
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 5054–5064

August 1–6, 2021. ©2021 Association for Computational Linguistics

5054

Improving Document Representations by Generating Pseudo Query
Embeddings for Dense Retrieval

Hongyin Tang1,2,∗, Xingwu Sun3,∗, Beihong Jin1,2,†, Jingang Wang3,
Fuzheng Zhang3, Wei Wu3

1State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

2University of Chinese Academy of Sciences, Beijing China
3Meituan

tanghongyin14@otcaix.iscas.ac.cn, Beihong@iscas.ac.cn
{sunxingwu, wangjingang02, zhangfuzheng, wuwei30}@meituan.com

Abstract

Recently, the retrieval models based on dense
representations have been gradually applied in
the first stage of the document retrieval tasks,
showing better performance than traditional
sparse vector space models. To obtain high ef-
ficiency, the basic structure of these models is
Bi-encoder in most cases. However, this sim-
ple structure may cause serious information
loss during the encoding of documents since
the queries are agnostic. To address this prob-
lem, we design a method to mimic the queries
on each of the documents by an iterative clus-
tering process and represent the documents by
multiple pseudo queries (i.e., the cluster cen-
troids). To boost the retrieval process using
approximate nearest neighbor search library,
we also optimize the matching function with
a two-step score calculation procedure. Exper-
imental results on several popular ranking and
QA datasets show that our model can achieve
state-of-the-art results.

1 Introduction

Given a query and a collection of documents, the
document retrieval task is to rank the documents
based on their relevance with the query. To retrieve
the target documents efficiently, most existing work
adopts a two-stage fashion which retrieves a subset
of candidate documents from the whole corpus by
a recall model and then re-rank them by a sophis-
ticated ranking model. In the first stage, many ap-
proaches use traditional information retrieval meth-
ods including BM25 based on sparse bag-of-word
representation. Since the recall of the first-stage
model determines the upper bound of the ranking
quality, there is lots of work focusing on improv-
ing the recall performance(Dai and Callan, 2019;
Nogueira et al., 2020; Nogueira and Lin, 2020).

∗ These authors contributed equally. This work was done
when the first author was an intern at Meituan.

† Corresponding author.

In contrast to the sparse representations, dense
representations encoding semantic information can
enhance the retrieval performance by overcom-
ing the limitations like term mismatching. They
are usually produced by neural encoders whose
parameters are learnable. Recently, inspired by
the great success of pre-trained language mod-
els like BERT/RoBERTa(Devlin et al., 2018; Liu
et al., 2019) in NLP applications, the dense pas-
sage retriever is proposed which encodes the doc-
uments by fine-tuning the huge language models
(Karpukhin et al., 2020) and achieves state-of-the-
art results benefiting from their powerful contextual
semantic representative ability.

Following the typical fine-tuning paradigm on
many NLP tasks(Devlin et al., 2018), a BERT en-
coder usually takes the concatenation of the query
and document text as input and performs a full self-
attention across the input tokens. Such architecture
is called Cross-encoder (Humeau et al., 2019). Al-
though it can achieve better performance than other
architectures, it is infeasible in the recall stage since
it needs to recompute the representation of each
document in the corpus once a new query is pro-
vided. In contrast, Bi-encoder(Humeau et al., 2019)
encodes the queries and documents separately and
computes the matching scores between their dense
representations. Since the documents in the corpus
keep unchanged most of the time, the representa-
tion of the documents can be stored in advance for
future use. With the help of Approximate Nearest
Neighbor (ANN) search approaches(Johnson et al.,
2017), the retrieval process can be further boosted.

Although gaining retrieval efficiency, Bi-encoder
sacrifices retrieval accuracy comparing to the
Cross-encoder. To enrich the representations of
the documents produced by Bi-encoder, some
researchers extend the original Bi-encoder by
employing more delicate structures like later-
interaction(Khattab and Zaharia, 2020), Poly-



5055

Encoder(Humeau et al., 2019), multi-embedding
model(Luan et al., 2020). Increasing a little com-
putational overhead, these models can gain much
improvement of the encoding quality while remain-
ing the fast retrieval characteristic of Bi-encoder.

Similar to these models, we focus on improving
the effectiveness of Bi-encoder. In this work, we
think that the limitation of the Bi-encoder origins
from the agnostic nature of query when encoding
the documents independently, i.e., the encoder can-
not know what query could be potentially answered
by the input document. As it is very common that a
document with hundreds of tokens contains several
distinct topics, some important semantic informa-
tion might be easily missed or biased by each other
without knowing the query.

