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Abstract

Active Learning (AL) has been successfully
applied to Deep Learning in order to drasti-
cally reduce the amount of data required to
achieve high performance. Previous works
have shown that lightweight architectures for
Named Entity Recognition (NER) can achieve
optimal performance with only 25% of the
original training data. However, these meth-
ods do not exploit the sequential nature of
language and the heterogeneity of uncertainty
within each instance, requiring the labelling of
whole sentences. Additionally, this standard
method requires that the annotator has access
to the full sentence when labelling. In this
work, we overcome these limitations by allow-
ing the AL algorithm to query subsequences
within sentences, and propagate their labels to
other sentences. We achieve highly efficient
results on OntoNotes 5.0, only requiring 13%
of the original training data, and CoNLL 2003,
requiring only 27%. This is an improvement of
39% and 37% compared to querying full sen-
tences.

1 Introduction

The availability of large datasets has been key to the
success of deep learning in Natural Language Pro-
cessing (NLP). This has galvanized the creation of
larger datasets in order to train larger deep learning
models. However, creating high quality datasets is
expensive due to the sparsity of natural language,
our inability to label it efficiently compared to other
forms of data, and the amount of prior knowledge
required to solve certain annotation tasks. Such
a problem has motivated the development of new
Active Learning (AL) strategies which aim to effi-
ciently train models, by automatically identifying
the best training examples from large amounts of

Code is made available on: https://github.com/
puria-radmard/RFL-SBDALNER

unlabeled data (Wei et al., 2015; Wang et al., 2017;
Tong and Koller, 2002). This tremendously reduces
human annotation effort as much fewer instances
need to be labeled manually.

To minimise the amount of data needed to train
a model, AL algorithms iterate between training a
model, and querying information rich instances to
human annotators from a pool of unlabelled data
(Huang et al., 2014). This has been shown to work
well when the queries are ‘atomic’—a single an-
notation requires a unit labour, and describes en-
tirely the instance to be annotated. Conversely,
each instance of structured data, such as sequences,
require multiple annotations. Hence, such query se-
lection methods can result in a waste of annotation
budget (Settles, 2011).

For example, in Named Entity Recognition
(NER), each sentence is usually considered an in-
stance. However, because each token has a sepa-
rate label, annotation budgeting is typically done
on a token basis (Shen et al., 2017). Budget wast-
ing may therefore arise from the heterogeneity of
uncertainty across each sentence; a sentence can
contain multiple subsequences (of tokens) of which
the model is certain on some and uncertain on oth-
ers. By making the selection at a sentence level,
although some budget is spent on annotating uncer-
tain subsequences, the remaining budget may be
wasted on annotating subsequences for which an
annotation is not needed.

It can therefore be desirable for annotators to
label subsequences rather than the full sentences.
This gives a greater flexibility to AL strategies to
locate information rich parts of the input with im-
proved efficiency – and reduces the cognitive de-
mands required of annotators. Annotators may in
fact perform better if they are asked to annotate
shorter sequences, because longer sentences can
cause boredom, fatigue, and inaccuracies (Rzeszo-
tarski et al., 2013).

https://github.com/puria-radmard/RFL-SBDALNER
https://github.com/puria-radmard/RFL-SBDALNER
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In this work, we aim to improve upon the ef-
ficiency of AL for NER by querying for subse-
quences within each sentence, and propagating
labels to unseen, identical subsequences in the
dataset. This strategy simulates a setup in which
annotators are presented with these subsequences,
and do not have access to the full context, ensuring
that their focus is centred on the tokens of interest.

We show that AL algorithms for NER tasks that
use subsequences, allowing training on partially
labelled sentences, are more efficient in terms of
budget than those that only query full sentences.
This improvement is furthered by generalising ex-
isting acquisition functions (§ 4.1) for use with
sequential data. We test our approaches on two
NER datasets, OntoNotes 5.0 and CoNLL 2003.
On OntoNotes 5.0, Shen et al. (2017) achieve state-
of-the-art performance with 25% of the original
dataset querying full sentences, while we require
only 13% of the dataset querying subsequences.
On CoNLL 2003, we show that the AL strategy
of Shen et al. (2017) requires 50% of the dataset
to achieve the same results as training on the full
dataset, while ours requires only 27%.

