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Abstract

For sentence-level extractive summarization,
there is a disproportionate ratio of selected and
unselected sentences, leading to flatting the
summary features when optimizing the clas-
sification. The imbalanced sentence classi-
fication in extractive summarization is inher-
ent, which can’t be addressed by data sam-
pling or data augmentation algorithms easily.
In order to address this problem, we inno-
vatively consider the single-document extrac-
tive summarization as a rebalance problem
and present a deep differential amplifier frame-
work to enhance the features of summary sen-
tences. Specifically, we calculate and amplify
the semantic difference between each sentence
and other sentences, and apply the residual
unit to deepen the differential amplifier archi-
tecture. Furthermore, the corresponding objec-
tive loss of the minority class is boosted by a
weighted cross-entropy. In this way, our model
pays more attention to the pivotal information
of one sentence, that is different from previ-
ous approaches which model all informative
context in the source document. Experimen-
tal results on two benchmark datasets show
that our summarizer performs competitively
against state-of-the-art methods. Our source
code will be available on Github.

1 Introduction

Single-document extractive summarization forms
summary by copying and concatenating the most
important spans (usually sentences) in a document.
Sentence-level summarization is a very challeng-
ing task, because it arguably requires an in-depth
understanding of the source document sentences,
and current automatic solutions are still far from
human performance. Recent approaches frame the
task as a sequence labeling problem, taking advan-
tage of the success of neural network architectures.
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Figure 1: ROUGE score for documents with differ-
ent length. The result is calculated on the test set of
CNN/DM and the trained model is based on BERT.

However, there are still two inherent obstacles for
sentence-level extractive summarization:

1) It should be detrimental to keep tangential
information (West et al., 2019). The intuitive limi-
tation of those approaches is that they always prefer
to model and retain all informative content from the
source document. This goes against the fundamen-
tal goal of summarization, which crucially needs to
forget all but the “pivotal” information. Recently,
the Information Bottleneck principle (Tishby et al.,
2000; West et al., 2019) is introduced to incorpo-
rate a tradeoff between information selection and
pruning. Length penalty and the topic loss (Bazio-
tis et al., 2019) are used in the autoencoding system
to augment the reconstruction loss. However, these
methods require external variables or augmenta-
tive terms, without enhancing the representation of
pivotal information.

2) Imbalanced classes inherently result in
models that have poor predictive performance,
specifically for the minority class. The distribu-
tion of examples across the known classes can vary
from a slight bias to a severe imbalance, where
there is one example in the minority class for
dozens of examples in the majority class. For in-
stance, according to the statistics on the popular
summarization dataset, only 7.33% sentences of
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CNN/DM (Hermann et al., 2015) are labeled as “1”
and others are “0”, indicating whether this sentence
should be selected as summary or not. Conversely,
most machine learning algorithms for classification
predictive models are designed and demonstrated
on problems that assume an equal distribution of
classes. This means that a naive application of a
model may only focus on learning the character-
istics of the abundant observations, neglecting the
examples from the minority class. Furthermore,
as shown in Figure 1, the ROUGE score gradually
declines along with the number of sentences accu-
mulating, since the valuable summary sentences
is generally a tiny minority (with the quantity of
1-4), while more and more majority sentences will
swamp the minority ones. Unfortunately, the imbal-
ance in summarization is inherent, which can’t be
addressed by common data augmentation (He and
Ma, 2013; Asai and Hajishirzi, 2020; Min et al.,
2020; Zoph et al., 2019; Xie et al., 2020), for there
is a rare influence on the 0/1 distribution by adding
or deleting the entire document.

These two obstacles are interrelated and inter-
act with each other. Highlighting the pivotal in-
formation will strengthen the unique semantic and
weaken the common informative content. Addition-
ally, a more balanced distribution would make mi-
nority class more attractive. If we can’t resolve the
category imbalance problem in extractive summa-
rization by data augmentation, how to make the mi-
nority class more attractive? Inspired by the differ-
ential amplifier of analog electronics1, we propose
a heuristic model, DifferSum, as shorthand for Dif-
ferential Amplifier for Extractive Summarization
to enhance the representation of the summary sen-
tences. Specifically, we calculate and amplify the
semantic difference between each sentence and
other sentences, by the subtraction operation. The
original differential amplifier consists of two terms
and the second term is used to avoid making the
final output zero. In our model, we use the residual
unit instead of the second term to make the archi-
tecture deeper. We further design a more appropri-
ate objective function to avoid biasing the data, by
making the loss of a minority much greater than the
majority. DifferSum shows superiority over other
extractive methods in two aspects: 1) enhancing
the representation of the pivotal information and 2)
compensating the minority class and penalizing the
majority ones.

