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Abstract
While pre-training techniques are working
very well in natural language processing, how
to pre-train a decoder and effectively lever-
age it for neural machine translation (NMT)
still remains a tricky issue. The main rea-
son is that the cross-attention module between
the encoder and decoder cannot be pre-trained,
and the combined encoder-decoder model can-
not work well in the fine-tuning stage be-
cause the inputs of the decoder cross-attention
come from unknown encoder outputs. In
this paper, we propose a better pre-training
method for NMT by defining a semantic in-
terface (SemFace) between the pre-trained en-
coder and the pre-trained decoder. Specifi-
cally, we propose two types of semantic in-
terfaces, including CL-SemFace which re-
gards cross-lingual embeddings as an inter-
face, and VQ-SemFace which employs vec-
tor quantized embeddings to constrain the en-
coder outputs and decoder inputs in the same
language-independent space. We conduct mas-
sive experiments on six supervised translation
pairs and three unsupervised pairs. Experimen-
tal results demonstrate that our proposed Sem-
Face can effectively connect the pre-trained en-
coder and decoder, and achieves significant im-
provement by 3.7 and 1.5 BLEU points on the
two tasks respectively compared with previous
pre-training-based NMT models.

1 Introduction

In recent years, pre-trained language models (Pe-
ters et al., 2018; Devlin et al., 2018; Radford et al.,
2019; Yang et al., 2019; Raffel et al., 2020) signif-
icantly boost the performances of various natural
language processing (NLP) tasks, receiving exten-
sive attention in NLP communities. Following the
idea of unsupervised pre-training methods in the
NLP area, several approaches (Lample and Con-
neau, 2019; Zhu et al., 2020; Lewis et al., 2020;

∗Contribution during internship at MSRA.

Liu et al., 2020) have been proposed to improve
neural machine translation (NMT) models with pre-
training by leveraging the large-scale monolingual
corpora. The typical training process usually con-
sists of two stages: pre-training an encoder and a
decoder separately with a large monolingual corpus
in a self-supervised manner, and then fine-tuning on
specific NMT tasks (Lample and Conneau, 2019).

The above method essentially pre-trains a BERT-
like (Devlin et al., 2019) Transformer encoder, and
uses it to initialize both the encoder and decoder.
Although it shows promising results, pre-training
decoder benefits little in their results. The po-
tential reason is that the cross-attention between
the encoder and decoder is not pre-trained, which
is randomly initialized when they are connected
for fine-tuning, resulting in a lack of semantic in-
terfaces between the pre-trained encoder and de-
coder. Another line of work attempts to pre-train a
sequence-to-sequence model directly, e.g., MASS
(Song et al., 2019) and BART (Lewis et al., 2020).
But these methods usually use monolingual denois-
ing auto-encoder as the main training objective, and
cannot learn the corss-lingual mapping between
source and target languages explicitly.

In parallel to the idea of DALL·E1 which de-
fines the cross-modality interface of image and text,
we propose to pre-train the encoder and decoder
with a language-independent semantic interface
(SemFace) for neural machine translation. With
the semantic interface, the encoder is pre-trained to
extract features to this space, and the decoder is pre-
trained to generate contents with features provided
by it. By defining this interface, we can decouple
the encoder-decoder network and pre-train them
separately. During the decoder pre-training, the
cross-attention module is also pre-trained, thus the
pre-trained encoder and decoder can be naturally

1https://openai.com/blog/dall-e/
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Figure 1: Overview of our method (Top: pre-training; Bottom: fine-tuning). The training steps of pre-training
encoder and decoder are separated, therefore the training samples of them are not necesarrily the same. (In the
figure, the training sample for pre-training the encoder is x1 = x11x

2
1..x

6
1) and the training sample for pre-training

the decoder is x2 = x12x
2
2..x

6
2). For MT fine-tuning, we use the parallel training sample {x1,y1} from the parallel

corpus or generated from back-translation.

connected for MT fine-tuning. We propose two
types of semantic interfaces, namely CL-SemFace
and VQ-SemFace. The former takes the trained un-
supervised cross-lingual embeddings (Artetxe et al.,
2018) as the interface for encoder and decoder pre-
training. Inspired by the success of neural discrete
representation learning (Van Den Oord et al., 2017),
the latter uses language-independent vector quan-
tized (VQ) embeddings (semantic unites) as the
interface to map encoder outputs and decoder in-
puts into the shared VQ space. Experiments con-
ducted on both supervised and unsupervised trans-
lation tasks demonstrate that SemFace effectively
connects the pre-trained encoder and decoder, and
achieves a significant improvement by 3.7 and 1.5
BLEU points on the two tasks respectively.

