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Abstract

We describe an efficient hierarchical method to
compute attention in the Transformer architec-
ture. The proposed attention mechanism ex-
ploits a matrix structure similar to the Hier-
archical Matrix (H-Matrix) developed by the
numerical analysis community, and has linear
run time and memory complexity. We per-
form extensive experiments to show that the
inductive bias embodied by our hierarchical at-
tention is effective in capturing the hierarchi-
cal structure in the sequences typical for nat-
ural language and vision tasks. Our method
is superior to alternative sub-quadratic propos-
als by over +6 points on average on the Long
Range Arena benchmark. It also sets a new
SOTA test perplexity on One-Billion Word
dataset with 5x fewer model parameters than
that of the previous-best Transformer-based
models.

1 Introduction

Linearly combining information using content-
based weights, a method generically known as at-
tention, is a key building block in many deep neu-
ral networks such as recurrent neural networks
(RNN) (Luong et al., 2015), convolutional neu-
ral networks (CNN) (Bello et al., 2019) and graph
convolutional networks (GCN) (Velickovic et al.,
2018). One particular type of such attention,
called multi-head scaled dot-product attention, is
one of the main components of the Transformer
architecture proposed by Vaswani et al. (2017),
which has been shown to push the state-of-the-
art (SOTA) performance for various understanding
and generation tasks. These include standard nat-
ural language processing (NLP) tasks such as ma-
chine translation, document classification, entail-
ment, summarization and question answering (Za-
heer et al., 2020; Dai et al., 2019; Baevski and
Auli, 2019), as well as music generation (Huang

et al., 2018), image generation (Parmar et al.,
2018; Chen et al., 2020) and genomics (Zaheer
et al., 2020; Choromanski et al., 2020). The
Transformer is also the backbone architecture for
models such as BERT (Devlin et al., 2019) (and
its numerous relatives) and GPT3 (Brown et al.,
2020), which have delivered impressive perfor-
mance across many NLP tasks. However, the
standard attention mechanism of the Transformer
has a run time and memory usage that scales
quadratically with sequence length. Therefore,
this quadratic complexity has become a critical
bottleneck in processing long sequences (over
1,000 tokens), and has since motivated many new
attention algorithms, see (Tay et al., 2020d) for a
survey of such work.

In this paper, we draw inspiration from two
branches in numerical analysis: Hierarchical Ma-
trix (H-Matrix) (Hackbusch, 1999, 2000) and
Multigrid method (Briggs et al., 2000). We pro-
pose a hierarchical attention that has linear com-
plexity in run time and memory, and only uti-
lizes dense linear algebra operations optimized for
GPUs or TPUs.

We hypothesize that the inductive bias embod-
ied by the proposed hierarchical structure for the
attention matrix is effective in capturing the hier-
archical structure in the sequences typically seen
in many natural language processing and com-
puter vision tasks. The main benchmark we use in
this paper is the Long Range Arena (LRA) bench-
mark (Tay et al., 2020c), which has been specif-
ically designed to evaluate and compare various
sub-quadratic attention algorithms. Our new hier-
archical attention mechanism achieves best aver-
age performance to-date on the LRA benchmark
by more than 6 points over the previous-best Big-
Bird algorithm (Zaheer et al., 2020), while push-
ing SOTA performance higher in 4 of the 5 suc-
cessful tasks. Furthermore, using this new atten-
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tion, a Transformer-based language model trained
on the One-Billion Word dataset (Chelba et al.,
2014) sets a new SOTA performance record by
reducing the test perplexity by 1.55 points com-
paring to the previous-best Transformer-XL (Dai
et al., 2019) with 5x more parameters. Overall,
these empirical results both validate the soundness
of our approximation method for computing atten-
tion weights, as well as the the appropriateness of
the inductive bias present in the proposed hierar-
chical attention.

2 Related Works

It is well established in the NLP literature that the
embeddings of nearby tokens tend to be more sim-
ilar than the distant ones (Manning and Schütze,
1999). This leads to the intuition that token simi-
larity and hence the attention should decrease with
the sequence distance between a query token and a
key token1. This motivates the sliding-window lo-
cal attention (Parmar et al., 2018; Ramachandran
et al., 2019; Qiu et al., 2019) which amounts to
truncating off-diagonal entries in the attention ma-
trix beyond a user-specified sequence distance. A
second approach is to keepO(1) number of nonze-
ros per row in the attention matrix. The nonzero
entry selection is either content-based (Kitaev
et al., 2020; Roy et al., 2020; Tay et al., 2020b;
Zhou et al., 2020), hand-crafted (Beltagy et al.,
2020; Brown et al., 2020; Child et al., 2019; Ho
et al., 2019) or simply random (Zaheer et al.,
2020). It is also well known in the NLP litera-
ture that long-range contextual information is nec-
essary for many NLP tasks (Khandelwal et al.,
2018; Liu and Lapata, 2019). So a set of global
tokens are also considered. This adds O(1) num-
ber of dense rows and columns to the attention ma-
trix (Zaheer et al., 2020; Ainslie et al., 2020; Belt-
agy et al., 2020). A third approach is to approxi-
mate the attention matrix with a low-rank factored
form (Choromanski et al., 2020; Wang et al., 2020;
Tay et al., 2020a).

The first two approaches are based on the
premise that one needs to explicitly zero out
entries in the attention matrix in order to re-
duce the quadratic complexity. Decades of re-
search by the scientific computing and numeri-
cal analysis community has resulted in more so-
phisticated algorithms to sparsify matrices. A

1Eq. (11) and (12) offer a simple illustration of this intu-
ition.

small set of samples of these algorithms and their
engineering applications include Fast Multipole
Method (Greengard and Rokhlin, 1987; Green-
gard, 1994; Nabors et al., 1994; Shi et al., 1998),
Pre-corrected FFT (Phillips and White, 1997; Zhu
et al., 2005), Hierarchical Singular Value Decom-
position (SVD) (Kapur and Long, 1997) and Hi-
erarchical Matrix (H-Matrix) (Hackbusch, 1999,
2000; Zhu and White, 2005). These are generally
called Multilevel Methods (Brandt and Lubrecht,
1990). The hierarchical attention proposed in this
paper is inspired by these Multilevel Methods in
general and the H-Matrix in particular. The hier-
archical matrix structure allows a linear complex-
ity in both constructing and applying the attention
matrix.

