a small part of ROCStories
is annotated with GLUCOSE inferences (Table 3).

Given the amount of commonsense knowledge
needed for real-world tasks, a static knowledge
resource is always incomplete. Thus, we fine-tune
a pre-trained GPT-2 model on the annotated part
of GLUCOSE to dynamically generate inference
rules for each sentence Xi of each story Si from
the underlying ROCStories data. We fine-tune two
separate language models CSIgen and CSIspec for
general and specific rules, respectively (Table 2).

The 10 dimensions d in GLUCOSE cover im-
5For testing we rely on GLUCOSE’s manually validated

inference rules on a small subset of the ROCStories corpus.
6Specific means rules grounded in a given context and gen-

eral corresponds to rules that are applicable to other contexts.

Dataset Relation Type Train Dev Test

NSC 88,344 4,908 4,909
GLUCOSE Effect 2949 849 –

Cause 2944 916 –

Table 3: Dataset Statistics: number of unique stories.

plicit causes and effects of a sentence X in a given
story. In our work, we are interested in inference
rules that explain a sentence’s causes and effects,
to study the impact of such inferences on narrative
story completion. We therefore cluster all dimen-
sions d into the two categories EFFECT vs. CAUSE

(Table 1) and aggregate all rules from the respective
categories (preserving their dimensions). Once our
models (CSIgen, CSIspec) are trained, we apply
them to our NSC task training data, to enrich it with
inference rules for each sentence and story.

5 COINS: COntextualized Inference and
Narrative Story Completion Model

In this section we introduce a recursively operating
reasoning and sentence generation model: COINS.
An overview is given in Figure 2. In each iteration,
the model applies two consecutive steps:
(1) Inference Step: Given an incomplete story
context S′= X ⊕ Si and relation r, an inference
model CSI (gen or spec) generates COntextual-
ized inference rules of type r.
(2) Generation Step: a sentence generator reads
the generated inference rules concatenated with
the current context S′ and generates the next story
sentence si+1. The context S′ is updated with si+1

and steps (1) and (2) are repeated (cf. Algorithm 1).

This formulation allows us to i) examine infer-
ence and generation capabilities separately from
each other, ii) helps determine the impact of infer-
ential knowledge on story generation, and iii) can
give us insight into how knowledge can guide story
generation in a recursive inference framework.

Inference Step. We define the initial story con-
text S′ = {s1, s2,[SEP], sn}, a selected sentence as
si, and relation type r ∈ {EFFECT, CAUSE}, where
i ∈ [2, . . . n-1], si={wsi

1 , .., w
si
v }. We adopt a pre-

trained GPT-2 (base) (Radford et al., 2019) trans-
former model with multiple Transformer blocks of
multi-head self-attention and fully connected lay-
ers. During training, in each iteration the input to
the model is a concatenation of the current source
(S′, si, r) and target sequence i.e., the inference
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Contextualized 
Inference Rules (Ii)

Sentence (si)

Output Sentence (si+1)

(GPT-2) (GPT-2)
Generate Semi-Structured 

Inference Rules
Generate Missing Sentence

Ii + S’

Context (S’)
Update Context

Figure 2: Architecture of the COINS model.

rules (Ei or Ci). Eq. (1) defines the inference rule
(IR) generation model:

h0p = ep + Pp,

hlp = block(hl−1<p ), l ∈ [1, L]

p(yp|y<p, p) = softmax(hLpW
T )

(1)

where h0p is a summation of token embedding ep
and position embedding Pp for the p-th token;
hlp is the l-th layer’s output at position p, com-
puted through transformer blocks with the masked
multi-head self attention mechanism; hLp is the fi-
nal layer’s hidden state and y<p indicates the left
context of position p. The softmax layer defines the
model to output the most probable target sequence:
the most likely inference rules (Ei and Ci) for each
relation type (cf. Algorithm Line 4-5).

During training, we minimize the objective (2)

LI(β) = −
m+N∑
k=m

log p(Ek
i |S′, si, EFFECT)

−
m+N∑
k=m

log p(Ck
i |S′, sn,CAUSE)

(2)

where m,N denote the number of tokens in the
source (S′, si, r) and target sequence (inference
rules) respectively; β refers to model parameters.