To alleviate the query agnostic problem, we pro-
pose a novel approach that mimics multiple poten-
tial queries corresponding to the input document
and we call them “pseudo query embeddings”. Ide-
ally, each of the pseudo query embeddings corre-
sponds to a semantic salient fragment in the docu-
ment which is similar to a semantic cluster of the
document. Thus, we implement the process by a
clustering algorithm (i.e., K-means in this work)
and regard the cluster centroids as the pseudo query
embeddings. We generate and store all of the em-
beddings in an offline manner, thereby not only
improving the encoding quality but also remain-
ing the online computation unchanged. During the
inference, the multiple pseudo query embeddings
should be first aggregated through a softmax func-
tion and then the relevance score with the query
embedding is computed. Unfortunately, directly
applying softmax aggregation is not supported in
the existing ANN search library. Thus, we first
filter some documents in which all of the embed-
dings have low relevance scores and then perform
the whole aggregation and score function using the
filtered embeddings.

Our main contributions can be summarized as
follows:

• We propose a novel approach to represent the
document with multiple pseudo query embed-
dings which are generated by a clustering pro-
cess.

• We modify the embedding aggregation during
the inference in order to directly utilize the
off-the-shelf ANN search library.

• We conduct experiments on several popular IR

and OpenQA datasets. Experimental results
show that our approach achieves state-of-the-
art retrieval performance while still remaining
efficient computation. An in-depth analysis
on gradients shows how the cluster centroids
improve the performance.

2 Related Work

In this section, we will review the existing work
related with the first-stage retrieval. According
to the representations of text, the first stage re-
trieval approaches can be classified into two cat-
egories. One is based on the high-dimensional
sparse representation and the other is based on the
low-dimensional continuous representation. Tra-
ditional sparse vector space models weight the
terms by their frequency information. In last few
years, some researchers intend to weight the doc-
ument and query terms adaptively by a neural
network which could leverage some semantical
information (Dehghani et al., 2017; Zheng and
Callan, 2015). Recently, a trend of leveraging
the deep pre-trained language models to weight
or augment the document/query terms is emerged.
DeepCT(Dai and Callan, 2019) uses BERT to learn
the term importance and weight all of the terms.
DocT5query(Nogueira and Lin, 2020) augments
the document with possible query terms which are
generated by a sequence-to-sequence model.

In contrast, the dense retrieval approaches
map the text to continuous vectors which are
mostly generated by neural networks. Models
like DSSM(Huang et al., 2013),CLSM(Shen et al.,
2014), DESM(Mitra et al., 2016) encode the query
and document using their n-gram features or word
embeddings independently and then compute their
similarities. Recently, the dense retrieval ap-
proaches also tend to make use of the pre-trained
language models. Sentence-BERT(Reimers and
Gurevych, 2019) is a typical Bi-encoder model
which encodes the text using BERT and calculates
the similarity scores by the combination of several
basic operations. Inspired by the interaction-based
neural re-rankers, Khattab and Zaharia(2020) pro-
pose a later-interaction mechanism. Later on, some
variants(Gao et al., 2020; Chen et al., 2020) are pro-
posed. Xiong et al.(2020) identify that the negative
samples during training may not be representative,
lowering the training difficulty. Therefore, they pro-
pose a model to construct hard negative samples
dynamically during training.



5056

Comparing to existing work, our work serves
the first stage of document retrieval and presents a
new method to generate document representations
which borrows the clustering technique to generate
pseudo query embeddings from documents.

3 Dense Document Retrieval

In this section, we introduce the original Bi-
encoder architecture and several existing variants.
Then, we present our model in detail and describe
the similarities and differences between our model
and those Bi-encoder variants.

3.1 Preliminaries

Independent Aggregator We start with a Bi-
encoder using BERT as its backbone neural net-
work as shown in Figure 1. (a). Given a query
with n tokens and a document with m tokens, a
typical Bi-encoder encodes the query and the doc-
ument separately, producing query token embed-
dings {qi}ni=1 ∈ Rn×h and document token embed-
dings {di}mi=1 ∈ Rm×h which are the hidden states
of the last layer in most cases. Next, a module is
needed to compute the matching score by aggregat-
ing the generated query and document representa-
tions. We call it “Aggregator” in the following sec-
tions. The simplest aggregator is the independent
aggregator shown in Figure 1 (b). This aggregator
uses a pooler to reduce the query and document
token embeddings to fixed-length embeddings eq
and ed respectively and then calculates the score by
dot product/Euclidean distance between them. For
example, Karpukhin et al.(2020) directly adopt the
embedding of the [CLS] token. RepBERT(Zhan
et al., 2020) leverages the mean value of the en-
coded embeddings. Although efficient to compute,
compressing m or n (m,n >> 1) embeddings to
one may lose information.
Late Interaction Aggregator Col-BERT
model(Khattab and Zaharia, 2020) employs a
late interaction paradigm to reduce the loss of
information. As shown in Figure 1 (c), the model
preserves all of the document token embeddings
{di}mi=1 in the cache until a new query is given. It
then computes token-wise matching scores using
all of the document and query embeddings. The
final matching score is generated by pooling the
m × n scores. This model preserves document
semantics as much as possible and leaves the full
query-document interaction during the inference.