Contributions of this paper are:
1. Improving the efficiency of AL for NER by

allowing querying of subsequences over full
sentences;

2. An entity based analysis demonstrating that
subsequence querying AL strategies tend to
query more relevant tokens (i.e., tokens be-
longing to entities);

3. An uncertainty analysis of the queries made
by both full sentence and subsequence query-
ing methods, demonstrating that querying full
sentences leads to selecting more tokens to
which the model is already certain.

2 Related Work

AL algorithms aim to query information rich data
points to annotators in order to improve the perfor-
mance of the model in a data efficient way. Tradi-
tionally these algorithms choose data points which
lie close to decision boundaries (Pinsler et al.,
2019), where uncertainty is high, in order for the
model to learn more useful information. This mea-
sure of uncertainty, measured through acquisition
functions, are therefore vital to AL. Key functions
include predictive entropy (MaxEnt) (Gal et al.,
2017), mutual information between model poste-
rior and predictions (BALD) (Houlsby et al., 2011;

Gal et al., 2017), or the certainty of the model
when making label predictions (here called LC)
(Mingkun Li and Sethi, 2006). These techniques
ensure all instances used for training, painstak-
ingly labelled by experts, have maximum impact
on model performance. There has been exploration
of uncertainty and deep learning based AL for NER
(Chen et al., 2015; Shen et al., 2017; Settles and
Craven, 2008; Fang et al., 2017). These approaches
however, treat each sentence as a single query in-
stead of a collection of individually labelled to-
kens. In these methods, the acquisition functions
that score sentences aggregate token-wise scores
(through summation or averaging).

Other works forgo this aggregation, querying
single tokens at a time (Tomanek and Hahn, 2009;
Wanvarie et al., 2011; Marcheggiani and Artières,
2014). These works show that AL for NER can be
improved by taking the single token as a unit query,
and use semi-supervision (Reddy et al., 2018; Is-
cen et al., 2019) for training on partially labelled
sentences (Muslea et al., 2002). However, querying
single-tokens is inapplicable in practise because,
either a) annotators have access to the full sentence
when queried but can only label one token, which
would lead to frustration as they are asked to read
the full sentence but only annotate a single token, or
b) annotators only have access to the token of inter-
est, which means that they would not have enough
information to label tokens differently based on
their context, leading to annotators labeling any
unique token with the same label. Moreover, if the
latter approach was somehow possible, we would
be able to reduce the annotation effort to the annota-
tion of only the unique tokens forming the dataset,
its dictionary. Furthermore, all of these past works
use Conditional Random Fields (CRFs) (Lafferty
et al., 2001), which have since been surpassed as
the state-of-the-art for NER (and most NLP tasks)
by deep learning models (Devlin et al., 2019).

In this work we follow the approach where anno-
tators only have access to subsequences of multiple
tokens. However, instead of making use of single
tokens, we will query more than one token, provid-
ing enough context to the annotators. This allows
the propagation of these annotations to identical
subsequences in the dataset, further reducing the
total annotation effort.
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3 Background

3.1 Active Learning Algorithms

Most AL strategies are based on a repeating score,
query and fine-tune cycle. After initially training an
NER model with a small pool of labelled examples,
the following is repeated: (1) score all unlabelled
instances, (2) query the highest scoring instances
and add them to training set, and, (3) fine-tune the
model using the updated training set (Huang et al.,
2014).

To describe this further, notation and proposed
training process is introduced, with details in fol-
lowing sections. First, the sequence tagging dataset,
denoted by D = {(x(n),y(n))}Nn=1, consists of a
collection of sentence and ground truth labels. The
i-th token of the n-th sentence (y(n)i ) has a label
y
(n)
i = c with c belonging to C = {c1, ..., cK}.

We also differentiate between the labelled and un-
labelled datasets, DL and DU , which initially are
empty and equal toD. Finally, we fix A as the total
number of tokens queried in each iteration.

