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Abstract

Distant supervision tackles the data bottleneck
in NER by automatically generating training
instances via dictionary matching. Unfortu-
nately, the learning of DS-NER is severely
dictionary-biased, which suffers from spu-
rious correlations and therefore undermines
the effectiveness and the robustness of the
learned models. In this paper, we fundamen-
tally explain the dictionary bias via a Struc-
tural Causal Model (SCM), categorize the bias
into intra-dictionary and inter-dictionary bi-
ases, and identify their causes. Based on the
SCM, we learn de-biased DS-NER via causal
interventions. For intra-dictionary bias, we
conduct backdoor adjustment to remove the
spurious correlations introduced by the dictio-
nary confounder. For inter-dictionary bias, we
propose a causal invariance regularizer which
will make DS-NER models more robust to the
perturbation of dictionaries. Experiments on
four datasets and three DS-NER models show
that our method can significantly improve the
performance of DS-NER.

1 Introduction

Named entity recognition (NER) aims to identify
text spans pertaining to specific semantic types,
which is a fundamental task of information extrac-
tion, and enables various downstream applications
such as Relation Extraction (Lin et al., 2016) and
Question Answering (Bordes et al., 2015). The
past several years have witnessed the remarkable
success of supervised NER methods using neural
networks (Lample et al., 2016; Ma and Hovy, 2016;
Lin et al., 2020), which can automatically extract
effective features from data and conduct NER in
an end-to-end manner. Unfortunately, supervised
methods rely on high-quality labeled data, which
is very labor-intensive, and thus severely restricts
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Figure 1: Dictionary bias in DS-NER happens both at
intra-dictionary and inter-dictionary aspects: (a) Aver-
aged likehoods of mentions in/not in the dictionary sig-
nificantly diverge. (b) Mention likehoods of the models
using different dictionaries significantly diverge.

the application of current NER models. To resolve
the data bottleneck, a promising approach is dis-
tant supervision based NER (DS-NER). DS-NER
automatically generates training data by matching
entities in easily-obtained dictionaries with plain
texts. Then this distantly-labeled data is used to
train NER models, commonly be accompanied by
a denoising step. DS-NER significantly reduces
the annotation cost for building an effective NER
model, and therefore has attracted great attention in
recent years (Yang et al., 2018; Shang et al., 2018;
Peng et al., 2019; Cao et al., 2019; Liang et al.,
2020; Zhang et al., 2021).

However, the learning of DS-NER is dictionary-
biased, which severely harms the generalization
and the robustness of the learned DS-NER models.
Specifically, entity dictionaries are often incom-
plete (missing entities), noisy (containing wrong
entities), and ambiguous (a name can be of differ-
ent entity types, such as Washington). And DS will
generate positively-labeled instances from the in-
dictionary names but ignore all other names. Such
a biased dataset will inevitably mislead the learned
models to overfit in-dictionary names and underfit
out-of-dictionary names. We refer to this as intra-
dictionary bias. To illustrate this bias, Figure 1
(a) shows the predicting likelihood of a representa-
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Figure 2: The proposed structural causal model for DS-NER. It can be roughly divided into two parts: distant
supervision (DS) and NER. From the SCM, we identify that the intra-dictionary bias stems from the spurious
correlations caused by backdoor paths, while the inter-dictionary bias stems from the over-fit on the dictionary
characteristics. Detailed explanations can be found in Section 2.

tive DS-NER model (RoBERTa + Classifier (Liang
et al., 2020)). We can see that there is a remark-
able likelihood gap between in-dictionary mentions
and out-of-dictionary mentions: the average like-
lihoods of out-of-dictionary mentions are < 0.2,
which means that a great majority of them cannot
be recalled. Furthermore, such a skewed distribu-
tion makes DS-NER models very sensitive to slight
perturbations. We refer to this as inter-dictionary
bias, i.e., different dictionaries can result in very
different model behaviors. In the example shown in
Figure 1 (b), we train the same DS-NER model by
respectively using 4 dictionaries sampled from the
same original dictionary, where each of them cov-
ers 90% of entities in the original one. We can see
that the predicting likelihood diverges significantly
even these 4 dictionaries share the majority part.
Consequently, the dictionary-biased learning will
undermine both the effectiveness and robustness of
DS-NER models.