Experimental results show that Col-BERT is highly
effective, improving the accuracy in a large margin.
However, the time complexity of the score com-
putation arises from constant O(1) to quadratic
O(mn). Meanwhile, Lin et al.(2020) point out
that the storage space occupation also arises
rapidly along with the length of documents since
Col-BERT needs to store all of the embeddings.

Semi-interactive Aggregator Figure 1(d)
shows another kind of aggregator which com-
presses the document token embeddings to
a constant number k much smaller than the
document length m (k << m). Since there are
multiple but not all document token embeddings
participating the interaction with query, we call
the aggregator as a “semi-interactive aggregator”.
(Humeau et al., 2019; Luan et al., 2020) adopt
this aggregator in their model. Specifically, Poly-
Encoder(learnt-k) (Humeau et al., 2019) model
employs k learnable code-vectors as the parameters
and attend them with all of the document token
embeddings {di}mi=1, representing global features
of the document. Besides, Poly-Encoder(first-k)
(Humeau et al., 2019) and ME-BERT(Luan et al.,
2020) both adopt the first k document token
embeddings as the compressed document represen-
tation. Obviously, the semi-interactive aggregator
further makes time/space complexity and accuracy
trade-offs over the independent aggregator and late
interaction aggregator. However, there still exists
some problem when applying current compressing
strategies in the document retrieval task, which we
would point out in the next section.

3.2 Our Method

The primary limitation of Bi-encoder is that we
cannot know which part of the document would
be asked during the encoding process. Preserving
multiple semantic representations has been proved
effective in the variants of Bi-encoder. However,
existing models are still not perfect, leading to ex-
pensive computation or underfit problem. In this
work, we intend to improve the semantic repre-
sentations by mimicing the real matching process
using the documents alone, generating a constant
number of “pseudo query embeddings”. In this
way, the model can preserve self-adaptive docu-
ment embeddings representing different semantics.
Actually, the whole procedure is analogous to the
steps of the K-means clustering algorithm and the



5057

Figure 1: Bi-encoder and different aggregators

cluster centroids are treated as the pseudo query
embeddings. In the following, we will interpret the
approach using the K-means algorithm in detail.

Firstly, following the semi-interactive aggrega-
tor, we feed the document tokens into BERT and
use the last layer hidden states as the document
token embeddings {di}mi=1. Next, we perform K-
means algorithm on these token embeddings.

The K-means algorithm mainly contains two iter-
ative steps: assignment step and update step. These
two steps are performed alternatively until the con-
vergence condition is satisfied. The assignment
step can be expressed by the following equation.

sti = argmin
j
‖di − ctj‖2

i ∈{1, ...,m}, j ∈ {1, ..., k}
(1)

where ctj is the j-th cluster centroid (we assume
there are up to k clusters) when the algorithm is
executing at the t-th time step. sti represents the
nearest cluster to the i-th embedding di consider-
ing the Euclidean distance. After the assignment
step, the algorithm updates each of the cluster cen-
troid according to the cluster assignment of each
embedding. The update step is shown as Eq. 2.

ct+1
j =

1∑m
i=1 1(s

t
i = j)

∑
{i|sti=j}

di (2)

If we treat each centroid of cluster ctj as a “query
embedding”, Eq. 1 can be interpreted as the similar-
ity computation between the document and several
queries, determining which of the queries can be
answered by the i-th token embedding. Thus, the
cluster centroid ctj plays a similar role as query and
we name it “pseudo query embedding”. Next, the
embeddings belong to one cluster compose the new
pseudo query embedding by Eq. 2. As the two

steps alternatively iterate, the query embeddings
that can be answered by the document are explored.
Since this process only involves the documents, we
can save the embeddings in memory and retrieve
them using the real queries which are desired to be
resolved.