In this work, we focus on the NSC task, which re-
quires our model to capture temporal dependencies
and causal relationships between events. While we
designed our sentence generation model in such
a way that it can utilize inference rules from both
forward and backward directions for each sentence,
we here trigger the generation of CAUSE inference
rules for sn, since we expect that events, motiva-
tions or attributes that cause sn will be relevant for
generating the preceding sentences [s3, . . . sn−1].

Algorithm 1 COINS

Input: Initial Context (S′ = {s1, s2, [SEP ], sn})
1: MemIR← empty
2: GenS ← empty list
3: for i← 2 to n− 1 do
4: Ei = GenInferenceRules(S′, si, EFFECT)
5: Ci = GenInferenceRules(S′, sn, CAUSE)
6: Ii = Ei ⊕ Ci

7: si+1 = GenNewSentence(Ii, S′)
8: GenS := GenS + si+1

9: MemIR := MemIR ⊕ Ii
10: LS += −logp(θ)(si+1|Ii, S′) −logp(β)

(Ii|S′)

11: LIR += −logp(θ)(si+1|Ii, S′) −logp(β)
(Ii|S′)

12: S′ := {s1, s2, si+1, [SEP ], sn}
13: end for
14: return GenS, MemIR

Similarly, we generate EFFECT relations for si,
assuming that an event, changes of emotion or
changes of attribute that are possible effects caused
by si will be most relevant for generating the miss-
ing follow-up sentences. In principle, however,
for NSC and other story generation tasks, we may
consider CAUSE and EFFECT relations for all sen-
tences, letting the model freely choose from the
full space of inferences.

We concatenate the generated inference rules
(Ii = Ei ⊕ Ci)7 and store the last hidden repre-
sentation in MemIR ∈ IRN×L×H , where N is the
number of sentences, L the maximum inference se-
quence length and H the hidden state dimensions.
MemIR is updated with the hidden representa-
tions of inference rules in each iteration. Hence,
MemIR could act as an intermediate representa-
tion, and as a basis for providing explanations for
observed story sentence generations. MemIR may
also be used as a memory for long-form text gen-
eration tasks, to keep track of implicit knowledge
triggered by previously generated text, and could
support flexible discourse serialization patterns.8

Generation Step. Given the generated inference
rules Ii (in form of tokens) and the incomplete
story context S′, we aim to generate the next miss-
ing sentence. We pass the input through another
pretrained GPT-2 (base) model (cf. Equation 1).
The loss function for the sentence generator is

LS(θ) = −
v∑

k=1

log P (y
si+1

k |Ii, [EOK], S′) (3)

where yk denotes the k-th token and v the
maximum length of the generated sentence;

7We use [SEP ] token to delimit the individual Ei and Ci

when concatenating them.
8We leave such extensions to future work.



5091

i ∈ [2, n− 1] ; [EOK] denotes the end of knowl-
edge rule tokens, and θ refers to model parameters.

Update Story Context. In the final step we up-
date the story context by inserting the generated
sentence si+1 into the previous story context (cf.
Algorithm 1, line 12).

Training and Inference. We add the losses LI
for inference generation and LS for sentence gener-
ation to make the models dependent on each other
(Algorithm 1, line. 10-11). For both the inference
and the generation step model, we minimize the
negative log likelihood loss of the respective target
sequence.

6 Experiments

6.1 Dataset

We apply COINS to the NSC and the Story Ending
Generation tasks.9 For data statistics see Table 3.
Narrative Story Completion. We follow the task
definition as introduced in §3.
Data Collection. We construct the NSC dataset on
the basis of the ROCStories corpus (Mostafazadeh
et al., 2016), which contains 98,162 five-sentence
stories with a clear beginning and ending, thus
making it a good choice for this task. We choose
the first two sentences (s1, s2) as beginning rather
than just s1 because the first sentence (s1) tends to
be short in length, and usually introduces charac-
ters or sets the scene (Mostafazadeh et al., 2016),
wherease the second sentence (s2) provides more
information about the initial story.