In this paper, we propose a causal framework to
fundamentally explain and resolve the dictionary
bias problem in DS-NER. We first formulate the
procedure of DS-NER from the causal view with a
Structural Causal Model (SCM) (Pearl et al., 2000),
which is shown in the left part of Figure 2. From
the SCM, we identified that the intra-dictionary
bias stemming from the dictionary which serves as
a confounder during the model learning. The dictio-
nary confounder will introduce two backdoor paths,
one from positively-labeled instances (Xp) to entity
labels (Y ) and the other from negatively-labeled
instances (Xn) to entity labels. These backdoor
paths introduce spurious correlations during learn-

ing, therefore result in the intra-dictionary bias.
Furthermore, the current learning criteria of DS-
NER models is to optimize over the correlations be-
tween the instances (X) and entity types (Y ) given
one specific dictionary (D), namely P (Y |X,D).
Such criteria, however, diverges from the primary
goal of learning a dictionary-free NER model (i.e.,
P (Y |X)), and results in the inter-dictionary bias.
Based on the above analysis, unbiased DS-NER
should remove the spurious correlations introduced
by backdoor paths and capture the true dictionary-
free causal relations.

To this end, we conduct causal interventions to
de-bias DS-NER from the biased dictionary. For
intra-dictionary bias, we intervene on the positive
instances and the negative instances to block the
backdoor paths in SCM, then the spurious corre-
lations introduced by dictionary confounder will
be removed. Specifically, we conduct backdoor
adjustment to learn de-biased DS-NER models,
i.e., we optimize the DS-NER model based on the
causal distribution, rather than from the spurious
correlation distribution. For inter-dictionary bias,
we propose to leverage causal invariance regular-
izer (Mitrovic et al., 2021), which will make the
learned representation more robust to the perturba-
tion of dictionaries. For each instance in the train-
ing data, causal invariance regularizer will preserve
the underlying causal effects unchanged across dif-
ferent dictionaries. The proposed method is model-
free, which can be used to resolve the dictionary
bias in different DS-NER models by being applied
as a plug-in during model training.

We conducted experiments on four standard DS-



4805

NER datasets: CoNLL2003, Twitter2005, Web-
page, and Wikigold. Experiments on three state-
of-the-art DS-NER models show that the proposed
de-biasing method can effectively solve both intra-
dictionary and inter-dictionary biases, and there-
fore significantly improve the performance and the
robustness of DS-NER in almost all settings. Gen-
erally, the main contributions of this paper are:

• We proposed a causal framework, which not
only fundamentally formulates the DS-NER
process, but also explains the causes of both
intra-dictionary bias and inter-dictionary bias.

• Based on the causal framework, we conducted
causal interventions to de-bias DS-NER. For
intra-dictionary bias, we conduct causal inter-
ventions via backdoor adjustment to remove
spurious correlations introduced by the dictio-
nary confounder. For inter-dictionary bias, we
propose a causal invariance regularizer which
will make DS-NER models more robust to the
perturbation of dictionaries.

• Experimental results on four standard DS-
NER datasets and three DS-NER models
demonstrate that our method can significantly
improve the performance and the robustness
of DS-NER.

2 A Causal View on DS-NER

In this section, we formulate DS-NER with a struc-
tural causal model (SCM), then identify the causes
of both intra-dictionary bias and inter-dictionary
bias using the SCM. An SCM captures the causal
effect between different variables and describes the
generative process of a causal distribution, which
can be visually presented using a directed acyclic
graph (DAG). In SCM, each node represents a ran-
dom variable, and a directed edge represents a
direct causal relationship between two variables.
Based on SCM, the confounders and backdoor
paths (Pearl et al., 2000) can be identified. In the
following, we will describe the causal view of DS-
NER and then identify the dictionary bias.