Since the pseudo query embeddings contain the
underlying information of the document that real
queries may ask, we use the the pseudo query em-
beddings as the compressed document embeddings
(i.e., the embeddings output by a compressor, as
shown in Figure 1(d)). In the inference stage, we
compute the similarity between the pseudo query
embeddings {cj}kj=1 and the real query embed-
dings {qi}ni=1 which can be formulated by the fol-
lowing equations.

eq = Pooling(q1, ..., qn) (3)

aj = softmax(eq · cj) (4)

ed =
k∑

j=1

ajcj (5)

y = eq · ed (6)

Eq. 3 means that we pool the query embeddings
into a fixed-length embedding eq. Currently, we
select the embedding of [CLS] token as eq. As the
query is much shorter than the document and usu-
ally represents one concrete meaning, we assume
this compression will not lose much information.
In Eq. 4, we compute the similarity between the eq
and cj following a softmax normalization. Then,
using the normalized scores as weights, the final
document embedding ed is a weighted sum of the
document embeddings, as shown in Eq. 5. At last,
the matching score is computed by the dot product
between eq and ed.

Comparing with existing work, we find that the
Poly-Encoder(learnt-k) (Humeau et al., 2019) is
equivalent to learning multiple fixed global pseudo



5058

query embeddings {cj}kj=1 across all of the doc-
uments. That model treats the pseudo query em-
beddings as learnable parameters which are kept
fixed during the inference. It uses the linear com-
binations of document token embeddings {di}mi=1

as the compressed document embeddings, taking
similarity scores between {di}mi=1 and {cj}kj=1 as
the combination weights. Conversely, the Poly-
Encoder(first-k) (Humeau et al., 2019) and ME-
BERT(Luan et al., 2020) use the first k document
token embeddings as the pseudo query embeddings,
i.e., {cj}kj=1 = {di}ki=1 and adopt the pseudo
query embeddings as compressed document embed-
dings. In contrast to Poly-Encoder(learnt-k), they
rely on dynamic pseudo query embeddings. Exper-
imental results on conversation datasets show Poly-
Encoder(first-k) is better than the former. However,
only adopting the first-k document embeddings
seems to be a coarse strategy since a lot of informa-
tion may exist in the latter part of the document. To
this end, we present an approach which generates
multiple adaptive semantic embeddings for each
document by exploring all of the contents in the
document.

3.3 Large-scale Retrieval Optimization for
ANN

The first-stage retrieval model should calculate the
matching scores between the query and all of the
documents in the collection. Most existing dense re-
trieval work adopts Approximate Nearest Neighbor
(ANN) searching methods to boost the retrieval pro-
cess. Faiss(Johnson et al., 2017) is one of the most
popular ANN search libraries. It first builds vector
index offline and make an ANN vector search based
on the index. However, Faiss only supports basic
similarity functions like the dot product/Euclidean
distance other than the function listed in Eq. 4-Eq.
6. To boost in our method using Faiss, we build an
index using all of the representations {cj}kj=1 of
each document. During inference, we firstly select
the cj which has the highest dot product value with
eq as the final document embedding ed and com-
pute the matching score using Eq. 6 . Since this
operation only involves dot product, it can be accel-
erated by Faiss. This operation equals to substitute
aj with âj in Eq. 4.

âj = 1(j = argmax
i=1...k

(eq · ci)) (7)

As shown in Eq. 7, we use argmax operation
instead of softmax. Such substitution is reasonable

since softmax is a derivative and smooth version
of argmax (Goodfellow et al., 2016). However,
only one of the embeddings can pass the argmax
function and participate the similarity computation
which may impact the retrieval accuracy. To make
a trade-off, we firstly recall top-R documents ac-
cording to Eq. 7 and then calculate accurate scores
as described in Eq. 4-Eq. 6 on the retrieved docu-
ments.

4 Experimental Evaluation

4.1 Datasets

MS MARCO Dataset(Nguyen et al., 2016) is a
large-scale ad-hoc text retrieval dataset built for
two separate tasks: document ranking and passage
ranking. These two tasks are adopted in TREC
2019 Deep Learning Track(Craswell et al., 2020)
where test sets are provided. The document rank-
ing task contains 3.2 million documents and 0.3
million queries. The passage ranking task contains
8.8 million passages and 0.5 million queries. The
main difference between these two tasks exists in
the text length, where the average length of the doc-
uments and passages are 1124 and 54, respectively.
Following most of the existing work, we use MRR
to evaluate the development set of MS MARCO
and use NDCG to evaluate the TREC test set.

OpenQA Dataset(Karpukhin et al., 2020) is de-
signed for open domain question answering. The
authors collect about 21 million documents from
Wikipedia as the document collection whose aver-
age length is 100. They collect question-answer
pairs from several existing QA datasets (e.g., Natu-
ral Questions, Trivia QA, SQuAD etc.). Then, they
select some documents that contain the answer text
and have the highest BM25 scores with the queries,
as the positive documents to the query. Currently,
the authors release the data of Natural Questions,
Trivia QA and SQuAD. For Natural Questions and
Trivia QA, the test sets and development sets are
available. For SQuAD, only the development set
is available. We conduct experiments on this three
datasets using top20/100 accuracy as the evaluating
metric.