3.2 Acquisition Functions

Instances in the unlabelled pool are queried us-
ing an acquisition function. This function aims to
quantify the uncertainty of the model when generat-
ing predictive probabilities over possible labels for
each instance. Instances with the highest predictive
uncertainty are deemed as the most informative for
model training. Previously used acquisition func-
tions such as Least Confidence (LC) and Maximum
Normalized Log-Probability (MNLP) (Shen et al.,
2017; Chen et al., 2015) are generalised for vari-
able length sequences. Letting ŷ

(n)
<i be the history

of predictions prior to the i-th input, the next output
probability will be p(n)i,c = P (ŷ

(n)
i = c|ŷ(n)

<i ,x
(n)).

Then, we define the token-wise LC score as:

LC
(n)
i = −max

c∈C
log p

(n)
i,c . (1)

The LC acquisition function for sequences is then
defined as:

LC
(
x
(n)
1 , ..., x

(n)
`

)
=
∑̀
j=1

LC
(n)
j , (2)

and, for MNLP as:

MNLP
(
x
(n)
1 , ..., x

(n)
`

)
=

1

`

∑̀
j=1

LC
(n)
j . (3)

Note that this is similar to LC except for the nor-
malization factor 1/`. The formulation above can
be applied to other types of commonly used acquisi-
tion functions such as Maximum Entropy (MaxEnt)
(Gal et al., 2017) by simply defining:

ME
(n)
i = −

∑
c∈C

p
(n)
i,c log p

(n)
i,c , (4)

as the token score. Given the task of quantifying
uncertainty amongst the unlabelled pool of data,
both of these metrics - LC and MaxEnt - provide
intuitive interpretations. eq. (1) scores highly to-
kens for which the predicted label has lowest confi-
dence, while eq. (4) scores highly tokens for which
the whole probability mass function has higher en-
tropy. Both of these therefore score more highly
uniform predictive distributions, which indicates
underlying uncertainty.

Finally, given the similarity of performance be-
tween MNLP and Bayesian Active Learning by
Disagreement (BALD) (Houlsby et al., 2011) in
NER tasks (Shen et al., 2017), and the computa-
tional complexity required to calculate BALD with
respect to the other activation functions, we will
not compare against BALD.

4 Subsequence Acquisition

In this section we describe how we build on past
works, and the core contribution of this paper. Our
work forms a more flexible AL algorithm that oper-
ates on subsequences, as opposed to full sentences
(Shen et al., 2017). This is achieved by generalising
acquisition functions for subsequences (§ 4.1) scor-
ing and querying subsequences within sentences
(§ 4.2), and performing label propagation on un-
seen sentences to avoid the multiple annotations of
repeated subsequences (§ 4.3).

4.1 Subsequence Acquisition Functions
Since this work focuses on the querying of sub-
sequences, from the previously defined LC and
MNLP we generalize them to define a family of
acquisition functions applicable for both full sen-
tences and subsequences:

LCα

(
x
(n)
i+1, ..., x

(n)
i+`

)
=

1

`α

i+∑̀
j=i+1

LC
(n)
j . (5)

Special cases are when α = 0 and α = 1 which
return the original definitions of LC in eq. (2) and
MNLP in eq. (3). As noted by Shen et al. (2017),
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LC for sequences biases acquisition towards longer
sentences. The tuneable normalisation factor in
eq. (5) over the sequence of scores mediates the bal-
ance of shorter and longer subsequences selected.
This generalisation can be applied to other types
of commonly used acquisition functions such as
MaxEnt and BALD by modifying the token-wise
score.

4.2 Subsequence Selection

Each sentence x(n) can be broken into a set of sub-
sequences S(n) = {(x(n)i , ..., x

(n)
j ) |∀i < j} where

all elements s ∈ S(n) can be efficiently scored by
first computing the token scores, then aggregat-
ing as required. Once this has been done for all
sentences in DU , a query set SQ ⊂ ∪nS(n) of
non-overlapping (mutually disjoint) subsequences
is found. The requirement of non-overlapping sub-
sequences avoids the problem of relabelling tokens,
but disallows simply choosing the highest scoring
subsequences (since these can overlap). Instead
at each round of querying, we perform a greedy
selection, repeatedly choosing the highest scoring
subsequence that does not overlap with previously
selected subsequences. Adjustments can be made
to reflect practical needs, such as restricting the
length ` of the viable subsequences to [`min, `max].
This is because longer subsequences are easier to
label, while shorter subsequences are more efficient
in querying uncertain tokens, and so the selection
is only allowed to operate within these bounds.

