
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 3919–3931

August 1–6, 2021. ©2021 Association for Computational Linguistics

3919

ABCD: A Graph Framework to Convert Complex Sentences
to a Covering Set of Simple Sentences

Yanjun Gao and Ting-Hao (Kenneth) Huang and Rebecca J. Passonneau
Pennsylvania State University

{yug125,txh710,rjp49}@psu.edu

Abstract
Atomic clauses are fundamental text units for
understanding complex sentences. Identify-
ing the atomic sentences within complex sen-
tences is important for applications such as
summarization, argument mining, discourse
analysis, discourse parsing, and question an-
swering. Previous work mainly relies on rule-
based methods dependent on parsing. We pro-
pose a new task to decompose each complex
sentence into simple sentences derived from
the tensed clauses in the source, and a novel
problem formulation as a graph edit task. Our
neural model learns to Accept, Break, Copy or
Drop elements of a graph that combines word
adjacency and grammatical dependencies. The
full processing pipeline includes modules for
graph construction, graph editing, and sen-
tence generation from the output graph. We
introduce DeSSE, a new dataset designed to
train and evaluate complex sentence decompo-
sition, and MinWiki, a subset of MinWikiSplit.
ABCD achieves comparable performance as
two parsing baselines on MinWiki. On DeSSE,
which has a more even balance of complex sen-
tence types, our model achieves higher accu-
racy on the number of atomic sentences than
an encoder-decoder baseline. Results include
a detailed error analysis.

1 Introduction

Atomic clauses are fundamental text units for
understanding complex sentences. The ability to
decompose complex sentences facilitates research
that aims to identify, rank or relate distinct pred-
ications, such as content selection in summariza-
tion (Fang et al., 2016; Peyrard and Eckle-Kohler,
2017), labeling argumentative discourse units in
argument mining (Jo et al., 2019) or elementary
discourse units in discourse analysis (Mann and
Thompson, 1986; Burstein et al., 1998; Demir et al.,
2010), or extracting atomic propositions for ques-
tion answering (Pyatkin et al., 2020). In this work,

Orig Sokuhi was born in Fujian and was ordained at 17.
SS1 Sokuhi was born in Fujian.
SS2 Sokuhi was ordained at 17.

Figure 1: Example of a complex sentence (Orig) rewritten
as two simple sentences (SS1, SS2). Underlined words in the
source are preserved in the same order in the two outputs, the
conjunction and (red font) is dropped, and the subject Sokuhi
(blue font) is copied to the second simple sentence.

we propose a new task to decompose complex sen-
tences into a covering set of simple sentences, with
one simple output sentence per tensed clause in
the source sentence. We focus on tensed clauses
rather than other constituents because they are syn-
tactically and semantically more prominent, thus
more essential in downstream tasks like argument
mining, summarization, and question answering.

The complex sentence decomposition task we
address has some overlap with related NLP al-
gorithms, but each falls short in one or more re-
spects. Elementary discourse unit (EDU) segmen-
tation segments source sentences into a sequence of
non-overlapping spans (Carlson et al., 2003; Wang
et al., 2018). The output EDUs, however, are not al-
ways complete clauses. Text simplification rewrites
complex sentences using simpler vocabulary and
syntax (Zhang and Lapata, 2017). The output, how-
ever, does not preserve every tensed clause in the
original sentence. The split-and-rephrase (SPRP)
task aims to rewrite complex sentences into sets of
shorter sentences, where an output sentence can
be derived from non-clausal constituents in the
source (Narayan et al., 2017). In contrast to the
preceding methods, we convert each tensed clause
in a source sentence, including each conjunct in a
conjoined VP, into an independent simple sentence.
Unlike EDU segmentation, a belief verb and its
that-complement do not lead to two output units.
Unlike text simplification, no propositions in the
source are omitted from the output. Unlike SPRP, a
phrase that lacks a tensed verb in the source cannot

3920

lead to a distinct sentence in the output.
Figure 1 shows an example complex sentence

(Orig) with conjoined verb phrases and its rewrite
into two simple sentences (SSs). Observe that
besides producing two sentences from one, thus
breaking the adjacency between words, words in-
side the verb phrases (underlined in the figure) re-
main in the same linear order in the output; the
single subject Sokuhi in the source is copied to the
more distant verb phrase. Finally, the connective
and is dropped. We find that most rewrites of com-
plex sentences into simple sentences that preserve
the one-to-one mapping of source tensed predica-
tion with target simple sentence involve similar
operations. Building on these observations, we pro-
pose a neural model that learns to Accept, Break,
Copy or Drop elements of a special-purpose sen-
tence graph that represents word adjacency and
grammatical dependencies, so the model can learn
based on both kinds of graph proximity. We also
introduce DeSSE (Decomposed Sentences from
Students Essays), a new annotated dataset to sup-
port our task.

The rest of the paper presents two evaluation
datasets, our full pipeline, and our ABCD model.
Experimental results show that ABCD achieves
comparable or better performance than baselines. 1

2 Related Work

Related work falls largely into parsing-based
methods, neural models that rewrite, and neural
segmenters. Gao et al. (2019) propose a decompo-
sition parser (DCP) that extracts VP constituents
and clauses from complex sentences as part of
a summarization evaluation tool. Niklaus et al.
(2019a) present a system (DisSim) based on pars-
ing to extract simple sentences from complex ones.
Jo et al. (2020) propose seven rules to extract com-
plete propositions from parses of complex ques-
tions and imperatives for argumentation mining.
Though performance of these methods depends on
parser quality, they often achieve very good perfor-
mance. We include two whose code is available
(DCP, DisSim) among our baselines.