4.2 Implementation Details

We initiate the encoder using a BERT base model.
Since the BERT base model could handle 512 to-
kens at most, we truncate each document up to 512



5059

tokens as the input. We set different cluster num-
bers according to the document length. In the MS
MARCO document ranking task, we set the cluster
number to 8. In other tasks, we set the cluster num-
ber to 4. More experiments about different cluster
numbers are shown in the Section 4.5. Since the ini-
tial states of the clusters in K-means may influence
the performance a lot, we tried two setups: random
initiation(i.e., select the hidden states randomly as
the initial states) and equal-interval initiation (i.e.,
cut the documents into equal length intervals and
select the cutting locations as the initial states) and
find that the equal-interval initiation can outper-
forms the random initiation. Therefore, we adopt
equal-interval initiation in the following experi-
ments. We use AdamW as the optimizer and set
the learning rate to 2e-6 and batch-size to 16. Dur-
ing the training, we select one positive document
and 4 negative documents for each of the queries.
To improve the training efficiency, we adopt the in-
batch negatives technique(Karpukhin et al., 2020)
which takes all other documents in the batch ex-
cept the positive one as the negative documents for
each query. To reduce the discrepancy between
the training and inference process, we also adopt
the ANCE(Xiong et al., 2020) training paradigm
which constructs new hard negative samples us-
ing the trained checkpoint of the models. After
encoding of the documents, we save them to an In-
dexFlatIP index provided by Faiss which supports
fast inner product calculation. During the inference,
we set the number of the documents retrieved by
Faiss (i.e., R in Section 3.3) to 1000*k.

4.3 Retrieval Performance

MS MARCO Since our goal is to improve the first-
stage retrieval performance, we mainly compare
our model with other first-stage retrieval models
including: docT5Query(Nogueira and Lin, 2020),
DeepCT(Dai and Callan, 2019), RepBERT(Zhan
et al., 2020), ANCE (First-P)(Xiong et al., 2020),
ME-BERT(Luan et al., 2020), ColBERT(Khattab
and Zaharia, 2020).

Table 1 shows the results on the passage rank-
ing task. We can see that our model outperforms
other models except the ColBERT. However, our
method is more efficient than ColBERT in terms of
the time complexity (O(mn) vs O(kn), k << m).
We think the margin is acceptable considering the
trade-off between time and accuracy. Comparing

Models MRR@10 Recall@1k

DeepCT 24.3 91.0
docT5Query 27.7 94.7
RepBERT 30.4 94.3
ANCE(First-P) 33.0 95.9
ME-BERT 33.4 -
ME-BERT+BM25 33.8 -
ColBERT 36.0 96.8
Ours 34.5 96.4

Table 1: Results on MS MARCO passage ranking dev
set.

Models MRR@100 NDCG@10

ANCE(First-P) 37.2* 61.5
ME-BERT 33.2 -
ME-BERT+BM25 34.6 -
Ours 39.2 62.8

Table 2: Results on MS MARCO document ranking
dev set(MRR@100) and TREC test set(NDCG@10).
The value with * is obtained by the public avail-
able code and checkpoint in https://github.com/

microsoft/ANCE

to ME-BERT and ANCE, we can see that our pro-
posed method can generate more effective represen-
tations. Noticing that ME-BERT adopts a BERT
large encoder which has a more powerful language
understanding ability than the BERT base encoder
in our model, our proposed method is effective
enough to bridging the gap.

Table 2 shows the results on the document rank-
ing task. Our model outperforms other models by
a large margin. That is probably because the aver-
age length of the documents is much longer than
the length of passages and our method can make
full use of aggregating the semantics of the whole
document.

OpenQA As for the OpenQA dataset, we compare
our model with the DPR model(Karpukhin et al.,
2020) which is a typical Bi-encoder + independent
aggregator structure. Table 3 shows the result of
the test set of Natural Questions and Trivia QA and
the result of the development set of SQuAD. We
can see that our model is better than other models
especially in the SQuAD dataset. To explore the
possible causal link between the performance and
the characteristic of the datasets, we examine the
questions corresponding to one document in the
training set of different datasets, and find the av-
erage number of questions in Trivia QA, Natural
Questions and SQuAD are 1.1, 1.4, and 2.7, re-
spectively. It means that the documents in SQuAD
corresponds to more questions in comparison with

https://github.com/microsoft/ANCE
https://github.com/microsoft/ANCE


5060

Models Natural Questions Trivia QA SQuAD
Top20 Top100 Top20 Top100 Top20 Top100

BM25 59.1 73.7 66.9 76.7 - -
DPR 78.4 85.4 79.4 85.0 76.4* 84.8*
BM25+DPR 76.6 83.8 79.8 84.5 - -
ANCE 81.9 87.5 80.3 85.3 - -
Ours 82.3 88.2 80.5 85.8 80.5 88.6