6.2 Hyperparameter Details

Parameter size. For GPT-2 we use the GPT-2 small
checkpoint (117M parameters) based on the imple-
mentation of HuggingFace (Wolf et al., 2020).
Decoding Strategy. In the inference stage, we adopt
beam search decoding with a beam size of 5 for all
our models and all baselines we produce.
We used the following set of hyperparameters for
our COINS model: batch size: {2, 4}; epochs:
{3, 5}; learning rate: {1e-5, 5e-6}. We use Adam
Optimizer, and dropout rate = 0.1. We ran our
experiments with GPU sizes of 11GB and 24GB.

6.3 Baselines

We compare our COINS model to the following
baselines:

9The results for Story Ending Generation will corroborate
our results for NSC. All details are given in the Appendix.

(a) GPT-2 (Radford et al., 2018) (with 12-layer,
768-hidden, 12-heads), trained with an objective
to predict the next word. The input to the GPT-2
model is the concatenation of the source and the
target story sequence. We follow the standard pro-
cedure to fine-tune GPT-2 on the NSC task during
training and minimize the loss function:

−log(s3, s4|[SOS]s1, s2, [SEP ], s5[EOS]) (4)

(b) Knowledge-Enhanced GPT-2 (KE) (Guan
et al., 2020) is the current SOTA for ROCStories
generation. It first fine-tunes a pre-trained GPT-2
(small) model with knowledge triples from com-
monsense datasets (ConceptNet [CN] Speer et al.
(2017) and ATOMIC [AT] Sap et al. (2020)). The
knowledge triples were converted to sentences us-
ing templates. A multitask learning framework fur-
ther fine-tunes this model on both the Story Ending
Generation task and classifying corrupted stories
from real ones. As our baseline we choose the
version without multi-tasking, since the corrupted
story setting is not applicable for the NSC task.

(c) GRF (Ji et al., 2020) is the current SOTA
for the Abductive Reasoning and the Story Ending
Generation tasks. GRF enables pre-trained models
(GPT-2 small) with dynamic multi-hop reasoning
on multi-relational paths extracted from the exter-
nal ConceptNet commonsense knowledge graph.

(d) GLUCOSE-GPT-2 Similar to Guan et al.
(2020), we fine-tune pretrained GPT-2 (small) on
the GLUCOSE dataset using general rules (GR). We
follow the same procedure as Guan et al. (2020)
and (i) first fine-tune a pre-trained GPT-2 , but here
on the GLUCOSE dataset, with the following loss:

−log(Ii|S, si, r), (5)

where r: CAUSE/EFFECT, Ii: Inference rules. (ii)
Then we fine-tune the above model again on the
NSC dataset with the following loss:

−log(s3, s4|[SOS]s1, s2, [SEP ], s5[EOS]) (6)

The main difference between GLUCOSE-GPT-2
and COINS is: COINS explicitly learns to generate
(contextualized) inference rules on the fly during
the inference step and incorporates them in the
story generation step.

6.4 Automatic Evaluation Metric
For automatic evaluation in the NSC task we use as
metrics Perplexity (indicates fluency of text genera-
tion), BLEU-1/2 (Papineni et al., 2002) and ROUGE-
L (Lin, 2004). We report performance on the test
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Model PPL (↓) BLEU-1/2 (↑) ROUGE-L (↑)

GPT-2 11.56 16.66/6.8 17.2
KE [CN, AT] 12.61 17.55/7.6 17.9
GLUCOSE-GPT-2 12.7 17.9/7.8 17.5
GRF [CN] 12.18 20.8/8.2 17.6
COINS (SR) 6.7 22.53/10.10 18.9
COINS (GR) 6.9 22.82/10.52 19.4
COINS Oracle (SR) (Test-only) – 30.75/22.76 32.5
COINS Oracle (GR) (Test-only) – 26.37/17.01 27.38
Human – 24.53/12.10 20.2

Table 4: Automatic evaluation results for Story Com-
pletion. Best performance highlighted in bold; used
Inference Rule types: specific (SR), general (GR).

sets by averaging results obtained for 5 different
seeds. All improvements across all model variants
are statistically significant at p < 0.05).