SPRP models are based on encoder-decoder
architectures, and the output is highly depend-
ing on the training corpus. Aharoni and Gold-
berg (2018) present a Copy-augmented network
(Copy512) based on (Gu et al., 2016) that encour-

1ABCD is available at https://github.com/
serenayj/ABCD-ACL2021.

ages the model to copy most words from the origi-
nal sentence to the output. As it achieves improve-
ment over an earlier encoder-decoder SPRP model
(Narayan et al., 2017), we include Copy512 among
our baselines.

Finally, recent neural EDU segmenters (Wang
et al., 2018; Li et al., 2018) achieve state-of-the-art
performance on a discourse relation corpus, RST-
DT (Carlson et al., 2003). As they do not output
complete sentences, we do not include any among
our baselines.

Our ABCD model leverages the detailed infor-
mation captured by parsing methods, and the pow-
erful representation learning of neural models. As
part of a larger pipeline that converts input sen-
tences to graphs, ABCD learns to predict graph
edits for a post processor to execute.

3 Datasets

Here we present DeSSE, a corpus we collected
for our task, and MinWiki, a modification of an ex-
isting SPRP corpus (MinWikiSplit (Niklaus et al.,
2019b)) to support our aims. We also give a brief
description of differences in their distributions.
Neural models are heavily biased by the distribu-
tions in their training data (Niven and Kao, 2019),
and we show that DeSSE has a more even balance
of linguistic phenomena.

3.1 DeSSE

DeSSE is collected in an undergraduate social
science class, where students watched video clips
about race relations, and wrote essays in a blog
environment to share their opinions with the class.
It was created to support analysis of student writ-
ing, so that different kinds of feedback mechanisms
can be developed regarding sentence organization.
Students have difficulty with revision to address
lack of clarity in their writing (Kuhn et al., 2016),
such as non-specific uses of connectives, run on
sentences, repetitive statements and the like. These
make DeSSE different from corpus with expert
written text, such as Wikipedia and newspaper. The
annotation process is unique in that it involves iden-
tifying where to split a source complex sentence
into distinct clauses, and how to rephrase each re-
sulting segment as a semantically complete simple
sentence, omitting any discourse connectives. It
differs from corpora that identify discourse units
within sentences, such as RST-DT (Carlson et al.,
2003) and PTDB (Prasad et al., 2008), because

https://github.com/serenayj/ABCD-ACL2021
https://github.com/serenayj/ABCD-ACL2021

3921

• Orig: (I believe that talking about race more in a civil
way can only improve our society), || but I can see why
other people may have a different opinion.

• Rephrase 1: I believe that talking about race more in a
civil way can only improve our society.

• Rephrase 2: I can see why other people may have a
different opinion.

Figure 2: An original sentences from DeSSE with an intra-
sentential connective (but), a verb that takes a clausal argu-
ment. The annotation first splits the sentence (at ||), then
rephrases each segment into a simple sentence, dropping the
connective.

Dataset Disc. VP- Wh- & Restric. that-
Conn. Conj. Rel. Cl. Rel. Cl. comp.

MinWiki 58% 36% 10% 26% 0%
DeSSE 66% 22% 32% 34% 24%

Table 1: Prevalence of five linguistic phenomena in 50 ran-
domly selected examples per dataset. Categories are not mu-
tually exclusive.

clauses are explicitly rewritten as simple sentences.
It differs from split-and-rephrase corpora such as
MinWikiSplit, because of the focus in DeSSE on
rephrased simple sentences that have a one-to-one
correspondence to tensed clauses in the original
complex sentence. DeSSE is also used for connec-
tive prediction tasks, as in (Gao et al., 2021).2

We perform our task on Amazon Mechanical
Turk (AMT). In a series of pilot tasks on AMT, we
iteratively designed annotation instructions and an
annotation interface, while monitoring quality. Fig-
ure 2 illustrates two steps in the annotation: iden-
tification of n split points between tensed clauses,
and rephrasing the source into n+1 simple clauses,
where any connectives are dropped. The instruc-
tions ask annotators to focus on tensed clauses oc-
curring in conjoined or subordinate structures, rel-
ative clauses, parentheticals, and conjoined verb
phrases, and to exclude gerundive phrases, infinti-
val clauses, and clausal arguments of verbs. The
final version of the instructions describes the two
annotation steps, provides a list of connectives, and
illustrates a positive and negative example.3 The
training and tests sets contains 12K and 790 exam-
ples, respectively.

3.2 MinWikiSplit

MinWikiSplit has 203K complex sentences and
their rephrased versions (Niklaus et al., 2019b).

2DeSSE and MinWiki are available at https://
github.com/serenayj/DeSSE.

3In step 2, the interface checked for any remaining con-
nectives, to warn annotators. Details about the interface and
quality control are included in appendix A.

It is built from WikiSplit, a text simplification
dataset derived from Wikipedia revision histories
(Narayan et al., 2017), modified to focus on min-
imal propositions that cannot be further decom-
posed. It was designed for simplifying complex
sentences into multiple simple sentences, where
the simple sentences can correspond to a very wide
range of structures from the source sentences, such
as prepositional or adjectival phrases. To best uti-
lize this corpus for our purposes, we selected a sub-
sample where the number of tensed verb phrases
in the source sentences matches the number of
rephrased propositions. The resulting MinWiki
corpus has an 18K/1,075 train/test split.