Our contributions are listed as follows:

• To the best of our knowledge, this is the first
work to investigate and define a semantic in-
terface between encoder and decoder for the
MT pre-train-finetune framework.

• We design and compare two effective types
of semantic interfaces, which utilize cross-
lingual embeddings and vector quantized em-
beddings respectively.

• We extensively verify the effectiveness of our
proposed model on supervised and unsuper-
vised NMT tasks. Particularly, our proposed
CL-SemFace and VQ-SemFace lead to signif-
icant improvements of 3.38 and 3.76 BLUE

points on low-resource language pairs.

2 SemFace

2.1 Pre-training both Encoder and Decoder

The overview of our proposed SemFace is illus-
trated in Figure 1. As shown in this figure, our
method can be divided into two steps. First, we use
monolingual data to pre-train encoder and decoder
separately with a semantic interface between them.
The encoder is pre-trained to map the input from
the monolingual semantic space into the interface,
while the decoder is pre-trained to use the content
from the interface via the cross attention module
to finish decoding. The parameters of the encoder
and the decoder are updated independently, thus
their pre-training processes can be either jointly
or separately done. Then, we remove the seman-
tic interface, and connect the pre-trained encoder
and decoder with the pre-trained cross-attention as
a sequence-to-sequence model for the subsequent
machine translation fine-tuning. Note that in Fig-
ure 1, the input to the encoder and decoder includes
token representations, language embeddings and
positional embeddings.

There are three types of semantic interface. The
first is the default output space of pre-trained en-
coder with the masked language model (MLM)
training loss. In fact, previous work (Song et al.,
2019; Lewis et al., 2020; Liu et al., 2020) adopts
this default settings in their pre-training method
for machine translation. The second one is CL-
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Figure 2: CL-SemFace, which regards a pre-trained cross-lingual embeddings as a semantic interface.

Algorithm 1: Pre-training with SemFace
Input: Monolingual corpora DX and DY for two

languages
Output: the MT model Mθ

1 Randomly initialize the parameters of the encoder
θenc and the decoder θdec as well as the semantic
interface θsf

2 Initialize θsf with pre-trained cross-lingual
embeddings (for CL-SemFace)

while not convergence do
3 Sample a batch B from DX or DY
4 Pass B through the encoder with SemFace
5 Update θenc and θsf
6 Pass B through the decoder with SemFace
7 Update θdec
8 return Mθ = {θenc, θdec}

SemFace (Sec. 2.2), which uses the pre-trained
context-free cross-lingual embedding space as the
semantic interface. The third is VQ-SemFace (Sec.
2.3), which automatically learns a context-aware
vector quantized (VQ) embedding space as the in-
terface during pre-training. The last two types de-
fine a language-independent interface, enforcing
the pre-trained encoder and the decoder to generate
or leverage the language-independent information.
They can provide a better initialization for the fol-
lowing MT fine-tuning. We give our pre-training
algorithm in Alg. 1. Note that the parameters of
the cross-attention are included in θdec. Next, we
will introduce our proposed CL-SemFace and VQ-
SemFace in detail.

2.2 CL-SemFace

CL-SemFace uses the cross-lingual embedding
space as the interface between the encoder and
the decoder during pre-training. We first concate-
nate the monolingual corpora of two languages and
learn joint BPE, and then train cross-lingual BPE
embeddings with VecMap (Artetxe et al., 2018).

As shown in Figure 2, on the encoder side, we
initialize the linear projection weights (output em-
beddings) before the Softmax with the pre-trained
BPE embeddings, and pre-train the encoder with

two training objectives. The first is the commonly
used Masked Language Model (MLM) (Devlin
et al., 2018) lmlm, and the other is the MSE loss
lmse between the encoder output hiddens and the
corresponding output embeddings. The latter con-
trols the scale of the encoder outputs to be the same
as the cross-lingual embeddings, in order to match
the encoder outputs and the cross-attention inputs.
To stabilize training, we calculate the MSE loss
before the last normalization layer of the encoder.
Formally, given an input sample x, the encoder
pre-training loss function is:

Lenc =Lmlm + Lmse

=
∑
i

[− log p(xi|LN(hi(x)))

+ (Wi − hi(x))2]

(1)

where xi is the masked tokens in the input sentence,
hi is the activation of the final layer of the encoder
but before the final layer normalization LN, Wi is
the output embedding of the ground-truth token,
and p is the output probability of the Softmax.