7 Results

Our experimental results are summarised in Tables
4 and 6.
NSC task. Table 4 shows the results for the models
described in §6.3 and evaluated as per §6.4. We
observe the following: (i) COINS outperforms all
strong baseline models that utilize pre-trained lan-
guage models and incorporate external common-
sense knowledge with respect to all automatic eval-
uation metrics. Note that GLUCOSE-GPT2 and
COINS are using the same knowledge resource,
hence the clear performance increase of COINS

(+4.92 BLEU score) indicates that jointly learn-
ing to generate contextualized inferences rules
and missing sentences in a recursive manner can
enhance generation quality.10 (ii) Similar to Ji
et al. (2020) we observe that fine-tuning GPT-
2 over knowledge triples ([CN], [AT]OMIC or
[GL]UCOSE) doesn’t improve the overall perfor-
mance by much (Table 4, line 2: [CN+AT] vs. line
3: [GL] vs. line 1: [no CSK]). (iii) For COINS,
general rules (GR) boost performance more than
specific rules, indicating that the sentence gener-
ation model generalizes well. (iv) In the oracle
settings at inference time we provide the model
with the silver inference rules (generated as per §4)
that use the complete story context as background.
The result indicates that SR performs better than
GR when the model sees the full story context.

In general we observe that story generation ben-
efits from higher-quality, contextualized inference

10Since GRF’s architecture is specific for ConceptNet, we
cannot exclude that the better performance of COINS (+2.2
BLEU) is in part due to differences in the used knowledge.

Input PPL (↓) BLEU-1/2 (↑) ROUGE-L (↑)

IR only (GR) 13.05 10.65/4.01 6.31
IR only (SR) 8.01 15.65/6.08 15.31
No IR + w/oSE 11.5 15.12/5.95 12.47
IR (GR) + w/oSE 7.49 21.50/9.78 18.07

Table 5: Impact of different inputs to COINS for Story
Completion, SR: specific rules, GR: general rules, IR:
inference rules, w/oSE: w/o the story ending (sn).

rules from GLUCOSE (for COINS).11 The improve-
ment of COINS over GLUCOSE-GPT-2 indicates
that our model is well able to utilize and profit
from the inference rules. In the oracle setting, SR
performs much better than GR. This is expected,
since oracle rules with access to the full context
will deliver more contextually-relevant inferences,
while GR rules may diverge more from the story
context. However, in the realistic NSC task set-
ting (Table 4, lines 5,6) GR outperforms SR, which
again underlines the generalization capacities of
COINS.

Impact of different inputs for the Generation
Step. In Table 5 we investigate the performance
of COINS with different inputs to the sentence gen-
eration component at inference time: (i) When
only inference rules (from the inference step) are
given to the model without any story context (S′

= {s1, s2,[SEP], sn}) (IR only), sentence genera-
tion benefits when specific rules are used. This
is expected since the specific rules contain state-
ments with concrete character names and para-
phrased events from the story. (ii) When only the
story beginning (s1,2) is provided to the sentence
generation model without the ending sentence sn
(w/oSE) nor inference rules (w/oIR) we observe
that the performance drops compared to models
given the full incomplete context (S′), indicating
that knowing the story ending helps the model to
generate missing sentences that are coherent with
the story. However, (iii) when adding inference
rules IR (from the inference step i.e., Ei + Ci) to
the context (s1,2) without ending sentence (w/oSE),
performance again improves (+5.85 BLEU scores).
Note that the inference rule contains the CAUSE

relation for sn. This indicates that the model is able
to utilize inference rules for story generation.12

11Automatic (silver) GLUCOSE inference rules (cf. §4) of
type GR yield 60.8 BLEU score i.e., performance of CSIgen
(avg. of both relation types).