3.3 Linguistic phenomena

Table 1 presents prevalence of syntactic pat-
terns characterizing complex sentences in the two
datasets. Four are positive examples of one-to-one
correspondence of tensed clauses in the source with
simple sentences in the rephrasings: discourse con-
nectives (Disc. Conn.), VP-conjunction, clauses
introduced by wh- subordinating conjunctions (e.g.,
when, whether, how) combined with non-restrictive
relative clauses (wh- & Rel. Cl.), and restrictive
relative clauses (Restric. Rel. Cl.). The sixth col-
umn (negative examples) covers clausal arguments,
which are often that-complements of verbs that ex-
press belief, speaking, attitude, emotion, and so
on. MinWiki has few of the latter, presumably
due to the genre difference between opinion essays
(DeSSE) and Wikipedia (MinWiki).

4 Problem Formulation

We formulate the problem of converting complex
sentences into covering sets of simple sentences as
a graph segmentation problem. Each sentence is
represented as a Word Relation Graph (WRG), a di-
rected graph constructed from each input sentence
with its dependency parse. Every word token and
its positional index becomes a WRG vertex. For
every pair of words, one or more edges are added
as follows: a neighbor edge that indicates that the
pair of words are linearly adjacent; a dependency
edge that shows every pair of words connected by
a dependency relation, adding critical grammatical
relations, such as subject.

Figure 3 shows an example sentence and a sim-
plified version of its WRG (edge directions are not
shown, for readability). Vertices are labeled with
word-index pairs in red font, and edges are labeled

https://github.com/serenayj/DeSSE
https://github.com/serenayj/DeSSE

3922

Figure 3: Example complex sentence (Orig), ground truth
output (SS 1 and SS 2), and WRG (best seen in color; edge
directions and punctuation omitted for readability). Vertices
are word tokens and their indices, edges are neighbor (ngbh)
and/or dependency relations. Dashed lines represent edges to
Break, the green curved line represents an edge to Copy, the
open circle node for and-6 is for Drop, and all other parts
of the graph get Accept. At bottom left is a fragment of the
corresponding Edge Triple Set.

as ngbh for neighboring words, or with the tags
corresponding to their dependency relations, such
as nsubj between Sokuhi-1 and ordained-13. An
edge can have both types of relation, e.g. neighbor
and dependency for was-12 and ordained-13. The
graph is stored as an Edge Triple Set, a set of triples
with (source node, target node, label) representing
each pair of words connected by an edge, as shown
in Figure 3, bottom left. Given a sentence and its
WRG, our goal is to decompose the graph into n
connected components (CC) where each CC is later
rewritten as an output simple sentence. To perform
the graph decomposition, decisions are made on
every edge triple.We define four edit types:

• Accept: retain the triple in the output

• Break: break the edge between a pair of
words

• Copy: copy a target word into a CC

• Drop: delete the word from the output CCs

A training example consists of an input sentence,
and one or more output sentences. If the input
sentence is complex, the ground truth output con-
sists of multiple simple sentences. The next section
presents the ABCD pipeline. Two initial mod-
ules construct the WRG graphs for each input sen-
tence, and the ABCD labels for the Edge Triple
Sets based on the ground truth output. A neural
model learns to assign ABCD labels to input WRG
graphs, and a final graph segmenter generates sim-
ple sentences from the labeled WRG graphs. De-
tails about the neural model are in the subsequent
section.

5 System Overview

The full processing pipeline consists of five ma-
jor components, as shown in Figure 4. Three pre-
processing modules handle the WRG graph con-
struction, conversion of graph triples to vectors,
and creation of distant supervision labels for the
graph. The fourth component is the ABCD neural
model that learns to label a WRG graph, which
is described in section 6. The last part of the
pipeline is a post-processing module to segment
WRG graphs based on the labels learned by the
ABCD model, and to map each graph segment to
a simple sentence.

Graph Constructor The first module in the sys-
tem is a Graph Constructor that converts an input
sentence and its dependency parse into a collection
of vertices and edges. It is used during training and
inference. It first extracts words and their indices
from the input sentences of the training examples
for the vertices of each WRG graph. A directed
edge and ngbh label is assigned to all pairs of ad-
jacent words. A directed edge and label is also
assigned to every governing and dependent word
pair (cf. Figure 3).

Edge Triples DB The Edge Triples DB, which is
used during training and inference, creates vector
representations for the input Edge Triples Sets for
each training instance, using latent representations
learned by an encoder component of the ABCD
model. Using the word indices, a function maps the
source and target words from every triple into its
hidden representation learned by the encoder, and
the triple’s edge label is converted into a one-hot
encoding with dimension d. For an edge triples set
with m triples, the source and target word hidden
states are each stacked into an m× h matrix, and
the one-hot vectors for edge labels are stacked into
an m× d matrix. These three source, target, edge
matrices that represent an Edge Triple Set are then
fed into an attention layer, as discussed in section 6.

Distant Supervision Label Creator The ex-
pected supervision for our task is the choice of
edit type for each triple, where the ground truth
consists of pairs of an input sentence, and one or
more output simple sentences. We use distant su-
pervision where we automatically create edit labels
for each triple based on the alignment between the
original input sentence and the set of output simple
sentences. In the Distant Supervision Label Creator

3923

Figure 4: ABCD system overview during training (top) and inference (bottom).

module, for every triple, we check the following
conditions: if the edge is a ”neighbor” relation, and
both source and target words are in the same out-
put simple sentence, we mark this pair with edit
type A; if the source and target words of a triple
occur in different output simple sentences, the cor-
responding edit is B; if the source and target are in
the same output simple sentence, and the only edge
is a dependency label (meaning that they are not
adjacent in the original sentence), we mark this pair
as C; finally, if a word is not in any output simple
sentence, we mark the corresponding type as D.