1https://en.wikipedia.org/wiki/Differential amplifier

Experimental results validate the effectiveness of
DifferSum. The human evaluation also shows that
our model is better in relevance compared with oth-
ers. Our contributions in this work are concluded
as follows:

• We propose a novel conceptualization of ex-
tractive summarization as rebalance problem.

• We introduce a heuristic approach, calculat-
ing and amplifying the semantic representation
of pivotal information by integrating both the
differential amplifier and residual learning.

• Our proposed framework has achieved superior
performance compared with strong baselines.

2 Related Work

2.1 Extractive Summarization

Recent research work on extractive summariza-
tion spans a large range of approaches. These
works usually instantiate their encoder-decoder
architecture by choosing RNN (Nallapati et al.,
2017; Zhou et al., 2018), Transformer (Wang et al.,
2019; Zhong et al., 2019b; Liu and Lapata, 2019;
Zhang et al., 2019b) or GNN (Wang et al., 2020;
Jia et al., 2020b) as encoder, autoregressive (Jad-
hav and Rajan, 2018; Liu and Lapata, 2019) or
RL-based (Narayan et al., 2018; Arumae and Liu,
2018; Luo et al., 2019) decoders. For two-stage
summarization, Chen and Bansal (2018) and Bae
et al. (2019) follow a hybrid extract-then-rewrite
architecture, with policy-based RL to bridge the
two networks together. Lebanoff et al. (2019), Xu
and Durrett (2019) and Mendes et al. (2019) focus
on the extract-then-compress learning paradigm,
which will first train an extractor for content selec-
tion. Zhong et al. (2020) introduces extract-then-
match framework, which employs BERTSUMEXT
(Liu and Lapata, 2019) as first-stage to prune un-
necessary information. However, these above ex-
tractive approaches prefer to model all source in-
formative context and they pay little attention to
the imbalance problem.

2.2 Deep Residual Learning

The original deep residual learning is introduced
in image recognition (He et al., 2016a) for the no-
torious degradation problem. Then, residual is in-
troduced to the natural language process by Trans-
former (Vaswani et al., 2017). Essentially, we can-
not determine the depth of the network very well
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Figure 2: Overview of DifferSum.

when building a deep network. There will be opti-
mal layers in the network, and outside the optimal
layer is the redundant layer. We expect the redun-
dant layer to correspond to the input and output,
namely identity mapping (He et al., 2016a,b; Veit
et al., 2016; Balduzzi et al., 2018). Resnet (He
et al., 2016a) addresses the degradation problem
by introducing a deep residual learning framework.
If an identity mapping were optimal, it would be
easier to push the residual to zero than to fit an iden-
tity mapping by a stack of nonlinear layers (Huang
and Wang, 2017). In this paper, the residual unit
serves as the second item of the differential am-
plifier to keep our architecture deep enough and
capture pivotal information.

3 Methodology

3.1 Problem Definition

We model the sentence extraction task as a se-
quence tagging problem (Kedzie et al., 2018).
Given a documentD consisting of a sequence ofM
sentences [s1, s2, ..., sM ] and a sentence si consist-
ing of a sequence of N words [wi1, wi2, ..., wiN ].
We denote by hi and hij the embedding of sen-
tences and words in a continuous space. The ex-
tractive summarizer aims to produce a summary S
by selecting m sentences from D (where m ≤M ).
For each sentence si ∈ D, there is ground-truth
yi ∈ {0, 1} and we will predict a label ŷi ∈ {0, 1},
where 1 means that si should be included in the
summary. We assign a score p(ŷi|si, D, θ) to quan-
tify si’s relevance to the summary, where θ is the
parameters of neural network model. Finally, we
assemble a summary S by selecting m sentences,

according to the probability of p(1|si, D, θ).