Additionally, it is easy to imagine a scenario in
which a greedy selection method does not select the
maximum total score that can be generated from
a sentence. This scenario is illustrated in Table 1
where lengths are restricted to `min = `max = 3
for simplicity. Note that tokens can become unse-
lectable in future rounds because they are not inside
a span of unlabelled tokens of at least size `min.
When the algorithm has queried all subsequences
of this size range, it starts to query shorter subse-
quences by relaxing the length constraint. However
in practise, model performance on the validation set
converges before all subsequences of valid range
have been exhausted. Nonetheless, when choosing
subsequences of size [`min, `max] = [4, 7] these
will be exhausted when roughly 90% and 80% of
tokens have been labelled for the OntoNotes 5.0
and CoNLL 2003 datasets.

4.3 Subsequence Label Propagation

Since a subsequence querying algorithm can result
in partially labelled sentences, it raises the question
of how unlabelled tokens should be handled. In pre-
vious work based on the use of CRFs (Tomanek and
Hahn, 2009; Wanvarie et al., 2011; Marcheggiani
and Artières, 2014) this was solved by using semi-
supervision on tokens for which the model showed
low uncertainty. However, for neural networks, the
use of model generated labels could lead to the
model becoming over-confident, harming perfor-
mance and biasing (Arazo et al., 2020) uncertainty
scores. Hence, we ensure that backpropagation
only occurs from labelled tokens.

Our final contribution to the AL algorithm is the
use of another semi-supervision strategy where we
propagate uniquely labelled subsequences in or-
der to minimise the number of annotations needed.
When queried for a subsequence, the annotator (in
this case an oracle) is not given the contextual to-
kens in the remainder of the sentence. For this rea-
son, given an identical subsequence, a consistent
annotator will provide the same labels. Therefore,
the proposed algorithm maintains a dictionary that
maps previously queried subsequences to their pro-
vided labels. Once a queried subsequence and its
label are added to the dictionary, all other matching
subsequences in the unlabelled pool are given the
same, but temporary, labels.

The tokens retain these temporary labels until
they are queried themselves. After scoring and
ranking members of S, the algorithm will disre-
gard sequences that match exactly members of this
dictionary, which is updated during the querying
round. However, if tokens belonging to these pre-
viously seen subsequences are encountered in a
different context, meaning as part of a different
subsequence, they may also be queried. For ex-
ample, in Table 1, if the subsequence “shop to
buy” had been previously queried elsewhere in the
dataset, the red subsequence will not be considered
for querying, as it retains its temporary labels. In-
stead, the green subsequence could be queried, in
which case the temporary labels of tokens 6 and 7
will be overwritten by new, permanent labels.

Therefore, the value of `min becomes a trade-off
between the improved resolution of the acquisition
function, and the erroneous propagation of shorter,
more frequent label subsequences to identical ones
in different contexts.
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j 1 2 3 4 5 6 7 8 9 10
x
(n)
j Yassir is going to the shop to buy shoes .

y
(n)
j X O O O X X X X X X

lc
(n)
j 3.22 - - - 0.41 0.78 0.83 0.60 0.27 0.50

LC1 = 0.67 LC1 = 0.46
LC1 = 0.74

LC1 = 0.57

Table 1: This shows the subsequences from a sentence using `min = `max = 3, α = 1. Besides the token index j,
the top three rows show the tokens, labels, and the token-wise scores. If y(n)j = X, then the corresponding token is
unlabelled, hence the score is considered when selecting the next query. After this, the subsequences constituting
S(n) are displayed with their LC1 scores. In this case “shop to buy” will be chosen since it maximises LC1,
but ‘traps’ its surrounding tokens until `min is lowered to 2 and “shoes .” may be considered.

4.4 Subsequence Active Learning Algorithm
Finally, we summarise the AL algorithm proposed.
Given a set of unlabelled data DU , we initially
randomly select a proportion of sentences from
DU , label them, and add these to DL. A dictionary
B is also initialised. Using these labelled sentences
we train a model. Then, the following proposed
training cycle is repeated until DU is empty (or an
early stopping condition is reached):

1. Find all consecutive unlabelled subsequences
in DU , and score them using a pre-defined
acquisition function.

2. Select the top scoring non-overlapping sub-
sequences SQ that do not appear in B, such
that the number of tokens in SQ is A, and
query them to the annotators. Update DL and
DU . As each sequence is selected, add it to B,
mapping it to its true labels.