3 Definition and Notation

Given matrices Q, K and V , with rows represent-
ing sequences of token embedding or feature vec-
tors for query, key and value respectively, the out-
put weighted by the scaled dot-product attention in
the Transformer (Vaswani et al., 2017) is defined
as

Z = softmax(
QKT

√
d

)V (1)

where Z,Q,K, V ∈ RL×d, L is the length of the
sequences, and d is the embedding or feature size.
In a more compact matrix form, Eq. (1) can be
written as

Z = D−1AV (2)

where

A = eS (3)

Si,j =
QiK

T
j√
d

(4)

D = diag{A · 1L} (5)

1L = [1, 1, ..., 1]T . (6)

Here, A,S ∈ RL×L, 1L ∈ RL is a vector with all
ones, and Si,j represents the unnormalized cosine
similarity between query embedding Qi (the i-th
row in Q) and key embedding Kj (the j-th row in
K).

For the sake of clarity, we focus on the single-
head attention in the exposition of the proposed
algorithm. Extension to the multi-head case is
straightforward since each attention head is com-
puted independently (Vaswani et al., 2017).
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Computing the similarity matrix S in Eq. (4)
and the attention matrixA in Eq. (3) takesO(L2d)
time and O(L2) memory. Similarly, computing
AV in Eq. (2) takes O(L2d) time, and computing
A · 1L in Eq. (5) takes O(L2) time. The O(L2d)
andO(L2) complexities are the bottlenecks for ap-
plying the attention mechanism over very long se-
quences.

4 Introduction on H-Matrix and
Multigrid Method

4.1 H-Matrix
The singular-value decomposition of the attention
matrix A in Eq. (3) is

A = UΣV T (7)

where Σ = diag{σ1, σ2, ..., σL} and σi is the i-th
singular value. The numerical rank of matrix A is
r if

∑L
i=r+1 σi < ε for a given tolerance ε (Tre-

fethen and Bau, 1997). The standard rank-r ap-
proximation to matrix A is

A ≈ Û Σ̂V̂ T = Û Ṽ T (8)

where Σ̂ = diag{σ1, σ2, ..., σr}, Û , V̂ ∈ RL×r

have the first r columns of U and V , and Ṽ =
V̂ Σ̂. This is the low-rank approximation used
in (Choromanski et al., 2020; Wang et al., 2020;
Tay et al., 2020a). This approximation compresses
L2 entries inA to 2rL entries in Û and Ṽ T . So the
compression rate is L

2r .
The H-Matrix generalizes this low-rank approx-

imation by using matrix block hierarchy. Consider
a two-level H-Matrix with 4 × 4 and 2 × 2 block
partition at level-0 and level-1, respectively. Ma-
trix A is partitioned as

A =


A

(0)
11 A

(0)
12

A
(0)
21 A

(0)
22

A
(1)
12

A
(1)
21

A
(0)
33 A

(0)
34

A
(0)
43 A

(0)
44

 . (9)

The low-rank approximation in Eq. (8) is applied
to the off-diagonal blocks at each level. For exam-
ple,

A
(l)
12 ≈ Û

(l)
12 Ṽ

(l)
12

T (10)

where l = 0, 1. To give a concrete example, sup-
pose each entry in matrixA has the analytical form

Ai,j = eSi,j (11)

Si,j = 2e−(i−j)2 − 1 (12)

where i, j = 0, 1, 2, ..., 15 2. With the block hi-
erarchy defined in Eq. (9), the size of the matrix
block at level-1 and level-0 is 8× 8 and 4× 4, re-
spectively. For tolerance ε = 10−3, one can verify
that the numerical rank map of matrix A is

4 2

2 4
2

2
4 2

2 4

 (13)

where the number in each block is the numerical
rank of the corresponding block in Eq. (9). Note
that matrix A still has full numerical rank of 16
at a looser tolerance 10−1. So the standard low-
rank approximation is ineffective in this case. But
even this simple two-level H-matrix already offers
a compression rate of 4

3 since storing an H-matrix
with the rank map in Eq. (13) takes 192 entries 3.
In addition, one can verify that no entry Ai,j in
Eq. (11) is very small, since Si,j ∈ [−1, 1] in
Eq. (12). Therefore, truncating off-diagonal en-
tries of matrix A, as proposed in (Parmar et al.,
2018), would produce a poor approximation. In
practice, the number of levels is adapted to the un-
derlining governing equations that result in matrix
A and it can easily be over 10 (Kapur and Long,
1997; Hackbusch, 2000; Zhu and White, 2005). In
turn, this can substantially increase the compres-
sion rate. In general, the computation complexity
of the H-Matrix is either O(L) or O(L logL), de-
pending on the underlining physics (Hackbusch,
1999, 2000).

4.2 Elements of the Multigrid Method
Multigrid Method is a multi-level nested itera-
tive method for solving large-scale sparse matri-
ces resulting from discretized partial-differential
equations (PDEs) (Briggs et al., 2000; Trottenberg
et al., 2000). At its core are two simple but power-
fully complementary ideas: relaxation and correc-
tion. Our proposed hierarchical attention only uses
the correction scheme as a building block since
there is no sparse matrix to relax on.

The correction scheme has two components: re-
striction or coarsening, and interpolation or pro-

2Matrix A in Eq.(11) is a symmetric Toeplitz ma-
trix (Golub and Loan, 1996) and hence only has 16 unique
entries. But we ignore this fact and treat A as a general ma-
trix here.

3Each one of four diagonal blocks at level-0 takes 16 en-
tries. Each one of four off-diagonal blocks at level-0 takes 16
entries. Each one of two off-diagonal blocks at level-1 takes
32 entries.
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longation. Consider a vector v̄h of scalar values
defined on a set of N grids with uniform interval
h. The simplest coarsening is to take the average
of the scalar values on each pair of grids, i.e.,

v̄2hj =
1

2
(v̄h2j + v̄h2j+1) (14)

where j = 0, 1, 2, ...N/2 − 1. The superscript in
Eq. (14) indicates that the grid interval at these two
levels is h and 2h, respectively. The simplest in-
terpolation is to duplicate the value on each coarse
grid to values on a pair of fine grids, i.e.,

v̄h2j = v̄2hj , v̄h2j+1 = v̄2hj (15)

where j = 0, 1, 2, ...N/2− 1.