2.1 Structural Causal Model for DS-NER
Figure 2 shows the structural causal model for
DS-NER, which contains 7 key variables in the
DS-NER procedure: 1) the applied dictionary D
for distant annotation; 2) the unlabeled instances
X , where each instance is a pair of (mention can-
didate, context), and in training stage X will be

automatically labeled by D; 3) the positive train-
ing instances Xp, which are instances in X be-
ing labeled as positive instances (i.e., entity men-
tions) by dictionary D; 4) the negative training
instancesXn, which are instances being labeled as
negative instances by dictionary D; 5) the learned
DS-NER model M , which summarizes NER evi-
dences from DS-labeled data during training, and
predicts new instances during testing; 6) the repre-
sentations of instancesR, which is encoded dense
representations of instances X using the learned
model M ; 7) the predicted entity labels Y of in-
stances in X based on the representation R.

Defining these variables, the causal process of
DS-NER can be formulated using SCM into two
steps: distant supervision (DS) step and NER step
respectively. For DS step, the procedure will gener-
ate DS-labeled data and learn DS-NER models by
following causal relations:

• D→Xp←X and D→Xn←X represent the
distant annotation process, which uses dictio-
nary D to annotate the unlabeled instances X
and splits them into two sets: Xp and Xn.

• Xp→M←Xn represents the learning pro-
cess, where model M is the learned DS-NER
model using Xp and Xn. We denote the
Xp and Xn generated from dictionary D as
Xp(D) and Xn(D) respectively.

And the causal relation in NER step can be summa-
rized as:

• M→R←X is the representation learning pro-
cedure, which uses the learned model M to
encode instances X .

• R→Y represents the entity recognition pro-
cess, where the labels of instances depend on
the learned representation R and instances X .
We denote the entity labels corresponding to
Xp and Xn as Y p and Y n respectively.

2.2 Cause of Intra-dictionary Bias

Given distant annotation Xp and Xn, the learning
process of DS-NER will maximize the probabil-
ity P (Y p=1, Y n=0|Xp, Xn, D). Unfortunately,
because D is a confounder for Xp and Xn in
SCM, this criteria will introduce spurious cor-
relations and result in the intra-dictionary bias:
(1) When maximizing P (Y=1|Xp, D), we want
NER models to rely on the actual causal path
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Xp→Y . However, in SCM there exists a back-
door path Xp←D→Xn→M which will introduce
spurious correlation between Y and Xp. Intu-
itively, this backdoor path appears as the false neg-
ative instances in Xn. Because these false nega-
tive instances have correct entity contexts but out-
of-dictionary names, they will mislead the mod-
els to underfit the entity context for prediction.
(2) When maximizing P (Y=0|Xn, D), we want
NER models to rely on the actual causal path
Xn→Y . However, in SCM there exists a backdoor
pathXn←D→Xp→M which will introduce spu-
rious correlation between Y and Xn. Intuitively,
this backdoor path appears as the false positive
instances in Xp. Because these false positive in-
stances have in-dictionary entity names but spuri-
ous context, they will mislead the models to overfit
the names in dictionary.

In general, the intra-dictionary bias is caused
by backdoor paths introduced by D, and this bias
will mislead the NER models to overfit names in
dictionary and underfit the context of entities.

2.3 Cause of Inter-dictionary Bias

As mentioned above, DS-NER models are learned
by fitting P (Y p=1, Y n=0|Xp, Xn, D). This cri-
teria will mislead the model when learning the
correlation between X and Y with spurious in-
formation in D because the learning criteria is con-
ditioned on it. However, a robust NER model
should fit the underlying distribution P (Y |X),
rather than the dictionary-conditioned distribution
P (Y |X,D). From the SCM, the dictionary D will
significantly influence the learned NER models M ,
and in turn result in different learned causal effects
in the path X → R→ Y and entity prediction Y .
As a result, DS-NER models will fit different un-
derlying distributions given different dictionaries,
and therefore results in inter-dictionary bias.

However, in real-world applications, the dic-
tionaries are affected by various factors, such as
source, coverage or time. Therefore, to enhance
the robustness of the learning process, it is critical
to alleviate the spurious influence of dictionary D
on the learned causal effects between X and Y .
That is, we want DS-NER models to capture the
dictionary-invariant entity evidence, rather than fit
the dictionary-specific features.

3 De-biasing DS-NER via Causal
Intervention

In this section, we describe how to de-bias DS-
NER. Specifically, for intra-dictionary bias, we
propose to use backdoor adjustment to block the
backdoor paths. For inter-dictionary bias, we de-
sign a causal invariance regularizer to capture the
dictionary-invariant evidence for NER.