3. Provide all occurrences of the keys of B in
DU with their corresponding temporary labels.
These will not be included in DL as these are
temporary.

4. Finetune the model on sentences with any la-
bel, temporary and permanent.

Repeat this process until convergence.

5 Experimental Setup

5.1 Datasets
As in previous works (Shen et al., 2017), we use
the two following NER datasets:

OntoNotes 5.0. This is a dataset used to compare
results with the full sentence querying baseline
(Weischedel, Ralph et al., 2013), and comprising of

text coming from: news, conversational telephone
speech, weblogs, usenet newsgroups, broadcast,
and talk shows. This is a BIO formatted dataset
with a total of K = 37 classes and 99,333 training
sentences, with an average sentence length of 17.8
tokens in its training set.

CoNLL 2003. This is a dataset, also in BIO for-
mat, with only 4 entity types (LOC, MISC, PER,
ORG) resulting in K = 9 labels (Tjong Kim Sang
and De Meulder, 2003). This dataset is made from
a collection of news wire articles from the Reuters
Corpus (Lewis et al., 2004). The average sentence
length is 12.6 tokens in its training set.

A full list of class types and entity lengths and
frequencies for both datasets can be found in the
Appendix.

5.2 NER Model

Following the work of Shen et al. (2017), a CNN-
CNN-LSTM model for combined letter- and token-
level embeddings was used; see Appendix for an
overview of the model and hyperparameters setting
and validation. Furthermore, the AL algorithm
used in (Shen et al., 2017) will serve as one of
the baselines following the same procedure. This
represents an equivalent algorithm to that proposed,
but which can only query full sentences, and does
not use label propagation.

5.3 Model Training and Evaluation

As the evaluation measure we use the F1 score. Af-
ter the first round of random subsequence selection,
the model is trained. After subsequent selections
the model is finetuned - training is resumed from
the previous round’s parameters. In all cases, the
model training was stopped either after 30 epochs
were completed, or if the F1 score for the valida-
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(a) LCα for OntoNotes 5.0 NER dataset
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FS, α=1
FS, α=0
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SUB, α=1
FS, random
SUB, random
No AL

(b) LCα for CoNLL 2003 NER dataset
Figure 1: F1 score on test set achieved each round using round-optimal model parameters. All subsequence
experiments here use `min = 4, `max = 7. Each curve is averaged over 10 runs.

tion set had monotonically decreased for 2 epochs.
This validation set is made up of a randomly se-
lected 1% of sentences of the original training set.
After finetuning, the model reloads its parameters
from the round-optimal epoch, and its performance
is evaluated on the test set. Furthermore, the AL
algorithms were also stopped after all hyperparam-
eter variations using that dataset and acquisition
function family had converged to the same best F1,
which we denote with F ∗1 . For the OntoNotes 5.0
dataset, F ∗1 value was achieved after 30% of the
training set was labelled, and for the CoNLL 2003
dataset after 40%.

5.4 Active Learning Setup & Evaluation

We choose `min = 4 to give a realistic context
to the annotator, and to avoid a significant prop-
agation of common subsequences. The upper
bound of `max = 7 was chosen to ensure subse-
quences were properly utilised, since the average
sentence length of both datasets is roughly twice
this size. For the OntoNotes 5.0 dataset, every
round A = 10, 000 tokens are queried, whereas for
the CoNLL 2003 datasetA = 2, 000 tokens. These
represent roughly 0.5% and 1% of the available
training set.

We evaluate the efficacy and efficiency of the
tested AL strategies in three ways. First, model
performance over the course of the algorithm was
evaluated using end of round F1 score on the test
set. We compare the proportion of the dataset’s to-
kens labelled when the model achieves 99% of the
F ∗1 score (F̂1

∗
= 0.99×F ∗1 ). We also quantify the

rate of improvement of model performance during
training using the normalised Area Under the Curve
(AUC) score of each F1 test curve. The normalisa-
tion ensures that the resulting AUC score is in the

range [0, 1], and it is achieved by dividing the AUC
score by the size of the dataset. This implies that
methods that converge faster to their best perfor-
mance will have a higher normalized AUC. Second,
we consider how quickly the algorithms can locate
and query relevant tokens (named entities). Third,
we finally evaluate their ability to extract the most
uncertain tokens from the unlabelled pool.