3.2 Sentence Encoder

The sentence encoder in extractive summarization
models is usually a recurrent neural network with
Long-Short Term Memory (Hochreiter and Schmid-
huber, 1997) or Gated Recurrent Units (Cho et al.,
2014). In this paper, our sentence encoder builds
on the BERT architecture (Devlin et al., 2019),
a recently proposed highly efficient model which
is based on the deep bidirectional Transformer
(Vaswani et al., 2017) and has achieved state-of-
the-art performance in many NLP tasks. The Trans-
former aims at reducing the fundamental constraint
of sequential computation which underlies most
architecture (Liu et al., 2019). It eliminates recur-
rence in favor of applying a self-attention mecha-
nism which directly models relationships between
all words in a sentence.

Our extractive model is composed of a sentence-
level Transformer (TS) and a document-level Trans-
former (TD) (Liu et al., 2019). For each sentence
si in the input document, TS is applied to obtain a
contextual representation for each word:

[u11, u12, ..., uMN ] = TS([w11, w12, ..., wMN ])
(1)

And the representation of a sentence is acquired
by applying weighted-pooling:

aij = W0u
T
ij

si =
1

N

N∑
j=1

aijuij
(2)

Document-level transformer TD takes si as in-
put and yields a contextual representation for each
sentence:

[v1, v2, ..., vM ] = TD([s1, s2, ..., sM ]) (3)

3.3 Deep Differential Amplifier

In the Transformer model sketched above, inter-
sentence relations are modeled by multi-head at-
tention based on softmax functions, which only
capture shallow structural information (Liu et al.,
2019).

A differential amplifier is a type of electronic
amplifier that amplifies the difference between two
input voltages but suppresses any voltage common
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to the two inputs. The output of an ideal differential
amplifier is given by:

Vout = Ad(V
+
in − V

−
in ) (4)

where V +
in and V −in are the input voltage; Ad is the

differential-mode gain.
In practice, the gain should not be quite equal

for the two inputs, V +
in and V −in . For instance, even

if V +
in and V −in are equal, the output Vout should not

be zero. So, modern differential amplifiers are usu-
ally implemented with a more realistic expression,
which includes a second term:

Vout = Ad(V
+
in − V

−
in ) +Ac

V +
in + V −in

2
(5)

where Ac is called the common-mode gain of the
amplifier.

Inspired by the differential amplifier above, we
calculate and amplify the semantic difference be-
tween each sentence and other sentences by the
subtraction operation of the sentence representa-
tions [v1, v2, ..., vM ]. Particularly, for sentence si,
V +
in and V −in are calculated as follows:

V +
in = vi

V −in =

∑
j∈{1,2,...,M}\{i} vj

M − 1

(6)

The original differential amplifier consists of two
terms and the second one avoids making the final
output zero. While for the deep neural network:
1) inputs of the differential amplifier are vector in-
stances in the high dimensional space, which is
practically impossible for the zero output, com-
pared with scalar; 2) the second term of the differ-
ential amplifier is not suitable for the deep iterative
architecture, since it is exposed to the degradation
problem.

Notably, residual learning is introduced in deep
learning as shortcut connections to skip one or
more layers, which is naturally an alternative to
the second item of the differential amplifier. The
advantages of this method are: 1) the residual ar-
chitecture will highlight the pivotal information
as well as reserving the original sentence repre-
sentation; 2) it is easier to optimize the residual
mapping than to optimize the original (He et al.,
2016a). Hence, the residual unit is employed as
the second item, along with an iterative refinement
algorithm to enhance the final representation of
sentences.

3.4 Residual Representation for Sentence

The differential amplifier in our architecture con-
sists of a few stacked layers to iteratively refine the
pivotal representation. Let us considerH(x) as an
underlying mapping to be fit, with x denoting the
inputs to the first of these layers. Since multiple
nonlinear layers can asymptotically approximate
complicated functions (He et al., 2016a; Montúfar
et al., 2014), the differential amplifier mapping
H(x) is recast into a residual mapping F(x) and
an identity mapping x:

H(x) = F(x) + x (7)

Obviously, residual learning is just a variant of
the differential amplifier:

H(x) := Vout

F(x) := Ad(V
+
in − V

−
in )

(8)

where the output voltage Vout thus becomes the
original mapping H(x) and the first item of am-
plifier Ad(V

+
in − V

−
in ) equals to residual mapping

F(x),
In our model, the second item of the differen-

tial amplifier is replaced by the identity mapping
x, which is the shortcut connection and the output
is added to the outputs of F(x). Furthermore, 1)
the identity shortcut connections advance the ar-
chitecture without extra parameter; 2) the identity
shortcut doesn’t add the computational complexity
(He et al., 2016a);