Graph Segmenter This module segments the
graph into connected components using predicted
edits, and generates the output sentences, as part
of the inference pipeline. There are four stages
consisting of: graph segmentation, traversal, sub-
ject copying, and output rearranging. In the graph
segmentation stage, the module first performs ac-
tions on every triple per the predicted edit: if the
edit is A, no action is taken; if the edit is B, the
edge between the pair of words is dropped; given
C, the edge is dropped, and the edge triple is stored
in a temporary list for later retrieval; if the edit
is D, the target word is dropped from the output
graphs. After carrying out the predicted edits, we
run a graph traversal algorithm on modified edge
triples to find all CCs, using a modified version of
the Depth-First-Search algorithm with linear time
proposed in (Tarjan, 1972; Nuutila and Soisalon-
Soininen, 1994). For each CC, the vertices are kept
and the edges are dropped. Then we enter the sub-
ject copying stage: for each source, target pair in
the temporary list mentioned earlier, we copy the
word to the CC containing the target. Finally for
every CC, we arrange all words in their linear order

by indices, and output a simple sentence.

Figure 5: Architecture for ABCD model.

6 Neural Model

The ABCD model consists of three neural mod-
ules depicted in Figure 5: a sentence encoder to
learn a hidden representation for the input sentence,
a self-attention layer to generate attention scores
on every edge label, and a classifier that generates
a predicted distribution over the four edit types,
based on the word’s hidden representation, the edge
label representation, and the attention scores.

6.1 Sentence Representation
The sentence representation module has two

components: a word embedding look up layer
based on GloVe (Pennington et al., 2014), and
a bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) (see Figure 5). Given an input sentence
length l, and the hidden state dimension M , the
output from this module is l×M . For a word with
index i in the input sentence, we generate its hidden
representation hi such that it combines the hidden
states from forward and backward LSTMs, with

3924

hi ∈ RM . A positional encoding function is added
to the word embeddings. We found this particu-
larly helpful in our task, presumably because the
same word type at different positions might have
different relations with other words, captured by
distinct learned representations. Our experiments
compare biLSTM training from scratch to use of
BERT (Devlin et al., 2019), to see if pre-trained
representations are helpful.

To utilize the learned word representations in the
context of the relational information captured in the
WRG graph, we send the sentence representation to
the Edge Triple DB and extract representations hi
and hj for the source and target words, based on in-
dices i and j. A one-hot vector with dimensionality
N encodes relations between pairs of source and
target words; each edge triple is thus converted into
three vectors: hsrc, htgt, drel. We take position-
wise summation over all one hot vectors if there is
more than one label on an edge.

6.2 Edge Self-Attention
Attention has been useful for many NLP tasks.

In our model, we adapt the multi-head self attention
mechanism (Vaswani et al., 2017) to learn impor-
tance weights on types of edit operations, as shown
in the middle green block in Figure 5. Given m
edge triples, we first stack all source vectors hsrc
into a matrix Hsrc, and operate the same way on
htgt and drel to obtain Htgt and Drel, such that
Hsrc, Htgt ∈ Rm×M , and Drel ∈ Rm×N . These
three matrices are the input to self-attention. For ev-
ery head of the multi-head attention, we first obtain
a feature representation with the three parameters
V,K,Q mapping to sources, targets and relations,
respectively, then compute a co-efficient e with a
learnable parameter W e as follows:

e = LeakyRelu(W e(V Hsrc;KHtgt;QDrel))
(1)

where e ∈ Rm×1. Then we compute the attention
scores by taking a softmax over e:

head = softmax(e) (2)

Finally, we concatenate all head attentions together,
and pass them through a linear layer to learn the
relations between heads, and generate the final at-
tention scores:

α =W (concat((head1, head2, . . .)) (3)

α ∈ Rm×1. The attention scores are sent to the next
module to help the classifier make its decision.

Dataset A B C D
MinWiki 85.23% 4.58% 3.60% 6.57%
DeSSE 74.77% 2.39% 5.62% 17.21%
MinWiki 0.0167 0.3533 0.4164 0.2135
DeSSE 0.0200 0.6266 0.2658 0.0876

Table 2: Distributions (Top) and inverse class weights
(Bottom) for the four edit labels on both MinWiki and
DeSSE datasets.

6.3 Edit Classification
The last component of our neural model is a

classifier, as shown at the right of Figure 5. To ag-
gregate the feature representation from the previous
layer, we first concatenate the three matrices Hsrc,
Htgt, Drel into one representation, and multiply the
attention scores as follows:

H ′ = α(Hsrc;Htgt, Drel) (4)

An MLP layer then takes H ′ as its input and gener-
ates the output distribution over the four edit types
for each edge triple:

OutM = Softmax(MLP (H ′)) (5)

where OutM ∈ Rm×4.
As an alternative to MLP, we also investigated

a bilinear classifier, which has proved efficient in
capturing fine-grained differences in features for
classification task (Dozat and Manning, 2017). The
bilinear layer first takes Hsrc and Htgt as input and
generates transposed bilinear features :

outputbi = Hᵀ
srcW

AHtgt + b (6)

where WA, b are learnable parameters. Then we
sum the bilinear features with the MLP decisions
and apply softmax on the result to get the final
distribution over the four edit labels:

OutB = Softmax(outputbi +MLP (H ′)) (7)

where OutB ∈ Rm×4. We use cross entropy loss
between predicted edit types and gold edit types
created from distant supervision (see above).