6 Results & Discussion

6.1 Active Learning Performance
Figure 1 shows the LCα performance curves for
α = 0, α = 1 and the best performing value for
each acquisition class (based on the normalised
AUC score, Table 3) for full sentence querying
(FS), and only the best performing α values for sub-
sequence querying (SUB). The figure also shows
the performance of training on the complete train-
ing set (No AL), and when the both sentences
and subsequences are random selected by the ac-
quisition function. The equivalent figures for
MaxEntα are available in Appendix, and follow
similar trends. Then, the performance of each
curve, quantified in terms of the normalised AUC
is summarised in Table 3.

Table 2 shows further analysis of the best results
in Figure 1, with best referring to acquisition func-
tion and optimal α. These results first show that
subsequence querying methods are more efficient
than querying full sentences, achieving their final
F1 with substantially less annotated data, and with
higher normalised AUC scores. For OntoNotes 5.0,
querying subsequences reduces final proportion re-
quired by 38.8%. For CoNLL 2003, this reduction
is 36.6%. Altogether, subsequence querying holds
improved efficiency over the full sentence querying
baseline.
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F1 Final Frac.
Score of the Dataset

100% AL FS SUB
ON 5.0 0.829 0.843 22% 13%
CoNLL 0.930 0.938 42% 27%

Table 2: Summary of the results of the AL strategies
from Figure 1, when the models are trained using 100%
of the training set and active learning (AL), with the
best hyperparameter setting of the acquisition function
with for full sentence and subsequence, based on nor-
malised AUC score.

As a point of interest, full sentence querying can
be easily improved by optimising α alone. For
the OntoNotes 5.0 dataset, using LC1, 24.2% of
tokens are required to achieve F ∗1 . This however,
can be improved by 9.33% to only requiring 22.0%
by choosing α = 0.7. For CoNLL 2003, using
LC1 for full sentences, 50.0% of the dataset was
required, but when using LC0.7, it was 40.7% of
the tokens.

6.2 Entity Recall

This section and the next aim to understand some
of the underlying mechanisms that allow the sub-
sequence querying methods to achieve results
substantially better than a full sentence baseline.
Namely, the ability of the different methods to ex-
tract the tokens for which the model is the most
uncertain about. Given that the majority of tokens
in both datasets have the same label - “O”, signi-
fying no entity - it is likely that tokens belonging
to entities, particularly rarer classes, trigger higher
model uncertainty. Querying full sentences at a
time, the AL algorithm will spend much of its token
budget for that round labelling non-entity tokens
while attempting to locate the more informative
entities. Subsequence querying methods, not faced
with this wasteful behaviour, allow the AL algo-
rithm to query entity tokens quicker, locating and
labelling the majority of entity tokens faster over
the course of training.

The proportion of tokens belonging to entities
that the AL algorithm has queried against the round
number is plotted in Figure 2 for OntoNotes 5.0.
For both datasets, the random querying methods
contain a distribution of token classes that reflect
the dataset at large, producing roughly linear curves
for this figure. Curves for all methods that employ

Figure 2: Proportion of tokens that belong to entities
labelled, against the round number.

an uncertainty based acquisition function are con-
cave, and the AUC reflects the ranking of model
performance for each querying method. This rela-
tion suggests that shortly after initialisation, better
performing algorithm variations query entity to-
kens faster. In later stages of finetuning this rate
is reduced, likely because after labelling a large
proportion of them, the remaining entity tokens
cause little uncertainty for the model. In a practical
setting where querying may have to be stopped be-
fore model performance has converged (i.e. due to
accumulated cost of annotations), it is greatly ben-
eficial to ensure that the model is exposed to a high
number of relevant tokens, because this increases
the likelihood of locating entity tokens belonging
to underrepresented classes at an early stage.