3.1 Removing Intra-dictionary Bias via
Backdoor Adjustment

Based on the analysis in Section 2.2, the intra-
dictionary bias is caused by the backdoor paths
Xp←D→Xn→M and Xn←D→Xp→M . To
remove these biases, we block both backdoor paths
by intervening both Xp and Xn. After causal inter-
vention, the learning of DS-NER models will fit the
correct causal relation P (Y p=1|do(Xp(D)), Xn)
and P (Y n=0|do(Xn(D)), Xp). Here
do(Xp(D))=do(Xp=Xp(D)) represents the
mathematical operation to intervene Xp and
preserve it to be Xp(D) in the whole population.

Backdoor Adjustments. To calculate the distri-
bution P (Y p=1|do(Xp(D))) after causal interven-
tion, we conduct backdoor adjustment according to
causal theory (Pearl, 2009):

Ppos(D),P (Y p=1|do(Xp(D)))

=
∑
i

P (Y p=1|Xp(D), Xn(Di))

× P (Di)

(1)

where Xn(Di) denotes the negative in-
stances generated from the DS dictionary
Di. P (Y p=1|Xp(D), Xn(Di)) is the probability
of predicting Xp(D) into Y=1, which can be
formulated using a neural network-based DS-NER
model parametrized by θ, i.e., P (Y |Xp, Xn) =
P (Y |Xp, Xn; θ). Detailed derivations is shown in
appendix A.

Note the distribution P (Y p=1|do(Xp(D))) in
the causal framework is not the marginalized distri-
bution P (Y p=1|Xp(D)) in the probability frame-
work. Otherwise the marginalization should take
place in the conditional distribution P (Di|Xp)
rather than P (Di). Furthermore, as shown in
Figure 3, Xp=Xp(Di) and Xn=Xn(Dj) can
not happen together in probabilistic view unless
Di=Dj . However, in the causal view, they can
happened together via the causal intervention. That
is do(Xp=Xp(Di)) and Xn=Xn(Dj), which is
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Figure 3: An illustration on causal intervention. (a)
and (b) show the generated instances according to dic-
tionary Di and Dj . And (c) shows the generated in-
stances from do(Xp(Di)) and Xn(Dj).

shown in Figure 3 (c). For more details, please
refer to (Neal, 2020) for a brief introduction.

Similarly, to block the backdoor paths and calcu-
late the causal distribution P (Y n=0|do(Xn(D))),
we can conduct backdoor adjustment on Xn by:

Pneg(D),P (Y n=0|do(Xn(D)))

=
∑
i

P (Y n=0|Xn(D), Xp(Di))

× P (Di)

(2)

Estimating Dictionary Probabilities. Because
we only have one global dictionary D, it is hard to
estimate the probability of other dictionaryDi used
in the Equation (1) and (2). To tackle this problem,
we sample K sub-dictionaries by sampling entities
from the global dictionary D. The probability of
each entity being sampled corresponds to its utter-
ance frequency in a large-scale corpus. Then we
applied a uniform probability assumption to these
sampled dictionaries, which means that these sub-
dictionaries will then be used to conduct backdoor
adjustment with equal dictionary probabilities, i.e.,
P (Di) =

1
K .

Learning DS-NER Models with Causal Rela-
tion. Given the above two causal distributions
after backdoor adjustment, the DS-NER models
can be effectively learned, and the intra-dictionary
bias can be eliminated based on the causal relations
between Xp, Xn and Y . Formally, we optimize
DS-NER models by minimizing the following neg-
ative likelihood based on causal relation:

LBA(θ)=− logPpos(D)− logPneg(D) (3)

Note that the proposed method is model-free,
which means that it can be applied to the majority

of previous DS-NER methods by adaptively chang-
ing the underlying parametrization of probability
distribution P (Y |Xp, Xn; θ) .

3.2 Eliminating Inter-dictionary Bias via
Causal Invariance Regularizer

This section describes causal invariance regularizer
to eliminate the inter-dictionary bias. Specifically,
after backdoor adjustment for intra-dictionary bias,
the causal distribution we optimize (i.e., Ppos(D)
and Pneg(D)) still depends on the dictionaryD. As
a result, given different dictionaries, DS-NER mod-
els will fit different underlying causal distributions
and result in inter-dictionary bias.