6.4 Training
The class balance for our task is highly skewed:

the frequency of class A is much higher than the
other three classes, as shown in the top portion of
Table 2. To mitigate the impact on training, we
adopt the inverse class weighting for cross entropy
loss introduced in (Huang et al., 2016). With this
weighting, loss is weighted heavily towards rare
classes, which forces the model to learn more about

3925

the rare cases. Table 2 shows the weights for four
edit labels on both datasets. On MinWiki, A occurs
the most and has the lowest weights as 0.0167, a
sharp contrast to B,C,D. On DeSSE, both A and
D occur frequently while B and C have lower fre-
quency with higher weights, at 0.6266 and 0.2658.
DeSSE has fewer B, and more C and D than Min-
Wiki. From this perspective, MinWiki is “simpler”
than DeSSE because there are fewer edits on rewrit-
ing the sentences. This might be due to the differ-
ent distributions of linguistic phenomena in the two
datasets (see Table 1). In the next section, we will
show that ABCD shows stronger improvements
on complicated edits. Training details are in the
appendix.

7 Experiments

We carry out two intrinsic evaluations of ABCD
performance on MinWiki and DeSSE. Section 7.1
presents an intrinsic evaluation of ABCD variants
on edit prediction, with error analysis and abla-
tion studies. Section 7.2 compares the best ABCD
model with several baselines on the quality of out-
put propositions. We discuss evaluation metrics in
section 7.3. Results show that ABCD models show
consistently good performance compared to other
baseline models on both datasets.

7.1 Intrinsic Evaluation on Edit Prediction

We report F1 scores on all four edit types from
ABCD and its model variants. We compare two
classifiers as mentioned in previous sections and
investigate the difference between using biLSTM
and BERT with fine-tuning, to see if pre-trained
knowledge is useful for the task.

Table 3 presents results on MinWiki and DeSSE
from the four model settings. All models per-
form better on MinWiki than DeSSE, and biL-
STM+bilinear shows the best performance on both,
with F1 scores of 0.82 and 0.67 on MinWiki and
DeSSE respectively. Presumably this reflects the
greater linguistic diversity of DeSSE shown in Ta-
ble 1. The lower performance from BERT variants
indicates the pre-trained knowledge is not helpful.
Among the four edit types, all models have high
F1 scores on A across datasets, high F1 on C for
MinWiki, but not on DeSSE. B and D show lower
scores, and all four models report lower F1 on B
than D on both datasets.

To examine the significant drop on B and D from
MinWiki to DeSSE, Table 4 presents error anal-

ysis on pairs of gold labels and predictions for B
and D, using predictions from biLSTM+mlp. The
model does poorly on B in both datasets, compared
with predictions of 36.1% for A on MinWiki, on
on DeSSE, 27.42% for A and 15.18% for C. The
model has high agreement on D from MinWiki,
but predicts 42.63% A on DeSSE. We suspect that
improved feature representation could raise perfor-
mance; that is, pairs of words and their relations
might be a weak supervision signal for B and D.

We conducted an ablation study on the inverse
class weights mentioned in section 6 on MinWiki.
After removing the weights, the model fails to learn
other classes and only predicts A due to the highly
imbalanced label distributions, which demonstrates
the benefit of weighting the loss function. We also
ablate positional encoding which leads to F1 scores
of 0.90 for A, 0.51 for C, and 0 for both B and D,
indicating the importance of positional encoding.

7.2 Intrinsic Evaluation of Output Sentences

For baselines, we use Copy512 and DisSim,
which both report performance on Wikisplit in pre-
vious work. We also include DCP, which relies
on three rules applied to token-aligned dependency
and constituency parses: DCPvp extracts clauses
with tensed verb phrases; DCPsbar extracts SBAR
subtrees from constituency trees; DCPrecur recur-
sively applies the preceding rules.

For evaluation, we use BLEU with four-grams
(BL4) (Papineni et al., 2002) and BERTScore
(BS) (Zhang et al., 2019). We also include de-
scriptive measures specific to our task. To indicate
whether a model retains roughly the same num-
ber of words as the source sentence in the target
output, we report average number of tokens per
simple sentence (#T/SS). To capture the correspon-
dence between the number of target simple sen-
tences in the ground truth and model predictions,
we use percentage of samples where the model
predicts the correct number of simple sentences
(Match #SS). BL4 captures the 4-gram alignments
between candidate and reference word strings, but
fails to assess similarity of latent meaning. BS ap-
plies token-level matching through contextualized
word embeddings, therefore evaluates candidates
on their word meanings. For each example, we
first align each simple sentence in the ground truth
with a prediction, compute the pairwise BL4 and
BS scores, and take the average as the score for
the example. A predicted output sentence with no

3926

Category
MinWiki DeSSE

biLSTM BERT biLSTM BERT
mlp bilinear mlp bilinear mlp bilinear mlp bilinear

A 0.98 0.98 0.93 0.86 0.91 0.88 0.88 0.87
B 0.48 0.48 0.41 0.36 0.34 0.42 0.31 0.28
C 0.99 0.99 0.95 0.98 0.89 0.78 0.89 0.55
D 0.80 0.84 0.39 0.75 0.49 0.54 0.45 0.45
All 0.78 0.82 0.72 0.74 0.66 0.67 0.63 0.57

Table 3: Performance (F1) of our model and its variants on MinWiki (N=1075) and DeSSE (N=790).

Data Gold Predicted
A B C D

Minwiki B 36.10 48.33 5.59 9.98
D 14.01 0.14 0.46 85.38

DeSSE B 27.42 46.62 15.18 10.76
D 42.63 3.44 5.08 48.84

Table 4: Percentage (%) of count of predicted labels where
gold labels are B and D from ABCD biLSTM+mlp.

correspondent in the ground truth, or a ground truth
sentence with no correspondent in the predicted,
will add 0 to the numerator and 1 to the denomina-
tor of this average.