6.3 Uncertainty Score Analysis

Finally, this section compares the scores of tokens
in the queried set SQ for each querying method.
Comparing the distribution and development of
these scores provides a direct insight to the core as-
sumptions of why full sentence querying is outper-
formed. Figure 3 shows the difference in score dis-
tributions for sentence versus subsequence query-
ing, against querying round number, for rounds
preceding model performance convergence. First,
it is seen that decreasing the individual query size
(full sentence to subsequence) increases the median
uncertainty extracted at the earlier rounds. Second,
Figure 3 provides evidence for the mechanism sug-
gested earlier: aggregating the token scores across
full sentences means querying both the highly un-
certain tokens, and the tokens that provide little un-
certainty. Querying high scoring sentences like this
can cause a distribution with two peaks as seen in
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Dataset
Acquisition

Function
Full Sentence Subsequence

α = 0 α = 1 Optimal (α) α = 0 α = 1 Optimal (α)

OntoNotes
5.0

LCα 0.794 0.802 0.804 (0.7) 0.817 0.812 0.818 † (0.1)
MaxEntα 0.791 0.803 0.803 (1.0) 0.815 0.813 0.816 † (0.5)
Random 0.734 0.769

CoNLL
2003

LCα 0.857 0.875 0.879 (0.7) 0.885 0.883 0.892 † (1.0)
MaxEntα 0.841 0.882 0.882 (1.0) 0.881 0.883 0.891 † (0.9)
Random 0.824 0.859

Table 3: Normalised AUC scores for model performance (F1 score on test set) for α = 0, 1, and its optimal value in
each case. Each pair of differences between the optimized acquisition function for full sentences and subsequences
(indicated by a †) are significantly different (two-sided unpaired t-test, with p-value < 0.05).
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Figure 3: Distributions of the queried LC scores for the
OntoNotes 5.0 dataset, made on the 1st, 5th, 10th, and
15th scoring rounds. This corresponds to scores after
training on 1%, 3.2%, 6.1%, and 9.0% of the utilised
training set.

the figure. As the model becomes increasingly cer-
tain about its predictions, high scores are localised
within smaller subsequences, and the coarse sen-
sitivity of full sentence querying means it forfeits
all the higher scoring tokens. These differences
were also observed when comparing subsequence
querying methods with sub-optimal α.

This figure only analyses behaviour of up to 9%
of the training set’s tokens have been queried. In-
stead, Figure 4 show how the mean of token-wise
scores evolve for different querying methods for
the OntoNotes 5.0 dataset until convergence. This
clearly shows that subsequence querying methods
converge faster over the full course of the algo-
rithm compared to full sentence querying. This
is consistent with Figure 1 in terms of initial rate
and final time of model performance convergence,
namely that model performance plateaus alongside
the uncertainty score.

Keeping track of query scores like this is also a
reasonable idea in industrial applications. When

Figure 4: Average value of LC for all tokens in SQ with
confidence intervals, against round number. Score val-
ues are averaged over all tested values of α

training on a very semantically specific corpus,
there may not be enough fully labelled sentences
to build a test set. In that case, observing the rate
progress of score convergence can be used as an
early stopping method for the AL algorithm (Zhu
et al., 2010).

7 Conclusion & Future Work

In this study we have employed subsequence
querying methods for improving the efficiency of
AL for NER tasks. We have seen that these meth-
ods outperform full sentence querying in terms
of annotations required for optimal model perfor-
mance, requiring 38.8% and 36.6% fewer tokens
for the OntoNotes 5.0 and CoNLL 2003 datasets.
Optimal results for subsequence querying (and full
sentence querying) were achieved by generalising
previously used AL acquisition functions, defining
a larger family of acquisition functions for sequen-
tial data.

The analysis of § 6.3 suggests that a full sentence
querying causes noisy acquisition functions due to
the tokens in the queried sentences that were not
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highly scored. This added noise reduces the bud-
get efficiency, and a subsequence querying method
eliminates a large part of this effect. This efficiency
also translated into a faster recall of named entities
in the dataset to be queried (§ 6.2).