Table 3: Results on the test sets of Natural Questions and Trivia QA and development set of SQuAD. * indicates the
value is obtained by training the model using public code in https://github.com/facebookresearch/DPR

Operation offline online

Per Document BERT Forward 0.9ms -
Per Document K-means 2.1ms -
Per Document Encoding 2.3ms -
Per Query BERT Forward - 0.5ms
Retrieval - 180ms
Retrieval(w/o optimization) - 880ms
Retrieval(independent) - 100ms
Retrieval(late interaction) - 940ms

Table 4: Time cost of online and offline computing in
MS MARCO document retrieval task.

other datasets which may indicate that the passages
in SQuAD contain more distinct information than
other two datasets. Thus, our method can take full
advantage of aggregating different information into
clusters.

4.4 Efficiency Analysis

We run our model on a single Nvidia Tesla V100
32GB GPU for the MS MARCO document re-
trieval task and record the time spent by each phase,
as shown in Table 4. Leveraging the powerful par-
allel computation ability of GPU, the document
can be quickly passed through the BERT encoder.
It is quite surprising that the K-means algorithm
costs more time than BERT given that the time
complexity of K-means is less than the deep Trans-
former in theory. Presumably, this is because our
K-means implementation includes a for-loop dur-
ing the updating step which is not friendly for par-
allel computing. This part can be optimized using a
more parallel friendly implementation. To retrieve
documents for new queries, the queries should be
firstly encoded. The encoding of queries usually
spends less time than the documents because the
length is shorter. Next, we record the retrieval time
cost by each query with or without the help of the
optimization mentioned in Section 3.3. We can find
that the optimization can accelerate the retrieval,
saving non-trivial time, which confirms the effec-
tiveness of the proposed optimization. To compare
our approach with other different aggregators, we
also record the retrieval time using independent

Models MRR@100

random init (k=4) 36.8
w/o ANCE (k=4) 37.3
w/o ANCE (k=8) 37.9
k=4 38.4
k=8 39.2
k=16 39.4
k=32 38.8

Table 5: Performance of the MS MARCO document
ranking dev set under different model settings.

aggregator and late interaction aggregator. We can
see that our model spends an amount of time near
to the independent aggregator and outperforms late
interaction aggregator by a large margin.

4.5 Ablation Study

We conduct ablation study on the development set
of MS MARCO document ranking task. The re-
sults are shown in Table 5. We firstly change the
cluster initialization strategy to random. Clearly,
the performance drops dramatically since the train-
ing becomes unstable. Next, we try to remove the
ANCE training mechanism which alleviates the
discrepancy between training and inference. We
can find that although the performance decreases, it
can still outperform the ANCE and the ME-BERT
model, showing the effectiveness of the method
proposed in this paper. Finally, we compare the
performance under different number of clusters
(k = 4, 8, 16, 32). We find that the model achieves
the best performance when k = 16 but the margin
leading k = 8 is not significant. Besides, when
k = 32, the performance drops by a large margin.
We infer the reason is that the documents do not
have such a number of individual clusters. As a
result, the clustering algorithm is hard to converge.

4.6 How Do the Cluster Centroids Work

Although the performance of the ranking metrics
like MRR show the effectiveness of the our method,
we still need an in-depth view of how the clus-
ter centroid based embeddings improve the model

https://github.com/facebookresearch/DPR


5061

(a) Loss function value. (b) max(r(cj)). (c) var(r(cj)).

Figure 2: Loss, max(r(cj)) and var(r(cj)) of different models.

against other methods. In this section, we try to
show it by analyzing how the document embed-
dings affect the value of the loss function.

Given a query q and its relative document d, the
training objective is to minimize the loss function
in the following form:

L = −log softmax(yd) (8)

where yd is computed as Eq. 6. Next, we can see
how a single step of gradient descent alters the loss
value by analyzing the gradient of the loss function
with respect to the document embeddings. For each
document embedding cj , we have:

OdLd =(yd − 1)eqOed (9)

Ojed =r(cj)Ocj (10)

r(cj) =[1 + (
∑
j′ 6=j

aj′(eqcj − eqcj′))]aj (11)

where OdL means the gradient of loss with respect
to document d and Ojed means the gradient of ed
with respect to cj . Details of the derivation are
shown in the Appendix. The absolute value of
r(cj) can be interpreted as a weight of how much
the cj can contribute to the loss value. For example,
if we feed the model with document embedding
producing large positive r(cj), a single gradient
descent step would decrease the loss value faster
than small r(cj).