5 Intuition for Hierarchical Attention

The hierarchical low-rank structure like Eq. (13)
turns out to be pervasive in many if not all physics
phenomena. Much of the theoretical analysis
by (Greengard and Rokhlin, 1987; Hackbusch,
1999) is concerned with quantifying such aspects.
The key insight into these Multilevel Methods can
be summarized as follows: perform no approxi-
mation for near interactions, and apply progres-
sively lower-precision approximation for progres-
sively longer distance interactions. The simple
case shown in Eq. (9)-(13) is a good example. To
satisfy the tolerance of 10−3, we need full rank (no
approximation) for the diagonal blocks (near inter-
actions), higher precision approximation (rank-2
vs full-rank of 4) for the 4× 4 off-diagonal blocks
at level-0 (mid-distance) and lower precision ap-
proximation (rank-2 vs full-rank of 8) for the 8×8
off-diagonal blocks at level-1 (long-distance).

In this section, we present some intuition to an-
swer two important questions: 1) Does the hier-
archical low-rank structure hold for the attention
matrixA in Eq. (3)? 2) What is the algorithm to ef-
ficiently compute the hierarchical low-rank struc-
ture? We only give an informal exposition of the
hierarchical attention. The formal mathematical
derivation is deferred to the Appendix.

5.1 Hierarchical Structure As Inductive Bias

The error analysis in (Greengard and Rokhlin,
1987; Hackbusch, 1999) offers little direct insight
since the attention matrix A in Eq. (3) is data de-
pendent by definition and hence its analytical form
like Eq. (11) and (12) is generally unknown. So

gathering empirical evidences seems the only vi-
able path to answer the first question listed above.

The ablation studies by (Khandelwal et al.,
2018) examine the effect of context words on a
language model. Within the context range of about
200 tokens, word order is only relevant within the
20 most recent tokens or about a sentence. In the
long-range context, order has almost no effect on
performance, suggesting that the model maintains
a high-level, rough semantic representation of far-
away words. The observation is succinctly sum-
marized by the title of the paper ”sharp nearby,
fuzzy far away”. Remarkably, this is in spirit very
close to the key insight into the Multilevel Meth-
ods.

A few recent attention-related studies have ex-
plored this direction with some success, such
as word-level and sentence-level attentions in
(Miculicich et al., 2018; Abreu et al., 2019),
and sentence-level and paragraph-level attentions
in (Liu and Lapata, 2019). Even though the pro-
posed hierarchical attention in these studies only
has two levels, as opposed to ten or more levels
typically used by the Multilevel Methods, the re-
ported positive results are quite suggestive.

We therefore hypothesize that the same hier-
archical low-rank structure as shown in Eq (13)
might also hold for the attention matrix in many
NLP tasks. And we treat it as the inductive bias
in the hierarchical attention mechanism proposed
in this paper. As pointed out in (Goyal and Ben-
gio, 2020), inductive biases encourage the learning
algorithm to prioritise solutions with certain prop-
erties. Hence good benchmark performance deliv-
ered by a Transformer-based model with proposed
hierarchical attention can be regarded as a posi-
tive evidence to support the hierarchical low-rank
structure hypothesis.

5.2 Informal Exposition of Hierarchical
Attention

In the standard definition of attention in Eq. (3)
and (4), there is no preference given to any keys
based on the sequence distance between a query
and keys. The observation in (Khandelwal et al.,
2018) clearly suggests that a distance-dependent
attention mechanism should be a better alternative.

We will take three steps to informally explain
the hierarchical attention mechanism. First, the
attention matrix blocks for nearby, mid-distance
and long-distance attention are separated in sec-



3805

tion 5.2.1. This is the first step toward the
distance-dependent attention mentioned above.
Second, a token hierarchy is established in sec-
tion 5.2.2. Third, the hierarchical attention is con-
structed in section 5.2.3

5.2.1 Attention Partition
Consider a 16-word sentence in Fig. 1. The sen-
tence is partitioned at three segment granularity.
This induces a three-level partition of the attention
matrix A for the original sequence:

A = A(2) +A(1) +A(0) (16)

where

A(2) =

[
0 A

(2)
12

A
(2)
21 0

]
(17)

A(1) =


A

(1)
12

A
(1)
21 A

(1)
23

A
(1)
32 A

(1)
34

A
(1)
43

 (18)

A(0) =


A

(0)
11 A

(0)
12

A
(0)
21 A

(0)
22 A

(0)
23

. . . . . . . . .

A
(0)
87 A

(0)
88

 .
(19)

Note that the nonzero entries in A(0), A(1) and
A(2) are the same as the corresponding entries of
matrix A in Eq. (3). Matrix block size of A(0)

ij ,

A
(1)
ij andA(2)

ij is 2×2, 4×4 and 8×8, respectively.
Following the key insight into Multilevel Meth-
ods, we perform no approximation to any level-0
matrix block A(0)

ij and apply a low-rank approxi-
mation to off-diagonal matrix blocks in A(1) and
A(2). If we set the numerical rank of all these
blocks to 2, then we can assemble the three rank
maps into a single rank map as 4

2 2

2 2
2

2
2 2

2 2

2

2

2 2

2 2
2

2
2 2

2 2


. (20)

4We omit some of implementation details to handle the
overlapping entries between adjacent levels.

this sentence is to illustrate how to set up token hierarchy level by level with aggregation

a)  Level-0:  16 tokens partitioned into 8 segments

b)  Level-1:  16 tokens partitioned in 4 segments

c)  Level-2:  16 tokens partitioned in 2 segments

this sentence is to to set up tokenillustrate how hierarchy level by level with aggregation

this sentence is to illustrate how to set up token hierarchy level by level with aggregation

Figure 1: Token sequence partitions in three segment
granularity.

The hierarchical structure embodied by the prede-
termined rank map in Eq. (20) represents the in-
ductive bias for the attention matrix A in Eq. (16).
But this construction step is inefficient because we
need to form the original attention matrix and then
perform SVD to discover the low-rank approxima-
tion.

5.2.2 Token Hierarchy
To illustrate the notion of token hierarchy, con-
sider the same 16-word sentence in Fig. 2. A
simple 3-level binary-tree hierarchy can be set
up by following the simple coarsening defined in
Eq. (14): 1) At level-0, each one of the 16 words
is mapped to its word embedding; 2) At level-1,
each token (parent node) corresponds to a pair of
adjacent words at level-0 (child nodes), which are
shown inside each box. The embedding of each
parent token is simply the average of its child to-
ken embeddings; 3) At level-2, each token (parent
node) corresponds to one pair of adjacent tokens at
level-1 (child nodes) or 4 adjacent words at level-0
(grand child nodes), which are shown inside each
box. The embedding of each parent token is sim-
ply the average of its child token embeddings.

In general, the height of the binary tree is
O(log2(L) and the total number of tree nodes is
O(2L), where L is the sequence length. We only
need word embeddings for the leaf nodes since the
embeddings of all other tree nodes can be recur-
sively computed. The formal definition and no-
tations of the recursion for query and key are de-
tailed in section 6.1.