12Here, we report the results with generalized rules as GR
works better than SR when context is given (cf. Table. 4).
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Performance of inference rule generation. We
now investigate how difficult it is to generate con-
textualized inference rules (specific and general)
when multiple sentences are missing from a story.
For this we compare COINS to a GPT-2 model
fine-tuned on GLUCOSE data to generate inference
rules (cf. §4). We study the impact of jointly and
dynamically learning sentence and inference rule
generation (in COINS) on the inference genera-
tion task – while the fine-tuned GPT-2 model only
learns to generate inference rules conditioned on
the static story context. We specifically examine
the difficulty of generating inference rules for two
consecutive sentences (s3 and s4) in a 5-sentence
context, as opposed to shorter sequences, in three
different scenarios: i) when the complete story con-
text S is given; ii) when the incomplete context
S′ (i.e., s1, s2 and s5) is given, plus either s3 or
s4 (1-missing sentence), and iii) when S′ is given,
but neither of the intermediate sentences s3 and
s4 (2-missing sentences). In each setting, we gen-
erate EFFECT and CAUSE rules for the targeted
sentences s3, s4, and compare their quality. The
results are reported in Table 6. We observe that
in the 2-missing sentences setting, COINS outper-
forms GPT-2 (by +2.3 BLEU score on average).
This indicates that learning to perform inference
rule generation jointly with sentence generation is
beneficial for filling-in multiple story sentences. In-
terestingly, for increasing numbers of missing sen-
tences, performance drops drastically for CAUSE

(as opposed to EFFECT), but less so for COINS as
opposed to GPT-2. A possible reason for this may
be the conditional, uni-directional nature of the un-
derlying GPT-2 language model, which is trained
to predict follow-up words in forward direction.
This may favor future-directed EFFECT rules – as
opposed to CAUSE relations. The milder effect on
COINS could indicate that the concurrent inference
model supports the sentence generation model to
overcome this weakness.13

8 Manual Evaluation

Automatic metrics can give us some indication of
NLG quality, however, these metrics do not nec-
essarily reflect the coherence of generated story
sentences. We thus conduct a human evaluation
focusing on the grammaticality and coherence of
the generated sentences in their story context. We

13In future work, we will test the above hypothesis by exper-
imenting with a bi-directional transformer generation model.

Full Context 1-Missing Sentence 2-Missing Sentence
Model E C E C E C

GPT-2† 58.3 63.3 56.5 58.3 55.4 53.9
COINS 59.9 62.9 58.6 60.3 57.5 56.8
GPT-2† 57.7 59.5 55.5 55.3 53.4 51.4
COINS 57.8 60.1 56.3 58.2 55.1 55.2

Table 6: Automatic evaluation of the quality of infer-
ence rules in different context settings. Best results in
bold. Metric: BLEU-1 scores, E: EFFECT, C: CAUSE,
Grey: context-specific rules (SR); regular: general
rules (GR), †: fine-tuned on GLUCOSE dataset.

conduct pairwise comparisons for randomly sam-
pled 100 instances of our best model, i.e., COINS

with GR (according to automatic metrics) with
four strong baseline models (GPT-2, GLUCOSE-
GPT-2, GRF, KE). For each pair of instances (one
from COINS, the other from a baseline model),
we present the generated sentences in their story
context, and asked three annotators to give a prefer-
ence rating (win, tie, lose) according to the criteria
grammaticality and coherence. For grammaticality,
we present each sentence in isolation and ask the
annotators to rate which sentence is more fluent,
readable, and compliant with the English standard
usage. For coherence, we ask the annotators to as-
sess which of the two generated sentences are more
logically coherent with each other and the story be-
ginning and ending, in terms of causal and temporal
dependencies. We applied majority voting among
the three annotators to obtain final decisions. More
details about the annotation are given in Appendix.

The human evaluation results are presented in
Table 7.14 The results show that our model pro-
duces more coherent and more grammatically cor-
rect sentences compared to all baselines. This in-
dicates that with support of learned contextualized
inference rules based on GLUCOSE knowledge, our
model generates more coherent story sentences that
are causally and temporally well connected.

Relevance of Generated Inferences Rules. We
further conduct human evaluation to validate the
effectiveness and relevance of the generated infer-
ence rules. We randomly select 50 instances from
the NSC dev set. We asked three annotators to
evaluate the (GR) inference rules15. We define an
inference rule to be relevant if (a) it captures im-

14We report inter-annotator agreement scores calculated
with Fless’ kappa κ (Fleiss, 1971), calculated for each com-
parison. We find moderate or fair agreement.