Thus, for sentence respresentation vi, the deep
differential amplifier is:

H(vi) = Ad(vi−
∑

j∈{1,2,...,M}\{i} vj

M − 1
)+vi (9)

3.5 Iterative Structure Refinement

The differential amplifier and residual unit spe-
cialize in modeling the pivotal information, while
deeper neural networks with more parameters are
able to infer semantic more accurately. So, an itera-
tive refinement algorithm is introduced to enhance
the final representation of pivotal information. For
sentence vi, the fundamental iterative unit is:

H(vi) = F(vi) + vi

vi = H(vi)
(10)



370

where we iteratively refine the representation vi for
K times; and thanks to the built-in residual mecha-
nism, most shorter paths are needed during training,
as longer paths do not contribute any gradient.

Along with the supervision, each iteration will
pay more attention to the key semantic difference
F(vi) of sentences with label 1, while trying to
zero other F(vj). Conversely, previous extractive
approaches without differential amplifier can only
classify those sentences by compensating or penal-
izing vi / vj , which is more difficult to model.

Following previous work (Nallapati et al., 2017;
Liu et al., 2019), we use a sigmoid function after a
linear transformation to calculate the probability ri
of selecting si as a summary sentence:

ri = sigmoid(W1v
T
i ) (11)

3.6 Weighted Objective Function

To rebalance the bias of minority 1-class and major-
ity 0-class, we have built a deep differential ampli-
fier to amplify and capture the unique information
for summary sentences. Besides, another heuristic
method is to make our model pay more attention to
1-class: a weighted cross-entropy function.

Particularly, we further design a more appropri-
ate objective function to avoid biasing the data, by
making the loss of a minority much greater than
the majority. The weight we employed is to rebal-
ance the observations for each class, so the sum of
observations for each class are equal. Finally, we
define the model’s loss function as the summation
of the losses of all iterations:

L =
K∑
k=1

{
1

M

M∑
i=1

[∑
sj∈D I(sj /∈ S)∑
sj∈D I(sj ∈ S)

y log(rki )

+(1− y) log(1− rki )

]}
(12)

where I(·) is an indicator function and K is the
number of iterations.

4 Experiments

4.1 Datasets

As shown in Table 1, we employ two datasets
widely-used with multiple sentences summary:
CNN and Dailymail (CNN/DM) (Hermann et al.,
2015) and New York Times (NYT) (Sandhaus,
2008).

Table 1: Data Statistics: CNN/Daily Mail and NYT.

Datasets
avg.doc length avg.summary length

words sentences words sentences

CNN 760.50 33.98 45.70 3.59
DailyMail 653.33 29.33 54.65 3.86
NYT 800.04 35.55 45.54 2.44

CNN/DM We used the standard split (Her-
mann et al., 2015) for training, validation,
and test (90,266/1,220/1,093 for CNN and
196,96/12.148/10,397 for Daily Mail), with split-
ting sentences by Stanford CoreNLP (Manning
et al., 2014) toolkit and pre-processing the dataset
following (See et al., 2017) and (Zhong et al., 2020).
This dataset contains news articles and several as-
sociated abstractive highlights. We use the un-
anonymized version as in previous summarization
work and each document is truncated to 800 BPE
tokens.

NYT Following previous work (Zhang et al.,
2019b; Xu and Durrett, 2019), we use 137,778,
17,222 and 17,223 samples for training, validation,
and test, respectively. We also followed their fil-
tering procedure, documents with summaries less
than 50 words were removed from the dataset. Sen-
tences were split with the Stanford CoreNLP toolkit
(Manning et al., 2014). Input documents were trun-
cated to 800 BPE tokens too.

4.2 Parameters

Our code is based on Pytorch (Paszke et al., 2019)
and the pre-trained model employed in DifferSum
is ‘albert-xxlarge-v2’, which is based on the hug-
gingface/transformers2. We train DifferSum two
days for 100,000 steps on 2GPUs(Nvidia Tesla
V100, 32GB) with gradient accumulation every
two steps. Adam with β1 = 0.9, β2 = 0.999 is
used as optimizer. Learning rate schedule follows
the strategy with warming-up on first 10,000 steps.
We have tried the iteration steps of 2/4/6/8 for
iterative refinement, and K = 4 is the best choice
based on the validation set. We select the top-3
checkpoints based on the evaluation loss on the
validation set, and report the averaged results on
the test set.