5.2.3 Informal Construction of Hierarchical
Attention

It is clear from Fig. 2 that the embeddings of
higher level tokens represent a coarser level repre-
sentation of a larger chunk of the text. The tokens
at different levels can be understood as multi-scale
snapshots of the original token sequence at level-0.
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this sentence is to illustrate how to set up token hierarchy level by level with aggregation
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sentence 
is 
to
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how
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a)  Level-0:  16 tokens partitioned into 8 segments

b)  Level-1:  8 tokens partitioned into 4 segments

c)  Level-2:  4 tokens partitioned into 2 segments

Figure 2: A three-level token hierarchy. Dashed boxes
represent segmentation and solid boxes represents to-
kens.

Hence this token hierarchy naturally induces a set
of multi-scale attention matrices. Let Ã(i) be the
attention matrix induced by the tokens at level-i. It
is clear from Fig. 2 that the size of Ã(0), Ã(1) and
Ã(2) is 16×16, 8×8 and 4×4, respectively. This
multi-scale viewpoint does not directly lead to a
useful algorithm since matrix Ã(0) contains all the
information and there is little additional informa-
tion from Ã(1) and Ã(2).

A key step to arrive at the hierarchical attention
is to apply the contextual sliding window at each
hierarchy level. The tokens at each level are parti-
tioned into segments of size 2 in Fig. 2. One way
to implement the local attention is to allow each
query token segment to attend only two adjacent
key token segments, one to its left and another to
its right. At level-0, each query token segment also
attends to the collocated key token segment. The
token segment partition and local attention lead
to a tri-diagonal block sparse matrix structure for
Ã(0) and bi-diagonal block sparse matrix structure
for Ã(1) and Ã(2). Their sparsity patterns are

Ã(0) ∝



2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2


(21)

Ã(1) ∝


2

2 2

2 2

2

 (22)

Ã(2) ∝
[

2

2

]
(23)

where the 2 in the nonzero blocks indicates that
these are dense blocks of size 2× 2.

It is clear that Ã(0) is identical to A(0) in
Eq. (19). The efficiency gain comes from Ã(2) and
Ã(1). Each nonzero entry in Ã(2) and Ã(1) cap-
tures the aggregated or coarse attention between
two disjoint chunk of four and two tokens, re-
spectively. Progressively larger token chunks lead
to progressively lower-precision approximation to
the original attention blocks. This is precisely the
intention of the rank map in Eq. (20). We can now
see that Ã(2) and Ã(1) provide an efficient way to
approximate A(2) in Eq. (17) and A(1) in Eq. (18),
respectively.

6 Key Components in Hierarchical
Attention

6.1 Constructing Hierarchical Attention
The simple example in Fig. 2 can be easily gener-
alized. Eq. (14) is used to coarsen or merge rows
in matrices Q, K and V in Eq. (1). For sequence
length L = 2M+1, the coarsening establishes a
binary tree of depth M for Q, K and V , respec-
tively. Each tree node represents a matrix row and
there are 2M+1−l nodes or rows at level-l. To fa-
cilitate the discussion, we define a few hierarchy
related notations here. Let Q̃(l), K̃(l) and Ṽ (l) be
coarsened versions of Q, K and V at level-l in the
binary tree. We note that l = 0 is a special case,
which is defined as

Q̃(0) = Q, K̃(0) = K, Ṽ (0) = V. (24)

Following Eq. (14), the recursion to coarsen Q, K
and V is:

Q̃
(l+1)
j =

1

2
(Q̃

(l)
2j + Q̃

(l)
2j+1) (25)

K̃
(l+1)
j =

1

2
(K̃

(l)
2j + K̃

(l)
2j+1) (26)

Ṽ
(l+1)
j = (Ṽ

(l)
2j + Ṽ

(l)
2j+1) (27)

where l = 0, 1, ...,M − 2 and j =
0, 1, 2, ..., 2M−l. It should be noted that the coars-
ening of V in Eq. (27) does not have the averaging
factor 1

2 . We defer more details on coarsening to
Appendix Section A.1.

Now we are ready to compute the nonzero en-
tries in Eq. (21), (22) and (23) and construct
hierarchical attention matrix Ã(l). Substituting
Eq. (25) and (26) into (4) and then into (3), we
obtain

Ã
(l)
ij = eS̃

(l)
ij = e

Q̃
(l)
i

(K̃
(l)
j

)T

√
d (28)
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Again, we note that l = 0 is a special case because
Ã

(0)
ij = Aij .

6.2 Applying Hierarchical Attention
The hierarchical matrix structure in Eq. (17), (18)
and (19) naturally leads to a hierarchical approach
to the matrix-matrix multiplication in Eq. (2) and
the matrix-vector multiplication in Eq. (5). We
use the matrix-matrix multiplication as an exam-
ple since matrix-vector multiplication is just a spe-
cial case of the matrix-matrix multiplication.

In view of Eq. (17), (18) and (19), we write the
matrix-matrix multiplication in Eq. (2) as

Y = AV ≈ A(0)V (0) + Ã(1)Ṽ (1) + Ã(2)Ṽ (2)

= Y (0) + P (0)
(
Ỹ (1) + P (1)Ỹ (2)

)
(29)

where
Ỹ (l) = Ã(l)Ṽ (l), l = 1, 2 (30)

We defer the detailed derivation of Eq. (29) to Ap-
pendix Section A.5 and A.6.

7 Algorithm And Computational
Complexity

To facilitate the description and the complexity
analysis of the algorithm, we define a few more
hierarchy-related notations. In addition to se-
quence length L, number of hierarchy levels M
and embedding or feature size d in Eq. (1), the new
notations include: 1) Nr : numerical rank of the
off-diagonal blocks (for instance, 2 in Eq. (20)).
This is also the diagonal block size at level-0; 2)
N

(l)
b : number of blocks at level-l. Note that L and

d are usually data-dependent hyper-parameters,
while Nr is the only model hyper-parameter re-
sponsible for our method’s inductive bias. In turn,
N

(l)
b and M are derived parameters, computed as:

N
(0)
b =

L

Nr
, N

(l+1)
b =

N
(l)
b

2
(31)

M = log2(N
(0)
b ). (32)

It is easy to verify that

M−1∑
l=0

N
(l)
b =

M−1∑
l=0

N
(0)
b

2l
≈ 2N

(0)
b . (33)

It is important to note that only the diagonal
blocks at level-0 and the super-diagonal and sub-
diagonal blocks at level-l are needed in applying
the hierarchical attention matrix. This is clearly

shown in Eq. (21)- (23). This means that only
N

(l)
b − 1 super-diagonal and sub-diagonal blocks

are computed at level-l. This is crucial to the over-
all linear complexity in run time and memory.