Table 5 presents results from the baselines and
our ABCD best variant, biLSTM with two classi-
fiers. None of the models surpasses all others on
both datasets. All models show lower performance
on DeSSE than MinWiki, again an indication that
DeSSE is more challenging. On MinWiki, ABCD
is competitive with Copy512, the best performing
model, with a narrow gap on Match#SS (0.65%)
and BLEU4 (4.58). On DeSSE, ABCD BL4 and
BS surpass all baselines. ABCD performance is
2.34% less than DCPrecur on Match #SS, but biL-
STM+mlp output sentences have an average length
of 8.85, which is closer to the gold average length
of 9.07, in contrast to much longer output from
DCPrecur of 14.16. To summarize, ABCD achieves
competitive results on both datasets.

7.3 Error Analysis

While Table 4 presents error analysis on pre-
dictions of B that lead to an incorrect number of
outputs, here we examine test sentences from both
datasets where the prediction and ground truth have
the same number of outputs. Table 6 shows the to-
tal number of examples for MinWiki (1,075) and
for the positive examples in DeSSE (DeSSEpos,
521). The M columns for each dataset give the
number of examples where the number of targets
in the ground truth matches the number of targets
predicted by the model. On MinWiki, ABCD has
marginally better BL4 and BS scores than Copy512,
but Copy512 has 7 more cases with the correct num-

ber of outputs. For DeSSE, we restrict attention
to the positive examples (MinWiki has no negative
examples), because Copy512 and ABCD perform
equally well on the negative examples. By the BL4
and BS scores on DeSSEpos, Copy512 appears to
perform much better than ABCD, but these scores
are on 20 out of 521 examples (3.8%). Although
ABCD’s scores are lower, it produces the correct
number of output sentences in 47.4% of cases for
the mlp, and 48.1% for the bilin.

Figure 6 shows three complex sentences from
DeSSE with the annotated rewriting, and pre-
dicted propositions from Copy512 and ABCD mlp.
Copy512 correctly decomposes only one of the ex-
amples and copies the original input on the other
two samples. On the one example where Copy pro-
duces two simple sentences, it alters the sentence
meaning by replacing the word “genetics” with
the word “interesting”. This exposes a drawback
of encoder-decoder architectures on the proposi-
tion identification task, that is, the decoder can
introduce words that are not in the input sentence,
therefore failing to preserve the original meaning.
In contrast, ABCD shows good performance on
all three sentences by producing the same number
of simple sentences as in the annotated rewriting.
Especially for the third sentence, which contains
an embedded clause, “which has been the main
mission since 9/11”, the first proposition written by
the annotator is not grammatically correct, and the
subject of the second proposition is a pronoun it,
referring to the semantic subject Our main mission.
Nonetheless, ABCD generates two propositions,
both of which are grammatically correct and mean-
ing preserving.

8 Discussion

In this section, we discuss limitations of ABCD
to guide future work. The first limitation is the
low performance of ABCD on B. We observe that
in DeSSE, some annotators did not break the sen-
tences appropriately. We randomly selected 50
samples, and found 13 out of 50 (26%) examples

3927

Group Model
MinWiki DeSSE

#T Match BLEU4 BERTSc #T Match BLEU4 BERTSc
/SS #SS(%) /SS #SS(%)

Parsing

DisSim 8.50 68.46 64.20 94.42 9.59 40.00 37.89 89.54
DCPvp 14.82 45.49 28.80 64.50 15.99 42.40 47.25 60.18
DCPsbar 19.07 17.49 19.35 49.07 17.24 44.81 48.02 59.89
DCPrecur 16.30 67.90 31.78 58.08 14.16 55.63 34.44 61.37

Encoder-decoder COPY 9.37 79.26 80.96 95.96 18.13 36.20 45.91 88.71

ABCD biLSTM mlp 9.37 78.61 75.80 92.91 8.85 53.29 53.42 90.23
bilin 9.53 76.72 76.38 90.28 8.10 52.66 41.57 94.78

Table 5: Performance of baselines and our models on Minwiki test set (N=1075, #T/SS = 10.03), and DeSSE test set (N=790,
#T/SS =9.07). We report numbers of token per propositions (#T/SS), number of input sentences that have match number of
output between prediction and ground truth in percentage (Match #SS%), BLEU with four-gram and BERTScore.

Orig He did not do anything wrong, yet he was targeted and his family was murdered.
Human He did not do anything wrong. || He was targeted. || His family was murdered.
Copy He did not do anything wrong, he was targeted and his family was murdered.
ABCD He did not do anything wrong.|| he was targeted. || his family was murdered.
Orig I guess I always knew it was genetics but I didnt know why our features are the way that they are.
Human I guess I always knew it was genetics. || I didnt know why our features are the way that they are.
Copy I guess I always knew it was interesting.|| I didnt know why our features are the way that they are.
ABCD I guess I always knew it was genetics.|| I didnt know why our features are the way that they are.
Orig Our main mission, which has been the main mission since 9/11 is to eliminate terrorism wherever it may exist.
Human Our main mission, which has been the main mission since 9/11.|| It is to eliminate terrorism wherever it may exist.
Copy same as Orig
ABCD Our main mission has been the main mission. || mission is to eliminate terrorism wherever it may exist.

Figure 6: Three input complex sentences (Orig) from DeSSE, with the annotated rewriting (Human), and the
predicted propositions from Copy and ABCD.