When pre-training the decoder, we attempt to use
the content from the semantic interface to simulate
encoder outputs. To achieve that, given a monolin-
gual training sample x, we first add some noise1

into it to get the noisy sample C(x)), then we pass
it through an embedding layer initialized with the
pre-trained BPE embeddings to get the language-
independent representations E(C(x)). The train-
ing target of the decoder is either the MLM or the
Casual Language Model (CLM) (Lample and Con-
neau, 2019). Different from them, in our work,
the decoder is trained to generate contents with
the language-independent representations from the
semantic interface. During this process, the param-
eters of the enc-dec attention (cross-attention) can
also be pre-trained, which is critical to the subse-
quent machine translation fine-tuning. Formally,

1The noise here includes words dropping and swapping as
in Lample et al. (2018).
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Figure 3: VQ-SemFace, which utilizes vector quantized embeddings as a semantic interface.

the decoder pre-training loss functions is:

Ldec mlm =
∑
j

− log p[yj |(sj(x)), E(C(x))]

(2)
or

Ldec clm =
∑
j

− log p(yj |(s<j(x)), E(C(x))]

(3)
where s is the final output hidden of the decoder
and p is the output probability of the Softmax.

2.3 VQ-SemFace

The CL semantic space is constrained with the
cross-lingual word embedding, which is context-
independent, meaning that the different meanings
of the same word share the same embedding, and
the number of semantic units should be the same
with the size of the vocabulary. In order to learn
context-dependent semantic units freely, we also
propose another interface type, vector quantized
embeddings, inspired by the recent success of VQ-
based speech pre-training (Baevski et al., 2020).
The concept of Vector Quantized (VQ) representa-
tions is first proposed in Van Den Oord et al. (2017).
The method uses a learnable code-book combined
with the nearest neighbor search to train the dis-
crete latent variable model. The code-book is es-
sentially a group of learnable embeddings (codes)
{z}K1 . The nearest neighbor search is performed
between the encoder outputs and the embedding of
the latent code using the L2 distance metric. For-
mally, given the encoder output h(x), the discrete
latent variable assignment is given by

zi = arg min
j∈[K]

||h(x)− zj ||2 (4)

where K is the number of codes in the code-book,
zj is j-th quantized vector in the code-book. That
means, zi is the output of the VQ layer correspond-
ing to h(x). The main issue of this method is that

the arg min operation is not differentiable. Fol-
lowing Baevski et al. (2020), we use the Gumbel-
Softmax (Gumbel, 1954; Jang et al., 2016) to select
discrete codebook variables in a fully differentiable
way and we use the straight-through estimator of
Jang et al. (2016). Given the encoder output h(x),
we apply a linear layer followed by a ReLU and
another linear which outputs l ∈ RK logits for the
Gumbel-Softmax. During inference, we simply
pick the largest index in l. During training, the
output probability to choose the j-th code is

pj =
exp(lj + vj)/τ∑K
k=1 exp(lk + vk)/τ

(5)

where v = − log(− log(u)) and u are uniform
samples from U(0, 1). In the forward pass, only
the embedding in the code-book with the largest
probability is used, which means the output of the
VQ layer is zi, where i = arg maxi pi, while in
the backward pass, the gradient is passed to all the
Gumbel-Softmax outputs.

The VQ layer groups the context-aware hid-
den states into limited semantic units (codes), and
the space of these codes can be used as our sec-
ond language-independent semantic interface. As
shown in Figure 3, for the encoder, we add a VQ
layer between the encoder output and the prediction
layer of MLM. The training loss is the combination
of the original MLM loss and two auxiliary losses
as used in Baevski et al. (2020). The first is the
diversity loss Ld to encourage the model to use the
code-book entries equally often by maximizing the
entropy of the averaged Softmax distribution over
the codes across a batch of utterances as

Ld =
1

K

K∑
k=1

p̄k log p̄k (6)

where p̄k is the averaged probability of choosing
the k-th code in the code-book across a batch, and
pk is calculated by Eq.(5). The second auxiliary
loss is an L2 penalty to stabilize the training, which
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is applied to the activations of the final encode layer
but before the last normalization of the encoder.
Therefore, the total loss of encoder pre-training is
Lenc = Lmlm + Ld + L2.