We should also note that all matrix blocks in
coarse attention matrix Ã(l) have the same size
Nr ×Nr. This is due to the rank map in Eq. (20).
This is crucial for efficiency reason since the
single-instruction-multiple-data (SIMD) program-
ming style supported by the dense linear algebra
libraries for GPU and TPU encourages uniform
tensor shapes.

We summarize the main steps to construct and
apply the hierarchical attention in Algorithm 1.

Algorithm 1 H-Transformer-1D
Input: Q(query), K(key), V (value)
Output: Z

Coarsen Q using Eq. (25) and coarsen K using
Eq. (26)
Compute diagonal blocks in Ã(0) and super-
diagonal and sub-diagonal blocks in Ã(l) using
Eq. (28)
Coarsen V using Eq. (27)
Compute Y = AV in Eq. (2) using Eq. (29)
Compute D in Eq. (5) using Eq. (29)
Compute Z = D−1Y

The computational cost for Algorithm 1 has two
parts:

1. Computing the hierarchical attention matrix:

(a) diagonal blocks at level-0: dN2
rN

(0)
b

(b) Super- and sub-diagonal blocks at level-
l: 4dN2

r (N
(l)
b − 1)

(c) total: 5dLNr = O(dL)

2. Computing matrix-matrix (MM) multiplica-
tion in Eq. (2) and matrix-vector (MV) mul-
tiplication in Eq. (5):

(a) MM: 5dLNr

(b) MV: 5LNr

(c) total: 5(d+ 1)LNr = O(dL)

So the overall run time complexity of the hierar-
chical attention algorithm is O(dL). Likewise, the
memory complexity can be shown to be O(dL) as
well. We defer the detailed analysis to appendix
Section A.5 and A.6.
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Model ListOps Text Retrieval Image Pathfinder Path-X Avg

Chance 10.00 50.00 50.00 10.00 50.00 50.00 44.00
Transformer 36.37 64.27 57.46 42.44 71.40 FAIL 54.39

Local Attention 15.82 52.98 53.39 41.46 66.63 FAIL 46.06
Sparse Trans. 17.07 63.58 59.59 44.24 71.71 FAIL 51.24
Longformer 35.63 62.85 56.89 42.22 69.71 FAIL 53.46
Linformer 35.70 53.94 52.27 38.56 76.34 FAIL 51.36
Reformer 37.27 56.10 53.40 38.07 68.50 FAIL 50.67
Sinkhorn Trans. 33.67 61.20 53.83 41.23 67.45 FAIL 51.39
Synthesizer 36.99 61.68 54.67 41.61 69.45 FAIL 52.88
BigBird 36.05 64.02 59.29 40.83 74.87 FAIL 55.01
Linear Trans. 16.13 65.90 53.09 42.34 75.30 FAIL 50.55
Performer 18.01 65.40 53.82 42.77 77.05 FAIL 51.41
H-Transformer-1D 49.53 78.69 63.99 46.05 68.78 FAIL 61.41

Table 1: Experimental results on long-range arena benchmark. Best model is in boldface and second best is
underlined. All models do not learn anything on Path-X task, contrary to the Pathfinder task and this is denoted by
FAIL. Path-X is not counted toward the Average score as it has no impact on relative performance.

8 Experiments And Results

We have implemented the proposed hierarchical
attention using Jax, an open source library 5 for
automatic gradient computation and linear alge-
bra operations on GPUs and TPUs. All numer-
ical operations in our algorithm use the Numpy
native linear algebra functions supported by Jax.
In all our experiments in this section, we use
the standard Transformer architecture described in
(Vaswani et al., 2017) as the backbone for our H-
Transformer-1D model. Unless specified other-
wise, the model parameters are: number of lay-
ers is 6, number of heads is 8, word embedding
size is 512 and the feed-forward module (FFN)
size is 2048. We follow the API for the standard
multihead scaled dot-product attention implemen-
tation 6 so that we can perform a simple drop-in re-
placement of the standard multihead attention with
our hierarchical attention implementation. This al-
lows for an easy and fair comparison.

8.1 Long-Range Arena

The open-source Long-Range Arena (LRA)
benchmark 7 has been proposed as a standard
way to probe and quantify the capabilities of var-
ious xformer (long-range Transformer) architec-
tures (Tay et al., 2020c). In our case, it also serves
to highlight the effectiveness of the inductive bias

5https://github.com/google/jax
6https://github.com/google/flax/blob/master/flax/nn
7https://github.com/google-research/long-range-arena

inspired by the H-Matrix method, as well as the
capability of our hierarchical attention to handle
long sequences.

The LRA has several desirable qualities that
made us focus on it as a primary evaluation bench-
mark: generality (restricted to encoder-only tasks
to accommodate most proposals); simplicity (no
pretraining, no data augmentation allowed); diffi-
culty (large headroom with existing approaches);
long-input focus (so that modeling improvements
in this area are visible); diverse (6 tasks, cover-
ing math, language, image, and spatial modeling);
and lightweight (so that modeling improvements
are measurable independently of the ability to train
and run high-capacity models).

The tasks that comprise LRA are: ListOps
(sequences of arithmetical expressions of lengths
of up to 2K that tests the ability to reason hi-
erarchically while handling long context); Text
(byte/character-level text classification at docu-
ment level, which both simulates longer input se-
quences – max length 4K – and increases the diffi-
culty level); Retrieval (byte/character-level doc-
ument retrieval, which simulates the ability to
model document similarity as a score between
two independently-encoded long input sequences
– max length 4K + 4K = 8K); Image (image clas-
sification based on the CIFAR-10 dataset, where
an NxN image is flattened to a sequence of length
N2 pixels); Pathfinder (long-range spatial depen-
dency task, with images consisting of two small
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Model perplexity parameters

(Dai et al., 2019) 21.8 800M
(Baevski and Auli, 2019) 23.02 1000M
(Dai et al., 2019) 23.5 465M
(Baevski and Auli, 2019) 23.91 465M
(Shazeer et al., 2018) 24.0 4900M

Transformer baseline 30.04 53M
Transformer baseline 24.8 144M
H-Transformer-1D Nr = 16 23.95 53M
H-Transformer-1D Nr = 16 20.25 144M

Table 2: Experimental results on one-billion word benchmark. We compare previous SOTA results obtained with
models of size 465M-4900M parameters against the performance of the quadratic attention baseline and the H-
Transformer-1D models.

circles and dash-line paths that either connect the
two circles or not – image dimensions of 32x32
for a pixel sequence of length 1,024); Path-X
(same as Pathfinder, but for image dimensions
of 128x128 for a total pixel sequence of length
16,384). The default Transformer model parame-
ters such as number of layers and number of heads
etc are pre-determined by the benchmark configu-
ration for each task.