Ideally, a robust DS-NER learning algorithm
should be dictionary-free, i.e., we should di-
rectly optimize towards the implicit distribution
of P (Y |X). However, it is impossible to directly
achieve this because the golden answer Y of X is
invisible in DS-NER. To enhance the robustness
of the learning process, this section proposes a
causal invariance regularizer, which ensures DS-
NER models to learn useful entity evidence for
NER but not to fit dictionary-specific features.
Specifically, the goal of causal invariance (Pearl
et al., 2000) is to ensure learned NER models will
keep similar causal effects using different dictio-
naries, which can be formulated as:

θ∗inv=argmin
θ
‖Ppos(Di)− Ppos(Dj)

+Pneg(Di)− Pneg(Dj)‖
(4)

Here || ∗ || measures the distance between two
distributions. However, as we mentioned above,
this distance cannot be directly optimized because
the golden label Y of X is unknown. Fortunately,
in the SCM, the impact from dictionary D to
the entity label Y are all through the model M
and the representation R, i.e., through the path
D → M → R → Y . As a result, the bias from
the dictionary D can be eliminated by preserving
the causal effects between X and any node in the
path. A simple and reasonable solution is to pre-
serve the causal invariance of the representation
R. That is, given different dictionaries, we keep
the causal effects from X to R unchanged, and
therefore causal effects of X → Y will remain un-
changed. Specifically, when learning causal effects
given an dictionary D, the causal invariance regu-
larizer will further enhance its causal consistency
with other dictionaries by minimizing its represen-
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tation distances to other dictionaries:

LCIR(θ;D)=
K∑
i=1

∑
x∈X
||RD(x; θ)

−RDi(x)||2 (5)

Here RD(x; θ) is the representation of instance x,
which is derived from the NER model M by fitting
the causal effects of dictionary D. The reference
dictionary Di in the formulations are generated in
the same way as we described in Section 3.1 andK
is the number of sub-dictionaries. Therefore, this
regularizer ensures that the representations learned
using different dictionaries will be consistent, and
the inter-dictionary bias is eliminated.

Finally, we combine (3) and (5) to de-bias both
intra-dictionary bias and inter-dictionary bias and
obtain the final DS-NER models by optimizing:

L =
∑
i

LiBA + λLCIR (6)

where λ is a hyper-parameter which controls the
relative importance of these two losses and is tuned
on the development set.

4 Experiments

4.1 Experimental Settings
Datasets. We conduct experiments on four stan-
dard datasets: (1) CoNLL2003 (Tjong Kim Sang
and De Meulder, 2003) is a well known open-
domain NER dataset. It consists of 20744 sen-
tences collected from 1393 English news articles
and is annotated with four types: PER, ORG, LOC
and MISC. (2) Twitter (Godin et al., 2015) is from
the WNUT 2016 NER shared task. It consists of
7236 sentences with 10 entity types. (3) Webpage
(Ratinov and Roth, 2009) contains 20 webpages, in-
cluding personal, academic and computer-science
conference homepages. It consists of 619 sentences
with the four types the same as CoNLL2003. (4)
Wikigold (Balasuriya et al., 2009) contains 149
articles from the May 22, 2008 dump of English
Wikipedia. It consists of 1969 sentences with the
same types of CoNLL2003.

Distant Annotation Settings. We use two dis-
tant annotation settings: String-Matching and KB-
Matching (Liang et al., 2020). String-Matching
labels dataset by directly matching names in dictio-
nary with sentences. KB-Matching is more com-
plex, which uses a set of hand-crafted rules to

match entities. We find KB-Matching can gener-
ate better data than String-Matching, but String-
Matching is a more general setting. In our ex-
periments, we report performance on both KB-
Matching and String-Matching settings.

Implementation Detail. We implement
BiLSTM-CRF with AllenNLP (Gardner et al.,
2017), an open-source NLP research library, and
the input vector is the 100-dimension GloVe
Embeddings (Pennington et al., 2014). For other
baselines, we use the officially released implemen-
tation from the authors. We openly release our
source code at github.com/zwkatgithub/DSCAU.