15We report only COINS (GR), our best model according
to automatic metrics.
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Knowledge Coherence Grammaticality
Models of Base Model Win(%) Tie(%) Loss(%) κ Win(%) Tie(%) Loss(%) κ
COINS vs GPT-2 None 54.7 32.0 13.3 0.52 45.7 41.3 13.0 0.49
COINS vs GLUC.-GPT-2 GLUCOSE 52.0 33.0 15.0 0.43 31.7 54.3 14.0 0.45
COINS vs KE CN + ATOMIC 50.0 32.0 18.0 0.44 21.3 69.7 9.0 0.37
COINS vs GRF CN 50.5 30.5 19.0 0.48 20.5 70.0 9.5 0.35

Table 7: Manual evaluation of sentence generation quality of COINS (GR) for 100 stories. Scores are percentages
of Win, Loss, or Tie when comparing COINS to baselines. Fleiss’ kappa κ: fair agreement or moderate agreement.

Cause

Figure 3: Human evaluation of the relevance of Infer-
ence Rules generated by COINS.

plicit causes and effects of a selected sentence X
given an incomplete story S′, and (b) it is provid-
ing useful explanations for the incomplete story
S′. The result for this evaluation is shown in Fig.3,
for EFFECT and CAUSE relations. We find that
in 36% and 34% of cases for effects and causes,
respectively (computed on the basis of majority
agreement), our algorithm was able to generate rel-
evant inference rules. Our annotations yielded fair
inter-annotator agreement of Fleiss’ κ = 0.45.

Case Study. We provide an example from NSC
with different generation outputs (Table 8). Note
that the generated sentences are grounded to the
inference rules obtained from the inference step.
Hence, the rules provide both an intermediate rep-
resentation and explanations for how knowledge
can guide or influence story generation. We pro-
vide more qualitative examples in the Appendix.

9 Conclusion

We addressed a Narrative Story Completion task
that allows us to probe the coherence capabili-
ties of a neural generation model. We proposed
COINS, a model that iteratively generates common-
sense inference rules grounded in the context and
generates story sentences, using the generated in-
ferences as a guide. Human and automatic eval-

Incomplete
Story:

s1: Ken was driving around in the snow. s2: He needed to
get home from work. s5: His tires lost traction and he hit a
tree.

Missing Sen-
tences:

s3: He was driving slowly to avoid accidents. s4: Unfortu-
nately the roads were too slick and Ken lost control.

COINS (IGR) SomeoneA is going SomewhereB �Cause/Enables�
SomeoneA is at SomewhereB , SomeoneA is driving
SomethingA fast �Cause/Enables� SomethingA hits
SomethingB (that is a tree), SomeoneA possess(es)
SomethingA (that is a car ) �Enables�> SomethingA

(tires) lost SomethingB (traction)
COINS (ISR) He posses(es) a car �result in� His tires lost traction, He

needed to get home �Enables� He drove home, He was
driving on ice � Causes/Enables � His tires lost traction,
He was driving on ice �Causes/Enables� He lost control
of his vehicle.

COINS(MSGR) He was driving too fast. He lost control of his car .
COINS(MSSR) He was driving on ice. He lost control of his vehicle .
GPT-2 He stopped at a gas station. He filled his tank.
GPT-2 GLU-
COSE

When he got to the house he realized he was stuck. Ken had
to pull over to get help.

KE When he got home, he noticed his tires were flat. He decided
to pull over.

GRF He pulled over to see what was wrong. He saw that his car
was stuck in the snow.

Human He was going very fast. The street was slippery from the
snow.

Table 8: Examples: inference rules and missing sen-
tences generated by COINS (compared to Gold from
GLUCOSE, Green), as well as baseline model genera-
tions. Gray: COINS (SR); Regular: COINS (GR); MS:
missing sentences, I: inference rules

uations show that the model outperforms strong
commonsense knowledge-based generation mod-
els. By individuating the inference rule and sen-
tence generation steps, COINS can make the contri-
bution of commonsense knowledge on story gen-
eration transparent. The recursive nature of the
inference-driven generation model holds potential
for knowledge-driven control in the generation of
longer sequences. In future work we will explore
how an enhanced memory of generated inferences
can realize more complex narrative patterns that
diverge from strictly ordered narrative sequences.
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A Supplementary

A.1 Manual Evaluation.