The results obtained by our H-Transformer-1D
model on the LRA benchmark are given in Table 1.
Overall, the H-Transformer-1D model achieves
61.41 average accuracy, a +6.4 points improve-
ment over the previous-best average performance
from BigBird (Zaheer et al., 2020). We want to
highlight ListOps, Text and Retrieval because they
all involve long sequences and H-Transformer-1D
model improves SOTA performance by relatively
large margins. These should be strong evidences
to support our hypothesis in section 5.1 and vali-
date the inductive bias due to the hierarchical at-
tention.

8.2 Language Models Trained on One-Billion
Words

We have used Flax, an open-source library 8 to
train neural networks, as the code base for the
model training. Our H-Transformer-1D model
uses the standard Transformer decoder implemen-
tation in Flax as the backbone. Only the atten-
tion is replaced with our hierarchical attention.
We trained both the Transformer baseline and H-
Transformer-1D on the One-Billion Word bench-
mark (Chelba et al., 2014). We tried different Nr

8https://github.com/google/flax

(numerical rank) in our H-Transformer-1D model.
These represent different inductive bias. We found
that H-Transformer-1D with Nr = 16 generated
text with quality comparable to that of the base-
line Transformer. For both Transformer baseline
and H-Transformer-1D, we also tried two sets of
model parameters: 1) embedding size is 512 and
feed-forward module size is 2048 and hence the
parameter count is 53M; 2) embedding size is
1024 and feed-forward module size is 4096 and
hence the parameter count is 144M. The test per-
plexity results of these four models and various
SOTA models are shown in table 2.

H-Transformer-1D delivers the lowest perplex-
ity to-date while using 5× smaller model ca-
pacity than that of the previous SOTA model
Transformer-XL (Dai et al., 2019). This is another
strong evidence to support our hypothesis in sec-
tion 5.1 and validate the inductive bias due to the
hierarchical attention.

9 Conclusions and Future Work

We have proposed a new Transformer atten-
tion using the inductive bias inspired by the H-
Matrix. The new algorithm has linear complex-
ity in run time and memory usage and is fully
compatible with dense linear algebra libraries on
GPU and TPU. The effectiveness of this new
attention is demonstrated by the empirical ev-
idences from long-range arena benchmark and
One-Billion word language modeling. Future
work include applying the new attention to mu-
sic and genomics, developing proper inductive
bias for cross-attention and extending the one-
dimensional hierarchical attention to 2D images.
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Ontañón, Philip Pham, Anirudh Ravula, Qifan
Wang, Li Yang, and Amr Ahmed. 2020. Big bird:
Transformers for longer sequences.

Hao-Yi Zhou, Shanghang Zhang, Jieqi Peng, Shuai
Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
2020. Informer: Beyond efficient transformer
for long sequence time-series forecasting. ArXiv,
abs/2012.07436.

Zhenhai Zhu, Ben Song, and J. K. White. 2005. Algo-
rithms in FastImp: A fast and wideband impedance
extraction program for complicated 3D geometries.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems.

Zhenhai Zhu and J. K. White. 2005. Fastsies: a fast
stochastic integral equation solver for modeling the
rough surface effect. International Conference on
Computer Aided-Design, pages 675–682.



3812

A Appendix

A.1 Restriction or Coarsening Matrices

For sequence length L = 2M , the coarsening es-
tablishes a binary tree of depthM forQ,K and V ,
respectively. The root of the binary tree at level-
(M − 1) has two nodes which correspond to the
two matrix rows coarsened from four matrix rows
at level-(M − 2). The piecewise constant restric-
tion matrix at level-(M − 2) is

R(M−2) =

[
1 1 0 0
0 0 1 1

]
2×4

. (34)

Likewise, the piecewise constant restriction matrix
at level-(M − 3) is

R(M−3) =


1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


4×8

=

[
R(M−2) 0

0 R(M−2)

]
. (35)

In general, the restriction matrices follow the re-
cursion

R(l−1) =

[
R(l) 0

0 R(l)

]
(36)

which starts from R(M−2) of size 2 × 4 and goes
backward to R(0) of size L

2 × L.

A.2 Interpolation Matrices

Given Y (l) at level-l, the interpolated Y (l−1) at
level-(l − 1) can be written as

Y (l−1) = P (l)Y (l) (37)

where l = 1, 2, ...,M − 1, sparse matrix P (l) has
size L(l−1) × L(l), and L(l) = 2M−l is the node
count at level-l of the binary tree.

This recursion also follows the binary tree hi-
erarchy. The four matrix rows at level-(M − 2)
are interpolated from the two matrix rows at level-
(M − 1). Specifically, the piecewise constant in-
terpolation matrix at level-(M − 1) is

P (M−1) =


1 0
1 0
0 1
0 1


4×2

. (38)

Likewise, the piecewise constant interpolation ma-
trix at level-(M − 2) is

P (M−2) =



1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0

0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1


8×4

=

[
P (M−1) 0

0 P (M−1)

]
. (39)

In general, the interpolation matrices follow the re-
cursion

P (l−1) =

[
P (l) 0

0 P (l)

]
(40)

which starts from P (M−1) of size 4 × 2 and goes
backward to P (0) of sizeL×L

2 . In view of Eq. (34)
and (38), it is obvious that

P (M−1) = (R(M−2))T . (41)

In view of the recursions in Eq. (36) and (40), it is
easy to prove by induction that

P (l) = (R(l−1))T . (42)

A.3 Expansion Matrices
For the purpose of factored low-rank approxima-
tion for the off-diagonal attention matrix blocks,
we design a series of so-called expansion matri-
ces. The first two expansion matrices in this series
are

T (M−1) = P (M−1) =


1 0
1 0
0 1
0 1


4×2

=

[
12 0
0 12

]
(43)

and

T (M−2) = P (M−2)P (M−1) =



1 0
1 0
1 0
1 0

0 1
0 1
0 1
0 1


8×2

=

[
14 0
0 14

]
(44)
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where 1N is a length-N vector of ones. The gen-
eral form of matrix T (l) is defined as