4.2 Baselines
The proposed de-biased training strategy is both
model-free, and learning algorithm-free. Therefore,
we use the following base DS-NER baselines and
compare the performance of using/not using our
de-biased training strategy:

DictMatch , which perform NER by directly
matching text with names in a dictionary, so no
learning is needed.

Fully-supervised baselines , including: (i)
BiLSTM-CRF (Lample et al., 2016), which uses
Glove (Pennington et al., 2014) for word embed-
dings; (ii) RoBERTa-base (Liu et al., 2019), which
encodes text using RoBERTa-base then predict to-
ken label via a multi-layer perceptron.

Naive Distant Supervision (Naive) , which di-
rectly uses weakly labeled data to train a fully-
supervised model. It could be considered as the
lower bound of DS-NER.

Positive-Unlabeled Learning (PU-Learning)
(Peng et al., 2019), which formulates DS-NER as
a positive-unlabeled learning problem. It could
obtain unbiased loss estimation of unlabeled data.
However, it assumes that there are no false positive
instances which may be incorrect in many datasets.

BOND (Liang et al., 2020), which is a two-stage
learning algorithm: In the first stage, it leverages
pre-trained language model to improve the recall
and precison of the NER model; In the second
stage, it adopts a self-training approach to further
improve the model performance.

4.3 Main Results
Table 1 and Table 2 show the overall performance
(F1 scores) of different baselines and our methods.
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KB-Matching String-Matching

Methods CoNLL2003 Twitter Webpage Wikigold CoNLL2003 Twitter Webpage Wikigold

Supervised Learning Baselines

BiLSTM-CRF 85.98 32.30 51.59 57.01 – – – –
RoBERTa-base 91.12 50.47 74.07 84.02 – – – –

Distant Supervision Baselines

DictMatch 71.40 35.83 52.45 47.76 43.91 19.18 2.56 19.04
BiLSTM-CRF 64.62 30.25 13.90 37.46 60.52 31.67 24.67 27.97

RoBERTa-base 76.04 46.40 54.07 52.83 73.94 46.02 57.14 37.94
+BA (Ours) 76.43(+0.40) 46.75(+0.35) 59.28(+5.21) 53.56(+0.73) 75.43(+1.49) 46.69(+0.67) 58.71(+1.57) 42.23(+4.59)
+BA+CIR (Ours) 78.78(+2.74) 47.12(+0.72) 59.06(+4.99) 55.60(+2.77) 75.59(+1.65) 47.27(+1.25) 58.04(+0.90) 44.19(+6.25)

BOND 79.83 47.72 61.28 60.23 75.51 48.72 66.23 42.17
+BA (Ours) 80.81(+0.98) 48.45(+0.73) 64.65(+3.37) 60.81(+0.58) 76.21(+0.70) 49.12(+0.40) 66.67(+0.44) 42.53(+0.36)
+BA+CIR (Ours) 81.54(+1.71) 49.01(+1.29) 64.71(+3.43) 61.48(+1.25) 76.53(+1.02) 48.82(+0.10) 66.67(+0.44) 45.55(+3.38)

Table 1: F1 scores on CoNLL2003, Twitter, Webpage and Wikigold. BA and CIR denotes the proposed back-
door adjustment and causal invariance regularizer respectively. We can see that the proposed causal intervention
approach achieves significant improvements on almost all settings.

KB-Matching String-Matching

PU-Learning 74.96 72.42
+BA (Ours) 80.93(+5.97) 76.17(+3.75)
+BA+CIR (Ours) 81.96(+7.00) 76.62(+4.20)

Table 2: F1 scores on CoNLL2003 dataset based on
PU-Learning (Peng et al., 2019). We don’t report
the results on other datasets, because PU-Learning
needs high-quality dictionary which only provided by
CoNLL2003.

For our method, we use BA to denote backdoor
adjustment, and CIR to denote causal invariance
regularizer. We conduct our debiasing method on
three base models: RoBERTa-base, PU-Learning
and BOND, therefore we have 6 systems of
our methods: RoBERTa+BA, RoBERT+BA+CIR,
PU-Learning+BA, PU-Learning+BA+CIR, BOND
+BA, BOND+BA+CIR.