Following Jia et al. (2020a) and Jia et al. (2021),
we employ the greedy algorithm for the sentence-
level soft labels, which falls under the umbrella

2https://github.com/huggingface/transformers
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Table 2: ROUGE F1 on CNN/DM.

Models
CNN/DM

R-1 R-2 R-L
Abstractive

ABS (2015) 35.46 13.30 32.65
PGC (2017) 39.53 17.28 36.38
TransformerABS (2017) 40.21 17.76 37.09
T5Large (2020) 43.52 21.55 40.69
BARTLarge (2019a) 44.16 21.28 40.90
PEGASUSLarge (2019a) 44.17 21.47 41.11
ProphetNetLarge (2020) 44.20 21.17 41.30
Extractive

Lead-3 40.42 17.62 36.67
Oracle (Sentence) 55.61 32.84 51.88

SummaRuNNer (2017) 39.60 16.20 35.30
Exconsumm (2019) 41.70 18.60 37.80
PNBERTBase (2019a) 42.69 19.60 38.85
HIBERTLarge (2019b) 42.37 19.95 38.83
BERT-ext+RLBase (2019) 42.76 19.87 39.11
BERTSUMEXTBase (2019) 43.25 20.24 39.63
BERTSUMEXTLarge (2019) 43.85 20.34 39.90
DiscoBERTBase (2020) 43.77 20.85 40.67
HSGBase (2020) 42.95 19.76 39.23
ETCSumBase (2020) 43.84 20.80 39.77
ARedSumBase (2020) 43.43 20.44 39.83
MATCHSUMBase (2020) 44.41 20.86 40.55
DifferSumLarge 44.70 21.36 40.83

of subset selection. Besides, we employ the Tri-
gram Blocking strategy for decoding, which is a
simple but powerful version of Maximal Marginal
Relevance (Carbonell and Goldstein, 1998). Specif-
ically, when predicting summaries for a new doc-
ument, we first use the model to obtain the prob-
ability score p(1|si, D, θ) for each sentence, and
then we rank sentences by their scores and discard
those which have trigram overlappings with their
predecessors.

4.3 Metric

ROUGE (Lin, 2004) is the standard metric for
evaluating the quality of summaries. We report
the ROUGE-1, ROUGE-2, and ROUGE-L of Dif-
ferSum by ROUGE-1.5.5.pl, which calculates the
overlap lexical units of extracted sentences and
ground-truth.

5 Results and Analysis

5.1 Results on CNN/DM

Table 2 shows the results on CNN/DailyMail. All
of these scores are in accordance with original pa-
pers. Following Nallapati et al. (2017); Liu and
Lapata (2019), we compare extractive summariza-

Table 3: ROUGE F1 on NYT.

Models
NYT

R-1 R-2 R-L
Abstractive

ABS (2015) 42.78 25.61 35.26
PGC (2017) 43.93 26.85 38.67
TransformerABS (2017) 45.36 27.34 39.53
BARTLarge (2019a) 48.73 29.25 44.48
Extractive

Lead-3 41.80 22.60 35.00
Oracle (Sentence) 64.22 44.57 57.27

SummaRuNNer (2017) 42.37 23.89 38.74
Exconsumm (2019) 43.18 24.43 38.92
JECS (2019) 45.50 25.30 38.20
BERTSUMEXTBase (2019) 46.66 26.35 42.62
HIBERTLarge (2019b) 49.47 30.11 41.63
DifferSumLarge 49.52 29.78 43.86

tion models against abstractive models, and it is
certainly that the abstractive paradigm is still on the
frontier of summarization. The first part of extrac-
tive approaches is the Lead-3 baseline and Oracle
upper bound, while the second part includes other
extractive summarization models. We present our
models finally at the bottom. It is obvious that our
DifferSum outperforms all extractive baseline mod-
els. Compared with large version BERTSUMEXT,
our DifferSum achieves 0.85/1.02/0.93 improve-
ments on R-1, R-2, and R-L, which indicates the
pivotal information captured by the differential am-
plifier is more powerful than the other structures.
Compared with early approaches, especially for
BERTSUMEXT, we observe that BERT outper-
forms all previous non-BERT-based summarization
systems, and Trigram-Blocking leads to a great
improvement on all ROUGE metrics. MATCH-
SUM is a comparable competitor to our Differ-
Sum, which formulates the extractive summariza-
tion task as a two-step problem and extract-then-
match summary based on a well-trained BERT-
SUMEXT. Therefore, we only train a large version
DifferSum for a fair comparison.