T (l) = ΠM−1
i=l P (i) (45)

where l = 1, 2, ...,M − 1. In view of Eq. (43),
(45) and (40), it is easy to prove by induction that

T (l) =

[
12M−l 0

0 12M−l

]
(46)

and it has size 2M−l+1 × 2. Further more, in view
of Eq. (45) and (42), we have

(T (l))T = Πl
i=M−1R

(i−1). (47)

A.4 Low-Rank Factored Form
Matrix T (l) plays a pivotal role in constructing the
low-rank approximation to the off-diagonal atten-
tion matrix blocks. Let the ij-th block in the coars-
ened attention matrix at level-1 be

Ã
(1)
ij =

[
a11 a12
a21 a22

]
(48)

where aij is the entry resulted from the inner prod-
uct between a row in Q̃(1) and K̃(1). The rank-2
approximation to the corresponding ij-th block in
the original attention matrix A at level-1 can be
written as

A
(1)
ij ≈ T

(M−1)Ã
(1)
ij (T (M−1))T (49)

=


1 0
1 0
0 1
0 1

[ a11 a12
a21 a22

] [
1 1 0 0
0 0 1 1

]

=


a11 a11 a12 a12
a11 a11 a12 a12
a21 a21 a22 a22
a21 a21 a22 a22

 . (50)

It is clear that the resulting 4 × 4 matrix A(1)
ij is

essentially the piecewise constant interpolation of
the 2 × 2 matrix Ã(1)

ij along row and column di-

rection. And since both T (M−1) and Ã
(1)
ij have

full rank 2, A(1)
ij necessarily has rank 2. One can

also view aij as being similar to the average value
at the ij-th cluster center in the K-mean method.
The role of matrix T (M−1) is to expand from these
2×2 clusters to the 4×4 grid and hence the name
expansion matrix.

Since we maintain the same numerical rank
2 for all super- and sub-diagonal attention ma-
trix blocks, the rank-2 approximation to the ij-th

block in the original attention matrix A at level-l
is

A
(l)
ij ≈ T (M−l)Ã

(l)
ij (T (M−l))T

= ΠM−1
i=M−lP

(i)Ã
(l)
ij ΠM−l

i=M−1R
(i−1)(51)

where the last equality is due to Eq. (45) and (47).
We note that matrix T (l) has full column rank

2 by design and this can be easily shown from
Eq. (46). We have used this fact to construct the
rank-2 approximation in Eq. (51).

A.5 Construct Hierarchical Attention Matrix
To see how Eq. (51) can be used, consider a simple
three-level partition of the attention matrix A for
sequence length L = 16

A =

[
A

(2)
11 A

(2)
12

A
(2)
21 A

(2)
22

]
(52)

A
(2)
11 =


A

(0)
11 A

(0)
12

A
(0)
21 A

(0)
22

A
(1)
12

A
(1)
21

A
(0)
33 A

(0)
34

A
(0)
43 A

(0)
44

 (53)

A
(2)
22 =


A

(0)
55 A

(0)
56

A
(0)
65 A

(0)
66

A
(1)
34

A
(1)
43

A
(0)
77 A

(0)
78

A
(0)
87 A

(0)
88

 (54)

where the size of level-0, level-1 and level-2 ma-
trix blocks is 2 × 2, 4 × 4 and 8 × 8, respec-
tively. Note that the number of levels is M =
log2(L/2) = 3. We use this simple three-level ex-
ample to illustrate the key steps in both construct-
ing and applying the hierarchical attention matrix.

In view of Eq. (51), we have

A ≈

[
Ã

(2)
11 T (1)Ã

(2)
12 (T (1))T

T (1)Ã
(2)
21 (T (1))T Ã

(2)
22

]
(55)

Ã
(2)
11 =


A

(0)
11 A

(0)
12

A
(0)
21 A

(0)
22

T (2)Ã
(1)
12 (T (2))T

T (2)Ã
(1)
21 (T (2))T

A
(0)
33 A

(0)
34

A
(0)
43 A

(0)
44


(56)
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Ã
(2)
22 =


A

(0)
55 A

(0)
56

A
(0)
65 A

(0)
66

T (2)Ã
(1)
34 (T (2))T

T (2)Ã
(1)
43 (T (2))T

A
(0)
77 A

(0)
78

A
(0)
87 A

(0)
88

 .
(57)

We note that matrices T (l), l = 1, 2 are never ex-
plicitly formed and are only implicitly used, as
shown in next section. So only the diagonal blocks
at level-0 and super- and sub-diagonal blocks of
the coarsened matrix Ã at level-l need to be ex-
plicitly computed. By design, all these blocks
have the same size 2 × 2 if we set the numeri-
cal rank to Nr = 2. The total number of super-
and sub-diagonal blocks in the binary tree hier-
archy is upper bounded by twice the number of
super- and sub-diagonal blocks at level-0, which
is 2N

(0)
b . Hence the total number of entries is

5N
(0)
b N2

r = 5LNr = O(LNr). Each entry is
equal to the inner product between Q̃(l)

i and K̃(l)
j

and hence the run time cost per entry is O(d),
where d is the embedding size. So the final total
run time cost is O(Ld) and memory foot print is
O(L). Here we leave out Nr since it is a constant
model hyper parameter.

A.6 Apply Hierarchical Attention Matrix

Computing matrix-matrix product AV follows the
hierarchical structure of matrix A in Eq. (55), (56)
and (57). We first partition matrix V according to
the three-level binary tree established by the coars-
ening process, i.e.,

V =


V

(0)
1

V
(0)
2
...

V
(0)
7

V
(0)
8

 =


V

(1)
1

V
(1)
2

V
(1)
3

V
(1)
4

 =

[
V

(2)
1

V
(2)
2

]
.