We perform an error analysis to better understand
the generation quality. We ask our annotators to as-
sess whether the generated text contains any pieces
of information that are contradicting the given in-
complete story or not. Our annotations were per-
formed by three annotators with a linguistic back-
ground. Figure 5, shows a screenshot of the anno-
tation guidelines. Figure 4 depicts the result, we
observe the that our COINS models produce less
contradicting missing sentences compare to other
baselines.

A.2 Hyperparameter Details

Parameter size. For GPT-2 we use the
GPT-2 small checkpoint (117M parame-
ters) based on the implementation of Hug-
gingFace (Wolf et al., 2020) at: https:

//github.com/huggingface/transformers/

tree/master/src/transformers/models/gpt2

Decoding Strategy. In the inference stage, we
adopt beam search decoding with a beam size of 5
for all our models and all baselines we produce.
We used the following set of hyperparameters
for our COINS model: batch size: {2, 4}; epochs:
{3, 5}; learning rate: {1e-5, 5e-6}. We use Adam
Optimizer, and dropout rate = 0.1. We ran our
experiments with GPU sizes of 11GB and 24GB.

Training Details. Our training time is ≈24
hours. The original ROCStories Corpus can
be found at: https://cs.rochester.edu/nlp/

rocstories/

A.3 Story Ending Generation Task

Data. This task is to generate a reasonable end-
ing given a four-sentence story context (Guan
et al., 2019). The stories are from ROCStories
(Mostafazadeh et al., 2016). We use the same data
splits as Guan et al. (2019).

SEG task. We also investigate how COINS per-
forms when applied to the task of generating a story
ending when given a 4-sentence story (SEG). In
this task our model takes only one iteration step to
generate the story ending, where in the inference
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Figure 4: Human evaluation on Contradiction

Model BLEU-1/2 (↑) Distinct-2/3 (↑)

Seq2Seq† 19.1 / 5.5 0.181 / 0.360
IE+GA† 20.8 / 6.4 0.140 / 0.280
GPT† 25.5 / 10.2 0.304 / 0.505
GPT2-OMCS† 25.5 / 10.4 0.352 / 0.589
GPT2-GLUCOSE 25.6 / 10.2 0.361 / 0.609
GRF† 26.1 / 11.0 0.378 / 0.622
COINS (GR) 27.4 / 12.3 0.428 / 0.724
COINS (Oracle) 41.80/28.40 0.479/0.786

Table 9: Result: Automatic evaluation results on the
Story Ending Generation Task, † (Ji et al., 2020)

Dataset Train Dev Test

SEG 90,000 4,080 4,081

Table 10: Dataset Statistics: nb. of unique stories

step it generates EFFECT inference rules for sen-
tence (s4). As seen in Table 9, the COINS model
outperforms all previous strong baselines, includ-
ing GPT2-GLUCOSE that uses the same knowl-
edge resource. Interestingly, we also observe that
fine-tuning on GLUCOSE or ConceptNet knowl-
edge improves the text generation diversity, indi-
cating that the models leverage concepts and event
knowledge during generation (cf. Table 9 line.4-8).

Automatic Metrics. For Story Ending Genera-
tion (SEG) we follow the metrics used in Guan
et al. (2019); Ji et al. (2020): they use BLEU-1/2
to measure n-gram overlap between generated and
human-written story endings, and Distinct-n (Li
et al., 2016) to measure the generation diversity
using maximum mutual information.

Baselines. For the Story Ending Generation task,
we compare COINS to the IE+GA model (Guan
et al., 2019). It is based on incremental encod-
ing and multi-source graph attention (Guan et al.,

https://github.com/huggingface/transformers/tree/master/src/transformers/models/gpt2
https://github.com/huggingface/transformers/tree/master/src/transformers/models/gpt2
https://github.com/huggingface/transformers/tree/master/src/transformers/models/gpt2
https://cs.rochester.edu/nlp/rocstories/
https://cs.rochester.edu/nlp/rocstories/
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Figure 5: A screenshot of the annotation guidelines for
manual evaluation.