5.2 Results on NYT

Results on NYT are summarized in Table 3. Note
that we use limited-length ROUGE recall as Dur-
rett et al. (2016), where the selected sentences are
truncated to the length of the human-written sum-
maries. The parts of Table 3 is similar to Table 2.
The first four lines are abstractive models, and the
next two lines are our golden baselines for extrac-
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Table 4: Ablation Study on CNN/DM.

Models R-1 R-2 R-L

DifferSum 44.70 21.36 40.83
DifferSum w/o ALBERT 44.41 20.80 40.57
DifferSum w/o Amplifier 44.17 20.74 40.42
DifferSum w/o Iteration 44.32 21.02 40.48

tive summarization. The third part reports the per-
formance of other extractive works and our model
respectively. Again, we observe that our differen-
tial amplifier modeling performs better than both
LSTM and BERT. Meanwhile, we find that extrac-
tive approaches show superiority over abstractive
models, and the ROUGE scores are higher than
CNN/DailyMail.

5.3 Ablation Studies
We propose several strategies to improve the per-
formance of extractive summarization, including
differential amplifier (vs. normal residual network),
pre-trained ALBERT(vs. BERT), and iterative re-
finement (vs. None). To investigate the influence
of these factors, we conduct experiments and list
the results in Table 4. Significantly, 1) differen-
tial amplifier is more critical than ALBERT, for
the reason that the pivotal information is essential
and difficult for ALBERT to model; 2) iterative re-
finement mechanism enlarges the advantage of the
differential amplifier, demonstrating the superiority
of deep architecture.

5.4 Human Evaluation for Summarization
It is not enough to only rely on the ROUGE eval-
uation for a summarization system, although the
ROUGE correlates well with human judgments
(Owczarzak et al., 2012). Therefore, we design an
experiment based on a ranking method to evaluate
the performance of DifferSum by humans. Fol-
lowing Cheng and Lapata (2016), Narayan et al.
(2018) and Zhang et al. (2019b), firstly, we ran-
domly select 40 samples from CNN/DM test set.
Then the human participants are presented with
one original document and a list of corresponding
summaries produced by different model systems.
Participants are requested to rank these summaries
(ties allowed) by taking informativeness (Can the
summary capture the important information from
the document) and fluency (Is the summary gram-
matical) into account. Each document is annotated
by three different participants separately.

The input article and ground truth summaries are

Table 5: Human Evaluation on CNN/DM.

Models 1st 2nd 3rd 4th MeanR

SummaRuNNer 0.20 0.27 0.30 0.23 2.56
BERTSUMEXT 0.25 0.30 0.28 0.17 2.37
DifferSum 0.48 0.27 0.20 0.05 1.82
Ground-Truth 0.68 0.22 0.07 0.03 1.45

also shown to the human participants in addition
to the three model summaries (SummaRuNNer,
BERTSUMEXT, and DifferSum). From the results
shown in Table 5, it is obvious that DifferSum is
better in relevance compared with others.

5.5 Trigram Blocking Strategy

Trigram Blocking leads to a great improvement on
all ROUGE metrics for many extractive approaches
(Liu and Lapata, 2019; Wang et al., 2020). It is
has become a fundamental module in extractive
summarization. In this paper, DifferSum extracts
summary sentences with the Trigram-Blocking al-
gorithm, but whether there is a great improvement
along with it, like in SummaRuNNer or BERT-
SUMEXT?

It has been explained by Nallapati et al. (2017);
Liu and Lapata (2019), that picking all sentences by
comparing the predicted probability with a thresh-
old may not be an optimal strategy since the train-
ing data is very imbalanced in terms of summary-
membership of sentences. Therefore, the Trigram-
Blocking algorithm is introduced to select top-k
sentences and reduce the redundancy.

Coincidentally, our DifferSum is designed to 1)
rebalance the distribution of majority and minority
and 2) filter the tangential and redundant informa-
tion. Thus, the Trigram-Blocking algorithm may
be useless for our DifferSum.