We can see that: (1) DS-NER models are
severely influenced by the dictionary bias. Without
debiasing, the naive DS-NER baselines BiLSTM-
CRF and RoBERTa-base can only achieve compa-
rable performance with the simple DictMatch base-
lines. And by taking the dictionary bias into con-
sideration, PU-Learning, BOND with our method
can significantly improve the performance of DS-
NER. Compared with DictMatch, they correspond-
ingly achieve 4.99%, 21.98% F1 improvements
on average. This verified that the dictionary bias
is critical for DS-NER models. (2) By debias-
ing DS-NER models via causal intervention, our
method can achieve significant improvement. Com-
pared with their counterparts, our full methods
RoBERTa+BA+CIR, BOND+BA+CIR correspond-

ingly achieve 4.91%, 3.18% improvements aver-
aged on four datasets in KB-Matching (5.75%,
2.56% improvements on String-Matching) and PU-
Learning+BA+CIR achieves 9.34% improvement
on CoNLL2003 dataset in KB-Matching (5.80%
improvement in String-Matching). This verified
the effectiveness of using causal intervention for
debiasing DS-NER. (3) Our method can effectively
resolve both intra-dictionary and inter-dictionary
biases. Both of backdoor adjustment and causal
invariance regularizer can improve the NER perfor-
mance. By conducting backdoor adjustment, our
method can achieve a 3.27% F1 improvement av-
eraged on all base models and all datasets. And
further conducting causal invariance regularizer
can future improve 4.63% average F1.

4.4 Effects on Robustness

To verify whether the causal invariance regular-
izer can significantly improve the robustness of
DS-NER across different dictionaries, we further
compared the predicting likelihood of golden men-
tions using different dictionaries. Specifically, we
train the same RoBERTa-Classifier DS-NER mod-
els by sampling 4 dictionaries. Figure 4 shows the
average predicting likelihood before/after using our
de-biasing method.

From Figure 4, we can see that the proposed
causal invariance regularizer significantly reduced
the likelihood gaps between different dictionaries.
This verified that removing the inter-dictionary bias
can significant benefit the robustness of DS-NER.
Furthermore, we can see that the likelihoods of
golden mentions are remarkably increased, which
represents a better NER performance. These
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Figure 4: The likelihood variance between different
dictionaries before/after using causal invariance regu-
larizer (RoBERTa-Classifier on CoNLL2003), We can
see that the performance variance significantly de-
creases, which verifies that causal invariance regular-
izer can significantly improve the robustness of DS-
NER.
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Figure 5: F1 scores when with different sub-dictionary
coverages on the test set of CoNLL2003.

71

73

75

77

79

81

83

85

1 2 3 4
Quantity of Dictionary

BOND PUL RoBERTa

77

78

79

80

81

82

83

40% 50% 60% 70% 80%
Proportion

BOND PUL RoBERTa

Figure 6: F1 scores when using different sub-dictionary
quantities on the test set of CoNLL2003.

all demonstrate the effectiveness of the proposed
causal invariance regularizer.

4.5 Influence of Sub-dictionaries

To conduct causal intervention, our method needs
to sample sub-dictionaries from the original one.
To analyze the influence of the coverage and the
quantity of sub-dictionaries, we conducted experi-
ments on sub-dictionaries with different coverages
and different quantities.

Dictionary Coverage. Figure 5 shows the re-
sults with different dictionary coverages. We can
see that our method is not sensitive to the cover-
age of sub-dictionaries: it can achieve robust per-
formance from 40% to 80% coverage. All three
models achieved the best performance at the 70%
coverage. This result demonstrates the robustness
of our method on dictionary coverage.

Dictionary Quantity. Figure 6 shows the results
with different sub-dictionary quantities. We can see
that our method can achieve performance improve-
ment by sampling more sub-dictionaries. This is
because more sub-dictionaries will lead to more
accurate estimation of both the dictionary proba-
bility in backdoor adjustment and the dictionary
variance in causal invariance regularizer. Futher-
more, we can see that the performance using only
one sub-dictionary (i.e., DS-NER without causal
intervention) is significantly worse than other set-
tings, this further verifies the effectiveness of our
method.