For the decoder, similar to CL-SemFace, we also
use the content from the VQ interface to simulate
the encoder output during pre-training. To get the
VQ output, given a training sample, we first feed
it into an embedding layer and then pass the read-
out embeddings to a two-layer Transformer, which
can be regarded as a feature extractor. We use the
Transformer output as the representations of each
word and find the corresponding codes in the code-
book according to Eq.(5). The readout codes are
the simulated encoder output, and they will be fed
into the decoder via the cross-attention. Note that
in the decoder pre-training, the VQ code-book is
fixed. The training goal of the decoder is the same
as that in CL-SemFace, i.e., Ldec mlm or Ldec clm.

2.4 Fine-tuning
The semantic interface acts as a bridge to connect
the encoder and decoder during pre-training. The
encoder is pre-trained to project the input to the
features in the semantic interface space, while the
decoder is pre-trained to leverage the features from
the interface space through the cross-attention to
generate outputs. With this method, we can pre-
train all the parameters of the whole sequence-
to-sequence model, including the cross-attention
between the encoder and the decoder. After pre-
training, we connect the encoder and the decoder
via the cross-attention directly by removing the
semantic interface as shown in Figure 1 (bottom).
We then fine-tune the model on low-resource su-
pervised NMT tasks and unsupervised NMT tasks.
For the low-resource settings, we use the standard
cross-entropy loss − log p(y|x) given the parallel
training sample {x,y}, and for the unsupervised
settings, we use the denoising auto-encoder and
iterative back-translation as the objectives as in
Lample and Conneau (2019).

3 Experiment

3.1 Setup
3.1.1 Dataset
The languages we choose for our experiments are
English (en), French (fr), German (de), Romanian
(ro), Finnish (fi), Estonian (et), Latvian (lv), Lithua-
nian (lt), Gujarati (gu), and Kazakh (kk). The de-
tails of the datasets and statistics for each language

pair are listed in Table 1. All the data is provided by
the recent WMT translation tasks. “Para Data” in
this table means the number of training samples of
“x-en”. The language pairs with parallel data in the
table are chosen for the low-resource supervised
settings, while those with only monolingual data
are chosen for the unsupervised scenario only. For
the language with more than 50 million monolin-
gual data, we randomly sample 50 million from the
corpus. We choose the corresponding development
and test sets for each language pair from WMT
translation tasks, as listed in Table 2.

Lang Mono Data Source #Sent Para Data

en NC 50M -
fr NC 50M -
de NC 50M -
ro NC 21M -
fi NC, CC 50M 2.7M
et NC, CC, BE 50M 1.9M
lv NC, CC 38M 4.5M
lt NC, CC, Wiki 50M 2.1M
gu NC, CC, Wiki 4.3M 10K
kk NC, CC, Wiki 12.7M 91K

Table 1: The datasets used in our experiments. Lang:
language; Mono: monolingual; Para: parallel; #Sent:
number of sentences in the monolingual corpus; NC:
NewsCrawl; CC: CommonCrawl; BE: BigEst Estonian
corpus; Wiki: Wiki dumps.

Language-pair Dev set Test set

en-fr newstest2013 newstest2014
en-de newstest2013 newstest2016
en-ro newsdev2016 newstest2016
en-fi newsdev2015 newstest2017
en-et newsdev2018 newstest2018
en-lv newsdev2017 newstest2017
en-lt newsdev2019 newstest2019
en-gu newsdev2019 newstest2019
en-kk newsdev2019 newstest2019

Table 2: Development and test sets for each pair.