MinWiki (N=1075) DeSSEpos(N=521)
M BL4 BS M BL4 BS

Copy 852 88.81 97.16 20 92.48 98.66
mlp 845 89.59 97.21 247 78.49 95.73
bilin 825 92.00 96.94 251 74.25 98.21

Table 6: Performance of Copy512 and our ABCD biLSTM
models on all positive samples from MinWiki and DeSSE test
set. Columns show the raw count of complex sentences where
prediction has correct number of outputs (M), BL4 and BS.

where annotators add breaks to rewrite NPs and
infinitives as clauses. This introduces noise into
the data. Another reason of lower performance
on B might be attributed to the current design of
ABCD that neglects sequential relations among
all words. Among all edge triples where it fails
to assign B, 67% and 27.42% are with ngbh rela-
tions on MinWiki and DeSSE, respectively. Two
possibilities for improving performance to inves-
tigate are enhancements to the information in the
WRG graph, and re-formulating the problem into
sequence labeling of triples.

The second limitation pertains mainly to DeSSE.
In the training data, 34.7% of sentences have
OOV words. For example, we noticed that
annotators sometimes introduced personal pro-
nouns (e.g.he/she/they) in their rewrites of VP-
conjunction, instead of copying the subjects,
or they substituted a demonstrative pronoun

(e.g.this/these) for clausal arguments. This could
be addressed by expanding the edit types to include
the ability to INSERT words from a restricted in-
sertion vocabulary. Nevertheless, our model has a
small performance gap with Copy512 on MinWiki,
and outperforms the baselines on DeSSE.

A third issue is whether ABCD would general-
ize to other languages. We expect ABCD would
perform well on European languages with existing
dependency and constituency parsers, and with an
annotated dataset.

9 Conclusion

We presented a new task to decompose complex
sentences into simple ones, along with DeSSE, a
new dataset designed for this task. We proposed
the neural ABCD model to predict four edits opera-
tions on sentence graphs, as part of a larger pipeline
from our graph-edit problem formulation. ABCD
performance comes close to or outperforms the
parsing-based and encoder-decoder baselines. Our
work selectively integrates modules to capitalize
on the linguistic precision of parsing-based meth-
ods, and the expressiveness of graphs for encoding
different aspects of linguistic structure, while still
capitalizing on the power of neural networks for
representation learning.

3928

References

Roee Aharoni and Yoav Goldberg. 2018. Split and
rephrase: Better evaluation and stronger baselines.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 719–724.

Jill Burstein, Karen Kukich, Susanne Wolff, Chi Lu,
and Martin Chodorow. 1998. Enriching automated
essay scoring using discourse marking. In Dis-
course Relations and Discourse Markers.

Lynn Carlson, Daniel Marcu, and Mary Ellen
Okurowski. 2003. Building a discourse-tagged cor-
pus in the framework of rhetorical structure theory.
In Current and new directions in discourse and dia-
logue, pages 85–112. Springer.

Seniz Demir, Sandra Carberry, and Kathleen F Mc-
Coy. 2010. A discourse-aware graph-based content-
selection framework. In Proceedings of the 6th In-
ternational Natural Language Generation Confer-
ence.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Yimai Fang, Haoyue Zhu, Ewa Muszyńska, Alexander
Kuhnle, and Simone Teufel. 2016. A proposition-
based abstractive summariser. In Proceedings of
COLING 2016, the 26th International Conference
on Computational Linguistics: Technical Papers,
pages 567–578.

Chris Fournier. 2013. Evaluating text segmentation us-
ing boundary edit distance. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1702–1712, Sofia, Bulgaria. Association for Compu-
tational Linguistics.

Yanjun Gao, Ting-Hao Huang, and Rebecca J. Passon-
neau. 2021. Learning clause representation from
dependency-anchor graph for connective prediction.
In Proceedings of the Fifteenth Workshop on Graph-
Based Methods for Natural Language Processing
(TextGraphs-15), pages 54–66, Mexico City, Mex-
ico. Association for Computational Linguistics.

Yanjun Gao, Chen Sun, and Rebecca J. Passonneau.
2019. Automated pyramid summarization evalua-
tion. In Proceedings of the 23rd Conference on Com-
putational Natural Language Learning (CoNLL),
pages 404–418, Hong Kong, China. Association for
Computational Linguistics.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631–1640.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Chen Huang, Yining Li, Chen Change Loy, and Xiaoou
Tang. 2016. Learning deep representation for im-
balanced classification. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 5375–5384.

Yohan Jo, Elijah Mayfield, Chris Reed, and Eduard
Hovy. 2020. Machine-aided annotation for fine-
grained proposition types in argumentation. In Pro-
ceedings of The 12th Language Resources and Eval-
uation Conference, pages 1008–1018.

Yohan Jo, Jacky Visser, Chris Reed, and Eduard Hovy.
2019. A cascade model for proposition extraction in
argumentation. In Proceedings of the 6th Workshop
on Argument Mining, pages 11–24, Florence, Italy.
Association for Computational Linguistics.

Deanna Kuhn, Laura Hemberger, and Valerie Khait.
2016. Tracing the development of argumentive writ-
ing in a discourse-rich context. Written Communica-
tion, 33(1):92–121.

Jing Li, Aixin Sun, and Shafiq Joty. 2018. SegBot: a
generic neural text segmentation model with pointer
network. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI),
pages 4166–4172.

William C Mann and Sandra A Thompson. 1986. Re-
lational propositions in discourse. Discourse pro-
cesses, 9(1):57–90.

Shashi Narayan, Claire Gardent, Shay Cohen, and
Anastasia Shimorina. 2017. Split and rephrase. In
EMNLP 2017: Conference on Empirical Methods in
Natural Language Processing, pages 617–627.