To verify whether the cluster centroids are
more effective than other document embeddings,
we compare our model on MS MARCO docu-
ment ranking task with two other models: the
first one adopts the first k token embeddings as
the document embeddings like Poly-Encoder(first-
k)(Humeau et al., 2019) and the second one adopts
k randomly selected token embeddings as the docu-
ment embeddings. Other parts of the model remain
unchanged. Ideally, we expect (1) at least one of the
document embeddings can match its relative query
embedding and (2) multiple document embeddings

can capture different semantic information of the
document. We use the max value of r(cj) among
multiple document embeddings to evaluate (1) and
use the variance of r(cj) among the multiple em-
beddings of the same document to evaluate (2). We
plot them during the training as shown in Figure 2.

At the beginning of the training, the loss value,
max(r(cj)) and var(r(cj)) of the models are rel-
atively high and rapidly decrease. When the de-
creasing of the loss slows down, our model can
provide a much higher max(r(cj)) and lower loss.
Besides, var(r(cj)) of our model is also higher
than others indicating the document embeddings
are different with each other. We infer that this is
because the cluster algorithm expands the distance
of the cluster centroids, i.e., cj and c′j , making the
embeddings more distinct with each other. Assum-
ing i = argmaxj(r(cj)), clustering produces larger
r(ci) and lower r(ci′) as shown in Eq. 11. From
Eq. 9-10, we can see that large r(ci) can amplify
the impact of eq to ci making ci more approximate
to eq. Therefore, the gradient descent can do an ac-
curate update for the specific document embedding
ci towards eq while leaves c′i (should represents in-
formation other than eq) less changed. As a result,
the ci which is nearer to eq dominates the loss to
reduce more than other models.

5 Conclusions

In this paper, we propose a method to improve
the performance of the first-stage retrieval model
which is based on Bi-encoder and semi-interactive
aggregator. Specifically, our method mimics the
real queries by an iterative K-means clustering al-
gorithm. To accelerate the retrieval process, we
also optimize the softmax matching function by
filtering out some documents using argmax opera-
tion. We conduct experiments on the MS MARCO
and OpenQA datasets. Through the analysis of the
retrieval quality and efficiency, we can confirm the
proposed approach is both effective and efficient.



5062

References
Jiecao Chen, Liu Yang, Karthik Raman, Michael

Bendersky, Jung-Jung Yeh, Yun Zhou, Marc Na-
jork, Danyang Cai, and Ehsan Emadzadeh. 2020.
Dipair: Fast and accurate distillation for trillion-
scale text matching and pair modeling. CoRR,
abs/2010.03099.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel
Campos, and Ellen M. Voorhees. 2020. Overview of
the trec 2019 deep learning track.

Zhuyun Dai and Jamie Callan. 2019. Context-aware
sentence/passage term importance estimation for
first stage retrieval. CoRR, abs/1910.10687.

Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn,
Jaap Kamps, and W. Bruce Croft. 2017. Neu-
ral ranking models with weak supervision. CoRR,
abs/1704.08803.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2020. Mod-
ularized transfomer-based ranking framework. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 4180–
4190. Association for Computational Linguistics.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep Learning. MIT Press. http://www.
deeplearningbook.org.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning
deep structured semantic models for web search
using clickthrough data. In Proceedings of the
22nd ACM International Conference on Information
and Knowledge Management, CIKM 2013, page
2333–2338, New York, NY, USA. Association for
Computing Machinery.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux,
and Jason Weston. 2019. Real-time inference in
multi-sentence tasks with deep pretrained transform-
ers. CoRR, abs/1905.01969.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. 2020. Dense passage re-
trieval for open-domain question answering. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2020,
Online, November 16-20, 2020, pages 6769–6781.
Association for Computational Linguistics.

Omar Khattab and Matei Zaharia. 2020. Colbert: Ef-
ficient and effective passage search via contextual-
ized late interaction over BERT. In Proceedings of
the 43rd International ACM SIGIR conference on re-
search and development in Information Retrieval, SI-
GIR 2020, Virtual Event, China, July 25-30, 2020,
pages 39–48. ACM.

Jimmy Lin, Rodrigo Nogueira, and Andrew Yates.
2020. Pretrained transformers for text ranking:
BERT and beyond. CoRR, abs/2010.06467.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2020. Sparse, dense, and at-
tentional representations for text retrieval. CoRR,
abs/2005.00181.

Bhaskar Mitra, Eric T. Nalisnick, Nick Craswell,
and Rich Caruana. 2016. A dual embedding
space model for document ranking. CoRR,
abs/1602.01137.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng
Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. 2016. MS MARCO: A human generated
machine reading comprehension dataset. CoRR,
abs/1611.09268.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin.
2020. Document ranking with a pretrained
sequence-to-sequence model.