Incomplete
Story:

s1: Danielle dreamed of living in California. s2: After college she
had to decide where to live. [mask] s5: She loved it there.

Missing Sen-
tences:

s3: She could move back home or move to California. s4: Danielle
decided to take a leap and move to California.

COINS (IGR) SomeoneA decide SomethingA (where to live) >Causes/Enables>
SomeoneA decides to live in SomewhereA.

COINS (ISR) She had to decide where to live >Causes/Enables> She chose to
live in California.

COINS(MSGR) She decided to live in California. She settled in California.
COINS(MSSR) She decided to live in California. She went to the beach.
GPT-2 She finally settled in California. She loved it there.
GPT-2 GLU-
COSE

She decided to move to NH. She found a nice apartment there.

KE When he got home, he noticed his tires were flat. He decided to
pull over.

GRF She decided to move to California. She found a great place to live.

Table 11: Example1: Generated Inference rules and
Missing Sentences

2019). We also compare to a Seq2Seq model (Lu-
ong et al., 2015) based on gated recurrent units
(GRU) and attention mechanism.

Incomplete
Story:

s1: Her favorite glasses were ruined. s2: The pink dye had gotten
all over them. s5: She chose pink, and they both laughed at the
irony.

Missing Sen-
tences:

s3: Her mother took her to get a new prescription. s4: It was time
to order a new pair.

COINS(MSGR) She took her friend to get a new one. She took it and it was pink.
GPT-2 She bought a new pair of glasses. She wore them to school.
GPT-2 GLU-
COSE

She couldn’t decide between two colors. She finally decided on
pink.

KE She was sad that she couldn’t see anymore. Her boyfriend came
over to help.

GRF She decided to dye them pink instead. She went to the store and
bought a pink one.

Table 12: Example2: Generated Missing Sentences

Incomplete
Story:

s1: Susy was writing an essay by hand for class. s2: She handed it
in and thought she would do well. s5: the teacher could not even
grade it.

Missing Sen-
tences:

s3: But unfortunately the teacher could not even read it. s4: Susy
was humiliated.

COINS(MSGR) But she could not. Teacher didn’t read the essay.
GPT-2 Suddenly, her hand slipped. She fell and broke her wrist.
GPT-2 GLU-
COSE

But all the sudden she got an F. Susy was so embarrassed.

KE When she got her paper back she realized she had tylenol. She had
written the entire essay by hand.

GRF Susy was very nervous about the essay. The teacher told her she
was not allowed to write.

Table 13: Example3: An example where all the models
failed to generated coherent sentences

Incomplete
Story:

s1: Seth was at a party with his friends. s2: Someone dared a
kid to climb on a wall. s5: He immediately began screaming
that his leg was broken.

Missing
Sen-
tences:

s3: The kid climbed to the top and everyone cheered. s4:
Suddenly he slipped and fell to the ground.

Gold: Some PeopleA (who should not be there) start daring a
SomeoneC to climb a SomethingC (without safety gear)
>Causes/Enables> SomeoneC (who should not be there
makes it to the top then falls down and SomeoneC (who is
acting like monkey)).
The kids start daring a kid to climb the wall>Causes/Enables>
He makes it to the top then falls down and breaks his leg.

Fine-
tuned
GPT-2:

Some PeopleB start daring a SomeoneA to climb a SomethingC

>Causes/Enables> SomeoneA quickly shouted that his leg
was broken.
Someone start daring a kid to climb the wall
>Causes/Enables> He shouted that his leg was broken.

COINS: Some PeopleB start daring a SomeoneA to climb a SomethingC

>Causes/Enables> SomeoneA is on top of SomewhereA
Someone start daring a kid to climb the wall
>Causes/Enables> He climbed at the top.

Table 14: Example of inference rules generated by
COINS and Fine-tuned GPT-2 when 2-sentences are
missing (compared to Gold from GLUCOSE). Grey:
context-specific rules (SR); regular: general rules (GR).
Bolded sentence s2 is X , EFFECT is the relation type
r.