3.1.2 Baselines
We compare our method with two baselines. The
first is XLM (Lample and Conneau, 2019), which
pre-trains a Transformer encoder with the MLM or
CLM loss and then initializes the encoder and the
decoder with the pre-trained model. The param-
eters of the cross-attention module are randomly
initialized. The second baseline is mBART (Liu
et al., 2020), which pre-trains the whole sequence-
to-sequence architecture with the denoising auto-
encoder loss on the multilingual corpus. For a fair
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Method en-fi en-et en-lt en-lv en-gu en-kk avg.→ ← → ← → ← → ← → ← → ←

Transformer 20.3 21.7 17.7 22.4 12.2 18.1 12.7 15.4 0.0 0.1 0.2 0.8 11.80

XLM 21.1 25.4 20.6 24.9 14.5 20.7 14.2 17.8 0.0 0.0 1.7 4.5 (+1.98)
mBART 21.9 26.7 20.8 25.8 14.7 20.4 14.6 18.7 0.1 0.3 2.1 6.3 (+2.57)

CL-SemFace 22.7 25.1 21.8 26.6 15.9 21.8 15.9 19.7 0.5 1.9 2.7 7.6 (+3.38)
VQ-SemFace 22.1 25.3 21.6 27.0 15.4 22.3 15.4 20.1 1.7 2.6 3.8 9.4 (+3.76)

Table 3: BLEU scores of the low-resource language pairs. Baseline results are based on our reproduction. The last
row means the averaged improvement of each method compared with the basic Transformer without pre-training.

comparison, we use their pre-training method on
the concatenated corpora of each language pair,
i.e., mBART02 in their paper. For the low-resource
supervised settings, we also compare our method
with the basic Transformer without pre-training.
If there is a parallel corpus for a certain language
pair, we use the parallel data to fine-tune the pre-
trained models in the two baselines. If there is only
a monolingual corpus, we use the denoising auto-
encoder and iterative back-translation to fine-tune
the pre-trained models.

3.1.3 Implementation Details
We implement our method based on the code re-
leased by Lample and Conneau (2019). For each
language pair, we first lower-case all the case-
sensitive languages by default and pre-process the
concatenated corpora of each language pair with
60,000 joint BPE codes. For both encoder and
decoder, we use 6-layer Transformers with the em-
bedding and hidden dimensions of 1024, 8 atten-
tion heads, and a dropout rate of 0.1. The maxi-
mum sequence length is 256 and the batch size is
128. We use the Adam optimizer (Kingma and Ba,
2014) for both pre-training and fine-tuning. During
pre-training, the learning rate is 0.0001 constantly.
During MT fine-tuning, the learning rate is 0.0001
with 4,000 warm-up steps, and then decayed based
on the inverse square root of the update number.
The loss of the denoising auto-encoder objective
is weighted by a coefficient α, and it is linearly
decreased to 0.1 in the first 100,000 steps and de-
creased to 0 in the next 200,000 steps. For VQ-
SemFace, the code-book contains 102,400 codes
with their dimensions being 1024.

3.2 Main Results
In this section, we report the result of our pre-
training method fine-tuned with neural machine
translation. We have two settings. The first set-
ting is low-resource supervised machine translation,

which uses additional parallel corpus to fine-tune
the pre-trained encoder and decoder. The second
is unsupervised neural machine translation, which
uses the two objectives of denoising auto-encoder
and back-translation to fine-tune the model.

3.2.1 Low-resource Language Pairs
The results on the low-resource language pairs are
shown in Table 3. From the table, we see that our
proposed methods CL-SemFace and VQ-SemFace
significantly outperform the non-pre-training Trans-
former with an average improvement of over 3
BLEU scores. Compared with the strong baseline
mBART, our methods also outperform it by 0.8 to
1.2 BLEU scores. For most translation directions,
VQ-SemFace is better than CL-SemFace, maybe
due to the lower quality of cross-lingual language
embeddings of these language pairs, especially for
the distant language pairs (en-gu and en-kk). This
also shows the shortcomings of the CL-SemFace
that it depends on the quality of the cross-lingual
embeddings. If the quality is not good, the seman-
tic interface will be far from language-independent,
posing difficulties for the splicing of the pre-trained
encoder and the pre-trained decoder. By contrast,
VQ-SemFace gets rid of the constraints of cross-
lingual embeddings and learns a context-dependent
semantic space shared across languages, which can
handle those language pairs with low-quality cross-
lingual embeddings better.