5 Related Work

DS-NER. Supervised NER models have achieved
promising performance (Lample et al., 2016; Lin
et al., 2019a,b). However, the reliance on labeled
data limits their applications in open situations.
Distant supervision (Mintz et al., 2009) is a promis-
ing technique to alleviate the data bottleneck for
NER, which generates large-scale training data by
matching sentences with external dictionaries. Cur-
rent DS-NER studies focus on denoising the dis-
tantly labeled training data for better model learn-
ing. Yang et al. (2018) adopted reinforcement learn-
ing for denoising. Shang et al. (2018) proposed a
sequence labeling framework TieOrBreak, which
can avoid noise caused by a single word. Cao et al.
(2019) promoted the quality of data by exploiting
labels in Wikipedia. Peng et al. (2019) employed
Positive-Unlabeled Learning to obtain unbiased es-
timation of the loss value. Liang et al. (2020) used
self-training method which leverages a pretrained
language model as teacher model to guide the train-
ing of student model.
Causal Inference. Causal Inference (Pearl, 2009;
Pearl and Mackenzie, 2018) has been widely
adopted in psychology, politics and epidemiology
for years (MacKinnon et al., 2007; Richiardi et al.,
2013; Keele, 2015). It can provide more reliable ex-
planations by removing confounding bias in data,
and also provide debiased solutions by learning
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causal effect rather than correlation effect. Re-
cently, many causal inference techniques are used
in computer vision (Tang et al., 2020; Qi et al.,
2020) and natural language process (Wu et al.,
2020; Zeng et al., 2020).

6 Conclusions

This paper proposes to identify and resolve the dic-
tionary bias in DS-NER via causal intervention.
Specifically, we first formulate DS-NER using a
structural causal model, then identity the causes of
both intra-dictionary and inter-dictionary biases, fi-
nally de-bias DS-NER via backdoor adjustment
and causal invariance regularizer. Experiments
on four datasets and three representative DS-NER
models verified the effectiveness and the robustness
of our method.
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A Proof of Backdoor Adjustment

We prove the backdoor adjustment for SCM using
the do-calculus (Pearl, 1995) and the Truncated
Factorization (Neal, 2020).

First of all, we write the joint distribution as
shown in our causal graph:

P (D,Xp, Xn, Y,M,R,X)

=P (D)P (X)P (Xp|D,X)P (Xn|D,X)

P (M |Xp, Xn)P (R|M,X)P (Y |R)

Due to the objective of our method is debiasing
DS-NER models during training, we ignore the un-
labeled instances variable X which is not related to
the training process. Then we obtain the following
equation:

P (D,Xp, Xn, Y,M,R)

=P (D)P (Xp|D)P (Xn|D)

P (M |Xp, Xn)P (R|M)P (Y |R)

Note that the prediction step of a NER
model M→R→Y doesn’t have causal
effects with other variables, we abbrevi-
ate P (M |Xp, Xn)P (R|M,X)P (Y |R) as
P (Y |Xp, Xn). Finally, we obtain the simplified
joint distribution:

P (D,Xp, Xn, Y )

=P (D)P (Xp|D)P (Xn|D)P (Y |Xp, Xn)

Then we conduct causal intervention on Xp, i.e.,
do(Xp=Xp(D)) where Xp(D) denotes positive
instances generated by dictionary D. Here, we ab-
breviate it as do(Xp(D)). In practice, do(Xp(D))
denotes that we use these positive instances to cal-
culate loss value, therefore, in order to explicitly in-
dicate this, we use Y p=1 in the following equation.
According to the Truncated Factorization (Neal,
2020), we can know P (Xp|D)=1, and obtain the
following equation:

P (D,Xn, Y p=1|do(Xp(D)))

=P (D)P (Xn|D)P (Y p=1|Xp(D), Xn)

Next, we integrate D and Xn:

P (Y p=1|do(Xp(D)))

=
∑
i

∑
Xn

P (Di)P (X
n|Di)P (Y

p=1|Xp(D), Xn)

Note that P (Xn(Di)|Di)=1 if and only if Xn is
generated by a specific dictionary Di, therefore we

can obtain:

P (Y p=1|do(Xp(D)))

=
∑
i

∑
Xn

P (Di)P (X
n|Di)P (Y

p=1|Xp(D), Xn)

=
∑
i

P (Di)P (Y
p=1|Xp(D), Xn(Di))