Rodrigo Nogueira and Jimmy Lin. 2020. From
doc2query to doctttttquery.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. CoRR, abs/1908.10084.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng,
and Grégoire Mesnil. 2014. A latent semantic model
with convolutional-pooling structure for information
retrieval. In Proceedings of the 23rd ACM Inter-
national Conference on Conference on Information
and Knowledge Management, CIKM 2014, Shang-
hai, China, November 3-7, 2014, pages 101–110.
ACM.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval.
CoRR, abs/2007.00808.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang,
and Shaoping Ma. 2020. Repbert: Contextualized
text embeddings for first-stage retrieval. CoRR,
abs/2006.15498.

http://arxiv.org/abs/2010.03099
http://arxiv.org/abs/2010.03099
http://arxiv.org/abs/2003.07820
http://arxiv.org/abs/2003.07820
http://arxiv.org/abs/1910.10687
http://arxiv.org/abs/1910.10687
http://arxiv.org/abs/1910.10687
http://arxiv.org/abs/1704.08803
http://arxiv.org/abs/1704.08803
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://www.aclweb.org/anthology/2020.emnlp-main.342/
https://www.aclweb.org/anthology/2020.emnlp-main.342/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/2505515.2505665
http://arxiv.org/abs/1905.01969
http://arxiv.org/abs/1905.01969
http://arxiv.org/abs/1905.01969
https://www.aclweb.org/anthology/2020.emnlp-main.550/
https://www.aclweb.org/anthology/2020.emnlp-main.550/
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
http://arxiv.org/abs/2010.06467
http://arxiv.org/abs/2010.06467
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2005.00181
http://arxiv.org/abs/2005.00181
http://arxiv.org/abs/1602.01137
http://arxiv.org/abs/1602.01137
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/2003.06713
http://arxiv.org/abs/2003.06713
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://doi.org/10.1145/2661829.2661935
https://doi.org/10.1145/2661829.2661935
https://doi.org/10.1145/2661829.2661935
http://arxiv.org/abs/2007.00808
http://arxiv.org/abs/2007.00808
http://arxiv.org/abs/2006.15498
http://arxiv.org/abs/2006.15498


5063

Guoqing Zheng and Jamie Callan. 2015. Learning
to reweight terms with distributed representations.
In Proceedings of the 38th International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, Santiago, Chile, August 9-13,
2015, pages 575–584. ACM.

https://doi.org/10.1145/2766462.2767700
https://doi.org/10.1145/2766462.2767700


5064

A Appendices

First, the gradient of the loss function with respect
to the final document embedding ed is in the fol-
lowing form:

OdLd = −O log softmax(yd)

= −(O(eqed)− O
∑
d′

yd′(eqed′))

= −eqOed + ydeqOed
= (yd − 1)eqOed

where d′ includes the positive documents and sam-
pled negative documents during the training. Since
we only consider the gradient of the positive docu-
ment, we ignore the gradients with respect to other
documents. Next, ignoring eq which would not
affect the gradient of the document embeddings,
we can compute the gradient with respect to the
pseudo query embeddings cj in the following form:

Oed =O(
k∑

j=1

ajcj)

=
k∑

j=1

(ajOcj + Oajcj)

=
k∑

j=1

(ajOcj + ajO log ajcj)

=
k∑

j=1

(ajOcj + aj [O(eqcj)−
k∑

j′=1

aj′O(eqcj′)]cj)

=

k∑
j=1

(ajOcj + ajcj(eqOcj −
k∑

j′=1

aj′O(eqcj′)))

=
k∑

j=1

(ajOcj + ajcjeqOcj − ajcjajeqOcj−

(

k∑
j′ 6=j

aj′eqOcj′)ajcj)

Now, we consider the gradient with respect to a

single document embedding cj , we have:

Ojed =[aj + ajcjeq − ajcjajeq−

(
∑
j 6=j′

ajcj′eqaj)]Ocj

=[aj + ajeqcj − a2jeqcj−

ajeq(
∑
j′ 6=j

aj′cj′)]Ocj

=[aj + aj(1− aj)eqcj−

ajeq(
∑
j′ 6=j

aj′cj′)]Ocj

=[aj + ajeq((1− aj)cj − (
∑
j′ 6=j

aj′cj′))]Ocj

=[aj + ajeq(
∑
j′ 6=j

aj′cj − (
∑
j′ 6=j

aj′cj′))]Ocj

=[aj + ajeq(
∑
j′ 6=j

aj′(cj − cj′))]Ocj

=[1 + (
∑
j′ 6=j

aj′(eqcj − eqcj′))]ajOcj