3.2.2 Unsupervised Language Pairs
We also report the results of three unsupervised
language pairs in Table 4. From the table, we find
our proposed methods also significantly outperform
the baseline XLM over 1 BLEU score. Compared
with mBART, we also obtain an improvement of
nearly 0.9 BLEU score (CL-SemFace). Contrary to
the result of low-resource pairs in Table 3, for the
language pairs in Table 4, we see the performance
of CL-SemFace is better than VQ-SemFace. This
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Method en-fr en-de en-ro avg.→ ← → ← → ←

XLM 33.0 33.4 26.4 34.3 33.1 31.5 31.95
mBART 33.1 32.9 29.8 34.0 33.7 30.9 (+0.45)

CL-SemFace 34.3 35.0 28.8 35.2 34.5 32.9 (+1.50)
VQ-SemFace 34.2 34.5 28.6 34.8 33.9 32.5 (+1.13)

Table 4: BLEU scores of three unsupervised language pairs. Baseline results are based on our reproduction. The
last row means the averaged improvement of each method compared with the XLM.

may be because the cross-lingual embeddings of
these rich-resource language pairs are of higher
quality, thus the semantic interface is initialized
better during the pre-training.

3.3 Discussion

3.3.1 Ablation Study
In this subsection, we first investigate the influence
of the encoder losses (Eq. 1) by removing each
of them independently in the encoder pre-training.
Besides, note that there are two types of loss used
in our decoder pre-training, MLM and CLM, as
shown in Eq. (2,3), so we also compare the results
with different losses in decoder pre-training, taking
the supervised pair en-fi and unsupervised pair en-
ro as examples.

Method en-fi en-ro avg.→ ← → ←

Encoder Pre-training Loss

CL-SemFace 22.7 25.1 34.5 32.9 28.80
-Lmse 21.3 24.6 33.3 31.6 (-1.10)

VQ-SemFace 22.1 25.3 33.9 32.5 28.45
-Ld 19.7 17.4 29.8 29.6 (-4.33)
-L2 21.4 24.5 32.5 31.5 (-0.97)

Decoder Pre-training Loss

CL-SemFace (MLM) 22.4 25.1 34.5 32.9 28.73
CL-SemFace (CLM) 22.7 24.7 33.9 32.1 28.35
VQ-SemFace (MLM) 22.1 25.1 33.9 32.5 28.40
VQ-SemFace (CLM) 21.9 25.3 33.2 31.9 28.08

Table 5: Ablation study of each loss in pre-training.

From the table, we find that for VQ-SemFace un-
der encoder pre-training, the most influential auxil-
iary loss is the diversity loss Ld, which contributes
4.33 BLEU scores in the final results, which is
designed to encourage the model to use the code-
book entries equally often. According to our ob-
servation, without Ld, the model only uses a small
group of codes in the code-book (< 30%), which
indeed shrinks the VQ semantic space and leads
to the bad performance. Lmse and L2 have a sim-

ilar effect that stabilizes the training, contributing
about 1 BLEU score in the final result. For decoder
pre-training, the performance of the two losses is
comparable, with the MLM slightly better.

3.3.2 Influence of Parallel Data
In this section, we investigate the influence of the
data quantity in the experiments. The language
pair we choose is de-en, which has a large paral-
lel corpus and makes it possible to conduct our
investigation. We compare the performance of the
model with our pre-training method and the model
without pre-training. Note that we do not use any
monolingual data in the training so the result here
is not comparable with that in Table 4.

Figure 4: Test BLEU of de-en wt./wto. pre-training.
The horizontal axis is log10 of the used parallel data.

As shown in Figure 4, when the number of par-
allel training data is less than 106.7 ≈ 5M, the
model with pre-training significantly outperforms
the non-pre-training model by about 3 to 5 BLEU
scores. However, when the training samples in-
crease to over 10M, there is almost no difference
in performance between the two models.

3.3.3 Analysis about VQ
As mentioned in Sec.2.3, VQ space could be re-
garded as a language-independent semantic inter-
face for the encoder and decoder pre-training. To
test whether VQ space is trained to contain cross-
lingual representations, we carry out an analysis
with a parallel sample of de-en. For each token pair
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(wen, wde) in the two sentences, we collect top-100
codes according to Eq. (5), and calculate how much
the codes overlapped, as code100(wen)∩code100(wde)

100 .
As shown in Figure 5, the translated tokens share
much of the codes chosen from the VQ code-book,
which verifies our motivation that VQ could act
like a language-independent semantic interface.