Limitations and future work: Limitations of this
study are largely centred on the use of an oracle to
provide tokens with their labels. With human anno-
tators, the cropped context of subsequence queries
may make them produce more inaccuracies than
when annotating full sentences. such studies will
help reveal how context affects label accuracy, how
this, in turn, affects optimal hyperparameters in
the subsequence selection process (such as optimal
query length), further accommodations that must
be made to effectively optimise worker efficiency,
and how to deal with unreliable labels. We leave to
future work the evaluation of these querying meth-
ods with human annotators.
There are also ways to incorporate model generated
labelling methods for more robust semi-supervision
into our framework that we leave to future work.
Finally, there are examples of other tasks for struc-
tured data, such as audio, video, and image segmen-
tation, where the part of an instance may be queried.
A generalisation of the strategy demonstrated for
the NER case may allow for more efficient active
learning querying methods for these other types of
data.
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A Model Architecture

The model architecture is built of three sections.
The character-level convolutional neural network
(CNN) (LeCun and Bengio, 1998) character-level
encoder extracts character level features, wword

j for

each token x(i)j in a sentence.
Then, a latent token embedding wemb

j corre-
sponding to that token is generated. The full
representation of the token is the concatentation
of the two vectors: wfull

j := (wchar
j ,wemb

j ). The
token-label embeddings, wemb, are initialised us-
ing word2vec (Ling et al., 2015), and updated
during training and finetuning, as per the base-
line paper. A second, token-level CNN encoder
is used to generate {htoken

j }`ij=1, given the token-
level representations {wfull

j }
`i
j=1. The final token-

level encoding is defined by another concatentation:
hEnc
j := (htoken

j ,wfull
j ).

Finally, a tag decoder is used to generate the
token-level pmfs over the C possible token classes:
{hEnc

j }
`i
j=1

LSTM−−−→ {ŷ(i)
j }

`i
j=1.

B Model & Training Parameters

Table 4 lists the hyperparameter values used to train
the NER model. Note that while dropout is used
during training, it is turned off when generating the
probabilities that contribute to the scoring of the
acquisition function. Model was developed using
PyTorch, and trained on a Titan RTX.

Hyperparameter Value
Batch size 32

Dropout rate for convolutional layers 0.5
Dropout rate for embedding layers 0.25

Gradient clipping magnitude 0.35
Character- and token-level CNN kernel size 3
Layers in character- and token-level CNNs 3

Character embedding vector size 50
Number of filters per character-level CNN layer 50

Number of filters per token-level CNN layer 300
Optimiser type SGD

Optimiser learning rate 1.0

Table 4: Values of model and training hyperparameters
used throughout the investigation.

C Dataset Analysis

Here, we cluster similar labels in the BIO format,
reducing the total K classes to the K(r) = (K +

1)/2 class groups c(r)1 , ..., c
(r)

K(r) . Therefore, c(r)1

corresponds exactly to c1, the empty label, while
c
(r)
k , k > 1 groups the raw labels c2k−2 and c2k−1.

Figures 5 and 7 show the distribution of these
class groups for the OntoNotes 5.0 and CoNLL
2003 datasets respectively. For the former, counts
range from 199 tokens for the ’LANGUAGE’ to
46698 tokens for the ’ORG’ class. The full avail-
able training set totals 1766955 tokens in 99333
sentences; this is partitioned into a train and vali-
dation set during experimentation. A further test
set comprises of 146253 tokens in 8057 sentences.
The latter’s training set contains 172210 tokens in
13689 sentences, and its test set has 42141 tokens
in 3091 sentences sentences.

Figure 5: Composition of token classes in the Onto-
Notes 5.0 English NER training set.

Figure 6: Lengths of entities in the Onto-Notes 5.0
training set in number of tokens, again omitting the
empty class ’O’
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Figure 7: Composition of token classes in the CoNLL
2003 NER training set.

Figure 8: Lengths of entities in the CoNLL 2003 train-
ing set in number of tokens, again omitting the empty
class ’O’

D Active Learning Results for Both
Datasets

In Figure 9 we show the model performance plot-
ted against the percentage of the tokens used as a
training set for all the combinations of acquisition
functions.
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(a) LCα for OntoNotes5.0 NER dataset
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(b) MaxEntα for OntoNotes5.0 NER dataset
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(c) LCα for CoNLL 2003 NER dataset
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(d) MaxEntα for CoNLL 2003 NER dataset
Figure 9: F1 score on test set achieved each round (top)
and against time (bottom in each case) using round-
optimal model parameters. All subsequence experi-
ments here use `min = 3, `max = 6.