Christina Niklaus, Matthias Cetto, André Freitas, and
Siegfried Handschuh. 2019a. DisSim: A discourse-
aware syntactic text simplification framework for
English and German. In Proceedings of the 12th In-
ternational Conference on Natural Language Gener-
ation, pages 504–507, Tokyo, Japan. Association for
Computational Linguistics.

https://www.aclweb.org/anthology/W98-0303
https://www.aclweb.org/anthology/W98-0303
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://www.aclweb.org/anthology/P13-1167
https://www.aclweb.org/anthology/P13-1167
https://www.aclweb.org/anthology/11.textgraphs-1.6
https://www.aclweb.org/anthology/11.textgraphs-1.6
https://doi.org/10.18653/v1/K19-1038
https://doi.org/10.18653/v1/K19-1038
https://doi.org/10.18653/v1/W19-4502
https://doi.org/10.18653/v1/W19-4502
https://doi.org/10.18653/v1/W19-8662
https://doi.org/10.18653/v1/W19-8662
https://doi.org/10.18653/v1/W19-8662

3929

Christina Niklaus, André Freitas, and Siegfried Hand-
schuh. 2019b. MinWikiSplit: A sentence splitting
corpus with minimal propositions. In Proceedings
of the 12th International Conference on Natural Lan-
guage Generation, pages 118–123, Tokyo, Japan.
Association for Computational Linguistics.

Timothy Niven and Hung-Yu Kao. 2019. Probing neu-
ral network comprehension of natural language ar-
guments. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4658–4664.

Esko Nuutila and Eljas Soisalon-Soininen. 1994. On
finding the strongly connected components in a
directed graph. Information processing letters,
49(1):9–14.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Maxime Peyrard and Judith Eckle-Kohler. 2017.
Supervised learning of automatic pyramid for
optimization-based multi-document summarization.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1084–1094.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind K Joshi, and Bon-
nie L Webber. 2008. The penn discourse treebank
2.0. In LREC. Citeseer.

Valentina Pyatkin, Ayal Klein, Reut Tsarfaty, and Ido
Dagan. 2020. Qadiscourse-discourse relations as qa
pairs: Representation, crowdsourcing and baselines.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2804–2819.

Robert Tarjan. 1972. Depth-first search and linear
graph algorithms. SIAM journal on computing,
1(2):146–160.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Yizhong Wang, Sujian Li, and Jingfeng Yang. 2018.
Toward fast and accurate neural discourse segmen-
tation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 962–967.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Xingxing Zhang and Mirella Lapata. 2017. Sentence
simplification with deep reinforcement learning. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
584–594.

https://doi.org/10.18653/v1/W19-8615
https://doi.org/10.18653/v1/W19-8615

3930

A Annotation Instruction in DeSSE

Here we present the instructions for annotators,
as shown by Figure 7.

Figure 7: Instruction for DeSSE annotation

The instructions illustrate the two phases of an-
notation. The annotator first chooses whether to
add one or more split points to an input sentence,
where the word after a split point represents the
first word of a new segment. Once an annotator has
identified the split points (first page of the AMT
interface, shown as Figure 8), a second page of the
interface appears. Figure 9 shows the second view
when annotators rewrite the segments. Every span
of words defined by split points (or the original
sentence if no split points), appears in its own text
entry box for the annotator to rewrite. Annotators
cannot submit if they remove all the words from a
text entry box. They are instructed to rewrite each
text span as a complete sentence, and to leave out
the discourse connectives.

Several kinds of auto-checking and warnings
are applied in the interface to ensure quality. If a
rewrite contains a discourse connective, a warning
box pops up asking if they should drop the dis-
course connective before submitting it. A warning
box will show up if annotators use vocabulary out-
side the original sentence. To prevent annotators
from failing to rewrite, we monitored the output,
checking for cases where they submitted the text
spans with no rewriting. Annotators were prohib-
ited to submit if the interface detected an empty

Figure 8: Interface of splitting the sentence

Figure 9: Interface of rewriting the segments from Fig-
ure 8 into complete sentences

rewrite box or the total lengths of the rewrites are
too short compared to the source sentence. We
warned annotators by email that if they failed to
produce complete sentences in the rewrite boxes,
they would be blocked. Some annotators were
blocked, but most responded positively to the warn-
ings.

B Quality control in DeSSE

To test the clarity of instruction and interface, the
initial 500 sentences were used for evaluating the
task quality, each labeled by three turkers (73 turk-
ers overall), using three measures of consistency,
all in [0,1]. Average pairwise boundary similar-
ity (Fournier, 2013), a very conservative measure
of whether annotators produce the same number
of segments with boundaries at nearly the same
locations, was 0.55. Percent agreement on number
of output substrings was 0.80. On annotations with
the same number of segments, we measured the
average Jaccard score (ratio of set intersection to
set union) of words in segments from different an-
notators, which was 0.88, and words from rephras-
ings, which was 0.73. With all metrics close to 1,
and boundary similarity above 0.5, we concluded

3931

quality was already high. During the actual data
collection, quality was higher because we moni-
tored quality on a daily basis and communicated
with turkers who had questions.

C Experiment Settings

We trained our model on a Linux machine with
four Nvidia RTX 2080 Ti GPUs. We conducted
grid search for the hyper-parameters, with learning
rage in the range of [1e-2, 1e-5] (step size 0.0005),
weight decay between [0.90, 0.99], hidden size
[200, 800] (step size 200). Final parameters are set
with Adam optimizer and learning rate at 1e − 4,
weight decay 0.99, embedding dropout at 0.2, max-
imum epoch as 100 with early stop. We use GloVe
100 dimension vectors, hidden size of network as
800. We set the number of heads in self-attention as
4, corresponding to the four edit types. With batch
size 64, it takes about 6 hours to train MinWiki and
4 hours for DeSSE. For BERT fine-tuning, we use
1e− 4 learning rate, weight decay at 0.99.