Figure 5: The percentage of the overlapping codes cho-
sen for each token pair. The red numbers denote the
translated tokens.

4 Related Work

Pre-training has been widely used in NLP tasks to
learn better language representations (Peters et al.,
2018; Devlin et al., 2018; Lample and Conneau,
2019; Radford et al., 2019; Yang et al., 2019; Dong
et al., 2019; Lewis et al., 2020). Typically, these
methods first pre-train neural networks on large-
scale unlabeled corpora, and then fine-tune the
models on downstream tasks (Devlin et al., 2018).
The early pre-training techniques mainly focused
on the natural language understanding tasks such
as the GLUE benchmark (Wang et al., 2018) , and
later it was gradually extended to the natural lan-
guage generation tasks, e.g., NMT.

Recently, a prominent line of work has been pro-
posed to improve NMT with pre-training. These
techniques can be broadly classified into two cate-
gories. The first category usually uses pre-trained
models as feature extractors of a source language,
or initializes the encoder and decoder with pre-
trained models separately (Lample and Conneau,
2019; Ren et al., 2019; Yang et al., 2020a; Zhu
et al., 2020). For example, Lample and Conneau
(2019) proposed a cross-lingual language model
with a supervised translation language modeling
objective, and used MLM or CLM to pre-train

the encoder and decoder of NMT. However, the
combined encoder-decoder model, where the cross-
attention is randomly initialized, often does not
work well because of the lack of semantic inter-
faces between the pre-trained encoder and decoder.
There is also some work trying to leverage BERT-
like pre-trained models for MT with an adapter
(Guo et al., 2020) or an APT framework (Weng
et al., 2020). The former defines additional layers
in the pre-trained encoder and decoder during fine-
tuning, while the last adopts a fusion mechanism
or knowledge distillation to leverage knowledge in
BERT for MT. Different from them, we enable the
encoder and decoder to interact with a semantic
interface during pre-training, and they can be con-
nected directly for the MT fine-tuning without any
other additional layers or training loss.

The second category methods pre-train a whole
sequence-to-sequence model for NMT. MASS
(Song et al., 2019) employed the encoder-decoder
framework to reconstruct a sentence fragment given
the remaining part of the sentence. BART (Lewis
et al., 2020) adopted a similar framework and
trained the model as a denoising auto-encoder.
mBART (Liu et al., 2020) trained BART model
on large-scale monolingual corpora in many lan-
guages. Although the above work can pre-train
the cross-attention of decoder, they are learned
on monolingual denoising auto-encoding and can-
not learn the corss-lingual transformation between
source and target languages. There is also some
work trying to explicitly introduce cross-lingual
information in a code-switch way during the
sequence-to-sequence pre-training, such as CSP
(Yang et al., 2020b) and mRASP (Lin et al., 2020).
However, their methods need a lexicon or phrase
translation table, which is inferred from unsuper-
vised cross-lingual embeddings. Therefore, they
depend on the quality of the dictionary.

The most similar work to ours is probably the
one of DALL·E and CLIP (Radford et al., 2020).
DALL·E is a transformer language model that re-
ceives both the text and the image as a single
stream of data. The core idea is to define the
cross-modality interface of image and text, which
can generate images from text descriptions. In
this paper, to address the above limitations of pre-
training methods for NMT, we attempt to define
a cross-lingual semantic interface to connect the
pre-trained encoder and decoder.
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5 Conclusion

We propose SemFace, a better pre-training method
for neural machine translation. The key point is to
use a semantic interface to connect the pre-trained
encoder and decoder. By defining this interface, we
can pre-train the encoder and decoder separately
with the same intermediate language-independent
space. The cross-attention can also be pre-trained
with our method so that we can naturally combine
the pre-trained encoder and decoder for fine-tuning.
We introduce and compare two semantic interfaces,
e.g., CL-SemFace and VQ-SemFace, which lever-
age unsupervised cross-lingual embeddings and
vector quantized embeddings as the intermediate
interfaces respectively. Massive experiments on su-
pervised and unsupervised NMT translation tasks
show that our proposed SemFace obtains substan-
tial improvements over the state-of-the-art baseline
models. In the future, we will design and test more
semantic interface types for extensions.
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