(58)
Note that these are partitions of the same matrix
V at 3 different levels. For sequence length L =
16, matrix V has size 16 × d, and the size of the
partitioned blocks V (0)

i , V (1)
j and V (2)

k are 2 × d,
4 × d and 8 × d, respectively. In the derivation
to come, we may exchange partitions at different
levels. For instance, in view of Eq. (58), we have

V
(2)
1 =

[
V

(1)
1

V
(1)
2

]
. (59)

So we may replace V (2)
1 with the right-hand side

in Eq. (59).
In view of Eq. (52) and (58), matrix-matrix

product AV can be written as

Y = AV =

[
A

(2)
11 V

(2)
1

A
(2)
22 V

(2)
2

]
+

[
A

(2)
12 V

(2)
2

A
(2)
21 V

(2)
1

]

=

[
A

(2)
11 V

(2)
1

A
(2)
22 V

(2)
2

]
+ Y (2). (60)

In view of Eq. (55), we have

Y (2) =

[
A

(2)
12 V

(2)
2

A
(2)
21 V

(2)
1

]

≈

[
T (1)Ã

(2)
12 (T (1))TV

(2)
2

T (1)Ã
(2)
21 (T (1))TV

(2)
1

]

=

[
P (1)P (2)Ã

(2)
12 R

(1)R(0)V
(2)
2

P (1)P (2)Ã
(2)
21 R

(1)R(0)V
(2)
1

]

= P (0)P (1)

[
Ã

(2)
12 Ṽ

(2)
2

Ã
(2)
21 Ṽ

(2)
1

]

= P (0)P (1)

[
Ỹ

(2)
1

Ỹ
(2)
2

]
(61)

where

[
Ṽ

(2)
1

Ṽ
(2)
2

]
=

[
R(1)R(0)V

(2)
1

R(1)R(0)V
(2)
2

]
. (62)

The third equality in Eq. (61) is due to Eq. (45) and
(47) where l = 1. The fourth equality in Eq. (61)
is due to Eq. (40).

In view of Eq. (56), we have

A
(2)
11 V

(2)
1 ≈ Ã(2)

11 V
(2)
1

=


A

(0)
11 A

(0)
12

A
(0)
21 A

(0)
22

T (2)Ã
(1)
12 (T (2))T

T (2)Ã
(1)
21 (T (2))T

A
(0)
33 A

(0)
34

A
(0)
43 A

(0)
44

V (2)
1

=


Y

(0)
1

Y
(0)
2

Y
(0)
3

Y
(0)
4

+ Y
(1)
1 (63)



3815

where

Y
(1)
1 =

[
T (2)Ã

(1)
12 (T (2))TV

(1)
2

T (2)Ã
(1)
21 (T (2))TV

(1)
1

]

=

[
P (2)Ã

(1)
12 R

(1)V
(1)
2

P (2)Ã
(1)
21 R

(1)V
(1)
1

]

= P (1)

[
Ã

(1)
12 Ṽ

(1)
2

Ã
(1)
21 Ṽ

(1)
1

]

= P (1)

[
Ỹ

(1)
1

Ỹ
(1)
2

]
(64)

and [
Ṽ

(1)
1

Ṽ
(1)
2

]
=

[
R(1)V

(1)
1

R(1)V
(1)
2

]
. (65)

The second equality in Eq. (64) is due to Eq. (45)
and (47) where l = 2. The third equality in
Eq. (64) is due to Eq. (40).

In view of Eq.(57), we have

A
(2)
22 V

(2)
2 ≈ Ã(2)

22 V
(2)
2

=


A

(0)
55 A

(0)
56

A
(0)
65 A

(0)
66

T (1)Ã
(1)
34 (T (1))T

T (1)Ã
(1)
43 (T (1))T

A
(0)
77 A

(0)
78

A
(0)
87 A

(0)
88

V (2)
2

=


Y

(0)
5

Y
(0)
6

Y
(0)
7

Y
(0)
8

+ Y
(1)
2 (66)

where

Y
(1)
2 =

[
P (2)Ã

(1)
34 R

(1)V
(1)
4

P (2)Ã
(1)
43 R

(1)V
(1)
3

]

= P (1)

[
Ã

(1)
34 Ṽ

(1)
4

Ã
(1)
43 Ṽ

(1)
3

]

= P (1)

[
Ỹ

(1)
3

Ỹ
(1)
4

]
(67)

and [
Ṽ

(1)
3

Ṽ
(1)
4

]
=

[
R(1)V

(1)
3

R(1)V
(1)
4

]
. (68)

Substituting Eq. (61), (63) and (66) into (60),
we obtain the final result for the matrix-matrix
product

Y = AV ≈ Y (0) + P (0)
(
Ỹ (1) + P (1)Ỹ (2)

)
(69)

where

Y (0) =


A

(0)
11 V

(0)
1 +A

(0)
12 V

(0)
2

A
(0)
21 V

(0)
1 +A

(0)
22 V

(0)
2

...
A

(0)
87 V

(0)
7 +A

(0)
88 V

(0)
8

 (70)

Ỹ (1) =


Ỹ

(1)
1

Ỹ
(1)
2

Ỹ
(1)
3

Ỹ
(1)
4

 =


Ã

(1)
12 Ṽ

(1)
2

Ã
(1)
21 Ṽ

(1)
1

Ã
(1)
34 Ṽ

(1)
4

Ã
(1)
43 Ṽ

(1)
3

 (71)

Ỹ (2) =

[
Ỹ

(2)
1

Ỹ
(2)
2

]
=

[
Ã

(2)
12 Ṽ

(2)
2

Ã
(2)
21 Ṽ

(2)
1

]
(72)

To summarize, matrix-matrix product computa-
tion includes the following steps:

1. Compute Ṽ (1) in Eq. (65) and (68), and com-
pute Ṽ (2) in Eq. (62);

2. Compute Y (0) in Eq. (70), Ỹ (1) in Eq. (71)
and Ỹ (2) in Eq. (72);

3. Interpolate and cumulative sum in Eq. (69);

Note that all operations in step-2 are dense matrix-
matrix product, well suited for dense linear alge-
bra libraries optimized for GPU and TPU. The to-
tal number of super- and sub-diagonal blocks is
upper bounded by twice the number of super- and
sub-diagonal blocks at level-0, which is 2N

(0)
b .

The run time of each dense matrix-matrix product
is O(N2

r d). So the total run time is 5N
(0)
b N2

r d =
5LNrd = O(Ld). Here we leave out Nr since it
is a constant model hyper-parameter.

The coarsening in step-1 and interpolation in
step-3 all use sparse matrices with fixed sparsity
patterns. Hence matrices P (l) and R(l) are never
explicitly formed and applying them can be eas-
ily done with standard library functions. Take Jax
Numpy library as an example, coarsening can be
done with sum() along row axis and interpolation
can be done with repeat() along row axis. For this
reason, step-1 and step-3 only have dense matrix
operations as well.

The formulation of the matrix-matrix product
for the general level-M case is

Y = AV = Y (0) + P (0)(Ỹ (1) + P (1)(Ỹ (2)

+ P (2)(· · ·+ P (M−2)Ỹ (M−1)) · · · )). (73)

This formulation is a direct consequence of the
nested attention matrix structure and can be de-
rived similarly as Eq. (69).