Table 6 further summarizes the performance gain
of Trigram-Blocking strategy. It is obvious that
this strategy is essential for BERTSUMEXT or
SummaRuNNer, achieving more than 2.68 / 0.98
improvements on R-1 separately, for that there
is no enough redundancy modeling for both of
them. While on the other hand, the efficiency of the
Trigram-Blocking strategy is weak for DifferSum.

5.6 Documents with a Different Number of
Sentences

In this paper, we emphasize the inherent imbal-
ance problem of the majority 0-class and the mi-
nority 1-class. In fact, in CNN/DailyMail dataset,
there are plenty of documents with a different num-
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Table 6: ROUGE Scores about Trigram-Blocking on
CNN/DM Test Set.

Models R-1 R-L

DifferSum (with Trigram-Blocking) 44.70 40.83
DifferSum 44.36 40.43
BERTSUMEXT (with Trigram-Blocking) 43.85 39.90
BERTSUMEXT 41.17 36.52
SummaRuNNer (with Trigram-Blocking) 40.58 36.61
SummaRuNNer 39.60 35.30
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Figure 3: Comparison Between the ROUGE Scores
Tendencies of BERTSUMEXT and DifferSum

ber of sentences, ranging from 3-sentences to 100-
sentences. While the number of summary sen-
tences, labeled with 1, is from 1-sentences to 5-
sentences, and the average number of sentences
labeled 1 in CNN/DailyMail is only 7.33%. What
is worse is that the distribution of the number of
sentences for documents is a uniform distribution,
thus we could not avoid the imbalance by cleaning
the data.

In this paper, we design another experiment to
analysis the harmful effect of imbalance classes.
We train the BERTSUMEXT (12-layers) from
scratch on CNN/DailyMail, and evaluate the model
on the test set to check the tendency of ROUGE
scores, along with the number of sentences accu-
mulating. The result is shown in the line chart of
Figure 1 and Figure 3a, and obviously we only pay
attention to the document in which the number of
sentences less than 55. Specifically, each docu-
ment is truncated to 2000 BPE tokens to involve
more sentences, but this can not cover those whole
documents with more than 55-sentences. There-
fore, we choose to calculate the ROUGE scores for
documents with sentences from 3 to 55.

For comparison, we train our DifferSum (12-
layers) from scratch, and each document is trun-
cated to 2000 BPE tokens too. The tendency of
our DifferSum is as Figure 3b. Compared with the
tendency of BERTSUMEXT, there is no obvious
ROUGE decrease, demonstrating that our approach
has strengthened the representation of pivotal and

rebalanced the disproportionate ratio of summary
sentences and other sentences.

Note that more truncated BPE tokens will in-
crease the final average ROUGE slightly, for it may
lose some summary sentences when truncating too
many tokens. Unfortunately, our 24-layers Differ-
Sum can only be trained with 800 BPE tokens for
the limitation of GPU source.

5.7 Map Words Representation into Sentence
Representation

A key issue motivating the sentence-level Trans-
former (TS) and the document-level Transformer
(TD) is that the features for words after the TS
might be at different scales or magnitudes. This
can be due to some words having very sharp or
very distributed attention weights when summing
over the features of the other words.

In this paper, we apply two ways to map the
words representation into its sentence representa-
tion: weighted-pooling at Equation 2 and picking
[CLS] token as sentence (Liu and Lapata, 2019).

Table 7 shows that [CLS] is not enough to con-
vey enough informative information of words for
both our DifferSum and BERTSUMEXT. Espe-
cially, DifferSum is more sensitive to the word fea-
tures since our differential amplifier may amplify
the semantic features effectively.

Table 7: ROUGE Scores about Sentence Representa-
tion on CNN/DM Test Set.

Models R-1 R-L

DifferSum (Weighted-Pooling) 44.70 40.83
DifferSum ([CLS]) 44.41 40.43
BERTSUMEXT (Weighted-Pooling) 43.92 40.08
BERTSUMEXT ([CLS]) 43.85 39.90

6 Conclusion

In this paper, we introduce a heuristic model, Dif-
ferSum, 1) to calculate and amplifier the pivotal
information and 2) to rebalance the distribution of
minority 1-class and majority 0-class. Besides, we
employ another weighted cross-entropy function
to compensate for the imbalance. Experimental
results show that our method significantly outper-
forms previous models. In the future, we would
like to generalize DifferSum to other fields.
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